TY - THES A1 - Hürter, Anna-Lena T1 - Funktion von Anionenkanälen bei der Entwicklung der Wurzelknöllchen- und Arbuskulären Mykorrhiza-Symbiose in \(Medicago\) \(truncatula\) T1 - Role of \(Medicago\) \(truncatula\) anion channels in the development of Arbuscular Mycorrhiza and Root Nodule Symbiosis N2 - Bei der arbuskulären Myorrhiza-Symbiose (AM) und der Wurzelknöllchen-Symbiose (RNS) handelt es sich um symbiotische Interaktionen, die einen großen Vorteil für Pflanzenwachstum und kultivierung mit sich bringen. Während bei der AM Pilze die Pflanze mit verschiedenen Nährstoffen aus dem Boden versorgen, stellen die in den Wurzelknöllchen lokalisierten Rhizobien der Pflanze fixierte Stickstoffverbindungen zur Verfügung. Folglich ist es von großem Interesse, die Entwicklung dieser Symbiosen im Detail zu verstehen. Für die Erkennung der arbuskulären Mykorrhiza-Pilze und der Stickstoff-fixierenden Rhizobien durch die Pflanze sind lösliche symbiotische Signalmoleküle essentiell, die zu der Gruppe der Lipochitinoligosaccharide (LCOs) gehören. Während der Entwicklung der AM und der RNS erkennen die Pflanzenwurzeln diese LCOs über Lysin-Motiv-Rezeptor-ähnliche Kinasen der Plasmamembran. Eine der ersten Antworten der Wurzelzellen auf Nod-LCOs ist eine Depolarisierung des Membranpotentials. An dieser Antwort sind mit großer Wahrscheinlichkeit Anionenkanäle der Plasmamembran beteiligt, da sie auch bei Depolarisierungen als Antwort auf andere Stimuli bzw. Stressantworten involviert sind. In Arabidopsis stellt die S-Typ-Familie eine bedeutende Gruppe von Anionenkanälen dar, die von Calcium-abhängigen Kinasen (CPKs) aktiviert werden. Da Nod-LCOs repetitive Veränderungen des zytosolischen Calcium-Levels induzieren, wurde in dieser Arbeit die Hypothese aufgestellt, dass Calcium-Signale CPKs aktivieren. CPKs sorgen im Gegenzug für die Stimulation von S-Typ-Anionenkanälen in Wurzelzellen. Die Änderungen des Membranpotentials in M. truncatula-Wurzelhaarzellen als Antwort auf Nod- und Myc-LCOs wurden mittels intrazellulärer Mikroelektroden analysiert. Es wurde gezeigt, dass Nod-LCOs in M. truncatula-Wurzelhaarzellen eine Depolarisierung des Membranpotentials induzieren. Doch Wurzelhaarzellen reagieren nicht nur auf Nod-LCOs. So konnte in dieser Studie zum ersten Mal eine Depolarisierung als Antwort auf sulfatisierte Myc-LCOs nachgewiesen werden. Eine zweite Gruppe von Myc-LCOs, denen die Sulfatgruppe fehlt, löste keine Reaktion des Membranpotentials aus. Diese Daten deuten darauf hin, dass Wurzelhaarzellen für die Erkennung von sulfatisierten LCOs von symbiotischen Pilzen und Bakterien dasselbe Perzeptionssystem nutzen. Diese Schlussfolgerung wird von Experimenten unterstützt, in denen vor der Stimulation durch Nod-LCOs ein sulfatisierter Myc-LCO hinzugegeben wurde. Diese sukzessive Zugabe von zwei Stimuli führte zu einer einzigen Depolarisierung. Die sulfatisierten Myc-LCOs unterdrückten die Antwort des Membranpotentials auf Nod-LCOs. Die Beziehung zwischen Nod-LCO-induzierten zytosolischen Calcium-Signalen und Änderungen des Membranpotentials wurde mit einer Kombination aus intrazellulären Mikroelektroden und Imaging eines Calcium-sensitiven Fluoreszenzfarbstoffs analysiert. In Messungen der zytosolischen Calcium-Konzentration wurde keine transiente Zunahme innerhalb der ersten vier Minuten nach der Applikation der Nod-LCOs beobachtet. Die durch Nod-LCOs induzierten Depolarisierungen traten früher auf und erreichten ihr Maximum normalerweise nach drei Minuten. Demnach geht die Depolarisierung des Membranpotentials den zytosolischen Calcium-Signalen voraus. Diese Beobachtung wurde von simultanen Messungen beider Antworten bestätigt. Um der Möglichkeit einer Beteiligung von S-Typ-Anionenkanälen an der LCO-abhängigen Depolarisierung nachzugehen, wurden zwei in den Wurzeln exprimierte M. truncatula-Orthologe der AtSLAC1-Anionenkanal-Familie identifiziert. Die klonierten Anionenkanäle, MtSLAC1, MtSLAH2-3A und MtSLAH2-3B zeigten bei der Untersuchung in Xenopus-Oozyten die typischen Charakteristika von S-Typ-Anionenkanälen. So konnte gezeigt werden, dass MtSLAH2-3A und MtSLAH2-3B eine Proteinkinase sowie externes Nitrat zur Aktivierung benötigen. Außerdem zeichnen sie sich durch eine sehr viel höhere Permeabilität für Nitrat im Vergleich zu Chlorid aus. Ähnlich wie bei AtSLAH3 macht eine Koexpression mit AtSLAH1 genau wie eine intrazelluläre Azidifikation MtSLAH2-3A und MtSLAH2-3B zu Anionenkanälen, die unabhängig von externem Nitrat und einer Phosphorylierung durch eine Proteinkinase aktiv sind. Weil S-Typ-Anionenkanäle eine hohe Permeabilität für Nitrat aufweisen, wurde der Einfluss von Änderungen der extrazellulären Anionenkonzentration auf die Nod-LCO-induzierte Depolarisierung analysiert. Es stellte sich heraus, dass eine Verringerung der extrazellulären Nitratkonzentration die Antwort beschleunigt. Eine Erhöhung der extrazellulären Chlorid- und Sulfatkonzentration hingegen führte zu einer Verstärkung der Depolarisierung. Diese Beobachtung spricht dafür, dass andere Anionenkanal-Typen wie ALMT-Kanäle an der Depolarisierung des Membranpotentials durch LCOs beteiligt sind. Die Daten dieser Arbeit zeigen eine Abhängigkeit der Nod-LCO-induzierten Änderungen des Membranpotentials vom M. truncatula-Genotyp. Neben Nod-LCOs lösen auch sulfatisierte Myc-LCOs eine Depolarisierung des Membranpotentials aus. Vermutlich werden sulfatisierte Nod- und Myc-LCOs von demselben Rezeptorsystem erkannt. Die Nod-LCO-induzierte Depolarisierung ist unabhängig von Änderungen des zytosolischen Calcium-Levels. Folglich sind in die Depolarisierung keine S-Typ-Anionenkanäle involviert, die ausschließlich durch Calcium-abhängige Protein-Kinasen aktiviert werden. Interessanterweise lassen sich die MtSLAH2-3-Anionenkanäle aus M. truncatula im Gegensatz zu AtSLAH3 von Calcium-unabhängigen SnRK2/OST1-Proteinkinasen aktivieren. Dies ermöglicht die Aktivierung der MtSLAH2-3-Anionenkanäle in Abwesenheit eines Calcium-Signals. In weiterführenden Studien sollten die Genexpressionsprofile von Calcium-unabhängigen Proteinkinasen wie SnRK2 und S-Typ-Anionenkanälen aus M. truncatula sowie deren Interaktionen untersucht werden. So könnte eine Aussage darüber getroffen werden, ob diese Proteinkinasen die Anionenkanäle MtSLAH2-3 Nod-LCO-spezifisch aktivieren. Außerdem wäre es von großem Interesse, verschiedene M. truncatula-Mutanten zu untersuchen, denen Gene für MtSLAH2-3A, MtSLAH2-3B und R-Typ-Anionenkanäle fehlen. Diese Experimente könnten zur Identifizierung von Genen führen, die an der frühen Entwicklung der Symbiose beteiligt sind und erklären, warum nur eine kleine Gruppe von Pflanzen dazu in der Lage ist, eine RNS einzugehen, während die AM im Pflanzenreich weit verbreitet ist. N2 - Arbuscular Mycorrhiza (AM) and Root Nodule Symbiosis (RNS) are symbiotic interactions with a high benefit for plant growth and crop production. In the soil, AM fungi supply the plant with a broad range of nutrients, whereas the rhizobium bacteria in the root nodules provide fixed nitrogen sources. Thus, it is of great interest to understand the developmental process of these symbiotic interactions. For recognition of AM fungi and nitrogen-fixing bacteria by plants, diffusible symbiotic signals are essential, which belong to the group of lipochitinoligosaccharides (LCOs). During the development of AM and RNS, plant roots sense these LCOs with pairs of lysin motiv domain receptor-like kinases that are located in the plasma membrane. One of the earliest Nod-LCO-triggered responses of root cells represents the depolarization of the plasma membrane. It is likely that plasma membrane anion channels are essential for this reaction, as these channels are required for depolarization in response to a number of other stimuli/stress responses. In Arabidopsis, the S-type family is a prominent group of anion channels that are activated by calcium-dependent Protein Kinases (CPKs). As Nod-LCOs can trigger repetitive elevations of the cytosolic calcium level, we hypothesized that calcium signals activate CPKs, which in turn stimulate S-type anion channels in root cells. The membrane potential changes of M. truncatula root hair cells in response to Nod- and Myc-LCOs were analyzed by using intracellular micro electrodes. In accordance with previous studies in M. sativa, Nod-LCOs evoked a membrane depolarization in root hairs cells of M. truncatula. Root hair cells not only were sensitive to Nod-LCOs, but for the first time a depolarization response was also shown in response to sulphated Myc-LCOs. However, a second group of Myc-LCO-signals, which lack the sulfate group, did not initiate any reaction of the membrane potential. These data thus suggest that root hair cells use the same perception system to sense sulfated LCOs of symbiotic fungi and bacteria. This conclusion was supported by experiments in which a sulfated Myc-LCO was applied, prior to stimulation with Nod LCOs. This successive application of two stimuli resulted only in a single transient depolarization, as sulfated Myc-LCOs repressed plasma membrane responses to Nod-LCOs. The relations between Nod-LCO-induced cytosolic calcium signals and membrane potential changes were studied with a combination of intracellular micro electrodes and calcium sensitive reporter dye imaging. In measurements of the cytosolic calcium concentration the first transient increase was not observed within four minutes after application of Nod-LCOs. Nod-LCO-induced depolarizations occurred earlier and normally peaked after three minutes. In contrast to current models as well as the initial hypothesis of this project, the membrane depolarization thus precedes the cytosolic calcium signals, which was confirmed by simultaneous measurement of both responses. As S-type anion channels are good candidates for the induction of the LCO-dependent depolarization, we indentified two root-expressed M. truncatula orthologues of AtSLAC1-family. The cloned S-type anion channels, MtSLAC1, MtSLAH2-3A and MtSLAH2-3B showed typical characteristics of S-type anion channels, when studied in Xenopus oocytes. Thereby we could show that both M. truncatula anion channels, MtSLAH2-3A and MtSLAH2-3B, need a protein kinase and external nitrate for activation. They are characterized by a much higher permeability for nitrate compared to chloride. Similarly, to AtSLAH3 coexpression with AtSLAH1 or intracellular acidification rendered MtSLAH2-3A/B independent from phosphorylation via protein kinases and external nitrate. Because S-type anion channels show a high permeability for nitrate, we tested the influence of changes in the extracellular anion concentration on the Nod-LCO induced depolarization. It turned out that the response was accelerated when the concentration gradient for nitrate was decreased. However, increasing the extracellular chloride and sulfate concentrations also enhanced the magnitude of the depolarization, which indicates that other types of anion channels, such as ALMT channels may contribute to the LCO-triggered depolarization of root hairs. The data generated in this project show that the Nod-LCO induced membrane potential change is strongly dependent on the genotype of M. truncatula. This early response in the recognition of symbiotic microorganisms is also induced by sulfated Myc-LCOs, which seem to be perceived via the same receptor system as Nod-LCOs. In contrast to our expectations, the depolarization response to Nod-LCOs is independent of changes in the cytosolic calcium level. Consequently, S-type anion channels, activated solely by calcium-dependent protein kinases are not involved in this response. Interestingly, in contrast to the Arabidopsis SLAH3, the SLAH2-3s from M. truncatula are activated via calcium-independent SnRK2/OST1-like kinases which would allow the activation of the channels even in the absence of calcium transients. Thus, in future studies the expression profile and interaction of calcium-independent protein kinases like SnRK2s and S-type anion channels in M. truncatula should be determined to investigate whether these proteins are capable of activating MtSLAH2-3A/B in a Nod-LCO-specific manner. Moreover, the further analysis of M. truncatula mutants that lack MtSLAH2-3A/B as well as M. truncatula R-type anion channels will be of great interest. These experiments can thus lead to the identification of genes that are involved in early symbiosis-related events, which may explain why only a small group of plants is able to develop root nodules, whereas the interaction with mycorrhiza is found for a large variety of plant species. KW - Schneckenklee KW - Wurzelknöllchen KW - Mykorrhiza KW - Depolarisation KW - Membranpotential KW - Wurzelknöllchensymbiose KW - Arbuscular Mycorrhiza KW - S-Typ-Anionenkanäle KW - Membrandepolarisierung KW - Calcium-Oszillationen KW - Root Nodule Symbiosis KW - S-Type-Anionchannels KW - Membrane depolarisation KW - calcium oscillations KW - Anionentranslokator KW - VA-Mykorrhiza KW - Arbuskuläre Mykorrhiza KW - Anionenkanal Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158419 ER - TY - THES A1 - Huang, Shouguang T1 - Role of ABA-induced Ca\(^{2+}\) signals, and the Ca\(^{2+}\)-controlled protein kinase CIPK23, in regulation of stomatal movements T1 - Rolle von ABA-abhängigen Ca\(^{2+}\) Signalen, und der Ca\(^{2+}\)-gesteuerten Proteinkinase CIPK23, bei der Regulation der Spaltöffnungsbewegungen N2 - Stomata are pores in the leaf surface, formed by pairs of guard cells. The guard cells modulate the aperture of stomata, to balance uptake of CO2 and loss of water vapor to the atmosphere. During drought, the phytohormone abscisic acid (ABA) provokes stomatal closure, via a signaling chain with both Ca2+-dependent and Ca2+-independent branches. Both branches are likely to activate SLAC1-type (Slow Anion Channel Associated 1) anion channels that are essential for initiating the closure of stomata. However, the importance of the Ca2+-dependent signaling branch is still debated, as the core ABA signaling pathway only possesses Ca2+-independent components. Therefore, the aim of this thesis was to address the role of the Ca2+-dependent branch in the ABA signaling pathway of guard cells. In the first part of the thesis, the relation between ABA-induced Ca2+ signals and stomatal closure was studied, with guard cells that express the genetically encoded Ca2+-indicator R-GECO1-mTurquoise. Ejection of ABA into the guard cell wall rapidly induced stomatal closure, however, only in ¾ of the guard cells ABA evoked a cytosolic Ca2+ signal. A small subset of stomata (¼ of the experiments) closed without Ca2+ signals, showing that the Ca2+ signals are not essential for ABA-induced stomatal closure. However, stomata in which ABA evoked Ca2+ signals closed faster as those in which no Ca2+ signals were detected. Apparently, ABA-induced Ca2+ signals enhance the velocity of stomatal closure. In addition to ABA, hyperpolarizing voltage pulses could also trigger Ca2+ signals in wild type guard cells, which in turn activated S-type anion channels. However, these voltage pulses failed to elicit S-type anion currents in the slac1/slah3 guard cells, suggesting that SLAC1 and SLAH3 contribute to Ca2+-activated conductance. Taken together, our data indicate that ABA-induced Ca2+ signals enhance the activity of S-type anion channels, which accelerates stomatal closure. The second part of the thesis deals with the signaling pathway downstream of the Ca2+ signals. Two types of Ca2+-dependent protein kinase modules (CPKs and CBL/CIPKs) have been implicated in guard cells. We focused on the protein kinase CIPK23 (CBL-Interacting Protein Kinase 23), which is activated by the Ca2+-dependent protein CBL1 or 9 (Calcineurin B-Like protein 1 or 9) via interacting with the NAF domain of CIPK23. The CBL1/9-CIPK23 complex has been shown to affect stomatal movements, but the underlying molecular mechanisms remain largely unknown. We addressed this topic by using an estrogen-induced expression system, which specifically enhances the expression of wild type CIPK23, a phosphomimic CIPK23T190D and a kinase dead CIPK23K60N in guard cells. Our data show that guard cells expressing CIPK23T190D promoted stomatal opening, while CIPK23K60N enhanced ABA-induced stomatal closure, suggesting that CIPK23 is a negative regulator of stomatal closure. Electrophysiological measurements revealed that the inward K+ channel currents were similar in guard cells that expressed CIPK23, CIPK23T190D or CIPK23K60N, indicating that CIPK23-mediated inward K+ channel AKT1 does not contribute to stomatal movements. Expression of CIPK23K60N, or loss of CIPK23 in guard cells enhanced S-type anion activity, while the active CIPK23T190D inhibited the activity of these anion channels. These results are in line with the detected changes in stomatal movements and thus indicate that CIPK23 regulates stomatal movements by inhibiting S-type anion channels. CIPK23 thus serves as a brake to control anion channel activity. Overall, our findings demonstrate that CIPK23-mediated stomatal movements do not depend on CIPK23-AKT1 module, instead, it is achieved by regulating S-type anion channels SLAC1 and SLAH3. In sum, the data presented in this thesis give new insights into the Ca2+-dependent branch of ABA signaling, which may help to put forward new strategies to breed plants with enhanced drought stress tolerance, and in turn boost agricultural productivity in the future. N2 - Stomata sind Poren in der Blattoberfläche, die von einem Paar von Schließzellen gebildet werden. Die Schließzellen kontrollieren den Öffnungsweite der stomatären Pore, um die Aufnahme von CO2 und den Verlust von Wasserdampf in die Atmosphäre auszubalancieren. Während Trockenperioden bewirkt das Phytohormon Abscisinsäure (ABA) einen Stomaschluss über eine Signalkaskade, welche über Ca2+-abhängige und Ca2+-unabhängige Pfade verfügt. Beide Pfade aktivieren wahrscheinlich Anionenkanäle aus der SLAC1 Familie (Slow Anion Channel Associated 1), welche essentiell sind um den Stomaschluss einzuleiten. Allerdings wird über die Wichtigkeit des Ca2+-abhängigen Pfades noch immer diskutiert, da der ABA-Hauptsignalweg ausschließlich Ca2+-unabhängige Komponenten beinhaltet. Aus diesem Grund war das Ziel dieser Thesis, die Rolle des Ca2+-abhängigen Pfades im ABA-Signalweg aufzulösen. Im ersten Teil der Thesis wurde mit Schließzellen, die den genetisch kodierten Ca2+-Sensor R-GECO1-mTurquoise exprimierten, der Zusammenhang zwischen ABA-induzierten Ca2+ Signalen und dem Stomaschluss untersucht. Die Injektion von ABA in die Zellwand von Schließzellen bewirkte einen schnellen Stomaschluss, jedoch wurde nur bei drei Vierteln der Zellen auch ein zytosolisches Ca2+ Signal erzeugt. Ein kleiner Teil der Stomata (in einem Viertel der Experimente) schloss sich ohne Ca2+ Signal, was zeigt, dass die Ca2+ Signale nicht essentiell für den ABA-induzierten Stomaschluss sind. Es schlossen sich jedoch Stomata schneller, in deren Schließzellen ABA-induzierte Ca2+ Signale detektiert wurden. ABA-induzierte Ca2+-Signale verbesserten also offenbar die Geschwindigkeit des Stomaschlusses. Neben ABA konnten Ca2+ Signale in wildtypischen Schließzellen auch durch hyperpolarisierende Spannungspulse erzeugt werden, welche daraufhin S-Typ Anionenkanäle aktivierten. Diese Spannungspulse konnten jedoch in slac1/slah3 Schließzellen keine S-typischen Anionenströme hervorrufen, was darauf hindeutet, dass SLAC1 und SLAH3 zur Ca2+-aktivierten Leitfähigkeit beitragen. Zusammengefasst deuten unsere Daten darauf hin, dass ABA-induzierte Ca2+ Signale die Aktivität von S-Typ Anionenkanälen verbessern und somit den Stomaschluss beschleunigen. Der zweite Teil der Thesis befasst sich mit dem Signalweg, der den Ca2+-Signalen nachgeschaltet ist. Es wurden zwei Typen Ca2+-abhängiger Proteinkinase-Module (CPKs und CBL/CIPKs) in Schließzellen nachgewiesen. Wir haben uns auf die Proteinkinase CIPK23 (CBL-Interacting Protein Kinase 23) konzentriert, welche von den Ca2+-abhängigen Proteinen CBL1 und CBL9 (Calcineurin B-Like Protein 1 oder 9) über Interaktion mit der NAF Domäne des CIPK23 aktiviert wird. Es konnte bereits gezeigt werden, dass der CBL1/CIPK23 Komplex die stomatäre Bewegung beinflusst, jedoch sind die zugrunde liegenden molekularen Mechanismen bisher weitgehend unbekannt geblieben. Wir haben dieses Thema mit einem Östrogen-induzierten Expressionssystem untersucht, welches spezifisch in Schließzellen die Expression von wildtypischem CIPK23 erhöhte. Hinzu kamen Experimente mit einer phosphomimetischen CIPK23T190D und einer CIPK23K60N mit disfunktionaler Kinasedomäne. Unsere Daten zeigen, dass CIPK23T190D exprimierende Schließzellen eine verbesserte Stomaöffnung aufwiesen, während CIPK23K60N den ABA-induzierten Stomaschluss förderte, was auf eine negativ regulierende Rolle von CIPK23 beim Stomaschluss hindeutet. Elektrophysiologische Messungen zeigten, dass die einwärtsgerichteten K+-Ströme in CIPK23-, CIPK23T190D- oder CIPK23K60N-exprimierenden Schließzellen vergleichbar waren, was darauf hindeutet, dass die Aktivierung von AKT1 durch CIPK23 nicht zur stomatären Bewegung beiträgt. Allerdings führte die Expression von CIPK23K60N, wie auch der Verlust von CIPK23, in Schließzellen zu einer erhöhten S-typischen Anionenkanalaktivität, während eine CIPK23T190D-Expression diese Anionenkanalaktivität inhibierte. Diese Ergebnisse stimmen mit den Beobachtungen zu den gezeigten Veränderungen der stomatären Bewegung überein und deuten daher auf eine regulierende Rolle von CIPK23 für die stomatäre Bewegung durch die Inhibierung von S-Typ Anionenkanälen hin. Insgesamt beweisen unsere Befunde, dass die CIPK23-vermittelte stomatäre Bewegung nicht durch eine Interaktion von CIP23 mit AKT1, sondern durch die Regulierung der S-Typ Anionenkanäle SLAC1 und SLAH3 vermittelt wird. Zusammengefasst ergeben die in dieser Thesis präsentierten Daten neue Einblicke in den Ca2+-abhängigen Pfad des ABA-Signalwegs. Dies könnte in Zukunft helfen neue Strategien zur Zucht von Pflanzen mit verbesserter Trockenstresstoleranz zu entwickeln und somit die agrarwirtschaftliche Produktivität zu erhöhen. KW - Stomata KW - guard cells KW - ABA KW - OST1 KW - SLAC1 KW - anion channels KW - Ca2+ signal KW - CIPK23 KW - AKT1 KW - K+ channels KW - drought stress Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204737 ER - TY - THES A1 - Voß, Lena Johanna T1 - Änderungen der Membranspannung und der Osmolarität als Auslöser für Calciumsignale in Pflanzen – Studien an Schließzellen von Nicotiana tabacum und Polypodium vulgare T1 - Induction of Calcium Signals by Changes in Membrane Potential and Osmolarity – Studies on Guard Cells of Nicotiana tabacum and Polypodium vulgare N2 - Stomata sind kleine Poren in der Blattoberfläche, die Pflanzen eine Anpassung ihres Wasserhaushalts an sich ändernde Umweltbedingungen ermöglichen. Die Öffnungsweite der Stomata wird durch den Turgordruck der Schließzellen bestimmt, der wiederum durch Ionenflüsse über die Membranen der Zelle reguliert wird. Ein Netzwerk von Signaltransduktionswegen sorgt dafür, dass Pflanzen die Stomabewegungen an die Umgebungsbedingungen anpassen können. Viele molekulare Komponenten dieser Signaltransduktionketten in Schließzellen von Angiospermen sind inzwischen bekannt und Calcium spielt darin als Signalmolekül eine wichtige Rolle. Weitgehend unbekannt sind dagegen die Mechanismen, die zur Erzeugung von transienten Erhöhungen der Calciumkonzentration führen. Auch die molekularen Grundlagen der Regulierung der Stomaweite in Nicht-Angiospermen-Arten sind bisher nur wenig verstanden. Um zur Aufklärung dieser Fragestellungen beizutragen, wurden in dieser Arbeit Mechanismen zur Erhöhungen der cytosolischen Calciumkonzentration sowie elektrophysiologische Eigenschaften von Schließzellen untersucht. Der Fokus lag hierbei insbesondere auf der Visualisierung cytosolischer Calciumsignale in Schließzellen. Im ersten Teil der Arbeit wurde durch die Applikation hyperpolarisierender Spannungspulse mittels TEVC (Two Electrode Voltage Clamp) gezielt eine Erhöhung der cytosolischen Calciumkonzentration in einzelnen Schließzellen von Nicotiana tabacum ausgelöst. Um die Dynamik der cytosolischen Calciumkonzentration dabei zeitlich und räumlich hoch aufgelöst zu visualisieren, wurde simultan zu den elektrophysiologischen Messungen ein Spinning-Disc-System für konfokale Aufnahmen eingesetzt. Während der Applikation hyperpolarisierender Spannungspulse wurde eine transiente Vergrößerung des cytosolischen Volumens beobachtet. Diese lässt sich durch einen osmotisch getriebenen Wasserfluss erklären, der durch die Veränderung der Ionenkonzentration im Cytosol verursacht wird. Diese wiederum wird durch die spannungsabhängige Aktivierung einwärtsgleichrichtender Kaliumkanäle in der Plasmamembran der Schließzellen und durch den Kompensationsstrom der eingestochenen Mikroelektrode hervorgerufen. Mit Hilfe des calciumsensitiven Farbstoffs Fura-2 konnte gezeigt werden, dass die Erhöhung der freien cytosolischen Calciumkonzentration während der Applikation hyperpolarisierender Spannungspulse durch zwei Mechanismen verursacht wird. Der erste Mechanismus ist die Aktivierung hyperpolarisationsaktivierter, calciumpermeabler Kanäle (HACCs) in der Plasmamembran, die schon 1998 von Grabov & Blatt beschrieben wurde. Zusätzlich zu diesem Mechanismus der Calciumfreisetzung, konnte ein zweiter bislang unbekannter Mechanismus aufgedeckt werden, bei dem Calcium aus intrazellulären Speichern in das Cytosol freigesetzt wird. Dieser Mechanismus hängt mit der oben beschriebenen Vergrößerung des cytosolischen Volumens zusammen und ist wahrscheinlich durch die Änderungen der mechanischen Spannung der Membran bzw. der Osmolarität innerhalb der Zelle bedingt. Diese könnten zu einer Aktivierung mechanosensitiver, calciumpermeabler Kanäle führen. Der zweite Teil der Arbeit beschäftigt sich mit den molekularen Grundlagen der Regulierung von Stomata in Nicht-Angiospermen. In Schließzellen von Polypodium vulgare konnten durch die Anwendung der TEVC-Technik ähnliche spannungsabhängige Ströme über die Plasmamembran gemessen werden wie in Angiospermen. Ebenso wurden durch die Applikation hyperpolarisierender Spannungspulse an Schließzellen von Polypodium und Asplenium Erhöhungen der cytosolischen Calciumkonzentration ausgelöst, die auf die Existenz spannungsabhängiger, calciumpermeabler Kanäle in der Plasmamembran hinweisen. Die Diffusion von Fluoreszenzfarbstoffen in die Nachbarschließzellen nach der iontophoretischen Beladung in Polypodium, Asplenium, Ceratopteris und Selaginella zeigte, dass in diesen Arten eine symplastische Verbindung zwischen benachbarten Schließzellen besteht, die an Schließzellen von Angiospermen bisher nicht beobachtet werden konnte. Anhand elektronenmikroskopischer Aufnahmen von Polypodium glycyrrhiza Schließzellen konnte gezeigt werden, dass diese Verbindung wahrscheinlich durch Plasmodesmata zwischen benachbarten Schließzellen gebildet wird. Durch die Analyse der Calciumdynamik in benachbarten Schließzellen nach hyperpolarisierenden Spannungspulsen stellte sich heraus, dass die Calciumhomöostase trotz symplastischer Verbindung in beiden Schließzellen unabhängig voneinander reguliert zu werden scheint. Im Rahmen der Untersuchungen an Farnschließzellen wurde desweiteren eine Methode zur Applikation von ABA etabliert, die es erlaubt mithilfe von Mikroelektroden das Phytohormon iontophoretisch in den Apoplasten zu laden. Im Gegensatz zu den Schließzellen von Nicotiana tabacum, die auf eine so durchgeführte ABA-Applikation mit dem Stomaschluss reagierten, wurde in Polypodium vulgare auf diese Weise kein Stomaschluss ausgelöst. Da die ABA-Antwort der Farnstomata aber auch von anderen Faktoren wie Wachstumsbedingungen abhängig ist (Hõrak et al., 2017), kann eine ABA-Responsivität in dieser Farnart trotzdem nicht vollkommen ausgeschlossen werden. Die Freisetzung von Calcium aus intrazellulären Speichern, wie sie in dieser Arbeit gezeigt wurde, könnte eine wichtige Rolle bei der Regulierung der Stomaweite spielen. Zur Aufklärung dieser Fragestellung wäre die Identifizierung der Kanäle, die an der osmotisch/mechanisch induzierten Calciumfreisetzung aus internen Speichern beteiligt sind, von großem Interesse. Weiterführende Studien an Schließzellen von Farnen könnten die physiologische Bedeutung der aus Angiospermen bekannten Ionenkanäle für die Stomabewegungen in evolutionär älteren Landpflanzen aufklären und so maßgeblich zum Verständnis der Evolution der Regulierunsgmechanismen von Stomata beitragen. Außerdem stellt sich die Frage, welche Rolle die hier gezeigte symplastische Verbindung der Nachbarschließzellen durch Plasmodesmata für die Funktion der Stomata spielt. N2 - Stomata are small pores in the leaf surface that allow plants to adapt their water balance to changing environmental conditions. The turgor pressure of the guard cells determines the width of the stomatal aperture and is regulated by ion fluxes in or out of the guard cell. A network of different signal transduction pathways is necessary for the adaption of stomatal movements to ambient conditions. Many of these transduction pathways have been described in detail and many of their components have been identified. It is a well known fact that calcium acts as a second messenger in pathways regulating stomatal movements. However, the mechanisms that lead to transient elevations of the cytosolic calcium concentration are largely unknown. The molecular basis of the regulation of stomatal aperture in non-angiosperm species is also poorly understood. In order to gain new insights into these topics, mechanisms of calcium elevation and electrophysiological properties of guard cells were studied, focussing especially on the visualization of the cytosolic calcium concentration in guard cells. In the first part of this study, the application of hyperpolarizing voltage pulses by means of TEVC (Two Electrode Voltage Clamp) was used to specifically trigger an increase in the cytosolic calcium concentration in individual guard cells in the angiosperm model plant Nicotiana tabacum. To visualize the dynamics of the cytosolic calcium concentration with high temporal and spatial resolution, a spinning disc system for confocal imaging was used simultaneously with the electrophysiological recordings. During the application of hyperpolarizing voltage pulses a transient increase in cytosolic volume was observed. This increase can be explained by an osmotically driven water flux caused by changes of the cytosolic ion concentration. These in turn are caused by the voltage-dependent activation of inward rectifying potassium channels in the guard cell plasma membrane and by the compensating current from the impaled microelectrode. Using the calcium-sensitive dye Fura-2, it could be shown that two mechanisms lead to the elevation of the cytosolic calcium concentration during the application of hyperpolarizing voltage pulses. The first mechanism is the activation of hyperpolarization-activated calcium permeable channels (HACCs) in the plasma membrane, which has already been described in 1998 by Grabov & Blatt. In addition to this mechanism of calcium release, a second previously unknown mechanism was discovered in which calcium is released into the cytosol from intracellular stores. This mechanism is related to the increase in cytosolic volume we described above and is probably caused by changes in membrane tension or osmolarity within the cell. These changes could lead to an activation of mechanosensitive calciumpermeable channels. The second part of this thesis deals with the molecular basis of the regulation of stomata in non-angiosperms. In guard cells of Polypodium vulgare voltage-dependent currents across the plasma membrane similar to those described in angiosperm model plants could be measured using TEVC. Furthermore, the application of hyperpolarizing voltage pulses induced increases in cytosolic calcium concentration in guard cells of Polypodium and Asplenium indicating the existence of voltage-dependent calcium permeable channels in the plasma membrane. The diffusion of iontophoretically injected fluorescent dyes into the neighboring guard cells in Polypodium, Asplenium, Ceratopteris and Selaginella showed that in these species a symplastic connection between neighboring guard cells exists, which could not be observed in guard cells of angiosperms. Electron microscopic images of Polypodium glycyrrhiza guard cells showed that this connection is probably formed by plasmodesmata between adjacent guard cells. Analysis of the calcium dynamics in neighboring guard cells after hyperpolarizing voltage pulses revealed that calcium homeostasis seems to be regulated independently in both guard cells despite their symplastic connection. As part of the investigations on guard cells of ferns, a new method for the application of ABA was established, which allows the phytohormone to be charged iontophoretically into the apoplast with the aid of microelectrodes. In contrast to the guard cells of Nicotiana tabacum, which reacted with loss of turgor and subsequential stomatal closure to this method of ABA-application, no closure of the stomata could be induced in Polypodium vulgare in this way. However, since the ABA response of fern stomata is also dependent on other factors such as growth conditions (Hõrak et al., 2017), an ABA-responsiveness in this fern species can still not be completely excluded. The release of calcium from intracellular stores, as shown in this work, could play an important role for the regulation of stomatal aperture. To clarify this question, the identification of the channels involved in osmotically/mechanically induced calcium release from internal stores would be of great interest. Further studies on fern guard cells could clarify the physiological significance of ion channels known from angiosperms for the stomatal movements in early land plants, and thus contribute significantly to the understanding of the evolution of stomatal regulation. In addition, the question arises as to what role the symplastic connection of the neighboring guard cells through plasmodesmata plays for the function of stomata. KW - Schließzelle KW - Nicotiana tabacum KW - Polypodium vulgare KW - Calcium Imaging KW - Elektrophysiologie KW - Schließzellen KW - Farne KW - Abscisinsäure KW - Oregon Green-BAPTA KW - Fura-2 KW - Hyperpolarisierung KW - guard cells KW - ferns KW - abscisic acid KW - hyperpolarisation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219639 ER -