TY - THES A1 - Mineif, Anna Teresa T1 - Entwicklung und Charakterisierung eines humanen oralen Plattenepithelkarzinomäquivalentes T1 - Development and characterisation of a human oral squamous cell carcinoma equivalent N2 - Trotz hochmoderner Technologien und ausgefeilter therapeutischer und rekonstruktiver chirurgischer Heilungsmethoden beträgt die 5-Jahres Überlebensrate bei der Diagnose PECA der Mundhöhle im Durchschnitt auch im Jahre 2017 nur 55 % und die Heilungsmethoden haben sich in den letzten drei Jahrzehnten kaum verbessert. Umso wichtiger ist es deshalb, die Forschung voranzutreiben und ein aussagekräftiges Tumormodell zu etablieren, das bei der Entwicklung neuer Therapieansätze schnell und sicher gute Ergebnisse liefert. In dieser Studie soll mit Hilfe des Tissue Engineering (TE) ein in gesunder Mundschleimhaut (MSH) integriertes 3D-Tumormodell generiert werden, welches bestmöglich die Analyse pathologischer Mechanismen im Tumorzentrum, sowie im Randbereich von gesundem und erkranktem Gewebe, und auch die Analyse der Auswirkungen neuartiger Chemotherapeutika auf gesunde und maligne Zellen in direkter Nachbarschaft ermöglicht – ohne Tierversuche. In der Konsequenz könnte ein erheblicher Fortschritt mit höheren Erfolgsaussichten der Therapieansätze erzielt werden. Es wird ein Tumormodell generiert, in dem auf Basis eines gesunden MSH-Modells Tumorzellen eingebracht werden, um - genauso, wie die Tumorentstehung in vivo von statten gehen würde – Tumorentstehung und Tumorwachstum in der Umgebung von gesunder MSH analysieren zu können. Das Modell basiert dabei auf einer Matrix aus dezellularisierter, porciner, small-intestinal-submucosa (SIS/MUC), die mit primären Fibroblasten, primären Keratinozyten und Tumorzellen der Tumorzelllinie FaDu besiedelt wird. Eine Besonderheit der FaDu-Zellen ist die vorangegangene Transduktion mit dem Lentivirus RFP – um die eingewanderten Zellen von gesunden Zellen unterscheiden zu können. Der Vorgang der Transduktion war gelungen und es konnte eine Fluoreszenz der noch in Zellkulturschalen kultivierten Zellen erzielt werden. Allerdings waren die fluoreszierenden Zellen in den fixierten Schnitten nicht mehr nachweisbar. Zur Generierung eines Tumormodelles wurden auf Basis eines OMÄ drei unterschiedliche Applikationsformen zur Integration von Tumorzellen getestet. Die Integration von Tumorzellen fand in Form von Spots, Sphäroiden oder Tumorzellgemischen (prim. Keratinozyten/FaDu-Zellen) in zuvor kultivierte gesunde OMÄ statt. Dabei sollte das Applizieren von Spots oder Sphäroiden das Tumorzellwachstum auch in der Umgebung von gesundem Gewebe initiieren. Dies würde die Möglichkeit schaffen, auch in vitro, gesundes neben pathologischem Gewebe und den Übergang dazu genau analysieren zu können. Es sollen sowohl die optimale Konzentration der Tumorzellen, welche für die Entstehung von Tumoren nötig ist, als auch die geeignetste Applikationsmethode eruiert werden, um optimale Tumormodelle zuverlässig reproduzierbar ansetzen zu können. Die Modelle wurden histologisch und immunhistochemisch analysiert und die Ergebnisse mit ermittelten TEER-Werte in Korrelation gesetzt. In dieser Arbeit konnte mit der Applikation von Spots oder Sphäroiden kein suffizientes Tumorwachstum in Umgebung von gesunder MSH erzielt werden. Die Zellen lagen ohne Reaktion des angrenzenden Stratum corneums auf der zu stark ausgeprägten Hornschicht der OMÄ auf und es war keine Einwanderung in das darunterliegende Gewebe möglich. Allerdings ist es gelungen, durch Applikation eines Zellgemisches variierender Mischungsverhältnisse von primären Keratinozyten und Tumorzellen der Zelllinie FaDu ein 3D-Tumorwachstum unterschiedlicher Malignitätsstufen zu initiieren. Je kleiner das Mischungsverhältnis und je höher in der Konsequenz die Anzahl der FaDu-Tumorzellen, desto ausgeprägter waren die morphologischen Anzeichen einer Tumorbildung. Abhängig vom Mischungsverhältnis war dabei die Ausprägung des Tumors. Auch wenn dadurch keine Kombination von gesundem und pathologischem Gewebe in einem Modell mehr imitiert werden konnte, so konnten zumindest nach histologischen und immunhistochemischen Untersuchungen eindeutige pathologische, maligne Tumormodelle generiert werden. Die Tumormodelle zeigten durchgehend Zell- und Kernpleomorphismen, atypische und vermehrte suprabasale Mitosen, eine Störung der normalen Gewebearchitektur, die Ausbildung von Interzellularbrücken, Einzelzelldyskeratosen und Verhornungsknospen, sowie Stellen der Durchbrechung der Basalmembran und Invasion von Tumorzellen in die darunterliegende Lamina propria. All das sind eindeutige Kennzeichen malignen Wachstums Auch die Ergebnisse der TEER-Wert Messung stimmten mit den morphologischen Entwicklungen der Modelle überein. So stiegen die TEER-Werte der Kontrollmodelle konsequent an, was für eine deutliche Entwicklung von kontinuierlichem Gewebe spricht und im Gegensatz dazu fielen die TEER-Werte im zeitlichen Verlauf der Tumormodelle, bei denen die Basalmembran und somit die Kontinuität des Gewebes durchbrochen wurde rapide ab, bzw. lagen im konstant niedrigen Bereich. Der Erfolg der Etablierung dieses zuverlässig rekonstruierbaren 3D, in vitro generierten Tumormodells, das der in vivo Situation eines Plattenepithelkarzinoms sehr nahekommt, bietet der Wissenschaft eine sehr gute Möglichkeit, weitere Studien zum Tumorwachstum durchzuführen. Außerdem kann die Weiterentwicklung und Verbesserung vielversprechender, neuartiger chemotherapeutischer und radiologischer Therapieverfahren erheblich voran¬getrieben und dadurch die Heilungschancen mit geringeren Nebenwirkungen für den Patienten verbessert und eine erhöhte Lebensqualität erzielt werden. N2 - Despite state-of-the-art technologies and sophisticated therapeutic and reconstructive surgical methods, the average 5-year survival rate of patients diagnosed with oral squamous cell carcinoma (OSCC) is still only 55% in 2017. Healing methods have barely improved over the last three decades. Therefore, it is important to establish a meaningful tumour model that delivers fast and reliable results in the development of new therapeutic approaches. In this study, Tissue Engineering is used to generate a three-dimensional tumour model integrated into healthy oral mucosa. This enables an ideal analysis of pathological mechanisms in the tumour center, as well as in the margins of healthy and diseased tissue. It also allows the analysis of the effects of novel chemotherapeutic agents on healthy and malignant cells in proximity - without animal testing. Consequently, a considerable progress could be achieved with a higher chance of success of therapeutic approaches. A tumour model, based on a healthy oral mucosa equivalent (OME), is generated in which tumour cells are integrated in order to be able to analyse tumourigenesis and tumour growth in the environment of healthy oral mucosa just as the tumour development would take place in vivo. For this primary fibroblasts, primary keratinocytes and tumour cells were cultured on a matrix of decellularized, porcine, small intestinal submucosa (SIS/MUC). For this FaDu cells were transduced with the lentivirus RFP to be able to distinguish the immigrated cells from healthy cells. The transduction was successful. It was possible to achieve a fluorescence of the cells still cultivated in cell culture dishes. However, the fluorescent cells could no longer be detected in the fixed tissue sections. For the tumour model three different forms of application of the tumour cells on the OMEs have been tested. The application of cell-spots, spheroids or cell mixtures of primary keratinocytes and FaDu tumour cells in previously cultivated OME. The application of spots or spheroids should initiate tumour cell growth even in the environment of healthy tissue. This would enable the in vitro analysation of the area of healthy and pathological tissue in one model. Therefore, the optimal concentration of tumour cells, which is necessary for the tumour development, and the most suitable application method are to be determined to be able to apply a suitable reproducible tumour model. The models were analysed histologically and immunohistochemically, and the results were correlated with determined TEER values. In this work, the application of spots or spheroids did not achieve tumour growth in the environment of healthy oral mucosa. The cells were not responsive to the adjacent stratum corneum on the highly pronounced horn layer of the OME and no migration into the underlying tissue was possible. However, by applying a cell mixture of varying mixing ratios of primary keratinocytes and tumour cells of the FaDu cell line, it has been possible to initiate 3D tumour growth of different malignant stages. The smaller the mixing ratio and the higher the number of FaDu tumour cells, the more pronounced have been the morphological signs of tumour formation. Even if it was no longer possible to mimic a combination of healthy and pathological tissue in a model, clear pathological, malignant tumour models could be generated at least after histological and immunohistochemical investigations. The tumour models consistently showed cellular- and nuclearpleomorphisms, atypical and increased suprabasal mitoses, disruption of normal tissue architecture, the formation of intercellular bridges, single cell dyskeratosis and cornification buds, as well as sites of disruption of the basement membrane and invasion of tumour cells into the underlying lamina propria. All these are clear signs of malignant growth. The results of the TEER value measurement were also consistent with the morphological developments of the models. Thus, the TEER values of the control models rose consistently, which indicates a significant development of continuous tissue. In contrast, the TEER values over the course of time of the tumour models, in which the basal membrane and thus the continuity of the tissue was broken, fell rapidly or were in a constantly low range. The success of the establishment of this reliably reconstructable 3D, in vitro generated tumour model, which is very close to the in vivo situation of a squamous cell carcinoma, offers the science a very good opportunity to carry out further studies on tumour growth. In addition, the further development and improvement of promising, novel chemotherapeutic and radiological therapy methods can be considerably advanced, thereby improving the chances of recovery with fewer side effects for the patient and achieving an increased quality of life. KW - orales Plattenepithelkarzinomäquivalent KW - Tissue Engineering KW - SIS/MUC KW - TEER-Wert KW - Tumormodell KW - Mundschleimhautäquivalent Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-185512 ER - TY - THES A1 - Schwab, Andrea T1 - Development of an osteochondral cartilage defect model T1 - Entwicklung eines osteochondralen Knorpeldefektmodells N2 - The limited intrinsic self-healing capability of articular cartilage requires treatment of cartilage defects. Material assisted and cell based therapies are in clinical practice but tend to result in formation of mechanical inferior fibro-cartilage in long term follow up. If a lesion has not been properly restored degenerative diseases are diagnosed as late sequela causing pain and loss in morbidity. Complex three dimensional tissue models mimicking physiological situation allow investigation of cartilage metabolism and mechanisms involved in repair. A standardized and reproducible model cultured under controllable conditions ex vivo to maintain tissue properties is of relevance for comparable studies. Topic of this thesis was the establishment of an cartilage defect model that allows for testing novel biomaterials and investigate the effect of defined defect depths on formation of repair tissue. In part I an ex vivo osteochondral defect model was established based on isolation of porcine osteochondral explants (OCE) from medial condyles, 8 mm in diameter and 5 mm in height. Full thickness cartilage defects with 1 mm to 4 mm in diameter were created to define ex vivo cartilage critical size after 28 days culture with custom developed static culture device. In part II of this thesis hydrogel materials, namely collagen I isolated from rat tail, commercially available fibrin glue, matrix-metalloproteinase clevable poly(ethylene glycol) polymerized with heparin (starPEGh), methacrylated poly(N-(2-hydroxypropyl) methacrylamide mono-dilactate-poly(ethylene glycol) triblock copolymer/methacrylated hyaluronic acid (MP/HA), thiol functionalized HA/allyl functionalized poly(glycidol) (P(AGE/G)-HA-SH), were tested cell free and chondrocyte loaded (20 mio/ml) as implant in 4 mm cartilage defects to investigate cartilage regeneration. Reproducible chondral defects, 8 mm in diameter and 1 mm in height, were generated with an artificial tissue cutter (ARTcut®) to investigate effect of defect depth on defect regeneration in part III. In all approaches OCE were analyzed by Safranin-O staining to visualize proteoglycans in cartilage and/or hydrogels. Immuno-histological and -fluorescent stainings (aggrecan, collagen II, VI and X, proCollagen I, SOX9, RUNX2), gene expression analysis (aggrecan, collagen II and X, SOX9, RUNX2) of chondrocyte loaded hydrogels (part II) and proteoglycan and DNA content (Part I & II) were performed for detailed analysis of cartilage regeneration. Part I: The development of custom made static culture device, consisting of inserts in which OCE is fixed and deep well plate, allowed tissue specific media supply without supplementation of TGF � . Critical size diameter was defined to be 4 mm. Part II: Biomaterials revealed differences in cartilage regeneration. Collagen I and fibrin glue showed presence of cells migrated from OCE into cell free hydrogels with indication of fibrous tissue formation by presence of proCollagen I. In chondrocyte loaded study cartilage matrix proteins aggrecan, collagen II and VI and transcription factor SOX9 were detected after ex vivo culture throughout the two natural hydrogels collagen I and fibrin glue whereas markers were localized in pericellular matrix in starPEGh. Weak stainings resulted for MP/HA and P(AGE/G)-HA-SH in some cell clusters. Gene expression data and proteoglycan quantification supported histological findings with tendency of hypertrophy indicated by upregulation of collagen X and RunX2 in MP/HA and P(AGE/G)-HA-SH. Part III: In life-dead stainings recruitment of cells from OCE into empty or cell free collagen I treated chondral defects was seen. Separated and tissue specific media supply is critical to maintain ECM composition in cartilage. Presence of OCE stimulates cartilage matrix synthesis in chondrocyte loaded collagen I hydrogel and reduces hypertrophy compared to free swelling conditions and pellet cultures. Differences in cartilage repair tissue formation resulted in preference of natural derived polymers compared to synthetic based materials. The ex vivo cartilage defect model represents a platform for testing novel hydrogels as cartilage materials, but also to investigate the effect of cell seeding densities, cell gradients, cell co-cultures on defect regeneration dependent on defect depth. The separated media compartments allow for systematic analysis of pharmaceutics, media components or inflammatory cytokines on bone and cartilage metabolism and matrix stability. N2 - Aufgrund der geringen Selbsheilungsfähigkeit von artikulären Knorpel erfordern Knorpeldefekte eine orthopädische Behandlung. Bislang konnte mit material- oder zellbasierenden Behandlungsstrategien keine funktionelle Regeneration von Knorpeldefekten erreicht werden. In Langzeitstudien zeigt sich vermehrt die Bildung von mechanisch instabilem fibrosen Knorpel. Als Spätfolge nicht vollständig verheilter Knorpeldefekte wird die degenerative Erkrankung Osteoarthrose diagnostiziert. 3-dimensionale Gewebemodelle, die die physiologischen Gegebenheiten nachahmen erlauben einen Einblick in die Mechanismen während der Defektheilung. Dem subchondralen Knochen kommt eine kritische Rolle in der Regeneration nach Mikrofrakturierung zu, weshalb ein Knorpelmodell auf osteochondralen Gewebe basieren sollte. Thema der Arbeit war es ein standardisiertes Knorpeldefektmodell zu etablieren, das die Testung neuer Hydrogelformulierungen sowohl zellfrei als auch zellbeladen hinsichtlich deren Regenerationspotential ermöglicht und den Einfluss der Knorpeldefekttiefe auf die Regeneration zu analysieren. Teil I der Arbeit umfasste die Etablierung des ex vivo osteochondralen Defektmodells, basierend auf der Isolation von porcinen osteochondralen Explantaten (OCE) mit eine Durchmesser von 8 mm und einer Höhe von 5 mm aus der medialen Kondyle. Full thickness Knorpeldefekte mit einem Durchmesser zwischen 1 mm und 4 mm wurden induziert, um den kritischen Defektdurchmesser nach 28 Tagen Kultur in einer neuartigen statischen Kulturplatte zu definieren. In Teil II stand die Testung von Hydrogelen aus Kollagen I isoliert aus Rattenschwänzen, kommerziell erhältlicher Firbrinkleber, Matrix- Metalloproteinase clevable poly(Ethylen Glycol) polymerisiert mit Heparin (starPEGh), methacrylates poly(N-(2-hydroxypropyl) methacrylamid mono-dilactate-poly(Ethylene Glycol) triblock copolymer/methacrylated Hyaluronsäure (MP/HA), thiol functionalisiertes HA/allyl functionalisiertes poly(Glycidol) (P(AGE/G)-HA-SH) als zellfreies oder mit 20 Mio/ml Chondrozyten beladenes Implantat im Knorpeldefekt mit einem Durchmesser von 4 mm im Fokus. Ein automatisiertes Verfahren zur Wundsetzung (ARTcut®) erlaubte in Teil III der Thesis das Kreieren von reproduzierbaren chondralen Defekten mit 4 mm Durchmesser und 1 mm Tiefe in das OCE Modell , um den Einfluss der Defekttiefe auf die Knorpelregeneration zu analysieren. Das Knorpelgewebe des OCE und/oder Hydrogele wurde in allen Experimenten mittels Safranin-O auf Proteoglykangehalt untersucht. Immunhistologische und -fluoreszenzfärbung knorpelspezifischer Marker, Genexpressionsanalysen der Chondrozyten beladenen Hydrogele (Teil II) und Quantifizierung der Proteoglykane und des DNA Gehalts (Teil I & II) folgten nach ex vivo Kultur. Teil I: Die neu entwickelten statischen Kulturkammern setzen sich aus Inserts, in denen das OCE fixiert ist, und einer 6 Well–Platte zusammen. Dadurch wird eine Gewebespezifische Medienversorung mit Knorpelmedium ohne TGF � in den Inserts und Knochenmedium in der Vertiefung der Wellplatte ermöglicht. Die kritische Defektgröße im ex vivo Modell wurde mit 4 mm festgesetzt. Teil II: Biomaterialien als Implantate im Knorpeldefekt zeigten ein materialabhängiges Regenerationspotential. Die Einwanderung von Zellen aus dem OCE in zellfreie Hydrogele resultierte in der Lebend-Tot Färbung bei Kollagen I und Fibrinkleber mit der Tendenz der Synthese von fibrösem Knorpel. Die Chondorzyten beladenen Hydrogele aus Kollagen I und Fibrinkleber zeigten eine homogene Positivfärbung für die hyalinen Proteine Aggrekan, Collagen II und X und des Knorpeltranskriptionsfaktors SOX9, wohingegen die Färbung bei starPEGh lokal in der perizellulären Region lokalisiert war. Die weiteren Materialien MP/HA und P(AGE/G)-HA-SH wiesen eine schwache Positivfärbung an einzelnen Zellclustern auf. Die Genexpressionsanalyse und die Quantifizeirung der Proteoglykane bestätigten die histologischen Ergebnisse mit der Tendenz der Hypertrophie, belegt durch Hochregulierung von Kollagen X und RunX2, bei Chondrozyten eingebettet in MP/HA und P(AGE/G)-HA-SH. Teil III: In der Lebend-Tot Färbung konnte die Einwanderung von Zellen aus dem Knorpel des OCE in den Leerdefekt und zellfreies Kollagen I Hydrogel nachgewisen werden. Separierte und Gewebe spezifische Medienversorgung erwieß sich als kritischer Faktor zur Aufrechterhaltung der Knorpel ECM. Die Anwesenheit des OCE stimuliert Knorpelmatrixsynthese, die für das in vitro kultivierte Chondrozyten beladene Kollagen I nachweislich geringer vorhanden war. Außerdem war die Produktion des hypertrophen Markers Kollagen X im Implantat im OCE weniger stark ausgeprägt als in der in vitro Kultur. Die Unterschiede der Knorpelregeneration deutet auf die Bevorzugung von natürlichen Polymeren gegenüber den synthetisch basierten Hydrogelen hin. Das ex vivo Knorpeldefektmodell stellt eine Platform zur Testung neuer Hydrogelmaterialien als Knorpelimplantate dar. Weiterhin kann das Modell zur Analyse von Zellbesiedelungsstrategien als auch für Zell-Ko-Kulturen im Hinblick auf die Defektregeneration herangezogen werden. Die getrennten Medienreservoire ermöglichen weiterhin die systematische Analyse von Medienkomponenten oder entzündlichen Zytokinen auf die Vitalität und Stabilität von Knochen und Knorpelgewebe. KW - Hyaliner Knorpel KW - hyaline cartilage KW - Test system KW - cartilage regeneration Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-155617 ER - TY - THES A1 - Mildenberger, Michael T1 - Untersuchung von im Tissue-Engineering-Verfahren hergestellten Oral-Mukosa-Äquivalenten mittels RT-qPCR (reverse transcription quantitative real-time polymerase chain reaction) T1 - Examination of tissue engineered oral mucosa equivalents by RT-qPCR (reverse transcription quantitative real-time polymerase chain reaction) N2 - Im Rahmen dieser Arbeit wurden Fibroblasten und Keratinozyten, welche in vitro auf unterschiedlichen Scaffolds sowohl gemeinsam als auch in Monokulturen gezüchtet wurden, mittels Real-time PCR auf ihre Genausschüttung untersucht, um festzustellen wie sich die Unterlage auf die Genausschüttung auswirkt. Hierzu wurden die Proben sowohl auf die Genexpressionsmarker für die Basallamina Kollagen IV, Laminin 1 und 5 als auch auf die Genexpressionsmarker für die frühe Differenzierung Keratin K13 und K14 untersucht. Als Referenzgen wurde β-Actin ausgewählt, da dieses Gen in den Vorversuchen mit zwei weiteren Referenzgenen die stabilste Expression gezeigt hatte. Die Genexpressionsanalyse zeigte, dass nur in den Kokulturen von Keratinozyten und Fibroblasten eine ausgewogene Genexpression stattfindet, da sich die Zellen darin beeinflussen und regulieren. N2 - Fibroblasts and keratinocytes were cultured in vitro on different scaffolds in monocultures and cocultures and examined by RT-qPCR for gene expression. Gene expression analysis was made for genes coding for basement Membrane collagen IV, laminin 1 and 5 and for early differentiation keratin K13 and K14. β-Actin was used as reference gene, because it showed in preliminary tests with two other reference genes most stable expression. Gene expression analysis showed only in cocultures of fibroblasts and keratinocytes balanced gene expression, because the two cell types affect and regulate each other. KW - Real time quantitative PCR KW - Tissue Engineering KW - Mundschleimhaut KW - Referenzgen Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-155286 ER - TY - THES A1 - Brendtke, Rico T1 - Entwicklungsaspekte eines Medizinproduktes zur Prävention und Überwachung von Hydrierungszuständen T1 - Development aspects of a microwave based hydration monitoring system N2 - Der demografische Wandel und das Populationswachstum stellen eine globale Herausforderung für die Gesundheitssysteme dar. Eine vielversprechende Lösungsstrategie liegt in der digitalen Überwachung, Prävention und Therapie akuter und chronischer Erkrankungen durch die Nutzung von innovativen Technologien aus dem Bereich der personalisierten Medizin. Die Digitalisierung in der Überwachung von Vitalparametern mittels Sensorik besitzt großes Potential für die längere Gesunderhaltung der Patienten und somit die Entlastung der Gesundheitssyteme im Ganzen. Da Wassermangel für eine Vielfalt von Krankheiten einen Katalysator darstellt, ist die Hydratation ein wichtiger aber bislang nur invasiv zugänglicher Vitalparameter. Zur Etablierung nicht invasiver Messungen des Wasserhaushaltes am Menschen wurde im Rahmen dieser Arbeit die Eignung der Mikrowellentechnologie untersucht. Dehydratation resultiert in der Veränderung des Osmolythaushaltes und beeinflusst biochemische Prozesse, was zur Entstehung von Morbidität führen kann. Im Rahmen der Arbeit werden Teilbereiche der Entwicklung eines Medizinproduktes abgebildet. Zu diesem Zweck wird die Machbarkeit der mikrowellenbasierten Analyse des Wasserhaushaltes in einer technischen Machbarkeitsstudie untersucht, um im zweiten Prozessschritt einen technischen Demonstrator in vitro und in vivo am Probanden erproben zu können. Hochfrequente elektromagnetische Wellen interagieren mit Molekülen, speziell Wasser. Enthält eine Probe freie Wassermoleküle, kann dies im reflektierten Signal detektiert werden. Zur Überprüfung des Sensorsystems in vitro dienen humane 3D-Vollhautmodelle mit spezifischer Hydratation und Gewebedichte der Matrixkomponenten als standardisiertes Modell zur Untersuchung definierter Exsikkoseszenarien und des Einflusses verschiedener Modellkomplexitäten. Die Eignungsüberprüfung des Systems mit einem technischen Demonstrator des künftigen Medizinproduktes belegt die Anwendbarkeit des Messsystems zur Erfassung des relativen Wassergehaltes. Die Technologie zeichnet sich durch eine hohe Sensitivität bei der Destinktion von Proben mittels Frequenz- und Signalreflektionsdifferenzen aus. Neben den In-vitro-Testungen wird das entwickelte Sensorsystem aus regulatorischer Sicht zur klinischen Leistungsüberprüfung vorbereitet und im Rahmen eines bewilligten Ethikvotums in vivo erprobt. Die Ergebnisse belegen die Machbarkeit der nichtinvasiven Erfassung des Wasserhaushaltes durch mikrowellenbasierte Messungen. Die Technologie birgt das Potential, in ein körpernahes Sensorsystem integriert zu werden, welches als Medizinprodukt zur persönlichen Gesundheitsüberwachung zugelassen werden kann. N2 - The demographic change and the growth of mankind are challenging worldwide, especially for healthcare systems. One possible solution to keep humans healthier at all ages coeval fighting disease-related consequences is given by modern technologies for personalized disease treat-ment and digital health monitoring. The digitalization of the health care through new technological advance in personalized disease treatment and health monitoring using sensor-based technologies helps people to recover from illness or stay healthy, to monitor the health state of patients in need and to assist caregivers during their daily routine. This thesis aims to analyze microwave measurements as a technology to monitor the hydration status as a particularly important vital parameter, which can be catalyst for diverse secondary disorders. Wireless body area networks (WBANs) are used for individually tailored therapy of disease and preventive monitoring of health parameters. There are some already existing technologies but there is not yet a way to monitor non-invasively the entire health state and especially hydration as a particularly critical vital parameter. WBANs may help to pave the way for personalized med-icine, improve acute and preventive healthcare and support individual physical fitness. Tissue dehydration results in impaired biochemical processes, and can finally cause severe mor-bidity. The aim of this study was to demonstrate the feasibility of microwave measurements for the non-invasive analysis of the hydration status in vitro and in vivo and to develop a prototype of a medical device for this measurment. Moreover, accompanying regulatory aspects are con-sidered as a basis for an approval of the sensor technology as medical device. Electromagnetic waves at high frequencies interact with molecules, especially water. Thus, free water molecules can be detected via the reflected microwave signal. To develop the sensor system, human three-dimensional skin equivalents were instituted as a standardized test platform mimicking repro-ducible exsiccosis scenarios. Therefore, skin equivalents with a specific hydration and density of matrix components were generated and microwave measurements were performed. Hydration-specific spectra allowed deriving the hydration state of the skin models. A further advantage of the skin equivalents was the characterization of the impact of distinct skin components on the measured signals to investigate mechanisms of signal generation. Together with these in vitro results, the technology is investigated in vivo within initial testing scenarios on test subjects. The results demonstrate the feasibility of non-invasive microwave-based hydration measurements and thus the technologies potential to be integrated in a wearable medical device for personal digital health monitoring. KW - Medizinprodukt KW - Hautmodell KW - Mikrowellen Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157181 ER - TY - THES A1 - Göttlich, Claudia T1 - Etablierung eines humanen 3D Lungentumor-Testsystems zur Analyse von Behandlungseffekten T1 - Establishment of a human 3D lung tumor test system for the analysis of treatment effects N2 - Lungenkrebs ist weltweit für die meisten krebsassoziierten Tode verantwortlich. Ursache dafür ist unter anderem, dass viele Medikamente in der klinischen Anwendung, aufgrund nicht übertragbarer Ergebnisse aus der Präklinik, scheitern. Zur Entwicklung neuer Therapiestrategien werden deshalb Modelle benötigt, welche die in vivo Situation besser widerspiegeln. Besonders wichtig ist es dabei, zu zeigen, für welche Fragestellungen ein neues Testsystem valide Ergebnisse liefert. In dieser Arbeit ist es mit Hilfe des Tissue Engineering gelungen, ein humanes 3D in vitro Lungentumor-Testsystem weiter zu entwickeln und für verschiedene Fragestellungen zu validieren. Zudem konnten sowohl für die Herstellung als auch für die Behandlung der Tumormodelle SOPs etabliert werden. Hier wurde zunächst beobachtet, dass die Auswerteparameter für die Beurteilung von Behandlungseffekten eine geringe Varianz aufweisen und das 3D Modell deshalb als Testsystem geeignet ist. Ein Vergleich der Morphologie, des EMT-Status und der Differenzierung der Tumorzelllinien im 3D Modell mit Tumorbiopsaten von Adenokarzinompatienten verdeutlichte, dass die 3D Modelle tumorrelevante Merkmale besitzen. So sind die Zelllinien auf der biologischen Matrix, verglichen mit der jeweiligen 2D Kultur, durch eine reduzierte Proliferationsrate gekennzeichnet, welche eher der in vivo Situation entspricht. Für die Etablierung und Validierung des 3D Modells als Testsystem war es notwendig, klinisch relevante Therapien in dem Modell anzuwenden und die Ergebnisse der Behandlung in vitro mit denen im Patienten zu vergleichen. Dabei konnte zunächst bestätigt werden, dass eine zielgerichtete Therapie gegen den EGFR in dem 3D System zu einer verstärkten Induktion der Apoptose im Vergleich zu 2D führt. Dies entspricht klinischen Beobachtungen, bei denen EGFR-mutierte Patienten gut auf eine Therapie mit Tyrosin-Kinase-Inhibitoren (TKI) ansprechen. Anschließend wurde in dieser Arbeit erstmals in vitro gezeigt, dass die Behandlung mit einem HSP90-Inhibitor bei KRAS-Mutation wie in behandelten Patienten keine eindeutigen Vorteile bringt, diese jedoch in Experimenten der 2D Zellkultur mit den entsprechenden Zelllinien vorhergesagt werden. Die Ergebnisse aus dem in vitro Modell spiegeln damit verschiedene klinische Studien wider und unterstreichen das Potenzial des 3D Lungentumor-Testsystems die Wirkung zielgerichteter Therapien vorherzusagen. Durch die Messung von Signalwegsaktivierungen über Phospho-Arrays und Western Blot konnten in dieser Arbeit Unterschiede zwischen 2D und 3D nach Behandlung gezeigt werden. Diese lieferten die Grundlage für bioinformatische Vorhersagen für Medikamente. Mit fortschreitender Erkrankung und dem Entstehen invasiver Tumore, die möglicherweise Metastasen bilden, verschlechtert sich die Prognose von Krebspatienten. Zudem entwickeln Patienten, die zunächst auf eine Therapie mit TKI ansprechen, bereits nach kurzer Zeit Resistenzen, die ebenfalls zur Progression des Tumorwachstums führen. Zur Wirkungsuntersuchung von Substanzen in solchen fortgeschrittenen Erkrankungsstadien wurde das bestehende Testsystem erweitert. Zum einen wurde mit Hilfe des Wachstumsfaktors TGF-β1 eine EMT ausgelöst. Hier konnte beobachtet werden, dass sich die Expression verschiedener EMT- und invasionsassoziierter Gene und Proteine veränderte und die Zellen vor allem in dynamischer Kultur verstärkt die Basalmembran der Matrix überquerten. Zum anderen wurde die Ausbildung von Resistenzen gegenüber TKI durch die Generierung von resistenten Subpopulationen aus einer ursprünglich sensitiven Zelllinie und anschließender Kultivierung auf der Matrix abgebildet. Dabei zeigte sich keine der klinisch bekannten Mutationen als ursächlich für die Resistenz, sodass weitere Mechanismen untersucht wurden. Hier konnten Veränderungen in der Signaltransduktion sowie der Expression EMT-assoziierter Proteine festgestellt werden. Im letzten Teil der Arbeit wurde eine neuartige Behandlung im Bereich der Immuntherapie erfolgreich in dem 3D Modell angewendet. Dafür wurden T-Zellen, die einen chimären Antigen-Rezeptor (CAR) gegen ROR1 tragen, in statischer und dynamischer Kultur zu den Tumorzellen gegeben und der Therapieeffekt mittels histologischer Färbung und der Bestimmung der Apoptose evaluiert. Zusätzlich konnten Eigenschaften der T-Zellen, wie deren Proliferation sowie Zytokinausschüttung quantifiziert und damit eine spezifische Wirkung der CAR transduzierten T-Zellen gegenüber Kontroll-T-Zellen nachgewiesen werden. Zusammenfassend ist es in dieser Arbeit gelungen, ein humanes 3D Lungentumor-Testsystem für die Anwendung in der präklinischen Entwicklung von Krebsmedikamenten sowie der Grundlagenforschung im Bereich der Tumorbiologie zu etablieren. Dieses Testsystem ist in der Lage relevante Daten zu Biomarker-geleiteten Therapien, zur Behandlung fortgeschrittener Tumorstadien und zur Verbesserung neuartiger Therapiestrategien zu liefern. N2 - Lung cancer is the most common cause of cancer related deaths worldwide. One reason for this is that many drugs fail in the clinical application due to inefficient transferability of preclinical results. Consequently, for the development of new treatment strategies tumor models that better reflect the in vivo situation are required. It is of special significance to show for which questions a new test system provides valid results. In the here presented work, a human 3D in vitro lung tumor test system was refined and validated for different interrogations using tissue engineering methods. The generation of the model as well as its treatment were defined in SOPs. First, it was shown that the variance of the analysis parameters was low, demonstrating the 3D model to be suitable as a test system. A comparison of the morphology, the EMT status and the differentiation of the tumor cell lines in the 3D model with tumor biopsies from adenocarcinoma patients revealed that the 3D tumor models exhibit tumor relevant characteristics. The cells on the matrix had a lower proliferation rate compared to the respective 2D culture that better mimic the in vivo situation. For the establishment and validation of the test system, clinically relevant therapies were applied and the results of the treatment in vitro were compared to those in patients. By doing so, it was confirmed that a targeted therapy against the EGFR led to an increased apoptosis induction in the 3D system compared to 2D. This resembles clinical observations, in which EGFR-mutated patients respond to the therapy with tyrosine kinase inhibitors (TKIs). Next, it was shown for the first time in vitro in the 3D model that the treatment with a HSP90 inhibitor in the context of a KRAS mutation has no clear advantages as observed in patients, but which had been predicted in 2D cell culture. The results from the in vitro model match several clinical studies and emphasize the potential of the 3D lung tumor test system to predict the effect of targeted treatments. By measuring the activation of signal transduction pathways using phospho-arrays and western blots, differences between 2D and 3D after treatment were shown. These provided the basis for bioinformatic drug predictions. With the progress of the disease and the development of invasive tumors that might form metastases, the prognosis of patients worsens. Additionally, patients that initially respond to a therapy with TKIs develop resistances that also lead to the progression of tumor growth. To evaluate the effect of substances in these life-threatening disease stages, the existing test system was enhanced. On the one hand EMT was induced by addition of the growth factor TGF-β1. Here, it was observed that the expression of several EMT- and invasion-associated genes and proteins changed and the cells crossed the basement membrane to a higher extent, especially in the dynamic culture. On the other hand, the development of resistances against TKIs was represented by the generation of resistant subpopulations from an initial sensitive cell line and subsequent culture on the matrix. In the course of this experiment, none of the known mutations could be attributed to the resistance, so that other potential mechanisms were investigated. Here, changes in the signal transduction as well as in the expression of EMT-associated proteins were found. In the last part of the thesis, a new treatment strategy in the field of immune therapies was successfully tested in the 3D model. For that, T cells bearing a chimeric antigen receptor (CAR) against ROR1 were added to the tumor cells in static and dynamic culture. The therapy effect was determined by histological staining and apoptosis meas-urement. Moreover, the characteristics of the T cells, such as proliferation or cytokine release, were quantified and exhibited a specific effect of the CAR transduced T cells compared to the control T cells. In summary, in this thesis a human 3D lung tumor test system was established for the application in preclinical testing of cancer drugs as well as for basic research in tumor biology. It was shown that the test system can provide relevant data on biomarker-driven therapies, the treatment of advanced tumor stages and the improvement of new treatment strategies. KW - Tissue Engineering KW - Lungentumor KW - 3D Tumormodell KW - zielgerichtete Therapien KW - Resistenz KW - EMT KW - CAR T-Zelltherapie Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164132 ER - TY - THES A1 - Bersi, Heidi T1 - Etablierung eines 3D in vitro Blutgefäß-/Gewebemodells zur Testung spezifischer Therapeutika zur Leukämiebehandlung T1 - Establishment of a 3D in vitro blood vessel /tissue model to test specific therapeutic agents to treat leukemia N2 - In Deutschland erkranken jährlich etwa 500.000 Menschen an Krebs, wovon circa 12.000 die Diagnose „Leukämie“ gestellt bekommen [1]. Unter den Leukämien weist die akute myeloische Leukämie (AML) die ungünstigste Prognose auf, sodass hier erheblicher Forschungsbedarf besteht. Zusätzlich schnitten viele potentielle Therapeutika, die sich in bisherigen präklinischen Testsystemen als vielversprechend erwiesen haben, in klinischen Studien schlecht ab [8]. Ziel dieser Arbeit war daher die Etablierung eines 3D in vitro Blutgefäß-/Gewebemodells als verbessertes präklinisches System zur Testung von Therapeutika, die zur erfolgreichen Behandlung von Leukämien beitragen sollen. Das 3D Blutgefäßmodell bestand aus humanen primären Endothelzellen, welche als Monolayer auf der Serosaseite einer dezellularisierten, porzinen, intestinalen Kollagenmatrix (SIS-Ser) wuchsen. Nach 14-tägiger Zellkultur wurden dem Versuchsansatz entsprechend nichtadhärente THP-1 Zellen (AML-M5-Zelllinie) und Tipifarnib oder entsprechende Kontrolllösungen beziehungsweise bimolekulare Antikörperkonstrukte mit PBMCs als Effektorzellen hinzupipettiert. Nach 5-tägiger Inkubation mit Tipifarnib beziehungsweise 24-stündiger Behandlung mit Antikörperkonstrukten wurde der therapiebedingte Anstieg der Apoptoserate in den malignen THP-1 Zellen mittels durchflusszytometrischer Analyse der Modellüberstände ermittelt. Zum Ausschluss verbliebener und durchflusszytometrisch zu analysierender Zellen wurde, stellvertretend für alle Suspensionszellen, eine Anti-CD13/DAB-Färbung durchgeführt, welche negativ ausfiel. Mögliche Kollateralschäden am Endothel wurden mittels histologischen Färbemethoden an Gewebeparaffinschnitten untersucht. In der Durchflusszytometrie zeigte Tipifarnib sowohl im 2D als auch im 3D Modell äquivalente, dosisabhängige und antileukämische Auswirkungen auf die THP-1 Zellen. Bei Applikation der Antikörperkonstrukte ließ lediglich die Kombination beider Hemibodies signifikante Effekte auf die THP-1 Zellen erkennen. Dabei zeigten sich bei konstanten Konzentrationen der Antikörperkonstrukte im 3D Modell deutlich höhere Apoptoseraten (58%) als im 2D Modell (38%). Stellt man Vergleiche von Tipifarnib mit den T-Zell-rekrutierenden Antikörperkonstrukten an, so ließen sich im 2D Modell ähnliche Apoptoseraten in den THP-1 Zellen erzielen (jeweils 38% bei Anwendung von 500 nM Tipifarnib). In den 3D Modellen erzielten jedoch die niedriger konzentrierten Antikörperkonstrukte bei kürzerer Inkubationsdauer eine noch höhere spezifische Apoptoserate in den THP-1 Zellen (im Mittel 58%) als 500 nM Tipifarnib (mittlere Apoptoserate 40%). Bezüglich der Nebenwirkungen ließ sich im 3D Modell nach Applikation von Antikörperkonstrukten kein wesentlicher Einfluss auf das Endothel erkennen, während Tipifarnib/DMSO als auch die mit DMSO versetzten Kontrolllösungen zu einer dosisabhänigen Destruktion des ursprünglichen Endothelzellmonolayers führten. Damit stellt die hier beschriebene, hoch spezifische, Hemibody-vermittelte Immuntherapie einen vielversprechenden Ansatz für zukünftige onkologische Therapien dar. Mithilfe des etablierten humanen 3D in vitro Modells konnte im Vergleich zur konventionellen Zellkultur eine natürlichere Mikroumgebung für Zellen geschaffen und die Auswirkungen der Testsubstanzen sowohl auf maligne Zellen, als auch auf die Gefäßstrukturen untersucht werden. N2 - In Germany every year about 500,000 people contract cancer whereof about 12,000 have leukemia [1]. Among all types of leukemia, acute myeloid leukemia (AML) has the worst prognosis so that there is an increased need for research. In addition many potential therapeutic agents, which had been very promising in previous preclinical tests, subsequently performed poorly in clinical studies [8]. The aim of this work was to establish a 3D in vitro blood vessel /tissue model as an enhanced preclinical test system for therapeutic agents, which could contribute to successful treatment of leukemia. The 3D blood vessel model consists of human primary endothelial cells growing as a monolayer on the serosa site of a decellularized porcine intestinal collagen matrix (called SIS-Ser). After 14 days in cell culture non-adherent THP-1 cells (AML-M5) and Tipifarnib or control solution, or other bimolecular antibody constructs and PBMC as effector cells were added to the experimental setting. After 5 days treatment with Tipifarnib or 24 hours with antibody constructs the therapy related effects on THP-1 cells were observed by flow cytometric analysis of the model remants. For exclusion of adherent suspension cells on the matrix an anti CD-13/DAB labeling was carried out, which was negative. Damaging effects on endothelial cells were assessed by histological staining of paraffin sections. In 2D as well as in 3D tipifarnib showed equivalent dose-dependent antileukemic effects on THP-1 by flow cytometry. After application of antibody constructs only the combination of both hemibodies showed significant effects on THP-1. While having constant concentrations in 2D and 3D the antibody constructs resulted in higher apoptotic rate in 3D (58%) than in 2D (38%). In comparison to tipifarnib, the t-cell recruting antibody constructs resulted in a similar apoptotic rate in THP-1 in 2D (38% when using 500 nM tipifarnib) whereas they had higher specific effects on THP-1 in 3D by a shorter incubation period and lower concentrations (58% versus 40% after incubation with 500 nM tipifarnib). Concerning side effects, the hemibodies had no significant influence on the endothelial monolayer whereas tipifarnib/DMSO and DMSO alone led to damage in a dose-dependent manner. So highly specific hemibody- mediated immunotherapy shows a promising approach for future cancer treatment. With this human 3D in vitro model a more natural mico-environment was created for the cells in comparison to conventional cell cultures and it is was possible to investigate the anti-leukemic effects of therapeutic drugs as well as their impact on the endothelial monolayer. KW - Tissue Engineering KW - Gewebekultur KW - Akute myeloische Leukämie KW - Antikörper KW - Immuntherapie KW - 3D in vitro Modell KW - Akute myeloische Leukämie KW - Tipifarnib KW - T-Zell-rekrutierende Antikörperkonstrukte KW - 3D in vitro model KW - acute myeloid leukemia KW - t-cell recruting antibody constructs Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-152506 ER - TY - THES A1 - Schürlein, Sebastian T1 - Entwicklung von Technologien zur Optimierung von Tissue Engineering Prozessen am Beispiel der Herstellung von kardialem Gewebe T1 - Development of technologies to optimize tissue engineering processes, documented on the example of the generation of cardiac tissue N2 - Kardiovaskuläre Erkrankungen, wie beispielsweise der Herzinfarkt, sind die häufigste Todesursache weltweit. Bei einem Herzinfarkt sterben Areale des Herzens aufgrund einer Unterversorgung mit Blut ab. Da das Herzmuskelgewebe ein sogenanntes terminal differenziertes Gewebe ist, kommt es zu keiner Regeneration des Gewebes, mit der Folge einer Herzinsuffizienz beziehungsweise dem Tod des Patienten. Eine alternative Behandlungsmöglichkeit zu einer Herztransplantation stellt das Tissue Engineering dar. Mit Hilfe des Tissue Engineerings können dreidimensionale Gewebe aufgebaut und kultiviert werden, um auf diese Weise ein funktionelles Gewebe zu erhalten, durch welches das abgestorbene Gewebeareal des Herzens zukünftig auch ersetzt werden könnte. In der vorliegenden Arbeit wurden notwendige Technologien für den Aufbau von Geweben entwickelt sowie erste Versuche für die Erzeugung eines funktionellen Herzmuskelgewebes durchgeführt. Beim Aufbau von dreidimensionalen Geweben finden Trägerstrukturen Anwendung, die mit Zellen besiedelt werden. Solche Trägerstrukturen können aus biologischen oder synthetischen Polymeren hergestellt sein oder aus der extrazellulären Matrix eines dezellularisierten Gewebes bestehen. Für eine standardisierte Dezellularisierung von Geweben wurde eine computergesteuerte Pumpeneinheit, für die Herstellung von Nanofaserscaffolds eine Elektrospinninganlage entwickelt. Mit Hilfe der Dezellularisierungseinheit können komplexe Organe, wie ein Herz im Ganzen, reproduzierbar dezellularisiert werden. Untersuchungen der mittels Elektrospinning hergestellten Nanofaserscaffolds, welche als Alternative zu der dezellularisierten, natürlichen Matrix eingesetzt werden können, zeigten bei allen hergestellten Zusammensetzungen eine Orientierung der Zellen entlang der Fasern. Die Kultivierung von Zellmatrixkonstrukten erfolgt im Tissue Engineering häufig unter dynamischen Bedingungen. Hierfür wurde ein mobiler Stand Alone Inkubator mit der erforderlichen Peripherie für eine Kultur unter Perfusion des Gewebes entwickelt. Als Weiterentwicklung des Stand Alone Inkubators ist eine modulare Bioreaktorplattform, bestehend aus Wärmetauscher, Beutelpumpe und Gasaustauscher, aufgebaut worden. In dieses System kann über Standard Anschlüsse jegliche Art von Bioreaktor in das System eingebunden werden. Durch die Kompaktheit des Systems ist es möglich mehrere Ansätze parallel auf engem Raum durchzuführen. Die Funktion der Plattform, wurde in der vorliegenden Arbeit durch die Gewebekultur einer nativen porzinen Karotis nachgewiesen. Für den Aufbau des kardialen Gewebes dient die small intestinal submucosa ohne Serosa (SISser) als Trägerstruktur. Der Aufbau des Gewebekonstrukts erfolgte in verschiedenen Ansätzen unter Einsatz verschiedener Zellarten. Native, aus Herzbiopsien generierte Cardiosphere derived cells (CDCs) verteilten sich gleichmäßige über die Oberfläche der Matrix, jedoch konnten immunhistologisch keine spezifischen kardialen Marker bei den artifiziellen Geweben nachgewiesen werden. Zellmatrixkonstrukte aus einer Mono Kultur von Kardiomyozyten, differenziert aus induzierten pluripotenten Stammzellen (iPS Zellen) sowie einer Co Kultur dieser Kardiomyozyten mit mesenchymalen Stammzellen und Zellen aus einer Herzbiopsie zeigten nach wenigen Tagen in Kultur ein kontraktiles Verhalten. Immunhistologische Färbungen der beiden Gewebe bestätigten die Expression der spezifischen kardialen Marker, wie beispielsweise kardiales Troponin T, kardiales Troponin C und alpha Actinin. Die Kardiomyozyten der Mono Kultur sind jedoch nicht über die gesamte Matrixoberfläche verteilt, sondern bilden Aggregate. Bei der Co Kultur kann eine gleichmäßige Verteilung der Zellen auf der Matrix beobachtet werden. Der vielversprechendste Ansatz für den Aufbau eines Herzmuskelgewebes, welches als Implantat oder Testsystem eingesetzt werden kann, bildet nach den in dieser Arbeit erzielten Ergebnissen, ein Konstrukt aus der SISser und der Co Kultur der Zellen. Allerdings muss die Zusammensetzung der Co Kultur sowie das Verhältnis der Zellzahlen optimiert werden. N2 - Cardiovascular diseases as myocardial infarction are the most frequent cause of death worldwide. During a myocardial infarction, areas of the heart are being damaged because of an insufficient nutrient supply. Heart tissue is a terminal differentiated tissue, this means that it can’t be regenerated by itself. The consequence of this characteristic is a heart insufficiency or the death of the patient. An alternative treatment to heart transplantation is promised by tissue engineering. By using the methods of tissue engineering, cells can be cultured on a scaffold to generate a mature tissue, which can be used to replace the damaged areas of the heart. In the present work systems for the generation of tissues have been developed and first experiments to build up a functional cardiac patch were performed. To generate three-dimensional tissues, scaffolds colonized with cells are necessary. These scaffolds can be produced with biological or synthetic polymers or even decellularized tissues can be used. A computer controlled decellularization platform was designed to ensure a standardized, reproducible decellularization of complex organs like hearts. Furthermore, an electrospinning device was developed for the production of nanofiber scaffolds. On such matrices, seeded cells grow along the fibers. Most cell-matrix-constructs are cultured under dynamic conditions in tissue engineering. A stand alone incubator system containing the required periphery to apply different culture conditions was developed. As further development a compact modular bioreactor platform consisting of a heat exchanger, a bag pump and a gas exchanger was established. All kinds of bioreactors can be enclosed to the system via standard Luer Lock Connectors. Due to the compactness of the system, it is possible to parallelize and run experiments easily on narrow space. The functionality of the platform was demonstrated by a tissue culture of a native porcine carotid artery. The small intestinal submucosa without serosa (SISser) was employed as matrix for the development of a functional cardiac patch. In different experiments diverse cell types were used to generate a cardiac construct. Cardiosphere derived cells (CDC) seeded on the SISser showed an equal distribution all over the surface of the matrix, but no expression of specific cardiac markers. Constructs consisting of a mono culture of induced pluripotent stem cell derived cardiomyocytes (CM iPS cells) or a co culture of CM iPS cells, mesenchymal stem cells and cells isolated form a heart biopsy showed a contraction of the whole matrix after a few days in culture. Furthermore, cardiac markers like cardiac troponin T, cardiac troponin C and alpha actinin could be observed by immunohistological staining. Regarding the morphology of the different tissues, the mono culture of the CM iPS cells formed agglomerates on the surface of the matrix whereas the co culture showed a well distribution of the cells all over the surface of the matrix. Consequently, the co culture on the SISser is the most promising approach for the development of a functional cardiac patch. However, the combination of cell types within the co culture and their ratio has to be optimized. KW - Tissue Engineering KW - Herzmuskel KW - Bioreaktorplattform KW - Elektrospinning KW - kardiales Tissue Engineering KW - kardiales Gewebe KW - bioreactor plattform KW - electrospinning KW - cardiac tissue engineering KW - Biomaterial KW - Gewebekultur Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142432 ER - TY - THES A1 - Klug, Alexander T1 - Biomechanische und zellbiologische Untersuchung zu augmentierten Biomaterial-basierten Kreuzbandkonstrukten T1 - Mechanical and cell-biological properties of crosslinked kollagen scaffolds for acl reconstruction N2 - Aktueller Goldstandard bei der Rekonstruktion des ACL des Menschen sind au-tologe Transplantate. Diese sind allerdings je nach Entnahmeort mit einer mehr oder weniger hohen Entnahmemorbidität und dem Risiko für Folgeerkrankungen verbunden. Um dies zu umgehen, wurde ein xenogenes Kollagenimplantat aus Kollagen-I-Fasern von Ratten entwickelt und das native Konstrukt bereits in einer Vorläuferstudie getestet. Im Rahmen dieser Arbeit wurden diese Kreuzbandkonstrukte mit Hilfe diverser Crosslinker modifiziert und hinsichtlich ihrer Biomechanik, Biokompatibilität und ihres in-vivo Verhaltens untersucht. Bewusst wurde dabei auf die Zellbesiedlung dieser Konstrukte verzichtet, da un-ter Berücksichtigung wirtschaftlicher Gesichtspunkte eines späteren humanen Einsatzes hierfür eine Arzneimittelzulassung notwendig gewesen wäre. Mit Hilfe der Crosslinker wurde versucht, die mechanische Stabilität sowie die Resistenz gegen kollagenabbauende Enzyme der Synovia zu erhöhen, um die Gefahr post-operativer Instabilitäten zu verringern. Dabei sollten Fragen bezüglich Immun-antwort, Biokompatibilität sowie Biodegradierbarkeit genau berücksichtigt wer-den. Als Crosslinker wurden für einen Vergleich in vitro neben 0,5 % Genipin auch 10 % HMDI sowie Glukose und EDC/NHS herangezogen. Dabei zeigten die Genipin-gecrosslinkten Einzelfasern die größte Reißfestigkeits-zunahme, wohingegen auf Minikonstruktbasis 10 % HMDI zu den höchsten UTS-Werten führte. Ebenso ließen sich bezüglich der Biokompatibilutät in vitro bei den Crosslinkern 0,5 % Genipin und 10 % HMDI Vorteile gegenüber den beiden an-deren erkennen. Schließlich erfolgte im Rahmen eines Tierversuchs an 16 Minipigs der Einbau von 0,5 % Genipin-gecrosslinkten Konstrukten als Kreuzbandersatz und an-schließend die biomechanische Testung sowie nach Paraffineinbettung auch eine durchlichtmikrokopische deskriptive Auswertung der Transplantate. Während nach 6 Wochen eine deutliche Reißfestigkeitsabnahme zu verzeichnen war, erreichte diese nach 6 Monaten wieder fast 60 % ihrer ursprünglichen UTS. Somit konnte ein Remodeling des eingesetzten Implantats angenommen wer-den. Dies bestätigte sich in der durchgeführten histologischen Untersuchung. Hier war das Implantat deutlich vaskularisiert, von zahlreichen Fibroblasten durchsetzt und wies eine synoviale Deckschicht auf. Allerdings scheint vor allem wegen der Schwäche der Konstrukte nach 6 Wochen sowie den vermutlich auf-grund des Crosslinkers auftretenden Reaktionserscheinungen innerhalb des Kniegelenks ein Einsatz im humanen Bereich zum gegenwärtigen Zeitpunkt noch nicht ausgereift. Dennoch lässt sich gerade anhand des stattfindenden Remodelings das große Potential kollagenbasierter Materialien für den Kreuzbandersatz erkennen. Eine weitere Optimierung des bestehenden Konstrukts sollte deshalb forciert werden. N2 - We developed an ACL-scaffold consisting of crosslinked preformed rat collagen fibres. In this study we examined the influence of several crosslinking substances on the mechanical and cell-biological properties of this scaffold in vitro as well as in vivo as part of a minipig model. The results were promising thus more studies have to be made before an use for humans can be recommended. KW - Tissue Engineering KW - Kreuzband Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142379 ER - TY - THES A1 - Schweinlin, Matthias Oliver T1 - Development of advanced human intestinal in vitro models T1 - Entwicklung von erweiterten humanen intestinalen in vitro Modellen N2 - The main function of the small intestine is the absorption of essential nutrients, water and vitamins. Moreover, it constitutes a barrier protecting us from toxic xenobiotics and pathogens. For a better understanding of these processes, the development of intestinal in vitro models is of great interest to the study of pharmacological and pathological issues such as transport mechanisms and barrier function. Depending on the scientific questions, models of different complexity can be applied. In vitro Transwell® systems based on a porous PET-membrane enable the standardized study of transport mechanisms across the intestinal barrier as well as the investigation of the influence of target substances on barrier integrity. However, this artificial setup reflects only limited aspects of the physiology of the native small intestine and can pose an additional physical barrier. Hence, the applications of this model for tissue engineering are limited. Previously, tissue models based on a biological decellularized scaffold derived from porcine gut tissue were demonstrated to be a good alternative to the commonly used Transwell® system. This study showed that preserved biological extracellular matrix components like collagen and elastin provide a natural environment for the epithelial cells, promoting cell adhesion and growth. Intestinal epithelial cells such as Caco-2 cultured on such a scaffold showed a confluent, tight monolayer on the apical surface. Additionally, myofibroblasts were able to migrate into the scaffold supporting intestinal barrier formation. In this thesis, dendritic cells were additionally introduced to this model mimicking an important component of the immune system. This co-culture model was then successfully proven to be suitable for the screening of particle formulations developed as delivery system for cancer antigens in peroral vaccination studies. In particular, nanoparticles based on PLGA, PEG-PAGE-PLGA, Mannose-PEG-PAGE-PLGA and Chitosan were tested. Uptake studies revealed only slight differences in the transcellular transport rate among the different particles. Dendritic cells were shown to phagocytose the particles after they have passed the intestinal barrier. The particles demonstrated to be an effective carrier system to transport peptides across the intestinal barrier and therefore present a useful tool for the development of novel drugs. Furthermore, to mimic the complex structure and physiology of the gut including the presence of multiple different cell types, the Caco-2 cell line was replaced by primary intestinal cells to set up a de novo tissue model. To that end, intestinal crypts including undifferentiated stem cells and progenitor cells were isolated from human small intestinal tissue samples (jejunum) and expanded in vitro in organoid cultures. Cells were cultured on the decellularized porcine gut matrix in co-culture with intestinal myofibroblasts. These novel tissue models were maintained under either static or dynamic conditions. Primary intestinal epithelial cells formed a confluent monolayer including the major differentiated cell types positive for mucin (goblet cells), villin (enterocytes), chromogranin A (enteroendocrine cells) and lysozyme (paneth cells). Electron microscopy images depicted essential functional units of an intact epithelium, such as microvilli and tight junctions. FITC-dextran permeability and TEER measurements were used to assess tightness of the cell layer. Models showed characteristic transport activity for several reference substances. Mechanical stimulation of the cells by a dynamic culture system had a great impact on barrier integrity and transporter activity resulting in a tighter barrier and a higher efflux transporter activity. In Summary, the use of primary human intestinal cells combined with a biological decellularized scaffold offers a new and promising way to setup more physiological intestinal in vitro models. Maintenance of primary intestinal stem cells with their proliferation and differentiation potential together with adjusted culture protocols might help further improve the models. In particular, dynamic culture systems and co culture models proofed to be a first crucial steps towards a more physiological model. Such tissue models might be useful to improve the predictive power of in vitro models and in vitro in vivo correlation (IVIVC) studies. Moreover, these tissue models will be useful tools in preclinical studies to test pharmaceutical substances, probiotic active organisms, human pathogenic germs and could even be used to build up patient-specific tissue model for personalized medicine. N2 - Die Hauptfunktion des Dünndarms besteht in der Aufnahme von lebenswichtigen Nährstoffen, Wasser und Vitaminen. Zudem stellt er eine Barriere dar, die uns vor toxischen Fremdstoffen und Pathogenen schützt. Um diese Prozesse besser zu verstehen, ist die Entwicklung neuer in vitro Modellen des Darms von großem Interesse um pharmakologische und pathologische Studien durchzuführen. Abhängig von der wissenschaftlichen Fragestellung können Modelle von unterschiedlicher Komplexität zur Anwendung kommen. In vitro Transwell® Systeme basierend auf einer porösen PET-Membran ermöglichen die Untersuchung von Transportmechanismen über die intestinal Barriere und den Einfluss von Wirkstoffen auf deren Integrität. Dieser künstliche Aufbau ähnelt jedoch nur eingeschränkt der Physiologie des Dünndarms und kann eine zusätzliche physikalische Barriere darstellen. Die Anwendungsmöglichkeiten dieses Modells im Tissue Engineering sind daher begrenzt. Gewebemodelle basierend auf einer dezellularisierten biologischen Matrix hergestellt aus Schweinedarmgewebe haben sich als gute Alternative zum herkömmlichen Transwell® System herausgestellt. Diese Studie zeigt, dass die erhaltenen Komponenten der biologischen Extrazellulärmatrix wie Kollagen und Elastin eine natürliche Umgebung für die Epithelzellen bieten und Zelladhäsion und Wachstum der Zellen fördern. Darmepithelzellen wie Caco-2 Zellen, welche auf einer solchen Matrix kultiviert wurden, bildeten einen konfluenten, dichten Monolayer auf der apikalen Oberfläche aus. Zusätzlich ermöglichte dieser Aufbau die Migration von Myofibroblasten in die Matrix, was die Bildung der intestinalen Barriere unterstützt. In dieser Doktorarbeit wurden zusätzlich dendritische Zellen als wichtige Komponente des adaptiven Immunsystems in das Modell integriert. Dieses Ko-Kultur Modell erwies sich als geeignet um partikuläre Formulierungen zu testen, welche als Transportsysteme für Tumorantigene entwickelt wurden. Es wurden Partikel basierend auf PLGA, PEG-PAGE-PLGA, Mannose-PEG-PAGE-PLGA und Chitosan untersucht. Aufnahmestudien ergaben nur geringfügige Unterschiede in den Transportraten zwischen den verschiedenen Partikeln. Es konnte ausserdem gezeigt werden, dass dendritische Zellen die Partikel phagozytieren, nachdem sie die intestinale Barriere überwunden haben. Die Partikel erwiesen sich als effektives Transportsystem um Peptide über die intestinale Barriere zu schleusen und stellen daher ein nützliches Werkzeug für die Entwicklung neuartiger Medikamente dar. Um die komplexe Struktur und Physiologie des Darms noch besser nachzustellen, wurde für den Aufbau des Modells die Caco-2 Zelllinie durch primäre Darmzellen ersetzt. Die Darmkrypten, welche undifferenzierte Stammzellen und Vorläuferzellen enthalten, wurden aus humanen Dünndarmgewebe, dem Jejunum, isoliert und in vitro expandiert. Die Zellen wurden zusammen mit Myofibroblasten auf der dezellularisierten Schweinedarmmatrix, unter statischen und dynamischen Bedingungen, kultiviert. Die primären Darmepithelzellen bildeten einen konfluenten Monolayer, welcher alle differenzierten intestinalen Zelltypen aufwies, gezeigt durch Zellen positiv für Mucin (Becherzellen), Villin (Enterozyten), Chromogranin A (enteroendokrine Zellen) und Lysozym (Paneth-Zellen). Mit Hilfe von Elektronenmikroskopie ließen sich essentielle funktionelle Einheiten eines intakten Epithels darstellen, wie die Mikrovilli und Tight Junctions. Um die Dichtigkeit des Epithels zu überprüfen wurde mit FITC-Dextran die Permeabilität bestimmt und TEER-Messungen durchgeführt. Die Modelle zeigten einen charakteristischen Transport für mehrere Referenzsubstanzen. Mechanische Stimulation durch ein dynamisches Kultivierungssystem hatte einen starken Einfluss auf die Barriereintegrität und Transporteraktivität der Modelle, was sich in einer dichteren Barriere und erhöhten Efflux-Transporteraktivität widerspiegelte. Alles in allem bietet die Verwendung primärer intestinaler Zellen in Kombination mit einer dezellularisierten biologischen Matrix eine neue, vielversprechende Möglichkeit physiologischere in vitro Modelle des Darms aufzubauen. Der Erhalt intestinaler Stammzellen mit ihrem Proliferations- und Differenzierungspotential zusammen mit angepassten Protokollen könnte dabei helfen die Modelle weiter zu verbessern. Insbesondere die dynamische Kultivierung und die Ko-Kultur-Modelle erwiesen sich als entscheidender Schritt auf dem Weg zu physiologischeren Modellen. Solche Gewebemodelle könnten sich als nützlich erweisen, wenn es darum geht die Vorhersagekraft der in vitro Modelle, sowie die in vitro-in vivo Korrelation zu verbessern. Solche Gewebemodelle können ein nützliches Werkzeuge in der präklinischen Forschung für die Testung von pharmazeutischen Wirkstoffen, probiotisch aktiven Organismen, sowie humaner pathogener Keime sein und sogar zum Aufbau personalisierter Modelle für die regenerative Medizin dienen. KW - Tissue Engineering KW - in vitro KW - Dünndarm KW - intestinal in vitro model KW - intestine Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142571 ER - TY - THES A1 - Schönwälder, Sina Maria Siglinde T1 - Entwicklung und Charakterisierung von Gelatine-basierten Hydrogelen und PLGA-basierten Janus-Partikeln T1 - Development and characterization of gelatin-based hydrogels and PLGA-based Janus particles N2 - Zusammenfassung In der Regenerativen Medizin sind polymerbasierte Biomaterialien von großer Bedeutung für die Entwicklung und Anwendung verbesserter bzw. neuer Therapien. Die Erforschung der Oberflächeneigenschaften von Biomaterialien, welche als Implantate eingesetzt werden, ist eine grundlegende Voraussetzung für deren erfolgreichen Einsatz. Die Protein-Oberflächen- Interaktion geschieht initial, sobald ein Implantat mit Körperflüssigkeiten oder mit Gewebe in Kontakt kommt, und trägt maßgeblich zur direkten Wechselwirkung von Implantat und umgebenden Zellen bei. Dieser Prozess wird in der vorliegenden Arbeit an Gelatine untersucht. Daher bestand ein Ziel darin, stabile, nanometerdünne Gelatineoberflächen herzustellen und darauf die Adsorption von humanen Plasmaproteinen und bakteriellen Proteinen zu analysieren. Die Abscheidung der Gelatinefilme in variabler Schichtdicke auf zuvor mit PPX-Amin modifizierten Oberflächen wurde unter Verwendung eines Rotationsbeschichters durchgeführt. Um stabile Hydrogelfilme zu erhalten, wurden die Amingruppen der disaggregierten Gelatinefibrillen untereinander und mit denen der Amin-Modifizierung durch ein biokompatibles Diisocyanat quervernetzt. Dieser Prozess lieferte einen reproduzierbaren und chemisch stabilen Gelatinefilm, welcher durch die substratunabhängige Amin-Modifizierung kovalent auf unterschiedlichste Oberflächen aufgebracht werden konnte. Die durch den Herstellungsprozess präzise eingestellte Schichtdicke (Nano- bzw. Mikrometermaßstab) wurde mittels Ellipsometrie und Rasterkraftmikroskopie ermittelt. Die ebenso bestimmte Rauheit war unabhängig von der Schichtdicke sehr gering. Gelatinefilme, die auf funktionalisierte und strukturierte Proben aufgebracht wurden, konnten durch Elektronenmikroskopie dargestellt werden. Mit Hilfe der Infrarot-Reflexions-Absorptions-Spektroskopie wurden die Gelatinefilme im Hinblick auf ihre Stabilität chemisch charakterisiert. Zur Quantifizierung der Adsorption humaner Plasmaproteine (Einzelproteinlösungen) und komplexer Proteingemische aus steril filtrierten Kulturüberständen des humanpathogenen Bakteriums Pseudomonas aeruginosa wurde die Quarzkristall-Mikrowaage mit Dissipationsüberwachung eingesetzt. Hiermit konnte nicht nur die adsorbierte Menge an Proteinen auf dem Gelatinehydrogel bzw. Referenzoberflächen (Gold, PPX-Amin, Titan), sondern auch die viskoelastischen Eigenschaften des adsorbierten Proteinfilms bestimmt werden. Allgemein adsorbierte auf dem Gelatinehydrogel eine geringere Proteinmasse im Vergleich zu den Referenzoberflächen. Circa ein Viertel der adsorbierten Proteine migrierte in die Poren des gequollenen Gels und veränderte dessen viskoelastische Eigenschaften. Durch anschließende MALDI-ToF/MS- und MS/MS-Analyse konnten die bakteriellen Proteine auf den untersuchten Oberflächen identifiziert und untereinander verglichen werden. Hierbei zeigten sich nur geringfügige Unterschiede in der Proteinzusammensetzung. Zudem wurde eine Sekundärionenmassenspektrometrie mit Flugzeitanalyse an reinen Gelatinefilmen und an mit humanen Plasmaproteinen beladenen Gelatinefilmen durchgeführt. Durch eine anschließende multivariante Datenanalyse konnte zwischen den untersuchten Proben eindeutig differenziert werden. Dieser Ansatz ermöglicht es, die Adsorption von unterschiedlichen Proteinen auf proteinbasierten Oberflächen markierungsfrei zu untersuchen und kann zur Aufklärung der in vivo-Situation beitragen. Darüber hinaus bietet dieser Untersuchungsansatz neue Perspektiven für die Gestaltung und das schnelle und effiziente Screening von unterschiedlichen Proteinzusammensetzungen. Biomaterialien können jedoch nicht nur als Implantate oder Implantatbeschichtungen eingesetzt werden. Im Bereich des drug delivery und der Depotarzneimittel sind biologisch abbaubare Polymere, aufgrund ihrer variablen Eigenschaften, von großem Interesse. Die Behandlung von bakteriellen und fungalen Pneumonien stellt insbesondere bei Menschen mit Vorerkrankungen wie Cystische Fibrose oder primäre Ziliendyskinesie eine große Herausforderung dar. Oral oder intravenös applizierte Wirkstoffe erreichen die Erreger aufgrund der erhöhten Zähigkeit des Bronchialsekretes oft nicht in ausreichender Konzentration. Daher besteht ein weiteres Ziel der vorliegenden Arbeit darin, mittels electrohydrodynamic cojetting mikrometergroße, inhalierbare, wirkstoffbeladene Partikel mit zwei Kompartimenten (Janus-Partikel) herzustellen und deren Eignung für die therapeutische Anwendung bei Lungeninfektionen zu untersuchen. Durch das in dieser Arbeit entwickelte Lösungsmittelsystem können Janus-Partikel aus biologisch abbaubaren Co-Polymeren der Polymilchsäure (Poly(lactid-co-glycolid), PLGA) hergestellt und mit verschiedenen Wirkstoffen beladen werden. Darunter befinden sich ein Antibiotikum (Aztreonam, AZT), ein Antimykotikum (Itraconazol, ICZ), ein Mukolytikum (Acetylcystein, ACC) und ein Antiphlogistikum (Ibuprofen, IBU). Die Freisetzung der eingelagerten Wirkstoffe, mit Ausnahme von ICZ, konnte unter physiologischen Bedingungen mittels Dialyse und anschließender Hochleistungsflüssigkeitschromatographie gemessen werden. Die Freisetzungsrate wird von der Kettenlänge des Polymers beeinflusst, wobei eine kürzere Kettenlänge zu einer schnelleren Freisetzung führt. Das in die Partikel eingelagerte Antimykotikum zeigte in vitro eine gute Wirksamkeit gegen Aspergillus nidulans. Durch das Einlagern von ICZ in die Partikel ist es möglich diesen schlecht wasserlöslichen Wirkstoff in eine für Patienten zugängliche und wirksame Applikationsform zu bringen. In Interaktion mit P. aeruginosa erzielten die mit Antibiotikum beladenen Partikel in vitro bessere Ergebnisse als der Wirkstoff in Lösung, was sich in einem in vivo-Infektionsmodell mit der Wachsmotte Galleria mellonella bestätigte. AZT-beladene Partikel hatten gegenüber einer identischen Wirkstoffmenge in Lösung eine 27,5% bessere Überlebensrate der Wachsmotten zur Folge. Des Weiteren hatten die Partikel keinen messbaren negativen Einfluss auf die Wachsmotten. Dreidimensionale Atemwegsschleimhautmodelle, hergestellt mit Methoden des Tissue Engineerings, bildeten die Basis für Untersuchungen der Partikel in Interaktion mit humanen Atemwegszellen. Die Untersuchung von Apoptose- und Entzündungsmarkern im Überstand der 3D-Modelle zeigte diesbezüglich keinen negativen Einfluss der Partikel auf die humanen Zellen. Diese gut charakterisierten und standardisierten in vitro-Testsysteme machen es möglich, Medikamentenuntersuchungen an menschlichen Zellen durchzuführen. Hinsichtlich der histologischen Architektur und funktionellen Eigenschaften der 3D-Modelle konnte eine hohe in vitro-/in vivo-Korrelation zu menschlichem Gewebe festgestellt werden. Humane Mucine auf den 3D-Modellen dienten zur Untersuchung der schleimlösenden Wirkung von ACC-beladenen Partikeln. Standen diese in räumlichem Kontakt zu den Mucinen, wurde deren Zähigkeit durch das freigesetzte ACC herabgesetzt, was qualitativ mittels histologischen Methoden bestätigt werden konnte. Die in dieser Arbeit entwickelten Herstellungsprotokolle dienen als Grundlage und können für die Synthese ähnlicher Systeme, basierend auf anderen Polymeren und Wirkstoffen, modifiziert werden. Gelatine und PLGA erwiesen sich als vielseitig einsetzbare Werkstoffe und bieten eine breite Anwendungsvielfalt in der Regenerativen Medizin, was die erzielten Resultate bekräftigen. N2 - In the field of regenerative medicine, polymer-based biomaterials are of great importance for the development and application of improved or new therapies. The research on the surface properties of biomaterials, which are used as implants, is essential for their successful use. The protein-surface interaction is the initial step and occurs when an implant comes into contact with bodily fluids or tissues and significantly increases direct interaction of the implant and the surrounding cells. This thesis investigates these processes on gelatin. Accordingly, one of the project’s major goals was to produce stable nanometer-thin gelatin surfaces and analyze the adsorption of human plasma and bacterial proteins. The deposition of gelatin films and the assortment of layer thicknesses on PPX-amine modified surfaces were carried out using a spin coater. To gain hydrogel films with reproducible properties, the amine groups of the disaggregated gelatin fibrils were cross- linked with each other and with those of the amine modification by a biocompatible diisocyanate. The result was a reproducible and chemically stable gelatin film, which could be applied to a wide variety of surfaces through the substrate-independent amine modification. The manufacturing process precisely adjusted the layer thickness to the nano- or micrometer scale which could be determined applying ellipsometry and atomic- force microscopy. The roughness was very low regardless of the layer thickness. Gelatin films applied to the functionalized and patterned samples could be visualized by electron microscopy. With the help of infrared reflection absorption spectroscopy, the gelatin films were chemically characterized in terms of stability. The adsorption of human plasma proteins (single protein solutions) as well as the complex protein mixtures of sterile filtered supernatants belonging to Pseudomonas aeruginosa, a human pathogenic bacterium, were quantified by quartz crystal microbalance with dissipation monitoring. Both the adsorbed amount of proteins on the gelatin hydrogel or reference surfaces (gold, PPX-amine, titanium) and the viscoelastic properties of the adsorbed protein film were determined. In general, there was less protein mass adsorbed on the gelatin hydrogel compared to the reference surfaces. About a quarter of the adsorbed proteins migrated into the pores of the swollen gel and changed its viscoelastic properties. Subsequent MALDI-ToF/MS and MS/MS analysis were used to identify and compare the adsorbed bacterial proteins on the investigated surfaces. Only slight differences were found in the adsorbed protein composition. A secondary ion mass spectrometry with time-of-flight analysis was performed on pure gelatin films and gelatin films loaded with human plasma proteins. By subsequent multivariate data analysis, it was possible to clearly differentiate between the examined samples. Not only does this approach enable us to screen the adsorption of different proteins on protein-based surfaces without labeling, but it also contributes to the elucidation of the in vivo-situation. ach provides new perspectives regarding the design and efficient screening of different protein compositions. ... KW - PLGA KW - Partikel KW - Gelatine KW - Polylactid-co-Glycolid KW - Hydrogel KW - Tissue Engineering Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142636 ER - TY - THES A1 - Kwok, Chee Keong T1 - Scaling up production of reprogrammed cells for biomedical applications T1 - Skalierung der Produktion von reprogrammierten Zellen für biomedizinische Anwendungen N2 - Induced pluripotent stem cells (iPSCs) have been recognised as a virtually unlimited source of stem cells that can be generated in a patient-specific manner. Due to these cells’ potential to give rise to all differentiated cell types of the human body, they have been widely used to derive differentiated cells for drug screening and disease modelling purposes. iPSCs also garner much interest as they can potentially serve as a source for cell replacement therapy. Towards the realisation of these biomedical applications, this thesis aims to address challenges that are associated with scale-up, safety and biofabrication. Firstly, the manufacture of a high number of human iPSCs (hiPSCs) will require standardised procedures for scale-up and the development of a flexible bioprocessing method, since standard adherent hiPSC culture exhibits limited scalability and is labour-intensive. While the quantity of cells that are required for cell therapy depends largely on the tissue and defect that these replacing cells are meant to correct, an estimate of 1 × 10^9 has been suggested to be sufficient for several indications, including myocardial infarction and islet replacement for diabetes. Here, the development of an integrated, microcarrier-free workflow to transition standard adherent hiPSC culture (6-well plates) to scalable stirred suspension culture in bioreactors (1 L working volume, 2.4 L maximum working volume) is presented. The two-phase bioprocess lasts 14 days and generates hiPSC aggregates measuring 198 ± 58 μm in diameter on the harvesting day, yielding close to 2 × 10^9 cells. hiPSCs can be maintained in stirred suspension for at least 7 weeks with weekly passaging, while exhibiting pluripotency-associated markers TRA-1-60, TRA-1-81, SSEA-4, OCT4, and SOX2. These cells retain their ability to differentiate into cells of all the three germ layers in vitro, exemplified by cells positive for AFP, SMA, or TUBB3. Additionally, they maintain a stable karyotype and continue to respond to specification cues, demonstrated by directed differentiation into beating cardiomyocyte-like cells. Therefore, the aim of manufacturing high hiPSC quantities was met using a state-of-the-art scalable suspension bioreactor platform. Secondly, multipotent stem cells such as induced neural stem cells (iNSCs) may represent a safer source of renewable cells compared to pluripotent stem cells. However, pre-conditioning of stem cells prior to transplantation is a delicate issue to ensure not only proper function in the host but also safety. Here, iNSCs which are normally maintained in the presence of factors such as hLIF, CHIR99021, and SB431542 were cultured in basal medium for distinct periods of time. This wash-out procedure results in lower proliferation while maintaining key neural stem cell marker PAX6, suggesting a transient pre-differentiated state. Such pre-treatment may aid transplantation studies to suppress tumourigenesis through transplanted cells, an approach that is being evaluated using a mouse model of experimental focal demyelination and autoimmune encephalomyelitis. Thirdly, biomedical applications of stem cells can benefit from recent advancements in biofabrication, where cells can be arranged in customisable topographical layouts. Employing a 3DDiscovery bioprinter, a bioink consisting of hiPSCs in gelatin-alginate was extruded into disc-shaped moulds or printed in a cross-hatch infill pattern and cross-linked with calcium ions. In both discs and printed patterns, hiPSCs recovered from these bioprints showed viability of around 70% even after 4 days of culture when loaded into gelatin-alginate solution in aggregate form. They maintained pluripotency-associated markers TRA-1-60 and SSEA-4 and continued to proliferate after re-plating. As further proof-of-principle, printed hiPSC 3D constructs were subjected to targeted neuronal differentiation, developing typical neurite outgrowth and resulting in a widespread network of cells throughout and within the topology of the printed matrix. Staining against TUBB3 confirmed neuronal identity of the differentiated cellular progeny. In conclusion, these data demonstrate that hiPSCs not only survive the 3D-printing process but were able to differentiate along the printed topology in cellular networks. N2 - Induzierte pluripotente Stammzellen (iPSZ) stellen eine praktisch unbegrenzte Stammzellquelle dar, welche patientenspezifisch erzeugt werden kann. Da diese Zellen das Potenzial haben, alle differenzierten Zelltypen des menschlichen Körpers hervorzubringen, werden sie für die Herstellung differenzierter Zellen für Arzneimitteltests und für die Krankheitsmodellierung verwendet. Sie erfahren auch großes Interesse, weil sie als Zellquelle in der Zellersatztherapie Anwendung finden könnten. Die vorliegende Dissertation beschäftigt sich mit drei zentralen Herausforderungen, die im Rahmen der biomedizinischen Anwendung von iPSZ auftreten. Die Herstellung einer großen Zahl von humanen iPSZ (hiPSZ) erfordert die Entwicklung standardisierter Verfahren für die Skalierung, welche durch die Entwicklung einer flexiblen Bioprozessmethode realisiert werden kann. Bisher wird die Skalierbarkeit durch eine standardmäßig adhärente Zellkultur und den damit verbundenen hohen Arbeitsaufwand begrenzt. Die Menge an Zellen, die für die Zelltherapie benötigt wird, hängt stark vom Gewebetyp ab, welcher von den ersetzenden Zellen korrigiert werden soll. Berechnungen legen nahe, dass eine Anzahl 1 × 10^9 Zellen für eine Vielzahl von Indikationen ausreicht – einschließlich Myokardinfarkt und Inselzelltransplantation für Diabetes. Im Rahmen dieser Arbeit wurde ein integrierter Arbeitsablauf zur skalierbaren Zellsuspensionskultur von hiPSZ ohne Verwendung von microcarrier entwickelt, um die standardmäßig adhärente Kultur (6-Well-Platten) in Bioreaktoren (1 L Arbeitsvolumen, 2,4 L maximales Arbeitsvolumen) zu überführen. Der zweiphasige Produktionsprozess dauert 14 Tage und erzeugt hiPSZ-Aggregate mit einem finalen Durchmesser von 198 ± 58 μm, der annähernd 2 × 10^9 Zellen beinhaltet. hiPSZ können mindestens 7 Wochen lang in einer gerührten Zellsuspension bei wöchentlichem Passagieren gehalten werden, wobei sie Pluripotenz-assoziierte Marker wie TRA-1-60, TRA-1-81, SSEA-4, OCT4 und SOX2 beibehalten. Die Zellen behalten weiterhin ihre Fähigkeit, sich in vitro in Zellen mit AFP-, SMA- oder TUBB3-Immunoreaktivität und damit in Zellen aller drei Keimblätter zu differenzieren. Darüber hinaus halten sie einen stabilen Karyotyp aufrecht und reagieren auf gezielt eingesetzte externe Differenzierungsstimuli, wie durch eine gezielte Differenzierung in schlagende Kardiomyozyten-ähnliche Zellen demonstriert werden konnte. Somit wurde das Ziel, eine großen Anzahl hiPSCs herzustellen, mit einer hochmodernen, skalierbaren Suspensionsbioreaktorplattform erreicht. Multipotente Stammzellen wie induzierte neurale Stammzellen (iNSZ) gelten verglichen mit iPSZ als sicherere Zellquelle für Ersatztherapien. Die Vorkonditionierung von Stammzellen vor der Transplantation ist jedoch ein heikles Thema, da sowohl die einwandfreie Funktion im Wirtsgewebe als auch Sicherheit gewährleistet werden müssen. Im Rahmen dieser Arbeit wurden iNSZ, die normalerweise im Kulturmedium mit Faktoren wie hLIF, CHIR99021 und SB431542 gehalten werden, für eine definierte Zeitspanne in basalem Medium kultiviert. Die Vorbehandlung führt zu einer geringeren Proliferation, jedoch unter Erhalt der Expression des wichtigen neuralen Stammzellmarkers PAX6, was auf einen transienten vordifferenzierten Zustand hindeutet. Eine solche Vorbehandlung könnte bei zukünftigen Transplantationsstudien angewandt werden, um die Tumorentstehung durch transplantierte Zellen zu unterdrücken. Dieser Ansatz wird in Zukunft mit einem Mausmodell der experimentellen fokalen Demyelinisierung und der autoimmunen Enzephalomyelitis untersucht. Schließlich kann die Zellersatztherapie von den jüngsten Fortschritten in der Biofabrikation profitieren, bei der die Zellen durch das Drucken in anpassbare topographische Profile angeordnet werden können. Mit einem 3DDiscovery Biodrucker wurde eine Biotinte bestehend aus Gelatine-Alginat und hiPSZ in scheibenförmig extrudiert oder in einem Kreuzschraffurmuster gedruckt und mittels Kalziumionen-Zugabe vernetzt. Gedruckte hiPSZ zeigten auch nach 4 Tagen Kultivierung eine Lebensfähigkeit von etwa 70 % und weiterhin das Auftreten der Pluripotenz-assoziierten Marker TRA-1-60 und SSEA-4. Zudem konnten sie sich anschließend mit standardmäßig adhärenter Zellkultur weiter vermehren. Zudem konnte gezeigt werden, dass die gedruckten Konstrukte einer gezielten neuronalen Differenzierung unterzogen werden können, die zu einem typischen Neuritenauswuchs und zu einer weitreichenden interzellulären Vernetzung durch und innerhalb der Topologie der gedruckten Matrix führte. Die Färbung gegen TUBB3 bestätigte die neuronale Identität der differenzierten Zellen. Zusammenfassend zeigen diese Daten, dass bei Verwendung des in dieser Studie erarbeiteten Protokolls hiPSZ nicht nur den 3D-Druckprozess überleben, sondern auch entlang der gedruckten 3D Topologie in Netzwerke Neurone differenzieren können. KW - scale-up KW - suspension culture KW - biomedical applications KW - bioprocessing KW - human induced pluripotent stem cells KW - Bioprozessmethode KW - humanen induzierte pluripotente Stammzellen Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-191865 ER - TY - THES A1 - Stöckhert, Franziska T1 - Biokompatibilitätsmessungen, Anwendung und histologische Untersuchung eines Kreuzbandtransplantats aus Kollagen-I basiertem Biomaterial am Tiermodell T1 - Biocompatibility, application and histologic examination of a type I collagen based implant for reconstruction of the anterior cruciate ligament in an animal model N2 - Ziel der vorliegenden Arbeit war es, die Biokompatibilität von Kollagen I-basierten ACL-Konstrukten in-vitro und in-vivo zu überprüfen. Zudem erfolgte eine histologische Charakterisierung der Konstrukte nach sechswöchiger bzw. sechsmonatiger Versuchslaufzeit im Minipig-Tiermodell. Das Kollagen I wurde durch eine neuartige Methode aus Rattenschwänzen isoliert und zu einem Implantat geknotet und gewickelt. Die Fasern wurden mittels Proliferationsmessung, Proteinbestimmung, Zellzählung und Zellmorphologie auf in-vitro-Biokompatibilität getestet. Hier zeigte sich eine gute Biokompatibilität sowohl für γ-sterilisierte Fasern als auch für nicht sterilisierte Fasern. In der Sterilitätsüberprüfung waren nach Anpassung des Sterilisationsverfahrens weder Bakterien- noch Pilzwachstum nachweisbar. Diese Ergebnisse sind vergleichbar mit vielfältigen Studien zur Biokompatibilität von Kollagen, in denen jeweils gute Zellviabilität und –proliferation im direkten oder indirekten Kontakt mit Kollagen gezeigt werden konnte. Anschließend wurde das Konstrukt im Tierversuch direkt im Kniegelenk als vorderer Kreuzbandersatz implantiert. Nach Ablauf der Standzeit und Explantation der Kniegelenke wurden Paraffinschnittpräparate der Implantate sowie Paraffinschnittpräparate und Kunststoffschnittpräparate der ossa femora angefertigt und durchlichtmikroskopisch deskriptiv ausgewertet. Zusätzlich wurden die immunhistochemischen Färbungen Kollagen I des Schweins und der Ratte und Faktor VIII angefertigt, wobei in der Faktor VIII-Färbung zusätzlich eine quantitative Auswertung der Gefäßzahl vorgenommen wurde. Es wurde in der Kollagenfärbung ein Ersatz des Rattenkollagens durch das Schweinekollagen einhergehend mit einer hohen Zellzahl gezeigt. Eine synoviale Deckschicht und eine fortschreitende Vaskularisierung, sowie Form und Anordnung der Zellen zeigten Vorgänge des Remodeling. Innerhalb von 6 Monaten nahm die Vaskularisierung zu und neu gebildeter Geflechtknochen verengte die Bohrkanäle. Die Knochen-Implantat-Heilung war im Bohrkanal durch Sharpey´sche Fasern gekennzeichnet. Am Tunnelausgang fanden sich von sechs Wochen zu sechs Monaten Hinweise auf die fortschreitende Entwicklung einer direkten Bandinsertion. Diese Ergebnisse entsprechen weitgehend den in der Literatur beschriebenen Remodelingvorgängen bei Studien zum Thema Kreuzbandersatz. Die beginnende direkte Bandinsertion spricht für eine gute Fixation und die Einheilung begünstigende Eigenschaften des Implantates. Dies ist ein geeigneter Ansatz für weitere Untersuchungen. Von Seiten der Biokompatibilität und der Integration des Gewebes ist das Implantat zum Kreuzbandersatz geeignet. Es bleibt abzuwarten, inwieweit die erforderlichen mechanischen Eigenschaften erreicht werden können. N2 - The aim of the study was to examine the biocompatibility of type I collagen based ACL constructs in vitro and in vivo. In addition, the constructs were histologically characterized after a test period of six weeks or six months in the minipig animal model. The type I collagen was isolated from rat tails by a novel method and knotted and wrapped into an implant. The fibers were tested for in vitro biocompatibility by proliferation measurement, protein determination, cell counting and cell morphology. This showed good biocompatibility for both γ-sterilized fibers and for non-sterilized fibers. After adjustment of the sterilization process, neither bacterial nor fungal growth was detectable in the sterility check. These results are comparable to various studies on the biocompatibility of collagen, in which good cell viability and proliferation could be shown in direct or indirect contact with collagen. The construct was implanted directly in the knee joint as an anterior cruciate ligament replacement. After the explantation of the knee joints, paraffin-cut preparations of the implants as well as paraffin-cut preparations and plastic-cut preparations of the ossa femora were made and evaluated descriptively using light microscopy. In addition, the immunohistochemical stains type I collagen of the pig and the rat and factor VIII were prepared, with a quantitative evaluation of the number of vessels also being carried out in the factor VIII staining. In the collagen staining, a replacement of the rat collagen by the pig collagen was shown, along with a high cell number. A synovial cover layer and progressive vascularization, as well as the shape and arrangement of the cells showed processes of remodeling. Vascularization increased within 6 months and newly formed bone narrowed the drill channels. Bone implant healing was characterized by Sharpey fibers in the drill channel. At the tunnel exit, indications of the progressive development of a direct band insertion were found from six weeks to six months. These results largely correspond to the remodeling processes described in the literature for studies on the subject of anterior cruciate ligament replacement. The beginning of direct band insertion suggests good fixation and healing properties of the implant. This is a suitable approach for further investigations. In terms of biocompatibility and the integration of the tissue, the implant is suitable for anterior cruciate ligament replacement. To reach the mechanical properties will be the key for clinical use. KW - Kollagen KW - Kreuzband KW - Biokompatibilität Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-192501 ER - TY - THES A1 - Kremer, Antje T1 - Tissue Engineering of a Vascularized Meniscus Implant T1 - Tissue Engineering eines vaskularisierten Meniskus-Implantates N2 - The knee joint is a complex composite joint containing the C-shaped wedge-like menisci composed of fibrocartilage. Due to their complex composition and structure, they provide mechanical resilience to the knee joint protecting the articular cartilage. Because of the limited repair potential, meniscal injuries do not only affect the meniscus itself but also lead to altered joint homeostasis and inevitably to secondary osteoarthritis. The meniscus was characterized focusing on its anatomy, structure and meniscal markers such as aggrecan, collagen type I (Col I) and Col II. The components relevant for meniscus tissue engineering, namely cells, Col I scaffolds, biochemical and biomechanical stimuli were studied. Meniscal cells (MCs) were isolated from meniscus, mesenchymal stem cells (MSCs) from bone marrow and dermal microvascular endothelial cells (d-mvECs) from foreskin biopsies. For the human (h) meniscus model, wedge-shape compression of a hMSC-laden Col I gel was successfully established. During three weeks of static culture, the biochemical stimulus transforming growth factor beta-3 (TGF beta-3) led to a compact collagen structure. On day 21, this meniscus model showed high metabolic activity and matrix remodeling as confirmed by matrix metalloproteinases detection. The fibrochondrogenic properties were illustrated by immunohistochemical detection of meniscal markers, significant GAG/DNA increase and increased compressive properties. For further improvement, biomechanical stimulation systems by compression and hydrostatic pressure were designed. As one vascularization approach, direct stimulation with ciclopirox olamine (CPX) significantly increased sprouting of hd-mvEC spheroids even in absence of auxiliary cells such as MSCs. Second, a cell sheet composed of hMSCs and hd-mvECs was fabricated by temperature triggered cell sheet engineering and transferred onto the wedge-shaped meniscus model. Third, a biological vascularized scaffold (BioVaSc-TERM) was re-endothelialized with hd-mvECs providing a viable vascularized network. The vascularized BioVaSc-TERM was suggested as wrapping scaffold of the meniscus model by using two suture techniques, the all-inside-repair (AIR) for the posterior horn, and the outside-in-refixation (OIR) for the anterior horn and the middle part. This meniscus model for replacing torn menisci is a promising approach to be further optimized regarding vascularization, biochemical and biomechanical stimuli. N2 - Das Knie ist ein komplex zusammengesetztes Gelenk mit zwei C-förmigen Keilen aus Bindegewebsknorpel, die Menisken. Sie sorgen für die mechanische Belastbarkeit des Knies, wodurch der Gelenksknorpel geschützt wird. Aufgrund des limitierten Heilungspotentials beeinträchtigen Meniskusverletzungen nicht nur den Meniskus selbst, sondern schädigen auch das Gelenksgleichgewicht und führen zu sekundärer Osteoarthritis. Der Meniskus wurde in seiner Anatomie, Struktur und Meniskusmarkern wie Aggrekan, Kollagen I und Kollagen II charakterisiert. Die Komponenten von Meniskus Tissue Engineering, Zellen, Kollagen I Materialien, biochemische und biomechanische Stimuli wurden untersucht. Meniskuszellen (MCs) wurden aus Meniskus isoliert, mesenchymale Stammzellen (MSCs) aus Knochenmark und dermale mikrovaskuläre Endothelzellen (d-mvECs) aus Vorhautbiopsien. Für das humane (h) Meniskus-Modell wurde die keilförmige Kompression eines hMSC-beladenen Kollagen I Gels erfolgreich etabliert. Während drei Wochen statischer Kultur führte der biochemische Stimulus transformierender Wachs-tumsfaktor beta-3 (TGF beta-3) zu einer kompakten Kollagenstruktur. An Tag 21 zeigte dieses Meniskus-Modell eine hohe metabolische Aktivität und Matrixumbau durch die Detektion von Matrix-Metalloproteasen. Der Bindegewebsknorpel wurde durch immunhistochemische Detektion der Meniskusmarker, einem signifikanten GAG/DNA Anstieg und erhöhter Kompressionseigenschaften bestätigt. Für weitere Verbesserungen wurden biomechanische Stimulierungssysteme mittels Kompression und hydrostatischen Druck aufgebaut. Als Vaskularisierungsansatz führte die direkte Stimulierung mit Ciclopirox Olamine (CPX) sogar in Abwesenheit von Helferzellen wie MSCs zu einem erhöhten Sprouting der hd-mvEC Spheroide. Zweitens wurde ein hMSC/hd-mvEC Sheet mithilfe eines Temperatur-abhängigen Verfahrens produziert und auf das keilförmige Meniskus-Modell transferiert. Drittens wurde ein vaskularisiertes Biomaterial (BioVaSc-TERM) mit hd-mvECs besiedelt, wodurch ein vitales Gefäßystem bereitgestellt wurde. Die vaskularisierte BioVaSc-TERM wurde als Hülle des Meniskus-Modells unter der Verwendung von zwei Nahttechniken vorgeschlagen: die All-Inside-Repair (AIR) für das Hinterhorn und die Outside-In-Refixation (OIR) für das Vorderhorn und den mittleren Teil. Dieses Meniskus-Modell ist ein vielversprechender Ansatz für den Meniskusersatz, um in Vaskularisierung, biochemischer und biomechanischer Stimuli weiter optimiert zu werden. KW - Meniskus KW - Tissue Engineering KW - Regenerative Medizin KW - Meniskusimplantat KW - meniscus implant KW - Tissue Engineering KW - tissue engineering KW - vascularization KW - Vaskularisierung Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-184326 ER - TY - THES A1 - Wiesner, Miriam T1 - Stem Cell-based Adipose Tissue Engineering - Engineering of Prevascularized Adipose Tissue Constructs In Vitro & Investigation on Gap Junctional Intercellular Communication in Adipose-derived Stem Cells T1 - Stammzellbasiertes Tissue Engineering von Fettgewebe - Entwicklung eines prävaskularisierten Fettgewebekonstrukts in vitro & Untersuchung der interzellulären Kommunikation über Gap Junctions in Stammzellen aus dem Fettgewebe N2 - In reconstructive and plastic surgery, there exists a growing demand of adequate tissue implants, since currently available strategies for autologous transplantation are limited by complications including transplant failure and donor site morbidity. By developing in vitro and in vivo autologous substitutes for defective tissue sites, adipose tissue engineering can address these challenges, although there are several obstacles to overcome. One of the major limitations is the sufficient vascularization of in vitro engineered large constructs that remains crucial and demanding for functional tissues. Decellularized jejunal segments may represent a suitable scaffolding system with preexisting capillary structures that can be repopulated with human microvascular endothelial cells (hMVECs), and a luminal matrix applicable for the adipogenic differentiation of human adipose-derived stem cells (hASCs). Hence, co-culture of these cells in jejunal segments, utilizing a custom-made bioreactor system, was characterized in terms of vascularization and adipose tissue development. Substantial adipogenesis of hASCs was demonstrated within the jejunal lumen in contrast to non-induced controls, and the increase of key adipogenic markers was verified over time upon induction. The development of major extracellular matrix components of mature adipose tissue, such as laminin and collagen IV, was shown within the scaffold in induced samples. Successful reseeding of the vascular network with hMVECs was demonstrated in long-term culture and co-localization of vascular structures and adipogenically differentiated hASCs was observed. Therefore, these results represent a novel approach for in vitro engineering of vascularized adipose tissue constructs that warrants further investigations in preclinical studies. Another still existing obstacle in adipose tissue engineering is the insufficient knowledge about the applied cells, for instance the understanding of how cells can be optimally expanded and differentiated for successful engineering of tissue transplants. Even though hASCs can be easily isolated from liposuction of abdominal fat depots, yielding low donor site morbidity, huge numbers of cells are required to entirely seed complex and large 3D matrices or scaffolds. Thus, cells need to be large-scale expanded in vitro on the premise of not losing their differentiation capacity caused by replicative aging. Accordingly, an improved differentiation of hASCs in adipose tissue engineering approaches remains still desirable since most engineered constructs exhibit an inhomogeneous differentiation pattern. For mesenchymal stem cells (MSCs), it has been shown that growth factor application can lead to a significant improvement of both proliferation and differentiation capacity. Especially basic fibroblast growth factor (bFGF) represents a potent mitogen for MSCs, while maintaining or even promoting their osteogenic, chondrogenic and adipogenic differentiation potential. As there are currently different contradictory information present in literature about the applied bFGF concentration and the explicit effect of bFGF on ASC differentiation, here, the effect of bFGF on hASC proliferation and differentiation capacity was investigated at different concentrations and time points in 2D culture. Preculture of hASCs with bFGF prior to adipogenic induction showed a remarkable effect, whereas administration of bFGF during culture did not improve adipogenic differentiation capacity. Furthermore, the observations indicated as mode of action an impact of this preculture on cell proliferation capacity, resulting in increased cellular density at the time of adipogenic induction. The difference in cell density at this time point appeared to be pivotal for increased adipogenic capacity of the cells, which was confirmed in a further experiment employing different seeding densities. Interestingly, furthermore, the obtained results suggested a cell-cell contact-mediated mechanism positively influencing adipogenic differentiation. As a consequence, subsequently, studies were conducted focusing on intercellular communication of these cells, which has hardly been investigated to date. Despite the multitude of literature on the differentiation capacity of ASCs, little is reported about the physiological properties contributing to and controlling the process of lineage differentiation. Direct intercellular communication between adjacent cells via gap junctions has been shown to modulate differentiation processes in other cell types, with connexin 43 (Cx43) being the most abundant isoform of the gap junction-forming connexins. Thus, in the present study we focused on the expression of Cx43 and gap junctional intercellular communication (GJIC) in hASCs, and its significance for adipogenic differentiation of these cells. Cx43 expression in hASCs was demonstrated histologically and on the gene and protein expression level and was shown to be greatly positively influenced by cell seeding density. Functionality of gap junctions was proven by dye transfer analysis in growth medium. Adipogenic differentiation of hASCs was shown to be also distinctly elevated at higher cell seeding densities. Inhibition of GJIC by 18α-glycyrrhetinic acid significantly compromised adipogenic differentiation, as demonstrated by histology, triglyceride quantification, and adipogenic marker gene expression. Flow cytometry analysis showed a lower proportion of cells undergoing adipogenesis when GJIC was inhibited, further indicating the importance of GJIC in the differentiation process. Altogether, these results demonstrate the impact of direct cell-cell communication via gap junctions on the adipogenic differentiation process of hASCs and may contribute to further integrate direct intercellular crosstalk in rationales for tissue engineering approaches. N2 - In der rekonstruktiven und plastischen Chirurgie besteht ein wachsender Bedarf an adäquaten Gewebetransplantaten, da die derzeit verfügbaren Strategien für autologe Transplantationen von Geweben durch Komplikationen wie beispielsweise Transplantatversagen sowie Morbiditäten an der Entnahmestelle beeinträchtigt werden. Das Tissue Engineering kann dieser Problematik jedoch durch die Entwicklung von in vitro und in vivo gezüchtetem, autologen Gewebeersatz für defekte Gewebestellen begegnen, wobei es dabei noch mehrere Hindernisse zu überwinden gilt. Eine der größten Limitationen ist die ausreichende Vaskularisierung der in vitro hergestellten, großen Konstrukte, welche für die Funktion des Gewebes entscheidend ist. Hierfür können dezellularisierte, jejunale Segmente ein geeignetes Gerüstsystem darstellen, deren bereits vorhandene Kapillarstrukturen mit humanen, mikrovaskulären Endothelzellen (hMVECs) und deren luminale Matrix mit humanen Stammzellen aus dem Fettgewebe (hASCs), mit anschließender adipogen Differenzierung, besiedelt werden können. Im Rahmen der vorliegenden Arbeit wurden diese Konstrukte mit Hilfe eines maßgeschneiderten Bioreaktorsystems kultiviert und die Kokultur der Zellen in der jejunalen Matrix hinsichtlich der Fettgewebeentwicklung untersucht. Im Gegensatz zu nicht-induzierten Kontrollen wurde nach adipogener Induktion innerhalb des jejunalen Lumens eine substanzielle Fettgewebebildung der hASCs, sowie ein Anstieg wichtiger adipogener Marker im zeitlichen Verlauf nachgewiesen. Die Bildung wesentlicher extrazellulärer Matrixkomponenten des reifen Fettgewebes, wie beispielsweise Laminin und Kollagen IV, wurde innerhalb der Matrix bei induzierten Proben ebenso beobachtet. Die erfolgreiche Neubesiedlung des Gefäßnetzes mit hMVECs konnte in der Langzeitkultur gezeigt und eine Kolokalisation von Gefäßstrukturen und differenzierten hASCs beobachtet werden. Somit stellen diese Ergebnisse einen vielversprechenden, neuen Ansatz für die in vitro Entwicklung von vaskularisierten Fettgewebekonstrukten dar, welcher jedoch noch weitere Untersuchungen in präklinischen Studien erfordert. Eine weitere Limitation in der Entwicklung von Fettgewebe ist das unzureichende Wissen über die verwendeten Zellen – so zum Beispiel wie Zellen optimal expandiert und differenziert werden können, um einen Gewebeersatz erfolgreich herzustellen. Auch wenn hASCs leicht aus abdominalen Liposuktionen, welche zu einer relativ geringen Morbidität an der Entnahmestelle führen, isoliert werden können, ist eine sehr große Anzahl an Zellen erforderlich, um komplexe und große 3D-Matrizes vollständig mit Zellen zu besiedeln. So müssen Zellen in vitro im großen Maßstab expandiert werden, wobei auf die Erhaltung ihrer Differenzierungskapazität und die Vermeidung des replikativen Alterns geachtet werden muss. Da viele der entwickelten Konstrukte des Weiteren ein inhomogenes Differenzierungsmuster aufweisen, ist eine Verbesserung der adipogenen Differenzierung von ASCs im Rahmen von Tissue Engineering Ansätzen wünschenswert. Für mesenchymale Stammzellen (MSCs) wurde bereits gezeigt, dass die Anwendung von Wachstumsfaktoren zu einer deutlichen Verbesserung der Proliferations- und Differenzierungskapazität führen kann. Insbesondere der Wachstumsfaktor bFGF (basic fibroblast growth factor) stellt ein starkes Mitogen für MSCs dar, wobei er das osteogene, chondrogene und adipogene Differenzierungspotenzial der Zellen aufrechterhält und sogar fördert. Da es in der Literatur derzeit unterschiedliche und teilweise widersprüchliche Informationen über die verwendeten bFGF Konzentrationen und den expliziten Effekt von bFGF auf die Differenzierung von ASCs gibt, wurde der Effekt von bFGF auf die Proliferations- und Differenzierungsfähigkeit mit unterschiedlichen Konzentrationen und zu unterschiedlichen Zeitpunkten in der 2D Kultur untersucht. Die Vorkultur der hASCs mit bFGF vor der adipogenen Induktion hatte einen beachtlichen Effekt auf die Differenzierung, während die Verabreichung von bFGF während der Kultur, die adipogene Differenzierungsfähigkeit der Zellen nicht verbesserte. Darüber hinaus zeigten die Ergebnisse einen Einfluss der Vorkultur auf die Zellproliferation, was zu einer erhöhten Zelldichte zum Zeitpunkt der adipogenen Induktion führte. Der Unterschied in der Zelldichte zu diesem Zeitpunkt schien entscheidend für die gesteigerte Differenzierungskapazität der Zellen zu sein, was sich in einem weiteren Experiment mit unterschiedlichen Aussaatdichten bestätigte. Interessanterweise deuteten die Ergebnisse außerdem darauf hin, dass ein Zell-Zell-Kontakt-vermittelter Mechanismus die adipogene Differenzierung positiv beeinflusst. Daher wurden anschließend Untersuchungen zur interzellulären Kommunikation dieser Zellen durchgeführt, welche bisher kaum erforscht wurde. Trotz der Vielzahl an Literatur über die Differenzierungsfähigkeit von ASCs ist wenig über die physiologischen Prozesse bekannt, die zur Differenzierung in verschiedene Zelltypen beitragen und diese kontrollieren. So wurde gezeigt, dass die direkte interzelluläre Kommunikation zwischen benachbarten Zellen über Gap Junctions Differenzierungsprozesse moduliert. Connexin 43 (Cx43) stellt dabei die häufigste Isoform der Gap Junction-bildenden Connexine dar. Im Rahmen dieser Arbeit wurde die Expression von Cx43 und die interzelluläre Kommunikation durch Gap Junctions (gap junctional intercellular communication; GJIC) in hASCs, sowie ihre Bedeutung für die adipogene Differenzierung untersucht. Die Cx43 Expression in hASCs wurde histologisch und auf Gen- und Proteinexpressionsebene nachgewiesen und wurde durch die Zellaussaatdichte nachweislich stark beeinflusst. Die Funktionalität der Gap Junctions konnte mit Hilfe eines Assays zur Übertragung von Farbstoffen untersucht werden. Es zeigte sich hierbei eine zelldichteabhängige, adipogene Differenzierungkapazität der hASCs. Die Hemmung der GJIC durch 18α-Glycyrrhetinsäure beeinträchtigte die adipogene Differenzierung deutlich, wie sich durch die Histologie, die Triglyceridquantifizierung und die adipogene Markergenexpression beobachten ließ. Bei Hemmung der GJIC zeigte sich mit Hilfe der Durchflusszytometrie, dass weniger Zellen adipogen differenzieren konnten, was die Bedeutung von GJIC im Differenzierungsprozess hervorhebt. Zusammenfassend veranschaulichen diese Ergebnisse den Einfluss direkter Zell-Zell-Kommunikation über Gap Junctions auf den adipogenen Differenzierungsprozess von hASCs und könnten somit in Zukunft dazu beitragen, direkte interzelluläre Kommunikation in Tissue Engineering Ansätze zu integrieren. KW - Tissue Engineering KW - Fettgewebe KW - Gap Junction KW - Adipose Tissue Engineering Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-185005 ER - TY - THES A1 - Kreß, Sebastian T1 - Development and proof of concept of a biological vascularized cell‐based drug delivery system T1 - Entwicklung und Proof of Concept eines biologischen, vaskularisierten, zellbasierten Drug‐Delivery‐Systems N2 - A major therapeutic challenge is the increasing incidence of chronic disorders. The persistent impairment or loss of tissue function requires constitutive on‐demand drug availability optimally achieved by a drug delivery system ideally directly connected to the blood circulation of the patient. However, despite the efforts and achievements in cell‐based therapies and the generation of complex and customized cell‐specific microenvironments, the generation of functional tissue is still unaccomplished. This study demonstrates the capability to generate a vascularized platform technology to potentially overcome the supply restraints for graft development and clinical application with immediate anastomosis to the blood circulation. The ability to decellularize segments of the rat intestine while preserving the ECM for subsequent reendothelialization was proven. The reestablishment of a functional arteriovenous perfusion circuit enabled the supply of co‐cultured cells capable to replace the function of damaged tissue or to serve as a drug delivery system. During in vitro studies, the applicability of the developed miniaturized biological vascularized scaffold (mBioVaSc‐TERM®) was demonstrated. While indicating promising results in short term in vivo studies, long term implantations revealed current limitations for the translation into clinical application. The gained insights will impact further improvements of quality and performance of this promising platform technology for future regenerative therapies. N2 - Eine kontinuierlich steigende Inzidenz chronischer Krankheiten stellt eine immer größer werdende therapeutische Herausforderung dar. Der anhaltende Funktionsverlust von Geweben erfordert die bedarfsgerechte Verfügbarkeit von Wirkstoffen, deren kontinuierliche Bereitstellung und Verteilung über die Blutzirkulation von implantierbaren Pharmakotherapie‐Produkten gelöst werden kann. Trotz der Fortschritte und Erfolge mit Zelltherapien sowie der Nachbildung der Zell‐eigenen Nischen konnten bisher noch keine funktionellen Gewebe für die medizinische Anwendbarkeit hergestellt werden. Diese Studie zeigt die Möglichkeit zur Herstellung einer vaskularisierten Plattform‐ Technologie um die Beschränkung der Nährstoff‐Versorgung zu überwinden für die Entwicklung von Transplantaten für die klinische Anwendung und deren sofortige Anastomose an die Blutzirkulation. Die Möglichkeit Rattendarmsegmente zu dezellularisieren, die Extrazellulärmatrix und das interne Gefäßsystem dabei jedoch zu erhalten um diese Strukturen wiederzubesiedeln wurde bewiesen. Das Wiederherstellen des funktionellen arteriovenösen Perfusionskreislaufs ermöglichte die Versorgung von Ko‐kultivierten Zellen um damit funktionalen Gewebeersatz bzw. ‐modelle aufzubauen oder als Medizin‐ Produkt Einsatz zu finden. In vitro‐Studien zeigten eindrucksvoll Reife und Anwendbarkeit des hier entwickelten miniaturisierten, biologischen, vaskularisierten Scaffold (mBioVaSc‐TERM®). Während in in vivo‐Studien zunächst vielversprechende Ergebnisse erzielt wurden, zeigten Langzeit Implantationen die aktuellen Grenzen zur Translation in die klinische Anwendung. Die gewonnenen Erkenntnisse werden dazu dienen Qualität und Funktionalität dieser vielversprechenden Plattform‐Technologie zu verbessern um zukünftige regenerative Therapien zu ermöglichen. KW - Vaskularisation KW - Dezellularisierung KW - Tissue Engineering KW - Therapeutisches System KW - Implantat KW - Vascularized KW - drug delivery Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178650 ER - TY - THES A1 - Rücker, Christoph T1 - Development of a prevascularized bone implant T1 - Entwicklung eines prävaskularisierten Knochenimplantats N2 - The skeletal system forms the mechanical structure of the body and consists of bone, which is hard connective tissue. The tasks the skeleton and bones take over are of mechanical, metabolic and synthetic nature. Lastly, bones enable the production of blood cells by housing the bone marrow. Bone has a scarless self-healing capacity to a certain degree. Injuries exceeding this capacity caused by trauma, surgical removal of infected or tumoral bone or as a result from treatment-related osteonecrosis, will not heal. Critical size bone defects that will not heal by themselves are still object of comprehensive clinical investigation. The conventional treatments often result in therapies including burdening methods as for example the harvesting of autologous bone material. The aim of this thesis was the creation of a prevascularized bone implant employing minimally invasive methods in order to minimize inconvenience for patients and surgical site morbidity. The basis for the implant was a decellularized, naturally derived vascular scaffold (BioVaSc-TERM®) providing functional vessel structures after reseeding with autologous endothelial cells. The bone compartment was built by the combination of the aforementioned scaffold with synthetic β-tricalcium phosphate. In vitro culture for tissue maturation was performed using bioreactor technology before the testing of the regenerative potential of the implant in large animal experiments in sheep. A tibia defect was treated without the anastomosis of the implant’s innate vasculature to the host’s circulatory system and in a second study, with anastomosis of the vessel system in a mandibular defect. While the non-anastomosed implant revealed a mostly osteoconductive effect, the implants that were anastomosed achieved formation of bony islands evenly distributed over the defect. In order to prepare preconditions for a rapid approval of an implant making use of this vascularization strategy, the manufacturing of the BioVaSc-TERM® as vascularizing scaffold was adjusted to GMP requirements. N2 - Das Skelett bildet die mechanische Struktur des Körpers und besteht aus Knochen, einem harten Bindegewebe. Knochen übernehmen mechanische, metabolische und synthetische Aufgaben. Schlussendlich ermöglichen Knochen die Synthese von Blutzellen durch die Beherbergung des Knochenmarks. Wird die Heilungskapazität von Knochen durch Trauma, operative Entfernung von infiziertem oder tumorösem Knochen oder als Ergebnis behandlungsbedingter Osteonekrose, überschritten, findet keine vollständige Heilung statt. Knochendefekte, die eine kritische Größe überschreiten, sind daher immer noch Gegenstand umfangreicher, klinischer Forschung. Bei herkömmlichen Behandlungsmethoden können Eingriffe notwendig werden, die den Patienten belasten, wie bei der Gewinnung von autologem Knochenmaterial. Das Ziel der vorliegenden Arbeit war die Herstellung eines prävaskularisierten Implantats unter Verwendung minimalinvasiver Methoden, um die Belastung von Patienten und die Morbidität an der Entnahmestelle, zu verringern. Zur Herstellung eines vaskularisierten Implantats bildete ein dezellularisiertes Darmsegment (Jejunum) porcinen Ursprungs die Grundlage (BioVasc-TERM®). Diese Trägerstruktur stellte ein funktionales Blutgefäßsystem nach Wiederbesiedelung mit autologen Endothelzellen bereit. Der Knochenanteil des Implantats wurde durch die Kombination der genannten Trägerstruktur mit dem synthetischen Knochenersatzmaterial β-Tricalciumphosphat gebildet. In-vitro-Kultivierung in einem Bioreaktor führte zur Reifung des Implantats vor der Testung seines Potenzials zur Knochenregeneration in Großtierversuchen bei Schafen. Ein Tibiadefekt wurde behandelt ohne die Anastomose des implantateigenen Gefäßsystems an den Blutkreislauf und ein Mandibeldefekt wurde mit Gefäßanschluss behandelt. Das Implantat ohne Gefäßanschluss hatte einen osteokonduktiven Effekt, während das anastomosierte Implantat zur Bildung zahlreicher Knocheninseln, gleichmäßig über den Defekt verteilt, führte. Um eine zügige Zulassung eines Implantats, das diese Strategie zur Vaskularisierung von Knochen nutzt, zu ermöglichen, wurde die Herstellung der BioVaSc-TERM® an die Vorgaben der Guten Herstellungspraxis angepasst. KW - Tissue Engineering KW - Knochenregeneration KW - Regenerative Medizin KW - Angiogenese KW - Implantat KW - bone KW - implant KW - Knochenimplantat KW - Vaskularisierung Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178869 ER - TY - THES A1 - Ruppert, Simon T1 - Einsatz der Raman-Spektroskopie zur Analyse der mitochondrialen Funktion im Ischämie-Reperfusions-Schaden des Herzens T1 - Use of Raman spectroscopy for analyzing mitochondrial function in ischemia reperfusion injury of the heart N2 - Der myokardiale Ischämie-Reperfusions-Schaden (IR) hat eine hohe Relevanz in der Kardiologie und Herzchirurgie. Trotz intensiver Forschung ist es bislang nicht gelungen, eine effektive Therapie des IR in den klinischen Alltag zu implementieren. Mitochondrien spielen im IR eine wichtige Rolle. Die Raman-Spektroskopie mit Laserquellen von 785 nm Wellenlänge erlaubt die nicht-invasive Analyse pathophysiologischer Prozesse in vitro in Echtzeit. Daher eignet sich die Raman-spektroskopische Analyse von Mitochondrien möglicherweise dazu, notwendige neue Einblicke in die Pathophysiologie des myokardialen IR zu gewinnen. Die vorliegende Arbeit analysierte die mitochondriale Funktion von subsarkolemmalen Mitochondrien im IR mit Hilfe bekannter Methoden. Anschließend erfolgte ein Vergleich der etablierten Methode „Clark-Elektrode“ mit der neu etablierten Raman-Spektroskopie zur Analyse der mitochondrialen Funktion im IR. N2 - Myocardial ischemia reperfusion injury (IR) has a high relevance in cardiology and heart surgery. Despite intense research, an effective treatment of IR has to date not been implemented in clinical routine. Mitochondria play an important role in IR. Raman spectroscopy with 785 nm laser wavelength permits the non-invasive analysis of pathophysiological processes in vitro and real-time. Therefore, Raman-spectroscopic analysis of mitochondria might be able to create new necessary insights in the pathophysiology of myocardial ischemia reperfusion injury. This work analysed mitochondrial function of subsarcolemmal mitochondria in IR using well-established methods. Afterwards, a comparison of the well-established method “Clark-Elektrode” with freshly established raman spectroscopy was performed to analyse the mitochondrial function in IR. KW - Ischämie KW - Reperfusion KW - Raman-Spektroskopie Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-179302 ER - TY - THES A1 - Schwedhelm, Ivo Peter T1 - A non-invasive microscopy platform for the online monitoring of hiPSC aggregation in suspension cultures in small-scale stirred tank bioreactors T1 - Entwicklung und Etablierung einer Mikroskopieplattform zur zerstörungsfreien Messung der Aggregierung von hiPSCs in kleinmaßstäbigen Bioreaktor-Suspensionskulturen N2 - The culture of human induced pluripotent stem cells (hiPSCs) at large-scale becomes feasible with the aid of scalable suspension setups in continuously stirred tank reactors (CSTRs). Suspension cul- tures of hiPSCs are characterized by the self-aggregation of single cells into macroscopic cell aggre- gates that increase in size over time. The development of these free-floating aggregates is dependent on the culture vessel and thus represents a novel process parameter that is of particular interest for hiPSC suspension culture scaling. Further, aggregates surpassing a critical size are prone to spon- taneous differentiation or cell viability loss. In this regard, and, for the first time, a hiPSC-specific suspension culture unit was developed that utilizes in situ microscope imaging to monitor and to characterize hiPSC aggregation in one specific CSTR setup to a statistically significant degree while omitting the need for error-prone and time-intensive sampling. For this purpose, a small-scale CSTR system was designed and fabricated by fused deposition modeling (FDM) using an in-house 3D- printer. To provide a suitable cell culture environment for the CSTR system and in situ microscope, a custom-built incubator was constructed to accommodate all culture vessels and process control devices. Prior to manufacture, the CSTR design was characterized in silico for standard engineering parameters such as the specific power input, mixing time, and shear stress using computational fluid dynamics (CFD) simulations. The established computational model was successfully validated by comparing CFD-derived mixing time data to manual measurements. Proof for system functionality was provided in the context of long-term expansion (4 passages) of hiPSCs. Thereby, hiPSC aggregate size development was successfully tracked by in situ imaging of CSTR suspensions and subsequent automated image processing. Further, the suitability of the developed hiPSC culture unit was proven by demonstrating the preservation of CSTR-cultured hiPSC pluripotency on RNA level by qRT-PCR and PluriTest, and on protein level by flow cytometry. N2 - Die Vermehrung von humanen induzierten pluripotenten Stammzellen (hiPSCs) im Indus- triemaßstab wird durch skalierbare Bioprozesse in aktiv durchmischten Rührkessel-Bioreaktoren (CSTRs) ermöglicht. Hierbei zeichnet sich das Wachstum von hiPSCs durch die charakteristische Bildung von sphäroidischen Zellaggregaten aus, deren Durchmesser sich im Laufe der Kultivierung vergrößert. Die Agglomeration von hiPSCs ist sowohl abhängig vom Grad der Durchmischung als auch vom jeweiligen Kulturgefäß, und stellt somit einen wichtigen Prozessparameter dar, welcher während der Prozessskalierung berücksichtigt werden muss. Weiterhin weisen hiPSCs in Aggregaten, welche eine kritische Größe überschreiten, eine erhöhte Wahrscheinlichkeit auf, ihre Pluripotenz zu verlieren oder hinsichtlich ihrer Viabilität beeinträchtigt zu werden. Auf Grundlage dessen wurde im Rahmen dieser Arbeit eine Plattform für die Durchführung von hiPSCs-Suspensionskulturen en- twickelt, welche die zerstörungsfreie Überwachung des hiPSC-Aggregatwachstums in Echtzeit durch den Einsatz von in situ-Mikroskopie ermöglicht. Neben den eigens entworfenen Bioreaktoren, welche zum Großteil aus 3D-gedruckten Komponenten bestehen, wurde eine Peripherie in Form eines Inkubator-Prototyps entwickelt und konstruiert, welcher die Unterbringung der Bioreaktoren, der Systemkomponenten zur Erzeugung von Zellkulturbedingungen sowie einer in situ-Mikroskop- Spezialanfertigung gewährleistet. Als Ausgangspunkt der Entwicklung des CSTR Systems diente ein Strömungssimulationsmodell, welches dazu verwendet wurde, prozesstechnische Kennzahlen zu er- mitteln um das CSTR System hinsichtlich des spezifischen Leistungseintrags, der Mischzeit und der Scherbelastung zu charakterisieren. Das erstellte Simulationsmodell wurde zudem erfolgreich an- hand eines Messdatenabgleichs der Mischzeit hinsichtlich seiner Aussagekraft validiert. Des Weit- eren wurde die Funktionsfähigkeit des gesamten Systems durch Langzeitversuche belegt. Hierbei wurden hiPSCs in den entwickelten Bioreaktoren über einen Zeitraum von vier Passagen expandiert und das Aggregatwachstum mittels in situ-Mikroskopie in Kombination mit einer automatisierten Bildauswertung beschrieben. Überdies hinaus wurde die Qualität der kultivierten hiPSCs hinsichtlich ihrer Differenzierungskapazität durch den Nachweis von Pluripotenzmarkern auf RNA (qRT-PCR und PluriTest) sowie Proteinebene (Durchflusszytometrie) untersucht. KW - Induzierte pluripotente Stammzelle KW - Mikroskopie KW - Suspensionskultur KW - Aggregation KW - in situ microscopy KW - bioreactor KW - hiPSC aggregation KW - Bioreaktor KW - iPSC Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-192989 ER - TY - THES A1 - Baur, Florentin Philipp T1 - Establishment of a 3D tumour model and targeted therapy of BRAF-mutant colorectal cancer T1 - Entwicklung eines 3D Tumormodells und zielgerichtete Behandlung von BRAF-mutiertem kolorektalen Karzinom N2 - Cancer remains after cardiovascular diseases the leading cause of death worldwide and an estimated 8.2 million people died of it in 2012. By 2030, 13 million cancer deaths are expected due to the growth and ageing of the population. Hereof, colorectal cancer (CRC) is the third most common cancer in men and the second in women with a wide geographical variation across the world. Usually, CRC begins as a non-cancerous growth leading to an adenomatous polyp, or adenoma, arising from glandular cells. Since research has brought about better understanding of the mechanisms of cancer development, novel treatments such as targeted therapy have emerged in the past decades. Despite that, up to 95% of anticancer drugs tested in clinical phase I trials do not attain a market authorisation and hence these high attrition rates remain a key challenge for the pharmaceutical industry, making drug development processes enormously costly and inefficient. Therefore, new preclinical in vitro models which can predict drug responses in vivo more precisely are urgently needed. Tissue engineering not only provides the possibility of creating artificial three-dimensional (3D) in vitro tissues, such as functional organs, but also enables the investigation of drug responses in pathological tissue models, that is, in 3D cancer models which are superior to conventional two-dimensional (2D) cell cultures on petri dishes and can overcome the limitations of animal models, thereby reducing the need for preclinical in vivo models. In this thesis, novel 3D CRC models on the basis of a decellularised intestinal matrix were established. In the first part, it could be shown that the cell line SW480 exhibited different characteristics when grown in a 3D environment from those in conventional 2D culture. While the cells showed a mesenchymal phenotype in 2D culture, they displayed a more pronounced epithelial character in the 3D model. By adding stromal cells (fibroblasts), the cancer cells changed their growth pattern and built tumour-like structures together with the fibroblasts, thereby remodelling the natural mucosal structures of the scaffold. Additionally, the established 3D tumour model was used as a test system for treatment with standard chemotherapeutic 5-fluorouracil (5-FU). The second part of the thesis focused on the establishment of a 3D in vitro test system for targeted therapy. The US Food and Drug Administration has already approved of a number of drugs for targeted therapy of specific types of cancer. For instance, the small molecule vemurafenib (PLX4032, Zelboraf™) which demonstrated impressive response rates of 50–80% in melanoma patients with a mutation of the rapidly accelerated fibrosarcoma oncogene type B (BRAF) kinase which belongs to the mitogen active protein kinase (MAPK) signalling pathway. However, only 5% of CRC patients harbouring the same BRAF mutation respond to treatment with vemurafenib. An explanation for this unresponsiveness could be a feedback activation of the upstream EGFR, reactivating the MAPK pathway which sustains a proliferative signalling. To test this hypothesis, the two early passage cell lines HROC24 and HROC87, both presenting the mutation BRAF V600E but differing in other mutations, were used and their drug response to vemurafenib and/or gefitinib was assessed in conventional 2D cell culture and compared to the more advanced 3D model. Under 3D culture conditions, both cell lines showed a reduction of the proliferation rate only in the combination therapy approach. Furthermore, no significant differences between the various treatment approaches and the untreated control regarding apoptosis rate and viability for both cell lines could be found in the 3D tumour model which conferred an enhanced chemoresistance to the cancer cells. Because of the observed unresponsiveness to BRAF inhibition by vemurafenib as can be seen in the clinic for patients with BRAF mutations in CRC, the cell line HROC87 was used for further xenografting experiments and analysis of activation changes in the MAPK signalling pathway. It could be shown that the cells presented a reactivation of Akt in the 3D model when treated with both inhibitors, suggesting an escape mechanism for apoptosis which was not present in cells cultured under conventional 2D conditions. Moreover, the cells exhibited an activation of the hepatocyte growth factor receptor (HGFR, c-Met) in 2D and 3D culture, but this was not detectable in the xenograft model. This shows the limitations of in vivo models. The results suggest another feedback activation loop than that to the EGFR which might not primarily be involved in the resistance mechanism. This reflects the before mentioned high attrition rates in the preclinical drug testing. N2 - Krebs ist nach Herz- und Kreislauferkrankungen die führende Todesursache weltweit und 2012 starben daran geschätzt 8,2 Millionen Menschen. Für das Jahr 2030 werden 13 Millionen Krebstote erwartet, was auf das Bevölkerungswachstum und deren Überalterung zurückzuführen ist. Dabei ist das kolorektale Karzinom (engl. colorectal cancer, CRC) der dritthäufigste Krebs bei Männern und der zweithäufigste bei Frauen. Für gewöhnlich entwickelt sich CRC aus einem nicht-kanzerösen Wachstum, das zu einem adenomatösen Polyp bzw. Adenom führt, welches aus Drüsenzellen hervorgeht. Da die Forschung in den vergangenen Jahrzehnten ein besseres Verständnis für die Mechanistik der Krebsentstehung hervorgebracht hat, entstanden neuartige Behandlungsformen, wie die zielgerichtete Krebstherapie. Hohe Versagensraten, welche den Medikamentenentwicklungsprozess sehr kostenaufwendig und ineffizient machen, bleiben eine entscheidende Herausforderung für die pharmazeutische Industrie. Deshalb werden dringend neue präklinische in vitro Modelle, die bessere in vivo Wirkungsvorhersagen liefern, benötigt. Das Tissue Engineering bietet die Möglichkeit künstliche dreidimensionale (3D) in vitro Gewebe herzustellen, z.B. funktionelle Organe, aber es ermöglicht auch, die Reaktion auf ein Medikament in pathologischen Gewebemodellen, wie beispielsweise Krebsmodelle, zu untersuchen. Diese sind der konventionellen zweidimensionalen (2D) Zellkultur in Petrischalen überlegen und können die begrenzten Möglichkeiten von Tiermodellen erweitern, was zudem die Notwendigkeit für präklinische in vivo Modelle vermindert. In der vorliegenden Arbeit wurden neuartige 3D CRC Modelle auf Basis einer dezellularisierten intestinalen Matrix entwickelt. Im ersten Teil konnte gezeigt werden, dass die Zelllinie SW480 verschiedene Charakteristika bezüglich des Wachstums in der konventionellen 2D Zellkultur oder der 3D Umgebung aufwies. Im Gegensatz zu den mesenchymalen Eigenschaften der Zellen in der 2D Zellkultur, zeigten sie im 3D Modell einen betonteren epithelialen Charakter. Durch das Hinzufügen von Fibroblasten änderten die Krebszellen ihr Wachstumsverhalten und sie bildeten zusammen tumorartige Strukturen aus, wobei die natürlichen Strukturen der Darmmatrix, Krypten und Villi, umgebaut wurden. Zusätzlich wurde das entwickelte 3D Tumormodell als Testsystem für das Standardchemotherapeutikum 5-Fluorouracil (5-FU) herangezogen. Der zweite Teil der Dissertation konzentrierte sich auf die Entwicklung eines 3D in vitro Testsystems für die zielgerichtete Behandlung. Es gibt schon eine Reihe von der US Food and Drug Administration zugelassenen Medikamente für die zielgerichtete Behandlung spezifischer Tumorentitäten, wie z.B. Vemurafenib (PLX4032, Zelboraf™), das eindrucksvolle Ansprechraten von 50–80% bei Melanompatienten mit BRAF-Mutation erzielt. Trotzdem sprechen nur 5% der CRC-Patienten mit der gleichen BRAF-Mutation auf die Behandlung mit Vemurafenib an. Gründe für diese Unempfindlichkeit könnte eine Rückkoppelung zum aufwärtsgelegenen EGFR sein, der das Signal zur Proliferation aufrecht erhält. Um diese Hypothese zu überprüfen, wurden die zwei Zelllinien HROC24 und HROC87, die beide die BRAF V600E-Mutation tragen aber sich in anderen Mutationen unterscheiden, mit Vemurafenib und/oder Gefitinib behandelt und das Ansprechen auf die Substanzen in der herkömmlichen 2D Zellkultur sowie im fortschrittlicheren 3D Modell verglichen. In 3D Kulturbedingungen zeigten beide Zelllinien eine Senkung der Proliferation nur im Kombinationstherapie-Ansatz. Außerdem wurden bei den 3D Modellen keine signifikanten Unterschiede zwischen den verschiedenen Behandlungsansätzen und der unbehandelten Kontrolle, hinsichtlich der Apoptoserate und Viabilität, gefunden. Das deutet auf eine erhöhte Chemoresistenz der Krebszellen in der 3D Umgebung hin. Wegen der vorhandenen Unempfindlichkeit der Zelllinie HROC87 gegenüber der BRAF-Inhibierung mit Vemurafenib, wie es auch in der Klinik im Fall von Patienten mit BRAF-Mutation des CRC beobachtet werden kann, wurden diese Zellen für weitere Xenograft-Experimente und Analysen von Aktivierungsunterschieden im MAPK-Signaltransduktionsweg herangezogen. Weiterhin zeigten die Zellen eine Aktivierung des „hepatocyte growth factor receptor“ (HGFR, c-Met) in 2D und 3D Zellkultur, der jedoch nicht im Xenograft-Modell zu sehen war, was die limitierte Übertragbarkeit von Ergebnissen des Tiermodells auf den Menschen verdeutlicht. Dies spiegelt wiederum die obenstehend erwähnten hohen Versagensraten in der präklinischen Medikamententestung wider. Zusammengefasst kann das Tissue Engineering Möglichkeiten zur Herstellung und Entwicklung neuartiger 3D Testsysteme bieten, welche besser die in vivo Situation abbilden. Für eine Medikamententestung in Übereinstimmung mit personalisierter Medizin eröffnet das 3D Tumormodell vielversprechende Wege, welche in Zukunft das präklinische Screening verbessern sowie die hohen Versagensraten und Tierversuche vermindern könnten. KW - Dickdarmtumor KW - Therapie KW - BRAF-mutant KW - colorectal cancer KW - targeted therapy KW - 3D tumour model KW - BRAF-mutiert KW - kolorektales Karzinom KW - zielgerichtete Behandlung KW - 3D Tumormodell KW - In vitro KW - 3D KW - tumour Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-174129 ER - TY - THES A1 - von der Assen [geb. Weiß], Katrin Barbara T1 - Markierung von humanen mesenchymalen Stammzellen mit für die Magnet-Partikel-Spektroskopie geeigneten Eisenoxidnanopartikeln, Untersuchung des Zellverhaltens in dreidimensionaler Umgebung und nicht-invasive Analyse mittels Raman-Spektroskopie T1 - Labeling of human mesenchymal stem cells using iron oxide nanoparticles which are traceable by magnetic particle spectroscopy, examination of cell behaviour in a 3D environment and non-invasive analysis using raman spectroscopy N2 - Stem cell research has already been challenged for years by the question how to design tissues or even whole organs in vitro. Human mesenchymal stem cells (hMSC) seem to be very promising for this task as they can be extracted in many cases directly from the recipient. Thus potential graft rejections are avoided. For further research on the behaviour of stem cells in vivo it is essential to be able to track them non-invasively. This is for example possible by Magnetic Particle Imaging (MPI). For this purpose stem cells have to be labelled with a suitable substance, for example with superparamagnetic iron oxide nanoparticles (SPION). Presently there are no SPION approved by FDA or EMA that are able to enter hMSC without transfection agent (TA). Therefore the aim of this dissertation was to identify at least one SPION that possesses an optimal interaction with hMSC and can be tracked by MPI as well as by Raman-Spectroscopy. Furthermore the identified SPION should be detectable for a longer period of time and should not have any influence on hMSC. This dissertation was performed within the framework of the EU-wide `IDEA-project´. hMSC have been labelled with the iron oxide nanoparticles M4E, M4F, M4F2 and M3A-PDL in varying concentrations. For M3A-PDL and M4E examinations were done with concentrations of 0.5 mg/ml in standard cell culture as well as in a three-dimensional environment on a matrix of small intestinal submucosae (SIS-ser). Furthermore chondrogenic differentiation of M4E labelled hMSC was examined. Additionally Magnetic Particle Spectroscopy (MPS) and Raman-Spectroscopy were used as non-invasive detection systems. Histologically SPION uptake was proven by Prussian blue staining. Cell viability and proliferation were examined by Trypan blue staining and Ki67 antibody staining. In order to prove that also labelled cells proliferate, a special staining protocol combining Prussian blue and immunohistochemical stainings was established. The success of chondrogenic differentiation was histologically verified by Alcian blue staining, Aggrecan and Collagen II antibody staining. It could be demonstrated, that M4E has a very good cell-particle interaction when used for labelling hMSC. In contrast to M3A, which is only taken up into hMSC when covered by a TA, M4E can be used without TA. Both particles do not influence cell viability or proliferation. M4F and M4F2 are not suitable to lable hMSC. SPION could be detected at least for four weeks after labelling in a three-dimensional environment which is significantly longer than the maximum detection time of two weeks in cell culture. Chondrogenic differentiation is influenced by cell labelling with 0.5 mg/ml M4E. M3A-PDL can be detected by MPS. Raman-Spectroscopy is suitable to differentiate between M3A-PDL labelled and unlabelled hMSC. This dissertation has been able to identify an iron oxide nanoparticle with an excellent cell-particle interaction that allows intense cell labelling without TA and can be detected by MPS. In further studies at the institute it could already be shown that Raman-Spectroscopy can differentiate also between M4E labelled and unlabelled cells. However, chondrogenic differentiation of hMSC was inhibited in this dissertation. In literature several authors came to the conclusion that there is a dose-dependent inhibition of differentiation. Therefore further experiments are necessary to find out whether inhibition of differentiation might be less immanent when using smaller SPION concentrations. Additionally it should be evaluated if smaller SPION concentrations remain detectable by MPS for several weeks. Finally further studies should be done in testing systems that are more similar to the situation in vivo. Such systems are for example the dynamic environment of a BioVaSc-TERM®. This is important to make better predictions of the behaviour of labelled hMSC in vivo. N2 - Die Stammzellforschung beschäftigt sich bereits seit Jahren mit der Frage, wie Gewebe oder sogar Organe im Labor hergestellt werden können. Als besonders vielversprechend erscheinen hierfür humane Mesenchymale Stammzellen (hMSC), da diese in vielen Fällen direkt vom Empfänger gewonnen werden können und so keine Organ- oder Gewebeabstoßung durch Abwehrreaktionen zu erwarten ist. Für die weitere Erforschung des Verhaltens von Stammzellen in vivo ist es notwendig, diese nicht-invasiv darstellen zu können. Dies ist zum Beispiel mittels Magnetischer Partikel Bildgebung (MPI) möglich. Hierfür müssen die Stammzellen mit einer geeigneten Substanz markiert werden. Eine solche sind beispielsweise superparamagnetische Eisenoxidnanopartikel (SPION). Derzeit gibt es keine von den medizinischen Zulassungsbehörden zugelassenen SPION die ohne TA in hMSC aufgenommen werden. In der hier vorliegenden Arbeit sollte also im Rahmen des EU-weiten „IDEA-Projekts“ ein geeigneter SPION identifiziert werden, der eine optimale Zell-Partikel-Interaktion aufweist und sowohl mittels MPI als auch mit Raman-Spektroskopie nachweisbar ist. Zudem sollte die Nachweisbarkeit des SPION über einen längeren Zeitraum gegeben und kein Einfluss auf die hMSC feststellbar sein. Es wurden hMSC mit den Eisenoxidnanopartikeln M4E, M4F, M4F2 und M3A-PDL in unterschiedlichen Konzentrationen markiert. Für M3A-PDL und M4E erfolgten bei einer Konzentration von 0,5 mg/ml Untersuchungen in Zellkultur sowie auf SIS-ser als Matrix im 3D-Modell. Desweiteren wurde das Differenzierungsverhalten der mit M4E markierten hMSC bei chondrogener Differenzierung untersucht. Außerdem kamen Magnetische Partikel Spektroskopie (MPS) und Raman-Spektroskopie als nicht-invasive Nachweisverfahren zum Einsatz. Der SPION-Nachweis erfolgte histologisch mittels Berliner Blau Färbung. Untersuchungen zu Zellviabilität und Proliferation erfolgten durch Trypanblau sowie Ki67-Antikörper-Färbung. Um Nachzuweisen ob auch markierte Zellen proliferieren wurde eigens ein kombiniertes Färbeprotokoll zur Kombination von Berliner Blau und immunhistochemischer Färbung etabliert. Der Erfolg der chrondrogenen Differenzierung wurde mittels Alcianblau, Aggrecan- und Kollagen-II-Antikörper Färbung überprüft. Es konnte gezeigt werden, dass M4E bei der Markierung von hMSC eine sehr gute Zell-Partikel-Interaktion aufweist und im Gegensatz zu M3A auch ohne TA in die Zellen aufgenommen wird. Durch beide Partikel werden Zellviabilität und Proliferation nicht beeinflusst. M4F sowie M4F2 ist zur Markierung nicht geeignet. Die Markierung ließ sich im 3D-Modell mit vier Wochen deutlich länger nachweisen als in 2D Zellkultur mit maximal zwei Wochen. Die chondrogene Differenzierung wird durch die Markierung mit 0,5 mg/ml M4E beeinflusst. M3A-PDL sind durch MPS nachweisbar. Die Raman-Spektroskopie eignet sich zur Differenzierung zwischen mit M3A-PDL markierten und unmarkierten hMSC. Es ist im Rahmen dieser Arbeit gelungen, einen Eisenoxidnanopartikel mit hervorragender Zell-Partikel-Interaktion zu identifizieren, der ohne zusätzliches TA eine intensive Markierung der hMSC ermöglicht und mit MPS nachweisbar ist. Für M4E konnte in weiteren Arbeiten am Institut bereits gezeigt werden, dass auch eine Differenzierung zwischen markierten und unmarkierten Zellen mittels Raman-Spektroskopie möglich ist. Die chondrogene Differenzierung der hMSC wurde in der vorliegenden Arbeit allerdings beeinträchtigt. In der Literatur finden sich Hinweise auf eine dosisabhängige Inhibition der Differenzierung. Es sind daher weitere Versuche notwendig, um herauszufinden, ob die Inhibition der Differenzierung möglicherweise bei geringerer SPION-Konzentration weniger ausgeprägt ist. Zudem sollte untersucht werden, ob auch geringere Konzentrationen in den Zellen über mehrere Wochen mittels MPS nachweisbar bleiben. Desweiteren sollten Untersuchungen in, der in vivo Situation ähnlicheren, Systemen, wie dem dynamischen Umfeld einer BioVaSc-TERM® durchgeführt werden um bessere Vorhersagen zum Verhalten markierter hMSC in vivo treffen zu können. KW - Stammzellforschung KW - Eisenoxid-Nanopartikel KW - Magnet-Partikel-Spektroskopie KW - Raman-Spektroskopie KW - 3D-Kultur KW - humane mesenchymale Stammzellen Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219095 ER -