TY - THES A1 - Kramer, Christian T1 - Investigation of Nanostructure-Induced Localized Light Phenomena Using Ultrafast Laser Spectroscopy T1 - Untersuchung von nanostruktur-induzierten Lichtphänomenen mit Hilfe von Ultrakurzzeit-Laserspektroskopie N2 - In recent years, the interaction of light with subwavelength structures, i.e., structures that are smaller than the optical wavelength, became more and more interesting to scientific research, since it provides the opportunity to manipulate light-induced dynamics below the optical diffraction limit. Specifically designed nanomaterials can be utilized to tailor the temporal evolution of electromagnetic fields at the nanoscale. For the investigation of strongly localized processes, it is essential to resolve both their spatial and their temporal behavior. The aim of this thesis was to study and/or control the temporal evolution of three nanostructure-induced localized light phenomena by using ultrafast laser spectroscopy with high spatial resolution. In Chapter 4, the absorption of near-infrared light in thin-film a-Si:H solar cells was investigated. Using nanotextured instead of smooth interfaces for such devices leads to an increase of absorption from < 20% to more than 50% in the near-infrared regime. Time-resolved experiments with femtosecond laser pulses were performed to clarify the reason for this enhancement. The coherent backscattered radiation from nanotextured solar cell devices was measured as a function of the sample position and evaluated via spectral interferometry. Spatially varying resonance peaks in the recorded spectra indicated the formation of localized photonic modes within the nanotextured absorber layers. In order to identify the modes separately from each other, coherent two-dimensional (2D) nanoscopy was utilized, providing a high spatial resolution < 40 nm. In a nanoscopy measurement on a modified device with an exposed nanotextured a-Si:H absorber layer, hot-spot electron emission was observed and confirmed the presence of localized modes. Fitting the local 2D nanospectra at the hot-spot positions enabled the determination of the resonance frequencies and coherence lifetimes of the modes. The obtained lifetime values varied between 50 fs and 130 fs. Using a thermionic emission model allowed the calculation of the locally absorbed energy density and, with this, an estimation of the localization length of the photonic modes (≈1 μm). The localization could be classified by means of the estimated localization length and additional data evaluation of the backscattered spectra as strong localization ─ the so-called Anderson localization. Based on the experimental results, it was concluded that the enhanced absorption of near-infrared light in thin-film silicon solar cells with nanotextured interfaces is caused by the formation of strongly localized photonic modes within the disordered absorber layers. The incoming near-infrared light is trapped in these long-living modes until absorption occurs. In Chapter 5, a novel hybridized plasmonic device was introduced and investigated in both theory and experiment. It consists of two widely separated whispering gallery mode (WGM) nanoantennas located in an elliptical plasmonic cavity. The goal was to realize a periodic long-range energy transfer between the nanoantennas. In finite-difference time-domain (FDTD) simulations, the device was first optimized with respect to strong coupling between the localized antenna modes and the spatially-extended cavity mode. The geometrical parameters of the antennas and the cavity were adjusted separately so that the m="0" antenna mode and the cavity mode were resonant at λ="800 nm" . A high spatial overlap of the modes was achieved by positioning the two antennas in the focal spots of the cavity, leading to a distance between the antenna centers of more than twice the resonant wavelength of the modes. The spectral response of the optimized device revealed an energy splitting of the antenna and the cavity mode into three separated hybridized eigenmodes within an energy range of about 90 meV due to strong coupling. It could be well reproduced by a simple model of three coupled Lorentzian oscillators. In the time domain, an oscillatory energy transfer between both antennas with a period of 86 fs and an energy transfer efficiency of about 7% was observed for single-pulse excitation. For the experiments, devices with cavities and antennas of varying size were fabricated by means of focused-ion-beam (FIB) milling. Time-resolved correlation measurements were performed with high spatial and temporal resolution by using sequences of two femtosecond laser pulses for excitation and photoemission electron microscopy (PEEM) for detection. Local correlation traces at antennas in resonant devices, i.e., devices with enhanced electron emission at both antenna positions, were investigated and reconstructed by means of the coupled-oscillator model. The corresponding spectral response revealed separated peaks, confirming the formation of hybridized eigenmodes due to strong coupling. In a subsequent simulation for single-pulse excitation, one back-and-forth energy transfer between both antennas with an energy transfer efficiency of about 10% was observed. Based on the theoretical and experimental results, it was demonstrated that in the presented plasmonic device a periodic long-range energy transfer between the two nanoantennas is possible. Furthermore, the coupled-oscillator model enables one to study in depth how specific device properties impact the temporal electric-field dynamics within the device. This can be exploited to further optimize energy transfer efficiency of the device. Future applications are envisioned in ultrafast plasmonic nanocircuitry. Moreover, the presented device can be employed to realize efficient SPP-mediated strong coupling between widely separated quantum emitters. In Chapter 6, it was investigated in theory how the local optical chirality enhancement in the near field of plasmonic nanostructures can be optimized by tuning the far-field polarization of the incident light. An analytic expression was derived that enables the calculation of the optimal far-field polarizations, i.e., the two far-field polarizations which lead to the highest positive and negative local optical chirality, for any given nanostructure geometry. The two optimal far-field polarizations depend on the local optical response of the respective nanostructure and thus are functions of both the frequency ω and the position r. Their ellipticities differ only in their sign, i.e., in their direction of rotation in the time domain, and the angle between their orientations, i.e., the angle between the principal axes of their ellipses, is ±π/"2" . The handedness of optimal local optical chirality can be switched by switching between the optimal far-field polarizations. In numerical simulations, it was exemplarily shown for two specific nanostructure assemblies that the optimal local optical chirality can significantly exceed the optical chirality values of circularly polarized light in free space ─ the highest possible values in free space. The corresponding optimal far-field polarizations were different from linear and circular and varied with frequency. Using femtosecond polarization pulse shaping provides the opportunity to coherently control local optical chirality over a continuous frequency range. Furthermore, symmetry properties of nanostructures can be exploited to determine which far-field polarization is optimal. The theoretical findings can have impact on future experimental studies about local optical chirality enhancement. Tuning the far-field polarization of the incident light offers a promising tool to enhance chirally specific interactions of local electromagnetic fields with molecular and other quantum systems in the vicinity of plasmonic nanostructures. The presented approach can be utilized for applications in chiral sensing of adsorbed molecules, time-resolved chirality-sensitive spectroscopy, and chiral quantum control. In conclusion, each of the localized light phenomena that were investigated in this thesis ─ the enhanced local absorption of near-infrared light due to the formation of localized photonic modes, the periodic long-range energy transfer between two nanoantennas within an elliptical plasmonic cavity, and the optimization of local optical chirality enhancement by tuning the far-field polarization of the incident light ─ can open up new perspectives for a variety of future applications. . N2 - In den vergangenen Jahren rückte die Wechselwirkung von Licht mit Strukturen, deren Größe kleiner als die optische Wellenlänge ist, immer mehr in den Fokus der wissenschaftlichen Forschung, da sie die Möglichkeit bietet, lichtinduzierte Dynamiken unterhalb des optischen Beugungslimits zu manipulieren. Speziell hergestellte Nanomaterialien können verwendet werden, um die zeitliche Entwicklung von elektromagnetischen Feldern auf der Nanoskala zu steuern. Für die Untersuchung von stark lokalisierten Prozessen ist es essentiell, sowohl ihr räumliches als auch ihr zeitliches Verhalten aufzulösen. Das Ziel dieser Dissertation war es, die zeitliche Entwicklung von drei lokalisierten Lichtphänomenen, hervorgerufen durch drei unterschiedliche nanostrukturierte Materialien, mit Hilfe von Ultrakurzzeit-spektroskopie unter hoher räumlicher Auflösung zu untersuchen und/oder zu kontrollieren. In Kapitel 4 dieser Arbeit wurde die Absorption von Nahinfrarotlicht in a-Si:H Dünnschicht-Solarzellen untersucht. Durch die Verwendung von nanotexturierten statt glatten Grenzschichten erreicht man bei solchen Solarzellen einen Anstieg der Absorption von < 20% auf über 50% im Nahinfrarotbereich. Um der Ursache dieser Verstärkung auf den Grund zu gehen, wurden zeitaufgelöste Experimente mit Femtosekundenlaserpulsen durchgeführt. Zunächst wurde die kohärente zurückgestreute Strahlung von nanotexturierten Solarzellen in Abhängigkeit der Probenposition gemessen und mit Hilfe von spektraler Interferometrie ausgewertet. Räumlich variierende Resonanzpeaks in den aufgenommenen Spektren deuteten auf die Bildung von lokalisierten photonischen Moden innerhalb der nanotexturierten Absorberschichten hin. Um die Moden räumlich getrennt voneinander identifizieren zu können, wurde anschließend die Methode der kohärenten zweidimensionalen (2D) Nanoskopie angewandt, die eine hohe räumliche Auflösung < 40 nm ermöglichte. In einer Nanoskopie-Messung an einer modifizierten Solarzellen-Probe mit einer freiliegenden nanotexturierten a-Si:H Absorberschicht wurde eine Elektronenemission beobachtet, die von räumlich begrenzten Hot Spots dominiert war und das Vorhandensein von lokalisierten Moden bestätigte. Über das Fitten der lokalen 2D Nanospektren an den Positionen der Hot Spots wurden die Resonanzfrequenzen und die Kohärenzlebenszeiten der Moden bestimmt. Die ermittelten Werte für die Lebenszeiten lagen zwischen 50 fs und 130 fs. Mit Hilfe eines Modells für thermionische Elektronenemission konnte die lokal absorbierte Energiedichte bestimmt und damit die Lokalisierungslänge der photonischen Moden auf etwa 1 μm abgeschätzt werden. Zudem konnte die Lokalisierung über die abgeschätzte Lokalisierungslänge und eine zusätzliche Datenauswertung der zurückgestreuten Spektren als starke Lokalisierung, die sogenannte Anderson-Lokalisierung, klassifiziert werden. Auf der Basis der experimentellen Ergebnisse wurde daher geschlussfolgert, dass die verstärkte Absorption von Nahinfrarotlicht in Silizium-Dünnschicht-Solarzellen mit nanotexturierten Grenzschichten durch die Bildung von stark lokalisierten photonischen Moden innerhalb der ungeordneten Absorberschichten verursacht wird. Das einfallende Nahinfrarotlicht wird in diesen langlebigen Moden gefangen, bis es schließlich irgendwann absorbiert wird. In Kaptiel 5 wurde eine neuartige plasmonische Struktur vorgestellt und sowohl in der Theorie als auch experimentell untersucht. Die Struktur besteht aus einer elliptischen Kavität, in der sich zwei räumlich getrennte whispering gallery mode (WGM) Nanoantennen befinden. Das Ziel war es nun, einen periodischen langreichweitigen Energietransfer zwischen beiden Nanoantennen zu realisieren. Zuerst wurde die Struktur mit Hilfe von finite-difference time-domain (FDTD) Simulationen darauf optimiert, eine starke Kopplung zwischen den lokalisierten Antennenmoden und der räumlich ausgedehnten Kavitätsmode zu erreichen. Die geometrischen Parameter der Antennen und der Kavität wurden getrennt voneinander so eingestellt, dass sowohl die m="0" Antennenmode als auch die Kavitätsmode bei λ="800 nm" resonant waren. Ein hoher räumlicher Modenüberlapp wurde dadurch erzielt, dass die beiden Antennen jeweils in die Brennpunkte der elliptischen Kavität positioniert wurden. Die daraus resultierende Distanz zwischen den Antennenzentren war dadurch mehr als doppelt so hoch wie die Resonanzwellenlänge der Moden. Aufgrund starker Kopplung war in der spektralen Antwort der optimierten Struktur eine Energieaufspaltung der Antennen- und der Kavitätsmode in drei getrennte hybridisierte Eigenmoden innerhalb eines Energiebereichs von ca. 90 meV zu sehen. Die Antwortfunktionen konnten sehr gut mit Hilfe eines einfachen Modells aus drei gekoppelten Lorentz-Oszillatoren reproduziert werden. Im Zeitraum wurde für eine Einfach-Puls-Anregung der Struktur ein ozillatorischer Antennen-Energietransfer mit einer Periode von 86 fs und einer Energietransfer-Effizienz von ungefähr 7% beobachtet. Für die Experimente wurden Strukturen mit Kavitäten und Antennen unterschiedlicher Größe über focused-ion-beam (FIB) milling hergestellt. Es wurden zeitaufgelöste Korrelationsmessungen durchgeführt, wobei zwei Femtosekundenlaserpulse zur Anregung und Photoemissionselektronen-Mikroskopie (PEEM) für die Detektion verwendet wurden. Dies ermöglichte sowohl eine hohe zeitliche als auch eine hohe räumliche Auflösung. In den Messungen wurden lokale Korrelationssignale an Antennen in resonanten Strukturen, sprich, Strukturen mit deutlich erhöhter Photoemission an beiden Antennenpositionen, untersucht und mit Hilfe des gekoppelten Lorentz-Oszillatormodells rekonstruiert. Die daraus ermittelte spektrale Antwort zeigte getrennte Peaks und bestätigte damit die Bildung hybridisierter Eigenmoden aufgrund starker Kopplung. In einer nachfolgenden Simulation für Einfach-Puls-Anregung wurde ein einmaliger Hin-und-Her-Energietransfer zwischen den Antennen mit einer Energietransfereffizienz von ca. 10% beobachtet. Ausgehend von den theoretischen und experimentellen Ergebnissen wurde gezeigt, dass in der hier vorgestellten Struktur ein periodischer langreichweitiger Energietransfer zwischen den zwei Nanoantennen möglich ist. Zudem ermöglicht es das gekoppelte Oszillatoren-Modell, im Detail zu untersuchen, wie spezifische Eigenschaften der Struktur die Dynamik des zeitlichen elektrischen Feldes bzw. der Energieumverteilung innerhalb der Struktur beeinflussen. Dies kann dazu genutzt werden, die Energietransfer-Effizienz der Struktur noch weiter zu optimieren. Zukünftige Anwendungsmöglichkeiten finden sich im Bereich der ultraschnellen plasmonischen Nanoschaltkreise. Darüberhinaus kann die Struktur genutzt werden, um eine effiziente SPP-vermittelte starke Kopplung zwischen weit voneinder entfernten Quantenemittern zu erreichen. In Kapitel 6 wurde untersucht, wie die lokale Verstärkung der optischen Chiralität im Nahfeld plasmonischer Nanostrukturen durch das Einstellen der Fernfeld-Polarisation des einfallenden Lichts optimiert werden kann. Zu diesem Zweck wurde ein analytischer Ausdruck hergeleitet, welcher die Berechnung der optimalen Fernfeld-Polarisationen für jede beliebige Nanostruktur-Geometrie ermöglicht. Dabei versteht man unter den optimalen Fernfeld-Polarisationen diejenigen zwei, welche zur höchsten positiven und negativen lokalen optischen Chiralität führen. Da diese von der lokalen optischen Antwort der jeweiligen Nanostruktur abhängig sind, lassen sie sich sowohl als Funktion der Frequenz ω als auch als Funktion der Position r beschreiben. Die Elliptizitäten der beiden optimalen Fernfeld-Polarisationen unterscheiden sich nur in ihrem Vorzeichen, also ihrer Rotationsrichtung im Zeitraum, und der Winkel zwischen ihren Orientierungen (entspricht dem Winkel zwischen den Hauptachsen ihrer Ellipsen) beträgt ±π/"2" . Die Händigkeit der optimalen lokalen optischen Chiralität kann über das Schalten zwischen den optimalen Fernfeld-Polarisationen hin und her gewechselt werden. Mit Hilfe von numerischen Simulationen wurde für zwei konkrete Nanostrukturen beispielhaft demonstriert, dass für die lokale optische Chiralität Werte erreicht werden können, die deutlich höher sind als die optischen Chiralitätswerte von zirkular polarisiertem Licht im freien Raum ─ die höchstmöglichen Werte für optische Chiralität im freien Raum. Die entsprechenden optimalen Fernfeld-Polarisationen haben sich dabei von linearer und zirkularer Polarisation unterschieden und variierten mit der Frequenz. Die Anwendung von Femtosekunden-Polarisationspulsformung bietet die Möglichkeit, die lokale optische Chiralität kohärent über einen kontinuierlichen Frequenzbereich zu kontrollieren. Außerdem können Symmetrieeigenschaften der Nanostrukturen genutzt werden, um zu bestimmen, welche Fernfeld-Polarisation optimal ist. Die theoretischen Erkenntnisse können zukünftige experimentelle Studien über die lokale Verstärkung der optischen Chiralität beeinflussen. Das Einstellen der Fernfeld-Polarisation des einfallenden Lichts stellt ein vielversprechendes Hilfsmittel dar, um chiral-spezifische Wechselwirkungen von lokalen elektromagnetischen Feldern mit molekularen und anderen Quantensystemen in der Nähe plasmonischer Nanostrukturen zu verstärken. Die hier gezeigte Methode kann Anwendung finden in der chiralen Erkennung adsorbierter Moleküle, in der zeitaufgelösten chiral-sensitiven Spektroskopie und in der chiralen Quantenkontrolle. Abschließend lässt sich festhalten, dass jedes der lokalisierten Lichtphänomene, die in dieser Arbeit untersucht wurden ─ die verstärkte lokale Absorption von Nahinfrarotlicht aufgrund der Bildung von lokalisierten photonischen Moden, der periodische langreichweitige Energietransfer zwischen zwei Nanoantennen in einer plasmonischen elliptischen Kavität und die Optimierung der lokalen Verstärkung der optischen Chiralität über das Einstellen der Fernfeld-Polarisation des einfallenden Lichts ─ neue Perspektiven eröffnen kann für eine Vielzahl von zukünftigen Anwendungsmöglichkeiten. KW - Ultrakurzzeitspektroskopie KW - Kohärente Optik KW - Chiralität KW - Nahfeldoptik KW - Ultrakurzzeitspektroskopie KW - Nahfeldoptik KW - Kohärente 2D Spektroskopie KW - Oberflächenplasmonresonanz KW - Zirkulardichroismus Spektroskopie KW - Ultrafast spectroscopy KW - Nano-optics KW - Coherent 2D spectroscopy KW - Surface plasmons KW - Circular dichroism spectroscopy Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-150681 ER - TY - THES A1 - Hartleb, Holger Edgar Heinz Erich T1 - Spektroelektrochemische Untersuchung von halbleitenden Kohlenstoffnanoröhren T1 - Spectroelectrochemical investigation of semiconducting carbon nanotubes N2 - Der Schwerpunkt dieser Arbeit lag auf der spektroelektrochemischen Untersuchung von halbleitenden SWNTs. Hierbei wurden erstmalig Absorptions- und Photolumineszenzspektren ein und derselben SWNT-Probe simultan unter elektrochemischer Potentialkontrolle aufgenommen. Hierbei konnte gezeigt werden, dass die Messmethode einen entscheidenden Einfluss auf die erhaltene Bandlücke besitzt und der in der Literatur geprägte Begriff der Elektrochemischen Bandlücke aufgrund einer fehlenden allgemeingültigen Definition problembehaftet ist. So ergeben Photolumineszenzmessungen im Vergleich zu Raman- oder Absorptionsmessungen die kleinste Bandlücke. Dies wurde auf die diffusionskontrollierte Löschung der Exzitonen an Ladungszentren zurückgeführt. Weiterhin wurden die optischen Spektren von SWNTs unter Ladungseinfluss analysiert und die zugrundeliegenden Änderungen der elektronischen Eigenschaften diskutiert. Neben SWNTs wurden die Übergangsmetalldichalkogenide MoS2 und WS2 spektroelektrochemisch untersucht. Auffallend im Vergleich zu den Messungen an SWNTs war der breite Potentialbereich, über den die Abnahme der exzitonischen Signale zu beobachten war. Dies kann auf die unterschiedliche elektronische Struktur von TMDs und SWNTs und den geringen Anteil von Einzellagen in den TMD-Proben zurückgeführt werden. Weiterhin konnte in den Absorptionsspektren unter Ladungseinfluss ein Signal beobachtet werden, welches auf die Entstehung von Trionen hindeutet. In einem weiteren Teilprojekt wurde eine elektrochemische Zelle zur Untersuchung von metallischen SWNT-Filmen als Elektrode für die Wasserstoffproduktion entwickelt und getestet. Hierbei gelang es die von Das et al. publizierte Aktivierung von SWNTs mit Schwefelsäure erfolgreich nachzuvollziehen und einen katalytischen Effekt der SWNTs auf die Wasserstoffentwicklung zu beobachten. N2 - The main focus of this work was on spectroelectrochemical studies of semiconducting SWNTs. For the first time, absorption and photoluminescence spectra of one and the same sample were recorded simultaneous under electrochemical control of the potential. It was shown, that the optical method has a significant influence on the resulting band gap. Therefore, the term electrochemical band gap, which has developed in literature, is problematic due to a missing general definition. Photoluminescence measurements yield the smallest band gap in comparison to Raman or absorption measurements. This was attributed to the diffusion limited quenching of excitons at charges. Furthermore, the optical spectra of charged SWNTs were analysed and the underlying electronic changes were discussed. In addition to SWNTs, the transition metal dichalcogenides MoS2 and WS2 were studied with spectroelectrochemical methods as well. Striking, when compared to the measurements of SWNTs, was the broad potential range during which the decrease of the excitonic signals could be observed. This can be attributed to the different electronic structures of TMDs and SWNTs and the small amount of mono layers in the TMD samples. Under the influence of charges it was furthermore possible to observe a signal in the absorption spectra, which points to the formation of trions. In the last part of this work an electrochemical cell for the investigation of hydrogen production at metallic SWNT electrodes was developed and tested. The activation procedure of SWNTs with sulphuric acid, which was published by Das et al., was successfully reproduced, and a catalytic effect on the hydrogen production by the SWNTs was observed. KW - Kohlenstoff-Nanoröhre KW - Photolumineszenzspektroskopie KW - Absorptionsspektroskopie KW - Spektroelektrochemie KW - Übergangsmetalldichalkogenide KW - Elektrolyse KW - elektrochemische Bandlücke Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116628 ER - TY - THES A1 - Bolze, Tom T1 - Photodynamics of a fluorescent tetrazolium salt and shaping of femtosecond Laguerre-Gaussian laser modes in time and space T1 - Photodynamik eines fluoreszierenden Tetrazoliumsalzes und Formung von Femtosekunden Laguerre-Gauss Lasermoden in Raum und Zeit N2 - This thesis will outline studies performed on the fluorescence dynamics of phenyl-benzo- [c]-tetrazolo-cinnolium chloride (PTC) in alcoholic solutions with varying viscosity using time-resolved fluoro-spectroscopic methods. Furthermore, the properties of femtosecond Laguerre-Gaussian (LG) laser pulses will be investigated with respect to their temporal and spatial features and an approach will be developed to measure and control the spatial intensity distribution on the time scale of the pulse. Tetrazolium salts are widely used in biological assays for their low oxidation and reduction thresholds and spectroscopic properties. However, a neglected feature in these applications is the advantage that detection of emitted light has over the determination of the absorbance. To corroborate this, PTC as one of the few known fluorescent tetrazolium salts was investigated with regard to its luminescent features. Steady-state spectroscopy revealed how PTC can be formed by a photoreaction from 2,3,5-triphenyl-tetrazolium chloride (TTC) and how the fluorescence quantum yield behaved in alcoholic solvents with different viscosity. In the same array of solvents time correlated single photon counting (TCSPC) measurements were performed and the fluorescence decay was investigated. Global analysis of the results revealed different dynamics in the different solvents, but although the main emission constant did change with the solvent, taking the fluorescence quantum yield into consideration resulted in an independence of the radiative rate from the solvent. The non-radiative rate, however, was highly solvent dependent and responsible for the observed solvent-related changes in the fluorescence dynamics. Further studies with the increased time resolution of femtosecond fluorescence upconversion revealed an independence of the main emission constant from the excitation energy, however the dynamics of the cooling processes prior to emission were prolonged for higher excitation energy. This led to a conceivable photoreaction scheme with one emissive state with a competing non-radiative relaxation channel, that may involve an intermediate state. LG laser beams and their properties have seen a lot of scientific attention over the past two decades. Also in the context of new techniques pushing the limit of technology further to explore new phenomena, it is essential to understand the features of this beam class and check the consistency of the findings with theoretical knowledge. The mode conversion of a Hermite-Gaussian (HG) mode into a LG mode with the help of a spiral phase plate (SPP) was investigated with respect to its space-time characteristics. It was found that femtosecond LG and HG pulses of a given temporal duration share the same spectrum and can be characterized using the same well-established methods. The mode conversion proved to only produce the desired LG mode with its characteristic orbital angular momentum (OAM), that is conserved after frequency doubling the pulse. Furthermore, it was demonstrated that temporal shaping of the HG pulse does not alter the result of its mode-conversion, as three completely different temporal pulse shapes produced the same LG mode. Further attention was given to the sum frequency generation of fs LG beams and dynamics of the interference of a HG and a LG pulse. It was found that if both are chirped with inverse signs the spatial intensity distribution does rotate around the beam axis on the time scale of the pulse. A strategy was found that would enable a measurement of these dynamics by upconversion of the interference with a third gate pulse. The results of which are discussed theoretically and an approach of an experimental realization had been made. The simulated findings had only been reproduced to a limited extend due to experimental limitations, especially the interferometric stability of the setup. N2 - Die vorliegende Arbeit wird eine Übersicht über die durchgeführten Studien, die die Fluoreszenzdynamiken von Phenyl-Beno-[c]-Tetrazolo-Cinnolinum Chlorid (PTC) in alkoholischen Lösungsmitteln verschiedener Viskosität mit Hilfe von zeitaufgelöster Fluoreszenzspektroskopie untersuchen, liefern. Des weiteren werden die Eigenschaften von Laserpulsen mit Laguerre-Gauss (LG) strahlprofilen in Hinblick auf ihre räumlichen und zeitlichen Charakteristika beleuchtet und ein Ansatz entwickelt, die räumliche Intensitätsverteilung zu messen und auf der Zeitskala der Pulse zu kontrollieren. Tetrazoliumsalze sind aufgrund ihrer niedrigen Oxidations- und Reduktionspotentiale und ihrere spektroskopischen Eigenschaften weit verbreitet in biologischen Assays. Allerdings wird in diesen Anwendungen der Vorteil, den Messungen der Lichtesmission gegenüber der Lichtabsorption haben, vernachlässigt. Um das zu ergründen wurde PTC, als eines der wenigen bekannten Tetrazoliumsalze welches fluoresziert, im Hinblick auf seine lichtemittierenden Eigenschaften untersucht. Statische Spektroskopie wies nach, wie PTC aus einer Photoreaktion aus 2,3,5-Triphenyl-Tetrazoliumchlorid (TTC) erzeugt werden konnte und wie sich die Fluoreszenzquantenausbeute in alkoholischen Lösungsmitteln mit unterschiedlicher Viskosität verhält. In den gleichen Lösungsmitteln wurden zeitkorreliertes Einzelphotonen Zählen (TCSPC) durchgeführt und der Fluoreszenzzerfall untersucht. Die globale Analyse der Ergebnisse hat gezeigt, das die Dynamiken sich in den verschiedenen Lösungsmitteln unterscheiden, die Konstante, welche die Hauptemission beschreibt, sich in den unterschiedlichen Lösungsmitteln zwar verändert, aber wenn die Fluoreszenzquantenausbeute auch berücksichtigt wird, zu Raten der Lichtemission führte, die unabhängig vom Lösungsmittel sind. Die nichststrahlende Rate allerdings hängt stark vom Lösungsmittel ab und ist auch verantwortlich für die unterschiedlichen Dynamiken in den verschiedenen Lösungen. Weitere Studien, die mit der höheren zeitlichen Auflösung der Fluoreszenzaufkonversionsmethode durchgeführt wurden, ergaben, dass die Hauptfluoreszenz unabhängig von der Anregungsenergie ist, aber die Relaxationsprozesse, welche vor der Lichtaussendung stattfinden, mit höherer Anregungsenergie länger dauern. Die Ergebnisse mündeten in ein denkbares Photoreaktionsschema, das durch einen strahlenden Zustand gekennzeichnet ist und einen konkurrierenden nichtstrahlenden Zerfallspfad besitzt, welcher einen kurzlebigen Zwischenzustand besitzen könnte. Laguerre-Gauss Laserstrahlen und ihre Eigensachften haben in den letzten zwei Jahrzehnten viel wissenschaftliche Aufmerksamkeit erhalten. Auch im Hinblick auf neue Methoden, die die technologische Machbarkeitsgrenze verschieben, um neue Phänomene zu erforschen, ist es notwendig, das Verständnis über diese Strahlklasse zu erweitern und die Konsistenz der Resultate mit dem theoretischen Wissen abzugleichen und in Einklang zu bringen. Die Konversion einer Hermite-Gauss (HG) Mode in eine LG Mode, mit Hilfe einer spiralen Phasenplatte (SPP), wurde im Hinblick auf ihre räumlich-zeitlichen Charakteristika untersucht. Es wurde herausgefunden, dass Femtosekunden HG und LG Pulse einer bestimmten zeitlichen Dauer das gleiche Spektrum besitzen und durch die gleichen etablierten Methoden charakterisiert werden können. Es stellte sich heraus, dass die Modenkonversion nur die gewünschte LG Mode mit ihrem charakeristischen orbitalen Drehimpuls (OAM), der bei Frequenzverdopplung erhalten bleibt, erzeugt. Außerdem wurde demonstriert, dass ein zeitlich geformter Femtosekunden HG Puls nicht das Resultat der Modenkonversion beeinflusst, da zeitlich völlig verschieden strukturierte Pulse die gleiche LG Mode erzeugen. Des weiteren wurde die Summenfrequenz von fs LG Strahlen und die Dynamik der Interferenz eines HG und eines LG Pulses beleuchtet. Es wurde gefunden, dass wenn beide entgegengesetzt gechirpt sind, die räumliche Intensitätsverteilung auf der Zeitskala der Pulse um die Strahlachse rotiert. Theoretisch wurde ein Vorgehen entwickelt, das eine Messung dieser Dynamik, durch die Aufkonversion der Interferenz mit einem dritten Gate-Puls, ermöglicht. Die Ergebnisse dieser Methode wurden auf theoretischer Ebende diskutiert und ein Versuch einer experimentellen Realisierung wurde unternommen. Allerdings konnten die gemessenen Resultate, aufgrund experimenteller Limitierungen insbesondere der interferometrischen Stabilität, die theoretischen Erwartungen nur bedingt demonstrieren. KW - Tetrazoliumsalze KW - Fluoreszenz KW - Femtosekundenlaser KW - Zeitauflösung KW - Impulsformung KW - Lasermode KW - Laguerre-Gauss Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-160902 ER - TY - THES A1 - Götz, Sebastian Reinhold T1 - Nonlinear spectroscopy at the diffraction limit: probing ultrafast dynamics with shaped few-cycle laser pulses T1 - Nichtlineare Spektroskopie am Beugungslimit: Untersuchung ultraschneller Dynamiken mit geformten Laserpulsen N2 - An experimental setup for probing ultrafast dynamics at the diffraction limit was developed, characterized and demonstrated in the scope of the thesis, aiming for optical investigations while simultaneously approaching the physical limits on the length and timescale. An overview of this experimental setup was given in Chapter 2, as well as the considerations that led to the selection of the individual components. Broadband laser pulses with a length of 9.3 fs, close to the transform limit of 7.6 fs, were focused in a NA = 1.4 immersion oil objective, to the diffraction limit of below 300 nm (FWHM). The spatial focus shape was characterized with off-resonance gold nanorod scatterers scanned through the focal volume. For further insights into the functionality and limitations of the pulse shaper, its calibration procedure was reviewed. The deviations between designed and experimental pulse shapes were attributed to pulse-shaper artifacts, including voltage-dependent inter-layer as well as intra-layer LCD-pixel crosstalk, Fabry-Pérot-type reflections in the LCD layers, and space-time coupling. A pixel-dependent correction was experimentally carried out, which can be seen as an extension of the initial calibration to all possible voltage combinations of the two LCD layers. The capabilities of the experimental setup were demonstrated in two types of experiments, targeting the nonlinearity of gold (Chapter 3) as well as two-dimensional spectroscopy at micro-structured surfaces (Chapter 4). Investigating thin films, an upper bound for the absolute value for the imaginary part of the nonlinear refractive index of gold could be set to |n′′ 2 (Au)| < 0.6·10−16 m2/W, together with |n′ 2 (Au)| < 1.2·10−16 m2/W as an upper bound for the absolute value of the real part. Finite-difference time-domain simulations on y-shaped gold nanostructures indicated that a phase change of ∆Φ ≥ 0.07 rad between two plasmonic modes would induce a sufficient change in the spatial contrast of emission to the far-field to be visible in the experiment. As the latter could not be observed, this value of ∆Φ was determined as the upper bound for the experimentally induced phase change. An upper bound of 52 GW/cm2 was found for the damage threshold. In Chapter 4, a novel method for nonlinear spectroscopy on surfaces was presented. Termed coherent two-dimensional fluorescence micro-spectroscopy, it is capable of exploring ultrafast dynamics in nanostructures and molecular systems at the diffraction limit. Two-dimensional spectra of spatially isolated hotspots in structured thin films of fluorinated zinc phthalocyanine (F16ZnPc) dye were taken with a 27-step phase-cycling scheme. Observed artifacts in the 2D maps were identified as a consequence from deviations between the desired and the experimental pulse shapes. The optimization procedures described in Chapter 2 successfully suppressed the deviations to a level where the separation from the nonlinear sample response was feasible. The experimental setup and methods developed and presented in the scope of this thesis demonstrate its flexibility and capability to study microscopic systems on surfaces. The systems exemplarily shown are consisting of metal-organic dyes and metallic nanostructures, represent samples currently under research in the growing fields of organic semiconductors and plasmonics. N2 - Ein experimenteller Aufbau zur Untersuchung von ultraschnellen Dynamiken am Beugungslimit wurde in dieser Arbeit entwickelt, charakterisiert und demonstriert. Sie hatte zum Ziel, im Rahmen von optischen Beobachtungen gleichzeitig an die physikalischen Grenzen von Längen- und Zeitskalen zu gehen Es wurde ein Überblick über den verwendeten experimentellen Aufbau gegeben, zusammen mit den Überlegungen, die zur Auswahl der einzelnen Komponenten geführt haben. Für die Pulslänge der spektral breitbandigen Laserpulse wurde auf 9.3 fs gemessen, was nahe an der transformlimitierten Dauer von 7.6 fs liegt. Im beugungslimitierten Fokus eines Immersionsölobjektivs mit einer numerischen Apertur von 1.4 konnte das Licht räumlich auf eine Halbwertsbreite von unter 300 nm komprimiert werden. Der Fokus des Mikroskopobjektivs wurde mit Hilfe der Streuung von nicht resonanten Nanopartikeln aus Gold ausgemessen, indem diese räumlich durch den Fokus gerastert wurden. Zur weiteren Untersuchung des Funktionsumfangs und der Grenzen des benutzten Pulsformers wurde dessen Eichprozedur geprüft. Die Abweichungen zwischen gewünschten und tatsächlich angelegten Pulsformen wurden auf Artefakte des Pulsformers zurückgeführt. Diese Artefakte beinhalten eine spannungsabhängige Beeinflussung der LCD-Pixel sowohl zwischen benachbarten Pixeln einer Schicht als auch zwischen Pixeln unterschiedlicher Schichten. Eine pixelabhängige Korrektur wurde implementiert, die eine Erweiterung der ursprünglichen Kalibrierung auf alle möglichen Spannungskombinationen der LCD-Pixel darstellt. Die Möglichkeiten experimentellen Aufbaus wurden mit zwei Arten von Experimenten demonstriert: Messungen zur Bestimmung des nichtlinearen Brechungsindexes von Gold (Kapitel 3) sowie zweidimensionale Spektroskopie an mikrostrukturierten Oberflächen (Kapitel 4). Für den nichtlinearen Brechungsindexes von Gold konnte an Dünnschichten eine obere Grenze von |n′′ 2 (Au)| < 0.6·10−16 m2/W für den Betrag des Imaginärteils und |n′ 2 (Au)| < 1.2·10−16 m2/W für den Betrag des Realteils festgesetzt werden. Simulationen mit der Finite-Differenzen-Methode an Y-förmige Nanostrukturen aus Gold zeigten, dass eine Phasenänderung von ∆Φ ≥ 0.07 rad zwischen zwei plasmonischen Moden ausreichend für eine experimentell sichtbare Kontraständerung der Fernfeldabstrahlung wäre. Da letztere nicht beobachtet werden konnte, wurde dieser Wert für ∆Φ als obere Grenze für die experimentell eingeführte Phasenänderung festgesetzt. Für die Zerstörschwelle wurde eine obere Grenze von 52 GW/cm2 gefunden. In Kapitel 4, wurde eine neue Methode für nichtlineare Spektroskopie an Oberflächen vorgestellt. Sie trägt den Namen ”Kohärente zweidimensionale Fluoreszenz-Mikrospektroskopie“ und eignet sich zur Untersuchung ultraschneller Dynamiken in Nanostrukturen und molekularen Systemen am Beugungslimit. Es wurden 2D-Spektren von räumlich isolierten Hotspots einer strukturierten Zink-Phthalocyanin (F16ZnPc) Dünnschicht mit 27-fachem Phasecycling aufgenommen. Als Grund für Artefakte in den 2D-Karten wurden Abweichungen zwischen den gewünschten und experimentellen Pulsformen identifiziert. Durch die in Kapitel 2 vorgestellten Optimierungen konnten die Abweichungen allerdings so stark reduziert werden, dass deren Trennung von der nichtlinearen Antwort der Probe möglich wurde. Die Flexibilität und der Funktionsumfang zur Analyse mikroskopischer Systeme der im Rahmen dieser Arbeit entwickelten experimentellen Aufbauten und Methoden wurde demonstriert. Repräsentativ für die wachsenden Forschungsfelder der organischen Halbleiter und der Plasmonik wurden exemplarisch Systeme bestehend aus metall-organischen Farbstoffen und metallischen Nanostrukturen untersucht. KW - Ultrakurzzeitspektroskopie KW - Fluoreszenzspektroskopie KW - Fourier-Spektroskopie KW - Nanostruktur KW - Konfokale Mikroskopie KW - Coherent Multidimensional Spectroscopy KW - Laser Pulse Shaping KW - LCD Pulse Shaper KW - Surface Plasmon KW - Kohärente Multidimensionale Spektroskopie KW - Laserpulsformung KW - LCD Pulsformer KW - Oberflächenplasmon Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-192138 ER - TY - THES A1 - Schwarz, Christoph Benjamin T1 - Full vector-field control of femtosecond laser pulses with an improved optical design T1 - Vollständige Kontrolle des Vektorfelds von Femtosekunden-Laserpulsen mit einem verbesserten optischen Design N2 - The controlled shaping of ultrashort laser pulses is a powerful technology and applied in many laser laboratories today. Most of the used pulse shapers are only able to produce linearly polarized pulses shaped in amplitude and phase. Some devices are also capable of producing limited time-varying polarization profiles, but they are not able to control the amplitude. However, for some state-of-the-art non-linear time-resolved methods, such as polarization-enhanced two-dimensional spectroscopy, the possibility of controlling the amplitude and the polarization simultaneously is desirable. Over the last years, different concepts have been developed to overcome these restrictions and to manipulate the complete vector-field of an ultrashort laser pulse with independent control over all four degrees of freedom - phase, amplitude, orientation, and ellipticity. The aim of this work was to build such a vector-field shaper. While the basic concept used for our setup is based on previous designs reported in the literature, the goal was to develop an optimized optical design that minimizes artifacts, allowing for the generation of predefined polarization pulse sequences with the highest achievable accuracy. In Chapter 3, different approaches reported in the literature for extended and unrestricted vector-field control were examined and compared in detail. Based on this analysis, we decided to follow the approach of modulating the spectral phase and amplitude of two perpendicularly polarized pulses independently from each other in two arms of an interferometer and recombining them to a single laser pulse to gain control over the complete vector field. As described in Chapter 4, the setup consists of three functional groups: i) an optical component to generate and recombine the two polarized beams, ii) a 4f setup, and iii) a refracting telescope to direct the two beams under two different angles of incidence onto the grating of the 4f setup in a common-path geometry. This geometry was chosen to overcome potential phase instabilities of an interferometric vector-field shaper. Manipulating the two perpendicularly polarized pulses simultaneously within one 4f setup and using adjacent pixel groups of the same liquid-crystal spatial light modulator (LC SLM) for the two polarizations has the advantages that only a single dual-layer LC SLM is required and that a robust and compact setup was achieved. The shaping capabilities of the presented design were optimized by finding the best parameters for the setup through numerical calculations to adjust the frequency distributions for a broad spectrum of 740 – 880 nm. Instead of using a Wollaston prism as in previous designs, a thin-film polarizer (TFP) is utilized to generate and recombine the two orthogonally polarized beams. Artifacts such as angular dispersion and phase distortions along the beam profile which arise when a Wollaston prism is used were discussed. Furthermore, it was shown by ray-tracing simulations that in combination with a telescope and the 4f setup, a significant deformation of the beam profile would be present when using a Wollaston prism since a separation of the incoming and outgoing beam in height is needed. The ray-tracing simulations also showed that most optical aberrations of the setup are canceled out when the incoming and outgoing beams propagate in the exact same plane by inverting the beam paths. This was realized by employing a TFP in the so-called crossed-polarizer arrangement which has also the advantage that the polarization-dependent efficiencies of the TFP and the other optics are automatically compensated and that a high extinction ratio in the order of 15000:1 is reached. Chromatic aberrations are, however, not compensated by the crossed-polarizer arrangement. The ray-tracing simulations confirmed that these chromatic aberrations are mainly caused by the telescope and not by the cylindrical lens of the 4f setup. Nevertheless, in the experimentally used wavelength range of 780 – 816 nm, only minor distortions of the beam profile were observed, which were thus considered to be negligible in the presented setup. The software implementation of the pulse shaper was reviewed in Chapter 5 of this thesis. In order to perform various experiments, five different parameterizations, accounting for the extended shaping capabilities of a vector-field shaper, were developed. The Pixel Basis, the Spectral Basis, and the Spectral Taylor Basis can generally be used in combination with an optimization algorithm and are therefore well suited for quantum control experiments. For multidimensional spectroscopy, the Polarized Four-Pulse Basis was established. With this parameterization pulse sequences with up to four subpulses can be created. The polarization state of each subpulse can be specified and the relative intensity, phase, and temporal delay between consecutive subpulses can be controlled. In addition, different software programs were introduced in Chapter 5 which are required to perform the experiments conducted in this work. The experimental results were presented in Chapter 6. The frequency distribution across the LC SLM was measured proving that the optimal frequency distribution was realized experimentally. Furthermore, the excellent performance of the TFP was verified. In general, satellite pulses are emitted from the TFP due to multiple internal reflections. Various measurements demonstrated that these pulses are temporally separated by at least 4.05 ps from the main pulse and that they have vanishing intensity. The phase stability between the two arms of the presented common-path setup σ = 28.3 mrad (λ/222) over 60 minutes. To further improve this stability over very long measurement times, an on-the-fly phase reduction and stabilization (OPRAS) routine utilizing the pulse shaper itself was developed. This routine automatically produces a compressed pulse with a minimized relative phase between the two polarization components. A phase stability of σ = 31.9 mrad (λ/197) over nearly 24 hours was measured by employing OPRAS. Various pulse sequences exceeding the capabilities of conventional pulse shapers were generated and characterized. The experimental results proved that shaped pulses with arbitrary phase, amplitude, and polarization states can be created. In all cases very high agreement between the target parameters and the experimental data was achieved. For the future use of the setup also possible modifications were suggested. These are not strictly required, but all of them could further improve the performance and flexibility of the setup. Firstly, it was illustrated how a “dual-output” of the setup can be realized. With this modification it would be possible to use the main intensity of the shaped pulse for an experiment while using a small fraction to characterize the pulse or to perform OPRAS simultaneously. Secondly, the basic idea of replacing the telescope by focusing mirrors in order to eliminate the chromatic aberrations was presented. Regarding the different parameterizations for vector-field shaping, some modifications increasing the flexibility of the implemented bases and the realization of a von Neumann Basis for the presented setup were proposed. In future experiments, the vector-field shaper will be used in conjunction with a photoemission electron microscope (PEEM). This approach combines the temporal resolution provided by ultrashort laser pulses with the high spatial resolution gained by electron microscopy in order to perform two-dimensional spectroscopy and coherent control on nanostructures with polarization-shaped femtosecond laser pulses. In combination with other chiral-sensitive experimental setups implemented earlier in our group, the vector-field shaper opens up new perspectives for chiral femtochemistry and chiral control. The designed vector-field shaper meets all requirements to generate high-precision polarization-shaped multipulse sequences. These can be used to perform numerous polarization-sensitive experiments. Employing the OPRAS routine, a quasi-infinitely long phase stability is achieved and complex and elaborated long-term measurements can be carried out. The fact that OPRAS demands no additional hardware and that only a single dual-layer LC SLM and inexpensive optics are required allows the building of a vector-field shaper at comparatively low costs. We hope that with the detailed insights into the optical design process as well as into the software implementation given in this thesis, vector-field shaping will become a standard technique just as conventional pulse shaping in the upcoming years. N2 - Die gezielte Formung ultrakurzer Laserpulse ist eine leistungsstarke Technik, die heutzutage in vielen Laserlaboren eingesetzt wird. Die meisten Pulsformer können jedoch nur linear polarisierte, in Phase und Amplitude geformte Laserpulse erzeugen. Einige Pulsformer können auch sich zeitlich verändernde Polarisationszustände generieren. Die möglichen Polarisationszustände sind allerdings beschränkt und eine gleichzeitige Formung der Amplitude ist dann nicht mehr möglich. Für einige moderne, nicht-lineare, zeitaufgelöste, spektroskopische Methoden, wie z.B. die polarisationsunterstützte zweidimensionale Spektroskopie, ist aber die gleichzeitige Kontrolle über die Polarisation und die Amplitude erstrebenswert. In den letzten Jahren wurden verschiedene Konzepte entwickelt, um diese Beschränkungen zu überwinden und eine vollständige Kontrolle des Vektorfeldes über die vier Freiheitsgrade Phase, Amplitude, Orientierung und Elliptizität eines ultrakurzen Laserpulses zu erlangen. Ziel dieser Arbeit war es, einen solchen Vektorfeldformer zu konstruieren. Die Grundidee für das Design unseres Aufbaus basiert auf verschiedenen literaturbekannten Konzepten. Unser Ziel war es jedoch, ein optimiertes Design zu entwickeln, bei dem Formungsartefakte minimal sind und definierte polarisationsgeformte Mehrfachpulse mit der höchstmöglichen Genauigkeit erzeugt werden können. In Kapitel 3 wurden verschiedene vorherige Ansätze für die erweiterte und vollständige Vektorfeldkontrolle detailliert geprüft und verglichen. Basierend auf dieser Analyse haben wir uns dazu entschlossen, das Konzept eines interferometrischen Vektorfeldformers zu verwenden. Bei diesem werden die spektrale Phase und Amplitude zweier orthogonal polarisierter Pulse unabhängig voneinander in den zwei Armen eines Interferometers manipuliert und durch Überlagerung dieser zwei Pulse die vollständige Kontrolle über das Vektorfeld erlangt. Wie in Kapitel 4 beschrieben, besteht der Aufbau aus drei funktionellen Gruppen: i) einer optischen Komponente, um die zwei polarisierten Strahlen zu erzeugen und zu rekombinieren, ii) einem sog. 4f-Aufbau und iii) einem Linsenteleskop, um die zwei Strahlen unter unterschiedlichen Winkeln auf das Gitter des 4f-Aufbaus zu lenken, so dass beide Strahlen über dieselben Optiken propagieren. Diese Art der Strahlführung wurde gewählt, um die interferometrische Stabilität des Aufbaus zu verbessern. Beide Strahlen werden mit demselben 4f-Aufbau geformt, indem unterschiedliche benachbarte Pixelbereiche des Flüssigkristall-Lichtmodulators (LC SLM, engl. liquid-crystal spatial light modulator) für die zwei Polarisationskomponenten genutzt werden. Das hat den Vorteil, dass nur ein einzelnes zweilagiges LC SLM benötigt wird und so ein kompakter und robuster Aufbau realisiert werden konnte. Um die Frequenzverteilung für einen breiten Spektralbereich von 740 – 880 nm anzupassen, wurden die besten Parameter für den Aufbau anhand numerischer Berechnungen bestimmt, und somit die Formungsmöglichkeiten unseres Vektorfeldformers optimiert. Im Gegensatz zu anderen Designs wird ein Dünnschicht-Polarisator (TFP, engl. thin-film polarizer) anstelle eine Wollaston-Prismas verwendet, um die zwei senkrecht zueinander polarisierten Strahlen zu erzeugen und zu rekombinieren, da ein Wollaston-Prisma Artefakte wie Winkelchirp und eine über das Strahlprofiel variierende Phase verursacht. Bei Verwendung eines Wollaston-Prismas muss zudem der rekombinierte Strahl gegenüber des einfallenden Strahls in der Höhe verkippt werden, um beide räumlich trennen zu können. Raytracing-Simulationen haben gezeigt, dass dies in Kombination mit einem Teleskop und dem 4f-Aufbau zu einer erheblichen Deformierung des Strahlprofiles führt. Diese Simulationen haben auch gezeigt, dass die Abbildungsfehler des Aufbaus weitestgehend aufgehoben werden, wenn der eingehende und ausgehende Strahl in derselben Ebene propagieren und somit die Strahlwege genau invertiert werden. Dies konnte mit Hilfe des TFPs in einer Konfiguration, die gekreuzten Polarisatoren entspricht, realisiert werden. Diese Konfiguration hat zudem den Vorteil, dass dadurch die polarisationsabhängige Effizienz des TFPs und der anderen Optiken automatisch kompensiert wird und ein hohes Auslöschungsverhältnis in der Größenordnung 15000:1 erzielt wird. Die chromatische Aberration wird allerdings durch diese Polarisator-Konfiguration nicht aufgehoben. Durch Raytracing wurde bestätigt, dass diese primär durch das Teleskop verursacht wird und nicht durch die Zylinderlinse des 4f-Aufbaus. Allerdings wurden im experimentell genutzten Wellenlängenbereich von 780 – 816 nm nur geringe Störungen des Strahlprofiles beobachtet, die daher als vernachlässigbar angesehen wurden. Die softwareseitige Umsetzung der Vektorfeldkontrolle wurde in Kapitel 5 beschrieben. Um verschiedene Experimente durchführen zu können, wurden fünf Parametrisierungen entwickelt, bei denen die erweiterten Formungsmöglichkeiten eines Vektorfeldformers berücksichtigt wurden. Die Pixel Basis, die Spectral Basis und die Spectral Taylor Basis können zusammen mit einem Optimierungsalgorithmus verwendet werden und sind damit bestens für Experimente der Quantenkontrolle geeignet. Für die multidimensionale Spektroskopie wurde die Polarized Four-Pulse Basis eingeführt. Mit dieser Parametrisierung können Mehrfach-Pulssequenzen mit bis zu vier Pulsen erzeugt werden. Dabei kann der Polarisationszustand jedes Pulses vorgegeben und die relative Intensität, Phase und der zeitliche Abstand aufeinanderfolgender Pulse festgelegt werden. Zusätzlich wurden in Kapitel 5 verschieden Softwareprogramme vorgestellt, die für die in dieser Arbeit durchgeführten Experimente notwendig sind. Die experimentellen Ergebnisse wurden in Kapitel 6 präsentiert. Die Frequenzverteilung am LC SLM wurde gemessen und dabei bewiesen, dass die optimale Frequenzverteilung experimentell realisiert werden konnte. Des Weiteren wurden die exzellenten Eigenschaften des TFPs bestätigt. Im Allgemeinen emittiert der TFP Satellitenpulse durch interne Mehrfachreflexe. Mehrere Messungen haben jedoch gezeigt, dass diese Satellitenpulse einen zeitlichen Abstand von mindesten 4,05 ps vom Hauptpuls aufweisen und dass deren Intensität verschwindend gering ist. Die Phasenstabilität des Aufbaus beträgt σ = 28,3 mrad (λ/222) über einen Zeitraum von einer Stunde. Um die Stabilität für sehr lange Messzeiten zu verbessern, wurde eine Routine zur Phasenreduktion und zur Stabilisierung (OPRAS, engl. on-the-fly phase reduction and stabilization) unter Einbeziehung des Pulsformers entwickelt. Diese Routine erzeugt automatisiert einen komprimierten Puls mit minimierter relativer Phase zwischen den zwei Polarisationskomponenten und ermöglicht so eine Phasenstabilität von σ = 31,9 mrad (λ/197) über nahezu 24 Stunden. Ferner wurden verschieden Pulssequenzen erzeugt und charakterisiert, die die Möglichkeiten der konventionellen Pulsformung übertreffen. Die experimentellen Ergebnisse zeigen, dass geformte Pulse mit beliebigen Phasen, Amplituden und Polarisationszuständen generiert werden können. In allen Fällen wurde eine sehr hohe Übereinstimmung zwischen den Zielparametern und den experimentellen Daten erreicht. Für den zukünftigen Einsatz des Aufbaus wurden mögliche Erweiterungen vorgeschlagen. Diese sind nicht zwingend erforderlich, könnten aber die Leistung und die Einsatzmöglichkeiten des Vektorfeldformers weiter verbessern. Erstens wurde aufgezeigt, wie zwei Ausgangsstrahlen erzeugt werden könnten. Mit dieser Veränderung wäre es möglich, den größten Teil der Intensität des geformten Strahls für ein Experiment zu nutzen und gleichzeitig einen geringen Anteil für die Pulscharakterisierung oder für die Phasenstabilisierung mit der entwickelten Routine zu verwenden. Um chromatische Aberration zu vermeiden, wurde zweitens die prinzipielle Idee, das Linsenteleskop durch fokussierende Spiegel zu ersetzen, diskutiert. Für die verschiedenen erarbeiteten Parametrisierungen zur Vektorfeldkontrolle wurden einige Erweiterungen vorgeschlagen, um deren Einsatzmöglichkeiten noch weiter zu erhöhen. Außerdem wurde noch die Möglichkeit einer von Neumann Basis für den präsentierten Aufbau aufgezeigt. In zukünftigen Experimenten wird unser Aufbau mit einem Photoemissionselektronenmikroskop (PEEM) kombiniert. Dadurch kann die zeitliche Auflösung ultrakurzer Laserpulse mit der hohen räumlichen Auflösung der Elektronenmikroskopie vereint werden, was die zweidimensionale Spektroskopie und Quantenkontrolle von Nanostrukturen mit Hilfe polarisationsgeformter Femtosekunden-Laserpulse ermöglicht. Der Vektorfeldformer eröffnet in Verbindung mit anderen zuvor in unserer Gruppe implementierten chiral sensitiven Versuchsaufbauten neue Perspektiven für die chirale Femtochemie und Kontrolle. Der erarbeitete Vektorfeldformer erfüllt alle Anforderungen, um polarisationsgeformte Mehrfachpulssequenzen mit hoher Präzision zu erzeugen. Diese können verwendet werden, um zahlreiche polarisationssensitive Experimente durchzuführen. Durch die Stabilisierungsroutine OPRAS wird eine quasi unendlich lange Phasenstabilität des Aufbaus gewährleistet und komplexe und aufwendige Langzeitmessungen können ausgeführt werden. Die Tatsache, dass OPRAS keine weitere Hardware benötigt und der Aufbau nur einen einzigen zweilagigen Flüssigkristall-Lichtmodulator sowie ansonsten verhältnismäßig günstige Optiken erfordert, ermöglicht den Bau eines Vektorfeldformers zu vergleichsweise niedrigen Kosten. Wir hoffen, dass andere Forschergruppen von den detailreichen Einblicken in den Designprozess und die Software-Implementierung profitieren und dass die vollständige Vektorfeldformung in den nächsten Jahren genauso wie die konventionelle Pulsformung zu einer Standard-Technologie wird. KW - Ultrakurzer Lichtimpuls KW - vector-field shaper KW - vector-field control KW - polarization pulse shaping KW - femtosecond pulse shaping KW - Vektorfeldformer KW - Vektorfeldkontrolle KW - Polarisationspulsformung KW - Femtosekunden Pulsformung KW - Femtosekundenbereich KW - Impulsformung KW - Femtosekundenlaser Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142948 ER - TY - THES A1 - Razinskas, Gary T1 - Functional plasmonic nanocircuitry T1 - Funktionelle plasmonische Nanoschaltkreise N2 - In this work, functional plasmonic nanocircuitry is examined as a key of revolutionizing state-of-the-art electronic and photonic circuitry in terms of integration density and transmission bandwidth. In this context, numerical simulations enable the design of dedicated devices, which allow fundamental control of photon flow at the nanometer scale via single or multiple plasmonic eigenmodes. The deterministic synthesis and in situ analysis of these eigenmodes is demonstrated and constitutes an indispensable requirement for the practical use of any device. By exploiting the existence of multiple eigenmodes and coherence - both not accessible in classical electronics - a nanoscale directional coupler for the ultrafast spatial and spatiotemporal coherent control of plasmon propagation is conceived. Future widespread application of plasmonic nanocircuitry in quantum technologies is boosted by the promising demonstrations of spin-optical and quantum plasmonic nanocircuitry. N2 - In dieser Arbeit werden funktionelle plasmonische Schaltkreise als Schlüssel zur Revolutionierung modernster elektronischer und photonischer Schaltkreise in Bezug auf deren Integrationsdichte und Übertragungsbandbreite untersucht. Mit Hilfe numerischer Simulationen werden Bauelemente speziell für die Steuerung des Photonenflusses im Nanometerbereich mittels einzelner bzw. mehrerer plasmonischer Eigenmoden konzipiert. Die deterministische Synthese und Analyse solcher Eigenmoden wird aufgezeigt und stellt eine unverzichtbare Voraussetzung für die praktische Anwendung eines jeden Nanoschaltkreises dar. Durch die Existenz mehrerer Eigenmoden und Kohärenz - beide in der klassischen Elektronik nicht zugänglich - lässt sich ein nanoskaliger Richtkoppler für die ultraschnelle räumliche und räumlich-zeitliche kohärente Kontrolle der Plasmonenausbreitung entwerfen. Künftig werden plasmonische Schaltkreise aufgrund der vielversprechenden Demonstrationen von spinoptischen und quantenplasmonischen Schaltkreisen in Quantentechnologien weite Verbreitung finden. KW - Nanooptik KW - Plasmon KW - Ultrakurzer Lichtpuls KW - Nanostruktur KW - Wellenleiter KW - Integrated circuit KW - Ultrafast information processing KW - Surface plasmon KW - Mode propagation KW - Coherent control KW - Integriert-optisches Bauelement KW - Ultraschnelle Informationsverarbeitung KW - Oberflächenplasmon KW - Modenpropagation KW - Kohärente Kontrolle Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166917 ER - TY - THES A1 - Feichtner, Thorsten T1 - Optimal Design of Focusing Nanoantennas for Light : Novel Approaches: From Evolution to Mode-Matching T1 - Optimierung von Nano-Antennen zur Fokussierung von Licht: Neue Ansätze: Von Evolution zu Moden-Anpassung N2 - Optische Antennen arbeiten ähnlich wie Antennen für Radiowellen und wandeln elektromagnetische Strahlung in elektrische Wechselströme um. Ladungsdichteansammlungen an der Antennen-Oberfläche führen zu starken und lokalisierten Nahfeldern. Da die meisten optischen Antennen eine Ausdehnung von wenigen hundert Nanometern besitzen, ermöglichen es ihre Nahfelder, Licht auf ein Volumen weit unterhalb des Beugungslimits zu fokussieren, mit Intensitäten, die mehrere Größenordnungen über dem liegen, was man mit klassischer beugender und reflektierender Optik erreichen kann. Die Aufgabe, die Abstrahlung eines Quantenemitters zu maximieren, eines punktförmigen Objektes, welches einzelne Photonen absorbieren und emittieren kann, ist identisch mit der Aufgabe, die Feldintensität am Ort des Quantenemitters zu maximieren. Darum ist es erstrebenswert, den Fokus optischer Antennen zu optimieren Optimierte Radiofrequenz-Antennen, welche auf Größenordnungen von wenigen 100 Nanometern herunterskaliert werden, zeigen bereits eine gute Funktionalität. Jedoch liegen optische Frequenzen in der Nähe der Plasmafrequenz von den Metallen, die für optische Antennen genutzt werden und die Masse der Elektronen kann nicht mehr vernachlässigt werden. Dadurch treten neue physikalische Phänomene auf. Es entstehen gekoppelte Zustände aus Licht und Ladungsdichte-Schwingungen, die sogenannten Plasmonen. Daraus folgen Effekte wie Volumenströme und kürzere effektive Wellenlängen. Zusätzlich führt die endliche Leitfähigkeit zu thermischen Verluste. Das macht eine Antwort auf die Frage nach der optimalen Geometrie für fokussierende optische Antennen schwer. Jedoch stand vor dieser Arbeit der Beweis noch aus, dass es für optische Antennen bessere Alternativen gibt als herunterskalierte Radiofrequenz-Konzepte. In dieser Arbeit werden optische Antennen auf eine bestmögliche Fokussierung optimiert. Dafür wird ein Ansatz gewählt, welcher bei Radiofrequenz-Antennen für komplexe Anwendungsfelder (z.B. isotroper Breitbandempfang) schon oft Erfolg hatte: evolutionäre Algorithmen. Die hier eingeführte erste Implementierung erlaubt eine große Freiheit in Bezug auf Partikelform und Anzahl, da sie quadratische Voxel auf einem planaren, quadratischen Gitter beliebig anordnet. Die Geometrien werden in einer binären Matrix codiert, welche als Genom dient und somit Methoden wie Mutation und Paarung als Verbesserungsmechanismus erlaubt. So optimierte Antennen-Geometrien übertreffen vergleichbare klassische Dipol-Geometrien um einen Faktor von Zwei. Darüber hinaus lässt sich aus den optimierten Antennen ein neues Funktionsprinzip ableiten: ein magnetische Split-Ring-Resonanz kann mit Dipol-Antennen leitend zu neuartigen und effektiveren Split-Ring-Antennen verbunden werden, da sich ihre Ströme nahe des Fokus konstruktiv überlagern. Im nächsten Schritt wird der evolutionäre Algorithmus so angepasst, so die Genome real herstellbare Geometrien beschreiben. Zusätzlich wird er um eine Art ''Druckertreiber'' erweitert, welcher aus den Genomen direkt Anweisungen zur fokussierten Ionenstrahl-Bearbeitung von einkristallinen Goldflocken erstellt. Mit Hilfe von konfokaler Mikroskopie der Zwei-Photonen-Photolumineszenz wird gezeigt, dass Antennen unterschiedlicher Effizienz reproduzierbar aus dem evolutionären Algorithmus heraus hergestellt werden können. Außerdem wird das Prinzip der Split-Ring-Antenne verbessert, indem zwei Ring-Resonanzen zu einer Dipol-Resonanz hinzugefügt werden. Zu guter Letzt dient die beste Antenne des zweiten evolutionäre Algorithmus als Inspiration für einen neuen Formalismus zur Beschreibung des Leistungsübertrages zwischen einer optischen Antenne und einem Punkt-Dipol, welcher sich als "dreidimensionaler Modenüberlapp" beschreiben lässt. Damit können erstmals intuitive Regeln für die Form einer optischen Antenne aufgestellt werden. Die Gültigkeit der Theorie wird analytisch für den Fall eines Dipols nahe einer metallischen Nano-Kugel gezeigt. Das vollständige Problem, Licht mittels einer optischen Antenne zu fokussieren, lässt sich so auf die Erfüllung zweier Modenüberlapp-Bedingungen reduzieren -- mit dem Feld eines Punktdipols, sowie mit einer ebenen Welle. Damit lassen sich zwei Arten idealer Antennenmoden identifizieren, welche sich von der bekannten Dipol-Antennen-Mode grundlegend unterscheiden. Zum einen lässt sich dadurch die Funktionalität der evolutionären und Split-Ring-Antennen erklären, zum lassen sich neuartige plasmonische Hohlraum-Antennen entwerfen, welche zu besserer Fokussierung von Licht führen. Dies wird numerisch im direkten Vergleich mit einer klassischen Dipolantennen-Geometrie gezeigt. N2 - Optical antennas work similar to antennas for the radio-frequency regime and convert electromagnetic radiation into oscillating electrical currents. Charge density accumulations form at the antenna surface leading to strong and localized near-fields. Since most optical antennas have dimensions of a few hundred nanometers, their near-fields allow the focusing of electromagnetic fields to volumes much smaller than the diffraction limit, with intensities several orders of magnitude larger than achievable with classical diffractive and refractive optical elements. The task to maximize the emission of a quantum emitter, a point-like entity capable of reception and emission of single photons, is identical to the task to maximize the field intensity at the position of the quantum emitter. Therefore it is desirable to optimize the capabilities of focusing optical antennas. Radio-frequency-antenna designs scaled to optical dimensions of several hundred nanometers show already a decent performance. However, optical frequencies lie near the plasma frequency of the metals used for optical antennas and the mass of electrons cannot be neglected anymore. This leads to new physical phenomena. Light can couple to charge density oscillations, yielding a so-called Plasmon. Effects emerge which have no equivalent in the very advanced field of radio-frequency-technology, e.g.~volume currents and shortened effective wavelengths. Additionally the conductivity is not infinite anymore, leading to thermal losses. Therefore, the question for the optimal geometry of a focusing optical antenna is not easy to answer. However, up to now there was no evidence that there exist better alternatives for optical antennas than down-scaled radio-frequency designs. In this work the optimization of focusing optical antennas is based on an approach, which often proved successful for radio-frequency-antennas in complex applications (e.g.~broadband and isotropic reception): evolutionary algorithms. The first implementation introduced here allows a large freedom regarding particle shape and count, as it arranges cubic voxels on a planar, square grid. The geometries are encoded in a binary matrix, which works as a genome and enables the methods of mutation and crossing as mechanism of improvement. Antenna geometries optimized in this way surpass a comparable dipolar geometry by a factor of 2. Moreover, a new working principle can be deduced from the optimized antennas: a magnetic split-ring resonance can be coupled conductively to dipolar antennas, to form novel and more effective split-ring-antennas, as their currents add up constructively near the focal point. In a next step, the evolutionary algorithm is adapted so that the binary matrices describe geometries with realistic fabrication constraints. In addition a 'printer driver' is developed which converts the binary matrices into commands for focused ion-beam milling in mono-crystalline gold flakes. It is shown by means of confocal two-photon photo-luminescence microscopy that antennas with differing efficiency can be fabricated reliably directly from the evolutionary algorithm. Besides, the concept of the split-ring antenna is further improved by adding this time two split-rings to the dipole-like resonance. The best geometry from the second evolutionary algorithm inspires a fundamentally new formalism to determine the power transfer between an antenna and a point dipole, best termed 'three-dimensional mode-matching'. Therewith, for the first time intuitive design rules for the geometry of an focusing optical antenna can be deduced. The validity of the theory is proven analytically at the case of a point dipole in from of a metallic nano sphere. The full problem of focusing light by means of an optical antenna can, thus, be reduced to two simultaneous mode-matching conditions -- on the one hand with the fields of a point dipole, on the other hand with a plane wave. Therefore, two types of ideal focusing optical antenna mode patterns are identified, being fundamentally different from the established dipolar antenna mode. This allows not only to explain the functionality of the evolutionary antennas and the split-ring antenna, but also helps to design novel plamonic cavity antennas, which lead to an enhanced focusing of light. This is proven numerically in direct comparison to a classical dipole antenna design. KW - Physik KW - Plasmon KW - optical antennas KW - plasmonics KW - nano optics KW - LDOS KW - evolutionary optimization KW - mode matching KW - Optische Antennen KW - Plasmonik KW - Nano-Optik KW - Evolutionäre Optimierung Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-140604 ER - TY - THES A1 - Schreck, Maximilian T1 - Synthesis and Photophysics of Linear and Star-Shaped Oligomers of Squaraine Dyes T1 - Synthese und Photophysik von Linearen und Sternförmigen Squarain-Oligomeren N2 - In this thesis, the synthesis and photophysics of a great variety of squaraine dyes are presented. This variety is based on four parent squaraines containing either indolenine or quinoline heterocycles. By a suitable choice of the donor and acceptor unit, the optical properties can already be adapted to the properties desired on the stage of the monomer. To promote a further derivatisation of these dyes, diverse functional groups are attached to the monomers using transition metal-catalysed C-C coupling reactions. However, this has to be preceded by the synthesis of bromine-functionalised derivatives as a direct halogenation of squaraine dyes is not feasible. Therefore, the halogen function is already introduced in precursor molecules giving rise to a molecular building block system containing bromine-, boronic ester-, and alkyne-functionalised monomer units, which pave the way to a plethora of squaraine oligomers and polymers. The indolenine homopolymer pSQB-1 as well as the corresponding small molecular weight oligomers dSQB-1 and tSQB were synthesized applying Ni-mediated Yamamoto and Pd-catalysed Suzuki coupling methodologies, respectively. The motivation for this project relied on the fundamental investigations by Völker et al. on pSQB-V. A progressive red-shift of the lowest energy absorption maximum from the dimer to the polymer was observed in CHCl3 compared to the monomer. With increasing number of monomer units, the exciton coupling decreases from the dimer to the polymer. In addition, the shape of the absorption band manifold shows a strong dependence on the solvent, which was also observed by Völker et al. J-type aggregate behavior is found in chlorinated solvents such as CHCl3 and DCM, whereas H-type aggregates are formed in acetone. Temperature-dependent absorption studies in PhCN reveals a reversible equilibrium of diverse polymer conformers, which manifests itself in a gradual change from H-aggregate behavior to a mixture with a more pronounced J-aggregate behavior upon raising the temperature. It isassumed that both characteristic aggregate bands correlate in borderline cases with two polymer structures which can be assigned to a zig-zag and a helical structure. As no experimental evidence for these structures could hitherto be provided by NMR, TD-DFT computations on oligomers (22-mers) can reproduce very closely the characteristic features of the spectra for the two conformational isomers. The subsequent chapters are motivated by the goal to influence the optical properties through a control of the superstructure and thus of the intramolecular aggregate formation. On the one hand, bulky groups are implemented in the 3-position of the indolenine scaffold to provoke steric repulsion and thus favoring J-aggregate behavior at the expense of helical arrangements. The resulting homopolymer pDiPhSQB bearing two phenyl groups per indolenine exhibits J-type aggregate behavior with red-shifted absorption maxima in all considered solvents which is explained to be caused by the formation of elongated zig-zag structures. Furthermore, single-crystal X-ray analysis of monomer DiPhSQB-2-Br2 reveals a torsion of the indolenine moieties as a consequence of steric congestion. The twist of the molecular geometry and the resulting loss of planarity leads to a serious deterioration of the fluorescence properties, however a significant bathochromic shift of ca. 1 200 cm-1 of the lowest absorption band was observed compared to parent SQB, which is even larger than the shift for dSQB-1 (ca. 1 000 cm-1). On the other hand, a partial stiffening of the polymer backbone is attempted to create a bias for elongated polymer chains. In this respect, the synthetic approach is to replace every second biarylaxis with the rigid transoid benzodipyrrolenine unit. Despite a rather low average degree of polymerization < 10, exclusively red-shifted absorption maxima are observed in all solvents used. In order to complete the picture of intramolecular aggregates through the selective design of H-aggregates, a squaraine-squaraine copolymer was synthesised containing the classic cisoid indolenine as well as the cisoid quinoline building block. Taking advantage of the highly structure directing self-assembly character of the quinoline moiety, the copolymer pSQBC indeed showes a broad, blue-shifted main absorption band in comparison with the monomer unit dSQBC. The shape of the absorption band manifold solely exhibited a minor solvent and temperature dependence indicating a persistent H-aggregate behaviour. Hence, as a proof of concept, it is shown that the optical properties of the polymers (H- and J-aggregate) and the corresponding superstructure can be inherently controlled by an adequate design of monomer precursors. The last chapter of this work deals, in contrast to all other chapters, with intermolecular aggregates. It is shown that the two star-shaped hexasquarainyl benzenes hSQA-1 and hSQA-2 exhibit a strong propensity for self-organisation. Concentration- and temperature-dependent studies reveal a great driving force for self-assembly in acetone. While the larger hSQA-2 instantaneously forms stable aggregates, the aggregates of hSQA-1 shows a pronounced kinetic stability. Taking advantage of the kinetic persistency of these aggregates, the corresponding kinetic activation parameters for aggregation and deaggregation can be assessed. The absorption spectra of both hexasquarainyl benzenes in the aggregated state reveal some striking differences. While hSQA-1 features an intensive, very narrow and blue-shifted absorption band, two red-shifted bands are observed for hSQA-2, which are closely located at the monomer absorption. The very small bandwidth of hSQA-1 are interpreted to be caused by exchange narrowing and pointed towards highly ordered supramolecular aggregates. The concentration-dependent data of the two hexasquarainyl benzenes can be fitted to the dimer-model with excellent correlation coefficients, yielding binding constants in excess of 10^6 M-1, respectively. Such high binding constants are very surprising, considering the unfavourable bulky 3,3-dimethyl groups of the indolenine units which should rather prevent aggregation. Joint theoretical and NMR spectroscopic methods were applied to unravel the supramolecular aggregate structure of hSQA-1, which is shown to consist of two stacked hexasquarainyl benzenes resembling the picture of two stacked bowls. N2 - Im Rahmen dieser Arbeit wird die Synthese sowie photophysikalischen Untersuchungen einer Vielzahl von Squarainfarbstoffen präsentiert. Diese Vielfalt erwuchs aus vier monomeren Stammverbindungen, die auf Indolenin- bzw. Chinolin-Heterozyklen gründeten. Um die Derivatisierung der Monomere weiter voranzutreiben, werden diese durch geeignete funktionelle Gruppen unter der Verwendung von übergangsmetallkatalysierten C-C Kupplungsreaktionen chemisch modifiziert. Dieser geht jedoch die Synthese Brom-funktionalisierter Vorstufen voraus. So muss die Halogenfunktion bereits in den Vorläufermolekülen eingeführt werden, da eine selektive, direkte Halogenierung auf der Stufe des Squarains nicht möglich ist. Schlussendlich kann somit ein molekularer Baukasten entwickelt werden, der, bestückt mit Monomerbausteinen mit Brom-, Borester-, und Alkinfunktionen, den Weg zu diversen oligomeren und polymeren Squarainfarbstoffen ebnete. Das Indolenin Squarain Homopolymer pSQB-1, als auch die entsprechenden niedermolekularen Oligomerverbindungen dSQB-1 und tSQB wurden mittels der Ni-unterstützten Yamamoto bzw. Pd-katalysierte Suzuki Kupplung dargestellt. Die bereits durch Völker et al. erfolgten spektroskopischen Untersuchungen an pSQB-V werden im Rahmen dieser Arbeit fortgesetzt. Im Vergleich zum Monomer, zeigen das Dimer, Trimer und das Polymer in CHCl3 eine progressive Rotverschiebung der niedrigsten, intensivsten Absorptionsbande. Mit steigender Anzahl der SQB-Monomereinheiten nimmt die Exzitonenkopplung im Dimer bis hin zum Polymer ab. Wie auch bereits Völker et al. zeigen konnten, ist die Form der Absorption des Exzitonenbandes von pSQB-1 stark lösemittelabhängig. Während J-Aggregat ähnliches Verhalten in CHCl3 und DCM beobachtet wird, zeigt das Polymer in Aceton H-Aggregat ähnliches Verhalten. Temperaturabhängige Absorptionsmessungen in PhCN zeigen ein reversibles thermodynamisches Gleichgewicht von verschiedenen Polymerstrukturen, welches sich mit steigender Temperatur durch einen sukzessiven Übergang von H-Aggregat zu einer Mischung mit mehr J-Aggregat Charakter manifestiert. Es wird angenommen, dass das Auftreten der charakteristischen Aggregatsbanden im Grenzfall mit zwei Polymerkonformeren korreliert, die einer Zick-Zack- und einer Helix-Struktur entsprechen. Da hierfür keine experimentellen Beweise durch NMR bis dato vorliegen, wurden TD-DFT Kalkulationen an Oligomereinheiten (22-er) durchgeführt, die die wesentlichen Merkmale der Absorptionsspektren der zwei Konformere reproduzieren konnten. Die anschließenden Kapitel erwuchsen aus der Motivation heraus, die optischen Eigenschaften der Polymere über die Kontrolle der Strukturbildung und somit der intramolekularen Aggregatsbildung zu beeinflussen. Um einerseits J-Aggregat Verhalten zu provozieren wird zunächst der Ansatz verfolgt, durch sterisch anspruchsvolle Gruppen in der 3-Position des Indolenin Gerüsts, den Kollaps zu helikalen Stukturen zu vermeiden. Das resultierende Homopolymer pDiPhSQB mit zwei Phenylgruppen pro Indolenin Einheit zeigt in allen untersuchten Lösemitteln bathochrom verschobene Absorptionsmaxima, was mit der Ausbildung von ausschließlich ausgedehnten Zick-Zack-Ketten begründet werden. Darüber hinaus zeigte die Einkristall-Röntgenstrukturanalyse des Monomers DiPhSQB-2-Br2 als Konsequenz der sterischen Überfrachtung eine Torsion des Indolenin Gerüsts. Die Verdrillung der Molekülgeometrie und der daraus resultierende Verlust an Planarität, führt zu einer erheblichen Verschlechterung der Fluoreszenzeigenschaften, jedoch wird eine signifikante Rotverschiebung der Monomerbande von ca. 1 200 cm-1 im Vergleich zu SQB beobachtet, welche sogar größer als die für dSQB-1 ist. Zum anderen ergibt der Ansatz der partiellen Versteifung des Polymerrückgrades ebenfalls die Ausbildung von ausgedehnten Polymerketten begünstigen. Dieser Ansatz wird insofern verfolgt, als dass jede zweite Biarylachse zwischen zwei Monomereinheiten in pSQB-1 durch eine rigide transoide Benzodipyrrolenin Brücke ersetzt wird. Trotz eines eher geringen durchschnittlichen Polymerisationsgrades von < 10 kann dennoch eine Rotverschiebung der niederenergetischsten Absorptionsbande in allen Lösemitteln beobachtet werden. Um das Bild der intramolekularen Aggregate zu vervollständigen, wird das gezielte Design von H-Aggregaten verfolgt. Hierfür wurde ein Squarain-Squarain Copolymer synthetisiert, das zum einen aus dem klassischen cisoiden Indolenin und zum anderen aus dem cisoiden Chinolin Squarain aufgebaut ist. Diesbezüglich will man sich die Triebkraft des Chinolin Bausteins für Aggregation als strukturdirigierende Komponente zu Nutze machen, um helikale Konformationen der Polymerstränge zu erzeugen. Das Copolymer pSQBC zeigt in der Tat eine verbreiterte, hypsochrom verschobene Hauptabsorptionsbande im Vergleich zur Monomereinheit dSQBC. Die Form der Absorption des Exzitonenbandes zeigt eine geringe Lösemittelabhängigkeit, die ebenfalls nur marginal durch die Temperatur beeinflusst werden kann. Schlussendlich deuten diese Befunde auf ein stark-ausgeprägtes H-Aggregat ähnliches Verhalten hin, was die zu anfangs formulierte These belegt, dass sich die optischen Eigenschaften der Polymere (H- und J-Aggregate) und deren Strukturbildung durch ein adäquates Moleküldesign der Monomerbausteine kontrollieren lassen. Das letzte Kapitel dieser Arbeit stand im Gegensatz zu den vorherigen Kapiteln ausschließlich im Fokus von intermolekularen Aggregaten. Die Squaraine hSQA-1 und hSQA-2 neigen, in ein sternförmiges Hexaarylbenzol-Gerüst gebettet, zur Selbstorganisation. Konzentration- und temperaturabhängige Studien der beiden synthetisierten Hexasquarainyl-Benzole zeigen eine starke Triebkraft zur Aggregation in Aceton. Während hSQA-2 instantan thermodynamisch stabile Aggregate bildet, offenbart hSQA-1 Aggregate eine ausgeprägte kinetische Stabilität. Dies kann man sich zu Nutze machen und die kinetischen Aktivierungsparameter der Aggregation und Deaggregation zu bestimmen. Die Absorptionsspektren der beiden Hexasquarainyl-Benzole im aggregierten Zustand zeigen extreme Unterschiede auf. Während hSQA-1 eine intensive, sehr schmale und stark hypsochrom verschobene Bande zeigt, beobachtet man für das größere Hexasquarainyl-Benzol zwei bathochrom verschobene Banden, die allerdings energetisch sehr nahe der Monomerbande lokalisiert sind. Die sehr geringe Halbwertsbreite der Aggregatsbande in hSQA-1 wird durch die sog. Austauschverschmälerung erklärt und deutet auf hochgeordnete supramolekulare Aggregate hin. Die konzentrationsabhängigen Messdaten der beiden Chromophore konnten sehr gut mit Hilfe des Dimer-Modells angepasst werden, welches für beide Systeme eine hohe Bindungskonstante von über 10^6 M-1 ergab. In Anbetracht der Tatsache, dass die raumgreifenden 3,3-Dimethylgruppen im Indoleningerüst extrem hinderlich für den Aggregationsprozess sind, ist die starke Triebkraft zur Selbstorganisation, welche sich in den hohen Bindungskonstanten niederschlägt, äußerst bemerkenswert. Theoretische Modellierungen und Rechnungen in Kombination mit NMR-spektroskopischen Untersuchungen von hSQA-1 ergeben eine Aggregatsstruktur aus zwei sich stapelten Hexasquarainylbenzolmonomeren, die dem Bild zweier gestapelter Schüsseln entspricht. KW - Squaraine KW - Oligomere KW - Supramolekulare Chemie KW - Squaraine Dyes KW - Oligomers and Polymers KW - J- and H-Aggregates KW - Helix- and Zig-Zag-Conformers KW - Supramolecular Chemistry KW - Squarain Farbstoffe KW - J- and H-Aggregate KW - Helix- and Zick-Zack-Konformere KW - Supramolekulare Chemie KW - Helicität KW - Chemische Synthese KW - Chemische Reaktion Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-174272 ER - TY - THES A1 - Steeger, Markus T1 - Energy and Charge Transfer in Donor-Acceptor Substituted Hexaarylbenzenes T1 - Energie- und Ladungstransfer in Donor-Akzeptor-substituierten Hexaarylbenzolen N2 - The focus of this work was the investigation of energy transfer between charge transfer states. For this purpose the multidimensional chromophores HAB-S, HAB-A, B1 and B2 were synthesised, each consisting of three electron donor and three electron acceptor redox centres linked symmetrically or asymmetrically by the hexaarylbenzene framework. Triarylamines represent in all these compounds the electron donors, whereas the electron poor centres were triarylboranes in B1 and B2 and PCTM centres in HAB-S and HAB-A, respectively. The hexaarylbenzenes were obtained by cobalt catalysed cyclotrimerisation of the respective tolan precursors. In addition, Star was synthesised, which consists of a central PCTM linked to three triarylamin centres by tolan bridging units in a star-like configuration. The hexaarylbenzene S1a/b substituted with six squaraine chromophores could not be realised. It is assumed that the cyclotrimerisation catalyst Co2(CO)8 does not tolerate the essential hydroxyl groups in the tolan precursor S2a. The alternative reaction pathway to execute the cyclotrimerisation reaction first and introduce the hydroxyl groups thereafter failed as well, because the required hexaarylbenzene substituted by six semisquaric acid moieties could not be synthesised. However, energy transfer interactions could be investigated in the tolan precursor S2a with two squaraine units to obtain information about the electronic coupling provided by the tolan bridge. For all multidimensional compounds model molecules were synthesised with only a single donor-acceptor pair (B3, Star-Model and HAB-Model). This allows a separate consideration of energy and charge transfer processes. It has to be stressed that in all before mentioned multidimensional compounds the “through bond” energy transfer interaction between neighbouring IV-CT states is identical to a transfer of a single electron between two redox centres of the same kind (e.g. TAA -> TAA+). The latter can be analysed by electron transfer theory. This situation is observed when the two IV-CT states transferring energy share one redox centre. All compounds containing PCTM centres were characterised by paramagnetic resonance spectroscopy. Thereby, a weak interaction between the three PCTM units in HAB-S and HAB-A was observed. In addition, when oxidising Star-Model, a strongly interacting singlet or triplet state was obtained. In contrast, signals corresponding to a weakly interacting biradical were obtained for HAB-Model+. This indicates a strong electronic coupling between the redox centres provided by the tolan bridge and a weak coupling when linked by the hexaarylbenzene. This trend is supported by UV/Vis/NIR absorption measurements. The analysis of the observed IV-CT absorption bands by electron transfer theory reveals a weak electronic coupling of V = 340 cm-1 in HAB-Model and a distinctly stronger coupling of V = 1190-2900 cm-1 in Star-Model. In the oxidised HAB-S+, Star+ and Star-Model+ a charge transfer reversed from that of the neutral species, that is, from the PCTM radical to the electron poorer cationic TAA centre, was observed by spectroelectrochemistry. The temporal evolution of the excited states was monitored by ultrafast transient absorption measurements. Within the first picosecond stabilisation of the charge transfer state was observed, induced by solvent rotation. Anisotropic transient absorption measurements revealed that within the lifetime of the excited state (tau = 1-4 ps) energy transfer does not occur in the HABs whereas in the star-like system ultrafast and possibly coherent energy redistribution is observed. Taken this information together the identity between energy transfer and electron transfer in the specific systems were made apparent. It has to be remarked that neither energy transfer nor charge transfer theory can account for the very fast energy transfer in Star. The electrochemical and photophysical properties of B1 and B2 were investigated by cyclic voltammetry, absorption and fluorescence measurements and were compared to B3 with only one neighbouring donor-acceptor pair. For the asymmetric B2 CV measurements show three oxidations as well as three reduction peaks whose peak separation is greatly influenced by the conducting salt due to ion-pairing and shielding effects. Consequently, peak separations cannot be interpreted in terms of electronic couplings in the generated mixed valence species. Transient absorption, fluorescence solvatochromism and absorption spectra show that charge transfer states from the amine to the boron centres are generated after optical excitation. The electronic donor-acceptor interaction is weak though as the charge transfer has to occur predominantly through space. The electronic coupling could not be quantified as the CT absorption band is superimposed by pi-pi* transitions localised at the amine and borane centres. However, this trend is in good agreement to the weak coupling measured for HAB-Model. Both transient absorption and fluorescence upconversion measurements indicate an ultrafast stabilisation of the charge transfer state in B1- B3 similar to the corresponding observations in HAB-S and Star. Moreover, the excitation energy of the localised excited charge transfer states can be redistributed between the aryl substituents of these multidimensional chromophores within fluorescence lifetime (ca. 60 ns). This was proved by steady state fluorescence anisotropy measurements, which further indicate a symmetry breaking in the superficially symmetric HAB. Anisotropic fluorescence upconversion measurements confirm this finding and reveal a time constant of tau = 2-3 ps for the energy transfer in B1 and B2. It has to be stressed that, although the geometric structures of B1 and HAB-S are both based on the same framework and furthermore the neighbouring CT states show in both cases similar Coulomb couplings and negligible “through bond” couplings, very fast energy transfer is observed in B1 whereas in HAB-S the energy is not redistributed within the excited state lifetime. To explain this, it has to be kept in mind that the energy transfer and the relaxation of the CT state are competing processes. The latter is influenced moreover by the solvent viscosity. Hence, it is assumed that this discrepancy in energy transfer behaviour is caused by monitoring the excited state in solvents of varying viscosity. Adding fluoride ions causes the boron centres to lose their acceptor ability due to complexation. Consequently, the charge transfer character in the donor-acceptor chromophores vanishes which could be observed in both the absorption and fluorescence spectra. However, the fluoride sensor ability of the boron centre is influenced strongly by the moisture content of the solvent possibly due to hydrogen bonding of water to the fluoride anions. UV/Vis/NIR absorption measurements of S2a show a red-shift by 1800 cm-1 of the characteristic squarain band compared to the model compound S20. From exciton theory a Coulomb coupling of V = 410 cm-1 is calculated which cannot account for this strong spectral shift. Consequently, “through-bond” interactions have to contribute to the strong communication between the two squaraine chromophores in S2a. This is in accordance with the strong charge transfer coupling calculated for the tolan spacer in Star-Model. N2 - Ziel dieser Arbeit war die Untersuchung des Energietransfers zwischen Ladungstransfer-Zuständen in multidimensional Donor-Akzeptor Systemen. Zu diesem Zweck wurden die Chromophore HAB-S, HAB-A, B1 und B2 synthetisiert. Diese bestehen jeweils aus drei Elektronen-Donoren und Elektronen-Akzeptoren, die über das Hexaarylbenzol-Gerüst symmetrisch oder asymmetrisch verknüpft sind. Triarylamine stellen dabei die Elektronen-Donoren dar, während Triarylborane in B1 und B2 und PCTM-Zentren in HAB-S und HAB-A die Aufgabe der Elektronen-Akzeptoren übernehmen. Die Hexaarylbenzole konnten durch Cobalt-katalysierte Cyclotrimerisierung der entsprechenden Tolan-Vorstufen hergestellt werden. Zusätzlich wurde das multidimensionale Chromophor Star synthetisiert. Dieses besteht aus einem zentralen PCTM, welches über Tolan-Brückeneinheiten sternförmig mit drei Triarylamin Zentren verknüpft ist. Das Hexaarylbenzol S1a/b, das mit sechs Squarain Chromophoren substituiert ist, konnte nicht realisiert werden. Möglichweise werden die essentiellen Hydroxygruppen der Tolan-Vorstufe S2a nicht von dem Cyclotrimerisierungs-Katalysator Co2(CO)8 toleriert. Der alternative Reaktionsweg, die Cyclotrimerisierung zuerst durchzuführen und anschließend die Hydroxygruppen einzuführen, schlug ebenfalls fehl. Grund dafür war, dass das Hexaarylbenzol, welches mit sechs Quadratsäure-Einheiten substituiert ist, nicht synthetisiert werden konnte. Nichtsdestotrotz konnten Energietransfer Wechselwirkungen in der Tolan-Vorstufe S2a untersucht werden. Dabei konnte die elektronische Kopplung zwischen den zwei Squarain-Zentren charakterisiert werden. Zu allen multidimensionalen Verbindungen wurden zusätzlich Modelverbindungen mit nur einem einzelnen Donor-Akzeptor-Paar hergestellt (B3, Star-Model und HAB-Model). Dadurch konnten die Energie- und Ladungstransferprozesse getrennt betrachten werden. Es soll noch angemerkt werden, dass in allen genannten multidimensionalen Verbindungen der Energietransfer „über Bindungen“ zwischen zwei benachbarten IV-CT Zuständen identisch ist mit dem Transfer eines einzelnen Elektrons zwischen zwei gleichartigen Redoxzentren (z.B. TAA→TAA+). Diese Situation ist immer dann zu beobachten, wenn sich die zwei IV-CT Zustände, zwischen denen Energie übertragen wird, ein Redox-Zentrum teilen. Alle Verbindungen, die PCTM Zentren beinhalten, wurden durch Elektronenspinzresonanz Experimente charakterisiert. Dabei wurde eine schwache Wechselwirkung zwischen den drei PCTM Einheiten in HAB-S und HAB-A beobachtet. Durch die Oxidation von Star-Model konnten zudem stark wechselwirkende Singlett- bzw. Triplettzustände erhalten werden. Dagegen wurden für HAB-Model+∙ Signale beobachtet, die einem schwach wechselwirkendem Biradikal entsprechen. Das lässt darauf hindeuten, dass die Tolan-Brückeneinheit eine starke Kopplung zwischen den Redox-Zentren gewährleistet, während die Verknüpfung über das Hexaarylbenzol-Gerüst eine schwache Kopplung zur Folge hat. Dieser Trend wurde durch UV/Vis/NIR Absorptionsmessungen gestützt. Durch die Analyse der beobachteten IV-CT Absorptionsbanden mittels Elektronentransfer-Theorie konnte eine schwache Kopplung von V = 340 cm-1 in HAB-Model und eine deutlich stärkere Kopplung von V = 1190-2900 cm-1 in Star-Model ermittelt werden. In spektroelektrochemischen Untersuchungen wurde in den oxidierten Verbindungen HAB-S+, Star+ und Star-Model+, im Vergleich zu den neutralen Verbindungen, der Ladungstransfer in entgegengesetzter Richtung beobachtet. D.h. vom PCTM-Radikal zum elektronenärmeren, kationischen TAA-Zentrum. Die zeitliche Entwicklung der angeregten Zustände wurde mit transienter Absorptionsspektroskopie verfolgt. Innerhalb der ersten Pikosekunden konnte eine Stabiliserung des Ladungstransferzustands, verursacht durch Umorientierungen des Lösungsmittels, beobachtet werden. Anisotrope, transiente Absorptionsmessungen konnten zeigen, dass innerhalb der Lebenszeit des angeregten Zustands (τ = 1-4 ps) kein Energietransfer in den HABs stattfindet, während in dem sternförmigen System eine ultraschnelle und möglicherweise koherente Energieumverteilung beobachtet wurde. Letztendlich konnte klargestellt werden, dass Energietransfer und Ladungstransfer in diesen speziellen Systemen identisch sind. Jedoch konnte weder die Energie-, noch die Ladungstransfertheorie den sehr schnellen Energietransfer in Star erklären. Die elektrochemischen und photophysikalischen Eigenschaften von B1 und B2 wurden mittels Cyclovoltammetrie, Absorptions- und Fluoreszenzmessungen untersucht und mit B3 verglichen. Im Fall vom asymmetrischen B2 zeigten CV Messungen drei Oxidations- und drei Reduktionspeaks, wobei der Abstand zwischen den Peaks stark vom Leitsalz abhing. Dies lässt sich auf Ionenpaar und Abschirmungseffekte zurückführen. Folglich konnten die Abstände zwischen den Peaks nicht in Bezug auf elektronische Kopplungen in den erzeugten, gemischtvalenten Verbindungen interpretiert werden. Transiente Absorption, Fluoreszenz Solvatochromie sowie Absorptionsspektren zeigten, dass nach optischer Anregung Ladungstransferzustände vom Amin- zum Borzentrum bevölkert werden. Die elektronische Donor-Akzeptor Wechselwirkung war jedoch schwach, da der Ladungstransfer hauptsächlich über den Raum stattfindet. Die elektronische Kopplung konnte nicht quantifiziert werden, weil die CT Absorptionsbande von π-π* Übergängen, die an den Amin- und Borzentren lokalisiert sind, überlagert war. Der Trend ist jedoch in guter Übereinstimmung mit der schwachen Kopplung, die für HAB-Model gemessen wurde. Sowohl transiente Absorptions- wie auch Fluoreszenz-Aufkonversionsmessungen deuten auf eine ultraschnelle Stabilisierung des Ladungstransferzustandes in B1 - B3, ähnlich dem Verhalten von HAB-S und Star, hin. Des Weiteren kann die Anregungsenergie der lokalisierten, angeregten Ladungstransferzustände innerhalb der Fluoreszenzlebensdauer (ca. 60 ns) zwischen den Arylsubsituenten dieser multidimensionalen Chromophore umverteilt werden. Dies wurde mit stationären Fluoreszenz-Anisotropiemessungen bewiesen, die weiterhin einen Symmetriebruch im vermeintlich symmetrischen HAB andeuten. Anisotrope Fluoreszenz-Aufkonversionsmessungen bestätigten diese Schlussfolgerung und zeigten eine Zeitkonstante von τ = 2-3 ps für den Energietransfer in B1 und B2. Es soll darauf hingewiesen werden, dass obwohl die geometrischen Strukturen von B1 und HAB-S beide auf dem gleichen Grundgerüst basieren und weiterhin benachbarte CT Zustände in beiden Fällen ähnliche Coulomb Kopplungen und vernachlässigbare Kopplungen „über Bindungen“ aufweisen, in B1 ein sehr schneller Energietransfer beobachtet werden konnte, während in HAB-S die Anregungsenergie innerhalb der Fluoreszenzlebenszeit nicht umverteilt wird. Um dies zu erklären, muss berücksichtigt werden, dass Energietransfer und die Relaxation des CT Zustands konkurrierende Prozesse darstellen. Letzteres wird zudem von der Viskosität des Lösungsmittels beeinflusst. Demnach wird angenommen, dass der Unterschied im Ladungstransferverhalten auf die Verwendung von unterschiedlich viskosen Lösungsmitteln zurückzuführen ist. Wenn Fluorid-Ionen zugesetzt wurden, verloren die Borzentren auf Grund von Komplexierung die Akzeptoreigenschaften. Folglich ging der Ladungstransfercharakter in den Donor-Akzeptor-Verbindungen verloren, was mittels Absorptions- und Fluoreszenzspektroskopie verfolgt wurde. Die Fluorid-Sensor-Eigenschaften der Borzentren war jedoch stark vom Feuchtigkeitsgehalt des Lösungsmittels beeinflusst. Dies ist wahrscheinlich auf starke Wasserstoffbindungen zwischen Wasser Molekülen und Fluorid-Ionen zurückzuführen. UV/Vis/NIR Absorptionsmessungen von S2a zeigten im Vergleich zur Modelverbindung S20 eine Rotverschiebung der charakteristischen Squarain Bande um 1800 cm-1. Anhand der Excitonen-Theorie konnte eine Coulomb Kopplung von V = 410 cm-1 berechnet werden, die jedoch diese starke Verschiebung nicht erklären kann. Demnach müssen Wechselwirkungen „durch Bindungen“ mit zu dieser guten Kommunikation zwischen den beiden Squarain Chromophoren in S2a beitragen. Diese Annahme stimmt mit der starken Ladungstransfer Kopplung überein, die für die Tolan-Brücke in Star-Model berechnet wurde. KW - Energietransfer KW - Ladungstransfer KW - energy transfer KW - charge transfer KW - hexaarylbenzenes KW - Energietransfer KW - Ladungstransfer KW - Hexaarylbenzole Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112520 ER - TY - THES A1 - Müller, Stefan T1 - Coherent Multiple-Quantum Multidimensional Fluorescence Spectroscopy T1 - Kohärente multidimensionale Multiquanten-Fluoreszenzspektroskopie N2 - This thesis describes novel concepts for the measurement of the static and dynamic properties of the electronic structure of molecules and nanocrystals in the liquid phase by means of coherent fluorescence-detected spectroscopy in two and three frequency dimensions. These concepts are based on the systematic variation ("phase cycling") of a sequence of multiple time-delayed femtosecond excitation pulses in order to decode a multitude of novel nonlinear signals from the resulting phase-dependent fluorescence signal. These signals represent any permutation of correlations between zero-, one-, two-, and three-quantum coherences. To this end, two new phase-cycling schemes have been developed which can simultaneously resolve and discriminate several nonlinear signals of sixth order, including those of the fourth order of nonlinearity. By means of the sixth-order signals recorded in this work, static properties of highly excited electronic states in molecules such as their energies, transition dipole moments, and relative displacement of electronic potential surfaces, as well as dynamic properties in terms of their relaxation kinetics, can be ascertained. Furthermore, it was shown that these signals are suitable for the characterization of exciton-exciton correlations in colloidal quantum dots and for the measurement of ultrafast exciton-exciton annihilation in molecular aggregates. The experiments performed in this thesis mark an important step towards the complete characterization of the nonlinear response of quantum systems. In view of this, the concept of fluorescence-detected multiple-quantum coherence multidimensional spectroscopy introduced here offers a unified, systematic approach. In virtue of the technical advantages such as the use of a single excitation beam and the absence of nonresonant contributions, the measurement protocols developed here can be directly transferred to other incoherent observables and to sample systems in other states of matter. Furthermore, the approaches presented here can be systematically extended to higher frequency dimensions and higher orders of nonlinearity. N2 - Diese Arbeit beschreibt neuartige Konzepte zur Messung der statischen und dynamischen Eigenschaften der elektronischen Stuktur von Molekülen und Nanokristallen in der flüssigen Phase mittels kohärenter Fluoreszenz-detektierter Spektroskopie in zwei und drei Frequenzdimensionen. Diese Konzepte beruhen auf der systematischen Phasenvariation ("Phase Cycling") einer Sequenz mehrerer zeitverzögerter Femtosekunden-Anregepulse, um aus dem resultierenden phasenabhängigen Fluoreszenzsignal eine Vielzahl von neuartigen nichtlinearen Signalen zu dekodieren. Diese Signale stellen jegliche Permutationen von Korrelationen zwischen Null-, Ein-, Zwei- und Drei-Quantenkohärenzen dar. Hierzu wurden zwei neue Phase-Cycling Schemata entwickelt, welche gleichzeitig mehrere nichtlineare Signale der sechsten Ordnung auflösen und voneinander unterscheiden können, inklusive der Signale der vierten nichtlinearen Ordnung. Mit den in dieser Arbeit aufgenommenen Signalen der sechsten Ordnung können statische Eigenschaften hoch-angeregter elektronischer Zustände in Molekülen wie deren Energien, Übergangsdipolmomente, relative Verschiebung elektronischer Potentialflächen zueinander, sowie dynamische Eigenschaften in Bezug auf deren Relaxationskinetik ermittelt werden. Ferner wurde gezeigt, dass diese Signale zur Charakterisierung von Exziton-Exziton-Korrelationen in kolloidalen Quantenpunkten sowie zur Messung ultraschneller Exziton-Exziton-Annihilierung in molekularen Aggregaten geeignet sind. Die Experimente dieser Arbeit markieren einen wichtigen Schritt in Richtung der vollständigen Charakterisierung der nichtlinearen Antwort von Quantensystemen. Das hier eingeführte Konzept der Fluoreszenz-detektierten multidimensionalen Multiquantenkohärenz-Spektroskopie bietet hierfür einen vereinheitlichten, systematischen Ansatz. In Hinblick auf technische Vorteile wie der Verwendung eines einzigen Anregestrahls und der Abwesenheit von nichtresonanten Beiträgen lassen sich die hier entwickelten Messprotokolle direkt auf andere inkohärente Observablen und auf Probesysteme in anderen Aggregatszuständen übertragen. Ferner lassen sich die vorgestellten Ansätze systematisch auf höhere Frequenzdimensionen und nichtlineare Ordnungen erweitern. KW - Coherent Multidimensional Spectroscopy KW - Ultrakurzzeitspektroskopie KW - Angeregter Zustand KW - Kohärente Anregung KW - Electronic spectroscopy KW - Time-resolved spectroscopy KW - Laser pulse shaping KW - Phase cycling KW - High-excited electronic states KW - Elektronische Spektroskopie KW - Zeitaufgelöste Spektroskopie KW - Laserimpulsformung KW - Phasenmodulation KW - Hochangeregte elektronische Zustände Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-244113 ER -