TY - JOUR A1 - Müller, Joachim A1 - Brill, Stefan A1 - Hagen, Rudolf A1 - Moeltner, Alexander A1 - Brockmeier, Steffi-Johanna A1 - Stark, Thomas A1 - Helbig, Silke A1 - Maurer, Jan A1 - Zahnert, Thomas A1 - Zierhofer, Clemens A1 - Nopp, Peter A1 - Anderson, Ilona T1 - Clinical Trial Results with the MED-EL Fine Structure Processing Coding Strategy in Experienced Cochlear Implant Users JF - ORL N2 - Objectives: To assess the subjective and objective performance of the new fine structure processing strategy (FSP) compared to the previous generation coding strategies CIS+ and HDCIS. Methods: Forty-six adults with a minimum of 6 months of cochlear implant experience were included. CIS+, HDCIS and FSP were compared in speech perception tests in noise, pitch scaling and questionnaires. The randomized tests were performed acutely (interval 1) and again after 3 months of FSP experience (interval 3). The subjective evaluation included questionnaire 1 at intervals 1 and 3, and questionnaire 2 at interval 2, 1 month after interval 1. Results: Comparison between FSP and CIS+ showed that FSP performed at least as well as CIS+ in all speech perception tests, and outperformed CIS+ in vowel and monosyllabic word discrimination. Comparison between FSP and HDCIS showed that both performed equally well in all speech perception tests. Pitch scaling showed that FSP performed at least as well as HDCIS. With FSP, sound quality was at least as good and often better than with HDCIS. Conclusions: Results indicate that FSP performs better than CIS+ in vowel and monosyllabic word understanding. Subjective evaluation demonstrates strong user preferences for FSP when listening to speech and music. KW - pitch KW - CIS+ KW - OPUS KW - fine structure processing KW - cochlear implant KW - coding strategy KW - speech perception KW - music Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196396 SN - 0301-1569 SN - 1423-0275 N1 - This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. VL - 74 IS - 4 ER - TY - JOUR A1 - Sweeney, Reinhart A. A1 - Seubert, Benedikt A1 - Stark, Silke A1 - Homann, Vanessa A1 - Müller, Gerd A1 - Flentje, Michael A1 - Guckenbeger, Matthias T1 - Accuracy and inter-observer variability of 3D versus 4D cone-beam CT based image-guidance in SBRT for lung tumors N2 - Background: To analyze the accuracy and inter-observer variability of image-guidance (IG) using 3D or 4D cone-beam CT (CBCT) technology in stereotactic body radiotherapy (SBRT) for lung tumors. Materials and methods: Twenty-one consecutive patients treated with image-guided SBRT for primary and secondary lung tumors were basis for this study. A respiration correlated 4D-CT and planning contours served as reference for all IG techniques. Three IG techniques were performed independently by three radiation oncologists (ROs) and three radiotherapy technicians (RTTs). Image-guidance using respiration correlated 4D-CBCT (IG-4D) with automatic registration of the planning 4D-CT and the verification 4D-CBCT was considered gold-standard. Results were compared with two IG techniques using 3D-CBCT: 1) manual registration of the planning internal target volume (ITV) contour and the motion blurred tumor in the 3D-CBCT (IG-ITV); 2) automatic registration of the planning reference CT image and the verification 3D-CBCT (IG-3D). Image quality of 3D-CBCT and 4D-CBCT images was scored on a scale of 1–3, with 1 being best and 3 being worst quality for visual verification of the IGRT results. Results: Image quality was scored significantly worse for 3D-CBCT compared to 4D-CBCT: the worst score of 3 was given in 19 % and 7.1 % observations, respectively. Significant differences in target localization were observed between 4D-CBCT and 3D-CBCT based IG: compared to the reference of IG-4D, tumor positions differed by 1.9 mm± 0.9 mm (3D vector) on average using IG-ITV and by 3.6 mm± 3.2 mm using IG-3D; results of IG-ITV were significantly closer to the reference IG-4D compared to IG-3D. Differences between the 4D-CBCT and 3D-CBCT techniques increased significantly with larger motion amplitude of the tumor; analogously, differences increased with worse 3D-CBCT image quality scores. Inter-observer variability was largest in SI direction and was significantly larger in IG using 3D-CBCT compared to 4D-CBCT: 0.6 mm versus 1.5 mm (one standard deviation). Inter-observer variability was not different between the three ROs compared to the three RTTs. Conclusions: Respiration correlated 4D-CBCT improves the accuracy of image-guidance by more precise target localization in the presence of breathing induced target motion and by reduced inter-observer variability. KW - Medizin KW - Lung cancer KW - Image-guidance KW - Cone-beam CT KW - Inter-observer variability KW - Respiration correlated imaging Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75698 ER -