TY - JOUR A1 - Güder, Gülmisal A1 - Rein, Eva von A1 - Flohr, Thomas A1 - Weismann, Dirk A1 - Schmitt, Dominik A1 - Störk, Stefan A1 - Frantz, Stefan A1 - Kratzer, Vincent A1 - Kendi, Christian T1 - Motion detectors as additional monitoring devices in the intensive care unit — a proof-of-concept study JF - Applied Sciences N2 - Background: Monitoring the vital signs of delirious patients in an intensive care unit (ICU) is challenging, as they might (un-)intentionally remove devices attached to their bodies. In mock-up scenarios, we systematically assessed whether a motion detector (MD) attached to the bed may help in identifying emergencies. Methods: We recruited 15 employees of the ICU and equipped an ICU bed with an MD (IRON Software GmbH, Grünwald, Germany). Participants were asked to replay 22 mock-up scenes of one-minute duration each: 12 scenes with movements and 10 without movements, of which 5 were emergency scenes (“lying dead-still, with no or very shallow breathing”). Blinded recordings were presented to an evaluation panel consisting of an experienced ICU nurse and a physician, who was asked to assess and rate the presence of motions. Results: Fifteen participants (nine women; 173 ± 7.0 cm; 78 ± 19 kg) joined the study. In total, 286 out of 330 scenes (86.7%) were rated correctly. Ratings were false negative (FN: “no movements detected, but recorded”) in 7 out of 180 motion scenes (3.9%). Ratings were false positive (FP: “movements detected, but not recorded”) in 37 out of 150 scenes (24.7%), more often in men than women (26 out of 60 vs. 11 out of 90, respectively; p < 0.001). Of note, in 16 of these 37 FP-rated scenes, a vibrating mobile phone was identified as a potential confounder. The emergency scenes were correctly rated in 64 of the 75 runs (85.3%); 10 of the 11 FP-rated scenes occurred in male subjects. Conclusions: The MD allowed for identifying motions of test subjects with high sensitivity (96%) and acceptable specificity (75%). Accuracy might increase further if activities are recorded continuously under real-world conditions. KW - motion detector KW - noncontact monitoring KW - Internet of Things devices Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-362404 SN - 2076-3417 VL - 13 IS - 16 ER - TY - JOUR A1 - Dammert, Marcel A. A1 - Brägelmann, Johannes A1 - Olsen, Rachelle R. A1 - Böhm, Stefanie A1 - Monhasery, Niloufar A1 - Whitney, Christopher P. A1 - Chalishazar, Milind D. A1 - Tumbrink, Hannah L. A1 - Guthrie, Matthew R. A1 - Klein, Sebastian A1 - Ireland, Abbie S. A1 - Ryan, Jeremy A1 - Schmitt, Anna A1 - Marx, Annika A1 - Ozretić, Luka A1 - Castiglione, Roberta A1 - Lorenz, Carina A1 - Jachimowicz, Ron D. A1 - Wolf, Elmar A1 - Thomas, Roman K. A1 - Poirier, John T. A1 - Büttner, Reinhard A1 - Sen, Triparna A1 - Byers, Lauren A. A1 - Reinhardt, H. Christian A1 - Letai, Anthony A1 - Oliver, Trudy G. A1 - Sos, Martin L. T1 - MYC paralog-dependent apoptotic priming orchestrates a spectrum of vulnerabilities in small cell lung cancer JF - Nature Communications N2 - MYC paralogs are frequently activated in small cell lung cancer (SCLC) but represent poor drug targets. Thus, a detailed mapping of MYC-paralog-specific vulnerabilities may help to develop effective therapies for SCLC patients. Using a unique cellular CRISPR activation model, we uncover that, in contrast to MYCN and MYCL, MYC represses BCL2 transcription via interaction with MIZ1 and DNMT3a. The resulting lack of BCL2 expression promotes sensitivity to cell cycle control inhibition and dependency on MCL1. Furthermore, MYC activation leads to heightened apoptotic priming, intrinsic genotoxic stress and susceptibility to DNA damage checkpoint inhibitors. Finally, combined AURK and CHK1 inhibition substantially prolongs the survival of mice bearing MYC-driven SCLC beyond that of combination chemotherapy. These analyses uncover MYC-paralog-specific regulation of the apoptotic machinery with implications for genotype-based selection of targeted therapeutics in SCLC patients. KW - genetic engineering KW - oncogenes KW - small-cell lung cancer KW - targeted therapies Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-223569 VL - 10 ER -