TY - THES A1 - Brockmann, Dorothea E. R. T1 - Gefüge-Simulationen an Nicht-Oxid-Keramiken: Korrelation zwischen Mikrostruktur und makroskopischen Eigenschaften T1 - Structure simulations on non-oxide ceramics: correlation between microstructure and macroscopic properties N2 - Die experimentelle Verbesserung der makroskopischen Eigenschaften (z. B. thermische oder mechanische Eigenschaften) von Keramiken ist aufgrund der zahlreichen erforderlichen Experimente zeitaufwändig und kostenintensiv. Simulationen hingegen können die Korrelation von Mikrostruktur und makroskopischen Eigenschaften nutzen, um die Eigenschaften von beliebigen Gefügekompositionen zu berechnen. In bisherigen Simulationen wurden meist stark vereinfachte Modelle herangezogen, welche die Mikrostruktur einer Keramik nur sehr grob widerspiegeln und deshalb keine zuverlässigen Ergebnisse liefern. In der vorliegenden Arbeit wird die Mikrostruktur-Eigenschafts-Korrelation der drei wichtigsten Nicht-Oxid-Keramiken untersucht. Dies sind Aluminiumnitrid (AlN), Siliciumnitrid (Si3N4) und Siliciumcarbid (SiC). Diese drei Keramiktypen vertreten die häufigsten Mikrostrukturtypen, welche bei Nicht-Oxid-Keramiken auftreten können. Zu jedem Keramiktyp liegen zwei verschiedene Proben vor. Alle drei untersuchten Keramiktypen sind zweiphasig. Die Hauptphase von AlN und Si3N4 besteht aus keramischen Körnern, die Nebenphase erstarrt während der Sinterung aus den zugesetzten Sinteradditiven. Die Restporosität von AlN und Si3N4 wird als vernachlässigbar angesehen und in den Simulationen nicht berücksichtigt. Bei den SiC-Proben handelt es sich um Keramiken mit bimodaler Korngröÿenverteilung. Durch Infiltration mit flüssigem Silicium wurden die Hohlräume zwischen den Körnern aufgefüllt, um porenfreie SiSiC-Proben zu erhalten. Anhand von Simulationen werden zunächst reale Mikrostrukturen in Anlehnung an vorliegende Vergleichsproben nachgebildet. Diese Modelle werden durch Abgleich mit rasterelektronenmikroskopischen 2D-Aufnahmen der Proben verifiziert. An den Modellen werden mit der Methode der Finite-Element-Simulation makroskopische Eigenschaften (Wärmeleitfähigkeit, Elastizitätsmodul und Poisson-Zahl) der Keramiken simuliert und mit experimentellen Messungen an den vorliegenden Proben abgeglichen. Der Vergleich der Mikrostruktur von den computergenerierten Gefügen und den vorliegenden Proben zeigt in der Mustererkennung durch das menschliche Auge und quantitativ in den Gefügeparametern eine gute Übereinstimmung. Für die makroskopischen Eigenschaften wird auf der Basis einer ausführlichen Literaturrecherche zu den Materialparametern der beteiligten Phasen eine gute Übereinstimmung zwischen den experimentell gemessenen und den simulierten Eigenschaften erreicht. Evtl. auftretende Abweichungen zwischen Experiment und Simulation können damit erklärt werden, dass die Proben Verunreinigungen enthalten, da aus der Literatur bekannt ist, dass Verunreinigungen eine Verschlechterung der Wärmeleitfähigkeit bewirken. Nachdem die Gültigkeit der Modelle verifiziert ist, wird der Einfluss von charakteristischen Mikrostrukturparametern und Phaseneigenschaften auf die Wärmeleitfähigkeit, den Elastizitätsmodul und die Poisson-Zahl der Keramiken untersucht. Hierzu werden die Mikrostrukturparameter von AlN und Si3N4 gezielt um die Parameter der vorliegenden Vergleichsproben variiert. Bei beiden Keramiktypen werden die Volumenanteile der beteiligten Phasen sowie die mittlere Sehnenlänge der keramischen Körner verändert. Bei den AlN-Keramiken wird zusätzlich der Dihedralwinkel variiert, welcher Auskunft über den Benetzungsgrad der Flüssigphase gibt; bei den Si3N4-Keramiken ist das Achsenverhältnis der langgezogenen Si3N4-Körner von Interesse und wird deshalb ebenfalls variiert. Es zeigt sich, dass die Aufteilung der Teilvolumina zwischen den zwei Phasen den größten Einfluss auf die Eigenschaften der Keramik hat, während die übrigen Mikrostrukturparameter nur eine untergeordnete Rolle spielen. Um die Qualität der Simulationen zu überprüfen, wird die Simulationsreihe an AlN mit unterschiedlicher Aufteilung der Volumina zwischen den beiden Phasen in Relation zu etablierten Modellen aus der Literatur (Mischungsregel und Modell nach Ondracek) gesetzt. Alle Simulationsergebnisse für die Wärmeleitfähigkeit und den Elastizitätsmodul liegen innerhalb der jeweils oberen und unteren Grenze beider Modelle. Es konnte also eine Verbesserung gegenüber den etablierten Modellen erzielt werden. An allen drei Keramiktypen wird der Einfluss der Materialeigenschaften der Haupt- und Nebenphase auf die makroskopischen Eigenschaften der Keramik untersucht. Hierfür werden die Wärmeleitfähigkeit, der Elastizitätsmodul und die Poisson-Zahl der Phasen getrennt voneinander über einen größeren Bereich variiert. Es stellt sich heraus, dass es vom Keramiktyp und dem Volumenanteil der Nebenphase abhängt, wie stark der Einfluss einer Komponenteneigenschaft auf die Eigenschaft der Keramik ist. Mit den im Rahmen dieser Arbeit durchgeführten Simulationen wird der Einfluss von Mikrostrukturparametern und Phaseneigenschaften berechnet. Auf der Grundlage dieser Simulationen können die Architektur des Gefüges simuliert und die Eigenschaften von Keramiken für individuelle Anwendungen berechnet werden. Dies ist die Basis für die Produktion von maßgeschneiderten Keramiken. Zudem können mit den validierten Mikrostrukturmodellen die Eigenschaften von unbekannten Mischphasen ermittelt werden, was experimentell oft nicht möglich ist. N2 - Experimental improvement of macroscopic properties (e. g. thermal or mechanical properties) of ceramics require countless experiments and are therefore costly in terms of time and money. However, simulations use the correlation of microstructure and macroscopic properties to calculate properties of any microstructure. Until now, simulations usually use oversimplified models, which only roughly reproduce a ceramics' microstructure and therefore do not give reasonable results. In the paper on hand, the microstructure-property-correlation of the three most important non-oxide-ceramics (AlN, Si3N4, SiC) is analysed. These three types of ceramic represent the most important types of microstructures, which exist for nonoxidic ceramics. For each type of ceramic, two different samples are examined. All three ceramic types used are two-phase-ceramics. The primary phase of AlN and Si3N4 is built of the ceramic grains and the secondary phase solidifies from the added sinter additives. The remaining porosity of AlN and Si3N4 is regarded to be negligible and is therefore not considered in the simulations. The SiC-samples are ceramics with a bimodal grain size distribution. The spaces in between the grains are filled by infiltration with liquid silicon to get Si-SiC-samples free of pores. At first, by employing simulations, microstructures are generated, which are close to the samples' microstructures. These models are verified by comparing them with two-dimensional scanning electron micrographs. Macroscopic properties (thermal conductivity, Young's modulus, Poisson's Ratio) of the ceramics are calculated by finite element simulations and then compared to experimental measurements on the samples. Analyzing the microstructures of the computer-generated models and the samples shows good agreement in the pattern matching as well as quantitatively in the microstructures parameters. Also for the macroscopic properties good comparison between measured and simulated properties was reached, based on an elaborate literature research on material parameters of all phases involved. Occurring discrepancies between experiment and simulations are assumed to be due to impurities in the sample. From literature it is known that impurities lead to a decline in thermal conductivity. As the models are validated, the influence of characteristic microstructure parameters and material properties of the phases on the thermal conductivity, Young's modulus and Poisson's ratio of ceramics are analysed. Therefore some microstructure parameters of the models of AlN and Si3N4 are deviated from the parameters of the samples. For both ceramic types the volume fractions of both phases and the average chord length of the grains are varied. At the AlN models, the dihedral angle is varied as well, which provides information about the wetting behaviour of the secondary phase; at the Si3N4 models, the aspect ratio of the elongated Si3N4 grains are of importance and hence analysed. It turns out that the volume fractions of the phases have the most significant influence on the ceramics' properties, whereas the other microstructure parameters are less important. To check the quality of the simulations, the simulation data of AlN with different volume fractions is compared to established models from literature ("rule of mixture" and model according to Ondracek). All results from the simulations are within the upper and lower bounds of both models. In comparison with these models, an improvement was achieved. For all three ceramic types, the influence of the material properties of the main and the secondary phase on the ceramics' properties is investigated. Therefore, the phases' thermal conductivity, Young's modulus and Poisson's ratio are separately from each other varied over a large range. It turns out that the influence of a component's property on the property of the ceramic depends on the ceramic type and the volume fraction of the secondary phase. On models of all three ceramic types, the influence of the components' material properties on the macroscopic properties of the ceramic is analysed. Based on these simulations, the architecture of microstructures can be simulated and properties of random ceramics for individual purposes can by calculated. By this, it is possible to produce customised ceramics. Additionally, with the validated microstructure models, the properties of unknown mixed phases can be calculated, which is usually not possible in experiments. KW - Aluminiumnitrid KW - Siliciumcarbid KW - Siliciumnitrid KW - Finite-Elemente-Methode KW - Wärmeleitfähigkeit KW - Mikrostrukturmodellierung KW - Elastizitätsmodul KW - inverse Simulation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157255 ER - TY - THES A1 - Müller, Thomas M. T1 - Computergestütztes Materialdesign: Mikrostruktur und elektrische Eigenschaften von Zirkoniumdioxid–Aluminiumoxid Keramiken T1 - Computer-Aided Material Design: Microstructure and Electrical Properties of Zirconia-Alumina-Ceramics N2 - Die Mikrostruktur von Zirkonoxid–Aluminiumoxid Keramiken wurde im Rasterelektronenmikroskop (REM) untersucht und mittels quantitativer Bildanalyse weiter charakterisiert. Die so erhaltenen spezifischen morphologischen Kennwerte wurden mit denen, die an dreidimensionalen Modellstrukturen äquivalent gewonnen wurden, verglichen. Es wurden modifizierte Voronoistrukturen benutzt, um die beteiligten Phasen in repräsentativen Volumenelementen (RVE) auf Voxelbasis zu erzeugen. Poren wurden an den Ecken und Kanten dieser Strukturen nachträglich hinzugefüg. Nachdem alle relevanten Kennwerte der Modellstrukturen an die realen keramischen Mikrostrukturen angepasst wurden, musste das RVE für die Finite Element Simulationen (FES) geeignet vernetzt werden. Eine einfache Übernahme der Voxelstrukturen in hexaedrische Elemente führt zu sehr langen Rechenzeiten, und die erforderliche Genauigkeit der FES konnte nicht erreicht werden. Deshalb wurde zunächst eine adaptive Oberflächenvernetzung ausgehend von einem generally classed marching tetrahedra Algorithmus erzeugt. Dabei wurde besonderer Wert auf die Beibehaltung der zuvor angepassten Kennwerte gelegt. Um die Rechenzeiten zu verkürzen ohne die Genauigkeit der FES zu beeinträchtigen, wurden die Oberflächenvernetzungen dergestalt vereinfacht, dass eine hohe Auflösung an den Ecken und Kanten der Strukturen erhalten blieb, während sie an flachen Korngrenzen stark verringert wurde. Auf Basis dieser Oberflächenvernetzung wurden Volumenvernetzungen, inklusive der Abbildung der Korngrenzen durch Volumenelemente, erzeugt und für die FES benutzt. Dazu wurde ein FE-Modell zur Simulation der Impedanzspektren aufgestellt und validiert. Um das makroskopische elektrische Verhalten der polykristallinen Keramiken zu simulieren, mussten zunächst die elektrischen Eigenschaften der beteiligten Einzelphasen gemessen werden. Dazu wurde eine Anlage zur Impedanzspektroskopie bis 1000 °C aufgebaut und verwendet. Durch weitere Auswertung der experimentellen Daten unter besonderer Berücksichtigung der Korngrenzeffekte wurden die individuellen Phaseneigenschaften erhalten. Die Zusammensetzung der Mischkeramiken reichte von purem Zirkonoxid (3YSZ) bis zu purem Aluminiumoxid. Es wurde eine sehr gute Übereinstimmung zwischen den experimentellen und simulierten Werten bezüglich der betrachteten elektrischen, mechanischen und thermischen Eigenschaften erreicht. Die FES wurden verwendet, um die Einflüsse verschiedener mikrostruktureller Parameter, wie Porosität, Korngröße und Komposition, auf das makroskopische Materialverhalten näher zu untersuchen. N2 - The microstructures of zirconia–alumina ceramics are investigated by scanning electron microscopy (SEM) and further characterised by quantitative image analysis. This leads to specific morphological parameters which are compared with the same parameters derived from three-dimensional model structures generated in voxel-based representative volume elements (RVE). Modified Voronoi clusters are employed to represent alumina and zirconia phases. Pores are added at the grain corners and edges respectively. After adjusting all the relevant morphological parameters of the model to the real ceramics’ microstructure, the RVE has to be meshed for finite element simulations (FES). Hexahedral elements which simply use the voxel structure did not lead to sufficient accuracy of the FES. As a first step, an adapted surface tessellation is generated, using a generally classed marching tetrahedra method. Special care is taken to preserve the topology as well as the individual volumes and interfaces of the model. In terms of processing time and accuracy of the FES it is very important to simplify the initially generated surface mesh in a manner that preserves detailed resolution at corners and along edges, while decimating the number of surface elements in flat regions, i.e. at the grain boundaries. From the surface mesh an adequate tetrahedral volume tessellation, including solid elements representing the grain boundaries, is created, which is used for the FES. Therefore, a FE-model for the simulation of impedance spectra has been established and validated. To simulate the macroscopic electrical behaviour of polycrystalline ceramics, the electrical properties of the individual constituting phases need to be measured. This is done by impedance spectroscopy up to 1000 °C. Further analysis of the experimental data with special respect to the effect of the grain boundaries is carried out to obtain the individual phases’ properties. The sample composition was varied from pure zirconia to pure alumina. A very good agreement between experimental and simulated data was achieved in terms of electrical, thermal and mechanical properties. The FES were employed to scrutinize the effects of systematically varying microstructural properties, such as porosity, grain size and composition, on the macroscopic material behaviour. KW - Keramischer Werkstoff KW - Mikrostruktur–Eigenschafts–Korrelationen KW - Mikrostrukturmodellierung KW - Impedanzspektroskopie KW - Finite Element Simulationen KW - Microstructure–Property–Relationship KW - Microstructure Modelling KW - Impedance Spectroscopy KW - Finite Element Simulations KW - Mikrostruktur KW - Computersimulation KW - Finite-Elemente-Methode KW - Simulation KW - Dreidimensionales Modell KW - Gefügekunde Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-110942 ER - TY - THES A1 - Brendel, Harald T1 - Wärmetransport in keramischen Faserisolationen bei hohen Temperaturen T1 - Heat-transfer in ceramic fibre-insulation-materials at high temperatures N2 - Das Ziel dieser Arbeit ist eine umfassende numerische und experimentelle Charakterisierung des Wärmetransports in oxidkeramischen Faserisolationen im Hochtemperaturbereich. Zugleich sollen neue Konzepte für eine optimierte technische Auslegung von Faserisolationen erarbeitet werden. Oxidkeramiken zeigen im Infrarotbereich ein semitransparentes Verhalten. Das bedeutet, ein Teil der Strahlung gelangt durch die Probe, ohne gestreut oder absorbiert zu werden. Durch die Ausgestaltung als disperses Medium mit Abmessungen der Fasern im $\mu m$ Bereich wird jedoch eine starke Wechselwirkung mit infraroter Lichtstrahlung erzeugt. Man befindet sich im optischen Resonanzbereich. Technisch relevante Faserisolationen besitzen eine Rohdichte zwischen $50 \mathrm{kg/m^3}$ und $700 \mathrm{kg/m^3}$ und können als optisch dichtes Medium betrachtet werden. Eine Optimierung hinsichtlich der Dämmwirkung gegen Wärmestrahlung bedeutet eine massenspezifische Maximierung des Lichtstreuvermögens im relevanten Wellenlängenbereich. Hierzu werden in einer numerischen Studie keramische Hohlfaserisolationen mit konventionellen Fasern verglichen. Diese Abhandlung unter Berücksichtigung anwendungsnaher Aspekte gelangt zu der Schlussfolgerung, dass die Strahlungswärmestromdichte in Hohlfaserisolationen, im Vergleich zu konventionellen Isolationen, signifikant erniedrigt wird. Hinsichtlich der Gesamtwärmeleitfähigkeit ist eine Reduzierung um den Faktor zwei zu erwarten. \\ Trotz moderner Rechner ist die Anwendung der vollen Maxwellschen Streutheorie, insbesondere im Rahmen von Optimierungsaufgaben mehrschichtiger Streukörper, ein zeitaufwendiges Unterfangen. Um sinnvolle Parameterkonfigurationen bereichsweise eingrenzen zu können, wird eine Näherungsmethode für die Lichtstreuung an mehrschichtigen Zylindern weiterentwickelt und mit der vollständigen Maxwellschen Streutheorie verglichen. Es zeigt sich, dass das Modell für kleine bis moderate Brechungsindizes sehr gute Vorhersagekraft besitzt und auch zur näherungsweisen Berechnung der Streueffizienzen für räumlich isotrop angeordnete Zylinder herangezogen werden kann. \\ Neben den numerischen Studien wird im experimentellen Teil dieser Arbeit eine kommerzielle Faserisolierung aus Aluminiumoxid hinsichtlich ihrer Wärmetransporteigenschaften charakterisiert. Die optischen Transportparameter Albedo und Extinktion werden mittels etablierter Messmethoden bestimmt. Bei bekannter Faserdurchmesserverteilung können diese Messwerte dann mit den theoretischen Vorhersagen der Maxwellschen Streutheorie verglichen werden.\\ Um technische Optimierungsmaßnahmen experimentell zu verifizieren, besteht die Notwendigkeit, die Temperaturleitfähigkeit bzw. die Wärmeleitfähigkeit auch bei hohen Temperaturen oberhalb von $1000^\mathrm{o}\mathrm{C}$ zuverlässig bestimmen zu können. Zu diesem Zweck wird ein Versuchsaufbau realisiert, um in diesem Temperaturbereich erstmals die sogenannte Thermal-Wave-Analyse anzuwenden. Durch Abgleich mit einem gekoppelten Wärmetransportmodell und einem etablierten Messverfahren wird die besondere Eignung der Thermal-Wave-Analyse für berührungsfreie Hochtemperaturmessungen gezeigt. N2 - The objective of the present thesis is a comprehensive numerical and experimental characterization of the heat transfer properties in thermal insulation materials made of ceramic fibers at high temperatures. At the same time, new concepts for further improvement of fibrous insulation materials are developed. In general, ceramic oxides appear semitransparent in the infrared range, meaning that a part of the thermal radiation is transmitted through a sample without being scattered or absorbed. However, in a dispersed medium containing fibers with diameters in the micrometer range a strong interaction with infrared radiation occurs. Since typical fibrous insulation materials of technical relevance show raw densities between $50 \mathrm{kg/m^3}$ and $700 \mathrm{kg/m^3}$ they could be considered as optically dense. The optimization of the insulation effect involves the maximization of the mass specific scattering coefficient in the wavelength range of substantial thermal radiation. Therefore, the heat transfer properties of hollow-fiber insulation materials are compared to conventional insulations made of solid fibers by means of a numerical study. This treatise concludes that thermal insulations made of hollow fibers can provide a significant reduction of heat losses in wide ranges of practical interest. In particular, by application of hollow fiber insulations the effective thermal conductivity could be lowered by a factor of two.\\ However, in connection with optimization problems of stratified scattering objects the application of the full Maxwell-scattering theory is a time consuming task. In order to locate reasonable parameter configurations in layered cylindrical media an enhanced version of the so-called anomalous diffraction approximation is presented. By comparison with the results of the exact Maxwell-scattering formulas it is shown that within the limit of moderate refractive indices the simplified theory delivers good agreement in a broad size parameter range. Even the extinction efficiency of randomly oriented stratified cylinders is reproduced astonishingly well.\\ Apart from numerical investigations the heat transfer properties of a commercial fibrous insulation material are characterized experimentally. Therefore, the optical transport parameters extinction and albedo are determined by established methods. With knowledge of the fiber diameter distribution the experimental results could be compared to the theoretical predictions of light scattering at infinite fibers. The verification of optimization measures, requires also an adequate experimental determination of thermal diffusivity or thermal conductivity, respectively. For this purpose the potential of measuring thermal diffusivity of heterogeneous materials in a temperature range above $1000^\mathrm{o}C$ by thermal wave analysis is investigated for the first time. By comparison with a coupled numerical heat transfer model and an established measurement method the feasibility of measuring thermal diffusivity at high temperatures by thermal wave analysis is demonstrated KW - Wärmeübertragung KW - Hochtemperatur-Wärmeisolation KW - high temperature thermal insulation materials KW - partizipierende Medien KW - Wärmetransport KW - keramische Fasern KW - light scattering and absorption KW - heat transfer KW - ceramic fibers KW - Keramikfaser KW - Faser KW - Hohlfaser KW - Hochtemperatur Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157917 ER - TY - THES A1 - Schäfer, Markus Manfred T1 - Lokale elektrophoretische Abscheidung keramischer Partikel in stationären inhomogenen elektrischen Feldern in polaren und unpolaren Lösemitteln und deren Mischungen T1 - Local electrophoretic deposition of ceramic particles in static inhomogenous electric fields in polar and nonpolar media and mixtures thereof N2 - Die Elektrophoretische Abscheidung (EPD) ist ein zweistufiger Prozess, bei dem geladene Partikel zunächst aufgrund eines elektrischen Feldes in einer Suspension bewegt und anschließend auf einer Oberfläche abgeschieden werden. Aufgrund der Möglichkeit zur kostengünstigen Massenproduktion von Filmen auf Oberflächen sowie darauf basierenden dreidimensionalen Mehrschichtsystemen, ist die EPD für die Industrie und die Medizin von großem Interesse. Der 3D-Druck ist dagegen weniger zur Massenproduktion, sondern vielmehr zur Herstellung von Prototypen in niedriger Stückzahl geeignet, was ihn jedoch nicht weniger interessant für Industrie und Medizin macht. Beim 3D-Druck wird das Material zum Aufbau einer dreidimensionalen Struktur lokal zur Verfügung gestellt, weshalb er den additiven Herstellungsverfahren zugeordnet werden kann. Eine Kombination beider Verfahren eröffnet neue Möglichkeiten zum Aufbau dreidimensionaler Strukturen. Da EPD theoretisch mit jedem geladenen Objekt, Material oder Molekül möglich ist, ließe sich das Potenzial des 3D-Drucks durch eine Kombination mit EPD signifikant steigern. Prototypen könnten aus einer Vielzahl an Materialien in einem schnellen und kostengünstigen additiven Herstellungsverfahren entstehen, wodurch die Möglichkeit zum Einsatz als Massenproduktionsverfahren gegeben ist. Eine Nutzung der EPD als 3D-Druck-Verfahren ist jedoch nur möglich, wenn es gelingt, die Abscheidung der Partikel lokal zu fokussieren und somit den Aufbau der dreidimensionalen Struktur zu steuern und zu kontrollieren. In der vorliegenden Arbeit wird untersucht, ob lokale Abscheidung von keramischen Partikeln durch EPD realisierbar ist und welche Bedingungen dazu vorliegen müssen. Insbesondere werden die Bewegungen der geladenen Partikel im inhomogenen elektrischen Feld analysiert und der Einfluss der Polarität des Suspensionsmediums auf die Partikelbewegung und die Partikelablagerung in einer selbstentwickelten Mikro-Flusskammer untersucht. Im unpolaren Medium Cyclohexan steigt die Bewegungsgeschwindigkeit der Partikel linear mit der angelegten Spannung, respektive der elektrischen Feldstärke. Die Bewegungsrichtung der Partikel erfolgt entsprechend ihrer positiven Ladung in Richtung der Kathode. Die Partikel scheiden sich als stäbchenförmige Deposition verteilt auf der Kathodenoberfläche ab. Die Häufigkeit der Ablagerung ist dabei an der Elektrodenspitze, also im Bereich der höchsten Feldstärke am größten. Die Stabilisierung der Partikel in einem unpolaren Lösemittel wird durch eine Oberflächenbeschichtung mit verschiedenen, strukturähnlichen Dispergatoren realisiert. Alle verwendeten Dispergator-Partikel-Systeme zeigen näherungsweise gleiches elektrophoretisches Verhalten. In Wasser bewegen sich die positiv geladenen Partikel bei einer angelegten Spannung von unter 3 V entgegen der elektrostatischen Kräfte in Richtung Anode, deren Oberfläche sie jedoch nicht erreichen, da sie vorher abgelenkt werden. Somit erfolgt keine Abscheidung der Partikel auf keiner der beiden Elektroden. Ab einer Spannung von 3 V beginnen sich Partikel im polaren Medium in Form einer dendritischen Struktur an der Kathodenspitze abzuscheiden. Bei Spannungen von mehr als 17 V beginnt in Wasser eine sichtbare Bildung von Gasblasen an der Anodenoberfläche. Beim Abriss der Blasen von der Oberfläche wird die vorhandene dendritische Struktur zerstört. In Mischungen aus Ethanol und Cyclohexan wird die Spannung von 5 V konstant gehalten und das Mischungsverhältnis der beiden Lösemittel, und somit die Polarität der Suspension, variiert. Bereits bei 0,1 Vol.-% Ethanol-Anteil, sowie ab 30 Vol.-% Ethanol findet eine Partikelbewegung in Richtung der Anode, also entgegen der elektrostatischen Kräfte, statt. Da die Partikel die Anodenoberfläche aufgrund der repulsiven Wechselwirkungen nicht erreichen, findet keine Abscheidung statt. Nur bei einem Ethanol-Anteil von 7,5 Vol.-% bis etwa 30 Vol.-% bewegen sich die Partikel in Richtung Kathode, wo sie sich auch abscheiden. Die merkwürdigen Bewegungsphänomene der Partikel in der Mikro-Flusskammer konnten nicht mit Sicherheit aufgeklärt werden. Induced-charge electroosmotic flow oder andere elektrokinetische Effekte könnten wirken und so die elektrophoretische Partikelbewegung überlagern oder beeinflussen. Gezeigt werden konnte jedoch, dass eine lokale Abscheidung von Partikeln mittels EPD möglich ist. Dazu ist unter den beschriebenen experimentellen Bedingungen in Wasser eine Spannung im Bereich zwischen 3 V und 17 V nötig, um lokal eine dendritische Struktur abzuscheiden. In reinem Cyclohexan und für bestimmte Mischungsverhältnisse von Ethanol und Cyclohexan erfolgt die Abscheidung bei jedem untersuchten Spannungswert. Anders als in Wasser ist die stäbchenförmige Abscheidung jedoch an mehreren Stellen auf der Elektrodenoberfläche zu beobachten. Dennoch kann auch hier von einer lokalen Abscheidung gesprochen werden, da die Wahrscheinlichkeit für die Abscheidung an der Elektrodenspitze am größten ist, was nach einiger Zeit zu einer lokal erhöhten Schichtdicke führt. N2 - Electrophoretic deposition (EPD) is a two-stage process in which charged particles first move in a suspension due to an electric field and then deposit on a surface. Due to the possibility of cost-effective mass production of quasi two-dimensional films on a surface as well as three-dimensional multi-layer systems, the EPD is of great interest to industry and medicine. In contrast, 3D printing is less suitable for mass production, but rather appropriate for producing prototypes in low quantities. Nevertheless, it is not less interesting for industry and medicine than EPD. 3D printing can be assigned to additive manufacturing processes in which locally supplied material assembles into a three-dimensional structure. Novel possibilities for building three-dimensional structures are conceivable by combining the two established methods. Since EPD is theoretically possible with any charged object, material or molecule, the potential of 3D printing could be significantly enhanced by combining it with EPD. Prototypes could be made from a variety of materials in a fast and inexpensive additive manufacturing process, allowing for the possibility of being used as a mass production process. However, the use of the EPD as a 3D-printing process as a rapid prototyping technique is only possible if the deposition of the particles can be focused and thus a local control of the structure is possible The present work investigates whether local deposition of ceramic particles by EPD is feasible and what experimental conditions must be met. Therefore, the trajectories of the charged particles in the inhomogeneous electric field are analyzed and the influence of the polarity of the suspension medium on particle movement and particle deposition is investigated in a self-developed micro-flow chamber. In cyclohexane as a nonpolar medium, the velocity of the particles increases linearly with the applied voltage, respectively the electric field strength. The particle movement in the direction of the cathode corresponds to their positive charge. The particles deposit as rod-shaped depositions distributed on the cathode surface. The possibility for a deposition is increasing with increasing electric field strength and is highest at the tip of the electrode. The stabilization of the particles in a nonpolar solvent is realized by coating the particle surface with various dispersants with related chemical structures. Analogous electrophoretic behavior is observed for all dispersant-particle systems. In water, the positively charged particles move towards the anode at a voltage of less than 3 V, contrary to the electrostatic forces, but they do not reach the surface of the electrode as they are deflected. Thus, no deposition of the particles takes place on either electrode. Above a voltage of 3 V, particles begin to deposit in a dendritic structure at the cathode tip. Above 17 V, noticeable gas bubbles begin to emerge at the anode surface, which destroy the existing dendritic deposition during their breakup from the surface. In mixtures of ethanol and cyclohexane, the voltage of 5 V is kept constant while the mixing ratio of the two solvents, and thus the polarity of the suspension, varies. Already at 0.1 vol% Ethanol content, as well as from 30 vol% Ethanol a particle movement is detected in the direction of the anode, i.e. contrary to the electrostatic forces. Since the particles do not reach the anode surface due to the repulsive interactions, no particle deposition takes place. Solely in the range of an ethanol content of 7.5 vol% to about 30 vol% the particles move in the direction of the cathode, where they also deposit. The peculiar movement phenomena of the particles in the micro-flow chamber could not be clarified with certainty. Induced-charge electroosmotic flow or other electrokinetic effects could be at work and thus overlay or influence the electrophoretic particle movement. However, it has been shown that local deposition of particles is possible by means of EPD. For this purpose and under the described experimental conditions, a voltage in the range of 3 V to 17 V is necessary in water to locally deposit a dendritic structure. In pure cyclohexane and for certain ratios in ethanol-cyclohexane mixtures, the deposition takes place at every voltage examined. In contrast to water, rod-shaped depositions can be observed at several points on the electrode surface. Nevertheless, this can be referred to as local deposition, since the probability of deposition is highest at the electrode tip, which leads to a locally increased layer thickness after a certain time. KW - Elektrophorese KW - Trajektorie KW - Suspension KW - Partikelabscheidung KW - Elektrostatisches Feld KW - Partikelbeschichtung KW - Funktionskeramik KW - Elektrokinetik KW - electrokinetics KW - local electrophoretic deposition Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-220803 ER -