TY - JOUR A1 - El-Helou, Sabine M. A1 - Biegner, Anika-Kerstin A1 - Bode, Sebastian A1 - Ehl, Stephan R. A1 - Heeg, Maximilian A1 - Maccari, Maria E. A1 - Ritterbusch, Henrike A1 - Speckmann, Carsten A1 - Rusch, Stephan A1 - Scheible, Raphael A1 - Warnatz, Klaus A1 - Atschekzei, Faranaz A1 - Beider, Renata A1 - Ernst, Diana A1 - Gerschmann, Stev A1 - Jablonka, Alexandra A1 - Mielke, Gudrun A1 - Schmidt, Reinhold E. A1 - Schürmann, Gesine A1 - Sogkas, Georgios A1 - Baumann, Ulrich H. A1 - Klemann, Christian A1 - Viemann, Dorothee A1 - Bernuth, Horst von A1 - Krüger, Renate A1 - Hanitsch, Leif G. A1 - Scheibenbogen, Carmen M. A1 - Wittke, Kirsten A1 - Albert, Michael H. A1 - Eichinger, Anna A1 - Hauck, Fabian A1 - Klein, Christoph A1 - Rack-Hoch, Anita A1 - Sollinger, Franz M. A1 - Avila, Anne A1 - Borte, Michael A1 - Borte, Stephan A1 - Fasshauer, Maria A1 - Hauenherm, Anja A1 - Kellner, Nils A1 - Müller, Anna H. A1 - Ülzen, Anett A1 - Bader, Peter A1 - Bakhtiar, Shahrzad A1 - Lee, Jae-Yun A1 - Heß, Ursula A1 - Schubert, Ralf A1 - Wölke, Sandra A1 - Zielen, Stefan A1 - Ghosh, Sujal A1 - Laws, Hans-Juergen A1 - Neubert, Jennifer A1 - Oommen, Prasad T. A1 - Hönig, Manfred A1 - Schulz, Ansgar A1 - Steinmann, Sandra A1 - Klaus, Schwarz A1 - Dückers, Gregor A1 - Lamers, Beate A1 - Langemeyer, Vanessa A1 - Niehues, Tim A1 - Shai, Sonu A1 - Graf, Dagmar A1 - Müglich, Carmen A1 - Schmalzing, Marc T. A1 - Schwaneck, Eva C. A1 - Tony, Hans-Peter A1 - Dirks, Johannes A1 - Haase, Gabriele A1 - Liese, Johannes G. A1 - Morbach, Henner A1 - Foell, Dirk A1 - Hellige, Antje A1 - Wittkowski, Helmut A1 - Masjosthusmann, Katja A1 - Mohr, Michael A1 - Geberzahn, Linda A1 - Hedrich, Christian M. A1 - Müller, Christiane A1 - Rösen-Wolff, Angela A1 - Roesler, Joachim A1 - Zimmermann, Antje A1 - Behrends, Uta A1 - Rieber, Nikolaus A1 - Schauer, Uwe A1 - Handgretinger, Rupert A1 - Holzer, Ursula A1 - Henes, Jörg A1 - Kanz, Lothar A1 - Boesecke, Christoph A1 - Rockstroh, Jürgen K. A1 - Schwarze-Zander, Carolynne A1 - Wasmuth, Jan-Christian A1 - Dilloo, Dagmar A1 - Hülsmann, Brigitte A1 - Schönberger, Stefan A1 - Schreiber, Stefan A1 - Zeuner, Rainald A1 - Ankermann, Tobias A1 - Bismarck, Philipp von A1 - Huppertz, Hans-Iko A1 - Kaiser-Labusch, Petra A1 - Greil, Johann A1 - Jakoby, Donate A1 - Kulozik, Andreas E. A1 - Metzler, Markus A1 - Naumann-Bartsch, Nora A1 - Sobik, Bettina A1 - Graf, Norbert A1 - Heine, Sabine A1 - Kobbe, Robin A1 - Lehmberg, Kai A1 - Müller, Ingo A1 - Herrmann, Friedrich A1 - Horneff, Gerd A1 - Klein, Ariane A1 - Peitz, Joachim A1 - Schmidt, Nadine A1 - Bielack, Stefan A1 - Groß-Wieltsch, Ute A1 - Classen, Carl F. A1 - Klasen, Jessica A1 - Deutz, Peter A1 - Kamitz, Dirk A1 - Lassy, Lisa A1 - Tenbrock, Klaus A1 - Wagner, Norbert A1 - Bernbeck, Benedikt A1 - Brummel, Bastian A1 - Lara-Villacanas, Eusebia A1 - Münstermann, Esther A1 - Schneider, Dominik T. A1 - Tietsch, Nadine A1 - Westkemper, Marco A1 - Weiß, Michael A1 - Kramm, Christof A1 - Kühnle, Ingrid A1 - Kullmann, Silke A1 - Girschick, Hermann A1 - Specker, Christof A1 - Vinnemeier-Laubenthal, Elisabeth A1 - Haenicke, Henriette A1 - Schulz, Claudia A1 - Schweigerer, Lothar A1 - Müller, Thomas G. A1 - Stiefel, Martina A1 - Belohradsky, Bernd H. A1 - Soetedjo, Veronika A1 - Kindle, Gerhard A1 - Grimbacher, Bodo T1 - The German national registry of primary immunodeficiencies (2012-2017) JF - Frontiers in Immunology N2 - Introduction: The German PID-NET registry was founded in 2009, serving as the first national registry of patients with primary immunodeficiencies (PID) in Germany. It is part of the European Society for Immunodeficiencies (ESID) registry. The primary purpose of the registry is to gather data on the epidemiology, diagnostic delay, diagnosis, and treatment of PIDs. Methods: Clinical and laboratory data was collected from 2,453 patients from 36 German PID centres in an online registry. Data was analysed with the software Stata® and Excel. Results: The minimum prevalence of PID in Germany is 2.72 per 100,000 inhabitants. Among patients aged 1-25, there was a clear predominance of males. The median age of living patients ranged between 7 and 40 years, depending on the respective PID. Predominantly antibody disorders were the most prevalent group with 57% of all 2,453 PID patients (including 728 CVID patients). A gene defect was identified in 36% of patients. Familial cases were observed in 21% of patients. The age of onset for presenting symptoms ranged from birth to late adulthood (range 0-88 years). Presenting symptoms comprised infections (74%) and immune dysregulation (22%). Ninety-three patients were diagnosed without prior clinical symptoms. Regarding the general and clinical diagnostic delay, no PID had undergone a slight decrease within the last decade. However, both, SCID and hyper IgE-syndrome showed a substantial improvement in shortening the time between onset of symptoms and genetic diagnosis. Regarding treatment, 49% of all patients received immunoglobulin G (IgG) substitution (70%-subcutaneous; 29%-intravenous; 1%-unknown). Three-hundred patients underwent at least one hematopoietic stem cell transplantation (HSCT). Five patients had gene therapy. Conclusion: The German PID-NET registry is a precious tool for physicians, researchers, the pharmaceutical industry, politicians, and ultimately the patients, for whom the outcomes will eventually lead to a more timely diagnosis and better treatment. KW - registry for primary immunodeficiency KW - primary immunodeficiency (PID) KW - German PID-NET registry KW - PID prevalence KW - European Society for Immunodeficiencies (ESID) KW - IgG substitution therapy KW - CVID Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-226629 VL - 10 ER - TY - THES A1 - Wölke, Stefan T1 - Funktionelle Analyse von bakteriellen W-xxx-E Rho GTPasen GEF Mimetika mittels Typ 3 Sekretionssystems von Yersinia enterocolitica T1 - Functional analysis of bacterial W-xxx-E Rho GTPase GEF mimetics using the type 3 secretion system of Yersinia enterocolotica N2 - Die zellulären Rho GTPasen kontrollieren und regulieren zentrale elementare Zellvorgänge wie Phagozytose, Migration und epitheliale Integrität. Aufgrund ihrer zentralen Stellung, interagiert eine Vielzahl von bakteriellen Cytotoxinen und Modulinen mit den Rho GTPasen und wirken so als Pathogenitätsfaktoren. Die zur W-xxx-E Familie gehörenden Effektoren IpgB1 und IpgB2 von Shigella und Map von E. coli (Pathotypen EHEC und EPEC) werden über ein Typ 3 Sekretionssystem (T3SS) in Wirtszellen injiziert und wirken als Rac1, RhoA bzw. Cdc42 GEF Mimetikum. In der vorliegenden Arbeit wurden die Effektor Funktionen von IpgB1 IpgB2 und Map mit Hilfe des Yersinia (Ysc)-T3SS untersucht, was zur Etablierung der „Yersinia-Toolbox“ führte. Damit können heterologe Effektoren isoliert im physiologischen Kontext der Erreger-Zell-Interaktion zellbiologisch untersucht werden unter Vermeidung von simultaner Injektion redundanter oder unbekannter Effektoren. Zur Etablierung der Yersinia-Toolbox wurden zunächst die Gene für die Rho GTPasen modulierenden Shigella Effektoren IpgB1 und IpgB2 sowie der E. coli (EHEC)-Effektor Map mit unterschiedlich langen Gensequenzen der N-terminalen Bereiche des Yersinia-Effektorproteins YopE fusioniert (Hybridproteine: YopEi-X:i = 18, 53 bzw. 138 Aminosäurereste, X = IpgB1, IpgB2 bzw. Map). In der vorliegenden Arbeit wird gezeigt, dass die Hybridproteine YopE53-X und YopE138-X (X=IpgB1, IpgB2, Map) in den Kulturüberstand sezerniert bzw. in Zielzellen injiziert wurden. In einem weiteren Schritt konnte die zellbiologische Aktivität der heterologen Proteine fluoreszenzmikroskopisch durch Aktinzytoskelettumlagerungen gezeigt werden. So wurden „Membrane Ruffles“ (Rac1-Aktivierung) durch YopE138-IpgB1, Stressfasern (RhoA-Aktivierung) durch E138-IpgB2 und „Mikrospikes“ (Cdc42-Aktivierung) durch YopE138-Map nachgewiesen. Invasionstudien zeigten, dass YopEi-IpgB1 (i = 53, 138) die Yersinia-Invasion induzierte, wohingegen YopEi-IpgB2 die Invasionsrate der Stämme WA (pT3SS, pEi-IpgB2) (i=53, 138) verglichen mit dem Stamm WA (pT3SS) reduziert war. Durch Kombination verschiedener Yersinia-Toolbox-Stämme konnte im Co-Infektionsmodell mit HeLa-Zellen gezeigt werden, dass (1) die YopE138-IpgB1 vermittelte Invasion durch YopE138-IpgB2 signifikant inhibiert werden kann, was auf eine antagonistische Wirkung zwischen IpgB1 und IpgB2 schließen lässt, dass (2) YopT ebenfalls die IpgB1 vermittelte Invasionsrate reduziert (inhibitorische Wirkung auf Rac1), und dass (3) YopE als GAP für RhoG/Rac1 (bevorzugt RhoG) praktisch nicht die IpgB1-vermittelte Invasion hemmt. Durch Klonierung der YopE138-IpgB1 und YopE138-IpgB2 kodierenden Fusionsgene in zwei kompatible Plasmidvektoren konnten die Hybridproteine simultan transloziert werden und die Co-Infektionsergebnisse bestätigt werden. In der Literatur ist beschrieben, dass die Ysc-Translokationspore YopB/YopD Rho-abhängig Membranporen-bedingte Zellschädigungen verursacht (LDH-Freisetzung, PI-Kernfärbung). Mit der Yersinia-Toolbox konnte mit dem Stamm WA (pT3SS) Zytoplasmamembranschädigung / Zytotoxizität nachgewiesen werden, nicht aber mit den Stämmen WA (pE138-X) X = IpgB1, IpgB2 oder Map. Co-Infektionen jedoch zeigen, dass vermehrt LDH bei der Infektion mit WA (pT3SS) + WA (pT3SS, pE138-IpgB1) detektiert wurde, wohingegen dieser Effekt von YopE138-IpgB2 in einer Co-Infektion von WA (pT3SS) + WA (pT3SS, pE138-IpgB2) inhibiert wurde. Auch hier wurde der Antagonismus zwischen IpgB1 und IpgB2 erneut sichtbar. Diese Befunde widersprechen publizierten Daten, die eine RhoA-Aktivierung/Aktinpolymerisierung mit verstärkter Porenbildung in einen Zusammenhang bringen. Rho GTPasen sind beteiligt an der Erhaltung der polarisierten Eipthelzellschichtintegrität über Adhäsionskomplexbildung. Mittels Infektion von polarisierten MDCK-Zellschichten mit verschiedenen Yersinia-Stämmen und Messung des transepithelialen elektrischen Widerstandes/Resistenz (TER) konnte gezeigt werden, dass die Ysc-T3SS vermittelte Injektion von YopE138-IpgB1 (Rac1-Aktivierung) oder YopE138-Map (Cdc42-Aktivierung) zur Abnahme der TER und damit Schädigung der Zellschichtintegrität führt, wogegen bei YopE138-IpgB2-Injektion der TER-Wert unverändert blieb. Um bakterielle Rho GTPasen-modulierende Effektorproteine detailliert untersuchen zu können und um die Rolle von Rho GTPasen im Mausinfektionsmodell mit Yersinia enterocolitica und Salmonellen zu bestimmen, wurden Mäuse mit deletierten Genen für RhoA, Rac1 bzw. Cdc42 in Makrophagen hergestellt. N2 - Phagocytosis, migration and regulation of epithelial integrity are central cellular aspects that are controlled by the cellular Rho GTPases. In this regard, Rac1, RhoA and Cdc42 have important regulatory roles mediating various cytoskeletal rearrangements in many cell types including epithelial cells as well as professional phagocytes. Because of the central role of the Rho GTPases in cellular integrity and function, bacterial cytotoxins and modulins targeting these cellular switches are very efficient pathogenicity factors. Recently, the T3SS effectors, IpgB1, IpgB2 of Shigella and Map of E. coli (pathotype EHEC/EPEC) were assembled in one protein family sharing the common motif W-xxx-E. Members of this protein family are described to act as GEF mimics for the cellular Rho GTPases. In this study the effector functions of IpgB1, IpgB2 and Map were analyzed with the Yersinia (Ysc)-T3SS which led to the development of the “Yersinia-Toolbox”. Yersinia enterocolitica is very suitable to be used as “T3SS-Toolbox” because (1) a plasmid solely carrying the DNA fragment encoding the Ysc-T3SS without T3SS-effectors is available, (2) in difference to Salmonella and E. coli (EPEC/EHECH) the Ysc-T3SS-effector genes of Yersinia are not localized on the chromosome and (3) heterologous proteins fused to the Ysc-T3SS-effector YopE are secreted and translocated into cells. This allows the analysis of single heterologous effectors without simultanous injection of other (unknown/redundant) T3SS-effectors in a physiological context during the interaction of Yersinia with cells. To develop the Yersinia-Toolbox, the genes of the GTPase modulating effectors IpgB1, IpgB2 of Shigella and Map of E. coli (EHEC) were fused to different long sections of the N-Terminus of the Yersinia-Ysc-T3SS-effector YopE (hybrid proteins: YopEi-X: i = 18, 53 or 138 amino acid residues, X = IpgB1, IpgB2 or Map). This study demonstrates the secretion to the culture supernatent and the injection into target cells of the hybrid proteins YopE53-X and YopE138-X (X = IpgB1, IpgB2 and Map). Furthermore, cell biologic activity was detected for the YopE-X hybrid proteins by fluorescence microscopy as membrane ruffles (Rac1 activation), stress fibres (RhoA activation) and micro spikes (Cdc42 activation) occurred after injection of YopE138-IpgB1,.YopE138-IpgB2 and YopE138-Map, in respective. Invasion studies showed that YopEi-IpgB1 (i = 53, 138) induced invasion of Yersinia, whereas YopEi-IpgB2 reduced invasion of the strains WA (pT3SS, pEi-IpgB2) (i = 53, 138) compared to the strain WA (pT3SS). Combination of different Yersinia-Toolbox strains in the co-infection model with HeLa cells showed that (1) YopE138-IpgB2 reduced the YopE138-IpgB1 induced invasion suggesting an antagonism between IpgB1 and IpgB2, (2) YopT also reduced the YopE138-IpgB1 induced invasion (inhibitory function on Rac1) and (3) that YopE as GAP for RhoG/Rac1 (predominantly RhoG) did not inhibit the YopE138-IpgB1 induced invasion. Because of the construction of two different compatible plasmids carrying the genes for either YopE138-IpgB1 or YopE138-IpgB2, simultanous translocation of the hybrid proteins of one single strain was possible. These studies confirmed the results of the co-infection studies. It has been reported that the Ysc translocation pore YopB/YopD induces Rho dependent membrane pores in cells which leads to cellular damage (LDH release, PI-staining of the nucleus). In this study cellular damage / cytotoxicity was detected after an infection of HeLa cells with the Yersinia-Toolbox strain WA (pT3SS). In contrast to that no cytotoxicity was detected after an infection of HeLa cells with the Yersinia-Toolbox strains WA (pT3SS, pE138-X) X = IpgB1, IpgB2 and Map. Additionally, co-infections with the strains WA (pT3SS) and WA (pT3SS, pE138-IpgB1) resulted in an increased LDH release whereas a co-infection with the strains WA (pT3SS) and WA (pT3SS, pE138-IpgB2) led to the decrease of LDH release compared to single infections with WA (pT3SS), again suggesting an antagonism between IpgB1 and IpgB2. These results are contrary to published data, which suggest a correlation between RhoA activation dependent actin polymerisation and pore formation. The cellular Rho GTPases are involved in the maintenance of epithelial integrity of polarized cells. Infections of polarized MDCK cell layers with different Yersinia-Toolbox strains resulted in a decrease of the transepithelial electric resistance (TER) indicating a damage of the epithelial integrity after injection of YopE138-IpgB1 or YopE138-Map. The TER value was not altered after injection of YopE138-IpgB2 indicating an intact epithelial integrity. To study bacterial Rho GTPase modulating proteins in more detail and to get a deeper insight to the role of Rho GTPases in the murine infection model with Yersinia enterocolitica and Salmonella, mice with gene deletions for RhoA, Rac1 or Cdc42 in macrophages were constructed. KW - Actin KW - Yersinia enterocolitica KW - Shigella flexneri KW - EHEC KW - CRE KW - Knockout KW - Guanosintriphosphatasen KW - T3SS KW - Rho GTPasen KW - GEF KW - GAP KW - Mimetika KW - Proteinsekretion KW - T3SS KW - Rho GTPases KW - GEF KW - GAP KW - Mimics Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-55010 N1 - die Arbeit wurde hauptsächlich am Max-von-Pettenkofer-Inst. der LMU München als externe Dissertation erstellt und vom Lehrstuhl für Mikrobiologie der Fakultät für Biologie an der Universität Würzburg betreut. ER -