TY - JOUR A1 - Martinez-Bengochea, A. L. A1 - Kneitz, S. A1 - Herpin, A. A1 - Nobrega, R. H. A1 - Adolfi, M. C. A1 - Schartl, M. T1 - Sexual development dysgenesis in interspecific hybrids of Medaka fish JF - Scientific Reports N2 - Fish are amongst vertebrates the group with the highest diversity of known sex-determining genes. Particularly, the genus Oryzias is a suitable taxon to understand how different sex determination genetic networks evolved in closely related species. Two closely related species, O. latipes and O. curvinotus, do not only share the same XX/XY sex chromosome system, but also the same male sex-determining gene, dmrt1bY. We performed whole mRNA transcriptomes and morphology analyses of the gonads of hybrids resulting from reciprocal crosses between O. latipes and O. curvinotus. XY male hybrids, presenting meiotic arrest and no production of sperm were sterile, and about 30% of the XY hybrids underwent male-to-female sex reversal. Both XX and XY hybrid females exhibited reduced fertility and developed ovotestis while aging. Transcriptome data showed that male-related genes are upregulated in the XX and XY female hybrids. The transcriptomes of both types of female and of the male gonads are characterized by upregulation of meiosis and germ cell differentiation genes. Differences in the parental species in the downstream pathways of sexual development could explain sex reversal, sterility, and the development of intersex gonads in the hybrids. We hypothesize that male-to-female sex reversal may be connected to a different development time between species at which dmrt1bY expression starts. Our results provide molecular clues for the proximate mechanisms of hybrid incompatibility and Haldane’s rule. KW - sexual development dysgenesis KW - Medaka fish KW - sex-determining genes. Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300295 VL - 12 IS - 1 ER - TY - JOUR A1 - Adolfi, Mateus C. A1 - Du, Kang A1 - Kneitz, Susanne A1 - Cabau, Cédric A1 - Zahm, Margot A1 - Klopp, Christophe A1 - Feron, Romain A1 - Paixão, Rômulo V. A1 - Varela, Eduardo S. A1 - de Almeida, Fernanda L. A1 - de Oliveira, Marcos A. A1 - Nóbrega, Rafael H. A1 - Lopez-Roques, Céline A1 - Iampietro, Carole A1 - Lluch, Jérôme A1 - Kloas, Werner A1 - Wuertz, Sven A1 - Schaefer, Fabian A1 - Stöck, Matthias A1 - Guiguen, Yann A1 - Schartl, Manfred T1 - A duplicated copy of id2b is an unusual sex-determining candidate gene on the Y chromosome of arapaima (Arapaima gigas) JF - Scientific Reports N2 - Arapaima gigas is one of the largest freshwater fish species of high ecological and economic importance. Overfishing and habitat destruction are severe threats to the remaining wild populations. By incorporating a chromosomal Hi-C contact map, we improved the arapaima genome assembly to chromosome-level, revealing an unexpected high degree of chromosome rearrangements during evolution of the bonytongues (Osteoglossiformes). Combining this new assembly with pool-sequencing of male and female genomes, we identified id2bbY, a duplicated copy of the inhibitor of DNA binding 2b (id2b) gene on the Y chromosome as candidate male sex-determining gene. A PCR-test for id2bbY was developed, demonstrating that this gene is a reliable male-specific marker for genotyping. Expression analyses showed that this gene is expressed in juvenile male gonads. Its paralog, id2ba, exhibits a male-biased expression in immature gonads. Transcriptome analyses and protein structure predictions confirm id2bbY as a prime candidate for the master sex-determiner. Acting through the TGF beta signaling pathway, id2bbY from arapaima would provide the first evidence for a link of this family of transcriptional regulators to sex determination. Our study broadens our current understanding about the evolution of sex determination genetic networks and provide a tool for improving arapaima aquaculture for commercial and conservation purposes. KW - evolutionary genetics KW - genetic markers KW - genome Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265672 VL - 11 IS - 1 ER - TY - JOUR A1 - Fofanov, Mikhail V. A1 - Prokopov, Dmitry Yu. A1 - Kuhl, Heiner A1 - Schartl, Manfred A1 - Trifonov, Vladimir A. T1 - Evolution of microRNA biogenesis genes in the sterlet (Acipenser ruthenus) and other polyploid vertebrates JF - International Journal of Molecular Sciences N2 - MicroRNAs play a crucial role in eukaryotic gene regulation. For a long time, only little was known about microRNA-based gene regulatory mechanisms in polyploid animal genomes due to difficulties of polyploid genome assembly. However, in recent years, several polyploid genomes of fish, amphibian, and even invertebrate species have been sequenced and assembled. Here we investigated several key microRNA-associated genes in the recently sequenced sterlet (Acipenser ruthenus) genome, whose lineage has undergone a whole genome duplication around 180 MYA. We show that two paralogs of drosha, dgcr8, xpo1, and xpo5 as well as most ago genes have been retained after the acipenserid-specific whole genome duplication, while ago1 and ago3 genes have lost one paralog. While most diploid vertebrates possess only a single copy of dicer1, we strikingly found four paralogs of this gene in the sterlet genome, derived from a tandem segmental duplication that occurred prior to the last whole genome duplication. ago1,3,4 and exportins1,5 look to be prone to additional segment duplications producing up to four-five paralog copies in ray-finned fishes. We demonstrate for the first time exon microsatellite amplification in the acipenserid drosha2 gene, resulting in a highly variable protein product, which may indicate sub- or neofunctionalization. Paralogous copies of most microRNA metabolism genes exhibit different expression profiles in various tissues and remain functional despite the rediploidization process. Subfunctionalization of microRNA processing gene paralogs may be beneficial for different pathways of microRNA metabolism. Genetic variability of microRNA processing genes may represent a substrate for natural selection, and, by increasing genetic plasticity, could facilitate adaptations to changing environments. KW - sturgeon KW - whole genome duplication KW - microRNA KW - gene duplications Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285230 SN - 1422-0067 VL - 21 IS - 24 ER - TY - JOUR A1 - Biltueva, Larisa S. A1 - Prokopov, Dmitry Yu. A1 - Romanenko, Svetlana A. A1 - Interesova, Elena A. A1 - Schartl, Manfred A1 - Trifonov, Vladimir A. T1 - Chromosome distribution of highly conserved tandemly arranged repetitive DNAs in the Siberian sturgeon (Acipenser baerii) JF - Genes N2 - Polyploid genomes present a challenge for cytogenetic and genomic studies, due to the high number of similar size chromosomes and the simultaneous presence of hardly distinguishable paralogous elements. The karyotype of the Siberian sturgeon (Acipenser baerii) contains around 250 chromosomes and is remarkable for the presence of paralogs from two rounds of whole-genome duplications (WGD). In this study, we applied the sterlet-derived acipenserid satDNA-based whole chromosome-specific probes to analyze the Siberian sturgeon karyotype. We demonstrate that the last genome duplication event in the Siberian sturgeon was accompanied by the simultaneous expansion of several repetitive DNA families. Some of the repetitive probes serve as good cytogenetic markers distinguishing paralogous chromosomes and detecting ancestral syntenic regions, which underwent fusions and fissions. The tendency of minisatellite specificity for chromosome size groups previously observed in the sterlet genome is also visible in the Siberian sturgeon. We provide an initial physical chromosome map of the Siberian sturgeon genome supported by molecular markers. The application of these data will facilitate genomic studies in other recent polyploid sturgeon species. KW - Acipenser baerii KW - sturgeon karyotype KW - whole-genome duplication KW - paralogs KW - polyploidy KW - acipenserid minisatellite KW - satellite DNA KW - tandem repeats Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219371 SN - 2073-4425 VL - 11 IS - 11 ER - TY - JOUR A1 - Kim, Bo-Mi A1 - Amores, Angel A1 - Kang, Seunghyun A1 - Ahn, Do-Hwan A1 - Kim, Jin-Hyoung A1 - Kim, Il-Chan A1 - Lee, Jun Hyuck A1 - Lee, Sung Gu A1 - Lee, Hyoungseok A1 - Lee, Jungeun A1 - Kim, Han-Woo A1 - Desvignes, Thomas A1 - Batzel, Peter A1 - Sydes, Jason A1 - Titus, Tom A1 - Wilson, Catherine A. A1 - Catchen, Julian M. A1 - Warren, Wesley C. A1 - Schartl, Manfred A1 - Detrich, H. William III A1 - Postlethwait, John H. A1 - Park, Hyun T1 - Antarctic blackfin icefish genome reveals adaptations to extreme environments JF - Nature Ecology & Evolution N2 - Icefishes (suborder Notothenioidei; family Channichthyidae) are the only vertebrates that lack functional haemoglobin genes and red blood cells. Here, we report a high-quality genome assembly and linkage map for the Antarctic blackfin icefish Chaenocephalus aceratus, highlighting evolved genomic features for its unique physiology. Phylogenomic analysis revealed that Antarctic fish of the teleost suborder Notothenioidei, including icefishes, diverged from the stickleback lineage about 77 million years ago and subsequently evolved cold-adapted phenotypes as the Southern Ocean cooled to sub-zero temperatures. Our results show that genes involved in protection from ice damage, including genes encoding antifreeze glycoprotein and zona pellucida proteins, are highly expanded in the icefish genome. Furthermore, genes that encode enzymes that help to control cellular redox state, including members of the sod3 and nqo1 gene families, are expanded, probably as evolutionary adaptations to the relatively high concentration of oxygen dissolved in cold Antarctic waters. In contrast, some crucial regulators of circadian homeostasis (cry and per genes) are absent from the icefish genome, suggesting compromised control of biological rhythms in the polar light environment. The availability of the icefish genome sequence will accelerate our understanding of adaptation to extreme Antarctic environments. KW - animal physiology KW - evolutionary genetics KW - genomics KW - ichthyology Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-325811 VL - 3 ER - TY - JOUR A1 - Kottler, Verena A. A1 - Schartl, Manfred T1 - The colorful sex chromosomes of teleost fish JF - Genes N2 - Teleost fish provide some of the most intriguing examples of sexually dimorphic coloration, which is often advantageous for only one of the sexes. Mapping studies demonstrated that the genetic loci underlying such color patterns are frequently in tight linkage to the sex-determining locus of a species, ensuring sex-specific expression of the corresponding trait. Several genes affecting color synthesis and pigment cell development have been previously described, but the color loci on the sex chromosomes have mostly remained elusive as yet. Here, we summarize the current knowledge about the genetics of such color loci in teleosts, mainly from studies on poeciliids and cichlids. Further studies on these color loci will certainly provide important insights into the evolution of sex chromosomes. KW - teleost fish KW - sex chromosomes KW - coloration KW - pigment pattern KW - sexual conflict KW - sexually antagonistic genes Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176587 VL - 9 IS - 5 ER - TY - JOUR A1 - Shen, Yingjia A1 - Chalopin, Domitille A1 - Garcia, Tzintzuni A1 - Boswell, Mikki A1 - Boswell, William A1 - Shiryev, Sergey A. A1 - Agarwala, Richa A1 - Volff, Jean-Nicolas A1 - Postlethwait, John H. A1 - Schartl, Manfred A1 - Minx, Patrick A1 - Warren, Wesley C. A1 - Walter, Ronald B. T1 - X. couchianus and X. hellerii genome models provide genomic variation insight among Xiphophorus species JF - BMC Genomics N2 - Background Xiphophorus fishes are represented by 26 live-bearing species of tropical fish that express many attributes (e.g., viviparity, genetic and phenotypic variation, ecological adaptation, varied sexual developmental mechanisms, ability to produce fertile interspecies hybrids) that have made attractive research models for over 85 years. Use of various interspecies hybrids to investigate the genetics underlying spontaneous and induced tumorigenesis has resulted in the development and maintenance of pedigreed Xiphophorus lines specifically bred for research. The recent availability of the X. maculatus reference genome assembly now provides unprecedented opportunities for novel and exciting comparative research studies among Xiphophorus species. Results We present sequencing, assembly and annotation of two new genomes representing Xiphophorus couchianus and Xiphophorus hellerii. The final X. couchianus and X. hellerii assemblies have total sizes of 708 Mb and 734 Mb and correspond to 98 % and 102 % of the X. maculatus Jp 163 A genome size, respectively. The rates of single nucleotide change range from 1 per 52 bp to 1 per 69 bp among the three genomes and the impact of putatively damaging variants are presented. In addition, a survey of transposable elements allowed us to deduce an ancestral TE landscape, uncovered potential active TEs and document a recent burst of TEs during evolution of this genus. Conclusions Two new Xiphophorus genomes and their corresponding transcriptomes were efficiently assembled, the former using a novel guided assembly approach. Three assembled genome sequences within this single vertebrate order of new world live-bearing fishes will accelerate our understanding of relationship between environmental adaptation and genome evolution. In addition, these genome resources provide capability to determine allele specific gene regulation among interspecies hybrids produced by crossing any of the three species that are known to produce progeny predisposed to tumor development. KW - Xiphophorus KW - X. hellerii KW - Annotation KW - Single nucleotide change KW - Genome comparison KW - X. couchianus KW - Genome assembly KW - NGS Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164582 VL - 17 ER - TY - JOUR A1 - Forconi, Mariko A1 - Canapa, Adriana A1 - Barucca, Marco A1 - Biscotti, Maria A. A1 - Capriglione, Teresa A1 - Buonocore, Francesco A1 - Fausto, Anna M. A1 - Makapedua, Daisy M. A1 - Pallavicini, Alberto A1 - Gerdol, Marco A1 - De Moro, Gianluca A1 - Scapigliati, Giuseppe A1 - Olmo, Ettore A1 - Schartl, Manfred T1 - Characterization of Sex Determination and Sex Differentiation Genes in Latimeria JF - PLoS ONE N2 - Genes involved in sex determination and differentiation have been identified in mice, humans, chickens, reptiles, amphibians and teleost fishes. However, little is known of their functional conservation, and it is unclear whether there is a common set of genes shared by all vertebrates. Coelacanths, basal Sarcopterygians and unique "living fossils", could help establish an inventory of the ancestral genes involved in these important developmental processes and provide insights into their components. In this study 33 genes from the genome of Latimeria chalumnae and from the liver and testis transcriptomes of Latimeria menadoensis, implicated in sex determination and differentiation, were identified and characterized and their expression levels measured. Interesting findings were obtained for GSDF, previously identified only in teleosts and now characterized for the first time in the sarcopterygian lineage; FGF9, which is not found in teleosts; and DMRT1, whose expression in adult gonads has recently been related to maintenance of sexual identity. The gene repertoire and testis-specific gene expression documented in coelacanths demonstrate a greater similarity to modern fishes and point to unexpected changes in the gene regulatory network governing sexual development. KW - medaka fish KW - mullerian hormone AMH KW - DM-domain gene KW - oryzias latipes KW - monodelphis domestica KW - oreochromis niloticus KW - dimorphic expression KW - molecular mechanisms KW - genomic organization KW - regulatory regions Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130995 VL - 8 IS - 4 ER - TY - JOUR A1 - Meierjohann, Svenja A1 - Hufnagel, Anita A1 - Wende, Elisabeth A1 - Kleinschmidt, Markus A. A1 - Wolf, Katarina A1 - Friedl, Peter A1 - Gaubatz, Stefan A1 - Schartl, Manfred T1 - MMP13 mediates cell cycle progression in melanocytes and melanoma cells: in vitro studies of migration and proliferation N2 - Background: Melanoma cells are usually characterized by a strong proliferative potential and efficient invasive migration. Among the multiple molecular changes that are recorded during progression of this disease, aberrant activation of receptor tyrosine kinases (RTK) is often observed. Activation of matrix metalloproteases goes along with RTK activation and usually enhances RTK-driven migration. The purpose of this study was to examine RTKdriven three-dimensional migration of melanocytes and the pro-tumorigenic role of matrix metalloproteases for melanocytes and melanoma cells. Results: Using experimental melanocyte dedifferentiation as a model for early melanomagenesis we show that an activated EGF receptor variant potentiates migration through three-dimensional fibrillar collagen. EGFR stimulation also resulted in a strong induction of matrix metalloproteases in a MAPK-dependent manner. However, neither MAPK nor MMP activity were required for migration, as the cells migrated in an entirely amoeboid mode. Instead, MMPs fulfilled a function in cell cycle regulation, as their inhibition resulted in strong growth inhibition of melanocytes. The same effect was observed in the human melanoma cell line A375 after stimulation with FCS. Using sh- and siRNA techniques, we could show that MMP13 is the protease responsible for this effect. Along with decreased proliferation, knockdown of MMP13 strongly enhanced pigmentation of melanocytes. Conclusions: Our data show for the first time that growth stimuli are mediated via MMP13 in melanocytes and melanoma, suggesting an autocrine MMP13-driven loop. Given that MMP13-specific inhibitors are already developed, these results support the evaluation of these inhibitors in the treatment of melanoma. KW - Medizin Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68335 ER - TY - JOUR A1 - Laisney, Juliette A. G. C. A1 - Braasch, Ingo A1 - Walter, Ronald B. A1 - Meierjohann, Svenja A1 - Schartl, Manfred T1 - Lineage-specific co-evolution of the Egf receptor/ligand signaling system N2 - Background: The epidermal growth factor receptor (Egfr) with its numerous ligands has fundamental roles in development, cell differentiation and physiology. Dysfunction of the receptor-ligand system contributes to many human malignancies. Consistent with such various tasks, the Egfr gene family has expanded during vertebrate evolution as a consequence of several rounds of whole genome duplication. Of particular interest is the effect of the fish-specific whole genome duplication (FSGD) on the ligand-receptor system, as it has supplied this largest group of vertebrates with additional opportunities for sub- and/or neofunctionalization in this signaling system. Results: We identified the predicted components of the Egf receptor-ligand signaling system in teleost fishes (medaka, platyfish, stickleback, pufferfishes and zebrafish). We found two duplicated egfr genes, egfra and egfrb, in all available teleost genomes. Surprisingly only one copy for each of the seven Egfr ligands could be identified in most fishes, with zebrafish hbegf being the only exception. Special focus was put on medaka, for which we more closely investigated all Egf receptors and Egfr ligands. The different expression patterns of egfra, egfrb and their ligands in medaka tissues and embryo stages suggest differences in role and function. Preferential co-expression of different subsets of Egfr ligands corroborates the possible subfunctionalization and specialization of the two receptors in adult tissues. Bioinformatic analyses of the ligand-receptor interface between Egfr and its ligands show a very weak evolutionary conservation within this region. Using in vitro analyses of medaka Egfra, we could show that this receptor is only activated by medaka ligands, but not by human EGF. Altogether, our data suggest a lineage-specific Egfr/Egfr ligand co-evolution. Conclusions: Our data indicate that medaka Egfr signaling occurs via its two copies, Egfra and Egfrb, each of them being preferentially coexpressed with different subsets of Egfr ligands. This fish-specific occurrence of Egf receptor specialization offers unique opportunities to study the functions of different Egf receptor-ligand combinations and their biological outputs in vertebrates. Furthermore, our results strongly support the use of homologous ligands in future studies, as sufficient cross-specificity is very unlikely for this ligand/receptor system. KW - Epidermaler Wachstumsfaktor-Rezeptor KW - epidermal growth factor receptor KW - Egfr KW - teleost fishes Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-67922 ER -