TY - JOUR A1 - Hopp, Sarah A1 - Albert-Weissenberger, Christiane A1 - Mencl, Stine A1 - Bieber, Michael A1 - Schuhmann, Michael K. A1 - Stetter, Christian A1 - Nieswandt, Bernhard A1 - Schmidt, Peter M. A1 - Monoranu, Camelia-Maria A1 - Alafuzoff, Irina A1 - Marklund, Niklas A1 - Nolte, Marc W. A1 - Sirén, Anna-Leena A1 - Kleinschnitz, Christoph T1 - Targeting coagulation factor XII as a novel therapeutic option in brain trauma JF - Annals of Neurology N2 - Objective: Traumatic brain injury is a major global public health problem for which specific therapeutic interventions are lacking. There is, therefore, a pressing need to identify innovative pathomechanism-based effective therapies for this condition. Thrombus formation in the cerebral microcirculation has been proposed to contribute to secondary brain damage by causing pericontusional ischemia, but previous studies have failed to harness this finding for therapeutic use. The aim of this study was to obtain preclinical evidence supporting the hypothesis that targeting factor XII prevents thrombus formation and has a beneficial effect on outcome after traumatic brain injury. Methods: We investigated the impact of genetic deficiency of factor XII and acute inhibition of activated factor XII with a single bolus injection of recombinant human albumin-fused infestin-4 (rHA-Infestin-4) on trauma-induced microvascular thrombus formation and the subsequent outcome in 2 mouse models of traumatic brain injury. Results: Our study showed that both genetic deficiency of factor XII and an inhibition of activated factor XII in mice minimize trauma-induced microvascular thrombus formation and improve outcome, as reflected by better motor function, reduced brain lesion volume, and diminished neurodegeneration. Administration of human factor XII in factor XII-deficient mice fully restored injury-induced microvascular thrombus formation and brain damage. Interpretation: The robust protective effect of rHA-Infestin-4 points to a novel treatment option that can decrease ischemic injury after traumatic brain injury without increasing bleeding tendencies. KW - Molecular-weight heparin KW - Thrombus formation KW - Cerebral-ischemia KW - in-vivo KW - Intravascular coagulation KW - Hemodynamic depression KW - Head-injury KW - Rats KW - Model KW - Mice Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-188800 VL - 79 IS - 6 ER - TY - JOUR A1 - Albert-Weissenberger, Christiane A1 - Mencl, Stine A1 - Schuhmann, Michael K. A1 - Salur, Irmak A1 - Göb, Eva A1 - Langhauser, Friederike A1 - Hopp, Sarah A1 - Hennig, Nelli A1 - Meuth, Sven G. A1 - Nolte, Marc W. A1 - Sirén, Anna-Leena A1 - Kleinschnitz, Christoph T1 - C1-Inhibitor protects from focal brain trauma in a cortical cryolesion mice model by reducing thrombo-inflammation JF - Frontiers in Cellular Neuroscience N2 - Traumatic brain injury (TBI) induces a strong inflammatory response which includes blood-brain barrier damage, edema formation and infiltration of different immune cell subsets. More recently, microvascular thrombosis has been identified as another pathophysiological feature of TBI. The contact-kinin system represents an interface between inflammatory and thrombotic circuits and is activated in different neurological diseases. C1-Inhibitor counteracts activation of the contact-kinin system at multiple levels. We investigated the therapeutic potential of C1-Inhibitor in a model of TBI. Male and female C57BL/6 mice were subjected to cortical cryolesion and treated with C1-Inhibitor after 1 h. Lesion volumes were assessed between day 1 and day 5 and blood-brain barrier damage, thrombus formation as well as the local inflammatory response were determined post TBI. Treatment of male mice with 15.0 IU C1-Inhibitor, but not 7.5 IU, 1 h after cryolesion reduced lesion volumes by ~75% on day 1. This protective effect was preserved in female mice and at later stages of trauma. Mechanistically, C1-Inhibitor stabilized the blood-brain barrier and decreased the invasion of immune cells into the brain parenchyma. Moreover, C1-Inhibitor had strong antithrombotic effects. C1-Inhibitor represents a multifaceted anti-inflammatory and antithrombotic compound that prevents traumatic neurodegeneration in clinically meaningful settings. KW - thrombosis KW - traumatic brain injury KW - C1-inhibitor KW - blood-brain barrier KW - contact-kinin system KW - edema KW - inflammation Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119263 SN - 1662-5102 VL - 8 ER - TY - JOUR A1 - Schuhmann, Sarah A1 - Eberlein, Uta A1 - Müller, Jessica A1 - Scherthan, Harry A1 - Lassmann, Michael T1 - Correlation of the absorbed dose to the blood and DNA damage in leukocytes after internal ex-vivo irradiation of blood samples with Ra-224 JF - EJNMMI Research N2 - Background: Irradiation with α-particles creates densely packed damage tracks along particle trajectories in exposed cells, including complex DNA damage and closely spaced double-strand breaks (DSBs) in hit nuclei. Here, we investigated the correlation of the absorbed dose to the blood and the number of α-induced DNA damage tracks elicited in human blood leukocytes after ex-vivo in-solution exposure with Ra-224. The aim was to compare the data to previously published data on Ra-223 and to investigate differences in DNA damage induction between the two radium isotopes. Results: Blood samples from three healthy volunteers were exposed ex-vivo to six different concentrations of Ra-224 dichloride. Absorbed doses to the blood were calculated assuming local energy deposition of all α- and β-particles of the Ra-224 decay chain, ranging from 0 to 127 mGy. γ-H2AX + 53BP1 DNA damage co-staining and analysis was performed on ethanol-fixed leukocytes isolated from the irradiated blood samples. For damage quantification, α-induced DNA damage tracks and small γ-H2AX + 53BP1 DSB foci were enumerated in the exposed leukocytes. This revealed a linear relationship between the frequency of α-induced γ-H2AX damage tracks and the absorbed dose to the blood, while the frequency of small γ-H2AX + 53BP1 DSB foci indicative of β-irradiation was similar to baseline values. Conclusions: Our data provide a first estimation of the DNA damage induced by Ra-224 in peripheral blood mononuclear cells. A comparison with our previously published Ra-223 data suggests that there is no difference in the induction of radiation-induced DNA damage between the two radium isotopes due to their similar decay properties. KW - 53BP1 KW - DNA damage KW - γ-H2AX KW - biological dosimetry KW - absorbed dose to the blood KW - α-emitter KW - Ra-224 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176593 VL - 8 IS - 77 ER - TY - JOUR A1 - Göbel, Kerstin A1 - Pankratz, Susann A1 - Asaridou, Chloi-Magdalini A1 - Herrmann, Alexander M. A1 - Bittner, Stefan A1 - Merker, Monika A1 - Ruck, Tobias A1 - Glumm, Sarah A1 - Langhauser, Friederike A1 - Kraft, Peter A1 - Krug, Thorsten F. A1 - Breuer, Johanna A1 - Herold, Martin A1 - Gross, Catharina C. A1 - Beckmann, Denise A1 - Korb-Pap, Adelheid A1 - Schuhmann, Michael K. A1 - Kuerten, Stefanie A1 - Mitroulis, Ioannis A1 - Ruppert, Clemens A1 - Nolte, Marc W. A1 - Panousis, Con A1 - Klotz, Luisa A1 - Kehrel, Beate A1 - Korn, Thomas A1 - Langer, Harald F. A1 - Pap, Thomas A1 - Nieswandt, Bernhard A1 - Wiendl, Heinz A1 - Chavakis, Triantafyllos A1 - Kleinschnitz, Christoph A1 - Meuth, Sven G. T1 - Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells JF - Nature Communications N2 - Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein–kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders. KW - blood coagulation KW - factor XII KW - neuroinflammation KW - dendric cells Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165503 VL - 7 IS - 11626 ER - TY - JOUR A1 - Hauer, Nadine N. A1 - Popp, Bernt A1 - Schoeller, Eva A1 - Schuhmann, Sarah A1 - Heath, Karen E. A1 - Hisado-Oliva, Alfonso A1 - Klinger, Patricia A1 - Kraus, Cornelia A1 - Trautmann, Udo A1 - Zenker, Martin A1 - Zweier, Christiane A1 - Wiesener, Antje A1 - Jamra, Rami Abou A1 - Kunstmann, Erdmute A1 - Wieczorek, Dagmar A1 - Uebe, Steffen A1 - Ferrazzi, Fulvia A1 - Büttner, Christian A1 - Ekici, Arif B. A1 - Rauch, Anita A1 - Sticht, Heinrich A1 - Dörr, Helmuth-Günther A1 - Reis, André A1 - Thiel, Christian T. T1 - Clinical relevance of systematic phenotyping and exome sequencing in patients with short stature JF - Genetics in Medicine N2 - Purpose Short stature is a common condition of great concern to patients and their families. Mostly genetic in origin, the underlying cause often remains elusive due to clinical and genetic heterogeneity. Methods We systematically phenotyped 565 patients where common nongenetic causes of short stature were excluded, selected 200 representative patients for whole-exome sequencing, and analyzed the identified variants for pathogenicity and the affected genes regarding their functional relevance for growth. Results By standard targeted diagnostic and phenotype assessment, we identified a known disease cause in only 13.6% of the 565 patients. Whole-exome sequencing in 200 patients identified additional mutations in known short-stature genes in 16.5% of these patients who manifested only part of the symptomatology. In 15.5% of the 200 patients our findings were of significant clinical relevance. Heterozygous carriers of recessive skeletal dysplasia alleles represented 3.5% of the cases. Conclusion A combined approach of systematic phenotyping, targeted genetic testing, and whole-exome sequencing allows the identification of the underlying cause of short stature in at least 33% of cases, enabling physicians to improve diagnosis, treatment, and genetic counseling. Exome sequencing significantly increases the diagnostic yield and consequently care in patients with short stature. KW - growth KW - phenotypic spectrum KW - short stature KW - skeletal dysplasia KW - whole-exome sequencing Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227888 VL - 20 ER -