TY - INPR A1 - Stennett, Tom A1 - Mattock, James A1 - Vollert, Ivonne A1 - Vargas, Alfredo A1 - Braunschweig, Holger T1 - Unsymmetrical, Cyclic Diborenes and Thermal Rearrangement to a Borylborylene T2 - Angewandte Chemie, International Edition N2 - Cyclic diboranes(4) based on a chelating monoanionic, benzylphosphine linker were prepared by boron-silicon exchange between arylsilanes and B\(_2\)Br\(_4\). Coordination of Lewis bases to the remaining sp\(^2\) boron atom yielded unsymmetrical sp\(^3\)-sp\(^3\) diboranes, which were reduced with KC\(_8\) to their corresponding trans-diborenes. These compounds were studied by a combination of spectroscopic methods, X-ray diffraction and DFT calculations. PMe\(_3\)-stabilized diborene 6 was found to undergo thermal rearrangement to gem- diborene 8. DFT calculations on 8 reveal a polar boron-boron bond, and indicate that the compound is best described as a borylborylene. KW - boron KW - borylene KW - multiple bonds KW - rearrangement KW - DFT calculations Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-160258 N1 - This is the pre-peer reviewed version of the following article: T. E. Stennett, J. D. Mattock, I. Vollert, A. Vargas, H. Braunschweig, Angew. Chem. Int. Ed. 2018, 57, 4098., which has been published in final form at DOI: 10.1002/anie.201800671. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. VL - 57 ER - TY - INPR A1 - Stennett, Tom A1 - Mattock, James A1 - Pentecost, Leanne A1 - Vargas, Alfredo A1 - Braunschweig, Holger T1 - Chelated Diborenes and their Inverse-Electron-Demand Diels- Alder Reactions with Dienes T2 - Angewandte Chemie, International Edition N2 - A doubly base-stabilized diborane based on a benzylphosphine linker was prepared by a salt elimination reaction between 2-LiC\(_6\)H\(_4\)CH\(_2\)PCy\(_2\).Et\(_2\)O and B\(_2\)Br\(_4\). This compound was reduced with KC8 to its corresponding diborene, with the benzylphosphine forming a five-membered chelate. The diborene reacts with butadiene, 2-trimethylsiloxy-1,3-butadiene and isoprene to form 4,5-diboracyclohexenes, which interconvert between their 1,1- (geminal) and 1,2- (vicinal) chelated isomers. The 1,1-chelated diborene undergoes a halide-catalysed isomerisation into its thermodynamically favoured 1,2-isomer, which undergoes Diels-Alder reactions more slowly than the kinetic product. KW - boron KW - cycloaddition KW - DFT calculations KW - chelates KW - low-valent compounds Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178268 N1 - This is the pre-peer reviewed version of the following article: T. E. Stennett, J. D. Mattock, L. Pentecost, A. Vargas, H. Braunschweig, Angew. Chem. Int. Ed. 2018, 57, 15276., which has been published in final form at https://doi.org/10.1002/anie.201809217. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. ER - TY - INPR A1 - Stennett, Tom A1 - Bertermann, Rüdiger A1 - Braunschweig, Holger T1 - Construction of Linear and Branched Tetraboranes via 1,1- and 1,2-Diboration of Diborenes T2 - Angewandte Chemie, International Edition N2 - Sterically unencumbered diborenes based on a benzylphosphine chelate undergo diboration reactions with bis(catecholato)diboron in the absence of a catalyst to yield tetraboranes. The symmetrical diborenes studied undergo 1,2- diborations, whereas an unsymmetrical derivative was found to yield a triborylborane-phosphine adduct as the result of a formal 1,1-diboration. A related borylborylene compound also underwent a 1,2-diboration to produce a borylene-borane adduct. KW - boron KW - diboration KW - chain structures KW - low-valent compounds KW - isomers Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178276 N1 - This is the pre-peer reviewed version of the following article: T. E. Stennett, R. Bertermann, H. Braunschweig, Angew. Chem. Int. Ed. 2018, 57, 15896., which has been published in final form at https://doi.org/10.1002/anie.201809976. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. ER - TY - INPR A1 - Böhnke, Julian A1 - Braunschweig, Holger A1 - Jiménez-Halla, Oscar A1 - Krummenacher, Ivo A1 - Stennett, Tom E. T1 - Half-Sandwich Complexes of an Extremely Electron-Donating, Re-dox-Active η\(^6\)-Diborabenzene Ligand T2 - Journal of the American Chemical Society N2 - The heteroarene 1,4-bis(CAAC)-1,4-diborabenzene (1; CAAC = cyclic (alkyl)(amino)carbene) reacts with [(MeCN)\(_3\)M(CO)\(_3\)] (M = Cr, Mo, W) to yield half-sandwich complexes of the form [(η\(^6\)-diborabenzene)M(CO)\(_3\)] (M = Cr (2), Mo (3), W (4)). Investigation of the new complexes with a combination of X-ray diffraction, spectroscopic methods and DFT calculations shows that ligand 1 is a remarkably strong electron donor. In particular, [(η\(^6\)-arene)M(CO)\(_3\)] complexes of this ligand display the lowest CO stretching frequencies yet observed for this class of complex. Cyclic voltammetry on complexes 2-4 revealed one reversi- ble oxidation and two reversible reduction events in each case, with no evidence of ring-slippage of the arene to the η\(^4\) binding mode. Treatment of 4 with lithium metal in THF led to identification of the paramagnetic complex [(1)W(CO)\(_3\)]Li·2THF (5). Compound 1 can also be reduced in the absence of a transition metal to its dianion 1\(^{2–}\), which possesses a quinoid-type structure. KW - half-sandwich complexes KW - transition metal complex KW - boron KW - redox reactions Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-156766 N1 - This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in Journal of the American Chemical Society, copyright © 2017 American Chemical Society after peer review. To access the final edited and published work see dx.doi.org/10.1021/jacs.7b12394. ER -