TY - JOUR A1 - Engel, Katharina A1 - Rudelius, Martina A1 - Slawska, Jolanta A1 - Jacobs, Laura A1 - Abhari, Behnaz Ahangarian A1 - Altmann, Bettina A1 - Kurutz, Julia A1 - Rathakrishnan, Abirami A1 - Fernández-Sáiz, Vanesa A1 - Brunner, Andrä A1 - Targosz, Bianca-Sabrina A1 - Loewecke, Felicia A1 - Gloeckner, Christian Johannes A1 - Ueffing, Marius A1 - Fulda, Simone A1 - Pfreundschuh, Michael A1 - Trümper, Lorenz A1 - Klapper, Wolfram A1 - Keller, Ulrich A1 - Jost, Philipp J. A1 - Rosenwald, Andreas A1 - Peschel, Christian A1 - Bassermann, Florian T1 - USP9X stabilizes XIAP to regulate mitotic cell death and chemoresistance in aggressive B-cell lymphoma JF - EMBO Molecular Medicine N2 - The mitotic spindle assembly checkpoint (SAC) maintains genome stability and marks an important target for antineoplastic therapies. However, it has remained unclear how cells execute cell fate decisions under conditions of SAC‐induced mitotic arrest. Here, we identify USP9X as the mitotic deubiquitinase of the X‐linked inhibitor of apoptosis protein (XIAP) and demonstrate that deubiquitylation and stabilization of XIAP by USP9X lead to increased resistance toward mitotic spindle poisons. We find that primary human aggressive B‐cell lymphoma samples exhibit high USP9X expression that correlate with XIAP overexpression. We show that high USP9X/XIAP expression is associated with shorter event‐free survival in patients treated with spindle poison‐containing chemotherapy. Accordingly, aggressive B‐cell lymphoma lines with USP9X and associated XIAP overexpression exhibit increased chemoresistance, reversed by specific inhibition of either USP9X or XIAP. Moreover, knockdown of USP9X or XIAP significantly delays lymphoma development and increases sensitivity to spindle poisons in a murine Eμ‐Myc lymphoma model. Together, we specify the USP9X–XIAP axis as a regulator of the mitotic cell fate decision and propose that USP9X and XIAP are potential prognostic biomarkers and therapeutic targets in aggressive B‐cell lymphoma. KW - B‐cell lymphoma KW - mitosis KW - ubiquitin KW - USP9X KW - XIAP Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165016 VL - 8 ER - TY - JOUR A1 - Schmalzl, Jonas A1 - Plumhoff, Piet A1 - Gilbert, Fabian A1 - Gohlke, Frank A1 - Konrads, Christian A1 - Brunner, Ulrich A1 - Jakob, Franz A1 - Ebert, Regina A1 - Steinert, Andre F. T1 - Tendon-derived stem cells from the long head of the biceps tendon JF - Bone & Joint Research N2 - Objectives The long head of the biceps (LHB) is often resected in shoulder surgery and could therefore serve as a cell source for tissue engineering approaches in the shoulder. However, whether it represents a suitable cell source for regenerative approaches, both in the inflamed and non-inflamed states, remains unclear. In the present study, inflamed and native human LHBs were comparatively characterized for features of regeneration. Methods In total, 22 resected LHB tendons were classified into inflamed samples (n = 11) and non-inflamed samples (n = 11). Proliferation potential and specific marker gene expression of primary LHB-derived cell cultures were analyzed. Multipotentiality, including osteogenic, adipogenic, chondrogenic, and tenogenic differentiation potential of both groups were compared under respective lineage-specific culture conditions. Results Inflammation does not seem to affect the proliferation rate of the isolated tendon-derived stem cells (TDSCs) and the tenogenic marker gene expression. Cells from both groups showed an equivalent osteogenic, adipogenic, chondrogenic and tenogenic differentiation potential in histology and real-time polymerase chain reaction (RT-PCR) analysis. Conclusion These results suggest that the LHB tendon might be a suitable cell source for regenerative approaches, both in inflamed and non-inflamed states. The LHB with and without tendinitis has been characterized as a novel source of TDSCs, which might facilitate treatment of degeneration and induction of regeneration in shoulder surgery. KW - biceps tendon KW - tendon-derived stem cell KW - mesenchymal stem cell KW - tissue engineering KW - shoulder Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200370 VL - 8 IS - 9 ER -