TY - JOUR A1 - Müller, Sara A1 - Windhof, Indra M. A1 - Maximov, Vladimir A1 - Jurkowski, Tomasz A1 - Jeltsch, Albert A1 - Förstner, Konrad U. A1 - Sharma, Cynthia M. A1 - Gräf, Ralph A1 - Nellen, Wolfgang T1 - Target recognition, RNA methylation activity and transcriptional regulation of the Dictyostelium discoideum Dnmt2-homologue (DnmA) JF - Nucleic Acids Research N2 - Although the DNA methyltransferase 2 family is highly conserved during evolution and recent reports suggested a dual specificity with stronger activity on transfer RNA (tRNA) than DNA substrates, the biological function is still obscure. We show that the Dictyostelium discoideum Dnmt2-homologue DnmA is an active tRNA methyltransferase that modifies C38 in \(tRNA^{Asp(GUC)}\) in vitro and in vivo. By an ultraviolet-crosslinking and immunoprecipitation approach, we identified further DnmA targets. This revealed specific tRNA fragments bound by the enzyme and identified \(tRNA^{Glu(CUC/UUC)}\) and \(tRNA^{Gly(GCC)}\) as new but weaker substrates for both human Dnmt2 and DnmA in vitro but apparently not in vivo. Dnmt2 enzymes form transient covalent complexes with their substrates. The dynamics of complex formation and complex resolution reflect methylation efficiency in vitro. Quantitative PCR analyses revealed alterations in dnmA expression during development, cell cycle and in response to temperature stress. However, dnmA expression only partially correlated with tRNA methylation in vivo. Strikingly, dnmA expression in the laboratory strain AX2 was significantly lower than in the NC4 parent strain. As expression levels and binding of DnmA to a target in vivo are apparently not necessarily accompanied by methylation, we propose an additional biological function of DnmA apart from methylation. KW - DNA methylferase homolog KW - drospophila KW - TRNA(ASP) KW - mechanism KW - binding Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123149 SN - 1362-4962 VL - 41 IS - 18 ER - TY - JOUR A1 - Belair, Cédric A1 - Baud, Jessica A1 - Chabas, Sandrine A1 - Sharma, Cynthia M A1 - Vogel, Jörg A1 - Staedel, Cathy A1 - Darfeuille, Fabien T1 - Helicobacter pylori interferes with an embryonic stem cell micro RNA cluster to block cell cycle progression JF - Silence : a Journal of RNA regulation N2 - Background MicroRNAs, post-transcriptional regulators of eukaryotic gene expression, are implicated in host defense against pathogens. Viruses and bacteria have evolved strategies that suppress microRNA functions, resulting in a sustainable infection. In this work we report that Helicobacter pylori, a human stomach-colonizing bacterium responsible for severe gastric inflammatory diseases and gastric cancers, downregulates an embryonic stem cell microRNA cluster in proliferating gastric epithelial cells to achieve cell cycle arrest. Results Using a deep sequencing approach in the AGS cell line, a widely used cell culture model to recapitulate early events of H. pylori infection of gastric mucosa, we reveal that hsa-miR-372 is the most abundant microRNA expressed in this cell line, where, together with hsa-miR-373, it promotes cell proliferation by silencing large tumor suppressor homolog 2 (LATS2) gene expression. Shortly after H. pylori infection, miR-372 and miR-373 synthesis is highly inhibited, leading to the post-transcriptional release of LATS2 expression and thus, to a cell cycle arrest at the G1/S transition. This downregulation of a specific cell-cycle-regulating microRNA is dependent on the translocation of the bacterial effector CagA into the host cells, a mechanism highly associated with the development of severe atrophic gastritis and intestinal-type gastric carcinoma. Conclusions These data constitute a novel example of host-pathogen interplay involving microRNAs, and unveil the couple LATS2/miR-372 and miR-373 as an unexpected mechanism in infection-induced cell cycle arrest in proliferating gastric cells, which may be relevant in inhibition of gastric epithelium renewal, a major host defense mechanism against bacterial infections. KW - MicroRNAs KW - cell cycle KW - Helicobacter pylori KW - gastric cancer Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-140438 VL - 2 IS - 7 ER - TY - JOUR A1 - Albrecht, Marco A1 - Sharma, Cynthia M. A1 - Reinhardt, Richard A1 - Vogel, Joerg A1 - Rudel, Thomas T1 - Deep sequencing-based discovery of the Chlamydia trachomatis transcriptome N2 - Chlamydia trachomatis is an obligate intracellular pathogenic bacterium that has been refractory to genetic manipulations. Although the genomes of several strains have been sequenced, very little information is available on the gene structure of these bacteria. We used deep sequencing to define the transcriptome of purified elementary bodies (EB) and reticulate bodies (RB) of C. trachomatis L2b, respectively. Using an RNAseq approach, we have mapped 363 transcriptional start sites (TSS) of annotated genes. Semiquantitative analysis of mapped cDNA reads revealed differences in the RNA levels of 84 genes isolated from EB and RB, respectively. We have identified and in part confirmed 42 genome- and 1 plasmid-derived novel non-coding RNAs. The genome encoded non-coding RNA, ctrR0332 was one of the most abundantly and differentially expressed RNA in EB and RB, implying an important role in the developmental cycle of C. trachomatis. The detailed map of TSS in a thus far unprecedented resolution as a complement to the genome sequence will help to understand the organization, control and function of genes of this important pathogen. KW - Biologie Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68389 ER - TY - JOUR A1 - Pernitzsch, Sandy R. A1 - Sharma, Cynthia M. T1 - Transcriptome Complexity and Riboregulation in the Human Pathogen Helicobacter pylori KW - Medizin KW - RNA-seq KW - sRNA KW - Helicobacterpylori KW - post-transcriptionalregulation KW - transcriptomeanalysis Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75096 ER - TY - JOUR A1 - Albrecht, Marco A1 - Sharma, Cynthia M. A1 - Dittrich, Marcus T. A1 - Müller, Tobias A1 - Reinhardt, Richard A1 - Vogel, Jörg A1 - Rudel, Thomas T1 - The Transcriptional Landscape of Chlamydia pneumoniae N2 - Background: Gene function analysis of the obligate intracellular bacterium Chlamydia pneumoniae is hampered by the facts that this organism is inaccessible to genetic manipulations and not cultivable outside the host. The genomes of several strains have been sequenced; however, very little information is available on the gene structure and transcriptome of C. pneumoniae. Results: Using a differential RNA-sequencing approach with specific enrichment of primary transcripts, we defined the transcriptome of purified elementary bodies and reticulate bodies of C. pneumoniae strain CWL-029; 565 transcriptional start sites of annotated genes and novel transcripts were mapped. Analysis of adjacent genes for cotranscription revealed 246 polycistronic transcripts. In total, a distinct transcription start site or an affiliation to an operon could be assigned to 862 out of 1,074 annotated protein coding genes. Semi-quantitative analysis of mapped cDNA reads revealed significant differences for 288 genes in the RNA levels of genes isolated from elementary bodies and reticulate bodies. We have identified and in part confirmed 75 novel putative non-coding RNAs. The detailed map of transcription start sites at single nucleotide resolution allowed for the first time a comprehensive and saturating analysis of promoter consensus sequences in Chlamydia. Conclusions: The precise transcriptional landscape as a complement to the genome sequence will provide new insights into the organization, control and function of genes. Novel non-coding RNAs and identified common promoter motifs will help to understand gene regulation of this important human pathogen. KW - Chlamydia pneumoniae Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69116 ER - TY - JOUR A1 - Lioliou, Efthimia A1 - Sharma, Cynthia M. A1 - Caldelari, Isabelle A1 - Helfer, Anne-Catherine A1 - Fechter, Pierre A1 - Vandenesch, François A1 - Vogel, Jörg A1 - Romby, Pascale T1 - Global Regulatory Functions of the Staphylococcus aureus Endoribonuclease III in Gene Expression JF - PLoS Genetics N2 - RNA turnover plays an important role in both virulence and adaptation to stress in the Gram-positive human pathogen Staphylococcus aureus. However, the molecular players and mechanisms involved in these processes are poorly understood. Here, we explored the functions of S. aureus endoribonuclease III (RNase III), a member of the ubiquitous family of double-strand-specific endoribonucleases. To define genomic transcripts that are bound and processed by RNase III, we performed deep sequencing on cDNA libraries generated from RNAs that were co-immunoprecipitated with wild-type RNase III or two different cleavage-defective mutant variants in vivo. Several newly identified RNase III targets were validated by independent experimental methods. We identified various classes of structured RNAs as RNase III substrates and demonstrated that this enzyme is involved in the maturation of rRNAs and tRNAs, regulates the turnover of mRNAs and non-coding RNAs, and autoregulates its synthesis by cleaving within the coding region of its own mRNA. Moreover, we identified a positive effect of RNase III on protein synthesis based on novel mechanisms. RNase III–mediated cleavage in the 5′ untranslated region (5′UTR) enhanced the stability and translation of cspA mRNA, which encodes the major cold-shock protein. Furthermore, RNase III cleaved overlapping 5′UTRs of divergently transcribed genes to generate leaderless mRNAs, which constitutes a novel way to co-regulate neighboring genes. In agreement with recent findings, low abundance antisense RNAs covering 44% of the annotated genes were captured by co-immunoprecipitation with RNase III mutant proteins. Thus, in addition to gene regulation, RNase III is associated with RNA quality control of pervasive transcription. Overall, this study illustrates the complexity of post-transcriptional regulation mediated by RNase III. KW - staphylococcus aureus KW - ribonucleases KW - messenger RNA KW - RNA sequencing KW - antisense RNA KW - RNA structure KW - RNA synthesis KW - RNA denaturation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127219 VL - 8 IS - 6 ER - TY - JOUR A1 - Wilms, Ina A1 - Overlöper, Aaron A1 - Nowrousian, Minou A1 - Sharma, Cynthia M. A1 - Narberhaus, Franz T1 - Deep sequencing uncovers numerous small RNAs on all four replicons of the plant pathogen Agrobacterium tumefaciens JF - RNA Biology N2 - Agrobacterium species are capable of interkingdom gene transfer between bacteria and plants. The genome of Agrobacterium tumefaciens consists of a circular and a linear chromosome, the At-plasmid and the Ti-plasmid, which harbors bacterial virulence genes required for tumor formation in plants. Little is known about promoter sequences and the small RNA (sRNA) repertoire of this and other α-proteobacteria. We used a differential RNA sequencing (dRNA-seq) approach to map transcriptional start sites of 388 annotated genes and operons. In addition, a total number of 228 sRNAs was revealed from all four Agrobacterium replicons. Twenty-two of these were confirmed by independent RNA gel blot analysis and several sRNAs were differentially expressed in response to growth media, growth phase, temperature or pH. One sRNA from the Ti-plasmid was massively induced under virulence conditions. The presence of 76 cis-antisense sRNAs, two of them on the reverse strand of virulence genes, suggests considerable antisense transcription in Agrobacterium. The information gained from this study provides a valuable reservoir for an in-depth understanding of sRNA-mediated regulation of the complex physiology and infection process of Agrobacterium. KW - regulatory RNA KW - plant-microbe interaction KW - deep sequencing KW - RNA-seq KW - small RNA Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127101 VL - 9 IS - 446-457 ER - TY - JOUR A1 - Jäger, Dominik A1 - Förstner, Konrad U. A1 - Sharma, Cynthia M. A1 - Santangelo, Thomas J. A1 - Reeve, John N. T1 - Primary transcriptome map of the hyperthermophilic archaeon Thermococcus kodakarensis JF - BMC Genomics N2 - Background Prokaryotes have relatively small genomes, densely-packed with protein-encoding sequences. RNA sequencing has, however, revealed surprisingly complex transcriptomes and here we report the transcripts present in the model hyperthermophilic Archaeon, Thermococcus kodakarensis, under different physiological conditions. Results Sequencing cDNA libraries, generated from RNA isolated from cells under different growth and metabolic conditions has identified >2,700 sites of transcription initiation, established a genome-wide map of transcripts, and consensus sequences for transcription initiation and post-transcription regulatory elements. The primary transcription start sites (TSS) upstream of 1,254 annotated genes, plus 644 primary TSS and their promoters within genes, are identified. Most mRNAs have a 5'-untranslated region (5'-UTR) 10 to 50 nt long (median = 16 nt), but ~20% have 5'-UTRs from 50 to 300 nt long and ~14% are leaderless. Approximately 50% of mRNAs contain a consensus ribosome binding sequence. The results identify TSS for 1,018 antisense transcripts, most with sequences complementary to either the 5'- or 3'-region of a sense mRNA, and confirm the presence of transcripts from all three CRISPR loci, the RNase P and 7S RNAs, all tRNAs and rRNAs and 69 predicted snoRNAs. Two putative riboswitch RNAs were present in growing but not in stationary phase cells. The procedure used is designed to identify TSS but, assuming that the number of cDNA reads correlates with transcript abundance, the results also provide a semi-quantitative documentation of the differences in T. kodakarensis genome expression under different growth conditions and confirm previous observations of substrate-dependent specific gene expression. Many previously unanticipated small RNAs have been identified, some with relative low GC contents (≤50%) and sequences that do not fold readily into base-paired secondary structures, contrary to the classical expectations for non-coding RNAs in a hyperthermophile. Conclusion The results identify >2,700 TSS, including almost all of the primary sites of transcription initiation upstream of annotated genes, plus many secondary sites, sites within genes and sites resulting in antisense transcripts. The T. kodakarensis genome is small (~2.1 Mbp) and tightly packed with protein-encoding genes, but the transcriptomes established also contain many non-coding RNAs and predict extensive RNA-based regulation in this model Archaeon. KW - riboswitch KW - hyperthermophile KW - hydrogen regulation KW - transcriptome KW - archaea KW - promoters KW - antisense RNAs KW - small non-coding RNAs Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120966 SN - 1471-2164 VL - 15 IS - 684 ER - TY - JOUR A1 - Schmidtke, Cornelius A1 - Findeiß, Sven A1 - Sharma, Cynthia M. A1 - Kuhfuss, Juliane A1 - Hoffmann, Steve A1 - Vogel, Jörg A1 - Stadler, Peter F. A1 - Bonas, Ulla T1 - Genome-wide transcriptome analysis of the plant pathogen Xanthomonas identifies sRNAs with putative virulence functions JF - Nucleic Acids Research N2 - The Gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) is an important model to elucidate the mechanisms involved in the interaction with the host. To gain insight into the transcriptome of the Xcv strain 85-10, we took a differential RNA sequencing (dRNA-seq) approach. Using a novel method to automatically generate comprehensive transcription start site (TSS) maps we report 1421 putative TSSs in the Xcv genome. Genes in Xcv exhibit a poorly conserved -10 promoter element and no consensus Shine-Dalgarno sequence. Moreover, 14% of all mRNAs are leaderless and 13% of them have unusually long 5'-UTRs. Northern blot analyses confirmed 16 intergenic small RNAs and seven cis-encoded antisense RNAs in Xcv. Expression of eight intergenic transcripts was controlled by HrpG and HrpX, key regulators of the Xcv type III secretion system. More detailed characterization identified sX12 as a small RNA that controls virulence of Xcv by affecting the interaction of the pathogen and its host plants. The transcriptional landscape of Xcv is unexpectedly complex, featuring abundant antisense transcripts, alternative TSSs and clade-specific small RNAs. KW - SUBSP carotovora KW - regulatory RNA KW - gene-cluster KW - campestris PV vesicatoria KW - escherichia coli KW - determines pathgenicity KW - hypersensitive response KW - ralstonia solanacearum KW - extracellular enzymes KW - secretion systems KW - transcription initiation site KW - RNA sequence analyses KW - messanger RNA KW - plants KW - libraries KW - genome KW - genes KW - gene expression profiling KW - genetic transcription KW - northern blotting KW - untranslated regions KW - xanthomonas KW - xanthomonas campestris KW - bacteria KW - virulence KW - pathogenetic organism KW - RNA KW - small RNA KW - pathogenicity KW - type III secretion system pathways KW - maps KW - consesus KW - host (organism) KW - type III protein secretion system complex Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131781 VL - 40 IS - 5 SP - 2020 EP - 2031 ER - TY - JOUR A1 - Jäger, Dominik A1 - Pernitzsch, Sandy R. A1 - Richter, Andreas S. A1 - Backofen, Rolf A1 - Sharma, Cynthia M. A1 - Schmitz, Ruth A. T1 - An archaeal sRNA targeting cis- and trans-encoded mRNAs via two distinct domains JF - Nucleic Acids Research N2 - We report on the characterization and target analysis of the small (s) RNA\(_{162}\) in the methanoarchaeon Methanosarcina mazei. Using a combination of genetic approaches, transcriptome analysis and computational predictions, the bicistronic MM2441-MM2440 mRNA encoding the transcription factor MM2441 and a protein of unknown function was identified as a potential target of this sRNA, which due to processing accumulates as three stabile 5' fragments in late exponential growth. Mobility shift assays using various mutants verified that the non-structured single-stranded linker region of sRNA\(_{162}\) (SLR) base-pairs with the MM2440-MM2441 mRNA internally, thereby masking the predicted ribosome binding site of MM2441. This most likely leads to translational repression of the second cistron resulting in dis-coordinated operon expression. Analysis of mutant RNAs in vivo confirmed that the SLR of sRNA\(_{162}\) is crucial for target interactions. Furthermore, our results indicate that sRNA\(_{162}\)-controlled MM2441 is involved in regulating the metabolic switch between the carbon sources methanol and methylamine. Moreover, biochemical studies demonstrated that the 50 end of sRNA\(_{162}\) targets the 5'-untranslated region of the cis-encoded MM2442 mRNA. Overall, this first study of archaeal sRNA/mRNA-target interactions unraveled that sRNA\(_{162}\) acts as an antisense (as) RNA on cis- and trans-encoded mRNAs via two distinct domains, indicating that cis-encoded asRNAs can have larger target regulons than previously anticipated. KW - strain KW - escherichia coli KW - methanosarcina mazei GO1 KW - methanol methyltransferase isozymes KW - small nucleolar RNAs KW - acetivorans C2A KW - antisense RNAs KW - GO1 KW - transcriptional regulator KW - translational initiation KW - pyrococcus furiosus Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134972 VL - 40 IS - 21 ER -