TY - THES A1 - Imdahl, Fabian Dominik T1 - Development of novel experimental approaches to decipher host-pathogen interaction at the single-cell level T1 - Entwicklung neuer experimenteller Ansätze zur Entschlüsselung von Wirt-Pathogen-Interaktion auf Einzelzellebene N2 - Abstract: COVID-19 has impressively shown how quickly an emerging pathogen can have a massive impact on our entire lives and show how infectious diseases spread regardless of national borders and economic stability. We find ourselves in a post-antibiotic era and have rested too long on the laurels of past research, so today more and more people are dying from infections with multi-resistant germs. Infections are highly plastic and heterogeneous processes that are strongly dependent on the individual, whether on the host or pathogen side. Improving our understanding of the pathogenicity of microorganisms and finding potential targets for a completely new class of drugs is a declared goal of current basic research. To tackle this challenge, single-cell RNA sequencing (scRNA-seq) is our most accurate tool. In this thesis we implemented different state of the art scRNA-seq technologies to better understand infectious diseases. Furthermore, we developed a new method which is capable to resolve the transcriptome of a single bacterium. Applying a poly(A)-independent scRNA-seq protocol to three different, infection relevant growth conditions we can report the faithful detection of growth-dependent gene expression patterns in individual Salmonella Typhimurium and Pseudomonas aeruginosa bacteria. The data analysis shows that this method not only allows the differentiation of various culture conditions but can also capture transcripts across different RNA species. Furthermore, using state of the art imaging and single-cell RNA sequencing technologies, we comprehensively characterized a human intestinal tissue model which in further course of the project was used as a Salmonella enterica serovar Typhimurium infection model. While most infection studies are conducted in mice, lacking a human intestinal physiology, the in vitro human tissue model allows us to directly infer in vivo pathogenesis. Combining immunofluorescent imaging, deep single-cell RNA sequencing and HCR-FISH, applied in time course experiments, allows an unseen resolution for studying heterogeneity and the dynamics of Salmonella infection which reveals details of pathogenicity contrary to the general scientific opinion. N2 - Zusammenfassung: COVID-19 hat eindrucksvoll gezeigt, wie schnell ein neu auftretender Erreger massive Auswirkungen auf unser aller Leben haben kann und wie sich Infektionskrankheiten unabhängig von Landesgrenzen und wirtschaftlicher Stabilität ausbreiten. Wir befinden uns in einer post-antibiotischen Ära und haben uns zu lange auf den Lorbeeren der vergangenen Forschung ausgeruht, so dass heute immer mehr Menschen an Infektionen mit multiresistenten Keimen sterben. Infektionen sind sehr plastische und variable Prozesse, die stark vom Individuum abhängen, sei es auf Seiten des Wirts oder des Erregers. Die Pathogenität von Mikroorganismen besser zu verstehen und potenzielle Angriffspunkte für eine völlig neue Klasse von Arzneimitteln zu finden ist ein erklärtes Ziel der aktuellen Grundlagenforschung. Um diese Herausforderung zu meistern, ist die Einzelzell-RNA-Sequenzierung (scRNA-seq) unser präzisestes Werkzeug. In dieser Arbeit haben wir verschiedene hochmoderne scRNA-seq-Technologien eingesetzt, um Infektionskrankheiten besser zu verstehen. Darüber hinaus haben wir eine neue Methode entwickelt, die in der Lage ist, das Transkriptom eines einzelnen Bakteriums aufzulösen. Durch die Anwendung eines poly(A)-unabhängigen scRNA-seq-Protokolls unter drei verschiedenen, infektionsrelevanten W achstumsbedingungen konnten wir die wachstumsabhängigen Genexpressionsmuster in einzelnen Salmonella Typhimurium- und Pseudomonas aeruginosa- Bakterien zuverlässig nachweisen. Die Datenanalyse zeigt, dass diese Methode nicht nur die Differenzierung verschiedener Kulturbedingungen ermöglicht, sondern auch Transkripte über verschiedene RNA-Spezies hinweg erfassen kann. Darüber hinaus haben wir unter Verwendung modernster Bildgebungs- und Einzelzell-RNA- Sequenzierungstechnologien ein menschliches Darmgewebemodell umfassend charakterisiert, das im weiteren Verlauf des Projekts als Salmonella Typhimurium-Infektionsmodell verwendet wurde. Während die meisten Infektionsstudien in Mäusen durchgeführt werden, denen die menschliche Darmphysiologie fehlt, ermöglicht uns das in vitro Modell des menschlichen Gewebes direkte Rückschlüsse auf die Pathogenese in vivo. Die Kombination aus immunfluoreszierender Bildgebung, deep single-cell RNA Sequenzierung und HCR-FISH, angewandt in Zeitverlaufsexperimenten, ermöglicht eine bisher ungesehene Auflösung zur Untersuchung von Heterogenität und Dynamik einer Salmonella Infektion, welche Details der Pathogenität entgegen der allgemeinen wissenschaftlichen Meinung offenbaren. KW - Salmonella KW - Einzelzellanalyse KW - Dünndarm KW - Gewebemodell KW - Single-cell RNA-sequencing KW - Infektionsmodell KW - Heterogenität von Mikroorganismen KW - Pathogenität Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-289435 ER - TY - THES A1 - Endres, Leo Maximilian T1 - Development of multicellular \(in\) \(vitro\) models of the meningeal blood-CSF barrier to study \(Neisseria\) \(meningitidis\) infection T1 - Entwicklung multizellulärer \(in\) \(vitro\) Modelle der meningealen Blut-Liquor Schranke zur Untersuchung der \(Neisseria\) \(meningitidis\) Infektion N2 - Neisseria meningitidis (the meningococcus) is one of the major causes of bacterial meningitis, a life-threatening inflammation of the meninges. Traversal of the meningeal blood-cerebrospinal fluid barrier (mBCSFB), which is composed of highly specialized brain endothelial cells (BECs), and subsequent interaction with leptomeningeal cells (LMCs) are critical for disease progression. Due to the human-exclusive tropism of N. meningitidis, research on this complex host-pathogen interaction is mostly limited to in vitro studies. Previous studies have primarily used peripheral or immortalized BECs alone, which do not retain relevant barrier phenotypes in culture. To study meningococcal interaction with the mBCSFB in a physiologically more accurate context, BEC-LMC co-culture models were developed in this project using BEC-like cells derived from induced pluripotent stem cells (iBECs) or hCMEC/D3 cells in combination with LMCs derived from tumor biopsies. Distinct BEC and LMC layers as well as characteristic expression of cellular markers were observed using transmission electron microscopy (TEM) and immunofluorescence staining. Clear junctional expression of brain endothelial tight and adherens junction proteins was detected in the iBEC layer. LMC co-culture increased iBEC barrier tightness and stability over a period of seven days, as determined by sodium fluorescein (NaF) permeability and transendothelial electrical resistance (TEER). Infection experiments demonstrated comparable meningococcal adhesion and invasion of the BEC layer in all models tested, consistent with previously published data. While only few bacteria crossed the iBEC-LMC barrier initially, transmigration rates increased substantially over 24 hours, despite constant high TEER. After 24 hours of infection, deterioration of the barrier properties was observed including loss of TEER and altered expression of tight and adherens junction components. Reduced mRNA levels of ZO-1, claudin-5, and VE-cadherin were detected in BECs from all models. qPCR and siRNA knockdown data suggested that transcriptional downregulation of these genes was potentially but not solely mediated by Snail1. Immunofluorescence staining showed reduced junctional coverage of occludin, indicating N. meningitidis-induced post-transcriptional modulation of this protein, as previous studies have suggested. Together, these results suggest a potential combination of transcellular and paracellular meningococcal traversal of the mBCSFB, with the more accessible paracellular route becoming available upon barrier disruption after prolonged N. meningitidis infection. Finally, N. meningitidis induced cellular expression of pro-inflammatory cytokines and chemokines such as IL-8 in all mBCSFB models. Overall, the work described in this thesis highlights the usefulness of advanced in vitro models of the mBCSFB that mimic native physiology and exhibit relevant barrier properties to study infection with meningeal pathogens such as N. meningitidis. N2 - Neisseria meningitidis (der Meningokokkus) ist einer der Hauptursachen bakterieller Meningitis, einer lebensbedrohlichen Entzündung der Hirnhäute. Entscheidend für das für das Voranschreiten der Krankheit ist die Fähigkeit des Erregers, die meningeale Blut-Liquor-Schranke (mBCSFB), bestehend aus spezialisierten Hirnendothelzellen (BECs) und leptomeningealen Zellen (LMCs), zu überwinden und in den submeningealen Raum einzudringen. Da es sich bei N. meningitidis um ein rein humanes Pathogen handelt, beschränkt sich die Erforschung dieser speziellen Interaktion primär auf die Verwendung von in vitro Modellen. Bisher wurden hierfür hauptsächlich periphere oder immortalisierte BECs verwendet, welchen jedoch wichtige Barriere-Eigenschaften fehlen. Um die Interaktion von N. meningitidis mit der mBCSFB in einem physiologisch relevanteren Umfeld zu untersuchen, wurden in dieser Arbeit neuartige BEC-LMC Kokulturmodelle entwickelt. Dabei wurden sowohl BEC-ähnliche Zellen, die aus induzierten pluripotenten Stammzellen generiert wurden (iBECs), als auch hCMEC/D3 Zellen verwendet und zusammen mit LMCs aus Tumorbiopsien kultiviert. Mittels Transmissions-Elektronenmikroskopie und Immunfluoreszenzfärbung konnten die unterschiedlichen Zellschichten und deren Expression charakteristischer zellulärer Marker dargestellt werden. Durchgängige Expression von wichtigen Bestandteilen Barriere-formender Zellverbindungen, sogenannter Tight und Adherens Junctions, wurde in der iBEC-Schicht beobachtet. Die Integrität der zellulären Barriere wurde mittels transendothelialer elektrischer Resistenz (TEER) und Permeabilität gegenüber Natrium-Fluorescein (NaF) bestimmt. Erhöhte TEER-Werte und verringerte NaF-Permeabilität, gemessen über einen Zeitraum von sieben Tagen, zeigten eine durch die Kokultur mit LMCs ausgelöste Steigerung der Dichtigkeit und Stabilität der iBEC-Barriere. Infektionsexperimente mit N. meningitidis zeigten in allen Modellen vergleichbare bakterielle Adhäsion und Invasion der BEC-Schicht. Bakterielle Transmigration durch die gesamten Zellbarriere war im iBEC-LMC Modell kurz nach Infektion nur in geringem Maße detektierbar, nahm jedoch innerhalb von 24 Stunden deutlich zu. Interessanterweise wurde bis zu 24 Stunden nach Infektion noch eine hohe Integrität der Barriere gemessen, welche allerdings im weiteren Verlauf verloren ging. Neben signifikantem TEER-Verlust wurde eine verringerte Expression der Tight und Adherens Junction Proteine ZO-1, claudin-5, und VE-cadherin mittels qPCR festgestellt. qPCR und siRNA Knockdown Experimente deuteten darauf hin, dass dies möglicherweise, aber nicht ausschließlich, auf den Transkriptionsfaktor Snail1 zurückzuführen war. Zusätzlich zu den beobachteten Effekten auf die zelluläre Transkription von Tight Junction Genen, zeigten Immunfluoreszenzfärbungen eine verringerte Expression von Occludin an den Zell-Zell-Verbindungen, was auf eine post-translationale Modulation schließen lässt. Zusammen deuten die Ergebnisse dieser Infektionsstudien auf eine mögliche Kombination aus trans- und parazellulärer bakterieller Transmigration der mBCSFB hin. Zuletzt wurden in dieser Arbeit noch die Immunaktivierung von BECs nach N. meningitidis Infektion in den neuen BEC-LMC Kokulturmodellen untersucht. Hierbei wurde eine erhöhte Expression von Zytokinen, insbesondere Interleukin-8, beobachtet. Insgesamt konnten in dieser Arbeit neue, fortschrittlicher in vitro Modelle der mBCSFB entwickelt werden, welche die humane Physiologie besser widerspiegeln und daher für Infektionsstudien mit Meningitis-verursachenden Erregern wie N. meningitidis von besonderem Nutzen sind. KW - Bakterielle Hirnhautentzündung KW - Blut-Liquor-Schranke KW - Induzierte pluripotente Stammzelle KW - Neisseria meningitidis KW - In-vitro-Kultur KW - Brain endothelial cells KW - Leptomeningeal cells KW - Hirnendothelzellen KW - Leptomeningealzellen Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-346216 ER - TY - THES A1 - Dietrich, Oliver T1 - Integrating single-cell multi-omics to decipher host-pathogen interactions T1 - Integration von Genomik Daten einzelner Zellen zur Entschlüsselung von Wirt-Pathogen Interaktionen N2 - Interactions between host and pathogen determine the development, progression and outcomes of disease. Medicine benefits from better descriptions of these interactions through increased precision of prevention, diagnosis and treatment of diseases. Single-cell genomics is a disruptive technology revolutionizing science by increasing the resolution with which we study diseases. Cell type specific changes in abundance or gene expression are now routinely investigated in diseases. Meanwhile, detecting cellular phenotypes across diseases can connect scientific fields and fuel discovery. Insights acquired through systematic analysis of high resolution data will soon be translated into clinical practice and improve decision making. Therefore, the continued use of single-cell technologies and their application towards clinical samples will improve molecular interpretation, patient stratification, and the prediction of outcomes. In the past years, I was fortunate to participate in interdisciplinary research groups bridging biology, clinical research and data science. I was able to contribute to diverse projects through computational analysis and biological interpretation of sequencing data. Together, we were able to discover cellular phenotypes that influence disease progression and outcomes as well as the response to treatment. Here, I will present four studies that I have conducted in my PhD. First, we performed a case study of relapse from cell-based immunotherapy in Multiple Myeloma. We identified genomic deletion of the epitope as mechanism of immune escape and implicate heterozygosity or monosomy of the genomic locus at baseline as a potential risk factor. Second, we investigated the pathomechanisms of severe COVID-19 at the earliest stage of the COVID- 19 pandemic in Germany in March 2020. We discovered that profibrotic macrophages and lung fibrosis can be caused by SARS-CoV-2 infection. Third, we used a mouse model of chronic infection with Staphylococcus aureus that causes Osteomyelitis similar to the human disease. We were able to identify dysregulated immunometabolism associated with the generation of myeloid-derived suppressor cells (MDSC). Fourth, we investigated Salmonella infection of the human small intestine in an in vitro model and describe features of pathogen invasion and host response. Overall, I have been able to successfully employ single-cell sequencing to discover important aspects of diseases ranging from development to treatment and outcome. I analyzed samples from the clinics, human donors, mouse models and organoid models to investigate different aspects of diseases and managed to integrate data across sample types, technologies and diseases. Based on successful studies, we increased our efforts to combine data from multiple sources to build comprehensive references for the integration of large collections of clinical samples. Our findings exemplify how single-cell sequencing can improve clinical research and highlights the potential of mechanistic discoveries to drive precision medicine. N2 - Interaktionen zwischen Wirt und Pathogen bestimmen die Entwicklung und den Verlauf von Erkrankungen als auch deren Ausgang. Die Medizin zieht Nutzen aus genaueren Beschreibungen von Krankheiten durch höhere Präzision von Prävention, Diagnose und Behandlung. Genomische Messungen in einzelnen Zellen werden durch innovative Technologien ermöglicht, welche die Wissenschaft revolutionieren indem sie die Auflösung erhöhen mit der wir Krankheiten untersuchen können. Inzwischen werden sowohl die Zusammensetzung von Zelltypen als auch Unterschiede in der Genexpression routinemäßig über Krankheiten hinweg untersucht. Der Einsatz von Technologien die einzelne Zellen untersuchen und ihre Anwendung auf klinische Proben wird die molekulare Interpretation, die Stratifizierung von Patienten und die Prognose des Ausgangs von Krankheiten verbessern. In den letzten Jahren konnte ich mich an interdisziplinären Forschungsgruppen beteiligen und die Bereiche der Biologie, klinischer Forschung und Datenwissenschaften kombinieren. Ich war in der Lage zu unterschiedlichen Projekten beizutragen und eine führende Rolle in der Analyse und biologischen Interpretation von Daten aus Sequenzierungen zu übernehmen. Zusammen konnten wir zelluläre Phänotypen entdecken, die Entwicklung und Ausgang von Krankheiten sowie die Antwort auf Therapien beeinflussen. In dieser Arbeit werde ich vier Studien vorstellen, die ich während meiner Promotion durchgeführt habe. Zuerst haben wir einen Fall vom Rezidiv des Multiplen Myeloms nach zellulärer Immuntherapie untersucht. Dabei konnten wir feststellen, dass eine Deletion des genomischen Abschnitts für das immunogene Epitop dafür sorgte, dass die Krebszellen der Immunantwort entkommen konnten. Des weiteren konnten wir nachweisen, dass einige Patienten vor Beginn der Therapie nur eine Kopie des Gens besitzen und dadurch einen potentiellen Risikofaktor für ein Scheitern der Therapie. Zweitens haben wir im März 2020 die ersten Fälle von akutem Lungenversagen in COVID-19 und die Ursachen der Pathologie untersucht. Dabei haben wir festgestellt, das profibrotische Makrophagen und Lungenfibrose durch SARS-CoV-2 ausgelöst werden. Als Drittes haben wir Osteomyelitis in Mäusen untersucht, die von dem Bakterium Staphylococcus aureus ausgelöst wird und der Erkrankung im Menschen ähnlich ist. Wir konnten feststellen, dass deregulierter Metabolismus von Immunzellen der Enstehung von myeloiden Zellen mit T-Zell supprimierender Aktivität (MDSC) zugrunde liegt. Viertens haben wir die Infektion des humanen Dünndarms mit Salmonella in einem Organoidmodell untersucht und konnten Merkmale der Pathogeninvasion und der Wirtsantwort beschreiben. Insgesamt konnte ich die Sequenzierung von RNAs in einzelnen Zellen nutzen um wichtige Aspekte in der Entwicklung, dem Verlauf und dem Ausgang von Erkrankungen zu entdecken. Ich konnte Proben aus der Klinik, von Donoren, Mausmodellen und Organoidmodellen analysieren und die Daten über die Art von Proben, Technologien und Krankheiten hinweg integrieren. Durch unsere erfolgreichen Studien konnten wir uns ambitioniertere Ziele setzen um Daten von verschiedenen Quellen in umfassenden Referenzen zusammenzuführen um große Kollektionen klinischer Proben gemeinsam zu untersuchen. Unsere Ergebnisse demonstrieren wie die Untersuchung einzelner Zellen die klinische Forschung verbessern kann und zeigt das Potential auf wie Entdeckungen in der Biomedizin zur Präzisionsmedizin beitragen können. KW - Einzelzellanalyse KW - Single-cell sequencing KW - Host-Pathogen Interactions Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-360138 ER -