TY - THES A1 - Eltschkner, Sandra T1 - Targeting the Bacterial Fatty-Acid Synthesis Pathway: Towards the Development of Slow-Onset Inhibitors and the Characterisation of Protein-Protein Interactions T1 - Die bakterielle Fettsäurebiosynthese als Zielobjekt zur Entwicklung langsam bindender Inhibitoren und zur Charakterisierung von Protein-Protein-Wechselwirkungen N2 - A continuous arms race between the development of novel antibiotics and the evolution of corresponding resistance mechanisms in bacteria has been observed, since antibiotic agents like arsphenamines (e.g. Salvarsan, developed by Paul Ehrlich [1]), sulphonamides (e.g. Prontosil, Gerhard Domagk [2]) and penicillin (Alexander Fleming [3]) were first applied to effectively cure bacterial infections in the early 20th century. The rapid emergence of resistances in contrast to the currently lagging discovery of antibiotics displays a severe threat to human health. Some serious infectious diseases, such as tuberculosis or melioidosis, which were either thought to be an issue only in Third-World countries in case of tuberculosis, or regionally restricted with respect to melioidosis, are now on the rise to expand to other areas. In contrast, methicillin-resistant Staphylococcus aureus (MRSA) is already present in clinical setups all over the world and causes severe infections in immunocompromised patients. Thus, there is an urgent need for new and effective antimicrobial agents, which impair vital functions of the pathogen’s metabolism. One central metabolic pathway is represented by the bacterial fatty-acid synthesis pathway (FAS II), which is essential for the synthesis of long and branched-chain fatty acids, as well as mycolic acids. These substances play a major role as modulating components of the properties of the most important protective barrier – the cell envelope. The integrity of the bacterial cell wall and the associated membrane(s) is crucial for cell growth and for protection against physical strain, intrusion of antibiotic agents and regulation of uptake of ions and other small molecules. Thus, this central pathway represents a promising target for antibiotic action against pathogens to combat infectious diseases. The last and rate-limiting step is catalysed by the trans-2-enoyl-ACP reductase (ENR) FabI or InhA (in mycobacteria), which has been demonstrated to be a valuable target for drug design and can be addressed, amongst others, by diphenyl ether (DPE) compounds, derived from triclosan (TCL) – the first one of this class which was discovered to bind to ENR enzymes [4, 5]. Based on this scaffold, inhibitors containing different combinations of substituents at crucial positions, as well as a novel type of substituent at position five were investigated regarding their binding behaviour towards the Burkholderia pseudomallei and Mycobacterium tuberculosis ENR enzymes bpFabI and InhA, respectively, by structural, kinetic and in-vivo experiments. Generally, substitution patterns modulate the association and dissociation velocities of the different ENR inhibitors in the context of the two-step slow-onset binding mechanism, which is observed for both enzymes. These alterations in the rapidity of complex formation and decomposition have a crucial impact on the residence time of a compound and hence, on the pharmacokinetic properties of potential drug candidates. For example, the substituents at the 2’-position of the DPE scaffold influence the ground- and transition state stability during the binding process to bpFabI, whereas 4’-substituents primarily alter the transition state [6]. The novel triazole group attached to the 5-position of the scaffold, targeting the hydrophobic part of the substrate-binding pocket in InhA, significantly enhances the energy barrier of the transition state of inhibitor binding [7] and decelerates the association- as well as the dissociation processes. Combinations with different substituents at the 2’-position can enhance or diminish this effect, e.g. by ground-state stabilisation, which will result in an increased residence time of the respective inhibitor on InhA. Further structural investigations carried out in this work, confirm the proposed binding mode of a customised saFabI inhibitor [8], carrying a pyridone moiety on the DPE scaffold to expand interactions with the protein environment. Structural and preliminary kinetic data confirm the binding of the same inhibitor to InhA in a related fashion. Comparisons with structures of the ENR inhibitor AFN-1252 [9] bound to ENR enzymes from other organisms, addressing a similar region as the pyridone-moiety of the DPE inhibitor, suggest that also the DPE inhibitor bears the potential to display binding to homologues of saFabI and InhA and may be optimised accordingly. Both of the newly investigated substituents, the pyridone moiety at the 4’-position as well as the 5-triazole substituent, provide a good starting point to modify the DPE scaffold also towards improved kinetic properties against ENR enzymes other than the herein studied and combining both groups on the DPE scaffold may have beneficial effects. The understanding of the underlying binding mechanism is a crucial factor to promote the dedicated design of inhibitors with superior pharmacokinetic characteristics. A second target for a structure-based drug-design approach is the interaction surface between ENR enzymes and the acyl-carrier protein (ACP), which delivers the growing acyl chain to each distinct enzyme of the dissociated FAS-II system and presumably recognises its respective interaction partner via electrostatic contacts. The interface between saACP and saFabI was investigated using different approaches including crosslinking experiments and the design of fusion constructs connecting the ACP and the FabI subunits via a flexible linker region of varying lengths and compositions. The crosslinking studies confirmed a set of residues to be part of the contact interface of a previously proposed complex model [10] and displayed high crosslinking efficiency of saACP to saFabI when mutated to cysteine residues. However, crystals of the complex obtained from either the single components, or of the fusion constructs usually displayed weak diffraction, which supports the assumption that complex formation is highly transient. To obtain ordered crystals for structural characterisation of the complex it is necessary to trap the complex in a fixed state, e.g. by a high-affinity substrate attached to ACP [11], which abolishes rapid complex dissociation. For this purpose, acyl-coupled long-residence time inhibitors might be a valuable tool to elucidate the detailed architecture of the ACP-FabI interface. This may provide a novel basis for the development of inhibitors that specifically target the FAS-II biosynthesis pathway. N2 - Seit Beginn der Anwendung antibiotischer Substanzen wie Arsphenaminen, z.B. Salvarsan, entwickelt von Paul Ehrlich [1], Sulfonamiden, z.B. Prontosil, dessen antibakterielle Wirksamkeit durch Gerhard Domagk nachgewiesen wurde [2], oder des von Alexander Fleming entdeckten Penicillins [3] zur effektiven Bekämpfung von Infektionskrankheiten Anfang des 20. Jahrhunderts findet ein kontinuierliches Wettrüsten zwischen der Entstehung von Antibiotikaresistenzen in Bakterien und der Entwicklung neuer Antibiotika statt. Vor allem die zügige Entstehung von Resistenzen im Gegensatz zum eher stockenden Fortschritt der Entdeckung neuer Antibiotika stellt ein ernstzunehmendes Risiko für die menschliche Gesundheit dar. Einige stark lebensbedrohliche Infektionskrankheiten, darunter Tuberkulose und Melioidose, erfahren dadurch eine erhöhte Verbreitung. Ein Anstieg der Zahl der Tuberkuloseerkrankungen in Gebieten, in denen die Krankheit bereits als ausgerottet galt, beispielsweise in Europa; oder im Falle der Melioidose, eine Verbreitung in Gebiete, in denen die Krankheitserreger natürlicherweise nicht vorkommen; sind u.a. die Folgen fehlender Wirkstoffe zur Bekämpfung resistenter Stämme. Methicillinresistente Staphylococcus-aureus- (MRSA-) Stämme sind hingegen bereits fast weltweit in Krankenhäusern verbreitet und gelten dort als Quelle schwerer Infektionen, die vor allem für Patienten mit geschwächtem Immunsystem eine ernsthafte Bedrohung darstellen. Die mannigfaltigen Vorkommen resistenter Erreger und die eingeschränkten Behandlungsmöglichkeiten dadurch verursachter Infektionen machen die Entwicklung neuer, wirksamer Antibiotika dringend notwendig. Ein zentraler Stoffwechselweg der Bakterien ist die Fettsäurebiosynthese II, die im Hinblick auf die Herstellung lang- und verzweigtkettiger Fettsäuren sowie von Mykolsäuren essentiell ist. Die Zusammensetzung der Fettsäuren trägt maßgeblich zur Funktionsfähigkeit der unentbehrlichen Schutzbarriere der Zelle – nämlich der Zellhülle – bei. Eine intakte Zellwand und deren assoziierte Membranen schützen die Zelle vor physikalischem Stress, vor dem Eindringen antibiotischer Substanzen und regulieren die Aufnahme anderer Kleinmoleküle und Ionen. Genau aus diesem Grunde stellt die Fettsäurebiosynthese ein attraktives Ziel für die Entwicklung von Antibiotika dar. Die Enoyl-ACP-Reduktase (ENR), welche den letzten und geschwindigkeitsbestimmenden Schritt des Synthesezyklus katalysiert, wurde als hervorragendes Zielmolekül identifiziert und wird unter anderem von Diphenylethern gehemmt. Diese Verbindungen sind von Triclosan abgeleitet, dessen Bindung an ENR-Enzyme als erstem Vertreter dieser Stoffklasse nachgewiesen werden konnte [4, 5]. Basierend auf dem Diphenylethergrundgerüst von Triclosan wurden Inhibitoren mit unterschiedlichen Substitutionsmustern bezüglich ihrer Bindungseigenschaften an die ENR-Enzyme von Burkholderia pseudomallei (bpFabI) und Mycobacterium tuberculosis (InhA) untersucht. Kritische Positionen dieses Grundgerüstes wurden mit verschiedenen, chemischen Gruppen versehen und die Bindung an diese beiden Enzyme anschließend strukturell, kinetisch und am lebenden Organismus charakterisiert. In beiden Fällen üben die Substitutionsmuster einen beträchtlichen Einfluss auf die Assoziations- und Dissoziationsgeschwindigkeiten der verschiedenen Inhibitoren im Rahmen des verlangsamten Zweischrittassoziationsmechanismus aus, welche wiederum die Verweildauer des Inhibitors am Enzym und dessen pharmakokinetische Eigenschaften bestimmen. Die Beschaffenheit der 2‘-Substituenten beeinflusst beispielsweise die Stabilität des Grund- sowie des Übergangszustandes im Bindungsgeschehen an bpFabI, wohingegen 4‘-Substituenten hauptsächlich zu Stabilitätsänderungen im Übergangszustand beitragen [6]. Die Einführung des Triazolsubstituenten an der 5-Position des Diphenylethergerüsts führt zu einer signifikanten Erhöhung der Energiebarriere des Übergangszustandes im Bindungsprozess an InhA [7], was im Rückschluss zu einer ebenfalls verlangsamten Dissoziation des Enzym-Inhibitor-Komplexes führt. Zusätzlich wird dieser Effekt durch die Beschaffenheit des entsprechenden Substituenten an der 2‘-Position noch verstärkt oder abgeschwächt. Dies erfolgt beispielsweise durch eine Stabilisierung des Grundzustandes und eine daraus resultierende, verlängerte Verweildauer des Inhibitors am Enzym. Weitere, strukturelle Untersuchungen im Rahmen dieser Arbeit konnten den vorgeschlagenen Bindungsmodus [8] des neuartigen, speziell auf das ENR-Enzym von Staphylococcus aureus (saFabI) zugeschnittenen Inhibitors „55JS“ (auch „SKTS1“) bestätigen. Dieser Diphenyletherinhibitor besitzt an der 4‘-Position einen Pyridonring, welcher die Wechselwirkungen mit dem Enzym verstärken soll. Aus den strukturellen und vorläufigen, kinetischen Daten geht hervor, dass dieser Inhibitor ebenfalls und in ähnlicher Weise an InhA bindet. Außerdem legt ein Vergleich mit Komplexstrukturen verschiedener ENRs in Verbindung mit AFN-1252 [9] die Vermutung nahe, dass auch 55JS an weitere ENR-Homologe binden könnte; denn jener Teil des AFN-1252-Inhibitors, der sich räumlich mit dem Pyridonring von 55JS überlagert, geht mit derselben Region im Protein ähnliche Wechselwirkungen ein. Es ist daher möglich, dass dieser Inhibitor das Potential birgt, durch entsprechende Optimierung als Wirkstoff gegen andere Pathogene zum Einsatz zu gelangen. Beide dieser neuartigen, funktionellen Gruppen, die Triazol- und die Pyridongruppe, stellen einen guten Ansatzpunkt für die Weiterentwicklung von Diphenylethern bezüglich verbesserter kinetischer Eigenschaften gegenüber ENR-Enzymen dar. Ein weiterer, interessanter Ansatz für die strukturbasierte Wirkstoffentwicklung ist durch die Interaktionsfläche zwischen ENR-Enzymen und dem Acyl-Carrier-Protein (ACP) gegeben. ACP transportiert die naszierende Acylkette von einem zum nächsten Enzym des dissoziierten Fettsäurebiosynthesezyklus, welche es wahrscheinlich anhand elektrostatischer Interaktionen erkennt. Die Kontaktfläche zwischen saACP und saFabI wurde hier mittels verschiedener Ansätze untersucht, die sowohl Crosslinking-Experimente als auch die Generierung von Fusionsproteinen umfassten. In den verschiedenen Fusionskonstrukten wurden das ACP- und das ENR-Protein durch eine flexible Aminosäurekette unterschiedlicher Längen und Zusammensetzungen miteinander verbunden. Durch die Crosslinking-Experimente konnten Aminosäuren identifiziert werden, welche einen Teil einer vorgeschlagenen Interaktionsfläche [10] ausmachen und tatsächlich eine hohe Vernetzungseffizienz aufwiesen. Proteinkristalle des Komplexes, die entweder beide Einzelkomponenten oder das Fusionsprotein enthielten, zeigten jedoch nur schwache Beugungsmuster. Diese Beobachtung deckt sich mit der Annahme, dass die Komplexbildung äußerst kurzlebig ist. Die intrinsische Flexibilität beider Proteine erhöht zusätzlich die Schwierigkeit, wohlgeordnete Kristalle zu erhalten. Es wird deshalb notwendig sein, den Komplex in einem fixierten Zustand einzufangen. Die Verwendung eines hochaffinen Substrates, welches die Dissoziation des Komplexes unterbindet, beispielsweise ein acylgekoppelter Inhibitor [11] mit langer Verweildauer am Enzym, könnte hier von großem Nutzen sein und es damit erlauben eine detaillierte Kenntnis der ACP-FabI-Interaktionsfläche zu erhalten, die neue Perspektiven für eine gezielte Entwicklung von Inhibitoren der Fettsäurebiosynthese II eröffnen könnten. KW - Fettsäurestoffwechsel KW - Diphenylether KW - Arzneimitteldesign KW - Verweildauer KW - bacterial fatty-acid biosynthesis KW - enoyl-ACP reductase KW - structure-based drug design KW - inhibitor residence time Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-156643 ER - TY - THES A1 - Jung, Lisa Anna T1 - Targeting MYC Function as a Strategy for Tumor Therapy T1 - Hemmung der MYC-Funktion als Strategie für die zielgerichtete Tumortherapie N2 - A large fraction of human tumors exhibits aberrant expression of the oncoprotein MYC. As a transcription factor regulating various cellular processes, MYC is also crucially involved in normal development. Direct targeting of MYC has been a major challenge for molecular cancer drug discovery. The proof of principle that its inhibition is nevertheless feasible came from in vivo studies using a dominant-negative allele of MYC termed OmoMYC. Systemic expression of OmoMYC triggered long-term tumor regression with mild and fully reversible side effects on normal tissues. In this study, OmoMYC’s mode of action was investigated combining methods of structural biology and functional genomics to elucidate how it is able to preferentially affect oncogenic functions of MYC. The crystal structure of the OmoMYC homodimer, both in the free and the E-box-bound state, was determined, which revealed that OmoMYC forms a stable homodimer, and as such, recognizes DNA via the same base-specific DNA contacts as the MYC/MAX heterodimer. OmoMYC binds DNA with an equally high affinity as MYC/MAX complexes. RNA-sequencing showed that OmoMYC blunts both MYC-dependent transcriptional activation and repression. Genome-wide DNA-binding studies using chromatin immunoprecipitation followed by high-throughput sequencing revealed that OmoMYC competes with MYC/MAX complexes on chromatin, thereby reducing their occupancy at consensus DNA binding sites. The most prominent decrease in MYC binding was seen at low-affinity promoters, which were invaded by MYC at oncogenic levels. Strikingly, gene set enrichment analyses using OmoMYC-regulated genes enabled the identification of tumor subgroups with high MYC levels in multiple tumor entities. Together with a targeted shRNA screen, this identified novel targets for the eradication of MYC-driven tumors, such as ATAD3A, BOP1, and ADRM1. In summary, the findings suggest that OmoMYC specifically inhibits tumor cell growth by attenuating the expression of rate-limiting proteins in cellular processes that respond to elevated levels of MYC protein using a DNA-competitive mechanism. This opens up novel strategies to target oncogenic MYC functions for tumor therapy. N2 - Eine Vielzahl humaner Tumore entsteht durch die aberrante Expression des Onkoproteins MYC. Da MYC als Transkriptionsfaktor viele zelluläre Prozesse reguliert, ist er auch maßgeblich an der Entwicklung von normalem Gewebe beteiligt. Die direkte Hemmung von MYC stellt eine große Herausforderung für die Wirkstoffentwicklung dar. Studien mit dem dominant-negativen MYC-Allel namens OmoMYC belegten, dass MYC ein potenzieller Angriffspunkt für die zielgerichtete Tumortherapie ist. Die systemische Expression dieser MYC-Mutante löste eine dauerhafte Tumorregression aus und zeigte milde sowie vollständig reversible Nebenwirkungen. In der vorliegenden Arbeit wurde der molekulare Wirkmechanismus von OmoMYC untersucht, wobei sowohl Methoden der Strukturbiologie als auch der funktionalen Genomik angewendet wurden. Die Kristallstruktur des OmoMYC Proteins wurde im freien und E-Box-gebundenen Zustand bestimmt. Dadurch konnte gezeigt werden, dass OmoMYC ein stabiles Homodimer bildet. Als solches erkennt es DNA mittels derselben basenspezifischen Interaktionen wie der MYC/MAX-Komplex. Dabei bindet OmoMYC DNA mit einer ähnlichen Affinität wie das MYC/MAX-Heterodimer. Die genomweite Expressionsanalyse mittels RNA-Sequenzierung identifiziert eine Reduktion sowohl der MYC-abhängigen Transkriptionsaktiverung als auch der Transkriptionsrepression durch OmoMYC. Mittels Chromatin-Immunpräzipitation gefolgt von einer Hochdurchsatz-Sequenzierung wird gezeigt, dass OmoMYC mit MYC/MAXKomplexen auf Chromatin konkurriert und so deren Besetzung global an Konsensus-Bindestellen verringert. Die stärkste Reduktion zeigt sich an Promoterregionen mit schwacher Affinität für die MYC-Bindung, welche durch onkogene MYC-Proteinmengen aufgefüllt werden. Gene set enrichment-Analysen unter Berücksichtigung von OmoMYC-regulierten Genen erlaubten die Identifizierung von Tumor-Subgruppen mit hohen MYC-Proteinmengen in zahlreichen Tumorentitäten. Zusammen mit einem fokussierten shRNA-Screen können so neue Zielproteine für die Bekämpfung von MYC-getriebenen Tumoren, wie zum Beispiel ATAD3A, BOP1 und ADRM1, identifiziert werden. Zusammenfassend weisen die Ergebnisse darauf hin, dass OmoMYC spezifisch das Tumorzellwachstum inhibiert, indem es die Expression von zentralen Proteinen limitiert, welche durch erhöhte MYC-Proteinmengen reguliert werden. Somit können neue Strategien zur Tumortherapie identifiziert werden, die auf onkogene Funktionen von MYC zielen. KW - Myc KW - Kristallstruktur KW - Transkription KW - Bauchspeicheldrüsenkrebs KW - DNS-Bindung KW - OmoMYC KW - promoter invasion Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146993 ER - TY - THES A1 - Wencker, Freya Dorothea Ruth T1 - The methionine biosynthesis operon in \(Staphylococcus\) \(aureus\): Role of concerted RNA decay in transcript stability and T-box riboswitch turnover T1 - Das Methioninbiosynthese-Operon in \(Staphylococcus\) \(aureus\): Der Einfluss von koordiniertem RNA Abbau auf Transkriptstabilität und T-Box-Riboswitch-Prozessierung N2 - Methionine is the first amino acid of every newly synthesised protein. In combination with its role as precursor for the vital methyl-group donor S-adenosylmethionine, methionine is essential for every living cell. The opportunistic human pathogen Staphylococcus aureus is capable of synthesising methionine de novo, when it becomes scarce in the environment. All genes required for the de novo biosynthesis are encoded by the metICFE-mdh operon, except for metX. Expression is controlled by a hierarchical network with a methionyl-tRNA-specific T-box riboswitch (MET-TBRS) as centrepiece, that is also referred to as met leader (RNA). T-box riboswitches (TBRS) are regulatory RNA elements located in the 5’-untranslated region (5’-UTR) of genes. The effector molecule of T-box riboswitches is uncharged cognate tRNA. The prevailing mechanism of action is premature termination of transcription of the nascent RNA in the absence of the effector (i.e. uncharged cognate tRNA) due to formation of a hairpin structure, the Terminator stem. In presence of the effector, a transient stabilisation of the alternative structure, the Antiterminator, enables transcription of the downstream genes (‘read-through’). Albeit, after the read-through the thermodynamically more stable Terminator eventually forms. The Terminator and the Antiterminator are two mutually exclusive structures. Previous work of the research group showed that in staphylococci the MET-TBRS ensures strictly methionine-dependent control of met operon expression. Uncharged methionyl-tRNA that activates the system is only present in sufficient amounts under methionine-deprived conditions. In contrast to other bacterial TBRS, the staphylococcal MET-TBRS has some characteristic features regarding its length and predicted secondary structure whose relevance for the function are yet unkown. Aim of the present thesis was to experimentally determine the structure of the met leader RNA and to investigate the stability of the met operon-specific transcripts in the context of methionine biosynthesis control. Furthermore, the yet unknown function of the mdh gene within the met operon was to be determined. In the context of this thesis, the secondary structure of the met leader was determined employing in-line probing. The structural analysis revealed the presence of almost all highly conserved T-box riboswitch structural characteristics. Furthermore, three additional stems, absent in all T-box riboswitches analysed to date, could be identified. Particularly remarkable is the above average length of the Terminator stem which renders it a potential target of the double-strand-specific endoribonuclease III (RNase III). The RNase III-dependent cleavage of the met leader could be experimentally verified by the use of suitable mutants. Moreover, the exact cleavage site within the Terminator was determined. The unusual immediate separation of the met leader from the met operon mRNA via the RNase III cleavage within the Terminator stem induces the rapid degradation of the met leader RNA and, most likely, that of the 5’-region of the met mRNA. The met mRNA is degraded from its 5’-end by the exoribonuclease RNase J. The stability of the met mRNA was found to vary over the length of the transcript with an instable 5’-end (metI and metC) and a longer half-life towards the 3’-end (metE and mdh). The varying transcript stability is reflected by differences in the available cellular protein levels. The obtained data suggest that programmed mRNA degradation is another level of regulation in the complex network of staphylococcal de novo methionine biosynthesis control. In addition, the MET-TBRS was studied with regard to a future use as a drug target for novel antimicrobial agents. To this end, effects of a dysregulated methionine biosynthesis on bacterial growth and survival were investigated in met leader mutants that either caused permanent transcription of the met operon (‘ON’) or prevented operon transcription (‘OFF’), irrespective of the methionine status in the cell. Methionine deprivation turned out to be a strong selection pressure, as ‘OFF’ mutants acquired adaptive mutations within the met leader to restore met operon expression that subsequently re-enabled growth. The second part of the thesis was dedicated to the characterisation of the Mdh protein that is encoded by the last gene of the met operon and whose function is unknown yet. At first, co-transcription and -expression with the met operon could be demonstrated. Next, the Mdh protein was overexpressed and purified and the crystal structure of Mdh was solved to high resolution by the Kisker research group (Rudolf-Virchow-Zentrum Würzburg). Analysis of the structure revealed the amino acid residues crucial for catalytic activity, and zinc was identified as a co-factor of Mdh. Also, Mdh was shown to exist as a dimer. However, identification of the Mdh substrate was, in the context of this thesis, (still) unsuccessful. Nevertheless, interactions of Mdh with enzymes of the met operon could be demonstrated by employing the bacterial two-hybrid system. This fact and the high conservation of mdh/Mdh on nucleotide and amino acid level among numerous staphylococcal species suggests an important role of Mdh within the methionine metabolism that should be a worthwhile subject of future research. N2 - Methionin ist die erste Aminosäure in jedem neu gebildeten Protein. Zusammen mit seiner Funktion als Vorläufermolekül für die Synthese des essenziellen Methylgruppendonors S-Adenosylmethionin ist Methionin damit für jede lebende Zelle unverzichtbar. Staphylococcus aureus, ein opportunistisches Humanpathogen, ist in der Lage, Methionin de novo zu synthetisieren, wenn es nicht in ausreichender Menge in der Umgebung vorhanden ist. Mit Ausnahme von MetX sind alle für die Methioninsynthese benötigten Enzyme im metICFE-mdh-Operon kodiert. Die Expression des Operons wird durch ein komplexes hierarchisches Netzwerk reguliert, dessen zentrales Steuerelement ein Methionyl-tRNA-spezifischer T-Box-Riboswitch (MET-TBRS) ist, der auch als met-leader (RNA) bezeichnet wird. T-Box Riboswitches (TBRS) sind regulatorische RNA-Elemente, die in der untranslatierten Region am 5'-Ende (5'-UTR) ihrer zu kontrollierenden Gene liegen. Sie nutzen unbeladene tRNAs als Effektormoleküle. Die Funktionsweise der meisten TBRS beruht auf dem vorzeitigen Abbruch der Transkription der naszierenden mRNA, der durch die Ausbildung einer Haarnadelstruktur (Terminator) im Transkript herbeigeführt wird, wenn das Effektormolekül (i.e. unbeladene tRNA) fehlt. Sobald passende unbeladene tRNA verfügbar ist und bindet, wird eine alternative Struktur, der Antiterminator, kurzzeitig stabilisiert, der die Transkription und damit ein "Durchlesen" in die stromabwärtsliegenden Gene ermöglicht. Terminator und Antiterminator sind zwei sich gegenseitig ausschließende Strukturen, wobei der Terminator die thermodynamisch deutlich stabilere Struktur des TBRS ist, die sich dementsprechend auch in den vollständigen Transkripten erneut ausbildet. Bisherige Vorarbeiten der Arbeitsgruppe zeigten, dass in Staphylokokken der MET-TBRS die Kontrolle der Methioninsynthese in strikter Abhängigkeit von Methionin gewährleistet. Unbeladene Methionyl-tRNA, die nur unter Methioninmangelbedingungen in ausreichenden Konzentrationen vorliegt, aktiviert das System. Im Unterschied zu anderen bakteriellen TBRS weist der Staphylokokken-MET-TBRS (met-leader) hinsichtlich seiner Länge und vorhergesagten Struktur einige Besonderheiten auf, deren Bedeutung für die Funktion bislang unklar sind. Ziel der vorliegenden Arbeit war es daher, die Struktur der met-leader-RNA experimentell zu bestimmen und die Stabilität met-Operon-spezifischer Transkripte im Kontext der Methioninbiosynthesekontrolle zu untersuchen. Ebenso sollte die bisher unbekannte Funktion des mdh-Genes im Operon aufgeklärt werden. Im Rahmen dieser Doktorarbeit wurde die Sekundärstruktur der met-leader-RNA mit Hilfe des so genannten In-line Probings bestimmt. Die Sekundärstruktur weist neben fast allen hochkonservierten Strukturmerkmalen eines T-Box-Riboswitches auch drei zusätzliche Haarnadelstrukturen auf, die bisher in keinem anderen T-Box-Riboswitch gefunden wurden. Besonders auffällig ist die überdurchschnittliche Länge des met-leader-Terminators, der dadurch zur potentiellen Zielstruktur für die Doppelstrang-spezifische Endoribonuklease RNase III wird. Mittels geeigneter Mutanten konnte die RNase III-abhängige Prozessierung der met-leader-RNA experimentell bewiesen werden. Ebenso wurde die exakte Schnittstelle im Terminator bestimmt. Die ungewöhnliche Prozessierung des Terminators durch die RNase III spaltet die met-leader-RNA von der met-mRNA ab, was den raschen weiteren Abbau der met-leader-RNA und sehr wahrscheinlich auch den der met-mRNA einleitet. So wird die met-mRNA durch die Exoribonuklease RNase J vom 5'-Ende her abgebaut, wobei die Stabilität bezogen auf die Gesamtheit des Moleküls stark variiert: Das 5'-Ende mit den Genen metI und metC wird äußerst schnell degradiert, während das 3'-Ende mit metE und mdh deutlich stabiler ist. Die variierende mRNA-Stabilität spiegelt sich auch in Unterschieden hinsichtlich der verfügbaren zellulären Proteinmengen wider. Die Daten legen daher nahe, dass programmierte mRNA-Degradation eine weitere Ebene im komplexen Kontrollnetzwerk darstellt, durch die in Staphylokokken die Methioninbiosynthese sehr exakt den jeweiligen Bedürfnissen angepasst wird. Des Weiteren wurde der MET-TBRS im Hinblick auf eine zukünftige Nutzung als Angriffspunkt für neue antibakterielle Wirkstoffe untersucht. Dazu wurden die Auswirkungen einer dysregulierten Methioninbiosynthese auf das bakterielle Wachstum und Überleben mit Hilfe von met-leader-Mutanten analysiert, die entweder zu einer permanenten Aktivierung („ON“) oder Deaktivierung („OFF“) der met-Operon-Transkription, unabhängig vom Methioninstatus in der Zelle, führten. Es zeigte sich, dass Methioninmangel einen starken Selektionsdruck darstellt, da die „OFF“-Mutanten in der Lage waren, durch den Erwerb von adaptiven Mutationen innerhalb der met-leader-Sequenz, das met-Operon erneut zu aktivieren und wieder zu wachsen. Der zweite Teil dieser Arbeit widmete sich der Charakterisierung des Mdh-Proteins, das im letzten Gen des met-Operons kodiert ist und dessen Funktion derzeit gänzlich unbekannt ist. Zunächst konnte die Kotranskription und -expression von mdh mit dem met-Operon gezeigt werden. In Zusammenarbeit mit der Arbeitsgruppe Kisker (Rudolf-Virchow-Zentrum Würzburg) wurden anhand von Kristallstrukturanalysen die Aminosäuren identifiziert, die entscheidend für die katalytische Aktivität des Mdh-Enzyms sind, wobei Zink als ein Kofaktor fungiert. Ebenso zeigte sich, dass Mdh als Dimer vorliegt. Allerdings ist die Identifizierung des Mdh-Substrates im Rahmen dieser Arbeit (noch) nicht gelungen. Mittels eines bakteriellen Zwei-Hybridsystems wurde jedoch nachgewiesen, dass Mdh mit den anderen Enzymen des met-Operons interagiert. Dies und die hohe Konservierung von mdh/Mdh auf Nukleotid- und Aminosäureebene in verschiedenen Staphylokokkenarten legt eine wichtige Funktion von Mdh im Methioninstoffwechsel nahe, die lohnenswerter Gegendstand weiterer Untersuchungen sein sollte. KW - Staphylococcus aureus KW - RNA Abbau KW - Methioninbiosynthese KW - MET-T-box riboswitch KW - riboswitch KW - methionine biosynthesis KW - RNA decay Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207124 ER - TY - THES A1 - Klemm, Theresa Antonia T1 - Minor differences cause major effects: How differential oligomerization regulates the activities of USP25 and USP28 T1 - Kleine Unterschiede mit großer Auswirkung: Wie differenzielle Oligomerisierung die Aktivitäten von USP25 und USP28 reguliert N2 - Deubiquitinases are regulators of the ubiquitin proteasome system that counteract the ubiquitination cascade by removing ubiquitin from substrates and cleaving ubiquitin chains. Due to their involvment in various important pathways, they are associated with several diseases and may thus present promising drug targets. The two related ubiquitin specific proteases USP25 and USP28 share a highly conserved amino acid sequence but perform distinct biological functions. USP28 plays roles in cell cycle regulation and was also linked to several types of cancer. It adopts oncogenic functions by rescuing the oncoproteins MYC and JUN from proteasomal degradation, which is induced by the E3-ligase SCF (FBW7). Opposingly, USP28 also regulates the stability of the tumor suppressor FBW7 itself. USP25 contributes to a balanced innate immune system by stabilizing TRAF3 and TRAF6 and lately was found to promote Wnt-signaling by deubiquitinating TNKS. Due to the high level of identity of both proteases, a recent attempt to inhibit USP28 led to cross reactivity against USP25. In our study, we characterized both USP25 and USP28 structurally and functionally using x-ray crystallography, biochemical as well as biophysical approaches to determine similarities and differences that can be exploited for the development of specific inhibitors. The crystal structure of the USP28 catalytic domain revealed a cherry-couple like dimer that mediates self-association by an inserted helical subdomain, the USP25/28 catalytic domain inserted domain (UCID). In USP25, the UCID leads to formation of a tetramer composed of two interlinked USP28-like dimers. Structural and functional analysis revealed that the dimeric USP28 is active, whereas the tetrameric USP25 is auto inhibited. Disruption of the tetramer by a cancer-associated mutation or a deletion-variant activates USP25 through dimer formation in in vitro assays and leads to an increased stability of TNKS in cell studies. Furthermore, in vitro data showed that neither ubiquitin nor substrate binding led to the activation of the USP25 tetramer construct. With the structure of the C-terminal domain of USP25, we determined the last unknown region in the enzyme as a separately folded domain that mediates substrate interactions. Combined the structures of the USP25 and USP28 catalytic domains and the functional characterization of both enzymes provide novel insights into the regulation of USPs by oligomerization. Furthermore, we identified individual features of each protease that might be explored for the development of specific small molecule inhibitors. N2 - Deubiquitinasen sind Regulatoren des Ubiquitin-Proteasom-Systems, welche der Ubiquitin-Kaskade entgegenwirken, in dem sie Ubiquitin von Substraten entfernen oder Ubiquitinketten schneiden. Durch ihr umfangreiches Vorkommen in wichtigen Signalwegen, werden sie häufig mit Krankheiten assoziiert und gelten daher als vielversprechender Ansatzpunkt für die Entwicklung von Arzneimitteln. Die zwei verwandten Ubiquitin-spezifischen Proteasen USP25 und USP28 zeichnen sich durch eine sehr hohe Konservierung der Aminosäuresequenz aus, unterscheiden sich jedoch in ihren biologischen Funktionen. USP28 ist in die Regulierung des Zellzyklus involviert und wurde auch mit mehreren Krebsarten in Verbindung gebracht. Es zeigt onkogene Merkmale, indem es die Onkoproteine MYC und JUN vor dem proteasomalen Abbau schützt, welcher durch die E3-Ligase SCF (FBW7) induziert wird. Im Widerspruch dazu reguliert USP28 jedoch auch die Stabilität des Tumorsuppressors FBW7 selbst. USP25 hingegen stabilisiert TRAF3 und TRAF6 und trägt damit zum Gleichgewicht des angeborenen Immunsystems bei. Außerdem wurde USP25 erst kürzlich eine Funktion nachgewiesen, die den Wnt-Signalweg fördert, indem es TNKS deubiquitiniert. Die hohe Sequenzidentität beider Proteasen führte bisher dazu, dass alle Inhibitoren, die entwickelt wurden, um USP28 spezifisch zu hemmen, auch eine Kreuzreaktion mit USP25 aufweisen. In unseren Studien, haben wir Röntgenkristallographie, sowie biochemische und biophysikalische Methoden angewandt, um strukturelle und funktionelle Ähnlichkeiten und Unterschiede zwischen USP25 und USP28 zu identifizieren, die bei der Entwicklung von spezifischen Inhibitoren genutzt werden können. Die Kristallstruktur der katalytischen Domäne von USP28 zeigt ein Kirsch-ähnliches Dimer, welches, vermittelt durch die Insertion einer helikalen Unterdomäne, der USP25/USP28 catalytic domain inserted domain (UCID), mit sich selbst assoziiert. In USP25, führt die UCID zu der Bildung eines Tetramers, welches aus zwei USP28-ähnlichen Dimeren besteht. Strukturelle und funktionelle Untersuchungen zeigten, dass ein USP28 Dimer aktiv ist, wohingegen ein tetrameres USP25 auto-inhibiert vorliegt. In in vitro Experimenten führte die Zerschlagung des USP25 Tetramers, durch eine Krebs-assoziierte Mutation oder eine Deletionsvariante, zu einem Dimer und damit zu einer Aktivierung von USP25. In Zell-studien, induzierten die USP25 Dimere eine erhöhte Stabilität des Substrates TNKS. Außerdem zeigten die in vitro Daten, dass weder Ubiquitin noch die Substratbindung unsere USP25 Konstrukte aktivieren können. Durch die strukturelle Charakterisierung der C-terminalen Domäne von USP25, konnten wir den letzten bisher unbekannten Bereich des Enzyms als eine separat gefaltete Domäne beschreiben, welche Substratinteraktionen vermittelt. Sowohl durch die Strukturen, der katalytischen Domänen von USP25 und USP28, als auch durch die funktionelle Charakterisierung beider Enzyme konnten neue Erkenntnisse zu der Regulation von USPs durch Oligomerisierung gewonnen werden. Außerdem konnten wir individuelle Merkmale in beiden Proteasen identifizieren, die genutzt werden können, um die Entwicklung von spezifischen kleinmolekularen Inhibitoren voran zu bringen. KW - Oligomerisation KW - Enzym KW - deubiquitinase KW - USP KW - oligomerization Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-191080 ER - TY - THES A1 - Schönwetter, Elisabeth Sofie T1 - Towards an understanding of the intricate interaction network of TFIIH T1 - Auf dem Weg zum Verständnis des komplexen TFIIH Interaktionsnetzwerkes N2 - The integrity of its DNA is fundamental for every living cell. However, DNA is constantly threatened by exogenous and endogenous damaging agents that can cause a variety of different DNA lesions. The severe consequences of an accumulation of DNA lesions are reflected in cancerogenesis and aging. Several DNA repair mechanisms ensure the repair of DNA lesions and thus maintain DNA integrity. One of these DNA repair mechanisms is nucleotide excision repair (NER), which is famous for its ability to address a large variety of structurally unrelated DNA lesions. A key component of eukaryotic NER is the transcription factor II H (TFIIH) complex, which is not only essential for DNA repair but also for transcription. The TFIIH complex is composed of ten subunits. How these subunits work together during NER to unwind the DNA around the lesion is, however, not yet fully understood. High-resolution structural data and biochemical insights into the function of every subunit are thus indispensable to understand the functional networks within TFIIH. The importance of an intact TFIIH complex is reflected in the severe consequences of patient mutations in the TFIIH subunits XPB, XPD or p8 leading to the hallmark diseases xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Defects in the NER pathway are further associated with several types of cancer including skin cancer. The herein described work focused on five TFIIH subunits derived from the thermophilic fungus Chaetomium thermophilum, the p34/p44 pair and the ternary XPB/p52/p8 complex. The interaction between p34 and p44 was characterized based on a high-resolution structure of the p34_vWA/p44_RING minimal complex. Biochemical studies of the p34/p44 interaction led to the disclosure of an additional interaction between the p34 and p44 subunits, which had not been characterized so far. The p34/p44 interaction was shown to be central to TFIIH, which justifies the presence of several redundant interfaces to safeguard the interaction between the two proteins and might explain why so far, no patient mutations in these subunits have been identified. The p52 subunit of TFIIH was known to be crucial to stimulate the ATPase activity of XPB, which is required during NER. This work presents the first entire atomic resolution structural characterization of p52, which was derived of several crystal structures of p52 variants and a p52/p8 variant thereby demonstrating the interaction between p52 and p8. The precise structural model of p52 offered the possibility to investigate interactions with other TFIIH subunits in more detail. The middle domain 2 of p52 and the N-terminal domain of XPB were shown to mediate the main interaction between the two subunits. An analysis of the p52 crystal structures within recently published cryo-electron microscopy structures of TFIIH provides a model of how p52 and p8 stimulate the ATPase activity of XPB, which is essential for NER and transcription. The structural and biochemical findings of this work provide an additional building block towards the uncovering of the architecture and function of this essential transcription factor. N2 - Die Unversehrtheit ihrer DNA ist für jede lebende Zelle elementar. Die DNA ist jedoch fortwährend exogenen und endogenen Toxinen ausgeliefert, die eine Vielfalt unterschiedlicher DNA-Schäden verursachen. Die sehr ernsthaften Konsequenzen einer Anhäufung von DNA-Schäden spiegeln sich in der Entstehung von Tumorerkrankungen und Alterung wider. Verschiedene DNA-Reparaturmechanismen sorgen für die Reparatur von DNA-Schäden und erhalten so die Unversehrtheit der DNA. Einer dieser DNA-Reparaturmechanismen ist die Nukleotid-Exzisions-Reparatur (NER), die bekannt dafür ist, eine Vielfalt an strukturell unterschiedlichen DNA-Schäden zu adressieren. Eine Schlüsselkomponente der eukaryotischen NER ist der Transkriptionsfaktor II H (TFIIH), welcher nicht nur für die DNA-Reparatur, sondern auch für die Transkription essentiell ist. Der TFIIH Komplex besteht aus zehn Untereinheiten. Wie diese Untereinheiten zusammenarbeiten, um die DNA um den Schaden herum zu entwinden, ist jedoch noch nicht hinreichend bekannt. Hochaufgelöste Strukturdaten und biochemische Einblicke in die Funktion jeder Untereinheit sind daher unabkömmlich, um das funktionelle Netzwerk innerhalb dieses Transkriptionsfaktors zu verstehen. Die Bedeutung eines intakten TFIIH Komplexes spiegelt sich in den verheerenden Folgen von Patientenmutationen in den TFIIH Untereinheiten XPB, XPD oder p8 wider, die zu den kennzeichnenden Krankheitsbildern von Xeroderma Pigmentosum, Cockayne Syndrom und Trichothiodystrophie führen. Ein fehlerhafter NER Reparaturweg ist ferner mit einigen Krebsarten wie Hautkrebs assoziiert. Die hier beschriebene Arbeit hat sich auf fünf TFIIH Untereinheiten konzentriert, die aus dem thermophilen Pilz Chaetomium thermophilum stammen, das p34/p44 Heterodimer und der ternäre XPB/p52/p8 Komplex. Die Interaktion zwischen p34 und p44 wurde basierend auf einer hochaufgelösten Kristallstruktur des p34_vWA/p44_RING Minimalkomplexes charakterisiert. Biochemische Studien der p34/p44 Interaktion haben zur Aufdeckung einer weiteren Interaktion zwischen p34 und p44 geführt, die bisher noch nicht charakterisiert wurde. Die p34/p44 Interaktion ist von zentraler Bedeutung für TFIIH, was die Gegenwart mehrerer redundanter Schnittstellen zwischen p34 und p44, um die p34/p44 Interaktion abzusichern, rechtfertigt und erklären könnte, warum bislang keine Patientenmutationen in diesen Untereinheiten identifiziert wurden. Die p52 Untereinheit von TFIIH ist bekannt dafür, die ATPase-Aktivität von XPB zu stimulieren, die während der NER benötigt wird. Diese Arbeit zeigt die erste vollständige atomare strukturelle Charakterisierung von p52, die aus verschiedenen Kristallstrukturen von p52 Varianten und einer p52/p8 Variante, welche die Interaktion zwischen p52 und p8 darstellt, stammt. Das Strukturmodel von p52 bietet die Möglichkeit Interaktionen mit anderen TFIIH Untereinheiten zu analysieren. Es wurde gezeigt, dass die mittlere Domäne 2 von p52 und die N-terminale Domäne von XPB die hauptsächliche Interaktion zwischen den beiden Untereinheiten vermitteln. Eine Analyse der p52 Kristallstrukturen in neuesten publizierten cryo-Elektronenmikroskopie TFIIH-Strukturen ermöglichte die Erstellung eines Models, das zeigt, wie p52 und p8 die ATPase-Aktivität von XPB stimulieren, welche essentiell für die NER und die Transkription ist. Die strukturellen und biochemischen Erkenntnisse dieser Arbeit bieten einen wichtigen Beitrag zur Enthüllung der Architektur und Funktion von TFIIH, einem essentiellen zellulären Komplex. KW - DNS-Reparatur KW - Röntgenkristallographie KW - Strukturbiologie KW - DNA repair KW - TFIIH KW - Nucleotide excision repair KW - Nukleotid-Exzisions-Reparatur Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-168926 ER - TY - THES A1 - Bathon, Kerstin T1 - Mutations in protein kinase A catalytic subunit as a cause of adrenal Cushing's syndrome: mechanisms and functional consequences T1 - Mutationen in der katalytischen Untereinheit von Proteinkinase A als Ursache des adrenalen Cushing Syndroms: Mechanismen und funktionelle Konsequenzen N2 - Protein kinase A (PKA) is the main effector of cyclic-adenosine monophosphate (cAMP) and plays an important role in steroidogenesis and proliferation of adrenal cells. In a previous study we found two mutations (L206R, 199_200insW) in the main catalytic subunit of protein kinase A (PKA C) to be responsible for cortisol-producing adrenocortical adenomas (CPAs). These mutations interfere with the formation of a stable holoenzyme, thus causing constitutive PKA activation. More recently, we identified additional mutations affecting PKA C in CPAs associated with overt Cushing syndrome: S213R+insIILR, 200_201insV, W197R, d244 248+E249Q, E32V. This study reports a functional characterization of those PKA Cmutations linked to CPAs of Cushing’s patients. All analyzed mutations except for E32V showed a reduced interaction with at least one tested regulatory (R) subunit. Interestingly the results of the activity differed among the mutants and between the assays employed. For three mutants (L206R, 199_200insW, S213R+insIILR), the results showed enhanced translocation to the nucleus. This was also observed in CRISPR/Cas9 generated PRKACA L206R mutated HEK293T cells. The enhanced nuclear translocation of this mutants could be due to the lack of R subunit binding, but also other mechanisms could be at play. Additionally, I used an algorithm, which predicted an effect of the mutation on substrate specificity for four mutants (L206R, 199_200insW, 200_201insV, d244 248+E249Q). This was proven using phosphoproteomics for three mutants (L206R, 200_201insV, d244 248+E249Q). In PRKACA L206R mutated CPAs this change in substrate specificity also caused hyperphosphorylation of H1.4 on serine 36, which has been reported to be implicated in mitosis. Due to these observations, I hypothesized, that there are several mechanisms of action of PRKACA mutations leading to increased cortisol secretion and cell proliferation in adrenal cells: interference with the formation of a stable holoenzyme, altered subcellular localization and a change in substrate specificity. My data indicate that some PKA C mutants might act via just one, others by a combination of these mechanisms. Altogether, these findings indicate that several mechanisms contribute to the development of CPAs caused by PRKACA mutations. Moreover, these findings provide a highly illustrative example of how alterations in a protein kinase can cause a human disease. N2 - Proteinkinase A (PKA) ist der Haupteffektor von cyclischem Adenosinmonophosphat (cAMP) und spielt eine wichtige Rolle bei der Synthese von Steroiden und der Proliferation von Nebennierenzellen. In einer vorangegangenen Studie fanden wir zwei Mutationen (L206R, 199_200insW) der wichtigsten katalytischen Untereinheit von PKA (PKA C), die für Kortisol sekretierende Nebennierenrindenadenome (CPAs) verantwortlich sind. Diese Mutationen stören die Bildung eines stabilen Holoenzyms und verursachen somit eine dauerhafte PKA Aktivierung. Vor Kurzem fanden wir weitere Mutationen der PKA C in CPAs von Patienten mit Cushing Syndrom: S213R+insIILR, 200_201insV, W197R, d244 248+E249Q, E32V. In dieser Arbeit wurde eine funktionelle Charakterisierung dieser PKA C Mutanten, die im Zusammenhang mit CPAs von Cushing Patienten stehen, durchgeführt. Alle PKA Mutanten, mit Ausnahme von E32V, zeigten eine reduzierte Interaktion mit mindestens einer getesteten regulatorischen (R) Untereinheit. Interessanterweise hatten die Mutanten unterschiedliche Effekte auf die Aktivität der Kinase. Zusätzlich hatte die Analysemethode ebenfalls Einfluss auf die Aktivität der Mutanten. Für drei Mutanten (L206R, 199_200insW, S213R+insIILR) zeigten die Ergebnisse eine verstärkte Translokation der C Untereinheit in den Zellkern. Dies wurde auch in HEK293T Zellen bestätigt, in deren PRKACA Gen mittels CRISPR/Cas9 die L206R Mutation eingeführt wurde. Diese erhöhte Translokation kann durch die fehlende Bindung zur R Untereinheit erklärt werden, aber auch andere Mechanismen könnten eine Rolle spielen. Außerdem zeigten die Ergebnisse eine Veränderung der Substratspezifität, die für vier Mutanten durch einen Algorithmus vorausberechnet wurde (L206R, 199_200insW, 200_201insV, d244-248+E249Q). Für drei dieser Mutanten (L206R, 200_201insV, d244 248+E249Q) wurde dieses Ergebnis mittels Phosphoproteomics nachgewiesen. Diese Änderung der Substratspezifität verursacht in PRKACA L206R mutierten CPAs auch eine Hyperphosphorylierung von H1.4 an Serin 36, welches eine wichtige Rolle in der Zellteilung spielt. Meine Ergebnisse weisen darauf hin, dass es mehrere Wirkungsmechanismen von PRKACA Mutationen gibt, die zu einer erhöhten Sekretion von Kortisol und Zellproliferation in Nebennierenzellen führen: Störung der Bildung eines stabilen Holoenzyms, Änderung der subzellulären Lokalisation und eine Veränderung der Substratspezifität. Meine Ergebnisse weisen darauf hin, dass einige PKA C-Mutanten durch nur einen, andere durch eine Kombination dieser Mechanismen wirken. Insgesamt zeigen diese Ergebnisse, dass PRKACA Mutationen durch mehrere Mechanismen zur Entwicklung von CPAs beitragen. Darüber hinaus liefern diese Ergebnisse ein anschauliches Beispiel dafür, wie Mutationen in einer Proteinkinase eine menschliche Krankheit verursachen können. KW - Proteinkinase A KW - Mutation KW - PRKACA KW - Cushing-Syndrom Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-168937 ER - TY - THES A1 - Schmitt, Dominik T1 - Structural Characterization of the TFIIH Subunits p34 and p44 from C. thermophilum T1 - Strukturelle Charakterisierung der TFIIH Untereinheiten p34 und p44 aus C. thermophilum N2 - Several important cellular processes, including transcription, nucleotide excision repair and cell cycle control are mediated by the multifaceted interplay of subunits within the general transcription factor II H (TFIIH). A better understanding of the molecular structure of TFIIH is the key to unravel the mechanism of action of this versatile protein complex within these pathways. This becomes especially important in the context of severe diseases like xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy, that arise from single point mutations in some of the TFIIH subunits. In an attempt to structurally characterize the TFIIH complex, we harnessed the qualities of the eukaryotic thermophile Chaetomium thermophilum, a remarkable fungus, which has only recently been recognized as a novel model organism. Homologues of TFIIH from C. thermophilum were expressed in E. coli, purified to homogeneity and subsequently utilized for crystallization trials and biochemical studies. The results of the present work include the first crystal structure of the p34 subunit of TFIIH, comprising the N-terminal domain of the protein. The structure revealed a von Willebrand Factor A (vWA) like fold, which is generally known to be involved in a multitude of protein-protein interactions. Structural comparison allowed to delineate similarities as well as differences to already known vWA domains, providing insight into the role of p34 within TFIIH. These results indicate that p34 assumes the role of a structural scaffold for other TFIIH subunits via its vWA domain, while likely serving additional functions, which are mediated through its C-terminal zinc binding domain and are so far unknown. Within TFIIH p34 interacts strongly with the p44 subunit, a positive regulator of the XPD helicase, which is required for regulation of RNA Polymerase II mediated transcription and essential for eukaryotic nucleotide excision repair. Based on the p34 vWA structure putative protein-protein interfaces were analyzed and binding sites for the p34 p44 interaction suggested. Continuous crystallization efforts then led to the first structure of a p34 p44 minimal complex, comprising the N-terminal vWA domain of p34 and the C-terminal C4C4 RING domain of p44. The structure of the p34 p44 minimal complex verified the previous hypothesis regarding the involved binding sites. In addition, careful analysis of the complex interface allowed to identify critical residues, which were subsequently mutated and analyzed with respect to their significance in mediating the p34 p44 interaction, by analytical size exclusion chromatography, electrophoretic mobility shift assays and isothermal titration calorimetry. The structure of the p34 p44 complex also revealed a binding mode of the p44 C4C4 RING domain, which differed from that of other known RING domains in several aspects, supporting the hypothesis that p44 contains a novel variation of this domain. N2 - Zelluläre Prozesse, wie beispielsweise die Transkription, die Nukleotid-Exzisionsreparatur und die Kontrolle des Zellzyklus sind abhängig vom vielschichtigen Zusammenspiel der zehn Protein-Untereinheiten des allgemeinen Transkriptionsfaktors II H (TFIIH). Zur Aufklärung der genauen Funktion dieses Komplexes ist ein besseres Verständnis seiner molekularen Struktur essentiell. Besondere Bedeutung erhält der TFIIH dabei im Hinblick auf verschiedene schwerwiegende Krankheiten, wie z.B. Xeroderma pigmentosum (XP), Cockayne-Syndrom (CS) und Trichothiodystrophie (TTD), die als Folge von einzelnen Punkt-Mutationen in bestimmten Untereinheiten des Komplexes entstehen. In der vorliegenden Arbeit wurden zur strukturellen Charakterisierung der TFIIH Untereinheiten p34 und p44 die homologen Proteine aus Chaetomium thermophilum verwendet. Hierbei handelt es sich um einen eukaryotischen und thermophilen Pilz, der erst kürzlich als neuer und vielversprechender Modellorganismus an Bedeutung gewann. Die TFIIH Homologe aus C. thermophilum wurden rekombinant exprimiert, gereinigt und anschließend für Kristallisations-Versuche eingesetzt. Darüber hinaus wurden die Proteine mittels verschiedener biochemischer Verfahren analysiert. Die erzielten Resultate beinhalten unter anderem die erste Kristall-Struktur der p34 Untereinheit des TFIIH und zeigen eine von Willebrand Faktor A (vWA) ähnliche Domäne im N-terminalen Bereich des Proteins. Vergleiche mit bereits bekannten vWA Proteinen liefern Gemeinsamkeiten sowie Unterschiede und erlauben erste Einblicke in die Funktion der p34 Untereinheit innerhalb des TFIIH Komplexes. Die gewonnenen Erkenntnisse legen nahe, dass p34 über seine vWA Domäne anderen TFIIH Untereinheiten als strukturelles Gerüst dient, während die C-terminale Zinkfinger-Domäne des Proteins sehr wahrscheinlich zusätzliche Aufgaben übernimmt, die bisher noch nicht genau bekannt sind. Innerhalb des TFIIH Komplexes ist p34 eng mit der p44 Untereinheit assoziiert. Letztere ist als positiver Regulator der XPD Helikase bekannt, die im Rahmen der RNA Polymerase II vermittelten Transkription und der eukaryotischen Nukleotid-Exzisionsreparatur eine entscheidende Rolle spielt. Basierend auf der erzielten p34ct vWA Struktur wurden verschiedene Interaktions-Flächen zwischen p34 und p44 analysiert und mögliche Bindestellen für die beiden Proteine ermittelt. Weitere Kristallisations-Experimente ermöglichten schließlich die Aufklärung der Struktur eines p34 p44 Minimal-Komplexes, bestehend aus der N-terminalen vWA Domäne von p34 und der C-terminalen C4C4 RING Domäne von p44. Die gewonnenen Struktur-Daten bestätigten die zuvor ermittelte Bindestelle der beiden Proteine. Eine genauere Untersuchung der Kontakt-Fläche zwischen p34 und p44 lieferte darüber hinaus entscheidende Hinweise auf besonders wichtige Interaktions-Bereiche und Aminosäuren, die im Folgenden mutiert wurden, um deren Bedeutung für die Komplexbildung zu ermitteln. Mit Hilfe der analytischen Größenausschluss-Chromatographie, elektro-phoretischer Mobilitäts-Verlagerungs-Assays und isothermaler Titrations-Kalorimetrie konnten hierbei verschiedene Aminosäuren identifiziert werden, die für eine stabile p34 p44 Interaktion erforderlich sind. Ferner zeigte die Struktur des p34 p44 Minimal-Komplexes eine Bindungsweise der p44 C4C4 RING Domäne, die sich von der anderer, bereits bekannter RING Domänen in verschiedenen Punkten unterschied. Diese Erkenntnis bestätigt die zuvor aufgestellte Hypothese, dass es sich im Falle von p44 um eine neue Variante der bereits gut charakterisierten RING Domäne handelt. KW - DNA-Reparatur KW - Transkription KW - Transkriptionsfaktor KW - TFIIH KW - General Transcription Factor II H KW - p34 KW - p44 KW - Tfb4 KW - Ssl1 KW - Chaetomium thermophilum Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-104851 ER - TY - THES A1 - Büchner, Claudia Nadine T1 - Single molecule studies of DNA lesion search and recognition strategies T1 - Einzel-Molekül-Studien von Strategien zur DNS-Schadenssuche und -erkennung N2 - The integrity of our genome is continuously endangered by DNA damaging factors. Several cellular mechanisms have evolved to recognize and remove different types of DNA lesions. Despite the wealth of information on the three-dimensional structure and the catalytic mechanism of DNA repair enzymes, the essential process of target site search and identification remains more elusive. How can a small number of repair proteins find and detect the rare sites of damage rapidly and efficiently over an excess of millions of undamaged bases? To address this pivotal question in DNA repair, I focused on the central players from the two DNA damage excision repair pathways in my studies: nucleotide excision repair (NER) and base excision repair (BER). As examples for completely different approaches of damage search, recognition and verification, I compared the NER protein Xeroderma pigmentosum group D (XPD) with the BER proteins human thymine DNA glycosylase (hTDG) and human 8-oxoguanine glycosylase (hOgg1). In particular, the single molecule approach of atomic force microscopy (AFM) imaging and complementary biochemical and biophysical techniques were applied. I established a simple, optimized preparation approach, which yields homogeneous and pure samples of long (several hundreds to thousands of base pairs) DNA substrates suitable for the AFM studies with DNA repair proteins. Via this sample preparation, a single target site of interest can be introduced into DNA at a known position, which allows separate analysis of specific protein-DNA complexes bound to the lesion site and nonspecific complexes bound to non-damaged DNA. The first part of the thesis investigates the XPD protein involved in eukaryotic NER. In general, the NER mechanism removes helix-distorting lesions – carcinogenic UV light induced photoproducts, such as cyclobutane pyrimidine dimers (CPDs) as well as bulky DNA adducts. The 5’-3’ helicase XPD has been proposed to be one of the key players in DNA damage verification in eukaryotic NER, which is still a matter of hot debate. In the studies, I focused on XPD from the archaeal species Thermoplasma acidophilum (taXPD), which shares a relatively high sequence homology with the sequence of the human protein and may serve as a good model for its eukaryotic counterpart. Based on AFM experiments and accompanying DNA binding affinity measurements with the biosensor technology Biolayer Interferometry (BLI), a clear role of XPD in damage verification was deciphered. Specifically, the data suggested that the ATP-dependent 5’-3’ helicase activity of XPD was blocked by the presence of damage leading to stalled XPD-DNA damage verification complexes at the lesion sites. Successful damage verification led to ATP-dependent conformational changes visible by a significant transition in DNA bend angles from ~ 50° to ~ 65° at the site of the bound protein. Remarkably, this DNA bend angle shift was observed both in the presence of ATP and ATPγs (non-hydrolyzable ATP analog) indicating that ATP-binding instead of ATP hydrolysis was sufficient to induce repair competent conformational changes of XPD. Most importantly, detailed protein binding position and DNA bend angle analyses revealed for the first time that XPD preferably recognizes a bulky fluorescein lesion on the translocated strand, whereas a CPD lesion is preferentially detected on the opposite, non-translocated strand. Despite the different recognition strategies for both types of damages, they share a common verification complex conformation, which may serve as a signal for the recruitment of further NER factors. In the second part of the thesis, AFM imaging and a 2-Aminopurine fluorescence-based base-flipping assay were combined to investigate damage search and recognition by DNA glycosylases in BER. Exemplarily, I chose to study hTDG as a representative of the vast glycosylase family. hTDG excises thymine and uracil from mutagenic G:T and G:U mispairs contributing to cancer and genetic disease. The AFM data suggested that hTDG uses the intrinsic flexibility of G:T and G:U wobble pairs for initial damage sensing, while scanning DNA as a search complex (SC, slightly bent DNA). Remarkably, hTDG has been indicated to continuously switch between the search and interrogation conformation (IC, stronger bent DNA) during damage search. In the IC, target bases are interrogated by extrahelical base flipping, which is facilitated by protein-induced DNA bending and enhanced DNA flexibility at mismatches. AFM and fluorescence analyses revealed that the flipped base is stabilized via hTDG’s arginine finger. Correct target bases are perfectly stabilized within the enzyme’s catalytic pocket resulting in prolonged residence time and enhanced excision probability. To test for the generalizability of the proposed hTDG damage search model to BER glycosylases, identical studies were performed with a second glycosylase, hOgg1. The data on hOgg1, which removes structurally more stable 8-oxoguanine lesions, supported the hypothesis developed for lesion recognition by hTDG as a common strategy employed by BER glycosylases N2 - Die Stabilität des menschlichen Genoms wird durch DNA-schädigende Faktoren ständig bedroht. Mehrere zelluläre Mechanismen haben sich entwickelt, um verschiedene Typen von DNS-Schädigungen zu erkennen und zu entfernen. Obwohl zahlreiche und vielfältige Informationen über die drei-dimensionalen Strukturen und katalytischen Mechanismen von DNS-Reparaturenzymen vorhanden sind, ist der essentielle Prozess der Suche und Identifikation von Läsionen kaum verstanden. Wie ist es möglich, dass eine kleine Anzahl an Reparaturenzymen die seltenen DNS-Schadensstellen unter Millionen von unbeschädigten Basen schnell und effizient finden kann? Diese zentrale Frage der DNS-Reparatur habe ich mit Hilfe von Schlüssel-Proteinen aus zwei verschiedenen DNS-Reparaturmechanismen untersucht, zum einen aus der Nukleotid- (NER) und zum anderen aus der Basenexzisionsreparatur (BER). Als Beispiel für zwei völlig unterschiedliche Ansätze zur Schadenssuche, -erkennung und -verifizierung, habe ich das NER Protein Xeroderma pigmentosum group D (XPD) mit den BER Proteinen humane Thymin DNA Glykosylase (hTDG) und der humanen 8-Oxoguanin Glykosylase (hOgg1) verglichen. Im Detail habe ich Einzelmoleküluntersuchungen mittels Rasterkraftmikroskopie (engl. ‚atomic force microscopy‘, AFM) und unterstützenden biochemischen und biophysikalischen Techniken angewandt. Ich habe eine einfache und optimierte Probenaufbereitungsmethode etabliert, welche es ermöglicht homogene, hochreine und lange (mehrere 100 Basenpaare) DNS-Substrate herzustellen, die für AFM Studien mit DNS-Reparaturenzymen geeignet sind. Mit Hilfe dieser Probenherstellungs-Technik kann eine einzelne, gewünschte Zielstelle an einer bestimmten Position in diese DNS-Substrate eingefügt werden. Die Verwendung dieser speziellen DNS-Substrate erlaubt eine separate Analyse von spezifischen Protein-DNS-Komplexen, die an bestimmte Läsionen gebunden sind, und unspezifischen Komplexen mit unbeschädigter DNS. Der erste Teil dieser Arbeit behandelt die Rolle von XPD in der eukaryotischen NER. Der NER Mechanismus entfernt DNS-Schäden, welche die Helix-Struktur der DNS verzerren. Das sind zum einen krebserregende UV-Schäden, wie zum Beispiel Cyclobutan-Pyrimidindimere (CPDs) sowie sperrige DNS-Addukte. Die 5‘-3‘ Helikase XPD wird als eines der Schlüsselenzyme bei der Schadens-Verifizierung gehandelt, was jedoch derzeit noch umstritten ist. In meinen Studien habe ich mich mit dem XPD-Protein aus dem archäischen Organismus Thermoplasma acidophilum (taXPD) beschäftigt. Dieses weist eine relativ große Sequenzhomologie mit dem humanen Protein auf und stellt daher ein gutes Modell für das eukaryotische XPD dar. Auf Grund von AFM Experimenten und DNS-Bindungsaffinitätsmessungen mittels Biolayer-Interferometrie (BLI), konnte XPD eine eindeutige Rolle in der DNS-Schadensverifizierung zugesprochen werden. Meine Ergebnisse zeigten, dass die ATP-abhängige Helikase-Aktivität von XPD durch die Anwesenheit eines DNA-Schadens gehemmt wird, was zur Schadensverifizierung und Bildung von XPD-DNA-Komplexen führt, die von der Schadensstelle ‚aufgehalten‘ wurden. Eine erfolgreiche Schadensverifizierung führt daraufhin zu ATP-abhängigen Konformationsänderungen, die sich in einer Änderung des DNA-Biegewinkels von ~ 50° zu ~ 65° an der Stelle des gebunden Proteins äußern. Es ist bemerkenswert, dass diese Änderung des DNS-Biegewinkels sowohl mit ATP und als auch mit ATPγs (nicht-hydrolysierbares ATP Analog) beobachtet wurde. Dies zeigt, dass bereits die Bindung und anstatt der Hydrolyse von ATP ausreicht, um reparaturkompetente Konformationsänderungen durch XPD zu veranlassen. Darüber hinaus haben meine detaillierten Proteinbindeposition- und DNS-Biegewinkelanalysen haben zum ersten Mal gezeigt, dass XPD sperrige Fluoreszein-Schäden vor allem auf dem translozierten DNS-Strang erkennt, während CPD-Schäden vor allem auf dem gegenüberliegendem nicht-translozierten Strang erkannt werden. Trotz dieser unterschiedlichen Erkennungsstrategien für die zwei Schadenstypen, nehmen die beiden Schäden die gleiche Konformation im Schadensverifizierungs-Komplex an, was als Signal für die Rekrutierung weiterer NER Faktoren dienen könnte. Im zweiten Teil meiner Arbeit kombinierte ich AFM-Experimente mit einem sogenannten ‚base flipping' Test, der auf der Fluoreszenz von 2-Aminopurine basiert, um die Schadenssuche und -erkennung durch DNS-Glykosylasen im BER-Mechanismus zu untersuchen. Als Beispiel für die weitläufige Familie der Glykosylasen wählte ich hTDG aus. hTDG schneidet Thymin und Uracil aus mutagenen G:T und G:U Fehlpaarungen heraus. Die AFM Daten zeigten, dass sich hTDG für die initiale Schadenserkennung die intrinsische Flexibilität in G:T und G:U Paaren zu Nutze macht, während die DNA als Suchkomplex geprüft wird (engl. ‚search complex‘, SC, leicht gebogene DNS-Struktur). Erstaunlicherweise scheint hTDG dabei kontinuierlich zwischen einem Such- und Prüfkomplex umzuschalten (engl. ‚interrogation complex‘, IC, stärkere Biegung der DNS). Im IC werden Basen durch „flippen“ außerhalb der DNS-Helix geprüft, was durch die Protein induzierte DNS-Biegung und die erhöhte Flexibilität von Fehlpaarungen in der DNS ermöglicht wird. Die Analyse von AFM- und Fluoreszenzexperimenten brachte zum Vorschein, dass die ‚geflippte‘ Base durch den Arginin-Finger von hTDG stabilisiert wird. Die korrekten Zielbasen passen exakt in die katalytische Tasche des Enzyms und werden dort perfekt stabilisiert, was zu einer längeren Aufenthaltsdauer führt, die wiederum die Wahrscheinlichkeit erhöht, dass die Base herausgeschnitten wird. Um zu testen, ob das für hTDG vorgeschlagene Schadenssuchmodel auch allgemein für andere BER Glykosylasen gilt, habe ich die gleichen Experimente mit einer weiteren Glykosylase (hOgg1) durchgeführt, ein Protein das strukturell stabilere 8-Oxoguanin-Schäden entfernt. Die Daten für hOgg1 untermauern die Hypothese, die für die Schadenssuche von hTDG erarbeitet wurde, als eine gemeinsame Strategie von BER Glykosylasen. KW - Rasterionenmikroskop KW - DNS-Schädigung KW - Single-molecule KW - Atomic-force-microscopy KW - DNA lesion KW - Einzel-Molekül KW - Rasterkraft-Mikroskopie KW - DNS-Schaden Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-111886 ER - TY - THES A1 - Selle, Martina T1 - Interaktionen zwischen sekretierten Proteinen von Staphylococcus aureus und der Immunantwort des Wirtes T1 - Interaction of secreted proteins of Staphylococcus aureus and host immune response N2 - Staphylococcus aureus ist ein grampositives Bakterium, welches häufig als kommensaler Besiedler auf der Nasen- und Rachenschleimhaut von Säugetieren vorkommt. Darüber hinaus besitzt dieser fakultativ pathogene Mikroorganismus die Fähigkeit schwer zu behandelnde Krankenhausinfektionen auszulösen. Aufgrund der weiten Verbreitung von Antibiotikaresistenzen und dem Mangel an effektiven Therapien, verursachen S. aureus Infektionen jährlich enorme Kosten für das Gesundheitssystem. S. aureus wird meist von der Nase zum primären Infektionsort übertragen, wodurch zunächst sehr häufig Wund- und Weichteilinfektionen hervor gerufen werden. Von diesem primären Infektionsort ausgehend, kann der Erreger tiefer liegende Gewebsschichten infizieren oder sich über den Blutstrom im gesamten Organismus ausbreiten. Das Spektrum an Krankheitsbildern reicht von leichten Abszessen der Haut bis zu schweren, lebensbedrohlichen Erkrankungen wie Pneumonien und akuter Sepsis. Für die erfolgreiche Kolonisierung und Infektion des Wirtes exprimiert S. aureus eine Vielzahl unterschiedlicher Virulenzfaktoren. Die wohl größte Gruppe an Virulenzfaktoren umfasst die Proteine, die an der Immunevasion und der Umgehung von verschiedenen Abwehrstrategien des Immunsystems beteiligt sind. Das bisherige Wissen über die Interaktion von S. aureus mit dem Immunsystem des Wirtes und die zugrunde liegenden Pathogenitätsmechanismen ist bisher limitiert. Um neue Erkenntnisse über die Interaktion von Wirt und Pathogen zu erlangen, wurden im Rahmen dieser Arbeit bislang unbekannte sekretierte und Oberflächen-assoziierte Proteine von S. aureus funktionell charakterisiert. Die Funktion der ausgewählten Proteine wurde in vitro hinsichtlich Einfluss auf Komponenten des Immunsystems, Adhäsion an Wirtsfaktoren und Invasion in eukaryotische Zellen untersucht. Mit Hilfe der vorangegangenen in-vitro-Charakterisierung der putativen Virulenzfaktoren, konnte für die cytoplasmatische Adenylosuccinat-Synthase PurA eine neuartige Funktion identifiziert werden. PurA ist bekannt als essentielles Enzym der de novo Purin-Synthese. In dieser Arbeit wurde nun gezeigt, dass PurA zudem an der Immunevasion beteiligt ist. Durch die Bindung des humanen Faktor H des Komplementsystems schützt PurA S. aureus vor der lytischen Aktivität des Komplementsystems und verhindert die Opsonisierung des Pathogens. Basierend auf diesen Ergebnissen wurde PurA detailliert charakterisiert. In Bindungsstudien mit rekombinantem Faktor H und PurA wurde eine direkte Interaktion beider Proteine nachgewiesen, wobei Faktor H mit dem N-terminalen Bereich von PurA interagiert. Weiterhin konnte PurA durch Immunfluoreszenz und FACS-Analysen auf der Zelloberfläche nachgewiesen werden, wo es wahrscheinlich mit der Zellwand assoziiert vorliegt. Dort rekrutiert es Faktor H an die bakterielle Oberfläche und verhindert das Fortschreiten der Komplement-Kaskade und damit die Lyse des Pathogens. Aufgrund der Multifunktionalität zählt PurA somit zur Gruppe der Moonlighting Proteine. Des Weiteren wurde die Rolle von PurA im Infektionsgeschehen in zwei unabhängigen Tiermodellen untersucht. In beiden Modellen wurde ein signifikant reduziertes Virulenzpotential der ΔpurA-Mutante beobachtet. Zukünftig soll geklärt werden, ob die verminderte Virulenz in der fehlenden Komplementevasion oder im Defekt in der Purin-Synthese begründet ist. Aufgrund der sehr starken Attenuation in allen untersuchten Infektionsmodellen sollte PurA als potentielles Target für eine Therapie von S. aureus Infektionen weiter charakterisiert werden. Im Ergebnis dieser Arbeit wurde demnach mit PurA ein neues Moonlighting Protein identifiziert, das als Inhibitor des Komplementsystems wesentlich zur Immunevasion von S. aureus beiträgt. Für das bessere Verständnis der humoralen S. aureus-spezifischen Immunantwort, Unterschieden in der Antikörperantwort und der gebildeten Antikörperspezifitäten wurde weiterhin das während der Kolonisierung und Infektion gebildete S. aureus-spezifische Antikörperprofil untersucht. Dazu wurden Plasmen von humanen nasalen Trägern und Nicht-Trägern sowie murine Seren von infizierten Tieren untersucht. Insbesondere wurde das Pathogen-spezifische Antikörperprofil in unterschiedlichen Infektionsmodellen mit Hilfe eines Proteinarrays analysiert, der im Rahmen dieser Arbeit in einer Kooperation mit der Firma Alere Technologies (Jena, Deutschland) und universitären Forschergruppen der Universitäten Greifswald, Münster und Jena mitentwickelt wurde. Die Antikörperprofile von intramuskulär und intravenös infizierten Tieren resultierten in jeweils spezifischen Antikörperprofilen. Diese Ergebnisse deuten auf einen Zusammenhang zwischen der Art der Infektion und der gebildeten Antikörperspezifitäten hin. Wahrscheinlich beruht dies auf einer gewebespezifischen Genexpression als Anpassung an die individuellen Bedürfnisse im Wirtsorganismus. Das ausgebildete Antikörperprofil gibt somit einen Einblick in das Expressionsmuster von Virulenzfaktoren von S. aureus unter in vivo Bedingungen und trägt damit zum Verständnis der komplexen Interaktion von Pathogen und Wirt bei. Diese Untersuchungen ergänzen zudem die bisherigen Kenntnisse über die Anpassung der humoralen Immunantwort an eine asymptomatische Kolonisierung im Gegensatz zu einer akuten Infektion durch S. aureus. Darüber hinaus können die gewonnenen Ergebnisse für diagnostische Zwecke und zur Identifikation von neuen Zielstrukturen für eine Vakzin-Entwicklung genutzt werden. N2 - S. aureus is a gram-positive bacterium that is prevalent in animals. It is part of the commensal nasal and respiratory flora. Moreover, it has the ability to transform into a pathogenic micro-organism, thereby eliciting different diseases including hospital-associated infections. S. aureus is transmitted via direct contact from nasal mucosa to the site of infection where it may provoke skin and soft tissue infections. Due to the rapid development of resistance to antibiotics and a current lack of effective treatment options, S. aureus infections cause enormous costs for the health-care system. Starting from the primary site of infection, S. aureus invades into deeper tissues and into the bloodstream during the course of the infection. This leads to a dissemination of the pathogen in the body and is associated with a broad spectrum of diseases including skin abscesses, pneumonia or even acute septicaemia. The pathogen S. aureus produces a multitude of virulence factors that help to colonize and infect the human host. Probably the most extensive group habours proteins involved in immune evasion and circumvent different host defence mechanisms. Understanding of the interaction between S. aureus and the host immune response and the underlying pathogenicity mechanism is still limited. As a part of this work, the interaction of novel secreted and surface-associated proteins of S. aureus with the host immune response was investigated in order to expand the knowledge of host pathogen interactions. Therefore, the function of thus far uncharacterized extracellular proteins of S. aureus was investigated in vitro in relation to influence on components of the immune system, adhesion to host factors and invasion in eukaryotic cells. By using results from previous in vitro characterization of putative virulence factors, a novel function of cytoplasmic adenylosuccinate synthetase PurA was identified. Beside the catalytic reaction during de novo purine synthesis, PurA is independently involved in immune evasion. By binding human complement regulators such as factor H, it protects the bacteria from the lytic activity of the human complement system and prevents the opsonization of the pathogen. The progression of the complement cascade on the bacterial surface is prevented by recruiting complement FH. On the basis of these findings, the moonlighting protein PurA was therefore characterized in detail. In this, the binding between both interaction partners FH and PurA was analysed first. Moreover, it was shown that the cytosolic protein PurA is also associated with the bacterial cell wall. Besides the in vitro characterization of PurA, the impact of the multitasking protein of S. aureus on virulence was investigated in vivo. Therefore ΔpurA deletion mutants were studied regarding their virulence potential in the alternative animal model Galleria mellonella as well as in mice. Due to the reduced virulence of ΔpurA deletion mutants in all investigated animal models, PurA was suggested as a potential target for antibiotic treatment during S. aureus infection. In summary, the moonlighting protein PurA enlarges the spectrum of immune evasion strategies used by S. aureus with a complement system inhibitor. For better understanding of the pathogen-specific humoral immune response, the differences in antibody response and specificities were investigated in human plasma of nasal carriers and non-carriers as well as in murine sera of infected animals. Moreover, the anti-S. aureus antibody profile developed during infection was characterized depending on the type of infection by using a protein array that was co-developed in cooperation with the company Alere technologies (Jena, Germany) and university research groups from Greifswald, Münster and Jena. The results of the differentially infected mice indicated a relationship between developed antibody specificities and type of infection which is likely due to differential gene expression as an adaptation to individual requirements in the host environment. The results give insights into the expression pattern of virulence factors of S. aureus under in vivo conditions contributing to the understanding of the highly complex interaction between pathogen and host. Moreover, these findings supplement the current experience in the adaptations of the humoral immune response to asymptomatic colonization and acute infection. The results gained from this study can be used as a diagnostic tool or for target identification in the development of vaccine. KW - Staphylococcus aureus KW - Komplement KW - Virulenzfaktor KW - Antikörper-Antwort Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128031 ER - TY - THES A1 - Rohleder, Florian T1 - The Intricate Network of Replication-dependent Interstrand Crosslink DNA Repair T1 - Das komplexe Netzwerk der replikationsabhängigen Reparatur von DNA-Quervernetzungen N2 - The Fanconi anemia (FA) pathway is a replication-dependent DNA repair mechanism which is essential for the removal of interstrand crosslink (ICL) DNA damages in higher eukaryotes (Moldovan and D’Andrea, 2009). Malfunctions in this highly regulated repair network lead to genome instability (Deans and West, 2011). Pathological phenotypes of the disease FA which is caused by mutations in the eponymous pathway are very heterogeneous, involving congenital abnormalities, bone-marrow failure, cancer predisposition and infertility (Auerbach, 2009). The FA pathway comprises a complex interaction network and to date 16 FA complementation groups and associated factors have been identified (Kottemann and Smogorzewska, 2013). Additionally, components of nucleotide excision repair (NER), homologous recombination repair (HRR), and translesion synthesis (TLS) are involved and coordinated by the FA proteins (Niedzwiedz et al., 2004; Knipscheer et al., 2009). One of the FA proteins is the DEAH helicase FANCM. In complex with its binding partners FAAP24 and MHF1/2 it binds the stalled replication fork and activates the FA damage response (Wang et al., 2013). However, the exact steps towards removal of the ICL damage still remain elusive. To decipher the underlying process of FA initiation by FANCM, this thesis mainly focuses on the archaeal FANCM homolog helicase-associated endonuclease for fork-structured DNA (Hef). Hef from the archaeal organism Thermoplasma acidophilum (taHef) differs from other archaeal Hef proteins and exclusively comprises an N-terminal helicase entity with two RecA and a thumb-like domain while others additionally contain a nuclease portion at the C-terminus. I solved the crystal structure of full-length taHef at a resolution of 2.43 Å. In contrast to the crystal structure of the helicase domain of Hef from Pyrococcus furiosus (pfHef), taHef exhibits an extremely open conformation (Nishino et al., 2005b) which implies that a domain movement of the RecA-like helicase motor domains of 61° is possible thus highlighting the flexibility of helicases which is required to translocate along the DNA. However, small-angle x-ray scattering (SAXS) measurements confirm an intermediate conformation of taHef in solution indicating that both crystal structures represent rather edge states. Most importantly, proliferating cell nuclear antigen (PCNA) was identified as an interaction partner of Hef. This interaction is mediated by a highly conserved canonical PCNA interacting peptide (PIP) motif. Intriguingly, the presence of PCNA does not alter the ATPase nor the helicase activity of taHef, thus suggesting that the interaction is entirely dedicated to recruit taHef to the replication fork to fulfill its function. Due to a high level of flexibility the taHef-taPCNA complex could not be crystallized and therefore SAXS was utilized to determine a low-resolution model of this quaternary structure. This newly discovered PCNA interaction could also be validated for the eukaryotic FANCM homolog Mph1 from the thermophilic fungus Chaetomium thermophilum (ctMph1). As the first step towards the characterization of this interaction I solved the crystal structure of PCNA from Chaetomium thermophilum (ctPCNA). Furthermore, it was possible to achieve preliminary results on the putative interaction between the human proteins FANCM and PCNA (hsFANCM, hsPCNA). In collaboration with Detlev Schindler (Human Genetics, Würzburg) and Weidong Wang (National Institute on Aging, Baltimore, USA) co-immunoprecipitation (CoIP) experiments were performed using hsFANCM and hsPCNA expressed in HEK293 cells. Although an interaction was reproducibly observed in hydroxyurea stimulated cells further experiments and optimization procedures are required and ongoing. N2 - Der Fanconi Anämie (FA) Signalweg ist ein replikationsabhängiger DNA-Reparaturmechanismus, der grundlegend zur Beseitigung von DNA-Schäden in Form von intermolekularen Quervernetzungen (ICL) beiträgt (Moldovan and D’Andrea, 2009). Fehlfunktionen in diesem stringent regulierten Reparaturnetzwerk führen somit zu Genominstabilität (Deans and West, 2011). Der pathologische Phänotyp der Krankheit FA, die durch Mutationen in dem gleichnamigen DNA-Reparatur Signalweg verursacht wird, ist sehr heterogen und umfasst angeborene Deformationen, Knochenmarksversagen, eine erhöhte Tumor Disposition sowie Infertilität (Auerbach, 2009). Der FA Mechanismus ist ein komplexes Netzwerk und bisher wurden 16 FA Komplementationsgruppen sowie weitere beteiligte Faktoren identifiziert (Kottemann and Smogorzewska, 2013). Zusätzlich sind Komponenten der Nukleotid-Exzisionsreparatur (NER), der homologen Rekombinationsreparatur (HRR) und Transläsionssynthese (TLS) involviert, die durch FA Proteine koordiniert werden (Niedzwiedz et al., 2004; Knipscheer et al., 2009). Eines der FA Proteine ist die DEAH Helikase FANCM. Im Komplex mit seinen Interaktionspartnern FAAP24 und MHF1/2 bindet FANCM an die durch den ICL Schaden zum Stillstand gekommene Replikationsgabel und aktiviert die FA Schadensantwort (Wang et al., 2013). Die weiteren Schritte, die zur Entfernung des ICL Schadens führen, sind jedoch weitestgehend ungeklärt. Zur Aufklärung der Initiation des FA Mechanismus und der Rolle, die das FANCM dabei spielt, wurde in dieser Arbeit hauptsächlich das archaische FANCM Homolog Helicase-associated Endonuclease for Fork-structured DNA (Hef) analysiert. Hef aus dem archaischen Organismus Thermoplasma acidophilum (taHef) unterscheidet sich von anderen archaischen Hef Proteinen und besteht ausschließlich aus einem N-terminalen Helikase-Abschnitt mit zwei RecA und einer thumb-like Domäne, während andere Hef Proteine am C-Terminus zusätzlich eine Nuklease-Domäne besitzen. Ich habe die Kristallstruktur des taHef Proteins bei einer Auflösung von 2,43 Å gelöst. Im Gegensatz zur Kristallstruktur eines vergleichbaren Hef-Konstruktes aus Pyrococcus furiosus (pfHef) (Nishino et al., 2005b) liegt in taHef eine extrem offene Konformation der beiden RecA-Domänen vor, was impliziert, dass eine Bewegung der RecA-ähnlichen Helikase Motordomänen um 61° möglich ist und zudem die zur Translokation entlang der DNA notwendige Flexibilität von Helikasen verdeutlicht. Messungen mittels Kleinwinkelröntgenstreuung (SAXS) deuten hingegen auf eine intermediäre Konformation des taHef Proteins in Lösung hin, wodurch beide Kristallstrukturen als eher Randzustände angesehen werden können. Besonders hervorzuheben ist, dass das Protein Proliferating Cell Nuclear Antigen (PCNA) als Hef Interaktionspartner identifiziert wurde. Diese Interaktion wird durch ein hoch-konserviertes kanonisches PCNA Interaktionspeptid-Motiv vermittelt. Interessanterweise beeinflusst PCNA aber weder die ATPase noch die Helikase Aktivität von taHef, was darauf hindeutet, dass diese Interaktion nur zur Rekrutierung des Hef Proteins zur Replikationsgabel dient. Wegen des hohen Maßes an Flexibilität konnte der taHef-taPCNA Komplex nicht kristallisiert werden, wohingegen SAXS Messungen erfolgreich waren und ein Model bei niedriger Auflösung konnte erhalten werden. Diese nachgewiesene Interaktion zwischen Hef und PCNA konnte auch für das eukaryotische FANCM Homolog Mph1 aus dem thermophilen Pilz Chaetomium thermophilum (ctMph1) bestätigt werden. Als ersten Schritt zur Charakterisierung dieser Interaktion habe ich die Kristallstruktur von PCNA aus Chaetomium thermophilum (ctPCNA) gelöst. Weiterhin war es möglich, vorläufige Resultate bezüglich der mutmaßlichen Interaktion zwischen den humanen Proteinen FANCM und PCNA (hsFANCM, hsPCNA) zu erhalten. In Kooperation mit Detlev Schindler (Humangenetik, Würzburg) und Weidong Wang (National Institute on Aging, Baltimore, USA) wurden Co-Immunopräzipitations-Experimente (CoIP) mit humanem FANCM und humanem PCNA aus HEK293-Zellen durchgeführt. Obwohl eine Interaktion in Hydroxyurea-stimulierten Zellen reproduzierbar nachgewiesen werden konnte, sind weitere Experimente notwendig, um diese Interaktion zu charakterisieren. KW - DNS-Reparatur KW - DNA Repair KW - Fanconi Anemia KW - Structural Biology KW - Fanconi-Anämie Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-113121 ER - TY - THES A1 - Schubert, Andreas T1 - Protein kinases as targets for the development of novel drugs against alveolar echinococcosis T1 - Proteinkinasen als Angriffspunkte für die Entwicklung neuer Chemotherapeutika gegen die Alveoläre Echinokokkose N2 - The metacestode larval stage of the fox tapeworm Echinococcus multilocularis is the causative agent of alveolar echinococcosis (AE), one of the most lethal zoonosis of the northern hemisphere. The development of metacestode vesicles by asexual multiplication and the almost unrestricted infiltrative growth within the host organs is ensured from a population of undifferentiated, proliferative cells, so-called germinative cells. AE treatment options include surgery, if possible, as well as Benzimidazole-based chemotherapy (BZ). Given that the cellular targets of BZs, the -tubulins, are highly conserved between cestodes and humans, the chemotherapy is associated with considerable side-effects. Therefore, BZ can only be applied in parasitostatic doses and has to be given lifelong. Furthermore, the current anti-AE chemotherapy is ineffective in eliminating the germinative cell population of the parasite, which leads to remission of parasite growth as soon as therapy is discontinued. This work focuses on protein kinases involved in the proliferation and development of the parasite with the intention of developing novel anti-AE therapies. Polo-like kinases (Plks) are important regulators of the eukaryotic cell cycle and are involved in the regulation and formation of the mitotic spindles during the M-phase of the cell cycle. Plks have already been shown to be associated with deregulated cellular growth in human cancers and have been investigated as novel drug targets in the flatworm parasite Schistosoma mansoni. In the first part of this work, the characterisation of a novel and druggable parasite enzyme, EmPlk1, which is homologous to the polo-like kinase 1 (Plk1) of humans and S. mansoni (SmPlk1), is presented. Through in situ hybridisation, it could be demonstrated that emplk1 is specifically expressed in the Echinococcus germinative cells. Upon heterologous expression in the Xenopus oocyte system, EmPlk1 induced germinal vesicle breakdown, thus indicating that it is an active kinase. Furthermore, BI 2536, a compound originally designed to inhibit the human ortholog of EmPlk1, inhibited the EmPlk1 activity at a concentration of 25 nM. In vitro treatment of parasite vesicles with similar concentrations of BI 2536 led to the elimination of the germinative cells from Echinococcus larvae, thus preventing the growth and further development of the parasite. In in vitro cultivation systems for parasite primary cells, BI 2536 effectively inhibited the formation of new metacestode vesicles from germinative cells. Thus, BI 2536 has profound anti-parasitic activities in vitro at concentrations well within the range of plasma levels measured after the administration of safe dosages to patients (50 nM after 24 h). This implies that EmPlk1 is a promising new drug target for the development of novel anti-AE drugs that would specifically affect the parasite’s stem cell population, namely the only parasite cells capable of proliferation. In addition to the chemotherapeutic aspects of this work, the inhibitor BI 2536 could be further used to study the function of stem cells in this model organism, utilising a method of injection of parasite stem cells into metacestode vesicles, for instance, as has been developed in this work. In the second part of this work, a novel receptor tyrosine kinase, the Venus flytrap kinase receptor (EmVKR) of E. multilocularis has been characterised. Members of this class of single-pass transmembrane receptors have recently been discovered in the related trematode S. mansoni and are associated with the growth and differentiation of sporocyst germinal cells and ovocytes. The ortholog receptor in EmVKR is characterised by an unusual domain composition of an extracellular Venus flytrap module (VFT), which shows significant similarity to GABA receptors, such as the GABAB receptor (γ-amino butyric acid type B) and is linked through a single transmembrane domain to an intracellular tyrosine kinase domain with similarities to the kinase domains of human insulin receptors. Based upon the size (5112bp) of emvkr and nucleotide sequence specificities, efforts have been made to isolate the gene from cell culture samples to study the ligand for the activation of this receptor type in Xenopus oocytes. To date, this type of receptor has only been described in invertebrates, thus making it an attractive target for drug screening. In a first trial, the ATP competitive inhibitor AG 1024 was tested in our in vitro cell culture. In conclusion, the EmVKR represents a novel receptor tyrosine kinase in E. multilocularis. Further efforts have to be made to identify the activating ligand of the receptor and its cellular function, which might strengthen the case for EmVKR as a potential drug target. The successful depletion of stem cells in the metacestode vesicle by the Plk1 inhibitor BI 2536 gives rise to optimising the chemical component for EmPlk1 as a new potential drug target. Furthermore, this inhibitor opens a new cell culture technique with high potential to study the cellular behaviour and influencing factors of stem cells in vitro. N2 - Das Verbreitungsgebiet des kleinen Fuchsbandwurms erstreckt sich über die nördliche Hemisphäre und eine Infektion des Menschen verursacht eine meist tödliche verlaufende Parasitose, die alveolaren Echinococcose (AE). Durch infiltratives und asexuelles Wachstum des Larvenstadiums der AE im betroffenen Wirtsorgan kommt es zu einer tödlich verlaufenden Krankheit. Das Wachstum der Metacestoden wird dabei durch undifferenzierte proliferierende Stammzellen, den sog. „germinativen Zellen“ des Fuchsbandwurmes verursacht. Die derzeitigen Behandlungsmöglichkeiten von AE sehen neben einem chirurgischen Eingriff, der in den meisten Fällen nicht möglich ist, nur eine Chemotherapie mit Benzimidazolen (BZ) vor. Die Chemotherapie mit BZ richtet sich dabei gegen die β-Tubuline des Parasiten und ist überwiegend mit einer lebenslangen Behandlung verbunden. Obwohl sich die Behandlungsmöglichkeiten und die Prognose für Patienten seit der Verwendung von Benzimidazolen bedeutsam verbessert haben, kommt es dennoch zu starken Nebenwirkungen und die angewendete Chemotherapie wirkt nur parasitostatisch. Der Grund dafür liegt an der hohen Homologie zwischen den β-Tubulinen des Parasiten und des Menschen, welche die Zielproteine von Benzimidazolen sind. Um die Nebenwirkungen für den Patienten gering zu halten, werden die Benzimidazole nur in Konzentrationen verabreicht, die parasitostatisch wirken, was zu keiner Abtötung des Parasitengewebes führt. Darüber hinaus sind die gegenwärtigen AE-Medikamente nicht wirksam gegen die germinativen Zellen des Parasiten, was zu einem Wiederauftreten des Wachstums von Parasitengewebe führt, sobald die Chemotherapie unterbrochen wird. Die hier vorliegende Arbeit konzentriert sich auf die Entwicklung eines neuen chemotherapeutischen Ansatzes gegen AE und befasst sich mit Proteinkinasen, die einen wesentlichen Einfluss auf die Proliferation und die Differenzierung von Zellen des Parasiten haben. Proteinkinasen, die in direkten Zusammenhang mit den Zellzyklus stehen, sind beispielsweise die Polo-like kinasen (Plk), welche die Bildung von mitotischen Spindelfasern während der M-Phase regulieren. Wie bereits in vorhergehenden Studien gezeigt werden konnte, sind Plks auch an der Entstehung von Krebs beteiligt und daher interessante Ansatzpunkte für die Entwicklung von neuen Chemotherapeutika. Darüber hinaus zeigte sich auch, dass Sie zur Chemotherapie von parasitären Krankheiten Verwendung finden könnten, wie zur Behandlung von Schistosomiasis, welche durch Schistosoma mansoni ausgelöst wird. Der erste Teil dieser Arbeit befasst sich mit der Charakterisierung der Polo-like kinase 1 (Plk1) aus E. multilocularis, die Homologien zur humanen Plk1 und der aus S. mansoni (SmPlk1) aufweist und daher als Ansatzpunkt für eine neuartige chemotherapeutische Behandlung von AE angesehen werden kann. Es konnte gezeigt werden, dass EmPlk1 in germinativen Zellen (Stammzellen) des Parasiten stark exprimiert wird und das es möglich ist, dieses orthologe Protein mit nanomolekularer Konzentration (25 nM) des Plk1 Inhibitors BI 2536 in seiner zellulären Funktion zu hemmen. Darüber hinaus führt die Behandlung in vitro zu einem Verlust von Stammzellen im Larvenstadium von E. multilocularis, was zu einer drastischen Verminderung des Wachstums und der Entwicklung des Parasiten führt. Des Weiteren konnte sehr deutlich gezeigt werden, dass bei Verwendung des Inhibitors BI 2536 in Zellkultursystemen mit „Primärzellen“ (80% Stammzellen) des Parasiten diese nicht mit mehr in der Lage sind in Metacestoden zu regenerieren. Dabei ist entscheidend, dass die verwendeten Konzentrationen des Inhibitors BI 2536 innerhalb der gemessenen Plasmakonzentrationen von Krebspatienten liegen (50 nM nach 48 Stunden). Die Inhibierung der Plk1 wird daher als vielversprechender neuer Ansatzpunkt einer Chemotherapie zur Behandlung der AE angesehen. Die Inhibierung der EmPlk1 hat einen wesentlichen Einfluss auf die Differenzierung von Stammzellen des Parasiten, wodurch das Wachstum und die weitere Entwicklung des Parasiten gehemmt werden. Des Weiteren kann neben der chemotherapeutischen Behandlung der Inhibitor BI2536 auch für das weitere Studium von Stammzellen und deren zelluläre Funktion in E. multilocularis genutzt werden. Dafür wurden erste in vitro Experimente mittels Injektion in stammzellfreie Metacestoden Vesikel durchgeführt. Der zweite Teil dieser Arbeit befasst sich mit einem neuen Transmembranrezeptor in E. multilocularis, der hier als Venus-Fliegenfallen-Rezeptor charakterisiert wird. Dieser Rezeptortyp wurde erst kürzlich in S. mansoni beschrieben und steht im Zusammenhang mit der Entwicklung und dem Wachstum von Keimzellen des Parasiten. Der Rezeptor weist eine ungewöhnliche Zusammensetzung aus einer extrazellulären Venusfliegenfallendomäne (VFT) mit starker Ähnlichkeit zu GABA Rezeptoren auf (γ-amino-Buttersäure Typ B) und ist über eine einzelne Transmembrandomäne mit einer intrazellulären Tyrosinkinasedomäne verbunden, die eine hohe Homologie zu humanen Insulinrezeptoren zeigt. Der lange Genabschnitt (5112bp) von emvkr mit sequenzspezifischen Eigenschaften war schwierig zu klonieren, um eine anschließende Expression in Xenopus Oozyten durchzuführen. Bisher wurde dieser Rezeptor nur in Invertebraten beschrieben und stellt somit einen interessanten Ansatzpunkt für die Entwicklung von neuen Chemotherapeutika dar. In einem ersten Versuch wurde die Wirkung des ATP-Kompetitive Inhibitors AG 1024 in unserer in vitro Zellkultur untersucht. Zusammenfassend wurde die Relevanz von EmVKR als neuartiger Tyrosinkinaserezeptor in E. multilocularis verdeutlicht. In anschließenden Studien sollte die Aktivierung durch Ligandenbindung an den Rezeptor, sowie seine weitere zelluläre Funktion untersucht werden. Diese Erkenntnisse könnten dann eine entscheidende Rolle für die Entwicklung von neuen Medikamenten mit EmVKR spielen. Des Weiteren wurde die erfolgreiche Entfernung von Stammzellen aus Metacestoden Vesikel mit dem Plk1 Inhibitor BI 2536 gezeigt. Dies bietet nun die Option diesen Inhibitor auf das Wirkstoffziel EmPlk1 weiter zu optimieren. Darüber hinaus hat die Verwendung dieses Inhibitors den entscheidenden Zugang für eine neue Zellkulturtechnik ermöglicht, die das Studieren von Stammzellen und deren Einflussfaktoren in vitro bietet. KW - Chemotherapie KW - Echinococcus KW - Fuchsbandwurm KW - Stammzelle KW - Polo-like kinase 1 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-113694 ER - TY - THES A1 - Schäfer, Christin Marliese T1 - Approaching antimicrobial resistance – Structural and functional characterization of the fungal transcription factor Mrr1 from Candida albicans and the bacterial ß-ketoacyl-CoA thiolase FadA5 from Mycobacterium tuberculosis T1 - Auf den Spuren der antimikrobiellen Resistenz – Strukturelle und funktionelle Charakterisierung des Transkriptionsfaktors Mrr1 aus Candida albicans und der bakteriellen β-ketoacyl-CoA thiolase FadA5 aus Mykobakterium tuberculosis N2 - The number of fungal infections is rising in Germany and worldwide. These infections are mainly caused by the opportunistic fungal pathogen C. albicans, which especially harms immunocompromised people. With increasing numbers of fungal infections, more frequent and longer lasting treatments are necessary and lead to an increase of drug resistances, for example against the clinically applied therapeutic fluconazole. Drug resistance in C. albicans can be mediated by the Multidrug resistance pump 1 (Mdr1), a membrane transporter belonging to the major facilitator family. However, Mdr1-mediated fluconazole drug resistance is caused by the pump’s regulator, the transcription factor Mrr1 (Multidrug resistance regulator 1). It was shown that Mrr1 is hyperactive without stimulation or further activation in resistant strains which is due to so called gain of function mutations in the MRR1 gene. To understand the mechanism that lays behind this constitutive activity of Mrr1, the transcription factor should be structurally and functionally (in vitro) characterized which could provide a basis for successful drug development to target Mdr1-mediated drug resistance caused by Mrr1. Therefore, the entire 1108 amino acid protein was successfully expressed in Escherichia coli. However, further purification was compromised as the protein tended to form aggregates, unsuitable for crystallization trials or further characterization experiments. Expression trials in the eukaryote Pichia pastoris neither yielded full length nor truncated Mrr1 protein. In order to overcome the aggregation problem, a shortened variant, missing the N-terminal 249 amino acids named Mrr1 ‘250’, was successfully expressed in E. coli and could be purified without aggregation. Similar to the wild type Mrr1 ‘250’, selected gain of function variants were successfully cloned, expressed and purified with varying yields and with varying purity. The Mrr1 `250’ construct contains most of the described regulatory domains of Mrr1. It was used for crystallization and an initial comparative analysis between the wild type protein and the variants. The proposed dimeric form of the transcription factor, necessary for DNA binding, could be verified for both, the wild type and the mutant proteins. Secondary structure analysis by circular dichroism measurements revealed no significant differences in the overall fold of the wild type and variant proteins. In vitro, the gain of function variants seem to be less stable compared to the wild type protein, as they were more prone to degradation. Whether this observation holds true for the full length protein’s stability in vitro and in vivo remains to be determined. The crystallization experiments, performed with the Mrr1 ‘250’ constructs, led to few small needle shaped or cubic crystals, which did not diffract very well and were hardly reproducible. Therefore no structural information of the transcription factor could be gained so far. Infections with M. tuberculosis, the causative agent of tuberculosis, are the leading cause of mortality among bacterial diseases. Especially long treatment times, an increasing number of resistant strains and the prevalence of for decades persisting bacteria create the necessity for new drugs against this disease. The cholesterol import and metabolism pathways were discovered as promising new targets and interestingly they seem to play an important role for the chronic stage of the tuberculosis infection and for persisting bacteria. In this thesis, the 3-ketoacyl-CoA thiolase FadA5 from M. tuberculosis was characterized and the potential for specifically targeting this enzyme was investigated. FadA5 catalyzes the last step of the β-oxidation reaction in the side-chain degradation pathway of cholesterol. We solved the three dimensional structure of this enzyme by X-ray crystallography and obtained two different apo structures and three structures in complex with acetyl-CoA, CoA and a hydrolyzed steroid-CoA, which is the natural product of FadA5. Analysis of the FadA5 apo structures revealed a typical thiolase fold as it is common for biosynthetic and degradative enzymes of this class for one of the structures. The second apo structure showed deviations from the typical thiolase fold. All obtained structures show the enzyme as a dimer, which is consistent with the observed dimer formation in solution. Thus the dimer is likely to be the catalytically active form of the enzyme. Besides the characteristic structural fold, the catalytic triad, comprising two cysteines and one histidine, as well as the typical coenzyme A binding site of enzymes belonging to the thiolase class could be identified. The two obtained apo structures differed significantly from each other. One apo structure is in agreement with the characteristic thiolase fold and the well-known dimer interface could be identified in our structure. The same characteristics were observed in all complex structures. In contrast, the second apo structure followed the thiolase fold only partially. One subdomain, spanning 30 amino acids, was in a different orientation. This reorientation was caused by the formation of two disulfide bonds, including the active site cysteines, which rendered the enzyme inactive. The disulfide bonds together with the resulting domain swap still permitted dimer formation, yet with a significantly shifted dimer interface. The comparison of the apo structures together with the preliminary activity analysis performed by our collaborator suggest, that FadA5 can be inactivated by oxidation and reactivated by reduction. If this redox switch is of biological importance requires further evaluation, however, this would be the first reported example of a bacterial thiolase employing redox regulation. Our obtained complex structures represent different stages of the thiolase reaction cycle. In some complex structures, FadA5 was found to be acetylated at the catalytic cysteine and it was in complex with acetyl-CoA or CoA. These structures, together with the FadA5 structure in complex with a hydrolyzed steroid-CoA, revealed important insights into enzyme dynamics upon ligand binding and release. The steroid-bound structure is as yet a unique example of a thiolase enzyme interacting with a complex ligand. The characterized enzyme was used as platform for modeling studies and for comparison with human thiolases. These studies permitted initial conclusions regarding the specific targetability of FadA5 as a drug target against M. tuberculosis infection, taking the closely related human enzymes into account. Additional analyses led to the proposal of a specific lead compound based on the steroid and ligand interactions within the active site of FadA5. N2 - Die Zahl der Pilzinfektionen, welche hauptsächlich durch den opportunistisch-pathogenen Pilz C. albicans verursacht werden, ist nicht nur in Deutschland, sondern weltweit steigend. Die auftretenden Infektionen betreffen vor allem immunsupprimierte Personen. Dieser Anstieg an Pilzinfektionen verursacht häufigere und immer länger andauernde Behandlungen und resultiert auch im vermehrten Auftreten von Resistenzen gegen Antimykotika, unter anderem gegen das klinisch eingesetzte Fluconazol. Eine Möglichkeit der Resistenzbildung in C. albicans ist die Expression der ‚Multidrug resistance pump 1‘ (Mdr1), einer Membranpumpe, die zur Major-Facilitator-Superfamilie zählt. Diese durch Mdr1-vermittelte Fluconazolresistenz wird durch den Mdr1 regulierenden Transkriptionsfaktor Mrr1 (‚Multidrug resistance regulator 1‘) gesteuert. In resistenten C. albicans Stämmen befindet sich Mrr1 ohne weitere Stimulation oder externe Aktivierung bereits in einem hyperaktiven Zustand, der durch Mutationen mit Funktionsgewinn im MRR1 Gen verursacht wird. Um die Mechanismen, die sich hinter der konstitutiven Aktivität von Mrr1 verbergen, zu entschlüsseln, sollte dieser Transkriptionsfaktor in vitro strukturell und funktionell charakterisiert werden. Diese Charakterisierung könnte im Anschluss genutzt werden, um Wirkstoffe gegen die von Mrr1 gesteuerte und von Mdr1-vermittelte Resistenz zu entwickeln. Zu diesem Zweck, wurde das gesamte, 1108 Aminosäuren umfassende, Protein in Escherichia coli exprimiert. Die anschließende Proteinreinigung war allerdings durch Aggregatbildung beeinträchtigt, welche Kristallisationsansätze oder eine weitere Charakterisierung dieses Proteinkonstruktes verhinderten. Im Eukaryot Pichia pastoris durchgeführte Expressionsanalysen, waren leider erfolglos und weder die Expression des Volllängen-Mrr1 noch seiner verkürzten Proteinvarianten konnte nachgewiesen werden. Um Proteinaggregation zu umgehen, wurde deshalb ein N-terminal, um 249 Aminosäuren, verkürztes Proteinkonstrukt, Mrr1 ‚250‘, in E. coli exprimiert und erfolgreich, ohne Aggregation, gereinigt. Zusätzlich zum wildtypischen Mrr1 ‚250‘ Protein wurden auch ausgewählte Varianten kloniert, exprimiert und gereinigt, allerdings mit unterschiedlicher Ausbeute und Reinheit. Da das verkürzte Mrr1 ‚250‘ Protein noch immer fast alle in der Literatur beschriebenen Regulierungsdomänen besitzt, wurde es zur Kristallisation und für einen initialen Vergleich zwischen Wildtyp und Varianten genutzt. So konnte zum Beispiel die vermutete Dimerisierung des Transkriptionsfaktors sowohl für das Wildtypprotein als auch für die Varianten gezeigt werden. Eine weiterführende Untersuchung der Sekundärstruktur mittels zirkular Dichroismus Messungen zeigte keine signifikanten Unterschiede zwischen den Mutanten und dem Wildtypprotein. Allerdings erscheinen die Funktionsgewinn Varianten von Mrr1 in vitro instabiler als das Wildtypprotein, was sich durch stärkeren Abbau der Variantenproteine zeigt. Ob diese Beobachtungen allerdings vom verkürzten Protein auf das Gesamtprotein und dessen in vitro und in vivo Stabilität übertragbar sind, ist derzeit noch unklar. Kristallisationsansätze, die mit den verschiedenen Varianten des Mrr1 ‚250‘ Konstrukts durchgeführt wurden, führten zu sehr wenigen, nadelförmigen oder kubischen Kristallen, die kaum reproduzierbar waren und schlecht diffraktierten. Bisher konnten deshalb keine strukturellen Daten für den untersuchten Transkriptionsfaktor erhalten werden. Noch immer sind Infektionen, die durch M. tuberculosis, dem Erreger der Tuberkulose, verursacht werden die Haupttodesursache im Bereich der bakteriellen Infektionen. In diesem Zusammenhang stellen vor allem lange Behandlungszeiten, das vermehrte Auftreten resistenter Stämme und das Vorkommen persistierender Bakterien, die Jahrzehnte in ihrem Wirt überdauern können, nach wie vor große Herausforderungen dar und die Entwicklung neuer Tuberkulosemedikamente ist dringend erforderlich. Sowohl der Cholesterinimport als auch dessen Stoffwechselweg wurden als vielversprechende Wirkstoffziele identifiziert. Nicht zuletzt, da beide Mechanismen eine wichtige Rolle während der chronischen Phase der Tuberkuloseinfektion und für persistierende Bakterien zu spielen scheinen. Im Laufe dieser Arbeit wurde die 3-ketoacyl-CoA Thiolase FadA5 aus M. tuberculosis strukturell charakterisiert und auf ihre Tauglichkeit als spezifisches Wirkstoffziel hin untersucht. FadA5 katalysiert den letzten Schritt der β-Oxidation im Zuge des Seitenkettenabbaus von Cholesterin. Wir konnten die Proteinstruktur des FadA5 Proteins mittels Röntgenkristallographie ermitteln und erhielten zwei unterschiedliche apo-Strukturen sowie drei Komplexstrukturen. In den Komplexstrukturen waren entweder Acetyl-CoA, CoA oder ein hydrolisiertes Steroid-CoA, welches das natürliche Produkt von FadA5 darstellt, an das Enzym gebunden. Die Strukturanalyse der apo-Strukturen lies für eine der beiden Modelle die typische Thiolasefaltung erkennen, welche für biosynthetische und degradative Enzyme dieser Klasse üblich ist. In der zweiten apo-Struktur konnte diese Faltung nur teilweise identifiziert werden. Das Protein liegt in allen erhaltenen Strukturen als Dimer vor, was auch in Lösung beobachtet werden konnte und darauf hinweist, dass das Dimer die katalytisch aktive Form des Proteins darstellt. Neben der charakteristischen Faltung, wurde das aktive Zentrum, bestehend aus zwei Cysteinen und einem Histidin, sowie die für Thiolasen übliche Coenzym A Bindetasche identifiziert. Die erhaltenen apo-Strukturen unterschieden sich deutlich voneinander. Die zuvor beschriebene typische Dimer-Interaktionsfläche wird auch in den Komplexstrukturen beobachtet. Dahingegen war die Thiolasefaltung in der zweiten Apo-Struktur nur teilweise vorhanden, da beispielsweise eine Domäne, die 30 Aminosäuren umfasst, umorientiert vorlag. Die Bildung zweier Disulfidbrücken, welche beide katalytischen Cysteine involviert, verursachte die beschriebene Umorientierung und damit gepaart eine wahrscheinliche Inaktivität des Enzyms. Trotz der beschriebenen Umorientierung und Disulfidbrückenbildung liegt das Protein noch immer als Dimer vor, allerdings mit einer deutlich verschobenen Interaktionsfläche. Der Vergleich der beiden apo-Strukturen in Kombination mit einer vorläufigen Aktivitätsanalyse, die von unseren Kollaborationspartnern durchgeführt wurde, lassen vermuten, dass FadA5 durch Oxidation inaktiviert und durch Reduktion reaktiviert werden kann. Ob diese Redoxregulierung biologisch relevant ist, muss noch geklärt werden, allerdings wäre dies der erste beschriebene Fall einer redoxregulierten bakteriellen Thiolase. Die Komplexstrukturen stellen verschiedene Stufen der Thiolasereaktion dar. In einigen dieser Strukturen lag FadA5 am katalytischen Cystein acetyliert vor und befand sich im Komplex mit acetyl-CoA oder CoA. Durch eine weitere Struktur, in der FadA5 im Komplex mit einem hydrolisierten Steroid-CoA vorlag, konnten wichtige Einblicke in die Enzymdynamik während der Ligandenbindung und Freisetzung gewonnen werden. Die Steroid gebundene Struktur stellt derzeit ein einzigartiges Beispiel einer Thiolase im Komplex mit einem großen, mehrere Ringsysteme umfassenden Liganden dar. Das charakterisierte Enzym diente als Ausgangspunkt für Modellierungsversuche und Vergleiche mit humanen Thiolasen. Diese Analysen erlaubten initiale Schlussfolgerungen bezüglich einer Verwendung von FadA5 als spezifisches Wirkstoffziel gegen Tuberkuloseinfektionen, im Kontext verwandter humaner Enzyme. Zusätzliche Untersuchungen ermöglichten die Ausarbeitung einer spezifischen Leitsubstanz, die auf den analysierten Interaktionen zwischen dem aktiven Zentrum von FadA5 und den gebundenen Liganden basiert. KW - Multidrug-Resistenz KW - Candida albicans KW - Tuberkulose KW - Röntgenkristallographie KW - Cholesterinstoffwechsel KW - Structural Biology KW - Transcription factor KW - Thiolase Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-108400 ER - TY - THES A1 - Mishra, Shambhavi T1 - Structural and Functional Characterization of the Enzymes Involved in the Menaquinone Biosynthesis and Benzoate Degradation T1 - Strukturelle und funktionelle Charakterisierung von Enzymen, die an der Menaquinon-Biosynthese und der Biodegradation von Benzoat beteiligt sind N2 - The present work illustrates the structural and biochemical characterization of two diverse proteins, BadI and MenD from Rhodopseudomonas palustris and Staphylococcus aureus, respectively. BadI or 2-ketocyclohexanecarboxyl-CoA is one of the key enzymes involved in the anaerobic degradation of aromatic compounds. The degradation of aromatic compounds is a vital process for the maintenance of the biogeochemical carbon cycle and bioremediation of xenobiotic compounds, which if present at higher concentrations can cause potential hazards to humans. Due to the relatively inert nature of aromatic compounds, enzymes catalyzing their degradation are of special interest for industrial applications. BadI is one of the key enzymes involved in the anaerobic degradation of aromatic compounds into an aliphatic moiety. The major focus of this study was to provide mechanistic insights into the reaction catalyzed by BadI. BadI belongs to the crotonase superfamily and shares high sequence homology with the family members of MenB or dihydroxynaphthoate synthase. BadI is known to catalyze the cleavage of the cyclic ring of 2-ketocyclohexane carboxyl-CoA by hydrolyzing the C-C bond leading to the formation of the aliphatic compound pimelyl CoA. On the other hand MenB catalyzes the condensation reaction of o-succinylbenzoyl-CoA to dihydroxylnaphthoyl-CoA. A comprehensive amino acid sequence analysis between BadI and MenB showed that the active site residues of MenB from Mycobacterium tuberculosis (mtMenB) are conserved in BadI from Rhodopseudomonas palustris. MenB is involved in the menaquinone biosynthesis pathway and is a potential drug target against Mycobacterium tuberculosis as it has no known human homologs. Due to the high homology between MenB and BadI and the inability to obtain MenB-inhibitor complex structures we extended our interest to BadI to explore a potential substitute model for mtMenB as a drug target. In addition, BadI possesses some unique mechanistic characteristics. As mentioned before, it hydrolyzes the substrate via a retro Dieckmann’s reaction contrasting its closest homolog MenB that catalyzes a ring closing reaction through a Dieckmann’s reaction. Nevertheless the active site residues in both enzymes seem to be highly conserved. We therefore decided to pursue the structural characterization of BadI to shed light on the similarities and differences between BadI and MenB and thereby provide some insights how they accomplish the contrasting reactions described above. We determined the first structures of BadI, in its apo and a substrate mimic bound form. The crystal structures revealed that the overall fold of BadI is similar to other crotonase superfamily members. However, there is no indication of domain swapping in BadI as observed for MenB. The absence of domain swapping is quite remarkable because the domain swapped C-terminal helical domain in MenB provides a tyrosine that is imperative for catalysis and is also conserved in the BadI sequence. Comparison of the active sites revealed that the C-terminus of BadI folds onto its core in such a way that the conserved tyrosine is located in the same position as in MenB and can form interactions with the ligand molecule. The structure of BadI also confirms the role of a serine and an aspartate in ligand interaction, thus validating that the conserved active site triad participates in the enzymatic reaction. The structures also reveal a noteworthy movement of the active site aspartate that adopts two major conformations. Structural studies further illuminated close proximity of the active site serine to a water and chlorine molecule and to the carbon atom at which the carbonyl group of the true substrate would reside. Biochemical characterization of BadI using enzyme kinetics validated that the suggested active site residues are involved in substrate interaction. However, the role of these residues is very distinct, with the serine assuming a major role. Thus, the present work ascertain the participation of putative active site residues and demonstrates that the active site residues of BadI adopt very distinctive roles compared to their closest homolog MenB. The MenD protein also referred to as SEPHCHC (2-succinyl-5-enolpyruvyl-6- hydroxy-3-cyclohexene-1-carboxylic acid) synthase is one of the enzymes involved in menaquinone biosynthesis in Staphylococcous aureus. Though S. aureus is usually considered as a commensal it can act as a remarkable pathogen when it crosses the epithelium, causing a wide spectrum of disorders ranging from skin infection to life threatening diseases. Small colony variants (SCVs), a slow growing, small sized subpopulation of the bacteria has been associated with persistent, recurrent and antibiotic resistant infections. These variants show autotrophy for thiamine, menaquinone or hemin. Menaquinone is an essential component in the electron transport pathway in gram-positive organisms. Therefore, enzymes partaking in this pathway are attractive drug targets against pathogens such as Mycobacterium tuberculosis and Bacillus subtilis. MenD, an enzyme catalyzing the first irreversible step in the menaquinone biosynthetic pathway has been implicated in the SCV phenotype of S. aureus. In the present work we explored biochemical and structural properties of this important enzyme. Our structural analysis revealed that despite its low sequence identity of 28%, the overall fold of staphylococcal MenD (saMenD) is similar to Escherichia coli MenD (ecMenD) albeit with some significant disparities. Major structural differences can be observed near the active site region of the protein and are profound in the C-terminal helix and a loop near the active site. The loop contains critical residues for cofactor binding and is well ordered only in the ecMenD-ThDP structure, while in the apo and substrate bound structures of ecMenD the loop is primarily disordered. In our saMenD structure the loop is for the first time completely ordered in the apo form and displays a novel conformation of the cofactor-binding loop. The loop adopts an unusual open conformation and the conserved residues, which are responsible for cofactor binding are located too far away to form a productive complex with the cofactor in this conformation. Additionally, biochemical studies in conjugation with the structural data aided in the identification of the substrate-binding pocket and delineated residues contributing to its binding and catalysis. Thus the present work successfully divulged the unique biochemical and structural characteristics of saMenD. N2 - Die vorliegende Arbeit befasst sich mit der strukturellen und biochemischen Charakterisierung der beiden unterschiedlichen bakteriellen Enzyme BadI von Rhodopseudomonas palustris und MenD von Staphylococcus aureus. Die 2-Ketocyclohexancarboxyl-CoA-Hydrolase BadI ist eines der Schlüsselenzyme des anaeroben Abbaus aromatischer Verbindungen. Der Abbau aromatischer Verbindungen ist essentiell für die Aufrechterhaltung des biogeochemischen Kohlenstoffkreislaufs und der biologischen Beseitigung von Xenobiotika, welche in höheren Konzentrationen eine Gefahr für den menschlichen Organismus darstellen können. Wegen des inerten Charakters aromatischer Verbindungen sind Enzyme, welche deren Abbau katalysieren, von besonderem Interesse für industrielle Anwendungen. BadI ist eines der Schlüsselenzyme für den anaeroben Abbau aromatischer Verbindungen zu aliphatischen Gruppen. Das Hauptaugenmerk dieses Projekts lag auf der Aufklärung des Reaktionsmechanismus, welcher von BadI katalysiert wird. BadI gehört zur Überfamilie der Crotonasen und zeigt hohe Sequenzhomologie mit der zugehörigen Dihydroxynaphthoat-Synthase MenB. Durch die Hydrolyse einer C-C Bindung katalysiert BadI den Schnitt des zyklischen Rings von 2-Ketocyclohexancarboxyl-CoA, welcher zur Bildung der aliphatischen Verbindung Pimelyl-CoA führt. MenB, andererseits, katalysiert die Kondensationsreaktion von O-Succinylbenzyl-CoA zu Dihydronaphthoyl-CoA. Ein umfassender Aminosäuresequenzvergleich zwischen BadI und MenB zeigt, dass die Reste des aktiven Zentrums von MenB aus Mycobacterium tuberculosis (mtMenB) in BadI von R. palustris konserviert sind. MenB ist Teil des Menaquinon Biosynthesewegs und ein potentielles Wirkstoffziel gegen M. tuberculosis, da kein humanes Homolog existiert. Wegen der ausgeprägten Homologie zwischen MenB und BadI und der Tatsache, dass bisher keine MenB-Inhibitor Komplex Strukturen gelöst werden konnten, erweiterten wir unser Interesse auf BadI, da es als Model für mtMenB als Wirkstoffziel dienen könnte. Darüber hinaus besitzt BadI einige einzigartige mechanistische Charakteristika. Wie zuvor erwähnt, hydrolysiert es das Substrate durch eine reverse Dieckmanns Reaktion in Gegensatz zu seinem ähnlichsten Homolog MenB, das einen Ringschluss durch eine Dieckmanns Reaktion katalysiert. Dennoch scheinen die Reste des aktiven Zentrums streng konserviert zu sein. Daher entschieden wir die strukturelle Charakterisierung von BadI anzugehen um Gemeinsamkeiten und Unterschiede zwischen BadI und MenB aufzuzeigen und einen Einblick zu erhalten, wie sie die gegenläufigen Reaktionen durchführen. Wir lösten die ersten Strukturen von BadI in seiner Apo-Form und einer Substrat-Mimik gebundenen Form. Die Kristallstrukturen von BadI zeigten die gleiche Gesamtfaltung wie andere Mitglieder der Crotonase Familie. Allerdings gibt es in BadI kein Anzeichen für Domain-Swapping, wie es in MenB beobachtet wurde. Das Fehlen des Domain-Swappings ist bemerkenswert, da die vertauschte C-terminale helikale Domäne in MenB ein Tyrosin enthält, welches essentiell für die Katalyse ist und auch in BadI konserviert vorliegt. Der Vergleich des aktiven Zentrums zeigt, dass der C-Terminus von BadI so auf seinen Kern/Hauptteil faltet, dass das konservierte Tyrosin an der gleichen Stelle positioniert ist wie in MenB und mit dem Liganden interagieren kann. Die Struktur von BadI bestätigt auch die Rolle eines Serin- und eines Aspartatrests für die Ligandenbindung und bekräftigt damit, dass das konservierte aktive Zentrum an der enzymatischen Reaktion teilnimmt. Die Strukturen zeigen auch eine bemerkenswerte Verschiebung des aktiven Aspartats, welches zwei Hauptkonformationen einnimmt. Strukturelle Analysen zeigten auch die Nähe des Serinrests zu einem Wasser- und Chlormolekül, sowie einem Kohlenstoffrest, an dessen Stelle der Carbonylrest des eigentlichen Substrats läge. Die biochemische Charakterisierung von BadI in enzymkinetischen Untersuchungen bestätigte dass die vorgeschlagenen Reste des aktiven Zentrums an der Substratbindung beteiligt sind. Jedoch ist die Rolle der verschiedenen Reste sehr verschieden, wobei dem Serin eine herausragende Rolle zugedacht wird. Die hier dargestellte Arbeit bestätigt die Mitwirkung des mutmaßlichen aktiven Zentrums und zeigt, dass die Reste des Aktiven Zentrums von BadI eine unterschiedliche Rolle, im Vergleich zu ihrem ähnlichsten Homolog MenB, spielen. MenD, eine SEPHCHC (2-Succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carbonsäure) Synthase, ist an der Menaquinonbiosynthese von S. aureus beteiligt. Obwohl S. aureus gewöhnlich als Kommensale betrachtet wird, kann es als bemerkenswertes Pathogen auftreten, wenn es die Epithelwand durchbricht und eine Vielzahl an Erkrankungen, von einfachen Hautinfektionen bis zu lebensbedrohlichen Zustanden, verursachen. Sogenannte „Small colony variants“ (SCVs), eine langsam wachsende, kleinzellige Subpopulation der Bakterien wurde mit persistenten, rezidivierenden und antibiotika-resistenten Infektionen assoziiert. Diese Varianten weisen einen Mangel von Thiamin, Menaquinon und Hämin auf. Menaquinon ist ein essentieller Bestandteil der Elektronentransport-Kette in grampositiven Organismen. Daher sind Enzyme dieses Stoffwechselwegs attraktive Wirkstoffziele gegen Krankheitserreger wie M. tuberculosis oder Bacillus subtilis. MenD, das Enzym, welches den ersten irreversiblen Schritt des Menaquinon-Biosynthesewegs katalysiert, wurde mit dem SCV Phänotyp von S. aureus in Verbindung gebracht. In dieser Arbeit werden die biochemischen und strukturellen Eigenschaften dieses wichtigen Enzyms untersucht. Unsere strukturelle Untersuchung zeigte, dass trotz einer niedrigen Sequenzidentität von 28%, die Gesamtfaltung von S. aureus MenD (saMenD) mit derjenigen von Escherichia coli MenD (ecMenD), trotz einiger signifikanter Abweichungen, übereinstimmt. Größere strukturelle Unterschiede können nahe des aktives Zentrums des Proteins beobachtet werden, vor allem in der C-terminalen Helix und einer Schleife nahe dem aktiven Zentrum. Die Schleife enthält kritische Reste für die Kofaktorbindung und liegt nur in der ecMenD-ThDP Komplexstruktur definiert vor, während die in der Apo-Form und der Substrat-gebundenen Struktur von ecMenD ungeordnet ist. In unserer saMenD Struktur zeigt sich die Schleife erstmals komplett geordnet in der Apo-Form und stellt eine neue Konformation der Kofaktor-Bindeschleife dar. Die Schleife nimmt eine ungewöhnlich offene Konformation an und die konservierten Reste, welche für die Kofaktorbindung verantwortlich sind, sind zu weit entfernt, um in dieser Position einen produktiven Komplex mit dem Kofaktor zu bilden. Zudem haben biochemische Studien in Verbindung mit den strukturellen Daten zur Identifizierung der Substratbindetasche und der an der Bindung und Katalyse beteiligten Aminosäuren beigetragen. In der vorliegenden Arbeit wurden die biochemischen und strukturellen Charakteristika von saMenD erfolgreich aufgeklärt. KW - Benzoate KW - Menaquinon-BIosynthese KW - SEPHCHC Synthase KW - Menaquinone Biosynthesis KW - Benzoate degradation KW - Biologischer Abbau KW - Enzym KW - Rhodopseudomonas palustris KW - Staphylococcus aureus Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-90848 ER - TY - THES A1 - Narkhede, Yogesh T1 - In silico structure-based optimisation of pyrrolidine carboxamides as Mycobacterium tuberculosis enoyl-ACP reductase inhibitors T1 - In silico Struktur-basierte Optimierung von Pyrrolidin-Carbonsäureamiden als Mycobacterium tuberculosis Enoyl-ACP-Reduktase-Inhibitoren N2 - The high infection rates and recent emergence of extremely drug resistant forms of Mycobacterium tuberculosis pose a significant challenge for global health. The NADH- dependent enoyl-ACP-reductase InhA of the type II mycobacterial fatty acid biosynthesis pathway is a well-validated target for inhibiting mycobacterial growth. InhA has been shown to be inhibited by a variety of compound series. Prominent classes of InhA inhibitors from literature include diaryl ethers, pyrrolidine carboxamides and arylamides which can be subjected to further development. Despite the progress in this area, very few compounds are in clinical development phase. The present work involves a detailed computational investigation of the binding modes and structure-based optimisation of pyrrolidine carboxamides as InhA inhibitors. With substituents of widely varying bulkiness, the pyrrolidine carboxamide dataset presented a challenge for prediction of binding mode as well as affinity. Using advanced docking protocols and in-house developed pose selection procedures, the binding modes of 44 compounds were predicted. The poses from docking were used in short molecular dynamics (MD) simulations to ascertain the dominant binding conformations for the bulkier members of the series. Subsequently, an activity-based classification strategy could be developed to circumvent the affinity prediction problems observed with this dataset. The prominent motions of the bound ligand and the active site residues were then ascertained using Essential Dynamics (ED). The information from ED and literature was subsequently used to design a total of 20 compounds that were subjected to extensive in-silico evaluations. Finally, the molecular determinants of rapid-reversible binding of pyrrolidine carboxamides were investigated using long MD simulations. N2 - Hohe Infektionsraten und das Auftreten von multiresistenten Formen von Mycobacterium tuberculosis stellen eine große Herausforderung f ̈ ur das globale Gesundsheitswesen dar. Die NADH-abh ̈angige Enoyl-ACP-Reduktase des mykobakteriellen Fetts ̈aure-Biosynthesewegs II, InhA, ist ein gut validiertes Target zur Hemmung des mykobakteriellen Wachstums. Es wurde gezeigt, dass InhA durch eine Vielzahl von unterschiedlichen Verbindungs- klassen gehemmt wird. Zu den bekanntesten Klassen von InhA-Inhibitoren aus der Literatur geh ̈ oren Diphenylether, Pyrrolidincarboxamide und Arylamide, die zur weiteren Entwicklung verwendet werden k ̈onnen. Trotz der Fortschritte in diesem Bereich sind sehr wenige Verbindungen in einer klinischen Entwicklungsphase. Die vorliegende Arbeit beinhaltet eine detaillierte computergest ̈ utzte Untersuchung der Bindungsmodi und die strukturbasierte Optimierung von Pyrrolidincarboxamiden als InhA-Inhibitoren. Aufgrund von Substituenten mit stark variierendem Raumanspruch stellt der Pyrrolidin- carboxamid-Datensatz eine Herausforderung f ̈ ur die Vorhersage von Bindungsmodi und Affinitit ̈aten dar. Mit aufw ̈andigen Docking-Protokollen und speziell zu diesem Zweck entwickelten Posen-Auswahlverfahren wurden die Bindungsmodi f ̈ ur 44 Verbindungen vorhergesagt. Die Posen des Dockings wurden in kurzen Molekulardynamik (MD) Sim- ulationen verwendet, um die bevorzugten Bindungskonformationen f ̈ ur die r ̈ aumlich anspruchsvollen Vertreter des Datensatzes zu ermitteln. Anschließend konnte eine akt- ivit ̈atsbasierte Klassifizierungsstrategie entwickelt werden, um die in diesem Datensatz beobachteten Probleme in der Affinit ̈ atsvorhersage zu umgehen. Die wesentlichen Bewe- gungen des gebundenen Liganden und der Aminos ̈auren der Bindetasche wurden daraufhin mit Essential Dynamics (ED) ermittelt. Informationen aus der ED-Analyse und der Literatur wurden anschließend verwendet, um insgesamt 20 Verbindungen zu entwerfen, die umfangreichen in-silico-Bewertungen unterzogen wurden. Schließlich wurden die molekularen Determinanten der schnell-reversiblen Bindung von Pyrrolidincarboxamiden unter Verwendung von langen MD Simulationen untersucht. KW - Tuberkelbakterium KW - Enoyl-acyl-carrier-protein-Reductase KW - Pyrrolidinderivate KW - Arzneimitteldesign KW - Computational drug design KW - Mycobacterium tuberculosis InhA KW - Pyrrolidine carboxamides KW - Mycobacterium tuberculosis KW - Structure-based KW - enoyl ACP reductase KW - pyrrolidine carboxamides Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-152468 ER - TY - THES A1 - Endres, Theresa T1 - PAF1 complex and MYC couple transcription elongation with double-strand break repair T1 - Koordination von Transkriptionselongation und Doppelstrangbruchreparatur durch den PAF1 Komplex und MYC N2 - The oncogene MYC is deregulated and overexpressed in a high variety of human cancers and is considered an important driver in tumorigenesis. The MYC protein binds to virtually all active promoters of genes which are also bound by the RNA Polymerase II (RNAPII). This results in the assumption that MYC is a transcription factor regulating gene expression. The effects of gene expression are weak and often differ depending on the tumor entities or MYC levels. These observations could argue that the oncogene MYC has additional functions independent of altering gene expression. In relation to this, the high diversity of interaction partners might be important. One of them is the RNAPII associated Factor I complex (PAF1c). In this study, direct interaction between PAF1c and MYC was confirmed in an in-vitro pulldown assay. ChIP sequencing analyses revealed that knockdown of PAF1c components resulted in reduced MYC occupancy at active promoters. Depletion or activation as well as overexpression of MYC led to reduced or enhanced global occupancy of PAF1c in the body of active genes, arguing that MYC and PAF1c bind cooperatively to chromatin. Upon PAF1c knockdown cell proliferation was reduced and additionally resulted in an attenuation of activation or repression of MYC-regulated genes. Interestingly, knockdown of PAF1c components caused an accumulation in S-phase of cells bearing oncogenic MYC levels. Remarkably, enhanced DNA damage, measured by elevated gH2AX and pKAP1 protein levels, was observed in those cells and this DNA damage occurs specifically during DNA synthesis. Strikingly, MYC is involved in double strand break repair in a PAF1c-dependent manner at oncogenic MYC levels. Collectively the data show that the transfer of PAF1c from MYC onto the RNAPII couples the transcriptional elongation with double strand break repair to maintain the genomic integrity in MYC-driven tumor cells. N2 - Das Onkogen MYC ist in einer Vielzahl verschiedener Krebsarten dereguliert und überexprimiert und deshalb ein wichtiger Faktor in der Tumorgenese. Zwei zentrale Beobachten sind: Erstens, das MYC Protein bindet grundsätzlich an allen zugänglichen Promotoren von Genen, die ebenfalls von der RNA Polymerase II gebunden sind. Das resultiert in der Annahme, dass MYC als ein Transktiptionfaktor klassifiziert werden kann, der Genexpression reguliert. Zweitens, die Effekte auf die Genregulation sind schwach und oftmal abhängig von der Tumorart als auch von der unterschiedlichen MYC Proteinmenge. Diese Beobachtungen lassen die Schlussfolgerung zu, dass MYC eine zusätzliche Funktion neben der des Transktiptionfaktors haben könnte. Darauf bezogen könnte die große Anzahl an Interaktionspartnern eine entscheidende Rolle spielen. Einer dieser Interaktionspartner ist der RNA Polymerase II assoziierte Faktor I Complex (PAF1c). In dieser Arbeit konnte die direkte Interaktion zwischen PAF1c und MYC mittels in-vitro Pulldown Assays bestätigt werden. ChIP-Sequenzierungen illustrierten, dass der Knockdown verschiedener Untereinheiten des PAF1c zur einer verminderten Bindung von MYC an aktiven Promotoren führt. Andererseits zeigte die Depletion oder Aktivierung sowie Überexpression des MYC Proteins entweder eine reduzierte oder aber eine gesteigerte PAF1c Bindung im Genkörper aktiver Gene. Folglich wird angenommen, dass MYC und PAF1c kooperativ an das Chromatin binden. Unabhängig von den MYC Proteinmengen, führte der Knockdown von PAF1c Untereinheiten zu einer reduzierten Proliferation von Zellen. Zusätzlich resultierte in RNA Sequenzierexperimenten, dass der PAF1c Knockdown zu einer abgeschwächten Aktivierung oder Repression von MYC regulierten Genen führt. Interessanterweise führte der Knockdown von PAF1c Untereinheiten zu einer Ansammlung in der S-Phase des Zellzyklus für viele Zellen, die onkogene MYC Proteinmengen aufweisten. Auffallend dabei war, dass diese Zellen erhöhten DNA Schaden, gemessen an erhöhten Proteinmengen von γH2AX und pKAP1, aufwiesen. Dieser DNA Schaden ereignete sich spezifisch während der DNA Synthese. Bemerkenswert ist, dass MYC, vor allem bei onkogenen MYC Proteinmengen, in die Doppelstrangbruchreparatur involviert ist und das dies in Zusammenarbeit mit PAF1c erfolgt. Zusammenfassend zeigen die Daten, dass der Transfer des PAF1c von MYC auf die RNAPII die transkriptionelle Elongation mit der Doppelstrangbruchreparatur vereint um die genomische Integrität in MYC getriebenen Tumoren zu gewährleisten. KW - MYC KW - PAF1c KW - double-strand break repair Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-249557 ER - TY - THES A1 - Tiffe, Theresa T1 - Prävalenz und Determinanten für die Einhaltung der leitliniengerechten Therapie kardiovaskulärer Risikofaktoren in der Primär- und Sekundärprävention von Herz-Kreislauf-Erkrankungen in Deutschland T1 - Prevalence and determinants for compliance to guidelines recommendations for therapy of cardiovascular risk factors in primary and secondary prevention of cardiovascular diseases in Germany N2 - Die Einhaltung eines gesunden Lebensstils, einschließlich der Behandlung modifizierbarer kardiovaskulärer Risikofaktoren, beeinflusst maßgeblich die Entstehung und Progression von Herz-Kreislauf-Erkrankungen (HKE). So reduziert eine ausgewogene Ernährungsweise, ausreichend körperliche Aktivität, Tabakverzicht, das Halten des Normalgewichtes sowie die Behandlung einer Hypertonie, Hyperlipidämie und Diabetes mellitus, die kardiovaskuläre Morbidität und Mortalität. Die vorliegende Arbeit widmet sich (a) der Prävalenz und leitliniengerechten Kontrolle kardiovaskulärer Risikofaktoren von Teilnehmern aus der Allgemeinbevölkerung der STAAB Kohortenstudie („Häufigkeit und Einflussfaktoren auf frühe Stadien A und B der Herzinsuffizienz in der Bevölkerung“) sowie der Schätzung des 10-Jahres Risikos für tödliche HKE in diesem Kollektiv. Weiterhin wurde (b) der Einfluss von medikamentenbezogenen Überzeugungen auf die Blutdruckkontrolle von Teilnehmern der STAAB Kohortenstudie untersucht. Schließlich wurde (c) der Erhalt von ärztlichen Lebensstilempfehlungen sowie deren Determinanten bei Teilnehmern der STAAB Kohortenstudie sowie der EUROASPIRE IV Studie („European Action on Secondary and Primary Prevention by Intervention to Reduce Events“) in Deutschland betrachtet. Die STAAB Kohortenstudie untersucht die frühen asymptomatischen Formen der Herzinsuffizienz-Stadien A und B in einer repräsentativen Stichprobe von 5.000 Personen ohne symptomatische Herzinsuffizienz im Alter von 30 bis 79 Jahren aus der Allgemeinbevölkerung mit Wohnsitz in der Stadt Würzburg. Die EUROASPIRE IV Studie untersuchte bei 7.998 Koronarpatienten im Alter von 18 bis 79 Jahren aus insgesamt 24 Europäischen Ländern (536 Patienten aus Deutschland) im Zeitraum 2012 bis 2013 die Risikofaktoren sowie die Umsetzung der leitliniengerechten Versorgung und Prävention von HKE im europäischen Vergleich. Die Datenerhebung beider Studien erfolgte durch ein geschultes Studienpersonal nach standardisierten Vorgaben. Die Prävalenz und Kontrolle kardiovaskulärer Risikofaktoren nach den aktuellen Vorgaben der „European Society of Cardiology“ (ESC) wurde bei insgesamt 1.379 Teilnehmern, die zwischen Dezember 2013 und April 2015 an der STAAB Kohortenstudie teilgenommen haben, untersucht. Es zeigte sich eine hohe Prävalenz der kardiovaskulären Risikofaktoren Hypertonie (31.8%), Hyperlipidämie (57.6%) und Diabetes mellitus (3.5%). Hierbei erreichten trotz Pharmakotherapie über die Hälfte der Teilnehmer mit einem Bluthochdruck (52.7%) oder erhöhten LDL-Cholesterinwerten (56.7%) sowie 44.0% der Personen mit einem Diabetes mellitus die empfohlenen Grenzwerte nicht. Weiterhin wurde erstmalig zu Studienbesuch eine Hypertonie (36.0%), Hyperlipidämie (54.2%) oder ein Langzeitzuckerwert (HbA1c) >6.5% (23.3%) detektiert. In der jüngsten Altersgruppe (30-39 Jahre) fand sich der höchste Anteil von unbekanntem Bluthochdruck (76.5%) sowie hohem LDL-Cholesterin (78.0%) und die Altersgruppe 60-69 Jahren wies mit 43.5% die höchste Prävalenz für einen bislang nicht detektierten HbA1c >6.5% auf. Die Akkumulation von drei oder mehr kardiovaskulären Risikofaktoren war mit dem männlichen Geschlecht, einem höheren Alter und einem niedrigeren Bildungsgrad assoziiert. Von 980 mittels SCORE („Systematic Coronary Risk Evaluation“) Risiko-Chart untersuchten Teilnehmern befanden sich jeweils 56.6%, 35.8% und 7.5% in der niedrigen, mittleren und hohen bis sehr hohen SCORE-Risikogruppe für tödliche HKE. Das Hochrisiko-Kollektiv für tödliche HKE war vorwiegend männlich und wies häufiger eine Hypertonie oder ein hohes LDL-Cholesterin auf. Der Einfluss von Überzeugungen gegenüber antihypertensiver Medikation auf die Blutdruckkontrolle wurde an 293 Teilnehmern, die von Oktober 2014 bis März 2017 an der STAAB Kohortenstudie teilgenommen haben, untersucht. Auf ihre Medikamente gesundheitlich angewiesen zu sein gaben 87% der Teilnehmer an, 78.1% stimmten der Aussage zu, dass ihre Medikamente sie vor einer Verschlechterung ihrer Gesundheit schützen. Es zeigte sich ein inverser Zusammenhang zwischen einem höheren Maß an Bedenken gegenüber der verordneten blutdrucksenkenden Medikation und einer besseren Blutdruckkontrolle bei Frauen. Ein signifikanter Zusammenhang zwischen Bedenken gegenüber einer antihypertensiven Medikation und der Blutdruckkontrolle bei Männern ließ sich hingegen nicht feststellen. Es konnten keine statistisch signifikanten Assoziationen für die Notwendigkeit von Medikation in der vorliegen Untersuchung gezeigt werden. Die Häufigkeit und Determinanten für die Empfehlung eines ärztlichen Lebensstils wurde bei 665 Teilnehmern der STAAB Kohortenstudie ohne vorbestehende HKE (Primärprävention) und bei 536 Koronarpatienten der EUROASPIRE IV Studie (Sekundärprävention) untersucht. Mit Ausnahme der Empfehlung zum Rauchverzicht erhielten die Patienten der EUROASPIRE IV Studie häufiger ärztliche Lebensstilempfehlungen verglichen mit Teilnehmern der STAAB Kohortenstudie: (Rauchverzicht: STAAB 44.0%, EUROASPIRE 36.7%; Gewichtsreduktion: STAAB 43.9%, EUROASPIRE 69.2%; körperliche Aktivität steigern: STAAB 52.1%, EUROASPIRE 71.4%; gesundes Ernährungsverhalten: STAAB 43.9%, EUROASPIRE 73.1%). Die Chance für den Erhalt von mindestens 50% aufgrund der individuellen Risikofaktoren adäquaten ärztlichen Lebensstilempfehlungen war bei STAAB Teilnehmern mit offensichtlichen oder beobachtbaren kardiovaskulären Risikofaktoren signifikant erhöht (BMI >25kg/m2, Hypertonie, Hyperlipidämie und Diabetes mellitus). Hingegen erhielten Patienten mit einer vorbestehenden HKE signifikant häufiger eine ärztliche Lebensstilempfehlung bei einem Diabetes mellitus, wobei die Empfehlungshäufigkeit mit zunehmendem Alter abnahm. Die weitergehende nicht publizierte Analyse des Interaktions Modells zeigte, dass der Zusammenhang zwischen dem Alter und der Empfehlungshäufigkeit bei Patienten mit bereits bestehender HKE stärker ausgeprägt war, als bei Teilnehmern der STAAB Kohortenstudie ohne koronare HKE. Weiterhin war der Zusammenhang zwischen einer adäquaten Lebensstilempfehlung und Hyperlipidämie bei Teilnehmern ohne koronares Ereignis signifikant stärker ausgeprägt, im Vergleich zu Patienten mit einer bereits bestehender HKE. Die Ergebnisse zeigten ein erhebliches Potenzial für eine verbesserte Umsetzung leitliniengerechter Behandlung modifizierbarer kardiovaskulärer Risikofaktoren in der Primär- und Sekundärprävention. Vor dem Hintergrund einer hohen Anzahl kardiovaskulärer Risikofaktoren bei jungen Erwachsenen sollte die Bedeutung der Langzeitfolgen im Arzt Patienten-Gespräch hervorgehoben und bei der Erarbeitung von Präventionsstrategien, insbesondere für junge Altersgruppen, Beachtung finden. Geschlechtsspezifische Determinanten hinsichtlich der Kontrolle kardiovaskulärer Risikofaktoren sowie Befürchtungen gegenüber der Medikation sollten stärker im Arzt-Patientengespräch berücksichtigt werden. Zur Stärkung der Compliance des Patienten bei der Umsetzung eines gesunden Lebensstils, sollte der Arzt hinsichtlich der Bedeutung von Lebensstilintervention, aber auch im Umgang mit schwierigen Situationen, wie die Empfehlung einer Gewichtsreduktion, sensibilisiert und bei der richtigen Handhabung der Leitlinienempfehlung stärker unterstützt werden. N2 - Maintaining a healthy lifestyle, including the treatment of modifiable cardiovascular risk factors, has a significant impact on the development and progression of cardiovascular diseases (CVD). Thus, a healthy diet, adequate physical activity, tobacco control, maintaining normal weight and the treatment of hypertension, hyperlipidemia and diabetes mellitus, reduce cardiovascular morbidity and mortality. The present work focused on (a) the prevalence and guideline-recommended control of cardiovascular risk factors from the general population of the STAAB cohort study (Characteristics and Course of Heart Failure Stages A-B and Determinants of Progression) and their estimation of the 10-year risk of fatal CVD. Furthermore, we investigated, (b) the influence of medication-related beliefs on blood pressure control from participants of the STAAB cohort study. Finally, we considered (c) the maintenance of physicians-led lifestyle recommendations and their determinants in the STAAB cohort study compared to the EUROASPIRE IV study (European Action on Secondary and Primary Prevention by Intervention to Reduce Events) in Germany. The STAAB cohort study examines the early asymptomatic forms of heart failure stages A and B in a representative sample of 5.000 participants aged 30 to 79 years of the general population of the city of Würzburg. The EUROASPIRE IV study examined 7.998 patients with CVD aged 18 to 79 years from a total of 24 European countries between 2012 to 2013, including 536 patients from Germany. The Study investigated the prevalence of cardiovascular risk factors as well as the guideline recommended control care in coronary patients. The data collection of both studies was performed by trained staff according to standardized operating procedures. The prevalence and control of cardiovascular risk factors according to the current guidelines of the European Society of Cardiology (ESC) was investigated in 1.379 participants who participated in the STAAB cohort study between December 2013 and April 2015. A high prevalence of hypertension (31.8%), hyperlipidemia (57.6%) and diabetes mellitus (3.5%) was observed. Despite pharmacotherapy, more than half of the participants with high blood pressure (52.7%) or elevated LDL cholesterol levels (56.7%) as well as 44.0% of the persons with diabetes mellitus failed to reach the targets recommended in clincial guidelines. Furthermore, hypertension, hyperlipidemia and an HbA1c-level >6.5% was detected for the first time during study visit in 36.0%, 54.2% and 23.3%, respectively. The highest proportion of unknown cardiovascular risk factors was found in the youngest age group (30-39 years) for high blood pressure (76.5%), high LDL cholesterol (78.0%), and in the age group of 60-69 years for an undetected HbA1c-level of >6.5%. The accumulation of three or more cardiovascular risk factors was associated with male gender, higher age and educational level. Of 980 participants of the STAAB cohort study, 56.6%, 35.8%, and 7.5% were in the low, middle, and high to very high risk group for fatal CHD according to the SCORE risk chart. Participants with a high to very high SCORE risk group were predominantly male and demonstrated a higher prevalence of hypertension or high LDL cholesterol. The influence of medication-related beliefs on blood pressure control was investigated in 293 participants who participated in the STAAB cohort study from October 2014 to March 2017. Eighty-seven percent of these participants stated that „I sometimes worry about becoming too dependent on my medicines“, followed by the statement „My medicines protect me from becoming worse“ worse (78.1%). There was an inverse association between a higher level of concern about the prescribed antihypertensive medication and a better blood pressure control in women. However, there was no statistically significant association between concerns about antihypertensive medication and blood pressure control in men. No statistically significant associations were found for the necessity of prescribed medication in any model. The prevalence and determinants for healthy lifestyle advices by physicians were investigated in 665 participants of the STAAB cohort study without previous CVD (primary prevention) and in 536 coronary patients of the EUROASPIRE IV study (secondary prevention). Except for smoking, patients in EUROASPIRE IV received more frequently healthy lifestyle advices than participants in the STAAB cohort study (smoking abstinence: STAAB 44.0%, EUROASPIRE 36.7%; weight reduction: STAAB 43.9%, EUROASPIRE 69.2%; physical activity: STAAB 52.1%, EUROASPIRE 71.4%; healthy diet: STAAB 43.9%, EUROASPIRE 73.1%). In addition, patients with a pre-existing CVD received significantly more lifestyle advices for diabetes mellitus, whereas the frequency of lifestyle recommendations decreased with advancing age. The analysis of the interaction model showed that the correlation between age and receiving adequate lifestyle advices was more pronounced in patients with existing CVD than in participants without coronary CVD in the STAAB cohort study. Furthermore, the relationship between receiving adequate lifestyle advices and hyperlipidemia was significantly stronger in participants without a coronary event compared to patients with existing CVD. Present results show a considerable potential for improved implementation of guideline recommended control of modifiable cardiovascular risk factors in primary and secondary prevention. Due to the high number of cardiovascular risk factors in young adults, the importance of long-term consequences of cardiovascular risk factors should be emphasized in physician-patient conversation and taken into account in the development of prevention strategies, especially for younger age groups. Gender-specific determinants regarding the control of cardiovascular risk factors as well as concerns about medication should be given greater consideration in the physician-patient interaction. In order to strengthen the patients compliance of a healthy lifestyle, physicians should be sensitized with regard to the importance of healthy lifestyle advices, but also in dealing with difficult situations, such as the recommendation of weight reduction. Also the correct handling of the guideline recommendations by physicians should be more supported. KW - Kardiovaskuläre Krankheit KW - Herz-Kreislauf-Erkrankung KW - kardiovaskuläre Risikofaktoren KW - Prävention Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-192723 ER - TY - THES A1 - Kaiser, Sebastian T1 - A RecQ helicase in disguise: Characterization of the unconventional Structure and Function of the human Genome Caretaker RecQ4 T1 - Die unkonventionelle RecQ Helikase RecQ4: Charakterisierung der ungewöhnlichen Struktur und Funktion eines essentiellen Beschützers des menschlichen Genoms N2 - From the simplest single-cellular organism to the most complex multicellular life forms, genetic information in form of DNA represents the universal basis for all biological processes and thus for life itself. Maintaining the structural and functional integrity of the genome is therefore of paramount importance for every single cell. DNA itself, as an active and complex macromolecular structure, is both substrate and product of many of these biochemical processes. A cornerstone of DNA maintenance is thus established by the tight regulation of the multitude of reactions in DNA metabolism, repressing adverse side reactions and ensuring the integrity of DNA in sequence and function. The family of RecQ helicases has emerged as a vital class of enzymes that facilitate genomic integrity by operating in a versatile spectrum of nucleic acid metabolism processes, such as DNA replication, repair, recombination, transcription and telomere stability. RecQ helicases are ubiquitously expressed and conserved in all kingdoms of life. Human cells express five different RecQ enzymes, RecQ1, BLM, WRN, RecQ4 and RecQ5, which all exhibit individual as well as overlapping functions in the maintenance of genomic integrity. Dysfunction of three human RecQ helicases, BLM, WRN and RecQ4, causes different heritable cancer susceptibility syndromes, supporting the theory that genomic instability is a molecular driving force for cancer development. However, based on their inherent DNA protective nature, RecQ helicases represent a double-edged sword in the maintenance of genomic integrity. While their activity in normal cells is essential to prevent cancerogenesis and cellular aging, cancer cells may exploit this DNA protective function by the overexpression of many RecQ helicases, aiding to overcome the disadvantageous results of unchecked DNA replication and simultaneously gaining resistance against chemotherapeutic drugs. Therefore, detailed knowledge how RecQ helicases warrant genomic integrity is required to understand their implication in cancerogenesis and aging, thus setting the stage to develop new strategies towards the treatment of cancer. The current study presents and discusses the first high-resolution X-ray structure of the human RecQ4 helicase. The structure encompasses the conserved RecQ4 helicase core, including a large fraction of its unique C- terminus. Our structural analysis of the RecQ4 model highlights distinctive differences and unexpected similarities to other, structurally conserved, RecQ helicases and permits to draw conclusions about the functional implications of the unique domains within the RecQ4 C-terminus. The biochemical characterization of various RecQ4 variants provides functional insights into the RecQ4 helicase mechanism, suggesting that RecQ4 might utilize an alternative DNA strand separation technique, compared to other human RecQ family members. Finally, the RecQ4 model permits for the first time the analysis of multiple documented RecQ4 patient mutations at the atomic level and thus provides the possibility for an advanced interpretation of particular structure-function relationships in RecQ4 pathogenesis. N2 - Vom simpelsten einzelligen Organismus bis hin zu hoch komplexen Lebensformen, genetische Information in Form von DNA repräsentiert die universelle Grundlage aller biologischer Prozesse, und damit die des Lebens selbst. Die Aufrechterhaltung der intakten Struktur und Funktion des Genoms ist daher von höchster Priorität für jede einzelne Zelle. Die DNA selbst, als aktives und komplexes Makromolekül, ist sowohl Substrat als auch Produkt einer Vielzahl dieser biochemischen Prozesse. Ein wesentlicher Aspekt für die Aufrechterhaltung genomischer Integrität besteht daher in der gezielten Regulation aller Prozesse des DNA Metabolismus, um die Konservierung der DNA in Sequenz und Funktion zu gewährleisten und unerwünschte Nebenreaktionen zu verhindern. Die Familie der RecQ Helikasen hat sich als eine essentielle Gruppe von Enzymen etabliert, die diese genomische Integrität gewährleisten, indem sie eine Vielzahl von DNA basierten Prozessen kontrollieren. Dies umfasst die Replikation, Reparatur, Rekombination und Transkription von DNA, sowie Prozesse, die der Stabilisierung der Telomere dienen. RecQ Helikasen werden von allen Zellen exprimiert und können in allen Domänen des Lebens – Bakterien, Archaeen und Eukaryoten nachgewiesen werden. Humane Zellen enthalten fünf verschiedene RecQ Helikasen, RecQ1, BLM, WRN, RecQ4 und RecQ5, welche sowohl individuelle als auch überlappende Funktionen in der Aufrechterhaltung genomischer Integrität innehaben. Eine Beeinträchtigung der Funktion der humanen RecQ Helikasen BLM, WRN und RecQ4 führt zu Krankheiten die durch eine erhöhte Wahrscheinlichkeit für die Entstehung von Krebs gekennzeichnet sind. Dies unterstützt die Theorie, dass die genomische Instabilität eine molekulare Grundlage für die Entstehung von Krebs darstellt. Allerdings repräsentiert die den RecQ Helikasen innewohnende Funktion der Aufrechterhaltung genomischer Integrität ein zweischneidiges Schwert. Während ihre Aktivitäten auf der einen Seite für normale Zellen essentiell sind, um Krankheiten und zelluläre Alterungserscheinungen zu verhindern, wird ihre DNA protektive Funktion von Krebszellen genutzt, indem sie verschiedenste RecQ Helikasen überexprimieren und damit den nachteiligen Effekten der unkontrollierten DNA Replikation entgegenwirken. Zudem erlangen Tumorzellen durch die erhöhte Präsenz der RecQ Helikasen Resistenz gegenüber einer Vielzahl von Chemotherapeutika. Es ist daher von größter Bedeutung zu verstehen, wie genau die einzelnen RecQ Helikasen in der Entstehung von Krebs und dem Alterungsprozess involviert sind, um neue Ansätze in der Krebstherapie zu entwickeln. Die vorliegende Arbeit präsentiert und diskutiert die erste detaillierte Röntgen-Kristallographische Struktur der humanen RecQ4 Helikase. Die vorgestellte Struktur umfasst den konservierten Kern der RecQ4 Helikase, einschließlich eines großen Teils ihres einzigartigen C-terminus. Eine Analyse des RecQ4 Modells weist sowohl eindeutige Unterschiede als auch unerwartete Gemeinsamkeiten im Vergleich mit anderen, untereinander strukturell und funktional ähnlichen, humanen RecQ Helikasen auf und erlaubt zudem Rückschlüsse auf die Funktion der einzigartigen C-terminalen RecQ4 Domäne. Die biochemische Charakterisierung verschiedener RecQ4 Varianten liefert funktionelle Einblicke in den Mechanismus der DNA Doppelstrangtrennung durch RecQ4 und deutet darauf hin, dass sich dieser in weiten Teilen vom Mechanismus der anderen humanen RecQ Helikasen unterscheidet. Letztlich repräsentiert das hier vorgestellte Modell der RecQ4 Helikase die Grundlage für die Analyse verschiedenster dokumentierter RecQ4 Patientenmutationen und erlaubt damit eine erste Abschätzung von Struktur-und-Funktions-Beziehungen bezüglich der bekannten RecQ4- assoziierten Krankheitsbilder. KW - Helikasen KW - DNA-Reparatur KW - RecQ helicase KW - X-ray crystallography KW - Rothmund-Thomson-Syndrome KW - Genome Instability Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-160414 N1 - Zugriff gesperrt bis 16.03.2020 ER - TY - THES A1 - Kölmel, Wolfgang T1 - Structural and functional characterization of TFIIH from \(Chaetomium\) \(thermophilum\) T1 - Strukturelle und funktionale Charakterisierung von TFIIH aus \(Chaetomium\) \(thermophilum\) N2 - Gene expression and transfer of the genetic information to the next generation forms the basis of cellular life. These processes crucially rely on DNA, thus the preservation, transcription and translation of DNA is of fundamental importance for any living being. The general transcription factor TFIIH is a ten subunit protein complex, which consists of two subcomplexes: XPB, p62, p52, p44, p34, and p8 constitute the TFIIH core, CDK7, CyclinH, and MAT1 constitute the CAK. These two subcomplexes are connected via XPD. TFIIH is a crucial factor involved in both, DNA repair and transcription. The central role of TFIIH is underlined by three severe disorders linked to failure of TFIIH in these processes: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. Only limited structural and functional data of TFIIH are available so far. Here, the model organism Chaetomium thermophilum was utilized with the aim to structurally and functionally characterize TFIIH. By combining the expression and purification of single TFIIH subunits with the co-expression and co-purification of dual complexes, a unique and powerful modular system of the TFIIH core subunits could be established, encompassing all proteins in high quality and fully functional. This system permits the step-wise assembly of TFIIH core, thereby making it possible to assess the influence of the intricate interaction network within TFIIH core on the overall enzymatic activities of TFIIH, which has not been possible so far. Utilizing the single subunits and dual complexes, a detailed interaction network of TFIIH core was established, revealing the crucial role of the p34 subunit as a central scaffold of TFIIH by linking the two proteins p44 and p52. Our studies also suggest that p62 constitutes the central interface of TFIIH to the environment rather than acting as a scaffold. TFIIH core complexes were assembled and investigated via electron microscopy. Preliminary data indicate that TFIIH adopts different conformational states, which are important to fulfill its functions in transcription and DNA repair. Additionally, a shortened construct of p62 was used to develop an easy-to-use, low cost strategy to overcome the crystallographic phase problem via cesium derivatization. N2 - Die Expression von Genen und die Weitergabe des Erbguts an die nächste Generation bilden die Grundlage jeden Lebens. Bei diesen Vorgängen spielt die DNA eine entscheidende Rolle. Deshalb sind der Erhalt, die Transkription und die Translation der DNA von fundamentaler Bedeutung für alle Lebewesen. Der generelle Transkriptionsfaktor TFIIH ist ein Multi-Proteinkomplex und umfasst insgesamt zehn Untereinheiten. TFIIH kann in zwei Teilkomplexe unterteilt werden: XPB, p62, p52, p44, p34 und p8 bilden den TFIIH Core Komplex, CDK7, CyclinH und MAT1 bilden den CAK Komplex. Diese beiden Teilkomplexe werden durch XPD verbunden. TFIIH spielt eine entscheidende Rolle sowohl in der DNA Reparatur, als auch in der Transkription. Diese zentrale Rolle wird durch das Auftreten dreier schwerer Krankheiten deutlich, die mit dem Ausfall von TFIIH bei diesen Aufgaben in Verbindung stehen: Xeroderma pigmentosum, Cockayne-Syndrom und Trichothiodystrophie. Daten bezüglich der Struktur und Funktion von TFIIH stehen bisher nur in begrenztem Umfang zur Verfügung. In dieser Arbeit kam der Modellorganismus Chaetomium thermophilum zum Einsatz, mit dem Ziel die Struktur und Funktion von TFIIH näher zu beleuchten. Durch die Kombination der Expression und Aufreinigung einzelner TFIIH Untereinheiten mit der Koexpression und Koaufreinigung von dualen Komplexen konnte ein einmaliges und leistungsfähiges modulares System entwickelt werden, das die Darstellung aller Untereinheiten in hoher Qualität und voller Funktionalität erlaubt. Basierend auf diesen Ergebnissen wurde die schrittweise modulare Zusammensetzung von TFIIH Core ermöglicht, was es nun erlaubt den Einfluss der komplexen Wechselwirkungen innerhalb von TFIIH Core auf die enzymatischen Aktivitäten im Ganzen zu untersuchen, was bisher nicht möglich war. Mit Hilfe der Einzelproteine und dualen Komplexe wurde ein detailliertes Netzwerk aus Wechselwirkungen innerhalb TFIIH Core etabliert, welches die entscheidende Rolle der p34 Untereinheit als zentrales Gerüst für TFIIH offenbarte, da sie die Verbindung zwischen p44 und p52 herstellt. Unsere Untersuchungen deuten zudem darauf hin, dass p62 die zentrale Schnittstelle zur Umgebung von TFIIH darstellt, anstatt als Gerüst zu fungieren. Des Weiteren gelang die Assemblierung von TFIIH Core Komplexen, die mittels Elektronenmikroskopie untersucht wurden. Die Strukturen, die daraus hervorgingen, legen das Vorhandensein verschiedener TFIIH Konformationen nahe, welche vermutlich bei den verschiedenen Aufgaben von TFIIH in der Transkription und DNA Reparatur zum Tragen kommen. Außerdem wurde mit Hilfe eines gekürzten p62 Konstrukts eine einfach zu handhabende, kostengünstige Strategie zur Lösung des kristallografischen Phasenproblems mittels Cäsiumderivatisierung entwickelt. KW - Transkriptionsfaktor KW - DNS-Reparatur KW - TFIIH Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161769 ER - TY - THES A1 - Dehmer, Markus T1 - A novel USP11-TCEAL1-mediated mechanism protects transcriptional elongation by RNA Polymerase II T1 - Ein neuer USP11-TCEAL1 vermittelter Mechanismus schützt die transkriptionelle Elongation der RNA Polymerase II N2 - Deregulated expression of MYC oncoproteins is a driving event in many human cancers. Therefore, understanding and targeting MYC protein-driven mechanisms in tumor biology remain a major challenge. Oncogenic transcription in MYCN-amplified neuroblastoma leads to the formation of the MYCN-BRCA1-USP11 complex that terminates transcription by evicting stalling RNAPII from chromatin. This reduces cellular stress and allows reinitiation of new rounds of transcription. Basically, tumors with amplified MYC genes have a high demand on well orchestration of transcriptional processes-dependent and independent from MYC proteins functions in gene regulation. To date, the cooperation between promoter-proximal termination and transcriptional elongation in cancer cells remains still incomplete in its understanding. In this study the putative role of the dubiquitinase Ubiquitin Specific Protease 11 (USP11) in transcription regulation was further investigated. First, several USP11 interaction partners involved in transcriptional regulation in neuroblastoma cancer cells were identified. In particular, the transcription elongation factor A like 1 (TCEAL1) protein, which assists USP11 to engage protein-protein interactions in a MYCN-dependent manner, was characterized. The data clearly show that TCEAL1 acts as a pro-transcriptional factor for RNA polymerase II (RNAPII)-medi- ated transcription. In detail, TCEAL1 controls the transcription factor S-II (TFIIS), a factor that assists RNAPII to escape from paused sites. The findings claim that TCEAL1 outcompetes the transcription elongation factor TFIIS in a non-catalytic manner on chromatin of highly expressed genes. This is reasoned by the need regulating TFIIS function in transcription. TCEAL1 equili- brates excessive backtracking and premature termination of transcription caused by TFIIS. Collectively, the work shed light on the stoichiometric control of TFIIS demand in transcriptional regulation via the USP11-TCEAL1-USP7 complex. This complex protects RNAPII from TFIIS-mediated termination helping to regulate productive transcription of highly active genes in neuroblastoma. N2 - Die deregulierte Expression von MYC Onkoproteinen ist ein zentrales Event in vielen huma-nen Krebsarten. Aus diesem Grund sind das Verständnis und die gezielte Bekämpfung MYC-getriebener Mechanismen in der Tumorbiologie nach wie vor eine große Herausforderung. In MYCN-amplifizierten Neuroblastomen führt eine übermäßig hohe Transkriptionsrate zur stress-bedingten Rekrutierung des MYCN-BRCA1-USP11-Komplexes. Dieser Komplex be-endet vorzeitig die Transkription, indem er RNAPII Moleküle vom Chromatin wirft. Durch diesen Mechanismus wird zellulärer Stress reduziert und ermöglicht dadurch einen erneuten Start der Transkription. Grundsätzlich stellen Tumoren mit einer Amplifikation von einem der MYC Proteine hohe Anforderungen an eine feine Abstimmung der einzelnen Schritte in der Transkription. Dies ist sowohl abhängig als auch unabhängig von den bereits beschriebe-nen Funktionen der MYC-Proteine in der Genregulation. Bis heute ist das Zusammenspiel zwischen promoter-proximaler Termination und transkriptioneller Elongation noch nicht vollständig aufgeklärt. In dieser Studie wurde eine potenzielle Rolle von USP11 in der Regulation der Transkription weitergehend untersucht. Zunächst wurden mehrere Interaktionspartner von USP11, die an der Regulation der Transkription in Neuroblastom Krebszellen beteiligt sind, identifiziert. Es wurde insbesondere das Transcription Elongation Factor A Like 1 (TCEAL1) Protein charak-terisiert. Dieses Protein unterstützt USP11 dabei, Protein-Protein-Interaktionen MYCN-vermittelt einzugehen. Die Daten zeigen, dass TCEAL1 als pro-transkriptioneller Faktor für die RNA-Polymerase II (RNAPII) -vermittelte Transkription fungiert. Genauer, TCEAL1 kontrolliert den Transkriptionsfaktor S-II (TFIIS), einen Faktor, der der RNAPII dabei hilft, die Transkription nach einem kurzen Pausieren („pausing“) fortzusetzen. Die Ergebnisse zei-gen, dass TCEAL1 den Elongationsfaktor TFIIS auf nicht-katalytische Weise von dem Chromatin von hochexprimierten Genen verdrängt. Dies ist darin begründet, dass die Funkti-on von TFIIS bei der Transkription reguliert werden muss. TCEAL1 gleicht übermäßiges Zurückwandern der RNAPII und die vorzeitige Beendigung der Transkription, das durch TFIIS vermittelt wird, aus. Diese Arbeit gibt Aufschluss über die stöchiometrische Kontrolle des TFIIS-Bedarfs bei der Transkriptionsregulation durch den USP11-TCEAL1-USP7-Komplex. Dieser Komplex schützt die RNAPII vor der TFIIS-vermittelter Termination der Transkription und trägt zur Regulierung einer produktiven Transkription hochaktiver Gene im Neuroblastom bei. KW - Transkription KW - N-Myc KW - Transcription Regulation KW - Pause Release KW - Ubiquitin Specific Protease 11 KW - transcription elongation factor A (SII)-like 1 (TCEAL1) KW - RNA Polymerase II (RNAPII) KW - Transcriptional Stress Response Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-360544 ER - TY - THES A1 - Nair, Radhika Karal T1 - Structural and biochemical characterization of USP28 inhibition by small molecule inhibitors T1 - Strukturelle und biochemische Charakterisierung der Hemmung von USP28 durch niedermolekulare Inhibitoren N2 - Ubiquitination is an important post-translational modification that maintains cellular homeostasis by regulating various biological processes. Deubiquitinases (DUBs) are enzymes that reverse the ubiquitination process by catalyzing the removal of ubiquitin from a substrate. Abnormal expression or function of DUBs is often associated with the onset and progression of various diseases, including cancer. Ubiquitin specific proteases (USPs), which constitute the largest family of DUBs in humans, have become the center of interest as potential targets in cancer therapy as many of them display increased activity or are overexpressed in a range of malignant tumors or the tumor microenvironment. Two related members of the USP family, USP28 and USP25, share high sequence identities but play diverse biological roles. USP28 regulates cell proliferation, oncogenesis, DNA damage repair and apoptosis, whereas USP25 is involved in the anti-viral response, innate immunity and ER-associated degradation in addition to carcinogenesis. USP28 and USP25 also exhibit different oligomeric states – while USP28 is a constitutively active dimer, USP25 assumes an auto-inhibited tetrameric structure. The catalytic domains of both USP28 and USP25 comprise the canonical, globular USP-domain but contain an additional, extended insertion site called USP25/28 catalytic domain inserted domain (UCID) that mediates oligomerization of the proteins. Disruption of the USP25 tetramer leads to the formation of an activated dimeric protein. However, it is still not clear what triggers its activation. Due to their role in maintaining and stabilizing numerous oncoproteins, USP28 and USP25 have emerged as interesting candidates for anti-cancer therapy. Recent advances in small-molecular inhibitor development have led to the discovery of relatively potent inhibitors of USP28 and USP25. This thesis focuses on the structural elucidation of USP28 and the biochemical characterization of USP28/USP25, both in complex with representatives of three out of the eight compound classes reported as USP28/USP25-specific inhibitors. The crystal structures of USP28 in complex with the AZ compounds, Vismodegib and FT206 reveal that all three inhibitor classes bind into the same allosteric pocket distant from the catalytic center, located between the palm and the thumb subdomains (the S1-site). Intriguingly, this binding pocket is identical to the UCID-tip binding interface in the USP25 tetramer, rendering the protein in a locked, inactive conformation. Formation of the binding pocket in USP28 requires a shift in the helix α5, which induces conformational changes and local distortion of the binding channel that typically accommodates the C-terminal tail of Ubiquitin, thus preventing catalysis and abrogating USP28 activity. The key residues of the USP28-inhibitor binding pocket are highly conserved in USP25. Mutagenesis studies of these residues accompanied by biochemical and biophysical assays confirm the proposed mechanism of inhibition and similar binding to USP25. This work provides valuable insights into the inhibition mechanism of the small molecule compounds specifically for the DUBs USP28 and USP25. The USP28-inhibitor complex structures offer a framework to develop more specific and potent inhibitors. N2 - Ubiquitinierung ist eine wichtige posttranslationale Modifikation, die die zelluläre Homöostase aufrechterhält, indem sie verschiedene biologische Prozesse reguliert. Deubiquitinasen (DUBs) sind Enzyme, die den Ubiquitinierungsprozess umkehren, indem sie die Entfernung von Ubiquitin von einem Substrat katalysieren. Eine abnorme Expression oder Funktion von DUBs wird häufig mit dem Auftreten und Fortschreiten verschiedener Krankheiten, einschließlich Krebs, in Verbindung gebracht. Ubiquitin-spezifische Proteasen (USPs), die im Menschen die größte Familie der DUBs bilden, sind als potenzielle Ziele in der Krebstherapie von besonderem Interesse, da viele von ihnen in bösartigen Tumoren oder deren Mikroumgebung abnormal aktiv oder überexprimiert sind. Die zwei eng verwandten Mitglieder der USP-Familie, USP28 und USP25, weisen eine hohe Sequenzidentität auf, sind aber an unterschiedlichen biologischen Prozessen beteiligt. USP28 reguliert die Zellproliferation, die Onkogenese, die Reparatur von DNA-Schäden und die Apoptose, während USP25 eine Rolle bei der antiviralen Reaktion, der angeborenen Immunität, dem ER-assoziierten Abbau und der Carcinogenese spielt. USP28 und USP25 weisen auch unterschiedliche oligomere Zustände auf. Während USP28 ein konstitutiv aktives Dimer bildet, tritt USP25 als auto-inhibiertes Tetramer auf. Strukturell bestehen die katalytischen Domänen sowohl von USP28 als auch von USP25 aus der kanonischen globulären USP-Domäne enthalten jedoch eine zusätzliche Insertion, die als „USP25/28 catalytic domain inserted domain (UCID)“ bezeichnet wird und die Oligomerisierung der Proteine vermittelt. Die Dissoziation des USP25 Tetramers in Dimere führt zu einem aktivierten USP25-Protein. Es ist jedoch immer noch nicht klar, was seine Aktivierung auslöst. Aufgrund ihrer Rolle bei der Aufrechterhaltung und Stabilisierung zahlreicher Onkoproteine haben sich USP28 und USP25 als interessante Kandidaten für die Entwicklung von Medikamenten in der Krebstherapie erwiesen. Jüngste Fortschritte in der Entwicklung von niedermolekularen Inhibitoren haben zur Entdeckung von relativ potenten Inhibitoren von USP28 und USP25 geführt. Diese Arbeit konzentriert sich auf die Strukturaufklärung von USP28 und die biochemische Charakterisierung von USP28/USP25, beide im Komplex mit Vertretern von drei der acht Verbindungsklassen, die als USP28/USP25-spezifische Inhibitoren bekannt sind. Die Kristallstrukturen von USP28 im Komplex mit den AZ-Verbindungen, Vismodegib und FT206 zeigen, dass alle Inhibitoren in einer ähnlichen Region an USP28 binden - einer allosterischen Tasche, die in der Nähe des katalytischen Zentrums liegt und sich zwischen der Handflächen- und der Daumen-Subdomäne befindet. Diese Bindungstasche ist identisch mit der Position, an der der „UCID-tip“ im USP25-Tetramer bindet und das Protein in eine verschränkte, inaktive Konformation versetzt. Die Bildung der Bindungstasche in USP28 erfordert eine Verschiebung der α5-Helix, die zu Konformationsänderungen und einer lokalen Verzerrung des Bindungskanalsführt, der normalerweise den C-terminus des Ubiquitin-Moleküls bindet und so die Katalyse verhindert und die Aktivität von USP28 hemmt. Die Schlüsselreste der USP28-Inhibitor-Bindungstasche sind in USP25 hoch konserviert. Mutagenese-Studien dieser Aminosäuren, begleitet von biochemischen und biophysikalischen Analysen, bestätigen den vorgeschlagenen Mechanismus der Hemmung und eine ähnliche Bindung der Inhibitoren an USP25. Diese Arbeit liefert wertvolle Einblicke in den Hemmungsmechanismus der Kleinmolekülverbindungen, die spezifisch für die DUBs USP28 und USP25 entwickelt worden sind. Die Strukturen der USP28-Inhibitor-Komplexe bieten eine Grundlage für die zukünftige Entwicklung spezifischerer und wirksamerer Inhibitoren. KW - USP KW - Inhibition KW - enzyme KW - crystallography KW - Unique Selling Proposition KW - Inhibition KW - Enzym KW - Kristallographie Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-281742 ER - TY - THES A1 - Ramirez, Yesid A. T1 - Structural basis of ubiquitin recognition and rational design of novel covalent inhibitors targeting Cdu1 from \(Chlamydia\) \(Trachomatis\) T1 - Strukturelle Grundlage der Ubiquitin-Erkennung und rationales Design neuer kovalenter Inhibitoren gegen die Deubiquitinylase Cdu1 aus \(Chlamydia\) \(Trachomatis\) N2 - The WHO-designated neglected-disease pathogen Chlamydia trachomatis (CT) is a gram-negative bacterium responsible for the most frequently diagnosed sexually transmitted infection worldwide. CT infections can lead to infertility, blindness and reactive arthritis, among others. CT acts as an infectious agent by its ability to evade the immune response of its host, which includes the impairment of the NF-κB mediated inflammatory response and the Mcl1 pro-apoptotic pathway through its deubiquitylating, deneddylating and transacetylating enzyme ChlaDUB1 (Cdu1). Expression of Cdu1 is also connected to host cell Golgi apparatus fragmentation, a key process in CT infections. Cdu1 may this be an attractive drug target for the treatment of CT infections. However, a lead molecule for the development of novel potent inhibitors has been unknown so far. Sequence alignments and phylogenetic searches allocate Cdu1 in the CE clan of cysteine proteases. The adenovirus protease (adenain) also belongs to this clan and shares a high degree of structural similarity with Cdu1. Taking advantage of topological similarities between the active sites of Cdu1 and adenain, a target-hopping approach on a focused set of adenain inhibitors, developed at Novartis, has been pursued. The thereby identified cyano-pyrimidines represent the first active-site directed covalent reversible inhibitors for Cdu1. High-resolution crystal structures of Cdu1 in complex with the covalently bound cyano-pyrimidines as well as with its substrate ubiquitin have been elucidated. The structural data of this thesis, combined with enzymatic assays and covalent docking studies, provide valuable insights into Cdu1s activity, substrate recognition, active site pocket flexibility and potential hotspots for ligand interaction. Structure-informed drug design permitted the optimization of this cyano-pyrimidine based scaffold towards HJR108, the first molecule of its kind specifically designed to disrupt the function of Cdu1. The structures of potentially more potent and selective Cdu1 inhibitors are herein proposed. This thesis provides important insights towards our understanding of the structural basis of ubiquitin recognition by Cdu1, and the basis to design highly specific Cdu1 covalent inhibitors. N2 - Der Krankheitserreger Chlamydia trachomatis (CT) - ein gramnegatives Bakterium - ist verantwortlich für die häufigste sexuell übertragene Infektionskrankheit weltweit, die CT basierte Chlamydiose. Sie wird von der Weltgesundheitsorganisation zu den vernachlässigten Krankheiten gezählt. CT Infektionen können unter anderem zu Unfruchtbarkeit, Erblindung und reaktiver Arthritis führen. CT agiert als Krankheitserreger mittels seiner Fähigkeit, die Immunantwort des Wirts zu umgehen. Dies umfasst unter anderem die Schwächung und Störung der NF-κB vermittelten Entzündungsantwort und des Mcl1 pro-Apoptoseweges über ihr deubiquitinierendes, deneddylierendes und trans-acetylierendes Enzym ChlaDub1 (Cdu1). Die Expression von Cdu1 ist aber auch mit der Fragmentierung des Golgi-Apparates des Wirtes verknüpft, ein Schlüsselprozess bei Infektionen mit CT. Cdu1 ist daher vermutlich ein attraktives Zielprotein für die Entwicklung von Wirkstoffen, um CT Infektionen zu behandeln. Eine Leitstrukturverbindung zur Entwicklung neuer wirksamer Inhibitoren war bislang jedoch noch nicht bekannt. Sequenzvergleiche und phylogenetische Untersuchungen verorten Cdu1 im CE Clan der Cysteinproteasen. Die Adenovirus-Protease (Adenain) gehört ebenfalls diesem Clan an und besitzt strukturelle Ähnlichkeit mit Cdu1. Unter Ausnutzung der topologischen Ähnlichkeiten der aktiven Zentren von Cdu1 und Adenain wurde ein Target-Hopping Ansatz mit einem klar definierten und fokussierten Satz von bei Novartis entwickelten Adenain-Inhibitoren verfolgt. Die hierbei identifizierten Cyano-Pyrimidine stellen die ersten kovalenten Inhibitoren von Cdu1 dar, die an das aktive Zentrum von Cdu1 binden und es direkt adressieren. Hochauflösend wurden Kristallstrukturen sowohl von Komplexen von Cdu1 mit kovalent gebundenen Cyano-Pyrimidinen als auch mit Cdu1’s natürlichem Substrat Ubiquitin bestimmt. Die Kristallstrukturdaten dieser Doktorarbeit in Kombination mit Enzymassays und kovalenten Docking-Studien liefern wertvolle Hinweise bezüglich der Aktivität des Enzyms, der molekularen Substraterkennung, der Flexibiliät der Proteintasche rund um das aktive Zentrum und potentielle Hotspots für die Wechselwirkung mit Liganden. Ein strukturbasiertes Wirkstoffdesign erlaubte die Optimierung des Cyano-Pyrimidin-basierten Molekülgerüstes, die zu der Entwicklung der HJR108 Verbindung führte. Es ist das erste Molekül seiner Art, das speziell dazu entworfen wurde Cdu1 zu inhibieren. Strukturen potentiell noch wirksamerer und selektiver Cdu1 Inhibitoren werden in dieser Arbeit vorgeschlagen. Diese Dissertationsschrift liefert somit wertvolle Beiträge zum Verständnis der strukturellen Grundlagen der molekularen Erkennung von Ubiquitin durch Cdu1 und Hinweise, die die Entwicklung hoch-spezifischer kovalenter Cdu1 Inhibitoren erlauben sollten. KW - CE Proteaes KW - covalent inhibition KW - drug repurposing KW - DUB KW - Ubiquitin KW - Inhibitor KW - Chlamydia trachomatis Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-191683 ER -