TY - THES A1 - Schäfer, Julian T1 - Synthesis and Photophysical Investigation of Donor-Acceptor-Substituted meta- and para-Benzene Derivatives T1 - Synthese und Photophysikalische Untersuchung Donor-Akzeptor-Substituierter meta- und para-Benzolderivate N2 - Im ersten Teil dieser Arbeit wurde die erfolgreiche Synthese einer Serie von bisTriarylamin (bisTAA) Verbindungen vorgestellt. Zum einen wurde das Substitutionmuster an der Benzol Brückeneinheit in Form einer meta- bzw. para-Ständigkeit der Redoxzentren (pX bzw. mX), und zum anderen die energetische Lage der Brückeneinheit durch zwei elektronen-schiebende oder ziehende Substituenten X (mit X = OMe, Me, Cl, CN, NO2) in 2,5-Position variiert. Im Falle der meta-Serie wurden auch einige in 4,6-Position substituierte Verbinungen hergestellt (mX46). Die neutral Verbindungen wurden bezüglich ihrer elektrochemischen und photophysikalischen Eigenschaften untersucht. Durch Oxidation konnten die gemischt valenten (MV), kationischen bisTAA-Verbindungen erzeugt werden. Der thermisch induzierte Lochtransfer (HT) wurde durch temperatur-abhängige ESR-Spektroskopie untersucht. Während die HT-Rate k und HT-Barriere ΔG in mX unbeeinflusst von den Substituenten X sind, steigen gleichzeitig k und ΔG in der pX-Serie mit zunehmenden Elektonenschub von X an. Diese zunächst widersprüchliche Beobachtung konnte durch einen ansteigenden Einfluss von Lösungsmitteleffekten und dadurch resultierend, einer zusätzlichen effektiven Barriere erklärt werden. Der optisch induzierte Lochtransfer wurde mittels UV/Vis/NIR-Spektroskopie untersucht. Die pX-Serie zeigte eine Zuhname der elektronischen Kopplung V und dementsprechende eine Abnahme von ΔG, mit Anstieg des elektonenschiebenden Charakters von X. Für mX war eine spektroskopische Bestimmung dieser Parameter nicht möglich. Die mX46-Serie zeigte ein intermediäres Verhalten, wobei MV-Verbindungen mit stark elektronenschiebenden X eine ähnliche hohe Kopplungen wie pX aufwiesen, was mit Hilfe von DFT-Rechnungen bezüglich der Molekülorbitale erklärt werden konnte. Im zweiten Teil dieser Arbeit wurde die Synthese einer Serie von Verbindungen mit Triarylamin (TAA) als Donor und Naphthalindiimid (NDI) als Akzeptor vorgestellt. Auch hier wurde zum einen das Substitutionmuster an der Benzol-Brückeneinheit in Form einer meta- bzw. para-Ständigkeit der Redoxzentren (pXNDI bzw. mXNDI) variieiet und die energetische Lage der durch X (mit X = OMe, Me, Cl, CN, NO2) in 2,5-Position variiert. Außerdem wurde die in 4,6-Position substituierte Verbinungen mOMe46NDI hergestellt. Alle Verbindungen wurden bezüglich ihrer elektochemischen und photophysikalischen Eigenschaften untersucht. Die Elektronentransferprozesse der Ladungsseparierung (CS) und Ladungsrekombination (CR) dieser Verbindungen sollten mittels transienter Absorptionsspektroskopie (TA) in Toluol untersucht werden. Für die Nitroverbindungen p-/mNO2NDI war dies nicht möglich, da sich diese unter Bestrahung zersetzten. Die CR von pXNDI waren nicht im ns-Bereich detektierbar, weshalb sich auf die mXNDI-Serie (mit X = OMe–CN) konzentriert wurde. Die CS wurde mittels fs-TA untersucht. Nach optischer Anregung konnte die Bildung eines CS-Zustandes detektiert werden, dessen Bildungsgeschwindigkeit hin zu elektronen-ziehenden Substituenten X steigt. Die CR wurde mit ns-TA untersucht. Sie findet in der Marcus invertierten Region statt und zeichnet sich wird durch ein biexponentialles Abklingverhaten, was durch ein Singulet-Triplett Gleichgewicht im CS-Zustand zustande kommt, aus. Durch Anlegen eines externen Magnetfeldes ließ sich das Abklingverhalten entscheidend verändern und es konnte eine Singulett-Triplett Aufspaltung nachgewiesen werden. Dieser Befund konnte weiterhin durch Simulation der Abklingkurven bestätigt werden. In beiden Teilen dieser Arbeit konnte ein entscheidender Einfluss der Benzolbrücke auf die auftretenden Ladungstransferprozesse gezeigt werden. Für den HT in Grundzustand der MV bisTAA Verbindungen, sowie der ET im angeregten Zustand der Donor-Akzeptor-Verbindungen, wurden die höchsten ET-Raten für die para-Serien pX und pXNDI gefunden, während die meta-Serien mX und mXNDI deutlch kleine Transferraten aufwiesen. In beiden Studien zeigten die meta46-Verbindungen mX46 und mOMeNDI46 ein intermediäres Verhalten, zwischen denen der para- und meta-Verbindungen. N2 - In the first part of this thesis, the synthesis of a series of bistriarylamine (bisTAA) compounds was presented. On the one hand, the substitution pattern of the TAA at the benzene bridging unit was varied from meta- to para-position (pX and mX), on the other hand, the energetic position of the bridging unit was tuned by use of two electron-donating or electron-accepting substituents X (with X = OMe, Me, Cl, CN, NO2) in 2,5-position. In case of the meta-series, compounds with X in 4,6-position were synthesized (mX46). The photophysical and electrochemical properties of the neutral compounds were investigated. The cationic mixed valence (MV) bisTAA compounds could be generated by oxidation. Thermally induced hole transfer (HT) in the groud state was investigated by temperature depending ESR spectroscopy. While the HT rate k and HT barrier ΔG in mX are unaffected by the substituents X, k and ΔG in the pX series increase simultaneously with increasing electron-donating strength of X. This, at first contradictory observation can be explained by an increasingly important solvent dynamic effect and an additional, effective barrier. The optically induced HT was examined by UV/Vis/NIR spectroscopy. The pX-series revealed an increase of the electronic coupling V, and correspondingly a decrease of ΔG, with an increase of the electron donating character of X. For mX, a spectroscopic determination of these parameters was not possible. mX46 showed an intermediate behavior, MV compounds with strong electron-donating X, obtained coupling of similar magnitude as pX, which could be explained by means of DFT calculations, with regard to the molecular orbitals. In the second part of this work, the synthesis of a series of dyads with triarylamine (TAA) as a donor and naphthalene diimide (NDI) as an acceptor was presented. Again, the substitution pattern of the redox centers at the benzene bridging unit was varied in the form of a meta- or para-position (pXNDI or mXNDI) and the energetic position of the bridging unit was varied by X (with X = OMe, Me, Cl, CN, NO2) attached in the 2,5-position. Additionally, compound mOMe46NDI with methoxy substitution in 4,6-position was synthesized. The photophysical and electrochemical properties of these compounds were investigated. The electron transfer (ET) processes of charge separation (CS) and charge recombination (CR) of these were investigated by means of transient absorption (TA) spectroscopy in toluene. This was not possible for the nitro-compounds p-/mNO2NDI, since they decomposed under irradiation. In addition to that, the CR of pXNDI was not detectable by ns-setup, which is why the focus was given to the mXNDI series (with X = OMe–CN).The CS was examined by fs-TA spectroscopy, where the formation of a CS state could be detected. The rise time of the CS states decreases with increasing electron-withdrawing substituents X. CR was examined with ns-TA spectroscopy and shows a biexponential decay behavior, which is caused by singlet-triplet equilibrium in the CS state. By applying an external magnetic field, the decay behavior was decisively changed and the singlet-triplet splitting could be determined. This finding could also be confirmed by simulating the decay curves. In both parts of this work, the decisive influence of the benzene bridging unit on the appearing ET processes became obvious. For the HT in the ground state of the MV compound, as well as for the ET in the exited states of the DA compounds, the highest transfer rates were found for the para-series pX and pXNDI, and much smaller rates for the meta-series mX and mXNDI. The meta46-compounds mX46 and mOMeNDI46 showed an intermediate behavior in both parts of this work. KW - Synthese KW - Elektronentransfer KW - UV-VIS-Spektroskopie KW - Magnetfeldeffekt KW - intervalence charge transfer KW - transient absorption spectroscopy Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-155007 ER - TY - THES A1 - Auerhammer, Nina A. T1 - Energy Transfer and Excitonic Interactions in Conjugated Chromophore Arrangements of Bodipys and Pyrenes and Squaraines T1 - Energie Transfer und Exzitonische Wechselwirkungen in Konjugierten Chromophor Anordnungen von Bodipys und Pyrenen und Squarainen N2 - In this work the energy transfer and excitonic coupling in different chromophore arrangements were investigated. A difference in the coupling strength was introduced by varring the connecting unit and the spacial orientation relative to each other. The synthesis of the 2,7-substituted pyrene compounds could be optimised and good yields of HAB 1 and HAB 2 and small amounts of HAB 2 could be achieved by cobalt-catalysed trimerisation or Diels Alder reaction in the end. Absorption and fluorescence spectra reveal strong intramolecular interactions between the pyrene molecules in the HAB 1. Excitation spectra recorded at the high and low energy fluorescence suggest the contribution of two components to the spectra. One being similar to the ground state aggregate and a second species similar to undisturbed pyrene. All these feature can be accounted to two different fluorescent states which are due to electronical decoupling in the excited state. Due to the strong intramolecular coupling already in the ground state of the molecule, no energy transfer could be studied, as the six pyrene units cannot be seen as separate spectroscopic entities between which energy could be transferred. In the second part of this thesis dye conjugates of different size and alignment were synthesised to study the interaction of the transition-dipole moments. Therefore a systematic investigation of Sonogashira conditions was performed in order to obtain good yields of the desired compounds and keep dehalogenation at a minimum level. Nevertheless only the symmetrical triads could be purified as the asymmeric triads and pentades proved to decompose during purification. The pyrene containing triads Py2B and Py2SQB show small interactions already in the ground state represented by red shifts of the spectra and a broadening of the bands. Nevertheless, these interactions are in the weak coupling regime and energy transfer between the constituents is possible. On the contrary in the TA spectra it is obvious that always the whole triad, at least to some extend is excited. To question if the excitation of the high energy state is deactivated by energy transfer or rather IC in a superchromophore could not be distinguished in the course of this work. At present additional time-dependent calculations of the dynamics are in progress to get a deeper understanding of the photophysical processes taking place in the triads. The dye conjugates B2SQB-3 and (SQB)2B-4 can be assigned to the strong interaction range and hence are describable by exciton theory. The transition-dipole moments proved to be more than additive and increase for both compounds from absorption to fluorescence. This can be explained by an enhancement of the coupling in the relaxed excited state compared to the absorption into the Franck-Condon state due to a more steep potential energy surface in the excited state and hence smaller fluctuations. In the last part of this thesis the influence of disrupting electronical communication by implementing a rigid non-conjugated bridge in a bichromophoric trans-squaraine system was tested. While the flexible linked squaraines show complex spectra due to different conformers the SQA2Anth compound is rigified and no rotation is possible. This change in flexibility is represented in the steady-state spectra where just one main absorption and fluorescence band is present due to a single allowed excitonic state. The system proves to own an excited state that is completely delocalised over the whole molecule. N2 - Diese Arbeit beschäftigt sich mit der Untersuchung von Energietransfer und Exzitonenkopplung in Farbstoffen. Durch Variation der Verbrückungseinheit und der räumlichen Orientierung der Chromophore relativ zueinander konnte die Kopplungsstärke beeinflußt werden. Die Synthese von 2,7-substituierten Pyrenverbindungen konnte optimiert werden und schließlich gelang es mittels kobalt-katalisierten Trimerisierung oder Diels Alder Reaktionen gute Ausbeuten von HAB 1 und HAB 2 sowie geringere Mengen an HAB 3 zu isolieren. Absorption- und Fluoreszenzspektren deuten auf starke Wechselwirkungen unter den Chromophoren hin, die bereits im Grundzustand deutlich werden. Anregungsspektren bei verschiedenen Wellenzahlen zeigen, dass zwei verschiedene Spezies, wovon eine den Aggregaten die im Grundzustand vorhanden sind ähneln, zu den beobachteten spektralen Eigenschaften beitragen und ein weiteres größere Ähnlichkeit mit dem Pyrenmonomer aufweist. Betrachtet man all diese Eigenschaften im Gesamten kann man schlußfolgern, dass zwei fluoreszierende Zustände für die Desaktivierung verantwortlich sind, was sich auf elektronische Entkopplung im angeregten Zustand zurückführen lässt. Aufgrund der starken elektronischen Kopplung im Grundzustand und die Ausbildung von intramolekularen Aggregaten war es nicht möglich Energietransfer an diesem System zu studieren, da die sechs Pyreneinheiten nicht getrennt betrachtet werden können. Im zweiten Teil dieser Arbeit wurden Farbstoffkonjugate verschiedener Größe und Anordnung synthetisiert um die Wechselwirkung der Übergangsdipolmomente zu studieren. Dazu wurde ein systematsiches Reaktionscreening der Sonogashira-Kupplung durchgeführt, um Bedingungen zu finden, unter denen sich Dehalogenierung in Grenzen hält, jedoch gute Ausbeuten der gewünschten Endprodukte erzielt werden können. Trotzdem konnten nur die symmetrischen Trimere erfolgreich isoliert, da sich herausstellte, dass sowohl die unsymmetrischen Trimere als auch die Pentamere zu instabil für eine vollständige Aufreinigung sind. Die pyren-beinhaltenden Triaden Py2B und Py2SQB zeigen geringfügige Wechselwirkungen im Grundzustand, die sich durch eine Rotverschiebung und Verbreiterung der Absorptionsbanden zeigen. Allerding lässt sich diese Kopplung dem sehr schwachen Wechselwirkungsbereich zuordnen, sodass Energietransfer zwischen den Chromophoren möglich ist. Im Gegensatz dazu zeigt sich im TA Spektrum, dass gleichzeitig mehrere Teile der Triade angeregt sind und dass die Anregung nicht auf ein Chromophor lokalisiert ist. Die Frage, ob die Desaktivierung des angeregten Zustands durch Energietransfer oder interne Konversion in einem Superchromophor stattfindet, konnte im Zuge dieser Arbeit nicht geklärt werden. Aktuell sind zusätzliche Rechnungen (DFT) in Arbeit um ein besseres Verständnis von den ablaufenden, photophysikalischen Prozessen zu bekommen. Die Farbstoffkonjugate B2SQB-3 und (SQB)2B-4 lassen sich dem Bereich der starken Kopplung zuordnen und können daher mit der Exzitonentheorie beschrieben werden. Die Übergangsdipolmomente zeigen ein Verhalten, dass mehr als additiv ist und nehmen von der Absorption zur Fluoreszenz zu. Das lässt sich durch eine Verstärkung der Kopplung im relaxierten angeregten Zustand in Vergleich zur Absorption in den Franck-Condon Zustand erklären. Der Grund für dieses Phänomen ist eine deutlich schmalere, steilere Energiepotentialfläche im angeregten Zustand. Im letzten Teil dieser Arbeit wurde die elektronische Kommunikation in einem trans-Squaraindimer durch Einfügen einer nicht-konjugierten Brücke untersucht. Während die flexiblen Dimere komplexe Spektren aufgrund unterschiedlicher Konformere aufweisen, enthält SQA2Anth eine starre Brücke, die Rotationen verhindert. Diese Änderung der Flexibilität zeigt sich in den stationären Spektren durch eine Hauptabsorptions- und Fluoreszenzbande, da nur ein exzitonischer Zustand erlaubt ist. Das System weißt einen angeregten Zustand auf, der über das gesamte Molekül delokalisiert ist. KW - Chromophor KW - Energieaufnahme KW - Exziton KW - Pyrenderivate KW - Sonogashira-Hagihara-Reaktion KW - Bodipy KW - Hexaarylbenzene KW - Squaraine KW - Energy Transfer KW - Excitons KW - Pyrene KW - Sonogashira Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166721 ER - TY - THES A1 - Eckstein, Klaus T1 - Linear and Nonlinear Spectroscopy of Doped Carbon Nanotubes T1 - Lineare und Nichtlineare Spektroskopie von dotierten Kohlenstoffnanoröhren N2 - Doping plays a decisive role for the functionality of semiconductor-based (opto-)electronic devices. Hence, the technological utilization of semiconductors necessitates control and a fundamental understanding of the doping process. However, for low-dimensional systems like carbon nanotubes, neither concentration nor distribution of charge carriers is currently well known. The research presented in this thesis investigated the doping of semiconducting carbon nanotubes by spectroscopic methods. Samples of highly purified, intrinsic (6,5) single-wall carbon nanotubes were fabricated using polymer stabilization. Chapter 4 showed that both electro- and redox chemical $p$-doping lead to identical bleaching, blueshift, broadening and asymmetry of the S$_1$ exciton absorption band. The similar spectral changes induced by both doping schemes suggest that optical spectra can not be used to infer what process was used for doping. Perhaps more importantly, it also indicates that the distribution of charges and the character of the charge transfer states does not depend on the method by which doping was achieved. The detailed analysis of the doping-induced spectral changes in chapter 5 suggests that surplus charges are distributed inhomogeneously. The hypothesis of carrier localization is consistent with the high sensitivity of the S$_1$ exciton photoluminescence to additional charge carriers and with the stretched-exponential decay of the exciton population following ultrafast excitation. Both aspects are in good agreement with diffusion-limited contact quenching of excitons at localized charges. Moreover, localized charges act – similar to structural defects – as perturbations to the bandstructure as evidenced by a doping-induced increase of the D-band antiresonance in the mid-infrared spectrum. Quantum mechanical model calculations also suggest that counterions play a crucial role in carrier localization. Counterion adsorption at the nanotube surface is thus believed to induce charge traps of more than 100 meV depth with a carrier localization length on the order of 3 - 4 nm. The doping-induced bleach of interband absorption is accompanied by an absorption increase in the IR region below 600 meV. The observed shift of the IR peak position indicates a continuous transition from localized to rather delocalized charge carriers. This transition is caused by the increase of the overlap of charge carrier wavefunctions at higher charge densities and was modeled by classical Monte-Carlo simulations of intraband absorption. Chapter 6 discussed the spectroscopy of heavily (degenerately) doped nanotubes, which are characterized by a Drude-response of free-carrier intraband absorption in the optical conductivity spectrum. In the NIR spectral region, the S$_1$ exciton and X$+^_1$ trion absorption is replaced by a nearly 1 eV broad and constant absorption signal, the so-called H-band. The linear and transient absorption spectra of heavily doped nanotubes suggest that the H-band can be attributed to free-carrier interband transitions. Chapter 7 dealt with the quantification of charge carrier densities by linear absorption spectroscopy. A particularly good measure of the carrier density is the S$_1$ exciton bleach. For a bleach below about 50 %, the carrier density is proportional to the bleach. At higher doping levels, deviations from the linear behavior were observed. For doping levels exceeding a fully bleached S$_1$ band, the determination of the normalized oscillator strength f$\text{1st}$ over the whole first subband region (trion, exciton, free e-h pairs) is recommended for quantification of carrier densities. Based on the nanotube density of states, the carrier density $n$ can be estimated using $n = 0.74\,\text{nm}^{−1} \cdot (1 − f_\text{1st})$. In the last part of this thesis (chapter 8), the time-resolved spectroelectrochemistry was extended to systems beyond photostable carbon nanotube films. The integration of a flowelectrolysis cell into the transient absorption spectrometer allows the investigation of in-situ electrochemically generated but photounstable molecules due to a continuous exchange of sample volume. First time-resolved experiments were successfully performed using the dye methylene blue and its electrochemically reduced form leucomethylene blue. N2 - Die Dotierung von Halbleitern spielt eine entscheidende Rolle für die Funktionsweise von halbleiterbasierten (opto-)elektronischen Bauteilen. Deshalb erfordert die technische Nutzbarmachung von Halbleitern die Kontrolle und ein fundamentales Verständnis des Dotierungsprozesses. Für niederdimensionale Halbleiter, wie Kohlenstoffnanoröhren, ist momentan weder die Dichte noch die Verteilung von Ladungsträgern genau bekannt. In dieser Arbeit wurde die Dotierung von halbleitenden Kohlenstoffnanoröhren mittels spektroskopischer Methoden untersucht. Proben hochreiner, intrinsischer und einwandiger (6,5)Kohlenstoffnanoröhren wurden durch Polymerstabilisierung hergestellt. In Kapitel 4 wurde gezeigt, dass sowohl die elektro-, als auch die redoxchemische $p$-Dotierung zu einem identischen Bleichen, einer Blauverschiebung, Verbreiterung und Asymmetrie der Absorptionsbande des S$_1$ Exzitons führt. Die ähnlichen spektralen Änderungen, die durch beide Dotierungsverfahren induziert wurden, legen den Schluss nahe, dass optische Spektren nicht zur Identifikation des Dotierungsverfahrens genutzt werden können. Möglicherweise wichtiger ist die Schlussfolgerung, dass die Ladungsverteilung und der Charakter der Ladungen nicht davon abhängt mittels welcher Methode die Dotierung erreicht wurde. Die detaillierte Analyse der durch Dotierung hervorgerufenen spektralen Änderungen in Kapitel 5 deutet eine inhomogene Verteilung der Überschussladungen an. Die Hypothese der Ladungsträgerlokalisierung ist konsistent mit der hohen Sensitivität der Photolumineszenz des S$_1$-Exzitons auf zusätzliche Ladungen und mit dem gestreckt-exponentiellen Zerfall der Exzitonenpopulation nach ultrakurzer Anregung. Beide Aspekte sind in guter Übereinstimmung mit dem diffusionslimitierten Kontaktlöschen von Exzitonen an lokalisierten Ladungen. Weiterhin wirken lokalisierte Ladungen – ähnlich zu strukturellen Defekten – als Störungen der Bandstruktur. Dies wurde durch den dotierungsbedingten Anstieg der D-Bandenantiresonanz im mittleren Infrarot nachgewiesen. Quantenmechanische Modellrechnungen deuten weiterhin darauf hin, dass Gegenionen eine entscheidende Rolle bei der Ladungsträgerlokalisierung spielen. Die Adsorption von Gegenionen an der Nanorohroberfläche induziert Fallenzustände für Ladungen, die mehr als 100 meV tief sind. Weiterhin ergibt sich eine Lokalisierungslänge der Ladungsträger von ungefähr 3 - 4 nm. Das dotierungsbedingte Bleichen der Interbandabsorption wird begleitet von einem Anstieg der Absorption im IR-Bereich unterhalb von 600 meV. Die beobachtete Verschiebung der IR-Peakposition deutet einen kontinuierlichen Übergang von lokalisierten zu delokalisierten Ladungsträgern an. Dieser Übergang wird durch den steigenden Überlapp der Ladungsträgerwellenfunktionen bei höheren Ladungsdichten verursacht und wurde durch klassische Monte-Carlo-Simulationen der Intrabandabsorption modelliert. In Kapitel 6 wurde die Spektroskopie stark dotierter (entartet dotierter) Nanoröhren diskutiert. Dieses zeichnen sich durch eine Drude-Antwort der Intrabandabsorption freier Ladungsträger im Spektrum der optischen Leitfähigkeit aus. Im NIR-Spektralbereich wird die Absorption des S$_1$-Exzitons und des X$^+_1$ -Trions durch ein beinahe 1 eV breites und konstantes Absorptionssignal, die sogenannte H-Bande, ersetzt. Die linearen und transienten Absorptionsspektren stark dotierter Nanoröhren legt den Schluss nahe, dass die H-Bande Interbandübergängen freier Ladungsträger zugeordnet werden kann. Kapitel 7 beschäftigte sich mit der Quantifizierung von Ladungsträgerdichten mittels linearer Absorptionsspektroskopie. Ein besonders gutes Maß für die Ladungsträgerdichte ist das Bleichen des S$_1$ Exzitons. Für ein Bleichen unterhalb von ungefähr 50% ist die Ladungsträgerdichte proportional zum Bleichen. Bei höherer Dotierung wurden Abweichungen vom linearen Verhalten beobachtet. Für Dotierungen jenseits einer vollständig gebleichten S$_1$-Bande wird zur Quantifizierung der Ladungsträgerdichte die Bestimmung der normierten Oszillatorstärke über den gesamten ersten Subbandbereich (Trion, Exziton, freie e-h-Paare) empfohlen. Basierend auf der Zustandsdichte der Nanoröhren kann die Ladungsträgerdichte $n$ mittels $n = 0.74\,\text{nm}^{−1} \cdot (1 − f_\text{1st})$ abgeschätzt werden. Im letzten Teil dieser Arbeit (Kapitel 8) wurde die zeitaufgelöste Spektroelektrochemie auf Systeme jenseits photostabiler Kohlenstoffnanoröhren ausgeweitet. Der Einbau einer Flusselektrolysezelle in das transiente Absorptionsspektrometer erlaubt die Untersuchung von elektrochemisch in-situ hergestellten aber photoinstabilen Molekülen durch einen kontinuierlichen Austausch des Probenvolumens. Die ersten zeitaufgelösten Experimente wurden erfolgreich anhand des Farbstoffs Methylenblau und dessen reduzierter Form Leukomethylenblau durchgeführt. KW - Dotierung KW - Einwandige Kohlenstoff-Nanoröhre KW - Spektroskopie KW - Lokalisation KW - Ladungsträger KW - Ladungsträgerlokalisation KW - zeitaufgelöste Spektroskopie KW - charge carrier localization KW - time-resolved spectroscopy Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-188975 ER - TY - THES A1 - Schreck, Maximilian T1 - Synthesis and Photophysics of Linear and Star-Shaped Oligomers of Squaraine Dyes T1 - Synthese und Photophysik von Linearen und Sternförmigen Squarain-Oligomeren N2 - In this thesis, the synthesis and photophysics of a great variety of squaraine dyes are presented. This variety is based on four parent squaraines containing either indolenine or quinoline heterocycles. By a suitable choice of the donor and acceptor unit, the optical properties can already be adapted to the properties desired on the stage of the monomer. To promote a further derivatisation of these dyes, diverse functional groups are attached to the monomers using transition metal-catalysed C-C coupling reactions. However, this has to be preceded by the synthesis of bromine-functionalised derivatives as a direct halogenation of squaraine dyes is not feasible. Therefore, the halogen function is already introduced in precursor molecules giving rise to a molecular building block system containing bromine-, boronic ester-, and alkyne-functionalised monomer units, which pave the way to a plethora of squaraine oligomers and polymers. The indolenine homopolymer pSQB-1 as well as the corresponding small molecular weight oligomers dSQB-1 and tSQB were synthesized applying Ni-mediated Yamamoto and Pd-catalysed Suzuki coupling methodologies, respectively. The motivation for this project relied on the fundamental investigations by Völker et al. on pSQB-V. A progressive red-shift of the lowest energy absorption maximum from the dimer to the polymer was observed in CHCl3 compared to the monomer. With increasing number of monomer units, the exciton coupling decreases from the dimer to the polymer. In addition, the shape of the absorption band manifold shows a strong dependence on the solvent, which was also observed by Völker et al. J-type aggregate behavior is found in chlorinated solvents such as CHCl3 and DCM, whereas H-type aggregates are formed in acetone. Temperature-dependent absorption studies in PhCN reveals a reversible equilibrium of diverse polymer conformers, which manifests itself in a gradual change from H-aggregate behavior to a mixture with a more pronounced J-aggregate behavior upon raising the temperature. It isassumed that both characteristic aggregate bands correlate in borderline cases with two polymer structures which can be assigned to a zig-zag and a helical structure. As no experimental evidence for these structures could hitherto be provided by NMR, TD-DFT computations on oligomers (22-mers) can reproduce very closely the characteristic features of the spectra for the two conformational isomers. The subsequent chapters are motivated by the goal to influence the optical properties through a control of the superstructure and thus of the intramolecular aggregate formation. On the one hand, bulky groups are implemented in the 3-position of the indolenine scaffold to provoke steric repulsion and thus favoring J-aggregate behavior at the expense of helical arrangements. The resulting homopolymer pDiPhSQB bearing two phenyl groups per indolenine exhibits J-type aggregate behavior with red-shifted absorption maxima in all considered solvents which is explained to be caused by the formation of elongated zig-zag structures. Furthermore, single-crystal X-ray analysis of monomer DiPhSQB-2-Br2 reveals a torsion of the indolenine moieties as a consequence of steric congestion. The twist of the molecular geometry and the resulting loss of planarity leads to a serious deterioration of the fluorescence properties, however a significant bathochromic shift of ca. 1 200 cm-1 of the lowest absorption band was observed compared to parent SQB, which is even larger than the shift for dSQB-1 (ca. 1 000 cm-1). On the other hand, a partial stiffening of the polymer backbone is attempted to create a bias for elongated polymer chains. In this respect, the synthetic approach is to replace every second biarylaxis with the rigid transoid benzodipyrrolenine unit. Despite a rather low average degree of polymerization < 10, exclusively red-shifted absorption maxima are observed in all solvents used. In order to complete the picture of intramolecular aggregates through the selective design of H-aggregates, a squaraine-squaraine copolymer was synthesised containing the classic cisoid indolenine as well as the cisoid quinoline building block. Taking advantage of the highly structure directing self-assembly character of the quinoline moiety, the copolymer pSQBC indeed showes a broad, blue-shifted main absorption band in comparison with the monomer unit dSQBC. The shape of the absorption band manifold solely exhibited a minor solvent and temperature dependence indicating a persistent H-aggregate behaviour. Hence, as a proof of concept, it is shown that the optical properties of the polymers (H- and J-aggregate) and the corresponding superstructure can be inherently controlled by an adequate design of monomer precursors. The last chapter of this work deals, in contrast to all other chapters, with intermolecular aggregates. It is shown that the two star-shaped hexasquarainyl benzenes hSQA-1 and hSQA-2 exhibit a strong propensity for self-organisation. Concentration- and temperature-dependent studies reveal a great driving force for self-assembly in acetone. While the larger hSQA-2 instantaneously forms stable aggregates, the aggregates of hSQA-1 shows a pronounced kinetic stability. Taking advantage of the kinetic persistency of these aggregates, the corresponding kinetic activation parameters for aggregation and deaggregation can be assessed. The absorption spectra of both hexasquarainyl benzenes in the aggregated state reveal some striking differences. While hSQA-1 features an intensive, very narrow and blue-shifted absorption band, two red-shifted bands are observed for hSQA-2, which are closely located at the monomer absorption. The very small bandwidth of hSQA-1 are interpreted to be caused by exchange narrowing and pointed towards highly ordered supramolecular aggregates. The concentration-dependent data of the two hexasquarainyl benzenes can be fitted to the dimer-model with excellent correlation coefficients, yielding binding constants in excess of 10^6 M-1, respectively. Such high binding constants are very surprising, considering the unfavourable bulky 3,3-dimethyl groups of the indolenine units which should rather prevent aggregation. Joint theoretical and NMR spectroscopic methods were applied to unravel the supramolecular aggregate structure of hSQA-1, which is shown to consist of two stacked hexasquarainyl benzenes resembling the picture of two stacked bowls. N2 - Im Rahmen dieser Arbeit wird die Synthese sowie photophysikalischen Untersuchungen einer Vielzahl von Squarainfarbstoffen präsentiert. Diese Vielfalt erwuchs aus vier monomeren Stammverbindungen, die auf Indolenin- bzw. Chinolin-Heterozyklen gründeten. Um die Derivatisierung der Monomere weiter voranzutreiben, werden diese durch geeignete funktionelle Gruppen unter der Verwendung von übergangsmetallkatalysierten C-C Kupplungsreaktionen chemisch modifiziert. Dieser geht jedoch die Synthese Brom-funktionalisierter Vorstufen voraus. So muss die Halogenfunktion bereits in den Vorläufermolekülen eingeführt werden, da eine selektive, direkte Halogenierung auf der Stufe des Squarains nicht möglich ist. Schlussendlich kann somit ein molekularer Baukasten entwickelt werden, der, bestückt mit Monomerbausteinen mit Brom-, Borester-, und Alkinfunktionen, den Weg zu diversen oligomeren und polymeren Squarainfarbstoffen ebnete. Das Indolenin Squarain Homopolymer pSQB-1, als auch die entsprechenden niedermolekularen Oligomerverbindungen dSQB-1 und tSQB wurden mittels der Ni-unterstützten Yamamoto bzw. Pd-katalysierte Suzuki Kupplung dargestellt. Die bereits durch Völker et al. erfolgten spektroskopischen Untersuchungen an pSQB-V werden im Rahmen dieser Arbeit fortgesetzt. Im Vergleich zum Monomer, zeigen das Dimer, Trimer und das Polymer in CHCl3 eine progressive Rotverschiebung der niedrigsten, intensivsten Absorptionsbande. Mit steigender Anzahl der SQB-Monomereinheiten nimmt die Exzitonenkopplung im Dimer bis hin zum Polymer ab. Wie auch bereits Völker et al. zeigen konnten, ist die Form der Absorption des Exzitonenbandes von pSQB-1 stark lösemittelabhängig. Während J-Aggregat ähnliches Verhalten in CHCl3 und DCM beobachtet wird, zeigt das Polymer in Aceton H-Aggregat ähnliches Verhalten. Temperaturabhängige Absorptionsmessungen in PhCN zeigen ein reversibles thermodynamisches Gleichgewicht von verschiedenen Polymerstrukturen, welches sich mit steigender Temperatur durch einen sukzessiven Übergang von H-Aggregat zu einer Mischung mit mehr J-Aggregat Charakter manifestiert. Es wird angenommen, dass das Auftreten der charakteristischen Aggregatsbanden im Grenzfall mit zwei Polymerkonformeren korreliert, die einer Zick-Zack- und einer Helix-Struktur entsprechen. Da hierfür keine experimentellen Beweise durch NMR bis dato vorliegen, wurden TD-DFT Kalkulationen an Oligomereinheiten (22-er) durchgeführt, die die wesentlichen Merkmale der Absorptionsspektren der zwei Konformere reproduzieren konnten. Die anschließenden Kapitel erwuchsen aus der Motivation heraus, die optischen Eigenschaften der Polymere über die Kontrolle der Strukturbildung und somit der intramolekularen Aggregatsbildung zu beeinflussen. Um einerseits J-Aggregat Verhalten zu provozieren wird zunächst der Ansatz verfolgt, durch sterisch anspruchsvolle Gruppen in der 3-Position des Indolenin Gerüsts, den Kollaps zu helikalen Stukturen zu vermeiden. Das resultierende Homopolymer pDiPhSQB mit zwei Phenylgruppen pro Indolenin Einheit zeigt in allen untersuchten Lösemitteln bathochrom verschobene Absorptionsmaxima, was mit der Ausbildung von ausschließlich ausgedehnten Zick-Zack-Ketten begründet werden. Darüber hinaus zeigte die Einkristall-Röntgenstrukturanalyse des Monomers DiPhSQB-2-Br2 als Konsequenz der sterischen Überfrachtung eine Torsion des Indolenin Gerüsts. Die Verdrillung der Molekülgeometrie und der daraus resultierende Verlust an Planarität, führt zu einer erheblichen Verschlechterung der Fluoreszenzeigenschaften, jedoch wird eine signifikante Rotverschiebung der Monomerbande von ca. 1 200 cm-1 im Vergleich zu SQB beobachtet, welche sogar größer als die für dSQB-1 ist. Zum anderen ergibt der Ansatz der partiellen Versteifung des Polymerrückgrades ebenfalls die Ausbildung von ausgedehnten Polymerketten begünstigen. Dieser Ansatz wird insofern verfolgt, als dass jede zweite Biarylachse zwischen zwei Monomereinheiten in pSQB-1 durch eine rigide transoide Benzodipyrrolenin Brücke ersetzt wird. Trotz eines eher geringen durchschnittlichen Polymerisationsgrades von < 10 kann dennoch eine Rotverschiebung der niederenergetischsten Absorptionsbande in allen Lösemitteln beobachtet werden. Um das Bild der intramolekularen Aggregate zu vervollständigen, wird das gezielte Design von H-Aggregaten verfolgt. Hierfür wurde ein Squarain-Squarain Copolymer synthetisiert, das zum einen aus dem klassischen cisoiden Indolenin und zum anderen aus dem cisoiden Chinolin Squarain aufgebaut ist. Diesbezüglich will man sich die Triebkraft des Chinolin Bausteins für Aggregation als strukturdirigierende Komponente zu Nutze machen, um helikale Konformationen der Polymerstränge zu erzeugen. Das Copolymer pSQBC zeigt in der Tat eine verbreiterte, hypsochrom verschobene Hauptabsorptionsbande im Vergleich zur Monomereinheit dSQBC. Die Form der Absorption des Exzitonenbandes zeigt eine geringe Lösemittelabhängigkeit, die ebenfalls nur marginal durch die Temperatur beeinflusst werden kann. Schlussendlich deuten diese Befunde auf ein stark-ausgeprägtes H-Aggregat ähnliches Verhalten hin, was die zu anfangs formulierte These belegt, dass sich die optischen Eigenschaften der Polymere (H- und J-Aggregate) und deren Strukturbildung durch ein adäquates Moleküldesign der Monomerbausteine kontrollieren lassen. Das letzte Kapitel dieser Arbeit stand im Gegensatz zu den vorherigen Kapiteln ausschließlich im Fokus von intermolekularen Aggregaten. Die Squaraine hSQA-1 und hSQA-2 neigen, in ein sternförmiges Hexaarylbenzol-Gerüst gebettet, zur Selbstorganisation. Konzentration- und temperaturabhängige Studien der beiden synthetisierten Hexasquarainyl-Benzole zeigen eine starke Triebkraft zur Aggregation in Aceton. Während hSQA-2 instantan thermodynamisch stabile Aggregate bildet, offenbart hSQA-1 Aggregate eine ausgeprägte kinetische Stabilität. Dies kann man sich zu Nutze machen und die kinetischen Aktivierungsparameter der Aggregation und Deaggregation zu bestimmen. Die Absorptionsspektren der beiden Hexasquarainyl-Benzole im aggregierten Zustand zeigen extreme Unterschiede auf. Während hSQA-1 eine intensive, sehr schmale und stark hypsochrom verschobene Bande zeigt, beobachtet man für das größere Hexasquarainyl-Benzol zwei bathochrom verschobene Banden, die allerdings energetisch sehr nahe der Monomerbande lokalisiert sind. Die sehr geringe Halbwertsbreite der Aggregatsbande in hSQA-1 wird durch die sog. Austauschverschmälerung erklärt und deutet auf hochgeordnete supramolekulare Aggregate hin. Die konzentrationsabhängigen Messdaten der beiden Chromophore konnten sehr gut mit Hilfe des Dimer-Modells angepasst werden, welches für beide Systeme eine hohe Bindungskonstante von über 10^6 M-1 ergab. In Anbetracht der Tatsache, dass die raumgreifenden 3,3-Dimethylgruppen im Indoleningerüst extrem hinderlich für den Aggregationsprozess sind, ist die starke Triebkraft zur Selbstorganisation, welche sich in den hohen Bindungskonstanten niederschlägt, äußerst bemerkenswert. Theoretische Modellierungen und Rechnungen in Kombination mit NMR-spektroskopischen Untersuchungen von hSQA-1 ergeben eine Aggregatsstruktur aus zwei sich stapelten Hexasquarainylbenzolmonomeren, die dem Bild zweier gestapelter Schüsseln entspricht. KW - Squaraine KW - Oligomere KW - Supramolekulare Chemie KW - Squaraine Dyes KW - Oligomers and Polymers KW - J- and H-Aggregates KW - Helix- and Zig-Zag-Conformers KW - Supramolecular Chemistry KW - Squarain Farbstoffe KW - J- and H-Aggregate KW - Helix- and Zick-Zack-Konformere KW - Supramolekulare Chemie KW - Helicität KW - Chemische Synthese KW - Chemische Reaktion Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-174272 ER - TY - THES A1 - Schulze, Marcus T1 - Ruthenium Complexes as Water Oxidation Catalysts and Photosensitizers T1 - Rutheniumkomplexe als Wasseroxidationskatalysatoren und Photosensibilisatoren N2 - In der vorliegenden Arbeit werden Aspekte der photokatalytischen Wasseroxidationsreaktion behandelt. Der erste Themenschwerpunkt der Dissertation beschäftigt sich mit einem supramolekularen Makrozyklus, der drei Rutheniummetallzentren enthält. Dieser neuartige Katalysator zeigt eine sehr hohe katalytische Aktivität und gewährt neue Einblicke in den Mechanismus der Wasseroxidationsreaktion. Des Weiteren wird auf die mit Licht interagierenden Komponenten der photokatalytischen Wasseroxidation eingegangen. Hierbei haben sich azabenz-anellierte Perylenderivate als vielseitige Farbstoffklasse herausgestellt. Die Kombination dieser Farbstoffe mit Metallkomplexen liefert metallorganische Verbindungen, die als Photosensibilisatoren eingesetzt werden können. N2 - The thesis discusses aspects of the photocatalytic water oxidation reaction. The first chapter deals with a supramolecular macrocycle which contains three ruthenium metal centers. This novel catalyst shows promising catalytic activity and provides insides into the mechanism of the water oxidation reaction. After this part, the focus lies on the light interacting components of the photocatalytic water oxidation. In this regard, the azabenz-annulated perylene derivatives appeared to be a promising dye class. The combination of these chromophores and metal complexes result in metal organic compounds, which have photosensitizer potential. KW - Farbstoff KW - Ruthenium KW - Fotokatalyse KW - Photosensibilisator KW - Makrozyklus KW - macrocycle KW - Wasseroxidationsreaktion KW - water oxidation reation KW - Perylen-Farbstoffe KW - perylene dyes KW - Katalyse KW - Wasserspaltung Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142454 ER - TY - THES A1 - Rühl, Nicolas T1 - Spektroelektrochemie an einzelnen (6,5)-Kohlenstoffnanoröhren T1 - Spectroelectrochemistry of single (6,5)-carbon nanotubes N2 - Im Rahmen der vorliegenden Arbeit wurde durch einzelmolekülspektroskopischer bzw. -mikroskopischer Methoden in Kombination mit einer mikrofluischen Zel- le unter Potenzialkontrolle die Elektrochemie von einzelnen einwandigen (6,5)- Kohlenstoffnanoröhren untersucht. Hierfür wurde ein Nahinfrarot-Photolumineszenz- Mikroskop aufgebaut und eine speziell an die experimentellen Vorgaben angepasste elektrochemische Zelle entwickelt, insofern als drei Elektroden (Arbeits-, Gegen- und Referenzelektrode) in einen mikrofluidischen Chip integriert wurden. Darüber hinaus war für die Durchführung der Experimente unter Wasser- und Sauerstoffaus- schluss die Konstruktion eines Handschuhkastens notwendig, sowie eine allgemeine Vorbehandlung der Elektrolytlösungen zur Entfernung gelöster Gase und Wasserreste. Ein weiteres Projekt umfasste den Aufbau einer chemischen Gasphasenabschei- dungsapparatur zur Synthese von Kohlenstoffnanoröhren. Die hierbei durchgeführten Experimente erbrachten Klarheit über den Einfluss der Prozessparameter Druck, Temperatur und Durchflussrate an Edukten. Aus den PL-Intensitätsänderungen bei Potenzialvariation konnten Reduktions- und Oxidationspotenziale (ERed = 0.15 V; EOx = 1.34 V) einzelner (6,5)-SWNTs gegen- über einer Platin Referenzelektrode und einem daraus resultierenden Redoxpotenzial von ∆ERedOx = 1.19 V ermittelt werden. Durch diese einzelmolekülspektroskopische Methode konnte zum einen gewährleistet werden, dass nur dieser spezielle Chira- litätstyp untersucht wurde und zum anderen eine Verfälschung der Resultate durch einen Potenzialabfall wie er typischerweise in CNT-Filmen auftritt aussgeschlossen werden. Eine Kombination der PL-Daten mit der Ramanintensitätsabhängigkeit des (6,5)-SWNT-S2-Übergangs bei Potenzialvariation erlaubte eine genauere Analyse des Löschmechanismus der PL von Kohlenstoffnanoröhren. Mithilfe eines von Her- tel et al. entwickelten diffusionslimitierten Stoßdesaktivierungsmodells konnte eine invers-quadratische Proportionalität zwischen der (6,5)-SWNT-Emission und den spannungsinduzierten Ladungsträgern ausgemacht werden. Auf Grundlage dieses Ergebnisses folgt, dass die über Photolumineszenzänderungen ermittelten Reduktions-und Oxidationswerte nicht mit den Bandkanten der CNTs übereinstimmen müssen, und dass für deren Bestimmung vielmehr auf Raman- bzw. Absorptionsspektroskopi- sche Techniken zurückgegriffen werden muss. Die einzelmolekülspektroskopische Herangehensweise ermöglichte ferner eine statis- tische Analyse der Verteilung der Reduktions- und Oxidationspotenziale im Vergleich zu den jeweiligen Erwartungswerten. Hierdurch konnte eine Einteilung der Modifika- tionseinflüsse auf das SWNT-Redoxverhalten in zwei Grenzfälle erfolgen. Es wurde angenommen, dass diese als “Dispergiermitteleffekte” und “CNT-Strukturdefekte” be- zeichneten Auswirkungen entweder das Resultat einer heterodispersen Verteilung an DOC auf der CNT-Oberfläche oder eine Folge von Defekten in der CNT-Gitterstruktur waren. In diesem Zusammenhang ergab sich aus der interpartikulären Analyse der Reduktions- und Oxidationswerte eine Korrelation, die einem dominierenden Einfluss der “CNT-Strukturdefekte” zugeordnet werden konnte. Dieser Beobachtung entgegen- gesetzt konnten aber auch über Untersuchungen der Redoxpotenziale innerhalb einer (6,5)-SWNT lokale Bereiche ausgemacht werden, die eine signifikante Abhängigkeit von “Dispergiermitteleffekte” aufwiesen. Abgesehen von diesen Einflüssen auf den Emissionsverlauf wurde auch eine Be- trachtung der Breite des spannungsgesteuerten Emissionsabfall durchgeführt. Da- raus konnte ermittelt werden, dass diese Ausdehnung eine Konsequenz aus der PL- Löschungseffizienz der Ladungsträger ist und, dass bei einer Verteilung von 0.32 Löschzentren pro Nanometer eine vollständige Abnahme der Photolumineszenzinten- sität induziert wird. Darüber hinaus wurde im Rahmen dieser Arbeit das redoxchemische Verhalten in- dividueller (6,5)-SWNTs in Wechselwirkung mit Ferrocenmolekülen untersucht. Die erhaltenen Ergebnisse ließen annehmen, dass die sich ausbildende Verbindung nicht-kovalenter Natur ist. Zwei verschiedene Gründe führten zu dieser Erkennt- nis: einerseits ließen sich die Ferrocenmoleküle von der CNT-Oberfläche durch ein Durchspülen des mikrofluidischen Kanals mit einer reinen DMF-Lösung entfernen und andererseits war keine dauerhafte Emissionsminderung durch die Ausbildung kovalenter Bindungen zu beobachten. Aus der potenzialabhängigen PL wurde zudem ein Elektronentransfer der Ferrocenmoleküle in die optisch generierten Löcher des CNT-Valenzbandes festgestellt und über eine anregungsintensitätsabhängige Messung die Zunahme dieses Ladungstransfers bei steigendem Photonenfluss nachgewiesen. Hinsichtlich der Anwendung von Kohlenstoffnanoröhren zur Elektrolyse bzw. Photo- lyse von Wasser wurde auch die Redoxchemie von (6,5)-SWNTs in diesem Solvens untersucht. Bezüglich der Emissionsintensität konnte gezeigt werden, dass diese im Vergleich zu organischen Lösungsmitteln reduziert vorliegt. Außerdem wurde eine irreversible Reaktion nach anodischer Polarisation über eine dauerhafte Löschung der PL beobachtet. Die Bestimmung der hierfür notwendigen Reaktionsumstände erbrachte, dass Wasser, Exzitonen (erzeugt durch optische Anregung) und spannungs- induzierte Löcher im Valenzband zur Bildung einer [SWNT(Q)]-Spezies führen, welche die irreversible Minderung der CNT-Emission verursacht. Darüber hinaus konnte die Reaktionsgeschwindigkeit über eine Kinetik pseudo-nullter-Ordnung be- schrieben werden, unter der Voraussetzung, dass die soeben genannten Parameter konstant verblieben. Desweiteren zeigte sich in einer ferrocenhaltigen Lösung, dass der Löscheffekt der [SWNT(Q)]-Spezies im anodischen Potenzialbereich teilweise reduziert wird. Es wurde angenommen, dass diese Beobachtung auf eine Oxidation der Löschzentren durch die Fc+-Kationen gründet. Mit Hilfe der CVD-Apparatur gelang es Kohlenstoffnanoröhren zu synthetisieren, wobei Ethanol als Kohlenstoffquelle und ein Eisen-Kobalt-Zeolith-Gemenge als Ka- talysator diente. Die Analyse der verschiedenen Prozessparameter zeigte, dass bei T = 750 °C das beste Verteilungsverhältnis zwischen den gewünschten (6,5)-SWNTs und anderen CNT-Chiralitäten bzw. dem amorphen Kohlenstoff vorliegt. Hierfür war, dass bei T < 750 °C die Verbrennung unerwünschter amorpher Kohlenstoffreste nur geringfügig stattfindet, und dass bei T > 750 °C die Bildung anderer Chiralitäten mit größerem Durchmesser als die (6,5)-SWNT bevorzugt wurde. Die Variation der Durchflussrate hingegen wirkte sich nur in einer absoluten Zunahme aller Chirali- täten aus. Die Steigerung des (6,5)-SWNT-Anteils für höhere Durchflüsse gelang trotzdem durch die geschickte Auswahl geeigneter Druck- und Temperaturwerte. Die Experimente zur Untersuchung der Druckabhängigkeit wiesen auf eine Relation mit dem Gesetz von Le Chatelier hin, insofern als bei einer Druckverringerung eine Verschiebung der Ethanol-Crackreaktion auf Produktseite stattfand. In diesem Zusam- menhang wurde angenommen, dass die damit verstärkt gebildeten Moleküle Ethan, Ethen und Methan den CNT-Anteil zwar erhöhen, jedoch auch eine Steigerung der amorphen Kohlenstoffkonzentration verursachen. Dementsprechend ergab ein Druck von p = 9 mbar das beste (6,5)-SWNT zu dem amorphen Kohlenstoffverhältnis. Anhand der Arbeiten in dieser Dissertation sind neue Erkenntnisse zwischen der PL-Sensitivität von (6,5)-SWNTs und deren Ladungszustand erhalten worden. Insbe- sondere die genaue Bestimmung der Korrelation zwischen der Photolumineszenz und den induzierten Ladungsträgern ermöglicht einen gezielteren Einsatz von Kohlenstoff- nanoröhren – so zum Beispiel im Bereich der Sensorik. In diesem Zusammenhang zeigen auch die interpartikulären Analysen der Redoxpotenzialverteilung die genau- en Auswirkungen vom Lösungsmittel und der Defektdichte auf die elektronische Struktur der CNTs auf. Darüber hinaus kann aus der Ursachenbestimmung für die Varianz der literaturbekannten Reduktions- bzw. Oxidationspotenziale fortan die ge- eignete spektroskopische Methode zur Evaluierung der Position von Leitungs- und Valenzband in Kohlenstoffnanoröhren besser eingegrenzt werden. Die spektroelektro- chemischen Analysen von (6,5)-SWNTs im Lösungsmittel Wasser und speziell die Bestimmung der Kinetik für die auftretende Reaktion liefern einen tieferen Einblick in die Wechselwirkung (6,5)-SWNT-H2O. Diese Ergebnisse sind insbesondere bei der Verwendung von Kohlenstoffnanoröhren als Elektrodenmaterial für die photolytische bzw. elektrolytische Spaltung von Wasser in Wasserstoff und Sauerstoff von Bedeu- tung. Neben der Untersuchung der SWNT-Wasser Interaktion unter andoischer und optischer Anregung, die zu einer kovalenten Bindung führte, wurde mit Hilfe der (6,5)- SWNT-Ferrocen Wechselwirkung ein Beispiel für eine nichtkovalente Redoxreaktion dargestellt, womit ein Vergleich dieser beiden Spezies und ihrer unterschiedlichen Auswirkungen auf die elektronische Struktur aufgezeigt werden konnte. N2 - In the present study the electrochemistry of individual (6,5)-single wall carbon nano- tubes was investigated using a combination of electrochemical methods and single molecule fluorescence spectroscopy and microscopy. For this purpose a near infrared photoluminescence microscope was built and an electrochemical cell incorporated into a microfluidic chip was designed. To exclude oxygen and water during the ex- periments a glove box was constructed and for the electrolyte solutions a general preparation routine was executed, which included a degassing and drying of the solvent. A further project of this thesis was the design of a chemical vapor deposition apparatus to synthesize carbon nanotubes. The experiments provided clarity on the influence of process parameters such as pressure, temperature and flow rate of the reactants. The emission changes due to potential variation allowed for the determination of the reduction ERed = 0.15 V and oxidation potential EOx = 1.34 V of individual (6,5)- SWNTs with reference to a platinum electrode. Accordingly a total redoxpotential of ∆ERedOx = 1.19 V was obtained. The single molecule spectroscopic approach ensured further that only one specific CNT-chirality was investigated and that no potential drop like in CNT-films occured. The combination of the PL data and Raman intensity dependencies of the (6,5)-SWNT-S2-transition at potential changes allowed to define the quenching mechanism of the CNT emission. With the use of a difusion limited contact quenching model from Hertel et al. an inverse square proportionality between the (6,5)-SWNT emission and the charge carrier density was shown. Therefore it was concluded that the reduction and oxidation values obtained by emission changes do not correspond to the bandedges of the CNTs and that a determination of the bandgap should be done through absorption or Raman spectroscopy. The interparticle analysis of the (6,5)-SWNT reduction and oxidation potential sho- wed an absolute potential variation with respect to the reference values. The influences for this changes were classified into two cases: the so called “dispersing agent effects” and the “CNT structure defects”. It was assumed that these were a result of unequal distributed dispersing agents on the CNT surface or defects in the CNT lattice structure. Further, the interparticle determined correlation between reduction and oxidation values was attributed to the “CNT structure defects” and was therefore assumed to exercise the most dominant influence. Conversely, after the investigations of the intraparticle redox potentials, local areas were identified with a dependence to “dispersing agent effects”. In addition the width of the emission decrease as a result of the oxidation or reduction process of the (6,5)-SWNT was analysed. This investigation led to the conclusion that the charge carriers quenching efficiency mainly contributes to the overall width. Beyond that the data indicated that a distribution of 0.32 quenching centers per nanometer is needed for the total quenching of the photoluminescence. In addition to the redox chemistry analysis of pristine (6.5)-SWNTs, the investigation of the dependency in presence of ferrocene molecules showed that the interaction of the herein forming complex is of non-covalent type. This conclusion was based on two facts: on the one hand, the ferrocene molecules desorbed from the CNT surface when the solvent in the microfluidic channel was exchanged with a pure dimethylformamide solution and on the other hand, no permanent decrease in emission intensity due to covalent bond forming was observed. The potential-dependent PL behavior allowed for the assumption of a charge transfer from the adsorbed ferrocene molecules into the optically generated holes in the CNT. Furthermore the experimental data allowed to assume that this charge transfer increases with higher photon flux. With regard to applications with carbon nanotubes for electrolysis and photolysis of water, the redox chemistry of (6,5)-SWNTs was investigated in this solvent. With re- spect to the emission intensity in the organic electrolyte, two effects could be identified which were firstly the overall decrease of the PL, and secondly an irreversible reaction during anodic polarization, which manifested itself by a permanent quenching of the photoluminescence. The reaction conditions were determined with the result that water, optical generated electron-hole pairs and potential induced holes in the valence band formed a [SWNT(Q)] species, which caused the irreversible reduction of the CNT emission. Moreover, the evaluated reaction rate followed pseudo-zero-order kinetics, provided that the just mentioned parameters were constant. The investigation of this [SWNT(Q)] species in a ferrocene solution showed that the quenching effect of these defects was reduced for anodic polarisation by assuming an oxidation of the [SWNT(Q)] species by the Fc+ cations. The CVD apparatus enabled to synthesize carbon nanotubes. Ethanol was used as the carbon source and a mixture of iron and cobalt mixed with a zeolite worked as catalyst. The analysis of the various process parameters showed that the best distribution ratio between the desired (6,5)-SWNTs and other CNT chiralities or amorphous carbon were obtained for T = 750 °C . It was assumed that this behavior is due to the fact that at T < 750 °C burning processes of unwanted amorphous carbon residues only slightly occurred, and that at T > 750 °C the growth mechanism favoured chiralties with larger diameter. By varying the flow rate, only an absolute increase of all chiralities was observed. In this context it should be noted that nevertheless the chirality distribution can be improved to higher yields of (6,5)-SWNTs, by an adaptation of the pressure and temperature during synthesis. The experiments which investigated the impact of reaction pressure changes, indicated a relation in accordance to Le Chatelier law. Therefore lower pressure moved the equilibrium towards product formation of the ethanol-cracking reaction, which increased the molecule concentration of ethane, ethylene and methane and the overall CNT yield. However, this caused also an increment of the absolute amorphous carbon concentration. According to that, it was found that a pressure of p = 9 mbar yielded the best (6.5)-SWNT to amorphous carbon ratio. The experiments performed in this thesis allowed to gain new insights about the sensitivity of the emission of (6,5)-SWNTs due to charging. Especially the deter- mination of the correlation between the photoluminescence and charging level of the CNTs will allow for a more selective use of carbon nanotubes – for example in sensors. In this context the analysis of the interparticle redoxpotential distribution showed precisely the effects of solvent and defect densities on the electronic structure of CNTs. Further the reasons for different values of the reduction and oxidation potential, which are found in literature were explained. For the future this information will allow a better selection of the spectroscopic method to determine the band edges of carbon nanotubes. The spectroelectrochemical analysis of the (6,5)-SWNTs in the solvent water and especially the determination of the kinetics for the observed irreversible reaction gave insight in the interaction between water molecules and carbon nanotubes. These results are particularly important, when carbon nanotubes are used as electrode material. For example in the electrochemical and photolytic generation of hydrogen and oxygen of water. Besides the covalent bond forming reaction of (6,5)-SWNTs in water under anodic potential and optical excitation, the non-covalent bonding reaction between ferrocene molecules and SWNTs was shown and analysed. The different impact of these two interaction on the electronic structure could then be demonstrated and explained. KW - Spektroelektrochemie KW - Kohlenstoff-Nanoröhre KW - Redoxpotential KW - Photolumineszenz KW - Einzelmolekülspektroskopie KW - (6,5)-SWNT KW - Spektroelektrochemie KW - Potentialinduzierte Löschung KW - CVD Synthese KW - Raman-Spektroskopie KW - electrochemistry KW - photoluminescence KW - single particle microscopy KW - Raman spectroscopy Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112162 ER - TY - THES A1 - Steeger, Markus T1 - Energy and Charge Transfer in Donor-Acceptor Substituted Hexaarylbenzenes T1 - Energie- und Ladungstransfer in Donor-Akzeptor-substituierten Hexaarylbenzolen N2 - The focus of this work was the investigation of energy transfer between charge transfer states. For this purpose the multidimensional chromophores HAB-S, HAB-A, B1 and B2 were synthesised, each consisting of three electron donor and three electron acceptor redox centres linked symmetrically or asymmetrically by the hexaarylbenzene framework. Triarylamines represent in all these compounds the electron donors, whereas the electron poor centres were triarylboranes in B1 and B2 and PCTM centres in HAB-S and HAB-A, respectively. The hexaarylbenzenes were obtained by cobalt catalysed cyclotrimerisation of the respective tolan precursors. In addition, Star was synthesised, which consists of a central PCTM linked to three triarylamin centres by tolan bridging units in a star-like configuration. The hexaarylbenzene S1a/b substituted with six squaraine chromophores could not be realised. It is assumed that the cyclotrimerisation catalyst Co2(CO)8 does not tolerate the essential hydroxyl groups in the tolan precursor S2a. The alternative reaction pathway to execute the cyclotrimerisation reaction first and introduce the hydroxyl groups thereafter failed as well, because the required hexaarylbenzene substituted by six semisquaric acid moieties could not be synthesised. However, energy transfer interactions could be investigated in the tolan precursor S2a with two squaraine units to obtain information about the electronic coupling provided by the tolan bridge. For all multidimensional compounds model molecules were synthesised with only a single donor-acceptor pair (B3, Star-Model and HAB-Model). This allows a separate consideration of energy and charge transfer processes. It has to be stressed that in all before mentioned multidimensional compounds the “through bond” energy transfer interaction between neighbouring IV-CT states is identical to a transfer of a single electron between two redox centres of the same kind (e.g. TAA -> TAA+). The latter can be analysed by electron transfer theory. This situation is observed when the two IV-CT states transferring energy share one redox centre. All compounds containing PCTM centres were characterised by paramagnetic resonance spectroscopy. Thereby, a weak interaction between the three PCTM units in HAB-S and HAB-A was observed. In addition, when oxidising Star-Model, a strongly interacting singlet or triplet state was obtained. In contrast, signals corresponding to a weakly interacting biradical were obtained for HAB-Model+. This indicates a strong electronic coupling between the redox centres provided by the tolan bridge and a weak coupling when linked by the hexaarylbenzene. This trend is supported by UV/Vis/NIR absorption measurements. The analysis of the observed IV-CT absorption bands by electron transfer theory reveals a weak electronic coupling of V = 340 cm-1 in HAB-Model and a distinctly stronger coupling of V = 1190-2900 cm-1 in Star-Model. In the oxidised HAB-S+, Star+ and Star-Model+ a charge transfer reversed from that of the neutral species, that is, from the PCTM radical to the electron poorer cationic TAA centre, was observed by spectroelectrochemistry. The temporal evolution of the excited states was monitored by ultrafast transient absorption measurements. Within the first picosecond stabilisation of the charge transfer state was observed, induced by solvent rotation. Anisotropic transient absorption measurements revealed that within the lifetime of the excited state (tau = 1-4 ps) energy transfer does not occur in the HABs whereas in the star-like system ultrafast and possibly coherent energy redistribution is observed. Taken this information together the identity between energy transfer and electron transfer in the specific systems were made apparent. It has to be remarked that neither energy transfer nor charge transfer theory can account for the very fast energy transfer in Star. The electrochemical and photophysical properties of B1 and B2 were investigated by cyclic voltammetry, absorption and fluorescence measurements and were compared to B3 with only one neighbouring donor-acceptor pair. For the asymmetric B2 CV measurements show three oxidations as well as three reduction peaks whose peak separation is greatly influenced by the conducting salt due to ion-pairing and shielding effects. Consequently, peak separations cannot be interpreted in terms of electronic couplings in the generated mixed valence species. Transient absorption, fluorescence solvatochromism and absorption spectra show that charge transfer states from the amine to the boron centres are generated after optical excitation. The electronic donor-acceptor interaction is weak though as the charge transfer has to occur predominantly through space. The electronic coupling could not be quantified as the CT absorption band is superimposed by pi-pi* transitions localised at the amine and borane centres. However, this trend is in good agreement to the weak coupling measured for HAB-Model. Both transient absorption and fluorescence upconversion measurements indicate an ultrafast stabilisation of the charge transfer state in B1- B3 similar to the corresponding observations in HAB-S and Star. Moreover, the excitation energy of the localised excited charge transfer states can be redistributed between the aryl substituents of these multidimensional chromophores within fluorescence lifetime (ca. 60 ns). This was proved by steady state fluorescence anisotropy measurements, which further indicate a symmetry breaking in the superficially symmetric HAB. Anisotropic fluorescence upconversion measurements confirm this finding and reveal a time constant of tau = 2-3 ps for the energy transfer in B1 and B2. It has to be stressed that, although the geometric structures of B1 and HAB-S are both based on the same framework and furthermore the neighbouring CT states show in both cases similar Coulomb couplings and negligible “through bond” couplings, very fast energy transfer is observed in B1 whereas in HAB-S the energy is not redistributed within the excited state lifetime. To explain this, it has to be kept in mind that the energy transfer and the relaxation of the CT state are competing processes. The latter is influenced moreover by the solvent viscosity. Hence, it is assumed that this discrepancy in energy transfer behaviour is caused by monitoring the excited state in solvents of varying viscosity. Adding fluoride ions causes the boron centres to lose their acceptor ability due to complexation. Consequently, the charge transfer character in the donor-acceptor chromophores vanishes which could be observed in both the absorption and fluorescence spectra. However, the fluoride sensor ability of the boron centre is influenced strongly by the moisture content of the solvent possibly due to hydrogen bonding of water to the fluoride anions. UV/Vis/NIR absorption measurements of S2a show a red-shift by 1800 cm-1 of the characteristic squarain band compared to the model compound S20. From exciton theory a Coulomb coupling of V = 410 cm-1 is calculated which cannot account for this strong spectral shift. Consequently, “through-bond” interactions have to contribute to the strong communication between the two squaraine chromophores in S2a. This is in accordance with the strong charge transfer coupling calculated for the tolan spacer in Star-Model. N2 - Ziel dieser Arbeit war die Untersuchung des Energietransfers zwischen Ladungstransfer-Zuständen in multidimensional Donor-Akzeptor Systemen. Zu diesem Zweck wurden die Chromophore HAB-S, HAB-A, B1 und B2 synthetisiert. Diese bestehen jeweils aus drei Elektronen-Donoren und Elektronen-Akzeptoren, die über das Hexaarylbenzol-Gerüst symmetrisch oder asymmetrisch verknüpft sind. Triarylamine stellen dabei die Elektronen-Donoren dar, während Triarylborane in B1 und B2 und PCTM-Zentren in HAB-S und HAB-A die Aufgabe der Elektronen-Akzeptoren übernehmen. Die Hexaarylbenzole konnten durch Cobalt-katalysierte Cyclotrimerisierung der entsprechenden Tolan-Vorstufen hergestellt werden. Zusätzlich wurde das multidimensionale Chromophor Star synthetisiert. Dieses besteht aus einem zentralen PCTM, welches über Tolan-Brückeneinheiten sternförmig mit drei Triarylamin Zentren verknüpft ist. Das Hexaarylbenzol S1a/b, das mit sechs Squarain Chromophoren substituiert ist, konnte nicht realisiert werden. Möglichweise werden die essentiellen Hydroxygruppen der Tolan-Vorstufe S2a nicht von dem Cyclotrimerisierungs-Katalysator Co2(CO)8 toleriert. Der alternative Reaktionsweg, die Cyclotrimerisierung zuerst durchzuführen und anschließend die Hydroxygruppen einzuführen, schlug ebenfalls fehl. Grund dafür war, dass das Hexaarylbenzol, welches mit sechs Quadratsäure-Einheiten substituiert ist, nicht synthetisiert werden konnte. Nichtsdestotrotz konnten Energietransfer Wechselwirkungen in der Tolan-Vorstufe S2a untersucht werden. Dabei konnte die elektronische Kopplung zwischen den zwei Squarain-Zentren charakterisiert werden. Zu allen multidimensionalen Verbindungen wurden zusätzlich Modelverbindungen mit nur einem einzelnen Donor-Akzeptor-Paar hergestellt (B3, Star-Model und HAB-Model). Dadurch konnten die Energie- und Ladungstransferprozesse getrennt betrachten werden. Es soll noch angemerkt werden, dass in allen genannten multidimensionalen Verbindungen der Energietransfer „über Bindungen“ zwischen zwei benachbarten IV-CT Zuständen identisch ist mit dem Transfer eines einzelnen Elektrons zwischen zwei gleichartigen Redoxzentren (z.B. TAA→TAA+). Diese Situation ist immer dann zu beobachten, wenn sich die zwei IV-CT Zustände, zwischen denen Energie übertragen wird, ein Redox-Zentrum teilen. Alle Verbindungen, die PCTM Zentren beinhalten, wurden durch Elektronenspinzresonanz Experimente charakterisiert. Dabei wurde eine schwache Wechselwirkung zwischen den drei PCTM Einheiten in HAB-S und HAB-A beobachtet. Durch die Oxidation von Star-Model konnten zudem stark wechselwirkende Singlett- bzw. Triplettzustände erhalten werden. Dagegen wurden für HAB-Model+∙ Signale beobachtet, die einem schwach wechselwirkendem Biradikal entsprechen. Das lässt darauf hindeuten, dass die Tolan-Brückeneinheit eine starke Kopplung zwischen den Redox-Zentren gewährleistet, während die Verknüpfung über das Hexaarylbenzol-Gerüst eine schwache Kopplung zur Folge hat. Dieser Trend wurde durch UV/Vis/NIR Absorptionsmessungen gestützt. Durch die Analyse der beobachteten IV-CT Absorptionsbanden mittels Elektronentransfer-Theorie konnte eine schwache Kopplung von V = 340 cm-1 in HAB-Model und eine deutlich stärkere Kopplung von V = 1190-2900 cm-1 in Star-Model ermittelt werden. In spektroelektrochemischen Untersuchungen wurde in den oxidierten Verbindungen HAB-S+, Star+ und Star-Model+, im Vergleich zu den neutralen Verbindungen, der Ladungstransfer in entgegengesetzter Richtung beobachtet. D.h. vom PCTM-Radikal zum elektronenärmeren, kationischen TAA-Zentrum. Die zeitliche Entwicklung der angeregten Zustände wurde mit transienter Absorptionsspektroskopie verfolgt. Innerhalb der ersten Pikosekunden konnte eine Stabiliserung des Ladungstransferzustands, verursacht durch Umorientierungen des Lösungsmittels, beobachtet werden. Anisotrope, transiente Absorptionsmessungen konnten zeigen, dass innerhalb der Lebenszeit des angeregten Zustands (τ = 1-4 ps) kein Energietransfer in den HABs stattfindet, während in dem sternförmigen System eine ultraschnelle und möglicherweise koherente Energieumverteilung beobachtet wurde. Letztendlich konnte klargestellt werden, dass Energietransfer und Ladungstransfer in diesen speziellen Systemen identisch sind. Jedoch konnte weder die Energie-, noch die Ladungstransfertheorie den sehr schnellen Energietransfer in Star erklären. Die elektrochemischen und photophysikalischen Eigenschaften von B1 und B2 wurden mittels Cyclovoltammetrie, Absorptions- und Fluoreszenzmessungen untersucht und mit B3 verglichen. Im Fall vom asymmetrischen B2 zeigten CV Messungen drei Oxidations- und drei Reduktionspeaks, wobei der Abstand zwischen den Peaks stark vom Leitsalz abhing. Dies lässt sich auf Ionenpaar und Abschirmungseffekte zurückführen. Folglich konnten die Abstände zwischen den Peaks nicht in Bezug auf elektronische Kopplungen in den erzeugten, gemischtvalenten Verbindungen interpretiert werden. Transiente Absorption, Fluoreszenz Solvatochromie sowie Absorptionsspektren zeigten, dass nach optischer Anregung Ladungstransferzustände vom Amin- zum Borzentrum bevölkert werden. Die elektronische Donor-Akzeptor Wechselwirkung war jedoch schwach, da der Ladungstransfer hauptsächlich über den Raum stattfindet. Die elektronische Kopplung konnte nicht quantifiziert werden, weil die CT Absorptionsbande von π-π* Übergängen, die an den Amin- und Borzentren lokalisiert sind, überlagert war. Der Trend ist jedoch in guter Übereinstimmung mit der schwachen Kopplung, die für HAB-Model gemessen wurde. Sowohl transiente Absorptions- wie auch Fluoreszenz-Aufkonversionsmessungen deuten auf eine ultraschnelle Stabilisierung des Ladungstransferzustandes in B1 - B3, ähnlich dem Verhalten von HAB-S und Star, hin. Des Weiteren kann die Anregungsenergie der lokalisierten, angeregten Ladungstransferzustände innerhalb der Fluoreszenzlebensdauer (ca. 60 ns) zwischen den Arylsubsituenten dieser multidimensionalen Chromophore umverteilt werden. Dies wurde mit stationären Fluoreszenz-Anisotropiemessungen bewiesen, die weiterhin einen Symmetriebruch im vermeintlich symmetrischen HAB andeuten. Anisotrope Fluoreszenz-Aufkonversionsmessungen bestätigten diese Schlussfolgerung und zeigten eine Zeitkonstante von τ = 2-3 ps für den Energietransfer in B1 und B2. Es soll darauf hingewiesen werden, dass obwohl die geometrischen Strukturen von B1 und HAB-S beide auf dem gleichen Grundgerüst basieren und weiterhin benachbarte CT Zustände in beiden Fällen ähnliche Coulomb Kopplungen und vernachlässigbare Kopplungen „über Bindungen“ aufweisen, in B1 ein sehr schneller Energietransfer beobachtet werden konnte, während in HAB-S die Anregungsenergie innerhalb der Fluoreszenzlebenszeit nicht umverteilt wird. Um dies zu erklären, muss berücksichtigt werden, dass Energietransfer und die Relaxation des CT Zustands konkurrierende Prozesse darstellen. Letzteres wird zudem von der Viskosität des Lösungsmittels beeinflusst. Demnach wird angenommen, dass der Unterschied im Ladungstransferverhalten auf die Verwendung von unterschiedlich viskosen Lösungsmitteln zurückzuführen ist. Wenn Fluorid-Ionen zugesetzt wurden, verloren die Borzentren auf Grund von Komplexierung die Akzeptoreigenschaften. Folglich ging der Ladungstransfercharakter in den Donor-Akzeptor-Verbindungen verloren, was mittels Absorptions- und Fluoreszenzspektroskopie verfolgt wurde. Die Fluorid-Sensor-Eigenschaften der Borzentren war jedoch stark vom Feuchtigkeitsgehalt des Lösungsmittels beeinflusst. Dies ist wahrscheinlich auf starke Wasserstoffbindungen zwischen Wasser Molekülen und Fluorid-Ionen zurückzuführen. UV/Vis/NIR Absorptionsmessungen von S2a zeigten im Vergleich zur Modelverbindung S20 eine Rotverschiebung der charakteristischen Squarain Bande um 1800 cm-1. Anhand der Excitonen-Theorie konnte eine Coulomb Kopplung von V = 410 cm-1 berechnet werden, die jedoch diese starke Verschiebung nicht erklären kann. Demnach müssen Wechselwirkungen „durch Bindungen“ mit zu dieser guten Kommunikation zwischen den beiden Squarain Chromophoren in S2a beitragen. Diese Annahme stimmt mit der starken Ladungstransfer Kopplung überein, die für die Tolan-Brücke in Star-Model berechnet wurde. KW - Energietransfer KW - Ladungstransfer KW - energy transfer KW - charge transfer KW - hexaarylbenzenes KW - Energietransfer KW - Ladungstransfer KW - Hexaarylbenzole Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112520 ER - TY - THES A1 - Ceymann, Harald T1 - Synthesis and Optical Spectroscopic Properties of Squaraine Superchromophores T1 - Synthese und Optisch Spektroskopische Eigenschaften von Squarain Superchromophoren N2 - In this work the successful synthesis, the linear and nonlinear spectroscopic properties as well as the electrochemical behaviour of some linear and star-shaped squaraine superchromophores that are based on indolenine derivatives were presented. The attempt to synthesise similar chromophores which contained only benzothiazole squaraines failed unfortunately. However, one trimer that contained mixed benzothiazole indolenine squaraines could be synthesised and investigated as well. The linear spectroscopic properties, like red-shift and broadening of the absorption, of all superchromophores could be explained by exciton coupling theory. The heterochromophores (SQA)2(SQB)-N, (SQA)(SQB)2-N and (SQA)(SQB)-NH displayed additional to the typical squaraine fluorescence from the lowest excited state some properties that could be assigned to localised states. While the chromophores with N-core showed very small emission quantum yields, the chromophores with the other cores and the linear oligomers display an enhancement compared to the monomers. Transient absorption spectroscopy experiments of the star-shaped superchromophores showed, that their formally degenerated S1 states are split due to a deviation of the ideal C3 symmetry. This is also the reason for the observation of an absorption band for the highest exciton state, which is derived from the S1-state of the monomers, as its transition-dipole moment would be zero in the symmetrical case. The linear oligomers and the star-shaped superchromophores with a benzene or triarylamine core showed at least additive, sometimes even weak cooperative, behaviour in the two-photon absorption experiments. Additional to higher two-photon absorption cross sections the chromophores showed a pronounced broadening of the nonlinear absorption, due to symmetry breaking and a higher density of states. Unfortunately it was not possible to solve the problem of the equilibrium of the cisoid and the transoid structure of donor substituted azulene squaraines, due to either instability of the squaraines or steric hindrance. N2 - Diese Arbeit beschreibt die Synthese von einigen linearen und stern-förmigen Squarain Superchromophoren die auf Indol Derivaten basieren. Außerdem werden sowohl deren lineare und nicht lineare spektroskopische Eigenschaften als auch ihr elektrochemisches Verhalten präsentiert. Der Versuch ähnliche Farbstoffe mit Benzothiazol Derivaten zu synthetisieren schlug leider fehl. Allerdings konnte ein stern-förmiges Trimer hergestellt und untersucht werden, dessen Äste aus einem gemischten Indol-Benzothiazol Squarain bestehen. Die linearen spektroskopischen Eigenschaften, wie Rotverschiebung und die Verbreiterung der Absorption, aller Superchromophore konnten mit Hilfe der Exzitonen-Kopplungs Theorie erklärt werden. Die Heterochromophore (SQA)2(SQB)-N, (SQA)(SQB)2-N und (SQA)(SQB)-NH zeigten zusätzlich zu der typischen Squarain Fluoreszenz aus dem niedrigsten angeregten Zustand einige Besonderheiten die lokalisierten Zuständen zugeordnet werden konnten. Während die Farbstoffe mit einem Stickstoffkern lediglich geringe Fluoreszenzquantenausbeuten zeigen, zeigen die anderen Superchromophore im Vergleich mit den monomeren Squarainen teilweise erheblich größere Fluoreszenzquantenausbeuten. Transiente Absorptionsspektroskopie Messungen der stern-förmigen Farbstoffe legen nahe, dass deren formell degenerierte S1 Zustände wegen einer Abweichung von der C3-Symmetrie aufspalten. Durch diese Abweichung bekommt auch der Übergang vom Grundzustand zum höchsten exzitonischen Zustand, der sich aus den S1-Zuständen der Monomere ableiten lässt, ein merkliches Übergangsdipolmoment und kann daher in den linearen Absorptionsspektren beobachtet werden. Die linearen Oligomere und die stern-förmigen Superchromophore die einen Benzol oder Triarylamin Kern haben zeigten mindestens additives, manchmal auch verstärkendes Verhalten in der Zweiphotonenabsorption. Zusätzlich zu den größeren molekularen Zweiphotonenabsorptions-Querschnitten sind auf Grund von Symmetriebrüchen und einer hohen Dichte von Zuständen die nicht linearen Absorptionsbanden merklich verbreitert. Im Falle der Donor substituierten Azulen-Squaraine, war es nicht möglich wegen sterischen Gründen oder unstabilen Zwischenprodukten in der Synthese, das Gleichgewicht der cisoiden und der transoiden Struktur so zu verschieben das in Lösung nur noch eine der beiden Strukturen beobachtet wird. KW - Squaraine KW - Squaraine KW - Chromophor Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-136850 ER - TY - THES A1 - Steinbacher, Andreas Edgar T1 - Circular dichroism and accumulative polarimetry of chiral femtochemistry T1 - Zirkulardichroismus und akkumulative Polarimetrie chiraler Femtochemie N2 - This work brings forward successful implementations of ultrafast chirality-sensitive spectroscopic techniques by probing circular dichroism (CD) or optical rotation dispersion (ORD). Furthermore, also first steps towards chiral quantum control, i.e., the selective variation of the chiral properties of molecules with the help of coherent light, are presented. In the case of CD probing, a setup capable of mirroring an arbitrary polarization state of an ultrashort laser pulse was developed. Hence, by passing a left-circularly polarized laser pulse through this setup a right-circularly polarized laser pulse is generated. These two pulse enantiomers can be utilized as probe pulses in a pump--probe CD experiment. Besides CD spectroscopy, it can be utilized for anisotropy or ellipsometry spectroscopy also. Within this thesis, the approach is used to elucidate the photochemistry of hemoglobin, the oxygen transporting protein in mammalian blood. The oxygen loss can be triggered with laser pulses as well, and the results of the time-resolved CD experiment suggest a cascade-like relaxation, probably through different spin states, of the metallo-porphyrins in hemoglobin. The ORD probing was realized via the combination of common-path optical heterodyne interferometric polarimetry and accumulative femtosecond spectroscopy. Within this setup, on the one hand the applicability of this approach for ultrafast studies was demonstrated explicitly. On the other hand, the discrimination between an achiral and a racemic solution without prior spatial separation was realized. This was achieved by inducing an enantiomeric excess via polarized femtosecond laser pulses and following its evolution with the developed polarimeter. Hence, chiral selectivity was already achieved with this method which can be turned into chiral control if the polarized laser pulses are optimized to steer an enhancement of the enantiomeric excess. Furthermore, within this thesis, theoretical prerequisites for anisotropy-free pump--probe experiments with arbitrary polarized laser pulses were derived. Due to the small magnitude of optical chirality-sensitve signals, these results are important for any pump--probe chiral spectroscopy, like the CD probing presented in this thesis. Moreover, since for chiral quantum control the variation of the molecular structure is necessary, the knowledge about rearrangement reactions triggered by photons is necessary. Hence, within this thesis the ultrafast Wolff rearrangement of an α-diazocarbonyl was investigated via ultrafast photofragment ion spectroscopy in the gas phase. Though the compound is not chiral, the knowledge about the exact reaction mechanism is beneficial for future studies of chiral compounds. N2 - Ziel der vorliegenden Arbeit war die Entwicklung neuartiger Methoden in der Ultrakurzzeitspektroskopie von chiralen Molekülen, basierend auf den optischen Nachweismethoden Zirkulardichroismus- und optische Rotationsspektroskopie. Zudem sollten die Methoden auch für ihre Eignung hinsichtlich der chiralen Quantenkontrolle, d.h. der selektiven änderung der chiralen Eigenschaften von Molekülen mit Hilfe von kohärentem Licht, beleuchtet werden. Im Falle des Nachweises über den Effekt des Zirkulardichroismus (CD, von engl. circular dichroism) wurde im Rahmen dieser Arbeit ein optischer Aufbau entwickelt, der einen beliebigen Polarisationszustand eines ultrakurzen Laserimpulses spiegeln kann. Mit diesem Aufbau ist es daher möglich, einen links-zirkular polarisierten Laserimpuls zu einem rechts-zirkular polarisierten Laserimpuls zu spiegeln. Die so erzeugten Pulsenantiomere können demnach als Abfragelaserimpulse in einem Anrege-Abfrage-CD-Experiment verwendet werden. Zudem eignet sich der Aufbau auch für Experimente zur Ellipsometriespektroskopie oder für zeitaufgelöste Anisotropiemessungen. In dieser Arbeit wurde die Methode genutzt, um die Photochemie von Hämoglobin zu untersuchen. Hämoglobin ist ein eisenhaltiges Protein, welches für den Sauerstofftransport im Blut aller Wirbeltiere zuständig ist. Die Abgabe von Sauerstoff kann dabei auch mittels Anregung durch einen Laserimpuls erfolgen. Die Auswertung der durchgeführten zeitaufgelösten Anrege-Abfrage-CD-Experimente legt nahe, dass die Relaxation in den Grundzustand in mehreren Schritten, vermutlich verbunden mit änderungen des Spin-Zustands des metallischen Porphyrins, erfolgt. Die entwickelte Spektroskopiemethode für den Nachweis mittels optischer Rotationsdispersion (ORD, von engl. optical rotation dispersion) basiert auf einer Kombination aus optisch einpfadiger Interferometrie und akkumulativer Femtosekundenspektroskopie. Das entwickelte Polarimeter wurde zunächst mittels einer exemplarischen Photoreaktion für Anwendungen in der Ultrakurzzeitspektroskopie getestet. Weiterhin wurde das Polarimeter auch zur Unterscheidung zwischen einer achiralen und einer racemischen Molekül-Lösung genutzt. Anstatt die chiralen Moleküle in Lösung zunächst mittels nicht-optischer Methoden zu separieren, wurde hier auf optischem Weg ein Enantiomerenüberschuss erzeugt. Dazu dienten zirkular polarisierte Laserimpulse, die je nach Händigkeit ein Enantiomer in der Lösung selektiv anreicherten. Die Entstehung des Enantiomerenüberschusses wurde zeitabhängig mit Hilfe des entwickelten Polarimeters detektiert. Dieses Experiment stellt daher gleichzeitig eine Vorstufe zur chiralen Quantenkontrolle dar. In einem nächsten Schritt wäre eine Vergrößerung des Enantiomerenüberschusses durch Anpassung der polarisierten Anregepulse an das molekulare System denkbar. Neben diesen beiden neu entwickelten experimentellen Methoden wurden im Rahmen dieser Arbeit auch die theoretischen Bedingungen für anisotropiefreie Anrege-Abfrage-Experimente für beliebige Polarisationszustände hergeleitet. Da gerade bei der Spektroskopie von chiralen System die Messsignale typischerweise sehr schwach sind, sollten Anisotropie-Effekte vermieden werden. Die Ergebnisse dieser theoretischen Betrachtung fanden daher auch für die oben erwähnte CD-Spektroskopie von Hämoglobin Verwendung. Da im Falle von chiraler Quantenkontrolle eine änderung der chiralen Eigenschaften eines Moleküls von Nöten ist, sind lichtinduzierte ultraschnelle Umlagerungsreaktionen von großer Bedeutung. Daher wurde in dieser Arbeit auch die Wolff-Umlagerung von einer α-Diazocarbonyl-Verbindung mit Hilfe von zeitaufgelöster Massenspektroskopie untersucht. Obwohl das verwendete Molekül nicht chiral ist, sind die Ergebnisse dieses Experiments, wie zum Beispiel der exakte Reaktionsmechanismus, hilfreich für zukünftige Kontrollexperimente mit chiralen Systemen. KW - Ultrakurzzeitspektroskopie KW - femtosecond spectroscopy KW - chirality-sensitive spectroscopy KW - polarimetry KW - circular dichroism spectroscopy KW - ultrafast photochemistry KW - Femtosekundenspektroskopie KW - Chiral-sensitive Specktroskopie KW - Polarimetrie KW - Zirkulardichroismus Spektroskopie KW - Ultraschnelle Photochemie KW - Verbindungen KW - Femtosekundenspektroskopie KW - Chiralität Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116500 ER - TY - THES A1 - Hartleb, Holger Edgar Heinz Erich T1 - Spektroelektrochemische Untersuchung von halbleitenden Kohlenstoffnanoröhren T1 - Spectroelectrochemical investigation of semiconducting carbon nanotubes N2 - Der Schwerpunkt dieser Arbeit lag auf der spektroelektrochemischen Untersuchung von halbleitenden SWNTs. Hierbei wurden erstmalig Absorptions- und Photolumineszenzspektren ein und derselben SWNT-Probe simultan unter elektrochemischer Potentialkontrolle aufgenommen. Hierbei konnte gezeigt werden, dass die Messmethode einen entscheidenden Einfluss auf die erhaltene Bandlücke besitzt und der in der Literatur geprägte Begriff der Elektrochemischen Bandlücke aufgrund einer fehlenden allgemeingültigen Definition problembehaftet ist. So ergeben Photolumineszenzmessungen im Vergleich zu Raman- oder Absorptionsmessungen die kleinste Bandlücke. Dies wurde auf die diffusionskontrollierte Löschung der Exzitonen an Ladungszentren zurückgeführt. Weiterhin wurden die optischen Spektren von SWNTs unter Ladungseinfluss analysiert und die zugrundeliegenden Änderungen der elektronischen Eigenschaften diskutiert. Neben SWNTs wurden die Übergangsmetalldichalkogenide MoS2 und WS2 spektroelektrochemisch untersucht. Auffallend im Vergleich zu den Messungen an SWNTs war der breite Potentialbereich, über den die Abnahme der exzitonischen Signale zu beobachten war. Dies kann auf die unterschiedliche elektronische Struktur von TMDs und SWNTs und den geringen Anteil von Einzellagen in den TMD-Proben zurückgeführt werden. Weiterhin konnte in den Absorptionsspektren unter Ladungseinfluss ein Signal beobachtet werden, welches auf die Entstehung von Trionen hindeutet. In einem weiteren Teilprojekt wurde eine elektrochemische Zelle zur Untersuchung von metallischen SWNT-Filmen als Elektrode für die Wasserstoffproduktion entwickelt und getestet. Hierbei gelang es die von Das et al. publizierte Aktivierung von SWNTs mit Schwefelsäure erfolgreich nachzuvollziehen und einen katalytischen Effekt der SWNTs auf die Wasserstoffentwicklung zu beobachten. N2 - The main focus of this work was on spectroelectrochemical studies of semiconducting SWNTs. For the first time, absorption and photoluminescence spectra of one and the same sample were recorded simultaneous under electrochemical control of the potential. It was shown, that the optical method has a significant influence on the resulting band gap. Therefore, the term electrochemical band gap, which has developed in literature, is problematic due to a missing general definition. Photoluminescence measurements yield the smallest band gap in comparison to Raman or absorption measurements. This was attributed to the diffusion limited quenching of excitons at charges. Furthermore, the optical spectra of charged SWNTs were analysed and the underlying electronic changes were discussed. In addition to SWNTs, the transition metal dichalcogenides MoS2 and WS2 were studied with spectroelectrochemical methods as well. Striking, when compared to the measurements of SWNTs, was the broad potential range during which the decrease of the excitonic signals could be observed. This can be attributed to the different electronic structures of TMDs and SWNTs and the small amount of mono layers in the TMD samples. Under the influence of charges it was furthermore possible to observe a signal in the absorption spectra, which points to the formation of trions. In the last part of this work an electrochemical cell for the investigation of hydrogen production at metallic SWNT electrodes was developed and tested. The activation procedure of SWNTs with sulphuric acid, which was published by Das et al., was successfully reproduced, and a catalytic effect on the hydrogen production by the SWNTs was observed. KW - Kohlenstoff-Nanoröhre KW - Photolumineszenzspektroskopie KW - Absorptionsspektroskopie KW - Spektroelektrochemie KW - Übergangsmetalldichalkogenide KW - Elektrolyse KW - elektrochemische Bandlücke Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116628 ER -