TY - THES A1 - Voelckel, Markus T1 - Zeitaufgelöste Spektroskopie von nanoskaligen Halbleitern und Pyrenderivaten T1 - Time-resolved spectroscopy of nanoscale semiconductors and pyrene derivatives N2 - Um den jahrtausendealten Weg der Menschheit vom Papyrus über Buchdruck und siliziumbasierte Halbleiter in Richtung noch leistungsfähigerer Technologien zu gehen und weiterhin Heureka-Momente zu schaffen, bieten Kohlenstoffnanoröhren ein weites Forschungsfeld. Besonders die halbleitenden Charakteristika von SWNTs sowie die Manipulation dieser durch Dotierung bergen viele Möglichkeiten für zukünftige Anwendungen in moderner Elektrotechnologie. Der Weg zu einer industriellen Implementierung von SWNTs in neuartigen optoelektronischen Bauteilen ließe sich durch eine Ausweitung des Wissens bezüglich SWNTs und der dotierungsbasierten Anpassung ihrer Eigenschaften ebnen. Mit dieser Erkenntniserweiterung als Zielsetzung wurden im Rahmen dieser Dissertation halbleitende, einwandige (6,5)-Kohlenstoffnanoröhren als chiralitätsreine, polymerstabilisierte Proben untersucht. Die ultrakurzzeitaufgelöste Spektroskopie der SWNTs erfolgte an organischen Suspensionen wie auch Dünnschichtfilmen, die je mittels eines gewissen Quantums an Gold(III)-chlorid dotiert worden waren. So konnten die ablaufenden Dynamiken auf einer ps-Zeitskala untersucht werden. In Kapitel 4 konnte mittels transienter Absorptionsexperimente an redoxchemisch p-dotierter SWNT-Suspensionen zunächst gezeigt werden, dass sich die bei optischer Anregung gebildeten Trionen nicht analog zu Exzitonen diffusiv entlang der Nanoröhre bewegen, sondern lokalisiert vorliegen. Die längere trionischen Zerfallsdauer nach X$_1$- verglichen mit X$_1^+$-resonanter Anregung zeugt außerdem davon, dass das Trion aus dem Exziton gespeist wird. Der Einfluss der Dotierung auf die Zerfallsdynamiken von X$_1$ und X$_1^+$ wurde an SWNT-Dünnschichtfilmen untersucht. Das Photobleichsignal des Exzitons verschiebt hypsochrom und zerfällt schneller mit zunehmender Ladungsträgerdichte durch höherer Gold(III)-chloridkonzentrationen. Dies resultiert aus dem verringerten Abstand zwischen den Ladungsträgern, welche als nichtstrahlende Löschstellen fungieren. Für das X$_1^+$-PB ist ein ähnliches Verhalten zu beobachten. Dabei wird dieses Signal mit weiter steigender Dotierung von einer der H-Bande zuzuordnenden Photoabsorption überlagert. Diese lässt sich in einer starken Sättigung der Dotierung wie auch einer hohen Bandkantenverschiebung begründen. In Kapitel 5 wurde die Größe der Exzitonen und Trionen in dotierten SWNT-Dünnschichtfilmen mittels des Phasenraumfüllmodells bestimmt. Dabei lag besonderes Augenmerk auf der Kompensation des PB/PA-Überlapps, dem schnellen Zerfall, einem Ausgleich von Differenzen zwischen Anrege- und Absorptionsspektrum sowie dem Anteil intrinsischer/dotierter Nanorohrsegmente, um korrigierte Größen $\xi_\mathrm{k}$ zu erhalten. Für die Trionengröße wurde zusätzlich der Überlapp der Absorptionsbanden einbezogen, um korrigierte Werte $\xi_{\mathrm{T,k}}$ zu bestimmen. $\xi_\mathrm{k}$ beträgt in der intrinsischen Form 6$\pm$2\,nm und bleibt bis zu einer Ladungsträgerdichte $n_{\mathrm{LT}}<0.10$\,nm$^{-1}$ etwa gleich, anschließend ist ein Absinken bis auf etwa 4\,nm bei $n_{\mathrm{LT}}\approx0.20$\,nm$^{-1}$ zu beobachten. Für diesen Trend ist die Überlagerung von Exziton- und H-Bande verantwortlich, da so der Faktor zur Bestimmung des Anteils intrinsischer Nanorohrsegmente an der SWNT verfälscht wird. Die Abweichung der intrinsischen Größe von den in der Literatur berichteten 13$\pm$3\,nm ist möglicherweise auf Unterschiede in der Probenpräparation zurückzuführen. Für die Trionengröße ergibt sich bei steigender Dotierung ein ähnliches Verhalten: Sie beträgt für $n_{\mathrm{LT}}<0.20$\,nm$^{-1}$ 1.83$\pm$0.47\,nm, was in der Größenordnung in guter Übereinstimmung mit der Literatur ist. Für höhere Dotierungen sinkt $\xi_{\mathrm{T,k}}$ bis auf 0.92$\pm$0.26nm ab. Dies erklärt sich dadurch, dass bei höherer $n_{\mathrm{LT}}$ die H-Bande das Spektrum dominiert, sodass der Einfluss der Absorptionsbandenüberlagerung nicht mehr vollständig durch den entsprechenden Korrekturfaktor kompensiert werden kann. Kapitel 6 beschäftigte sich anstelle redoxchemischer Dotierung der nanoskaligen Halbleiter mit der (spektro-)elektrochemischen Untersuchung von Vorläufern molekularer Radikale. SWV-Messungen weisen dabei darauf hin, dass die Pyrene Pyr1-Pyr3 entsprechend der Anzahl ihrer Substituenten bei Reduktion Mono-, Bi- beziehungsweise Tetraradikale bilden. Die strukturelle Ähnlichkeit der Moleküle äußert sich in gleichen Reduktionspotentialen wie auch ähnlichen potentialabhängigen Absorptionsspektren. Während nur marginale Unterschiede in den PL-Spektren der neutralen und reduzierten Spezies festgestellt werden konnte, lieferte das zeitkorrelierte Einzelphotonenzählen aufschlussreichere Ergebnisse: So wird die Fluoreszenzlebensdauer stark von der Polarität der Umgegbung beeinflusst - bereits die Zugabe des Leitsalzes führt hier zu Änderungen. Die durchschnittliche Fluoreszenzlebensdauer $\tau_{\mathrm{av}}$ sinkt außerdem mit Reduktion und Radikalbildung; für höhere Emissionswellenlängen ist $\tau_{\mathrm{av}}$ außerdem höher. Insgesamt verdeutlichten die Experimente die gute Abschirmung zwischen Pyrenkern und Naphthalimidsubstituenten der Moleküle sowie die Sensibilität gegenüber dem Medium durch TICT, das Vorhandensein von Bi- und Tetraradikalen kann allerdings nicht vollständig belegt werden, wofür EPR-Messugen notwendig wären. N2 - In order to follow the millennia-old path of mankind from papyrus to letterpress printing and silicon-based semiconductors in the direction of even more powerful technologies and to create further moments of Eureka, carbon nanotubes provide a wide field of research. In particular, the semiconducting characteristics of SWNTs and the manipulation of these by doping offer many possibilities for future applications in modern electrical technology. The way to industrial implementation of SWNTs in new types of optoelectronic devices could be paved by expanding knowledge about SWNTs and the doping-based adaptation of their properties. In this dissertation, semiconducting (6,5)-SWNTs were examined as chirality-pure, polymer-stabilized samples to achieve this expansion of knowledge. The ultrafast time-resolved spectroscopy of the SWNTs was carried out on organic suspensions as well as thin films, each of which had been doped with a certain amount of gold(III) chloride. In this way, the dynamics were examined on a ps time scale. In chapter 4 it was shown by transient absorption experiments on redox-chemically p-doped SWNT suspensions that the trions formed during optical excitation do not move diffusively along the nanotube like excitons, but are localized. The longer trion decay after X$_1$- compared to X$_1^+$-resonant excitation also shows that the trion is fed from the exciton. The influence of doping on the decay dynamics of X $_1$ and X$_1^+$ was investigated on SWNT thin-films. The photobleach signal of the exciton shifts hypsochromically and decays faster with increasing charge carrier density, achieved by higher gold(III) chloride concentrations. This results from the reduced distance between the charge carriers, which promote non-radiative quenching. Similar behavior can be observed for the X$ _1^+$-PB. As the doping increases further, this signal is superimposed by a photo-absorption that can be assigned to the H-band. This PA can be explained by an intense saturation of the doping as well as a strong shift of the band edge. In chapter 5 the size of the excitons and trions in doped SWNT thin-films was determined using the phase space filling model. Special attention was paid to the compensation of the PB/PA overlap, the fast decay, differences between the absorption and excitation spectra, and the proportion of intrinsic/doped nanotube segments, in order to obtain corrected values $\xi_\mathrm{k}$. For the trion size, the overlap of the absorption bands was also included in $\xi_{\mathrm{T,k}}$. For the intrinsic $\xi_\mathrm{k}$ a value of 6$\pm$2\,nm was obtained. $\xi_\mathrm{k}$ stays on this niveau with doping levels at charge carrier densities $n_{\mathrm{LT}}<0.10$\,nm$^{-1}$, with higher doping it decreases to about 4\,nm for $n_{\mathrm{LT}}\approx0.20$\,nm$^{-1}$. This drop is due to the overlap of the excitonic and the H-band in the absorption spectra because the proportion of intrinsic nanotube segments is overestimated. The deviation of the intrinsic size from the 13$\pm$3\,nm reported in the literature results from differences in the sample preparation. The behavior of the trion size with increasing doping is similar: For $n_{\mathrm{LT}}<0.17$\,nm$^{-1}$ it is 1.83$\pm$0.47\,nm, which is comparable in magnitude to literature With even higher doping, $\xi_{\mathrm{T,k}}$ decreases to 0.92$\pm$0.26\,nm. At very high $n_{\mathrm{LT}}$, the H-band dominates the spectrum so that the influence of the absorption band superposition can no longer be fully compensated by a correction factor, which leads to the small values for $\xi_{\mathrm{T,k}}$. Chapter 6 now dealt with the (spectro-)electrochemical investigation of precursors of molecular radicals instead of redox-chemical doping of nanoscale semiconductors. SWV measurements strongly indicate that the pyrenes Pyr1-Pyr3 form mono-, bi- and tetraradicals, respectively, on reduction, depending on the number of their substituents. The structural similarity of the molecules is expressed in the same reduction potentials as well as similar potential-dependent absorption spectra. While only marginal differences could be determined in the PL spectra of the neutral and reduced species, the time-correlated single photon counting provided more informative results: The fluorescence lifetime is strongly influenced by the polarity of the environment - even the addition of the conductive salt leads to changes here. The average fluorescence lifetime $\tau_{\mathrm{av}}$ also decreases with reduction and radical formation; for higher emission wavelengths $\tau_{\mathrm{av}}$ is also higher. Overall, the experiments made clear the good screening between the pyrene nucleus and naphthalimide substituents of the molecules as well as the sensitivity to the medium through TICT, but the presence of bi- and tetraradicals cannot be fully proven, for which EPR measurements would be necessary. KW - Dotierung KW - Einwandige Kohlenstoff-Nanoröhre KW - Elektrochemie KW - Ultrakurzzeitspektroskopie KW - (6,5)-Spektroskopie KW - Pyrenderivate KW - TICT KW - Spektroskopie Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-276119 ER - TY - THES A1 - Oberndorfer, Florian T1 - Photoluminescence and Raman spectroscopy of doped nanomaterials T1 - Photolumineszenz und Raman Spektroskopie an dotierten Nanomaterialien N2 - This thesis includes measurements that were recorded by cooperation partners. The EPR spec‐ trosa mentioned in section 5.2 were recorded by Michael Auth from the Dyakonov Group (Ex‐ perimental Physics VI, Julius‐Maximilians‐Universität, Würzburg). The TREFISH experiments and transient absorption in section 5.4 spectra were performed by Jašinskas et al. from the V. Gulbi‐ nas group (Center for Physical Sciences and Technology, Vilnius, Lithuania). This dissertation investigated the interactions of semiconducting single‐walled carbon nanotubes (SWNTs) of (6,5) chirality with their environment. Shear‐mixing provided high‐quality SWNT sus‐ pensions, which was complemented by various film preparation techniques. These techniques were in turn used to prepare heterostructures with MoS2 and hBN, which were examined with a newly constructed photoluminescence microscope specifically for this purpose. Finally, the change of spectral properties of SWNTs upon doping was investigated in more detail, as well as the behaviour of charge carriers in the tubes themselves. To optimise the SWNT sample preparation techniques that supplied the other experiments, the sample quality of shear‐mixed preparations was compared with that of sonicated samples. It was found that the quantum efficiency of sheared suspensions exceeds that of sonicated suspensions as soon as the sonication time exceeds 30 min. The higher PLQY is due to the lower defect concentration in shear‐mixed samples. Via transient absorption, a mean lifetime of 17.3 ps and a mean distance between defects of 192.1 nm could be determined. Furthermore, it was found that the increased efficiency of horn sonication is probably not only due to higher shear forces acting on the SWNT bundles but also that the shortening of PFO‐BPy strands plays a significant role. Sonication of very long polymer strands significantly increased their effectiveness in shear mixing. While previous approaches could only achieve very low concentrations of SWNTs in suspensions, pre‐sonicated polymer yielded results which were comparable with much shorter PFO‐BPy batches. Reference experiments also showed that different aggregation processes are relevant during production and further processing. Initial reprocessing of carbon nanotube raw material requires 7 h sonication time and over 24 h shear mixing before no increase in carbon nano concentration is detectable. However, only a few minutes of sonication or shear mixing are required when reprocessing the residue produced during the separation of the slurry. This discrepancy indicates that different aggregates are present, with markedly different aggregation properties. To study low‐dimensional heterostructures, a PL microscope was set up with the ability to ob‐ serve single SWNTs as well as monolayers of other low‐dimensional systems. Furthermore, sam‐ ples were prepared which bring single SWNTs into contact with 2D materials such as h‐BN andMoS2 layers and the changes in the photoluminescence spectrum were documented. For h‐BN, it was observed whether previous methods for depositing SWNTs could be transferred for photo‐ luminescence spectroscopy. SWNTs were successfully deposited on monolayers via a modified drip coating, with the limitation that SWNTs aggregate more at the edges of the monolayers. Upon contact of SWNTs with MoS2, significant changes in the emission properties of the mono‐ layers were observed. The fluorescence, which was mainly dominated by excitons, was shifted towards trion emission. Reference experiments excluded PFO‐BPy and toluene as potential causes. Based on the change in the emission behaviour of MoS2, the most plausible explanation is a photoinduced charge transfer leading to delocalised charge carriers on MoS2. In contrast, on SWNTs, the introduction of additional charges would constitute a quenching centre, which would quench their PL emission, making them undetectable in the PL image. In the last chapter, the electronic properties of doped SWNTs and the behaviour of charge carri‐ ers inside the tubes should be investigated. First, the change in the conductivity of SWNT films with increasing doping levels was docu‐ mented. The resistance of the films drops drastically at minimum doping. After the initial in‐ troduction of charges, the resistance drops with increasing dopant concentration according to a double logarithmic curve. The initial drop could be due to a reduction of contact resistances within the SWNT network film, but this could not be further investigated within the scope of this PhD thesis. In cooperation with Andreas Sperlich and Michael Auth, the spin concentration of SWNTs at different doping levels was determined. The obtained concentrations were compared with the carrier concentrations determined from PL and absorption spectra. At low spin densities, good agreement with previous models was found. Furthermore, the presence of isolated spins strongly suggests a localised charge carrier distribution at temperatures around 10 K. When the charge density is increased, the spin density deviates significantly from the charge carrier con‐ centration. This discrepancy is attributed to the increasing delocalisation of charge carriers at high charge densities and the interactions of neighbouring spins. These results strongly indicate the existence of localised charge carriers in SWNTs at low temperatures. Next, the effect of doping on the Raman spectra of SWNT suspensions was investigated. In gen‐ eral, doping is expected to reduce the intensity of the Raman bands, i.e. a consequence of the reduced resonance gain due to bleaching of the S2 transition. However, similar to the resistivity measurements, the oscillator strength of the G+ band drops sharply in the first doping steps. It was also found that the G+ band decreases more than would be expected due to loss of reso‐ nance condition. Furthermore, the G‐ is bleached faster than the G+ band. All these anomalies suggest that resonance enhancement is not the only relevant effect. Another much faster deac‐ tivation path for the excitons may be introduced by doping. This would leave less time for the scattering process to occur and reduce the oscillator strength of the Raman bands. In cooperation with Vidmantas et al., the photoinduced charge carrier behaviour of SWNT/PCBM films was investigated. The required films were prepared by drop coating. The SWNT suspen‐ sions required for this were obtained from sheared SWNT preparations. Using transient absorp‐ tion and TREFISH, a number of charge transfer effects were identified and their dynamics in‐ vestigated: the recombination of neutral excitons (< 50 ps), the electron transfer from carbon nanotubes to PCBM molecules (< 1 ps), the decay of charge‐transfer excitons (∼200 ps), the recombination of charge carriers between charge‐transfer excitons (1 ns to 4 ns) and finally the propagation through the SWNT network (∼20 ns) N2 - Diese Arbeit beinhaltet Messungen, die von Kooperationspartnern durchgeführt wurden. Die in Abschnitt 5.2 erwähnten EPR‐Spektren wurden von Michael Auth aufgenommen. Die TREFISH‐ Experimente und die transiente Absorption im Abschnitt 5.4‐Spektren wurden von Jašinskas et al. durchgeführt. Im Rahmen dieser Dissertation wurden die Wechselwirkungen von halbleitenden, einwandigen Kohlenstoffnanoröhren (SWNTs) der (6,5) Chiralität mit ihrer Umgebung untersucht. Dies wurde durch Einsatz von Schermischen als Präparationsmethode, sowie einer Reihe von Filmpräpa‐ rationstechniken ermöglicht. Diese Techniken wurden wiederum eingesetzt, um Heterostruk‐ turen mit MoS2 und hBN herzustellen, welche mit einem eigens dafür aufgebauten Photolu‐ mineszenzmikroskop untersucht wurden. Schlussendlich wurde die Änderung der spektralen Eigenschaften von SWNTs bei Dotierung näher untersucht, ebenso wie das Verhalten von Ladungs‐ trägern in den Röhren selbst. Die EPR Spektren die im Abschnitt 5.2 aufgeführt sind wurden von Michael Auth aufgenommen. Die TREFISH Experimente und die dazugehörigen transienten Ab‐ sorptions Spektren wurde von Jašinskas et al. durchgeführt. Für die Herstellung der benötigten SWNT‐Proben wurde die Probenqualität von geschermis‐ chten Ansätzen mit deren von beschallten Proben verglichen. Dabei wurde festgestellt, dass die Quanteneffizienz von geschermischten die von beschallten deutlich übersteigt, sobald die Beschallungszeit 30 min überschreitet. Dies ist auf die geringere Defektkonzentration in gescher‐ mischten Proben zurückzuführen. Über transiente Absorption konnte eine mittlere Lebensdauer von 17.3 ps und ein mittlerer Abstand zwischen Defekten von 192.1 nm bestimmt werden. Ferner wurde festgestellt, dass die erhöhte Effizienz von Horn‐Beschallung wahrscheinlich nicht nur auf höhere Scherwirkung an den SWNT‐Bündeln liegt, sondern auch die Verkürzung von PFO‐ BPy Strängen eine erhebliche Rolle spielt. Die Beschallung von sehr langen Polymer‐Strängen hat deren Effektivität bei Schermischen deutlich erhöht. Während bei vorherigen Ansätzen nur sehr geringe Konzentration an SWNTs in Suspensionen erreicht werden könnten, konnte mit vor‐beschallten Polymer vergleichbare Ergebnisse wie mit wesentlich kürzeren PFO‐BPy Char‐ gen erreicht werden. Referenzexperimente zeigten außerdem, dass verschiedene Aggregation‐ sprozesse bei der Herstellung und Weiterverarbeitung relevant sind. Bei der initialen Aufar‐ beitung von Kohlenstoffnanorohr Rohmaterial sind 7 h Beschallungszeit und über 24 h Schermis‐ chen erforderlich, bevor keine Erhöhung der Kohlenstoffnano‐Konzentration mehr feststellbar ist. Bei Wiederaufarbeitung des bei der Abtrennung des Suspension entstandenen Rückstands sind allerdings nur wenige Minuten Beschallung oder Schermischen notwendig. Dies deutet darauf hin, dass grundlegend unterschiedliche Aggregate vorliegen, mit deutlich anderen Aggre‐ gationseigenschaften. Um nieder‐dimensionale Heterostrukturen zu untersuchen wurde ein PLE‐Mikroskop aufgebaut, mit der Fähigkeit einzelne SWNTs, sowie Monolagen andere nieder‐dimensionale Systeme zu un‐ tersuchen. Weiterhin wurde Proben hergestellt welche einzelne SWNTs mit 2D‐Materialien wie h‐BN und MoS2 Schichten in Kontakt bringen und der Änderungen im Photolumineszenz Spek‐ trum dokumentiert. Für h‐BN wurde beobachtet, ob bisherige Methoden zur Ablagerung von SWNTs für Photolumineszenz‐Spektroskopie übertragen werden können. Dabei wurde beobachtet, dass über eine modifizierte Tropfbeschichtung SWNTs auf Monolagen abgelagert werden kön‐ nen, mit der Einschränkung, dass an den Kanten der Monolagen SWNT verstärkt aggregieren. Bei Kontakt von SWNTs mit MoS2 wurden erhebliche Änderungen in den Emissionseigenschaften der Monolagen beobachtet. Die hauptsächlich von Exzitonen dominierte Fluoreszenz wurde hin zu Trion‐Emission verschoben. Referenzexperimente schlossen PFO‐BPy und Toluol als poten‐ zielle Ursachen aus. Basierend auf der Änderung des Emissionsverhaltens von MoS2, ist die plau‐ sibelste Erklärung ein photoinduzierter Ladungstransfer, welcher zu delokalisierten Ladungsträgern auf MoS2 führt. Hingegen auf SWNTs würde die Einführung zusätzlicher Ladungen ein Löschzen‐ trum darstellen, was deren PL Emission weitestgehend unterdrücken würde. Im letzten Kapitel sollten die elektronischen Eigenschaften von dotierten SWNTs und das Verhal‐ ten von Ladungsträgern innerhalb der Röhren untersucht werden. Zunächst wurden die Veränderung in der Leitfähigkeit von SWNT‐Filmen bei zunehmenden Dotier‐ ungsgrad dokumentiert. Dabei wurde beobachtet, dass der Widerstand der Filme bei minimaler Dotierung drastisch abfällt. Nach dem ersten Einbringen von Ladungen fällt der Widerstand mit steigender Dotiermittelkonzentration gemäß eines doppel‐logarithmischen Verlaufs. Der initiale Abfall könnte an einer Verringerung von Kontaktwiderständen innerhalb des SWNT‐Netzwerk‐ Films liegen, allerdings konnte dies nicht in Rahmen dieser Doktorarbeit geklärt werden. Im Rahmen einer Kooperation mit Andreas Sperlich und Michael Auth wurde dabei die Spinkonzen‐ tration von SWNTs bei verschiedene Dotierungsgraden untersucht. Die erhaltenen Konzentra‐ tionen wurden mit den Ladungsträger‐Konzentration, die aus PL und Absorptionsspektren bes‐ timmt wurden, verglichen. Bei niedrigen Spin‐Dichten zeigte sich eine gute Übereinstimmung mit bisherigen Modellen. Ferner, deutet die Präsenz von isolierten Spins stark auf eine lokalisierte Ladungsträger‐Verteilung bei Temperaturen um 10 K hin. Bei Erhöhung der Ladungsdichte we‐ icht die Spindichte erheblich von der Ladungsträger‐Konzentration. Diese Diskrepanz wird auf die zunehmende Delokalisierung der Ladungsträger bei hohen Ladungsdichten zurückgeführt. Delokalisierte Spins sind nicht detektierbar in EPR Methoden. Diese Resultate sind ein starkes Indiz für das Vorhandensein von lokalisierten Ladungsträgern in SWNTs bei niedrigen Tempera‐ turen. Als Nächstes wurde der Effekt von Dotierung auf die Raman Spektren von SWNT Suspensionen untersucht. Generell wird erwartet, dass Dotierung die Intensität der Raman‐Banden verringert, also Folge der verringerten Resonanzverstärkung durch Bleichen des S2 Übergangs. Allerdings wurde ähnlich wie bei den Widerstandsmessungen ein starker Abfall in der Oszillatorstärke der G + ‐Bande bei den ersten Dotierungsschritten festgestellt. Weiterhin wurde festgestellt, dass die G + Band stärker abnimmt, als durch Verlust der Resonanzbedingung zu erwarten wäre. Außer‐ dem wird die G‐ stärker gebleicht als die G+ Bande. All diese Anomalien deuten darauf hin, dass die Resonanzverstärkung nicht der einzige relevante Effekt ist. Möglicherweise spielt eine beschleunigte Deaktivierung der Exzitonen über durch Dotierung eingebrachte Defekte eine entscheidende Rolle. In Kooperation mit der Gruppe um Vidmantas et al. wurde das photoinduzierte Ladungsträger‐ Verhalten von SWNT/PCBM Filmen untersucht. Die dazu benötigten Filme wurden über Tropf‐ beschichtung hergestellt. Die dazu notwendingen SWNT‐Suspensionen stammen aus gescher‐ mischten SWNT‐Ansätzen. Über transiente Absorption und TREFISH konnten eine Reihe von Ladungstransfer‐Effekten identifiziert un deren Dynamik untersucht werden: die Rekombination von neutralen Exzitonen (50 ps, den Elektronentransfer von Kohlenstoffnanoröhren auf PCBM Moleküle (< 1 ps), den Zerfall von Ladungstransfer‐Exzitonen (∼200 ps), die Rekombination von Ladungsträgern zwischen Ladungstransfer‐Exzitonen (1 ns to 4 ns) und schließlich die Propaga‐ tion durch das SWNT‐Netzwerk (∼20 ns)) KW - Einwandige Kohlenstoff-Nanoröhre KW - Spektroskopie KW - Dotierung KW - Fluoreszenzmikroskopie KW - Raman-Spektroskopie KW - Nanomaterialien KW - Ladungsträger-Charakterisierung KW - Nanomaterials KW - Charge carrier characterization Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-278540 ER - TY - THES A1 - Auth, Michael Tilman T1 - Quantitative Electron Paramagnetic Resonance Studies of Charge Transfer in Organic Semiconductors T1 - Quantitative Elektron Paramagnetische Resonanz Untersuchungen von Ladungstransfer Prozessen in Organischen Halbleitern N2 - In the present work we investigated various charge transfer processes, as they appear in the versatile world of organic semiconductors by probing the spin states of the corresponding charge carrier species via electron paramagnetic resonance (EPR) spectroscopy. All studied material systems are carbon-based compounds, either belonging to the group of polymers, fullerenes, or single-wall carbon nanotubes (SWNTs). In the first instance, we addressed the change of the open circuit voltage (Voc) with the fullerene blend stoichiometry in fullerene-based solar cells for organic photovoltaics (OPV). The voltage depends strongly on the energy separation between the lowest unoccupied molecular orbital (LUMO) of the donor and the highest occupied molecular orbital (HOMO) of the acceptor. By exploiting the Gaussian distribution of the charge carriers in a two-level system, and thus also their spins in the EPR experiment, it could be shown that the LUMOs get closer by a few to a few hundred meV when going from pure fullerene materials to a fullerene mixture. The reason for this strong energetic effect is likely the formation of a fullerene alloy. Further, we investigated the chemical doping mechanism of SWNTs with a (6,5)-chirality and their behaviour under optical excitation. In order to determine the unintentional (pre)-doping of SWNTs, EPR spectra of the raw material as well as after different purification steps were recorded. This facilitated the determination of nanotube defects and atmospheric p-doping as the causes of the measured EPR signals. In order to deliberately transfer additional charge carriers to the nanotubes, we added the redox-active substance AuCl3 where we determined an associated doping-yield of (1.5±0.2)%. In addition, a statistical occupation model was developed which can be used to simulate the distribution of EPR active, i.e. unpaired and localised charge carriers on the nanotubes. Finally, we investigated the charge transfer behaviour of (6,5)-SWNTs together with the polymer P3HT and the fullerene PC60BM after optical excitation. N2 - Die vorliegende Arbeit untersuchte mit Hilfe der Elektron Paramagnetischen Resonanz Spektroskopie (EPR) die Ladungsträgerspins bei Ladungstransfer-Prozessen in organischen Halbleitern. Insbesondere wurden hier verschiedene Kohlenstoffverbindungen betrachtet, welche zur Gruppe der Polymere, Fullerene, oder Kohlenstoff-Nanoröhren gehören. Zu Beginn gingen wir auf die Veränderung der Leerlaufspannung in Fulleren Solarzellen für organische photovoltaic (OPV) ein, welche mit der Fulleren Stöchiometry variiert. Die Leerlaufspannung ist entscheidend für das Ladungsstransfer-Verhalten nach erfolgreicher optischer Anregung. Sie hängt stark vom Energieabstand des niedrigsten unbesetzten Molekülorbitals (engl. LUMO) des Donators zum höchsten besetzten Molekülorbital (engl. HOMO) des Akzeptors ab. Hierbei wurde die Gaußsche Verteilungs-Statistik der Ladungsträger, und damit auch deren Spins, in einem zwei Niveau System im EPR Experiment ausgenutzt. Es konnte gezeigt werden, dass sich deren Abstand um wenige bis hin zu wenigen Hundert meV annähert wenn man vom reinen Fulleren Material zu einem Fulleren Gemisch übergeht. Die Ursache für diesen starken energetischen Effekt ist wahrscheinlich die Bildung einer Fulleren-Legierung. Des weiteren betrachteten wir speziell einwandige Kohlenstoff-Nanoröhren der Chiralität (6,5). Untersucht wurde zunächst die chemische Dotierung dieser Systeme und anschließend ihr Verhalten bei optischer Anregung. Um zunächst die ungewünschte (vor)-Dotierung der Nanoröhren zu ermitteln, wurden EPR Spektren in unbehandelter Form, als auch nach unterschiedlichen Aufreinigungsschritten aufgenommen. Dies ermöglichte die Bestimmung von Nanorohr-Defekten und atmosphärischer p-Dotierung als Ursache für das gemessene EPR Signal. Um bewusst zusätzliche Ladungsträger auf die Nanoröhren zu übertragen gaben wir die redox-aktive Substanz AuCl3 hinzu, wo wir eine zugehörige Dotiereffizienz von (1,5±0,2)% ermittelten. Darüber hinaus wurde ein statistisches Modell erarbeitet welches die Verteilung von EPR aktiven, d.h. ungepaarten und lokalisierten Ladungsträgern auf den Nanoröhren simulieren kann. Zum Abschluss betrachteten wir das Ladungstransfer-Verhalten von (6,5)-Nanoröhren zusammen mit dem Polymer P3HT und dem Fulleren PC60BM nach optischer Anregung. KW - Organische Halbleiter KW - EPR Spektroskopie KW - Dotierung KW - Ladungstransfer KW - organic semiconductor KW - carbon nanotube KW - epr spectroskopy KW - doping KW - quantitative epr KW - charge transfer KW - organic photovoltaic KW - spin Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-189513 ER - TY - THES A1 - Wulfert-Holzmann, Paul T1 - Die elektrische Leitfähigkeit des negativen Aktivmaterials moderner Blei-Säure-Batterien T1 - The electrical conductivity of the negative active material in modern lead-acid batteries N2 - Diese Doktorarbeit beschäftigt sich mit dem Wirkmechanismus der elektrischen Leitfähigkeit in Blei-Säure-Batterien. Obwohl ihm eine zentrale Rolle beim „Kohlenstoff-Effekt“ zugeordnet wird, ist der Wirkmechanismus der elektrischen Leitfähigkeit bislang vergleichsweise wenig untersucht worden und konnte dementsprechend noch nicht vollständig aufgeklärt werden. Mit dem Anspruch, diese Forschungslücke zu schließen, zielt die vorliegende Doktorarbeit darauf ab, den Einfluss der elektrischen Leitfähigkeit auf die Performance der Blei-Säure-Batterie systematisch herauszuarbeiten und so einen Beitrag zur Generierung neuer Entwicklungsansätze zu leisten, z. B. in Form von maßgeschneiderten Additiven. Bislang ist noch unklar, ob allein die elektrische Leitfähigkeit des Aktivmaterials relevant ist oder diese auch durch Additive beeinflusst wird. Das liegt vor allem daran, dass geeignete Messmethoden fehlen und deshalb der Einfluss von Additiven auf die elektrische Leitfähigkeit des Aktivmaterials wenig untersucht wurde. Deswegen zielt diese Arbeit auch darauf ab, eine neuartige Messmethode zu entwickeln, um die elektrische Leitfähigkeit des Aktivmaterials im laufenden Betrieb bestimmen zu können. Aufgrund der Vorkenntnisse und Vorarbeiten am Fraunhofer ISC werden die Untersuchungen dabei auf die negative Elektrode limitiert. Insgesamt unterteilt sich die Doktorarbeit in die zwei Abschnitte. Im ersten Abschnitt werden elektrisch isolierende Stöber-Silica als Additive im negativen Aktivmaterial eingesetzt, um den Einfluss der elektrischen Leitfähigkeit des Additivs auf die elektrochemischen Eigenschaften der Batterie herauszustellen. Untersucht wird dabei die u.a. die Doppelschichtkapazität, die Wasserstoffentwicklung und die dynamische Ladeakzeptanz. Im zweiten Abschnitt steht die elektrische Leitfähigkeit des negativen Aktivmaterials im Fokus. Es wird zunächst eine neue Messmethodik entwickelt, die ihre in-situ- und operando-Bestimmung ermöglicht. Nach einer umfassenden Evaluierung und der Betrachtung verschiedener Betriebsparameter wird die Methodik für eine erste proof-of-concept-Messreihe angewendet, um den Einfluss von Additiven auf die elektrische Leitfähigkeit des negativen Aktivmaterials zu untersuchen. N2 - This dissertation deals with the effect mechanism of electrical conductivity in lead-acid batteries. Although it is believed to play a key role in the "carbon effect", the effect mechanism of electrical conductivity has been studied to lesser extent than other factors so far and accordingly has not yet been fully elucidated. With the aim of closing this research gap, the present dissertation aims to systematically work out the influence of electrical conductivity on lead-acid battery performance and thus contribute to the generation of new development approaches, e.g. in the form of tailored additives. So far, it is still unclear whether the electrical conductivity of the active material alone is relevant or whether this is also influenced by additives. This is mainly due to the fact that suitable measurement methods are lacking and therefore the influence of additives on the electrical conductivity of the active material has been investigated to less extent. Therefore, this work also aims to develop a novel measurement method to determine the electrical conductivity of the active material during operation. Due to the previous knowledge and work at Fraunhofer ISC, the investigations are limited to the negative electrode. Overall, the thesis is divided into two sections. In the first section, electrically insulating Stöber silica particles are used as additives in the negative active material in order to highlight the influence of the electrical conductivity of the additive on the electrochemical properties of the battery. Among other things, the double-layer capacitance, hydrogen evolution and dynamic charge acceptance are investigated. The second section focuses on the electrical conductivity of the negative active material. First, a new measurement methode is developed that allows its in-situ and operando determination. After a comprehensive evaluation and consideration of various operational parameters, the methodology is applied to a first proof-of-concept series of measurements to investigate the influence of additives on the electrical conductivity of the negative active material. KW - Bleiakkumulator KW - Blei KW - Batterie KW - Kohlenstoff KW - Elektrochemie KW - Blei-Säure-Batterie KW - Stöber-Silica KW - operando-Messung KW - Lead-acid batteries KW - Stöber silica Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-298397 ER - TY - THES A1 - Namal, Imge T1 - Fabrication and Optical and Electronic Characterization of Conjugated Polymer-Stabilized Semiconducting Single-Wall Carbon Nanotubes in Dispersions and Thin Films T1 - Herstellung und Optische- und Elektronische- Charakterisierung von konjugierten Polymer-stabilisierten halbleitenden Kohlenstoffnanoröhren in Dispersionen und dünnen Filmen N2 - In order to shrink the size of semiconductor devices and improve their efficiency at the same time, silicon-based semiconductor devices have been engineered, until the material almost reaches its performance limits. As the candidate to be used next in semiconducting devices, single-wall carbon nanotubes show a great potential due to their promise of increased device efficiency and their high charge carrier mobilities in the nanometer size active areas. However, there are material based problems to overcome in order to imply SWNTs in the semiconductor devices. SWNTs tend to aggregate in bundles and it is not trivial to obtain an electronically or chirally homogeneous SWNT dispersion and when it is done, a homogeneous thin film needs to be produced with a technique that is practical, easy and scalable. This work was aimed to solve both of these problems. In the first part of this study, six different polymers, containing fluorene or carbazole as the rigid part and bipyridine, bithiophene or biphenyl as the accompanying copolymer unit, were used to selectively disperse semiconducting SWNTs. With the data obtained from absorption and photoluminescence spectroscopy of the corresponding dispersions, it was found out that the rigid part of the copolymer plays a primary role in determining its dispersion efficiency and electronic sorting ability. Within the two tested units, carbazole has a higher π electron density. Due to increased π−π interactions, carbazole containing copolymers have higher dispersion efficiency. However, the electronic sorting ability of fluorene containing polymers is superior. Chiral selection of the polymers in the dispersion is not directly foreseeable from the selection of backbone units. At the end, obtaining a monochiral dispersion is found to be highly dependent on the used raw material in combination to the preferred polymer. Next, one of the best performing polymers due to high chirality enrichment and electronic sorting ability was chosen in order to disperse SWNTs. Thin films of varying thickness between 18 ± 5 to 755o±o5 nm were prepared using vacuum filtration wet transfer method in order to analyze them optically and electronically. The scalability and efficiency of the integrated thin film production method were shown using optical, topographical and electronic measurements. The relative photoluminescence quantum yield of the radiative decay from the SWNT thin films was found to be constant for the thickness scale. Constant roughness on the film surface and linearly increasing concentration of SWNTs were also supporting the scalability of this thin film production method. Electronic measurements on bottom gate top contact transistors have shown an increasing charge carrier mobility for linear and saturation regimes. This was caused by the missing normalization of the mobility for the thickness of the active layer. This emphasizes the importance of considering this dimension for comparison of different field effect transistor mobilities. N2 - Um die Verkleinerung in Halbleiterbauelementen zu erreichen und gleichzeitig ihre Effizienz zu verbessern, wurden Halbleiterbauelemente auf Siliziumbasis entwickelt, bis das Material seine Leistungsgrenzen nahezu erreicht hat. Als zukünftiger Kandidat, der in halbleitenden Geräten Verwendung finden wird, zeigen einwandige Kohlenstoff−Nanoröhren ein großes Potenzial für eine erhöhte Geräteeffizienz. Grund dafür sind ihre hohen Ladungsträger−Mobilitäten in den ein paar Nanometergroßen aktiven Flächen. Allerdings gibt es materialbasierte Probleme zu überwinden um SWNTs in den Halbleiterbauelementen zu implizieren. SWNTs neigen dazu in Bündeln zu aggregieren. Eine Herausforderung ist zudem eine elektronische oder chiral homogene Kohlenstoffnanorohr−Dispersion zu erhalten. Ein weiteres Problem ist, aus diesen Kohlenstoffnanorohr−Dispersion einen homogenen Dünn−Film mit einer Technik herzustellen die praktisch, einfach und skalierbar ist. Diese Arbeit zielte darauf ab, diese beiden Probleme zu lösen. Im ersten Teil dieser Arbeit wurden sechs verschiedene Polymere, die Fluoren oder Carbazol als starren Teil und Bipyridin, Bithiophen oder Biphenyl als begleitende Copolymereinheit enthielten, verwendet um selektiv halbleitende SWNTs zu dispergieren. Mit den aus der Absorptions− und Photolumineszenzspektroskopie erhaltenen Daten der entsprechenden Dispersionen wurde herausgefunden, dass der starre Teil des Copolymers eine primäre Rolle bei der Bestimmung seiner Dispersionseffizienz und der elektronischen Sortierfähigkeit spielt. Innerhalb der beiden getesteten Einheiten hat Carbazol eine höhere π−Elektronendichte. Aufgrund erhöhter π−π Wechselwirkungen haben Carbazol−haltige Copolymere eine höhere Dispersionseffizienz. Die elektronische Selektivität von fluorenhaltigen Polymeren ist gegenüber Carbazol enthaltenden Polymeren höher. Die chirale Selektivität der Polymere in der Dispersion ist nicht direkt vor der Auswahl der Grundgerüsteinheiten vorhersehbar. Am Ende wird das Erhalten einer monochiralen Dispersion im hohen Maße von den verwendeten Rohmaterialien in Kombination mit dem bevorzugten Polymer abhängig gemacht. Im nächsten Schritt wurde ein Polymer ausgewählt der durch eine hohe Chiralitätanreicherung besticht und zudem eine gute elektronische Sortierfähigkeit besitzt, um SWNTs zu dispergieren. Dünnfilme unterschiedlicher Dicke, zwischen 18 ± 5 bis 755 ± 5 nm, wurden unter der Verwendung eines Vakuumfiltrations−Nassübertragungsverfahrens hergestellt um sie daraufhin optisch und elektronisch zu analysieren. Die Skalierbarkeit und Effizienz des integrierten Dünnschichtherstellungsverfahrens wurde anhand optischer, topographischer und elektronischer Messungen gezeigt. Die relative Photolumineszenzquantenausbeute des Strahlungsabfalls aus den SWNT−Dünnfilmen wurde für den Dickenmaßstab konstant gehalten. Eine konstante Rauigkeit auf der Filmoberfläche und eine linear zunehmende Konzentration von SWNTs unterstützten auch die Skalierbarkeit dieses Dünnfilmherstellungsverfahrens. Elektronische Messungen am „bottom gate – top contact Transistoren“ zeigten eine zunehmende Ladungsträgermobilität für Linear− und Sättigungsregionen. Dies wurde durch die fehlende Normalisierung der Ladungsträgermobilität für die Dicke der aktiven Schicht verursacht. Betrachtet man die Wichtigkeit, diese Dimension für den Vergleich verschiedener Feldeffekttransistor− Mobilitäten zu betrachten, so deutet diese Feststellung auch darauf hin, dass es eine Skalierung in der Dicke in Bezug auf die berechneten Mobilitäten für die Feldeffekttransistoren gibt. KW - single-wall carbon nanotubes KW - semiconductor devices KW - optical spectroscopy KW - polymer KW - Field effect transistor KW - Feldeffekttransistor KW - Optische Spektroskopie KW - Polymere KW - Halbleiter KW - Kohlenstoff-Nanoröhre Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162393 ER - TY - THES A1 - Kastner, Matthias J. T1 - Spectroscopic investigation of molecular adsorption and desorption from individual single-wall carbon nanotubes T1 - Spektroskopische Untersuchung von molekularer Adsorption und Desorption an einzelnen einwandigen Kohlenstoffnanoröhren N2 - Nanoelectronics is an essential technology for down-scaling beyond the limit of silicon-based electronics. Single-Wall Carbon Nanotubes (SWNT) are semiconducting components that exhibit a large variety of properties that make them usable for sensing, telecommunication, or computational tasks. Due to their high surface to volume ratio, carbon nanotubes are strongly affected by molecular adsorptions, and almost all properties depend on surface adsorption. SWNT with smaller diameters (0.7-0.9nm) show a stronger sensitivity to surface effects. An optimized synthesis route was developed to produce these nanotubes directly. They were produced with a clean surface, high quality, and large lengths of 2 μ m. The results complement previous studies on larger diameters (0.9-1.4nm). They allow performing statistically significant assumptions for a perfect nanotube, which is selected from a subset of nanotubes with good emission intensity, and high mechanical durability. The adsorption of molecules on the surface of carbon nanotubes influences the motion and binding strength of chargeseparated states in this system. To gain insight into the adsorption processes on the surface with a minimum of concurrent overlapping effects, a microscopic setup, and a measurement technique were developed. The system was estimated to exhibit excellent properties like long exciton diffusion lengths (>350nm), and big exciton sizes (8.5(5)nm), which was substantiated by a simulation. We studied the adsorption processes at the surface of Single-Wall Carbon Nanotubes for molecules in the gas phase, solvent molecules, and surfactant molecules. The experiments were all carried out on suspended individualized carbon nanotubes on a silicon wafer substrate. The experiments in the gas-phase showed that the excitonic emission energy and intensity experiences a rapid blue shift during observation. This shift was associated with the spontaneous desorption of large clusters of gaseous molecules caused by laser heat up. The measurement of this desorption was essential for creating a reference to an initially clean surface and allows us to perform a comparison with previous measurements on this topic. Furthermore, the adsorption of hydrogen on the nanotube surface at high temperatures was investigated. It was found that a new emission mode arises slightly red-shifted to the excitonic emission in these systems. The new signal is almost equally strong as the main excitonic peak and was associated with the brightening of dark excitons at sp3-defects through a K-phonon assisted pathway. The finding is useful for the direct synthesis of spintronic devices as these systems are known to act as single-photon emitters. The suspended nanotubes were further studied to estimate the effect of solvent adsorption on the excitonic states during nanotube dispersion for each nanotube individually. A significant quantum yield loss is observable for hexane and acetonitrile, while the emission intensity was found to be the strongest in toluene. The reference to a clean surface allowed us to estimate the exact influence of the dielectric environment of adsorbing solvents on the excitonic emission energy. Solvent adsorption was found to lead to an energy shift that is almost twice as high as suggested in previous studies. The amount of this energy shift, however, was comparably similar for all solvents, which suggests that the influence of the distinct dielectric constant in the outer environment less significantly influences the energy shift than previously thought. An interesting phenomenon was found when using acetonitrile as a solvent, which leads to greatly enhanced emission properties. The emission is more than twice as high as in the same air-suspended nanotubes, which suggests a process that depends on the laser intensity. In this study, it was reasonably explained how an energy down-conversion is possible through the coupling of the excitonic states with solvent vibrations. The strength of this coupling, however, also suggests adsorptions to the inside of the tubular nanotube structure leading to a coupled vibration of linear acetonitrile molecules that are adsorbed to the inner surface. The findings are important for the field of nanofluidics and provide an excellent system for efficient energy down-conversion in the transmission window of biological tissue. Having separated the pure effect of solvent adsorption allowed us to study the undisturbed molecular adsorption of polymers in these systems. The addition of polyfluorene polymer leads to a slow but stepwise intensity increase. The intensity increase is overlapping with a concurrent process that leads to an intensity decrease. Unfortunately, observing the stepwise process has a low spacial resolution of only 100-250nm, which is in the range of the exciton diffusion length in these systems and hinders detailed analysis. The two competing and overlapping processes processes are considered to originate from slow π-stacking and fast side-chain binding. Insights into this process are essential for selecting suitably formed polymers. However, the findings also emphasize the importance of solvent selection during nanotube dispersion since solvent effects were proven to be far more critical on the quantum yield in these systems. These measurements can shed light on the ongoing debate on polymers adsorption during nanotube individualization and allow us to direct the discussion more towards the selection of suitable solvents. This work provides fundamental insights into the adsorption of various molecules on the surface of individually observed suspended Single-Wall Carbon Nanotubes. It allows observing the adsorption of individual molecules below the optical limit in the solid, liquid, and gas phases. Nanotubes are able to act as sensing material for detecting changes in their direct surrounding. These fundamental findings are also crucial for increasing the quantum yield of solvent-dispersed nanotubes. They can provide better light-harvesting systems for microscopy in biological tissue and set the base for a more efficient telecommunication infrastructure with nano-scale spintronics devices and lasing components. The newly discovered solvent alignment in the nanotube surrounding can potentially also be used for supercapacitors that are needed for caching the calculation results in computational devices that use polymer wrapped nanotubes as transistors. Although fundamental, these studies develop a strategy to enlighten this room that is barely only visible at the bottom of the nano-scale. N2 - Nanoelektronik ist eine wichtige Technologie um das Größen-Limit gegenwärtiger Silizium-basierter Technologie zu überwinden. Einwandige Kohlenstoffnanoröhren sind halbleitende Moleküle, die eine Reihe von Eigenschaften dafür zur Verfügung stellen. Sie sind einsetzbar als Sensoren, in der Fernmeldetechnik und für elektronische Rechenoperationen. Aufgrund ihres hohen Verhältnisses von Oberfläche zu Volumen werden nahezu alle Eigenschaften von Kohlenstoffnanoröhren stark von Adsorption beeinflusst. Einwandige Kohlenstoffnanoröhren mit kleineren Durchmessern (0.7-0.9nm) zeigen einen stärkeren Einfluss auf Phänomene, die an der Oberfläche auftreten. Um speziell diese Nanoröhren genauer zu untersuchen wurde eine Synthese Strategie entwickelt, die Nanoröhren mit hoher Qualität und Länge herstellen kann und dabei eine saubere Oberfläche gewährleisten ohne ihre Emissions-Stärke durch Bündelung zu verlieren. Die erhaltenen Ergebnisse unterstützen Studien aus der Literatur, die zumeist an Röhren mit größeren Durchmessern durchgeführt wurden. Die Größe des Datensatzes erlaubt es, Nanoröhren mit perfekten Emissions-Eigenschaften und großer mechanischer Stabilität auszuwählen. Adsorptionen beeinflussen die Bewegung und Bindungs-Stärke der Excitonen, da sie ein Coulomb Potential an der Außenseite der Röhre ausbilden. Um die Adsorptionsprozess an der Oberfläche mit minimalen konkurrierenden Effekten zu untersuchen, wurde ein spezielles mikroskopisches Setup gewählt und eine Messmethode entwickelt um dieses System zu untersuchen. Das System wurde mit Hilfe von Bildern und Spektren charakterisiert. Über eine Simulation wurde außerdem gezeigt dass die untersuchten Nanoröhren große Diffusionslängen (>350nm) und Exciton Größen (<8.5nm) besitzen müssen. Der Adsorptions Prozess an Kohlenstoffnanoröhren wurde sowohl mit Molekülen in der Gas-Phase untersucht, also auch in Lösungsmitteln und mit Feststoffen. Alle Experimente wurde dabei an frei hängenden Röhren durchgeführt, die auf einem Silizium Wafer Substrat aufgebracht wurden. Die Experimente in der Gas Phase zeigten, dass die excitonische Emissions-Energie eine instantane und schnelle Blauverschiebung erfährt wenn die Nanoröhren mit einem Laser angeregt werden. Diese Verschiebung wurde auf die Desorption von Oberflächenverunreinigungen zurückgeführt, die an Luft inhärent die Messung beeinflussen. Durch die Annahme, nach der Untersuchung eine reine Oberfläche zu erhalten, konnte die Referenz der Vakkum-Emission erstellt werden, was es ermöglicht, den Einfluss der dielektrischen Umgebung genauer zu bestimmen. In einem weitern Experiment wurde die Adsorption von Wasserstoff getestet. In diesen Systemen bildet sich durch die Ausbildung von sp 3 -Defekten eine neue Emissionsbande aus. Solche Emissionen werden derzeit für die Anwendung als Einzelphotonenemitter diskutiert. Die hier vorgestellte Methode erlaubt die direkte Synthese solcher Systeme im CVD Ofen. Die frei hängenden Nanoröhren wurden weiter analysiert um den Effekt des Lösungsmittels auf die Emission detailiert zu untersuchen. Es wurde gezeigt, dass in Hexan und Acetonitril ein signifikant hoher Quantenausbeute-Verlust zu beobachten ist. Toluol hingegen zeigte sich hier am Besten. Die Energie-Verschiebungen waren insignifikant unterschiedlich zwischen den Lösungsmitteln. Ein Spezialfall war bei Acetonitril zu beobachten, in dem sich über den Zeitraum von 24h eine starke Emission herausbildet, die auf eine Kopplung mit Lösungsmittel-Schwingungen zurückgeführt wird. Die Stärke dieser Emission erlaubt die Vermutung, dass es sich um eine gekoppelte Schwingung von linear orientiertem Acetonitril in der Nanoröhre handelt. Eine solch starke Emission könnte zu Anwendungen in Zell-Gewebe führen, da weder Anregung noch Emission sich im Fenster der Blut- und Wasserabsorption befindet. Durch die eindeutige Identifizierung von Lösungsmitteleffekten auf die Dispergierung von Kohlenstoffnanoröhren war es möglich, den Prozess der Anlagerung von Polyfluorene Polymeren direkt zu beobachten. Das Hinzufügen von Polymer zur Lösung führt zu einem schrittweisen reversiblen Anstieg der Emissions Intensität. Dieser Anstieg wird von einem gleichzeitigen irreversiblen schrittweisen Abfall der Emissionsintensität begleitet. Leider ist das System nur geeignet, Adsorptionen bis maximal 100nm Länge aufzulösen. Eine detaillierte Analyse ist daher schwer. Trotzdem wird vermutet, dass es sich bei dem langsamen Prozess um das Ausbilden von π -Stapeln handelt, wobei der schnelle Prozess mit der nicht-kovalenten Bindung der Polymer-Seitenketten an die Oberfläche assoziiert wird. Obwohl über die eigentliche Bindung des Polymers nur Vermutungen angestellt werden können, so wirft die Untersuchung doch einen Fokus auf die Wahl des Lösungsmittels, da diese Entscheidung einen viel größeren Effekt verursacht, als die Bindung des Polymers selbst. Diese Arbeit stellt fundamentale Betrachtungen zur Adsorption von verschiedenen Molekülen an Kohlenstoffnanoröhren auf. Die Betrachtungen wurden mit festen, flüssigen und gasförmigen Molekülen durchgeführt. Die Ergebnisse zeigen, dass Nanoröhren geeignet sind, als Molekül-Sensoren verwendet zu werden, da sie stark auf Änderungen in ihrer Umgebung reagieren können. Weiterhin wurden Lösungsmittel und Eigenschaften aufgezeigt, die die Quanteneffizienz signifikant beeinflussen. Eine Anwendung in der biologischen Mikroskopie ist denkbar, genauso wie für eine effizientere und sicherere Fernmeldeinfrastruktur. Weiterhin wurden Wege aufgezeigt, Super-Kondensatoren auf Nanorohr-Basis zu bauen, die als Anwendung in einem Kohlenstoffnanorohr-basierenden Computer von Interesse sein könnten. Obwohl die Erkenntnisse fundamental sind, zeigen diese Studien, dass es mit bestimmten Tricks möglich ist, den Raum am unteren Ende der Nanometerskala zu erforschen und zu entdecken. KW - Kohlenstoff-Nanoröhre KW - Einwandige Kohlenstoff-Nanoröhre KW - Adsorption KW - Chemisorption KW - Physisorption KW - nanotube KW - microscopy KW - adsorption Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-211755 ER - TY - THES A1 - Grimm, Philipp Martin T1 - Locally driven complex plasmonic nanoantenna systems T1 - Lokal angetriebene komplexe plasmonische Nanoantennen-Systeme N2 - Metallic nanostructures possess the ability to support resonances in the visible wavelength regime which are related to localized surface plasmons. These create highly enhanced electric fields in the immediate vicinity of metal surfaces. Nanoparticles with dipolar resonance also radiate efficiently into the far-field and hence serve as antennas for light. Such optical antennas have been explored during the last two decades, however, mainly as standalone units illuminated by external laser beams and more recently as electrically driven point sources, yet merely with basic antenna properties. This work advances the state of the art of locally driven optical antenna systems. As a first instance, the electric driving scheme including inelastic electron tunneling over a nanometer gap is merged with Yagi-Uda theory. The resulting antenna system consists of a suitably wired feed antenna, incorporating a tunnel junction, as well as several nearby parasitic elements whose geometry is optimized using analytical and numerical methods. Experimental evidence of unprecedented directionality of light emission from a nanoantenna is provided. Parallels in the performance between radiofrequency and optical Yagi-Uda arrays are drawn. Secondly, a pair of electrically connected antennas with dissimilar resonances is harnessed as electrodes in an organic light emitting nanodiode prototype. The organic material zinc phthalocyanine, exhibiting asymmetric injection barriers for electrons and holes, in conjunction with the electrode resonances, allows switching and controlling the emitted peak wavelength and directionality as the polarity of the applied voltage is inverted. In a final study, the near-field based transmission-line driving of rod antenna systems is thoroughly explored. Perfect impedance matching, corresponding to zero back-reflection, is achieved when the antenna acts as a generalized coherent perfect absorber at a specific frequency. It thus collects all guided, surface-plasmon mediated input power and transduces it to other nonradiative and radiative dissipation channels. The coherent interplay of losses and interference effects turns out to be of paramount importance for this delicate scenario, which is systematically obtained for various antenna resonances. By means of the here developed semi-analytical toolbox, even more complex nanorod chains, supporting topologically nontrivial localized edge states, are studied. The results presented in this work facilitate the design of complex locally driven antenna systems for optical wireless on-chip communication, subwavelength pixels, and loss-compensated integrated plasmonic nanocircuitry which extends to the realm of topological plasmonics. N2 - Metallische Nanostrukturen besitzen die Fähigkeit, Resonanzen im sichtbaren Wellenlängenbereich zu unterstützen, die mit lokalisierten Oberflächenplasmonen in Verbindung stehen. Diese erzeugen hochverstärkte elektrische Felder in der unmittelbaren Nähe von Metalloberflächen. Nanopartikel mit dipolarer Resonanz strahlen zudem effizient in das Fernfeld ab und dienen somit als Antennen für Licht. Solche optischen Antennen wurden in den letzten zwei Jahrzehnten erforscht, allerdings hauptsächlich als eigenständige Einheiten, welche von externen Laserstrahlen angeregt werden, und in jüngerer Zeit als elektrisch getriebene Punktquellen, die jedoch lediglich über grundlegende Antenneneigenschaften verfügen. Diese Arbeit erweitert den aktuellen Stand von lokal getriebenen optischen Antennensystemen. In einem ersten Fallbeispiel wird das elektrische Antriebsschema einschließlich inelastischem Elektronentunneln über einen Nanometer-Spalt mit der Yagi-Uda-Theorie zusammengeführt. Das resultierende Antennensystem besteht aus einer passend verdrahteten, gespeisten Antenne, die einen Tunnelübergang enthält, sowie mehreren nahe gelegenen parasitären Elementen, deren Geometrie mit analytischen und numerischen Methoden optimiert wird. Experimentelle Befunde für eine ungeahnte Direktionalität der Lichtemission von einer Nanoantenne werden erbracht. Es werden Parallelen im Leistungsverhalten zwischen Radiofrequenz- und optischen Yagi-Uda-Anordnungen gezogen. Als zweites wird ein Paar elektrisch kontaktierter Antennen mit unterschiedlichen Resonanzen als Elektroden in einem Prototyp einer organischen lichtemittierenden nanoskaligen Diode eingesetzt. Das organische Material Zinkphthalocyanin, welches asymmetrische Injektionsbarrieren für Elektronen und Löcher aufweist, ermöglicht in Verbindung mit den Elektrodenresonanzen die Schaltbarkeit und Kontrolle der emittierten Wellenlänge und der Direktionalität bei Umkehr der Polarität der angelegten Spannung. In einer abschließenden Studie wird der nahfeldbasierte Antrieb von stäbchenförmigen Antennsystemen mittels eines Wellenleiters detailliert untersucht. Perfekte Impedanzanpassung, entsprechend einer verschwindenden Rückreflexion, wird erreicht, wenn die Antenne bei einer spezifischen Frequenz als verallgemeinerter kohärenter perfekter Absorber agiert. Hierbei nimmt sie die gesamte wellenleitergeführte Eingangsleistung, vermittelt durch ein Oberflächenplasmon, auf, und überträgt sie auf andere nichtstrahlende und strahlende Dissipationskanäle. Das kohärente Zusammenspiel von Verlusten und Interferenzeffekten erweist sich für dieses empfindliche Szenario, das systematisch für verschiedene Antennenmoden erzeugt wird, als äußerst wichtig. Mit Hilfe des hier entwickelten semi-analytischen Werkzeugsets werden auch komplexere Ketten aus Nanostäbchen untersucht, bei denen topologisch nichttriviale lokalisierte Randzustände auftreten. Die in dieser Arbeit vorgestellten Ergebnisse erleichtern die Entwicklung komplexer lokal angetriebener Antennensysteme für optische drahtlose Kommunikation auf einem Computerchip, Subwellenlängenpixel und verlustkompensierte integrierte plasmonische Nanoschaltkreise, welche sich bis auf das Gebiet der topologischen Plasmonik erstrecken. KW - Plasmonik KW - Nanooptik KW - Nanophotonik KW - Finite-Differenzen-Methode KW - OLED KW - Optical antenna KW - Directional emission KW - Zinc phthalocyanine KW - Coherent perfect absorption KW - Su-Schrieffer-Heeger chain KW - Optische Antenne KW - Gerichtete Abstrahlung KW - Zinkphthalocyanin KW - Kohärente perfekte Absorption KW - Su-Schrieffer-Heeger-Kette Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-303152 ER - TY - THES A1 - Fuhl, Lucas T1 - Photolumineszenzmikroskopie und -spektroskopie endohedraler Farbstoffe in Bornitridnanoröhren T1 - Photoluminescence microscopy and spectroscopy of endohedral dyes in boron nitride nanotubes N2 - Im Rahmen der vorliegenden Dissertation wurde untersucht, wie die Einkapselung organischer Farbstoffmoleküle in Bornitridnanoröhren (BNNTs) die photophysikalischen Eigenschaften der Fluorophore beeinflusst. Als Farbstoffe wurden hierbei alpha-Quaterthiophen (4T), alpha-Sexithiophen (6T), alpha-Octithiophen (8T) sowie Nilrot (NR) ausgewählt. Die eingesetzten BNNTs besitzen einen nominellen Durchmesser von \(5 \pm 2\)nm. Für die Charakterisierung der reinen Farbstoffe und der hybriden Systeme aus Farbstoff und Nanoröhre kam ein Laboraufbau zum Einsatz, der neben Absorptions- und Photolumineszenz (PL)-Spektroskopie auch PL-Mikroskopie ermöglicht. Zusätzlich lässt sich damit auch eine zeitaufgelöste Untersuchung der PL (engl. time correlated single photon counting, TCSPC) im Ensemble und an einzelnen, separierten Nano-Objekten (mit Farbstoff gefüllte BNNTs) umsetzen. In Kapitel 5 wurden zunächst die freien Farbstoffe in Lösung charakterisiert. Es hat sich gezeigt, dass sowohl 4T als auch NR im verwendeten Lösemittel Dimethylformamid (DMF) löslich sind, wohingegen 6T und 8T hier eine geringere Löslichkeit zeigen. Die unterschiedlichen Verläufe der konzentrationsabhängigen PL-Spektren für 4T und 6T in DMF lassen sich vermutlich auf diesen Löslichkeitsunterschied zurückführen. Zudem wurden Extinktionskoeffizienten für 4T und NR mittels konzentrationsabhängiger Absorptionsspektren bestimmt und es zeigte sich eine gute Übereinstimmung mit der Literatur. Für 6T und 8T war eine Bestimmung aufgrund der geringen Löslichkeit nicht möglich, weshalb auf Literaturwerte zurückgegriffen wurde oder diese extrapoliert wurden (8T). In Kapitel 6 erfolgte die detaillierte Charakterisierung der mit Oligothiophenen gefüllten BNNTs. Die Befüllung wurde dabei im Wesentlichen nach einem von C. Allard publizierten Verfahren durchgeführt und auf die zusätzlichen Fluorophore 4T, 8T und NR übertragen. Für Messungen mittels UV-Vis-Spektroskopie in Lösung bzw. Dispersion hat sich beim Farbstoff 6T gezeigt, dass sich das Absorptionsmaximum von 407nm (freies 6T) hin zu 506nm (6T@BNNT) verschiebt. Ursache hierfür ist vermutlich die Bildung von J-Aggregaten im Inneren der Röhren. Die entsprechenden PL-Spektren von freiem 6T und dem Hybridsystem zeigen dabei keine signifikanten Unterschiede. Für konzentrationsabhängige PL-Spektren von 6T@BNNT ergibt sich (anders als bei freiem 6T in DMF) keine Änderung des Verlaufs der Kurven, was als ein Indiz für eine erfolgreiche Einkapselung gedeutet werden kann. Durch Kombination von Rasterkraft- und PL-Mikroskopie konnten die Außendurchmesser von einzelnen 6T@BNNT Objekten ermittelt und in direkten Zusammenhang mit deren photophysikalischen Eigenschaften gebracht werden. Bei einer Analyse der Polarisation des Emissionslichtes von 6T@BNNT in Abhängigkeit des Außendurchmessers ließ sich jedoch keine klare Korrelation zwischen Struktur und Emissionscharakteristiken erkennen. Diese Beobachtung lässt sich vermutlich dadurch erklären, dass mit Hilfe der Rasterkraftmikroskopie lediglich der Außendurchmesser der (teils mehrwandigen) BNNTs bestimmt werden kann. Die entscheidende Größe an dieser Stelle ist allerdings der innere Durchmesser der BNNTs, welcher die Ausrichtung und damit auch die Polarisation der Farbstoffmoleküle beeinflusst. Ein Vergleich des mittleren maximalen Polarisationsgrades der jeweiligen Hybridsysteme hat gezeigt, dass 4T@BNNT den geringsten und 6T@BNNT mit den höchsten Wert aufweist. Dies bestätigt die Annahme, dass mit zunehmender Moleküllänge die Polarisation, aufgrund des höheren Templat-Effektes der Röhre, zunimmt. 8T@BNNT liegt zwischen den beiden anderen Werten, was dieser Annahme widerspricht. Der mittlere Verkippungswinkel der eingekapselten Farbstoffmoleküle gegenüber der Röhrenachse liegt für 4T@BNNT bei etwa 16° und ist damit etwas größer als derjenige von 6T@BNNT. Somit zeigt sich auch hier, dass kürzere Moleküle mehr sterische Freiheitsgerade im Innern der Röhren besitzen. Für 8T@BNNT liegt der Winkel bei ca. 28° und widerspricht abermals der Annahme. TCSPC-Messungen an freien Oligothiophen-Farbstoffen sowie an den hybriden Systemen zeigten, dass die Fluoreszenzlebensdauer \(\tau\) für 4T und 6T (jeweils in DMF) infolge der Einkapselung deutlich zunimmt wenn die Hybridsysteme ebenfalls in DMF dispergiert sind. Die ermittelten Werte für \(\tau\) der separierten Nanoobjekte lagen für 4T@BNNT und 6T@BNNT unterhalb der entsprechenden in DMF. Für 8T bzw. 8T@BNNT ergab sich eine deutlich kürzerer Lebensdauer der separierten Nanoobjekte im Vergleich zum freien Farbstoff in kolloidaler Suspension. Ein erster Ansatz, um den zugrundeliegende Mechanismus aufzuklären, bestand darin, die TCSPC-Spektren (für 6T in DMF und 6T@BNNT in DMF) hinsichtlich der einzelnen Zerfallskanäle zu analysieren. Die erhaltenen Ergebnisse deuteten darauf hin, dass bei freiem 6T in DMF andere Zerfallskanäle dominieren als beim Hybridsystem 6T@BNNT (in DMF). Eine Korrelation der Fluorezenslebensdauer von 6T@BNNT vom äußeren Durchmesser der Nanoröhren zeigte keinen eindeutigen Zusammenhang. Die Charakterisierung von Nilrot bzw. NR@BNNT (analog zu den Oligothiophenen) erfolgte in Kapitel 4. Auch hier zeigte sich eine Verschiebung des PL-Spektrums des Fluorophores durch die Einkapselung in die BNNTs. Allerdings ist das PL-Spektrum des Hybridsystems (NR@BNNT) um etwa 20nm hypsochrom verschoben. Nilrot ist in der Literatur zudem als Nanosonde zur Ermittlung der Permittivität des Lösemittels bzw. der Umgebung bekannt. Dies erlaubte eine Abschätzung der relativen Permittivät im Inneren der BNNTs. Der ermittelte Wert von ca. 4 für ein isoliertes NR@BNNT Objekt deutet auf eine relativ unpolare Umgebung im Röhreninneren hin. Zum Vergleich dazu, liegt der Wert von freiem NR in DMF bei 47, was die relativ hohe Polarität von DMF bestätigt. Der ermittelte Wert für die mittlere maximale Polarisation lag leicht über dem der hybriden Systeme aus Oligothiophenen und Nanoröhren. Für die Auslenkung der NR-Moleküle gegenüber der Röhrenachse ergab sich ein Winkel von etwa 16°, was im Bereich der Werte von 4T@BNNT und 6T@BNNT liegt. Die Messung der zeitaufgelösten Fluoreszenz von freiem und eingekapseltem Nilrot hat ergeben, dass auch in diesem Fall eine Verkürzung der Lebensdauer (von 4091 ps auf 812 ps) erfolgte. Eine solche Verkürzung der Lebensdauer von Chromophoren wird in der Literatur unter anderem mit der Bildung von J-Aggregaten in Zusammenhang gebracht. N2 - This dissertation investigated how the encapsulation of organic dye molecules in boron nitride nanotubes (BNNTs) influences the photophysical properties of the fluorophores. The dyes chosen were alpha-quaterthiophene (4T), alpha-sexithiophene (6T), alpha-octithiophene (8T) and Nile red (NR). The BNNTs used have a nominal diameter of \(5 \pm 2\)nm. To characterize the pure dyes and the hybrid systems consisting of dye and nanotube, a laboratory setup was used that enables PL microscopy in addition to absorption and photoluminescence (PL) spectroscopy. In addition, a time-resolved study of PL (time correlated single photon counting, TCSPC) can be implemented in the ensemble and on individual, separated nano-objects (BNNTs filled with dye). In Chapter 5, the free dyes in solution were first characterized. It has been shown that both 4T and NR are soluble in the solvent used, dimethylformamide (DMF), whereas 6T and 8T show lower solubility. The different profiles of the concentration-dependent PL spectra for 4T and 6T in DMF can probably be attributed to this difference in solubility. In addition, extinction coefficients for 4T and NR were determined using concentration-dependent absorption spectra and there was good agreement with the literature. For 6T and 8T, a determination was not possible due to the low solubility, which is why literature values ​​were used or extrapolated (8T). Chapter 6 detailed the characterization of the BNNTs filled with oligothiophenes. The filling was essentially carried out according to a method published by C. Allard and transferred to the additional fluorophores 4T, 8T and NR. For measurements using UV-Vis spectroscopy in solution or dispersion, it has been shown that the absorption maximum for the dye 6T shifts from 407nm (free 6T) to 506nm (6T@BNNT). The reason for this is probably the formation of J-aggregates inside the tubes. The corresponding PL spectra of free 6T and the hybrid system show no significant differences. For concentration-dependent PL spectra of 6T@BNNT (unlike free 6T in DMF), there is no change in the shape of the curves, which can be interpreted as an indication of successful encapsulation. By combining atomic force and PL microscopy, the outer diameters of individual 6T@BNNT objects could be determined and directly related to their photophysical properties. However, when analyzing the polarization of the emission light from 6T@BNNT depending on the outer diameter, no clear correlation between structure and emission characteristics could be seen. This observation can probably be explained by the fact that only the outer diameter of the (some multi-walled) BNNTs can be determined using atomic force microscopy. The crucial size at this point, however, is the inner diameter of the BNNTs, which influences the alignment and thus also the polarization of the dye molecules. A comparison of the average maximum degree of polarization of the respective hybrid systems showed that 4T@BNNT has the lowest value and 6T@BNNT has the highest value. This confirms the assumption that as the molecule length increases, the polarization increases due to the higher template effect of the tube. 8T@BNNT lies between the other two values, which contradicts this assumption. The average tilt angle of the encapsulated dye molecules relative to the tube axis is about 16° for 4T@BNNT and is therefore slightly larger than that of 6T@BNNT. This also shows that shorter molecules have more steric freedom inside the tubes. For 8T@BNNT the angle is approximately 28° and again contradicts the assumption. TCSPC measurements on free oligothiophene dyes and on the hybrid systems showed that the fluorescence lifetime \(\tau\) for 4T and 6T (each in DMF) increases significantly as a result of encapsulation when the hybrid systems are also dispersed in DMF. The determined values ​​for \(\tau\) of the separated nanoobjects for 4T@BNNT and 6T@BNNT were below the corresponding ones in DMF. For 8T or 8T@BNNT, the lifespan of the separated nanoobjects was significantly shorter compared to the free dye in colloidal suspension. A first approach to elucidate the underlying mechanism was to analyze the TCSPC spectra (for 6T in DMF and 6T@BNNT in DMF) with respect to the individual decay channels. The results obtained indicated that different decay channels dominate for free 6T in DMF than for the hybrid system 6T@BNNT (in DMF). Correlating the fluorescence lifetime of 6T@BNNT with the outer diameter of the nanotubes showed no clear relationship. The characterization of Nile red or NR@BNNT (analogous to the oligothiophenes) took place in Chapter 4. Here, too, there was a shift in the PL spectrum of the fluorophore due to the encapsulation in the BNNTs. However, the PL spectrum of the hybrid system (NR@BNNT) is hypsochromically shifted by about 20 nm. Nile red is also known in the literature as a nanoprobe for determining the permittivity of the solvent or the environment. This allowed an estimation of the relative permittivity inside the BNNTs. The determined value of approx. 4 for an isolated NR@BNNT object indicates a relatively non-polar environment inside the tube. For comparison, the value of free NR in DMF is 47, confirming the relatively high polarity of DMF. The value determined for the average maximum polarization was slightly higher than that of the hybrid systems made of oligothiophenes and nanotubes. The deflection of the NR molecules relative to the tube axis resulted in an angle of approximately 16°, which is in the range of the values ​​for 4T@BNNT and 6T@BNNT. The measurement of the time-resolved fluorescence of free and encapsulated Nile Red showed that in this case too there was a shortening of the lifespan (from 4091 ps to 812 ps). In the literature, such a shortening of the lifespan of chromophores is associated, among other things, with the formation of J-aggregates. KW - Fluoreszenzmikroskopie KW - Spektroskopie KW - Oligothiophene KW - Nanoröhre KW - Nanomaterialien KW - Endohedrale Farbstoffe KW - Nanomaterials KW - Endohedral dyes Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-371150 ER -