TY - JOUR A1 - Dienemann, Thomas A1 - Fujii, Naohiko A1 - Orlandi, Paula A1 - Nessel, Lisa A1 - Furth, Susan L. A1 - Hoy, Wendy E. A1 - Matsuo, Seiichi A1 - Mayer, Gert A1 - Methven, Shona A1 - Schaefer, Franz A1 - Schaeffner, Elke S. A1 - Solá, Laura A1 - Stengel, Bénédicte A1 - Wanner, Christoph A1 - Zhang, Luxia A1 - Levin, Adeera A1 - Eckardt, Kai-Uwe A1 - Feldman, Harold I. T1 - International Network of Chronic Kidney Disease cohort studies (iNET-CKD): a global network of chronic kidney disease cohorts JF - BMC Nephrology N2 - Background Chronic kidney disease (CKD) is a global health burden, yet it is still underrepresented within public health agendas in many countries. Studies focusing on the natural history of CKD are challenging to design and conduct, because of the long time-course of disease progression, a wide variation in etiologies, and a large amount of clinical variability among individuals with CKD. With the difference in health-related behaviors, healthcare delivery, genetics, and environmental exposures, this variability is greater across countries than within one locale and may not be captured effectively in a single study. Methods Studies were invited to join the network. Prerequisites for membership included: 1) observational designs with a priori hypotheses and defined study objectives, patient-level information, prospective data acquisition and collection of bio-samples, all focused on predialysis CKD patients; 2) target sample sizes of 1,000 patients for adult cohorts and 300 for pediatric cohorts; and 3) minimum follow-up of three years. Participating studies were surveyed regarding design, data, and biosample resources. Results Twelve prospective cohort studies and two registries covering 21 countries were included. Participants age ranges from >2 to >70 years at inclusion, CKD severity ranges from stage 2 to stage 5. Patient data and biosamples (not available in the registry studies) are measured yearly or biennially. Many studies included multiple ethnicities; cohort size ranges from 400 to more than 13,000 participants. Studies’ areas of emphasis all include but are not limited to renal outcomes, such as progression to ESRD and death. Conclusions iNET-CKD (International Network of CKD cohort studies) was established, to promote collaborative research, foster exchange of expertise, and create opportunities for research training. Participating studies have many commonalities that will facilitate comparative research; however, we also observed substantial differences. The diversity we observed across studies within this network will be able to be leveraged to identify genetic, behavioral, and health services factors associated with the course of CKD. With an emerging infrastructure to facilitate interactions among the investigators of iNET-CKD and a broadly defined research agenda, we are confident that there will be great opportunity for productive collaborative investigations involving cohorts of individuals with CKD. KW - Cohort study KW - Network KW - CKD KW - Epidemiology KW - Diversity Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164604 VL - 17 ER - TY - JOUR A1 - Vellmer, Tim A1 - Hartleb, Laura A1 - Fradera Sola, Albert A1 - Kramer, Susanne A1 - Meyer-Natus, Elisabeth A1 - Butter, Falk A1 - Janzen, Christian J. T1 - A novel SNF2 ATPase complex in Trypanosoma brucei with a role in H2A.Z-mediated chromatin remodelling JF - PLoS Pathogens N2 - A cascade of histone acetylation events with subsequent incorporation of a histone H2A variant plays an essential part in transcription regulation in various model organisms. A key player in this cascade is the chromatin remodelling complex SWR1, which replaces the canonical histone H2A with its variant H2A.Z. Transcriptional regulation of polycistronic transcription units in the unicellular parasite Trypanosoma brucei has been shown to be highly dependent on acetylation of H2A.Z, which is mediated by the histone-acetyltransferase HAT2. The chromatin remodelling complex which mediates H2A.Z incorporation is not known and an SWR1 orthologue in trypanosomes has not yet been reported. In this study, we identified and characterised an SWR1-like remodeller complex in T. brucei that is responsible for Pol II-dependent transcriptional regulation. Bioinformatic analysis of potential SNF2 DEAD/Box helicases, the key component of SWR1 complexes, identified a 1211 amino acids-long protein that exhibits key structural characteristics of the SWR1 subfamily. Systematic protein-protein interaction analysis revealed the existence of a novel complex exhibiting key features of an SWR1-like chromatin remodeller. RNAi-mediated depletion of the ATPase subunit of this complex resulted in a significant reduction of H2A.Z incorporation at transcription start sites and a subsequent decrease of steady-state mRNA levels. Furthermore, depletion of SWR1 and RNA-polymerase II (Pol II) caused massive chromatin condensation. The potential function of several proteins associated with the SWR1-like complex and with HAT2, the key factor of H2A.Z incorporation, is discussed. KW - Trypanosoma KW - chromatin KW - histones KW - RNA interference KW - Trypanosoma brucei gambiense KW - luciferase KW - transcriptional control KW - nucleosomes Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-301372 VL - 18 IS - 6 ER -