TY - THES A1 - Fiedler, Sebastian T1 - Strukturelle und elektronische Zusammenhänge von inversionsasymmetrischen Halbleitern mit starker Spin-Bahn-Kopplung; BiTeX (X =I, Br, Cl) T1 - Structural and electronic dependencies of non-centrosymmetric semiconductors with strong spin-orbit-coupling; BiTeX (X = I, Br, Cl) N2 - Diese Arbeit befasst sich mit der Untersuchung und Manipulation von Halbleitern, bei denen die Spin-Bahn-Kopplung (SBK) in Kombination mit einem Bruch der strukturellen Inversionssymmetrie zu einer impulsabhängigen Spinaufspaltung der Bandstruktur führt. Von besonderem Interesse ist hierbei der Zusammenhang zwischen der spinabhängigen elektronischen Struktur und der strukturellen Geometrie. Dieser wird durch eine Kombination komplementärer, oberflächensensitiver Messmethoden - insbesondere Rastertunnelmikroskopie (STM) und Photoelektronenspektroskopie (PES) - an geeigneten Modellsystemen untersucht. Der experimentelle Fokus liegt dabei auf den polaren Halbleitern BiTeX (X =I, Br, Cl). Zusätzliche Experimente werden an dünnen Schichten der topologischen Isolatoren (TI) Bi1,1-xSb0;9+xSe3 (x = 0. . . 1,1) und Bi2Te2Se durchgeführt. Die inversionsasymmetrische Kristallstruktur in BiTeX führt zur Existenz zweier nicht-äquivalenter Oberflächen mit unterschiedlicher Terminierung (Te oder X) und invertierter atomarer Stapelfolge. STM-Aufnahmen der Oberflächen gespaltener Einkristalle belegen für BiTeI(0001) eine Koexistenz beider Terminierungen auf einer Längenskala von etwa 100 nm, die sich auf Stapelfehler im Kristallvolumen zurückführen lassen. Diese Domänen sind groß genug, um eine vollständig entwickelte Banddispersion auszubilden und erzeugen daher eine Kombination der Bandstrukturen beider Terminierungen bei räumlich integrierenden Messmethoden. BiTeBr(0001) und BiTeCl(0001) hingegen zeichnen sich durch homogene Terminierungen auf einer makroskopischen Längenskala aus. Atomar aufgelöste STM-Messungen zeigen für die drei Systeme unterschiedliche Defektdichten der einzelnen Lagen sowie verschiedene strukturelle Beeinflussungen durch die Halogene. PES-Messungen belegen einen starken Einfluss der Terminierung auf verschiedene Eigenschaften der Oberflächen, insbesondere auf die elektronische Bandstruktur, die Austrittsarbeit sowie auf die Wechselwirkung mit Adsorbaten. Die unterschiedliche Elektronegativität der Halogene resultiert in verschieden starken Ladungsübergängen innerhalb der kovalent-ionisch gebundenen BiTe+ X- Einheitszelle. Eine erweiterte Analyse der Oberflächeneigenschaften ist durch die Bedampfung mit Cs möglich, wobei eine Änderung der elektronischen Struktur durch die Wechselwirkung mit dem Alkalimetall studiert wird. Modifiziert man die Kristallstruktur sowie die chemische Zusammensetzung von BiTeI(0001) nahe der Oberfläche durch Heizen im Vakuum, bewirkt dies eine Veränderung der Bandstruktur in zwei Schritten. So führt zunächst der Verlust von Iod zum Verlust der Rashba-Aufspaltung, was vermutlich durch eine Aufhebung der Inversionsasymmetrie in der Einheitszelle verursacht wird. Anschließend bildet sich eine neue Kristallstruktur, die topologisch nichttriviale Oberflächenzustände hervorbringt. Der Umordnungsprozess betrifft allerdings nur die Kristalloberfläche - im Volumen bleibt die inversionsasymmetrische Einheitszelle erhalten. Einem derartigen Hybridsystem werden bislang unbekannte elektronische Eigenschaften vorausgesagt. Eine systematische Untersuchung von Dünnschicht-TIs, die mittels Molekularstrahlepitaxie (MBE) erzeugt wurden, zeigt eine Veränderung der Morphologie und elektronischen Struktur in Abhängigkeit von Stöchiometrie und Substrat. Der Vergleich zwischen MBE und gewachsenen Einkristallen offenbart deutliche Unterschiede. Bei einem der Dünnschichtsysteme tritt sogar eine lokal inhomogene Zustandsdichte im Bindungsenergiebereich des topologischen Oberflächenzustands auf. N2 - This thesis is about the analysis and manipulation of semiconductor surfaces, for which Spin-Orbit-Coupling (SOC) in combination with a break of structural symmetry leads to a k-dependent spin separation in the electronic structure. Therefore, the relation between the spin-dependent electronic structure and the atomic geometry is of particular interest. Suitable model systems have been investigated by a combination of complementary surface-sensitive measuring methods, e.g. Scanning Tunneling Microscopy (STM) and Photoelectron Spectroscopy (PES). In this work, the main experimental focus is on the BiTeX (X =I, Br, Cl) polar semiconductors. Additional experiments have been carried out on thin films of topological insulators (TI) Bi1,1-xSb0,9+xSe3 (X = 0. . . 1.1) and Bi2Te2Se. The non-centrosymmetric crystal structure of BiTeX results in two non-equivalent surfaces with different terminations (Te or X) and inverted layer structure. STM measurements of the surface of cleaved single crystals show a coexistence of both terminations for BiTeI(0001) on a length scale of around 100 nm, which is caused by bulk stacking faults. These domains are large enough to show a fully developed band dispersion and therefore yield a combined band structure of both terminations when investigated with spatially integrating methods. By contrast, BiTeBr(0001) and BiTeCl(0001) show homogeneous terminations on a macroscopic scale. Atomically resolved STM measurements on each of the three systems reveal different defect densities for each of the atomic layers as well as different structural influences of the halogens. PES measurements show a strong influence of the termination on several surface properties, e.g. electronic band structure, work function and absorbate interaction. The different electronegativities of the halogens result in a varying degree of charge transfer within the covalently-ionically bonded BiTe+ X- unit cell. A more detailed study of the surface properties has been facilitated by Cs deposition and the subsequent investigation of alterations of the electronic structure resulting from interactions with the alkali metal. A surface modification of the crystal structure and chemical properties of BiTeI(0001) by vacuum annealing results in a variation of the band structure in two steps. At first, the loss of I causes a disappearance of the Rashba-splitting, which might be caused by the loss of non-centrosymmetry of the unit cell. In a second step, a new unit cell forms at the surface, which generates non-trivial topological surface states. This reordering only affects the surface while the unit cells of the crystal bulk remain non-centrosymmetric. Hybrid systems like this are expected to exhibit novel electronic properties. A systematic analysis of thin _lm TIs grown by molecular beam epitaxy (MBE) shows changes in morphology and electronic structure as a function of stoichiometry and substrate. The comparison of MBE and grown single crystals reveals a considerable difference between sample properties. One particular system even shows a locally inhomogeneous density of states within the binding energy regime of the topological surface state. KW - Rashba-Effekt KW - Inversionsasymmetrische Halbleiter KW - Polarer Halbleiter KW - Spin-Bahn-Wechselwirkung KW - Rastertunnelmikroskopie KW - Photoelektronenspektroskopie KW - BiTeI KW - BiTeBr KW - BiTeCl KW - Spin-Bahn-Kopplung Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-155624 ER - TY - THES A1 - Pfenning, Andreas Theo T1 - Optoelektronische Transportspektroskopie an Resonanztunneldioden-Fotodetektoren T1 - Optoelectronic Transport Spectroscopy on Resonant Tunneling Diode Photodetectors N2 - Die vorliegende Arbeit beschäftigt sich mit optoelektronischer Transportspektroskopie verschiedener Resonanztunneldioden (RTDs). Die Arbeit ist thematisch in zwei Schwerpunktee untergliedert. Im ersten Schwerpunkt werden anhand GaAs-basierter RTD-Fotosensoren für den Telekommunikationswellenlängenbereich um 1,3 µm die Akkumulationsdynamiken photogenerierter Minoritätsladungsträger und deren Wirkung auf den RTD-Tunnelstrom untersucht. Im zweiten Schwerpunkt werden GaSb-basierte Al(As)Sb/GaSb-Doppelbarrieren-Quantentrog-RTDs in Hinblick auf ihren Raumtemperaturbetrieb entwickelt und erforscht. Diese legen den Grundstein für die spätere Realisation von RTD-Fotodetektoren im mittleren infraroten (MIR) Spektralbereich. Im Folgenden ist eine kurze inhaltliche Zusammenfassung der einzelnen Kapitel gegeben. Kapitel 1 leitet vor dem Hintergrund eines stark steigenden Bedarfs an verlässlichen und sensitiven Fotodetektoren für Telekommunikationsanwendungen sowie für die optische Molekül- und Gasspektroskopie in das übergeordnete Thema der RTD-Fotodetektoren ein. Kapitel 2 erläutert ausgewählte physikalische und technische Grundlagen zu RTD-Fotodetektoren. Ausgehend von einem kurzem Überblick zu RTDs, werden aktuelle Anwendungsgebiete aufgezeigt und die physikalischen Grundlagen elektrischen Transports in RTDs diskutiert. Anschließend werden Grundlagen, Definitionen und charakteristische Kenngrößen optischer Detektoren und Sensoren definiert. Abschließend werden die physikalischen Grundlagen zum Fotostrom in RTDs beschrieben. In Kapitel 3 RTD-Fotosensor zur Lichtdetektion bei 1,3 µm werden AlGaAs/GaAs-Doppelbarrieren-Quantentrog-Resonanztunneldioden (DBQW-RTDs) mit gitterangepasster, quaternärer GaInNAs-Absorptionsschicht als Raumtemperatur-Fotodetektoren für den nahen infraroten (NIR) Spektralbereich bei der Telekommunikationswellenlänge von λ=1,3 µm untersucht. RTDs sind photosensitive Halbleiterbauteile, die innerhalb der vergangenen Jahre aufgrund ihrer hohen Fotosensitivität und Fähigkeit selbst einzelne Photonen zu detektieren, ein beachtliches Interesse geweckt haben. Die RTD-Fotosensitivität basiert auf einer Coulomb-Wechselwirkung photogenerierter und akkumulierter Ladungsträger. Diese verändern das lokale elektrostatische Potential und steuern so einen empfindlichen Resonanztunnelstrom. Die Kenntnis der zugrundeliegenden physikalischen Parameter und deren Spannungsabhängigkeit ist essentiell, um optimale Arbeitspunkte und Bauelementdesigns zu identifizieren. Unterkapitel 3.1 gibt einen Überblick über das Probendesign der untersuchten RTD-Fotodetektoren, deren Fabrikationsprozess sowie eine Erläuterung des Fotodetektionsmechanismus. Über Tieftemperatur-Elektrolumineszenz-Spektroskopie wird die effektive RTD-Quantentrog-Breite zu d_DBQW≃3,4 nm bestimmt. Die Quantisierungsenergien der Elektron- und Schwerloch-Grundzustände ergeben sich zu E_Γ1≈144 meV und E_hh1≈39 meV. Abschließend wird der in der Arbeit verwendeten Messaufbau skizziert. In Unterkapitel 3.2 werden die physikalischen Parameter, die die RTD-Fotosensitivität bestimmen, auf ihre Spannungsabhängigkeit untersucht. Die Fotostrom-Spannungs-Kennlinie des RTD-Fotodetektors ist nichtlinear und über drei spannungsabhängige Parametern gegeben: der RTD-Quanteneffizienz η(V), der mittleren Lebensdauer photogenerierter und akkumulierter Minoritätsladungsträger (Löcher) τ(V) und der RTD-I(V)-Kennlinie im Dunkeln I_dark (V). Die RTD Quanteneffizienz η(V) kann über eine Gaußsche-Fehlerfunktion modelliert werden, welche beschreibt, dass Lochakkumulation erst nach Überschreiten einer Schwellspannung stattfindet. Die mittlere Lebensdauer τ(V) fällt exponentiell mit zunehmender Spannung V ab. Über einen Vergleich mit thermisch limitierten Lebensdauern in Quantentrögen können Leitungsband- und Valenzband-Offset zu Q_C \≈0,55 und Q_V≈0,45 abgeschätzt werden. Basierend auf diesen Ergebnissen wird ein Modell für die Fotostrom-Spannungs-Kennlinie erstellt, das eine elementare Grundlage für die Charakterisierung von RTD-Photodetektoren bildet. In Unterkapitel 3.3 werden die physikalischen Parameter, die die RTD-Fotosensitivität beschränken, detailliert auf ihre Abhängigkeit gegenüber der einfallenden Lichtleistung untersucht. Nur für kleine Lichtleistungen wird eine konstante Sensitivität von S_I=5,82×〖10〗^3 A W-1 beobachtet, was einem Multiplikationsfaktor von M=3,30×〖10〗^5 entspricht. Für steigende Lichtleistungen fällt die Sensitivität um mehrere Größenordnungen ab. Die abfallende, nichtkonstante Sensitivität ist maßgeblich einer Reduktion der mittleren Lebensdauer τ zuzuschreiben, die mit steigender Lochpopulation exponentiell abfällt. In Kombination mit den Ergebnissen aus Unterkapitel 3.2 wird ein Modell der RTD-Fotosensitivität vorgestellt, das die Grundlage einer Charakterisierung von RTD-Fotodetektoren bildet. Die Ergebnisse können genutzt werden, um die kritische Lichtleistung zu bestimmen, bis zu der der RTD-Fotodetektor mit konstanter Sensitivität betrieben werden kann, oder um den idealen Arbeitspunkt für eine minimale rauschäquivalente Leistung (NEP) zu identifizieren. Dieser liegt für eine durch theoretisches Schrotrauschen limitierte RTD bei einem Wert von NEP=1,41×〖10〗^(-16) W Hz-1/2 bei V=1,5 V. In Kapitel 4 GaSb-basierte Doppelbarrieren-RTDs werden unterschiedliche Al(As)Sb/GaSb-DBQW-RTDs auf ihre elektrische Transporteigenschaften untersucht und erstmalig resonantes Tunneln von Elektronen bei Raumtemperatur in solchen Resonanztunnelstrukturen demonstriert. Unterkapitel 4.1 beschreibt den Wachstums- und der Fabrikationsprozess der untersuchten AlAsSb/GaSb-DBQW-RTDs. In Unterkapitel 4.2 wird Elektronentransport durch eine AlSb/GaSb-DBQW-Resonanztunnelstruktur untersucht. Bei einer Temperatur von T=4,2 K konnte resonantes Tunneln mit bisher unerreicht hohen Resonanz-zu-Talstrom-Verhältnisse von PVCR=20,4 beobachtet werden. Dies wird auf die exzellente Qualität des Halbleiterkristallwachstums und des Fabrikationsprozesses zurückgeführt. Resonantes Tunneln bei Raumtemperatur konnte hingegen nicht beobachtet werden. Dies wird einer Besonderheit des Halbleiters GaSb zugeschrieben, welche dafür sorgt, dass bei Raumtemperatur die Mehrheit der Elektronen Zustände am L-Punkt anstelle des Γ Punktes besetzt. Resonantes Tunneln über den klassischen Γ Γ Γ-Tunnelpfad ist so unterbunden. In Unterkapitel 4.3 werden die elektrischen Transporteigenschaften von AlAsSb/GaSb DBQW RTDs mit pseudomorph gewachsenen ternären Vorquantentopfemittern untersucht. Der primäre Zweck der Vorquantentopfstrukturen liegt in der Erhöhung der Energieseparation zwischen Γ- und L-Punkt. So kann Elektronentransport über L- Kanäle unterdrückt und Elektronenzustände am Γ-Punkt wiederbevölkert werden. Zudem ist bei genügend tiefen Vorquantentopfstrukturen aufgrund von Quantisierungseffekten eine Verbesserung der RTD-Transporteigenschaften möglich. Strukturen ohne Vorquantentopf-Emitter zeigen ein Tieftemperatur- (T=77 K) Resonanz-zu-Talstrom-Verhältnis von PVCR=8,2, während bei Raumtemperatur kein resonantes Tunneln beobachtet werden kann. Die Integration von Ga0,84In0,16Sb- beziehungsweise GaAs0,05Sb0,95-Vorquantentopfstrukturen führt zu resonantem Tunneln bei Raumtemperatur mit Resonanz-zu-Talstrom-Verhältnissen von PVCR=1,45 und 1,36. In Unterkapitel 4.4 wird die Abhängigkeit der elektrischen Transporteigenschaften von AlAsSb/GaSb RTDs vom As-Stoffmengenanteil des GaAsSb-Emitter-Vorquantentopfs und der AlAsSb-Tunnelbarriere untersucht. Eine Erhöhung der As-Stoffmengenkonzentration führt zu einem erhöhten Raumtemperatur-PVCR mit Werten von bis zu 2,36 bei gleichzeitig reduziertem Tieftemperatur-PVCR. Das reduzierte Tieftemperatur-Transportvermögen wird auf eine mit steigendem As-Stoffmengenanteil zunehmend degradierende Kristallqualität zurückgeführt. In Kapitel 5 AlAsSb/GaSb-RTD-Fotosensoren zur MIR-Lichtdetektion werden erstmalig RTD-Fotodetektoren für den MIR-Spektralbereich vorgestellt und auf ihre optoelektronischen Transporteigenschaften hin untersucht. Zudem wird erstmalig ein p-dotierter RTD-Fotodetektor demonstriert. In Unterkapitel 5.1 wird das Probendesign GaSb-basierter RTD-Fotodetektoren für den mittleren infraroten Spektralbereich vorgestellt. Im Speziellen werden Strukturen mit umgekehrter Ladungsträgerpolarität (p- statt n-Dotierung, Löcher als Majoritätsladungsträger) vorgestellt. In Unterkapitel 5.2 werden die optischen Eigenschaften der gitterangepassten quaternären GaInAsSb-Absorptionsschicht mittels Fourier-Transformations-Infrarot-Spektroskopie untersucht. Über das Photolumineszenz-Spektrum wird die Bandlückenenergie zu E_Gap≅(447±5) meV bestimmt. Das entspricht einer Grenzwellenlänge von λ_G≅(2,77±0,04) µm. Aus dem niederenergetischen monoexponentiellem Abfall der Linienform wird eine Urbach-Energie von E_U=10 meV bestimmt. Der hochenergetische Abfall folgt der Boltzmann-Verteilungsfunktion mit einem Abfall von k_B T=25 meV. In Unterkapitel 5.3 werden die elektrischen Transporteigenschaften der RTD-Fotodetektoren untersucht und mit denen einer n-dotierten Referenzprobe verglichen. Erstmalig wird resonantes Tunneln von Löchern in AlAsSb/GaSb-DBQW-RTDs bei Raumtemperatur demonstriert. Dabei ist PVCR=1,58. Bei T=4,2 K zeigen resonantes Loch- und Elektrontunneln vergleichbare Kenngrößen mit PVCR=10,1 und PVCR=11,4. Die symmetrische I(V)-Kennlinie der p-dotierten RTD-Fotodetektoren deutet auf eine geringe Valenzbanddiskontinuität zwischen GaSb und der GaInAsSb-Absorptionsschicht hin. Zudem sind die p-dotierten RTDs besonders geeignet für eine spätere Integration mit Typ-II-Übergittern. In Unterkapitel 5.4 werden die optoelektronischen Transporteigenschaften p-dotierter RTD-Fotodetektoren untersucht. Das vorgestellte neuartige RTD-Fotodetektorkonzept, welches auf resonanten Lochtransport als Majoritätsladungsträger setzt, bietet speziell im für den MIR-Spektralbereich verwendeten GaSb-Materialsystem Vorteile, lässt sich aber auch auf das InP- oder GaAs- Materialsystem übertragen. Die untersuchten p-dotierten Fotodetektoren zeigen eine ausgeprägte Fotosensitivität im MIR-Spektralbereich. Fotostromuntersuchungen werden für optische Anregung mittels eines Halbleiterlasers der Wellenlänge λ=2,61 µm durchgeführt. Bei dieser Wellenlänge liegen fundamentale Absorptionslinien atmosphärischen Wasserdampfs. Die Fotostrom-Spannungs-Charakteristik bestätigt, dass die Fotosensitivität auf einer Modulation des resonanten Lochstroms über Coulomb-Wechselwirkung akkumulierter photogenerierter Minoritätsladungsträger (Elektronen) beruht. Es werden Sensitivitäten von S_I=0,13 A W-1 ermittelt. Durch eine verbesserte RTD-Quanteneffizienz aufgrund eines optimierten Dotierprofils der Absorptionsschicht lässt sich die Sensitivität auf S_I=2,71 A W-1 erhöhen, was einem Multiplikationsfaktor von in etwa M\≈8,6 entspricht. Gleichzeitig wird jedoch der RTD-Hebelfaktor verringert, sodass n_(RTD p2)=0,42⋅n_(RTD p1). Erstmalig wurde damit erfolgreich Gas-Absorptionsspektroskopie anhand von H2O-Dampf mittels MIR-RTD-Fotodetektor an drei beieinanderliegenden Absorptionslinien demonstriert. N2 - The present thesis addresses the optoelectronic transport spectroscopy of different resonant tunneling diodes (RTDs). The thesis comprises two main topics. Firstly, the accumulation dynamics of photogenerated minority charge carriers and their impact on the RTD tunneling current is investigated for GaAs based RTD photosensors for the telecommunication wavelength region at 1.3 µm. Secondly, Al(As)Sb/GaSb double barrier quantum well RTDs are proposed and investigated with regard to their room temperature functionality. These works finally lead to the realization of RTD photodetectors in the mid infrared (MIR) spectral region. A brief summary of the content of the individual chapters is given below. Chapter 1 introduces the topic of RTD photodetectors in the context of a rapidly increasing demand for reliable and sensitive photodetectors for telecommunication applications as well as for optical molecular and gas spectroscopy. Chapter 2 explains some selected physical and technological basics of RTD photodetectors. Starting from a short overview depicting the development of RTDs, current areas of application are presented, and a concise introduction into electronic transport of RTDs is given. Subsequently, basic principles, definitions and characteristic parameters of optical detectors and sensors are defined. Finally, the physical fundamentals of light-induced effects on electronic transport in RTDs are described. In Chapter 3 an investigation on AlGaAs/GaAs double barrier quantum well resonant tunneling diodes (DBQW-RTDs) with a lattice-matched quaternary absorption layer as room temperature photodetectors for the near-infrared (NIR) spectral region at the telecommunication wavelength of λ=1.3 µm is presented. RTDs are photosensitive semiconductor devices that have inspired considerable interest in recent years due to their remarkable photosensitivity and ability to detect even individual photons. The RTD photosensitivity is based on Coulomb-interaction of photogenerated and accumulated charge carriers. These modulate the local electrostatic potential, and thus control a resonant tunneling current. Knowledge of the underlying physical parameters and their voltage dependence is essential to identify optimal operating points and device-design. In Subchapter 3.1 an overview of the sample design of the investigated RTD photodetectors, their fabrication process and a description of the photodetection mechanism is given. Low-temperature electroluminescence spectroscopy is used to determine the effective RTD quantum well width to d_DBQW⋍3.4 nm. The quantization energies of the electron and heavy hole ground states are found to be E_Γ1≈144 meV and E_hh1≈39 meV. Finally, the experimental setup used in this work is presented. In Subchapter 3.2 the physical parameters that limit the RTD photosensitivity are investigated with regard to their voltage dependence. The photocurrent-voltage characteristics of the RTD photodetector is nonlinear and determined by three voltage-dependent parameters: the RTD quantum efficiency η(V), the mean lifetime of photogenerated and accumulated minority charge carriers (holes) τ(V), and the RTD I(V)-characteristics in the dark I_dark (V). The RTD quantum efficiency η(V) can be modeled by a Gaussian error function, which describes that hole accumulation can only occur after surpassing a critical threshold voltage. The mean lifetime τ(V) decreases exponentially with increasing bias voltage V. Through a comparison with thermionically limited lifetimes in quantum wells, conduction and valence band offsets can be estimated to be Q_C≈0.55 and Q_V≈0.45, respectively. Based on these results, a model for the photocurrent-voltage characteristics is developed, which provides a framework for the characterization of RTD photodetectors. In Subchapter 3.3 the physical parameters limiting the RTD photosensitivity are investigated with regard to their dependence on the incident light power. Only for low light powers P<50 pW, a constant sensitivity S_I= 5.82×〖10〗^3 A W 1 is observed, which corresponds to a multiplication factor of M=3.30×〖10〗^5. For increasing light powers, the sensitivity decreases by several orders of magnitude. The decreasing, non-constant sensitivity is mainly due to a reduction of the average lifetime τ, which decreases exponentially with increasing hole population. In combination with the results from Subchapter 3.2, a model of the RTD photosensitivity is provided, which gives the basis for the complete characterization of RTD photodetectors. The results can be used to determine the critical light power up to which the RTD photodetector can be operated with constant sensitivity, or to identify the ideal operation point in terms of a minimum noise equivalent power (NEP). For an RTD limited by (theoretical) shot noise, the optimal working point is located at V=1.5 V with a noise-equivalent power of NEP=1.41×〖10〗^(-16) W Hz-1/2. In Chapter 4 different Al(As)Sb/GaSb DBQW RTDs are described via their electronic transport properties and for the first time resonant tunneling of electrons at room temperature is demonstrated in such structures. Subchapter 4.1 describes the growth and manufacturing process of the studied Al(As)Sb/GaSb-DBQW-RTDs. In Subchapter 4.2 electron transport through an AlSb/GaSb DBQW resonance tunneling structure is investigated. At low temperatures of T=4.2 K, resonant tunneling with unprecedented high peak-to-valley current ratios (PVCRs) of up to PVCR=20.4 can be observed. This is ascribed to the excellent quality of the semiconductor crystal growth and manufacturing process. Resonant tunneling at room temperature cannot be observed. This is attributed to a characteristic material property of the semiconductor GaSb, which results in the majority of electrons occupying states at the L-point instead of the Γ-point, at room temperature. Resonant tunneling via the typical Γ- Γ- Γ tunneling path is suppressed. In Subchapter 4.3 the electronic transport properties of AlAsSb/GaSb DBQW-RTDs with pseudomorphically grown ternary prewell emitters are investigated. The primary purpose of the prewell structures is to increase the energy separation between Γ- and L-point. Thus, electron transport via L-channels can be depopulated, which in turn leads to a repopulation of electron states at the Γ-point. In addition, an improvement of the RTD transport properties is possible with sufficiently deep prewell structures due to quantization effects. Structures without prewell emitters show a low-temperature (T=77 K) peak-to-valley current ratio of PVCR=8.2, while at room temperature, no resonant tunneling can be observed. The integration of Ga0.84In0.16Sb and GaAs0.05Sb0.95 prewell structures, leads to resonant tunneling at room temperature with peak-to-valley current ratios of PVCR=1.45 and 1.36, respectively. In Subchapter 4.4 the dependence of the electronic transport properties of Al(As)Sb/GaSb RTDs on the As mole fraction of the GaAsSb emitter prewell and the AlAsSb tunneling barriers is investigated. An increase in the As mole fraction leads to an increased room temperature PVCR with values of up to PVCR=2.36 with a simultaneously reduced PVCR at cryogenic temperatures. The reduced low-temperature transport properties are attributed to a decreasing semiconductor crystal quality with an increasing As concentration. In Chapter 5 RTD photodetectors for the MIR spectral region are presented for the first time and their optoelectronic transport properties are studied. In addition, a p-type doped RTD photodetector is demonstrated for the first time. In Subchapter 5.1 the sample design of the studied GaSb-based RTD photodetectors for the MIR spectral region are provided. In particular, structures with inverted charge carrier polarity (p-type instead of n-type doping, holes as majority charge carriers) are presented. In Subchapter 5.2 the optical properties of the lattice-matched quaternary GaInAsSb absorption layer are investigated by Fourier transform infrared spectroscopy. From the spectrum a bandgap energy of E_Gap≅(447±5) meV is determined. This corresponds to a cut-off wavelength of λ_G≅(2.77±0.04) µm. An Urbach energy of E_U=10 meV is extracted from the mono-exponential decline of the line shape at the low-energy side. At the high-energy side, the exponential decline follows the Boltzmann distribution function with k_B T=25 meV. In Subchapter 5.3, the electronic transport properties of the studied RTD photodetectors are presented and compared with an n-type doped reference sample. For the first time, room temperature resonant tunneling of holes in Al(As)Sb/GaSb DBQW-RTDs is demonstrated, with PVCR=1.58. At T=4.2 K, resonant tunneling of holes and electrons show comparable peak-to-valley current ratios of PVCR=10.1 and PVCR=11.4, respectively. The symmetrical I(V)-characteristics of the p-doped RTD photodetectors indicate a low valence band discontinuity between GaSb and the GaInAsSb absorption layer. In addition, they are particularly suitable for later integration with Type II superlattices. In Subchapter 5.4, the optoelectronic transport properties of p-type doped RTD photodetectors are described. The presented RTD photodetector concept, which relies on resonant tunneling transport of holes as majority charge carriers, offers advantages in particular for the GaSb material system that is used to cover the MIR spectral region. The concept of p-type doping may also be applied to the InP or GaAs material system. The examined RTD photodetectors show a pronounced photosensitivity in the MIR spectral range. Photocurrent investigations are performed under optical excitation with a semiconductor laser with wavelength λ=2.61 µm. Fundamental absorption lines of atmospheric water vapor are located at this wavelength. The photocurrent-voltage characteristics confirms that the photosensitivity is based on a modulation of the resonant hole current via the Coulomb interaction of accumulated photogenerated minority charge carriers (electrons). Sensitivities of S_I=0.13 A W-1 are determined. An improved RTD quantum efficiency due to an optimized doping profile of the absorption layer increases the sensitivity up to S_I=2.71 A W-1, which corresponds to a multiplication factor M≈8.6. At the same time, however, the RTD leverage factor is reduced so that n_(RTD p2)=0.42⋅n_(RTD p1). For the first time, gas absorption spectroscopy by an MIR RTD photodetector is demonstrated by means of H2O vapor on three adjacent absorption lines. KW - Resonanz-Tunneldiode KW - Photodetektor KW - AlGaAs KW - Elektronischer Transport KW - RTD KW - Resonanztunneldiode KW - GaAs KW - GaSb KW - Fotodetektor KW - Transportspektroskopie KW - Antimonide KW - Optoelektronik Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-163205 ER - TY - THES A1 - Wiedenmann, Jonas T1 - Induced topological superconductivity in HgTe based nanostructures T1 - Induzierte topologische Supraleitung in HgTe basierten Nanostrukturen N2 - This thesis describes the studies of topological superconductivity, which is predicted to emerge when pair correlations are induced into the surface states of 2D and 3D topolog- ical insulators (TIs). In this regard, experiments have been designed to investigate the theoretical ideas first pioneered by Fu and Kane that in such system Majorana bound states occur at vortices or edges of the system [Phys. Rev. Lett. 100, 096407 (2008), Phys. Rev. B 79, 161408 (2009)]. These states are of great interest as they constitute a new quasiparticle which is its own antiparticle and can be used as building blocks for fault tolerant topological quantum computing. After an introduction in chapter 1, chapter 2 of the thesis lays the foundation for the understanding of the field of topology in the context of condensed matter physics with a focus on topological band insulators and topological superconductors. Starting from a Chern insulator, the concepts of topological band theory and the bulk boundary corre- spondence are explained. It is then shown that the low energy Hamiltonian of mercury telluride (HgTe) quantum wells of an appropriate thickness can be written as two time reversal symmetric copies of a Chern insulator. This leads to the quantum spin Hall effect. In such a system, spin-polarized one dimensional conducting states form at the edges of the material, while the bulk is insulating. This concept is extended to 3D topological insulators with conducting 2D surface states. As a preliminary step to treating topological superconductivity, a short review of the microscopic theory of superconductivity, i.e. the theory of Bardeen, Cooper, and Shrieffer (BCS theory) is presented. The presence of Majorana end modes in a one dimensional superconducting chain is explained using the Kitaev model. Finally, topological band insulators and conventional superconductivity are combined to effectively engineer p-wave superconductivity. One way to investigate these states is by measuring the periodicity of the phase of the Josephson supercurrent in a topological Josephson junction. The signature is a 4π-periodicity compared to the 2π-periodicity in conventional Josephson junctions. The proof of the presence of this effect in HgTe based Josephson junction is the main goal of this thesis and is discussed in chapters 3 to 6. Chapter 3 describes in detail the transport of a 3D topological insulator based weak link under radio-frequency radiation. The chapter starts with a review of the state of research of (i) strained HgTe as 3D topological insulator and (ii) the progress of induc- ing superconducting correlations into the topological surface states and the theoretical predictions of 3D TI based Josephson junctions. Josephson junctions based on strained HgTe are successfully fabricated. Before studying the ac driven Josephson junctions, the dc transport of the devices is analysed. The critical current as a function of temperature is measured and it is possible to determine the induced superconducting gap. Under rf illumination Shapiro steps form in the current voltage characteristic. A missing first step at low frequencies and low powers is found in our devices. This is a signature of a 4π-periodic supercurrent. By studying the device in a wide parameter range - as a 147148 SUMMARY function of frequency, power, device geometry and magnetic field - it is shown that the results are in agreement with the presence of a single gapless Andreev doublet and several conventional modes. Chapter 4 gives results of the numerical modelling of the I −V dynamics in a Josephson junction where both a 2π- and a 4π-periodic supercurrents are present. This is done in the framework of an equivalent circuit representation, namely the resistively shunted Josephson junction model (RSJ-model). The numerical modelling is in agreement with the experimental results in chapter 3. First, the missing of odd Shapiro steps can be understood by a small 4π-periodic supercurrent contribution and a large number of modes which have a conventional 2π-periodicity. Second, the missing of odd Shapiro steps occurs at low frequency and low rf power. Third, it is shown that stochastic processes like Landau Zener tunnelling are most probably not responsible for the 4π contribution. In a next step the periodicity of Josephson junctions based on quantum spin Hall insulators using are investigated in chapter 5. A fabrication process of Josephson junctions based on inverted HgTe quantum wells was successfully developed. In order to achieve a good proximity effect the barrier material was removed and the superconductor deposited without exposing the structure to air. In a next step a gate electrode was fabricated which allows the chemical potential of the quantum well to be tuned. The measurement of the diffraction pattern of the critical current Ic due to a magnetic field applied perpendicular to the sample plane was conducted. In the vicinity to the expected quantum spin Hall phase, the pattern resembles that of a superconducting quantum interference device (SQUID). This shows that the current flows predominantly on the edges of the mesa. This observation is taken as a proof of the presence of edge currents. By irradiating the sample with rf, missing odd Shapiro steps up to step index n = 9 have been observed. This evidences the presence of a 4π-periodic contribution to the supercurrent. The experiment is repeated using a weak link based on a non-inverted HgTe quantum well. This material is expected to be a normal band insulator without helical edge channels. In this device, all the expected Shapiro steps are observed even at low frequencies and over the whole gate voltage range. This shows that the observed phenomena are directly connected to the topological band structure. Both features, namely the missing of odd Shapiro steps and the SQUID like diffraction pattern, appear strongest towards the quantum spin Hall regime, and thus provide evidence for induced topological superconductivity in the helical edge states. A more direct way to probe the periodicity of the Josephson supercurrent than using Shapiro steps is the measurement of the emitted radiation of a weak link. This experiment is presented in chapter 6. A conventional Josephson junction converts a dc bias V to an ac current with a characteristic Josephson frequency fJ = eV /h. In a topological Josephson junction a frequency at half the Josephson frequency fJ /2 is expected. A new measurement setup was developed in order to measure the emitted spectrum of a single Josephson junction. With this setup the spectrum of a HgTe quantum well based Josephson junction was measured and the emission at half the Josephson frequency fJ /2 was detected. In addition, fJ emission is also detected depending on the gate voltage and detection frequency. The spectrum is again dominated by half the Josephson emission at low voltages while the conventional emission is determines the spectrum at high voltages. A non-inverted quantum well shows only conventional emission over the whole gateSUMMARY 149 voltage and frequency range. The linewidth of the detected frequencies gives a measure on the lifetime of the bound states: From there, a coherence time of 0.3–4ns for the fJ /2 line has been deduced. This is generally shorter than for the fJ line (3–4ns). The last part of the thesis, chapter 7, reports on the induced superconducting state in a strained HgTe layer investigated by point-contact Andreev reflection spectroscopy. For the experiment, a HgTe mesa was fabricated with a small constriction. The diameter of the orifice was chosen to be smaller than the mean free path estimated from magne- totransport measurements. Thus one gets a ballistic point-contact which allows energy resolved spectroscopy. One part of the mesa is covered with a superconductor which induces superconducting correlations into the surface states of the topological insulator. This experiment therefore probes a single superconductor normal interface. In contrast to the Josephson junctions studied previously, the geometry allows the acquisition of energy resolved information of the induced superconducting state through the measurement of the differential conductance dI/dV as a function of applied dc bias for various gate voltages, temperatures and magnetic fields. An induced superconducting order parame- ter of about 70µeV was extracted but also signatures of the niobium gap at the expected value around Δ Nb ≈ 1.1meV have been found. Simulations using the theory developed by Blonder, Tinkham and Klapwijk and an extended model taking the topological surface states into account were used to fit the data. The simulations are in agreement with a small barrier at the topological insulator-induced topological superconductor interface and a high barrier at the Nb to topological insulator interface. To understand the full con- ductance curve as a function of applied voltage, a non-equilibrium driven transformation is suggested. The induced superconductivity is suppressed at a certain bias value due to local electron population. In accordance with this suppression, the relevant scattering regions change spatially as a function of applied bias. To conclude, it is emphasized that the experiments conducted in this thesis found clear signatures of induced topological superconductivity in HgTe based quantum well and bulk devices and opens up the avenue to many experiments. It would be interesting to apply the developed concepts to other topological matter-superconductor hybrid systems. The direct spectroscopy and manipulation of the Andreev bound states using circuit quantum electrodynamic techniques should be the next steps for HgTe based samples. This was already achieved in superconducting atomic break junctions by the group in Saclay [Science 2015, 349, 1199-1202 (2015)]. Another possible development would be the on-chip detection of the emitted spectrum as a function of the phase φ through the junction. In this connection, the topological junction needs to be shunted by a parallel ancillary junction. Such a setup would allow the current phase relation I(φ) directly and the lifetime of the bound states to be measured directly. By coupling this system to a spectrometer, which can be another Josephson junction, the energy dependence of the Andreev bound states E(φ) could be obtained. The experiments on the Andreev reflection spectroscopy described in this thesis could easily be extended to two dimensional topological insulators and to more complex geometries, like a phase bias loop or a tunable barrier at the point-contact. This work might also be useful for answering the question how and why Majorana bound states can be localized in quantum spin Hall systems. N2 - Die vorliegende Dissertation befasst sich mit der experimentellen Untersuchung von topologischer Supraleitung, die durch die Kombination von konventionellen Supraleitern mit 2D- und 3D- topologischen Isolatoren (TI) entsteht. Diesbezüglich wurden Experi- mente durchgeführt, die auf zwei bahnbrechenden Arbeiten von Fu und Kane [Phys. Rev. Lett. 100, 096407 (2008), Phys. Rev. B 79, 161408 (2009)] aufbauen. Diesen zufolge wird in supraleitenden topologischen Isolatoren ein neuartiges Quasiteilchen, ein sogenanntes Majorana-Fermion, vorhergesagt. Das große Interesse an diesem Teilchen beruht auf des- sen besonderen Eigenschaften. Es sind Fermionen mit halbzahligen Spin, jedoch besitzen sie keine Ladung und es ist gleichzeitig sein eigenes Antiteilchen. Darüber hinaus besitzt das Teilchen im Vergleich zu konventionellen Fermionen eine andere Austauschstatistik und zählt daher zu den sogenannten nicht-abelschen Anyonen. Aufgrund dieser Eigen- schaften wurde vorhergesagt, dass sie für weniger fehleranfällige Quantenbits als Bauteile für einen Quantencomputer verwendet werden können. Nach einer Einleitung in Kapitel 1 folgt in Kapitel 2 eine Einführung in das Konzept von Topologie in der Festkörperphysik. Der Schwerpunkt liegt dabei auf zwei Materialklassen, topologischen Isolatoren und topologische Supraleiter. Zunächst wird ein Zweibandmo- dell, der Chern-Isolator, beschrieben, um das Konzept von topologischen Isolatoren und die Entstehung von Oberflächenzuständen darzulegen. Es ist möglich die Bandstruktur von Quecksilbertellurid- (HgTe-) Quantentrögen als zwei zeitumkehrinvariante Kopien des Chern-Isolators zu interpretieren, was zu einem 2D topologischen Isolator führt. Das Konzept von 2D-TIs wird auf drei Dimensionen erweitert. Eine Einführung in konventio- nelle Supraleitung und insbesondere die mikroskopische Theorie von Bardeen, Cooper und Schrieffer dient einem pädagogischen Zugang zur topologischen Supraleitung. Eine eindimensionale supraleitenden Kette, entwickelt von Alexei Kitaev, dient der Erklärung für die Entstehung von Majorana-Fermionen in p-Wellen Supraleitern. Es ist möglich diesen Zustand durch die Kombination von konventionellen Supraleitern und topologi- schen Isolatoren zu verwirklichen. In dieser Dissertation wird die erwartet topologische Supraleitung in einem sogenannten Josephson-Kontakt untersucht. Dabei wurde vorher- gesagt, dass in einem “topologischen Josephson-Kontakt”die Phase des Suprastromes eine 4π-Periodizität besitzt, während ein normaler Josephson-Kontakt 2π-periodisch ist. Ziel dieser Arbeit ist der experimentelle Nachweis der 4π-Periodizität des Suprastroms in Josephson-Kontakten, die auf HgTe-Bauelementen beruhen. Als Methodik eignet sich die Messung der Shapiro-Plateaus und der Emission des Josephson-Kontaktes an, die ausführlich in den Kapiteln 3 bis 6 werden. In Kapitel 3 wird der Transport in Josephson-Kontakten, die auf dem dreidimensio- nalen topologischen Isolator HgTe beruhen unter Einfluss von Mikrowellenstrahlung detailliert ausgeführt. Dieser Teil beginnt mit einem Überblick über die Eigenschaften von HgTe als dreidimensionaler topologischer Isolator und zeigt insbesondere den Nachweis der Oberfächenleitung von relativistischen Elektronen auf. Des Weiteren wird der Stand der Forschung von Josephson-Kontakten auf diesem Materialsystem dargelegt. In solchen Strukturen werden nämlich aufgrund von Majorana-Fermionen gebundene Andreev- Zustände erwartet, welche sich in der Mitte der supraleitenden Bandlücke (bei null Energie) kreuzen. Sie werden als “gapless Andreev Bound States”bezeichnet. Die Existenz dieser Zustände kann durch den Nachweis einer 4π-Periodizität der Phase des Supra- stroms bewiesen werden. Da die endliche Lebensdauer dieser Zustände “langsamen”dc- Messungen den Nachweis der Periodizität nicht erlauben, wird Strahlung im Gigahertz Frequenzbereich verwendet. Josephson-Kontakte aus 3D-HgTe-Heterostrukturen werden erfolgreich lithografiert. Zunächst werden die Strukturen mit dc-Messungen charakte- risiert und es wird gezeigt, dass der Suprastrom einen Josephson-Effekt aufweist. Die Temperaturabhängigkeit des kritischen Stroms wird simuliert, wodurch die Bestimmung der Größe der induzierten supraleitenden Bandlücke ermöglicht wird. Durch Mikrowel- lenstrahlung entstehen Shapiro-Plateaus in der Strom-Spannungskennlinie I −V -Kurve. Der Spannungsabstand von zwei aufeinander folgenden Plateaus spiegelt die Periodizität des Josephsonstroms wider. Zu erwarten wäre, dass der Abstand in einem topologischen Josephson-Kontakt im Vergleich zu einem konventionellen Josephson-Kontakt doppelt so groß ist (oder anders formuliert: die ungeradzahligen Plateau-Indizes fehlen). In den Strom-Spannungskennlinien wird jedoch beobachtet, dass der erste erwartete Schritt ausbleibt. Alle höheren ungeradzahligen Schritte sind sichtbar. Durch die Untersuchung des Phänomens als Funktion von Mikrowellenfrequenz, Mikrowellenamplitude, Magnet- feldstärke und Probengeometrie wird argumentiert, dass die Ergebnisse der Experimente mit einem topologischen Andreev-Zustand und einer großen Zahl konventioneller Moden vereinbar sind. Um die experimentellen Ergebnisse aus Kapitel 3 nachzuvollziehen, werden in Kapitel 4 die I −V -Kennlinie eines Josephson-Kontaktes mit einer linearen Kombination eines 2π- und eines 4π-periodischen Suprastroms unter Mikrowellenstrahlung numerisch simuliert. Dies erfolgt durch ein Netzwerkmodell, welches aus einem Josephson-Kontakt in Parallelschaltung zu einem ohmschen Widerstand besteht (RSJ-Modell). Die Ergebnisse aus Kapitel 3 können nur durch das Vorhandensein eines 4π-periodischem Suprastroms I4π eindeutig numerisch simuliert werden. Darüber hinaus wird herausgestellt, dass eine Kopplung des Systems an die 4π-periodische Komponente möglich ist, obwohl der Beitrag zum Gesamtstrom Ic sehr klein ist (I4π « Ic ). Die Grundlage für die Experimente in Kapitel 5 bildet ein Josephson-Kontakt, der auf einem invertierten HgTe-Quantentrog basiert. Dieser besitzt helikale Randkanäle, welche mit Supraleitern topologisch geschützte Andreev-Zustände formen. Hierfür ist zuerst ein neuer Lithographieprozess zur Herstellung der Proben entwickelt worden. Da sich der HgTe-Quantentrog unter einer Hg0.3Cd0.7Te-Barriere befindet, muss diese für eine gute induzierte Supraleitung lokal entfernt und der Supraleiter aufgetragen werden, ohne das Vakuum zu brechen. Zur Variation der Ladungsträgerdichte im Josephson-Kontakt wird eine Feldeffektelektrode auf der Struktur platziert. Die Messung des Beugungsmusters des kritischen Stroms als Funktion des Magnetfeldes erlaubt es, die Stromverteilung in der Probe zu untersuchen. Das Beugungsmuster ähnelt dem eines supraleitenden Quanteninterferenzbauelement [engl. Superconducting Quantum Interference Device: (SQUID)] und zeigt, dass der Strom vorwiegend am Rand der Probe fließt. Durch die Bestrahlung mit Mikrowellen werden fehlende ungeradzahlige Shapiro-Plateaus bis zum Stufenindex n = 9 beobachtet. Dies verdeutlicht, dass der Strom eine 4π-periodischen Beitrag aufweist. Das Experiment wird mit einem nicht-invertierten HgTe-Quantentrog wiederholt. Dieser ist nicht in der Quanten-Spin-Hall-Phase und zeigt über den gesamten Parameterbereich alle erwarteten Shapiro-Plateaus, was beweist, dass die Topologie der Probe eine wichtige Eigenschaft ist, um die 4π-Periodizität zu beobachten. Beide Effekte, das SQUID-Beugungsmuster und die verschwindenden ungeradzahligen Shapiro- Plateaus, sind in der Nähe der Quanten-Spin-Phase am sichtbarsten und können daher als Beweis für induzierte topologische Supraleitung in spinpolarisierten Randkanälen interpretiert werden. Eine Messmethode zur direkten Bestimmung der Periodizität des Suprastromes, an- ders als die Verwendung von Shapiro-Plateaus, ist die Messung der Josephson-Emission, was in Kapitel 6 beschrieben wird. Ein topologischer Josephson-Kontakt emittiert Strah- lung bei der halben Josephsonfrequenz f J /2 aufgrund der 4π-Periodizität des Joseph- sonstromes. Hierfür wird ein neuer experimenteller Aufbau entwickelt, um das kleine Emissionssignal eines einzelnen Josephson-Kontaktes zu verstärken. Dieser neue Aufbau erlaubt es, das Spektrum eines invertierten HgTe-Quantentrog zu messen und eine Emis- sion bei f J /2 zu detektieren. Je nach Ladungsträgerdichte und Detektionfrequenz wird auch gewöhnliche Emission bei f J im Spektrum beobachtet. Generell dominiert aber bei niedriger Spannung die f J /2-Emission und bei höheren Spannungen die f J . Da Spannung und ac-Frequenz durch die zweite Josephson-Gleichung proportional zueinander lässt sich das Verhalten mit den Ergebnissen der Shapiro-Plateau-Messungen vereinbaren. Darüber hinaus ist aus der Linienbreite der Emissionssignale eine Lebensdauer für die ABS in der Größenordnung von 0.3 − 4 ns für die f J /2-Emission und 3 − 4 ns für die f J - Emission abgeschätzt worden. Ein nicht-invertierter Quantentrog zeigt im Vergleich zum invertierten nur gewöhnliche Emission bei f J über den gesamten zugänglichen Frequenz- und Ladungsträgerbereich. Im letzten Teil der Arbeit, in Kapitel 7, wird die in den 3D-topologischen Isolator HgTe induzierte Supraleitung mit Hilfe von Andreev-Punktkontaktspektroskopie unter- sucht. Hierfür wird eine HgTe-Struktur mit einer Verengung fabriziert, deren Durchmesser kleiner als die mittlere freie Weglänge der topologischen Oberflächenzustände ist und somit eine energieabhängige Spektroskopie des Zustandes erlaubt. Auf einer Seite der Verengung werden supraleitende Paarkorrelationen durch einen gewöhnlichen Supralei- ter Niob induziert. Diese Struktur ermöglicht daher die Untersuchung der Grenzfläche zwischen einem Supraleiter und einem Normalleiter (topologischer Isolator). Durch die Messung der differentiellen Leitfähigkeit d I /dV als Funktion der dc-Spannung ist es möglich die Energieabhängigkeit der Supraleitung zu untersuchen. Eine induzierte supraleitenden Bandlücke von 70 µeV wird gefunden. Die Leitfähigkeit zeigt Signatu- ren einer weiteren supraleitende Bandlücke des konventionellen Supraleiters Niob von ∆Nb ≈ 1.1 meV. Die Leitfähigkeit wird zum einen mit der Theorie von Blonder, Tinkham und Klapwijk modelliert und zum anderen mit einem erweiterten Modell, welches die 2D Oberflächenzustände des topologischen Isolators berücksichtigt simuliert. Für die Grenzfläche topologischer Isolator mit topologischem Supraleiter wird eine hohe Trans- missionswahrscheinlichkeit (niedrige Barriere) festgestellt, während an der Grenzfläche zwischen dem konventionellen Supraleiter und dem topologischen Isolator eine hohe Barriere in Übereinstimmung mit dem Modell war. Der Transportmechanismus wird durch eine Unterdrückung der induzierten Supraleitung durch eine Nichtgleichgewichts- verteilung der Zustände als Funktion der Spannung erklärt. Die vorliegende Dissertation konnte klare Signaturen von induzierter topologischer Supraleitung in Josephson-Kontakten auf Basis von HgTe-Quantentrögen und Volumen- material aufzeigen. Sie kann auch als Ausgangspunkt für eine große Anzahl von weiter- führenden Experimenten dienen. Die hier entwickelte Technik und auch Theorie kann auf andere topologische Zustände in Verbindung mit Supraleitern angewandt werden. Ein weiteres Experiment für HgTe-Strukturen ließe sich beispielsweise mit Hilfe von su- praleitenden Resonatoren die Spektroskopie und Manipulation der mikroskopischen topologischen Andreev-Zustände durchführen. Diese Technik wurde schon erfolgreich von Janvier et al . auf mechanisch kontrollierten supraleitenden Bruchkontakten ange- wandt [Science 2015, 349, 1199-1202 (2015)]. Eine alternative Technik zur Spektroskopie der Andreev Zustände benötigt konventionelle Josephson-Kontakte in Kombination mit topologischen Kontakten. Die konventionellen Kontakte erlauben die Kontrolle der supra- leitenden Phase und dienen als Spektrometer. Die Andreev-Punktkontaktspektroskopie kann auf zweidimensionale topologische Isolatoren erweitert werden. Auch kann ei- ne supraleitende Schleife, welche die Kontrolle über die Phase und eine veränderbare Barriere ermöglicht, neue Einblicke in die Transportmechanismen geben. Solche Un- tersuchungen bieten Ansatzpunkte für die Lokalisierung von Majorana-Zuständen in Quanten-Spin-Hall-Systemen. KW - Quecksilbertellurid KW - Supraleitung KW - Topologischer Isolator KW - topological insulators KW - Majorana bound state KW - topological superconductor KW - HgTe KW - Josephson junction Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162782 ER - TY - THES A1 - Maier, Patrick T1 - Memristanz und Memkapazität von Quantenpunkt-Speichertransistoren: Realisierung neuromorpher und arithmetischer Operationen T1 - Memristance and memcapacitance of quantum dot floating gate transistors: realization of neuromorphic and arithmetic operations N2 - In dieser Arbeit werden Quantenpunkt-Speichertransistoren basierend auf modulationsdotierten GaAs/AlGaAs Heterostrukturen mit vorpositionierten InAs Quantenpunkten vorgestellt, welche in Abhängigkeit der Ladung auf den Quantenpunkten unterschiedliche Widerstände und Kapazitäten aufweisen. Diese Ladungsabhängigkeiten führen beim Anlegen von periodischen Spannungen zu charakteristischen, durch den Ursprung gehenden Hysteresen in der Strom-Spannungs- und der Ladungs-Spannungs-Kennlinie. Die ladungsabhängigen Widerstände und Kapazitäten ermöglichen die Realisierung von neuromorphen Operationen durch Nachahmung von synaptischen Funktionalitäten und arithmetischen Operationen durch Integration von Spannungs- und Lichtpulsen. N2 - In this thesis, state-dependent resistances and capacitances in quantum dot floating gate transistors based on modulation doped GaAs/AlGaAs heterostructures with site-controlled InAs quantum dots are presented. The accumulation of electrons in the quantum dots simultaneously increases the resistance and decreases the capacitance, which leads to characteristic pinched hysteresis loops in the current-voltage- and the charge-voltage-characteristics when applying periodic input signals. The concurrent resistance and capacitance switching enables the realization of neuromorphic operations via mimicking of synaptic functionalities and arithmetic operations via the integration of voltage and light pulses. KW - Nichtflüchtiger Speicher KW - Memristor KW - Neuroinformatik KW - Quantenpunkt KW - Transportspektroskopie KW - Künstliche Synapsen KW - Speichertransistor KW - GaAs/AlGaAs Heterostruktur KW - transport spectroscopy KW - artificial synapse KW - floating gate transistor KW - GaAs/AlGaAs heterostructure KW - Elektronengas KW - Halbleiterphysik Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164234 ER - TY - THES A1 - Ponce Garcia, Irene Paola T1 - Strategies for optimizing dynamic MRI T1 - Strategien zur Optimierung der dynamischen MR Bildgebung N2 - In Magnetic Resonance Imaging (MRI), acquisition of dynamic data may be highly complex due to rapid changes occurred in the object to be imaged. For clinical diagnostic, dynamic MR images require both high spatial and temporal resolution. The speed in the acquisition is a crucial factor to capture optimally dynamics of the objects to obtain accurate diagnosis. In the 90’s, partially parallel MRI (pMRI) has been introduced to shorten scan times reducing the amount of acquired data. These approaches use multi-receiver coil arrays to acquire independently and simultaneously the data. Reduction in the amount of acquired data results in images with aliasing artifacts. Dedicated methods as such Sensitivity Encoding (SENSE) and Generalized Autocalibrating Partially Parallel Acquisition (GRAPPA) were the basis of a series of algorithms in pMRI. Nevertheless, pMRI methods require extra spatial or temporal information in order to optimally reconstruct the data. This information is typically obtained by an extra scan or embedded in the accelerated acquisition applying a variable density acquisition scheme. In this work, we were able to reduce or totally eliminate the acquisition of the training data for kt-SENSE and kt-PCA algorithms obtaining accurate reconstructions with high temporal fidelity. For dynamic data acquired in an interleaved fashion, the temporal average of accelerated data can generate an artifact-free image used to estimate the coil sensitivity maps avoiding the need of extra acquisitions. However, this temporal average contains errors from aliased components, which may lead to signal nulls along the spectra of reconstructions when methods like kt-SENSE are applied. The use of a GRAPPA filter applied to the temporal average reduces these errors and subsequently may reduce the null components in the reconstructed data. In this thesis the effect of using temporal averages from radial data was investigated. Non-periodic artifacts performed by undersampling radial data allow a more accurate estimation of the true temporal average and thereby avoiding undesirable temporal filtering in the reconstructed images. kt-SENSE exploits not only spatial coil sensitivity variations but also makes use of spatio-temporal correlations in order to separate the aliased signals. Spatio-temporal correlations in kt-SENSE are learnt using a training data set, which consists of several central k-space lines acquired in a separate scan. The scan of these extra lines results in longer acquisition times even for low resolution images. It was demonstrate that limited spatial resolution of training data set may lead to temporal filtering effects (or temporal blurring) in the reconstructed data. In this thesis, the auto-calibration for kt-SENSE was proposed and its feasibility was tested in order to completely eliminate the acquisition of training data. The application of a prior TSENSE reconstruction produces the training data set for the kt-SENSE algorithm. These training data have full spatial resolution. Furthermore, it was demonstrated that the proposed auto-calibrating method reduces significantly temporal filtering in the reconstructed images compared to conventional kt-SENSE reconstructions employing low resolution training images. However, the performance of auto-calibrating kt-SENSE is affected by the Signal-to-Noise Ratio (SNR) of the first pass reconstructions that propagates to the final reconstructions. Another dedicated method used in dynamic MRI applications is kt-PCA, that was first proposed for the reconstruction of MR cardiac data. In this thesis, kt-PCA was employed for the generation of spatially resolved M0, T1 and T2 maps from a single accelerated IRTrueFISP or IR-Snapshot FLASH measurement. In contrast to cardiac dynamic data, MR relaxometry experiments exhibit signal at all temporal frequencies, which makes their reconstruction more challenging. However, since relaxometry measurements can be represented by only few parameters, the use of few principal components (PC) in the kt-PCA algorithm can significantly simplify the reconstruction. Furthermore, it was found that due to high redundancy in relaxometry data, PCA can efficiently extract the required information from just a single line of training data. It has been demonstrated in this thesis that auto-calibrating kt-SENSE is able to obtain high temporal fidelity dynamic cardiac reconstructions from moderate accelerated data avoiding the extra acquisition of training data. Additionally, kt-PCA has been proved to be a suitable method for the reconstruction of highly accelerated MR relaxometry data. Furthermore, a single central training line is necessary to obtain accurate reconstructions. Both reconstruction methods are promising for the optimization of training data acquisition and seem to be feasible for several clinical applications. N2 - Dynamische Bildgebung mithilfe der Magnetresonanztomographie stellt eine besondere Herausforderung dar. Für klinische Anwendungen benötigt man Bilder mit hoher räumlicher und bei schnellen Bewegungen auch zeitlicher Auflösung. Technologische Fortschritte in den letzten Jahrzehnten konnten MRT-Experimente erheblich beschleunigen. Ein wichtiger Beitrag lieferte die parallele Bildgebung (pMRT), die durch die Entwicklung von Spulenarrays für den Empfang des MR-Signals ermöglicht wurde. In paralleler Bildgebung wird nur ein Teil der eigentlich benötigten Daten aufgenommen. Diese Unterabtastung des k-Raum führt zu Bildern mit Aliasing-Artefakten. Verschiedenste Algorithmen wurden entwickelt, um mittels der zusätzlichen räumlichen Informationen der Spulenarrays anschließend Bilder zu rekonstruieren. Heute spielen Sensitivity Encoding (SENSE) und Generalized Autocalibrating Partially Parallel Acquisition (GRAPPA) eine große und bilden eine Grundlage für eine Vielzahl anderer Algorithmen. Einen Großteil aller pMRT Methoden erfordern für optimale Ergebnisse zusätzliche räumliche oder zeitliche Informationen zur Kalibrierung. Diese Kalibrations- oder Trainingsdaten werden in der Regel durch einen zusätzlichen Scan erzeugt oder in die beschleunigte Messung eingebettet aufgenommen. Das ist eine unerwünschte Verlängerung der Messzeit die Folge. In dieser Arbeit konnten wir kt-SENSE und kt-PCA Rekonstruktionen dynamischer MRT Daten mit hoher zeitlicher Genauigkeit erzielen bei gleichzeitiger Reduktion bzw. sogar Beseitigung der benötigten Menge an Trainingsdaten. Um die in beiden Methoden benötigten Spulensensitivitäten zu berechnen, kann bei bestimmten Abtastschemata mit dem Mittelwert der dynamischen Daten ein weitgehend Artefakt-freies Bild erzeugt werden. Dieser zeitliche Mittelwert enthält jedoch kleine Fehler, die durch die Anwendung von Methoden wie kt-SENSE zu Signalauslöschungen im Spektrum der rekonstruierten Daten führen können. Es konnte gezeigt werden, dass die Anwendung eines GRAPPA Filter auf den zeitlichen Mittelwert die Fehler in den Spulensensitivitäten reduziert und die Rekonstruktion von Daten aller Frequenzen ermöglicht. Eine weitere aufgezeigte Möglichkeit ist die Verwendung einer radialen Akquisition, die dank der inkohärenten Aliasing-Artefakte ebenfalls zu einer erheblich genaueren Abschätzung des zeitlichen Mittelwerts führt. Dies verhindert zeitliche Ungenauigkeiten in den rekonstruierten Bildern. Zusätzliche zu Spulensensitivitäten verwenden Rekonstruktionsmethoden wie kt-SENSE Vorkenntnisse über räumlich-zeitliche Korrelationen, um Artefakte zu entfernen. Informationen darüber werden gewöhnlich aus voll aufgenommenen Trainingsdaten mit geringer Auflösung extrahiert. Die separate Akquisitions dieser Trainingsdaten verursacht eine unerwünschte Verlängerung der Messzeit. In dieser Arbeit wurde gezeigt, dass die niedrige Auflösung der Trainingsdaten zu zeitlichen Filterungseffekten in den rekonstruierten Daten führen kann. Um dies zu verhindern und um die zusätzliche Aufnahme von Trainingsdaten zu vermeiden, wurde eine Autokalibrierung für kt-SENSE vorgeschlagen und untersucht. Hierbei werden die benötigten Trainingsdaten in einem ersten Schritt durch eine TSENSE Rekonstruktion aus den unterabgetasteten Daten selbst erzeugt. Dank der vollen Auflösung dieser Trainingsdaten kann das Auftreten eines zeitlichen Filters verhindert werden. Die Leistung der Auto-kalibration wird lediglich durch einen Einfluss des SNRs der TSENSE Trainingsdaten auf die finalen Rekonstruktionen beeinträchtigt. Ein weiteres Verfahren für die dynamische MRT ist kt-PCA, das zunächst für die Rekonstruktion von MR-Herzdaten vorgeschlagen wurde. In dieser Arbeit wurde kt-PCA für die neurologische MR Relaxometrie verwendet. Hierbei konnten aus beschleunigten IRTrueFISP und IR-Snapshot-FLASH Messungen genaue M0, T1 und T2 Karten gewonnen werden. Im Gegensatz zur Herzbildgebung weisen MR Relaxometrie Datensätze Signal auf alles zeitlichen Frequenzen auf, was ihre Rekonstruktion mit konventionellen Methoden erschwert. Andererseits können die zeitlichen Signalverläufe mit einigen wenigen Parametern dargestellt werden und die Rekonstruktion mittels kt-PCA vereinfacht sich erheblich aufgrund der geringen Anzahl benötigter Hauptkomponenten (PC). Weiter wurde gezeigt, dass aufgrund der hohen Redundanz ein Trainingsdatensatz bestehend aus einer einzigen Zeile ausreicht, um alle relevanten Informationen zu erhalten. In dieser Thesis wurde demonstriert, dass mit dem Ansatz einer auto-kalibrierten kt-SENSE Rekonstruktion Bilder mit hoher zeitlicher Genauigkeit aus beschleunigten Datensätzen des Herzens gewonnen werden können. Dies vermeidet die gewöhnlich benötigte zusätzliche Aufnahme von Trainingsdaten. Weiterhin hat sich kt-PCA als geeignetes Verfahren zur Rekonstruktion hochbeschleunigter MR Relaxometrie Datensätze erwiesen. In diesem Fall war ein Trainingsdatensatz bestehend aus einer einzelnen Zeile ausreichend für Ergebnisse mit hoher Genauigkeit. KW - Kernspintomografie KW - Dynamische Messung KW - Magnetic resonance KW - Magnetische Resonanz KW - Dynamic magnetic resonance imaging KW - Dynamische MR Bildgebung KW - DNMR-Spektroskopie KW - Bildgebendes Verfahren Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162622 ER - TY - THES A1 - Strauß, Micha Johannes T1 - Molekularstrahlepitaxie von niederdimensionalen GaInAs(N) Systemen für AlGaAs Mikroresonatoren T1 - Molecular beam epitaxy of GaInAs(N) low dimensional Systems for AlGaAs micro resonators N2 - Die Erforschung von Quantenpunkten mit ihren quantisierten, atomähnlichen Zuständen, bietet eine Vielzahl von Möglichkeiten auf dem Weg zum Quantencomputer und für Anwendungen wie Einzelphotonenquellen und Quantenpunktlasern. Vorangegangene Studien haben grundlegend gezeigt, wie Quantenpunkte in Halbleiterresonatoren integriert und mit diesen gekoppelt werden können. Dazu war es zum einen notwendig, die Quantenpunkte und ihr epitaktisches Wachstum besser zu verstehen und zu optimieren. Zum anderen mussten die Bragg-Resonatoren optimiert werden, sodass Güten von bis zu 165.000 realisiert werden konnten. Eingehende Studien dieser Proben zeigten im Anschluss einen komplexeren Zusammenhang von Q-Faktor und Türmchendurchmesser. Man beobachtet eine quasi periodische Oszillation des Q-Faktors mit dem Pillar Durchmesser. Ein Faktor für diese Oszillation ist die Beschaffenheit der Seitenflanken des Resonatortürmchens, bedingt durch die unterschiedlichen Eigenschaften von AlAs und GaAs bei der Prozessierung der Türmchen. Darüber hinaus wurden in der Folge auf den Grundlagen dieser Strukturen sowohl optisch als auch elektrisch gepumpte Einzelphotonenquellen realisiert. Da in diesen Bauteilen auch die Lage des Quantenpunkts innerhalb des Resonatortürmchens einen erheblichen Einfluss auf die Effizienz der Kopplung zwischen Resonator und Quantenpunkt hat, war das weitere Ziel, die Quantenpunkte kontrolliert zu positionieren. Mit einer gezielten Positionierung sollte es möglich sein, ein Resonatortürmchen direkt über dem Quantenpunkt zu plazieren und den Quantenpunkt somit in das Maximum der optischen Mode zu legen. Besondere Herausforderung für die Aufgabenstellung war, Quantenpunkte in einem Abstand von mind. der Hälfte des angestrebten Türmchendurchmessers, d.h 0,5 μm bis 2 μm, zu positionieren. Die Positionierung musste so erfolgen, dass nach dem Wachstum eines AlAs/GaAs DBR Spiegel über den Quantenpunkten, Resonatortürmchen zielgenau auf die Quantenpunkte prozessiert werden können. Es wurden geeignete Prozesse zur Strukturierung eines Lochgitters in die epitaktisch gewaschene Probe mittels Elektronenstrahllithographie entwickelt. Für ein weiteres Wachstum mittels Molekularstrahlepitaxie, mussten die nasschemischen Reinigungsschritte sowie eine Reinigung mit aktivem Wasserstoff im Ultrahochvakuum optimiert werden, sodass die Probe möglichst defektfrei überwachsen werden konnte, die Struktur des Lochgitters aber nicht zerstört wurde. Es wurden erfolgreich InAs-Quantenpunkte auf die vorgegebene Struktur positioniert, erstmals in einem Abstand von mehreren Mikrometern zum nächsten Nachbarn. Eine besondere Herausforderung war die Vorbereitung für eine weitere Prozessierung der Proben nach Quantenpunktwachstum. Eine Analyse mittels prozessierten Goldkreuzen, dass 30 % der Quantenpunkte innerhalb von 50 nm und 60 % innerhalb von 100 nm prozessiert wurden. In der Folge wurde mit der hier erarbeiteten Methode Quantenpunkte erfolgreich in DBR-Resonatoren sowie photonische Kristalle eingebaut Die gute Abstimmbarkeit von Quantenpunkten und die bereits gezeigte Möglichkeit, diese in Halbleiterresonatoren einbinden zu können, machen sie auch interessant für die Anwendung im Telekommunikationsbereich. Um für Glasfasernetze Anwendung zu finden, muss jedoch die Wellenlänge auf den Bereich von 1300 nm oder 1550 nm übertragen werden. Vorangegangene Ergebnisse kamen allerdings nur knapp an die Wellenlänge von 1300nm. Eine fu ̈r andere Bauteile sowie für Laserdioden bereits häufig eingesetzte Methode, InAs-Quantenpunkte in den Bereich von Telekommunikationswellenla ̈ngen zu verschieben, ist die Verwendung von Stickstoff als weiteres Gruppe-V-Element. Bisherige Untersuchungen fokussierten sich auf Anwendungen in Laserdioden, mit hoher Quantenpunktdichte und Stickstoff sowohl in den Quantenpunkten als in den umgebenen Strukturen. Da InAsN-Quantenpunkte in ihren optischen Eigenschaften durch verschiedene Verlustmechanismen leiden, wurde das Modell eines Quantenpunktes in einem Wall (Dot-in-Well) unter der Verwendung von Stickstoff weiterentwickelt. Durch gezielte Separierung der Quantenpunkte von den stickstoffhaltigen Schichten, konnte e eine Emission von einzelnen, MBE-gewachsenen InAs Quantenpunkten von über 1300 nm gezeigt werden. Anstatt den Stickstoff direkt in die Quantenpunkte oder unmittelbar danach in die Deckschicht ein zu binden, wurde eine Pufferschicht ohne Stickstoff so angepasst, dass die Quantenpunkte gezielt mit Wellenlängen größer 1300 nm emittieren. So ist es nun möglich, die Emission von einzelnen InAs Quantenpunkten jenseits dieser Wellenlänge zu realisieren. Es ist nun daran, diese Quantenpunkte mit den beschriebenen Mikroresonatoren zu koppeln, um gezielt optisch und elektrisch gepumpte Einzelphotonenquellen für 1300nm zu realisieren. N2 - The research of quantum dots with their quantized, atom-like states provides many possibilities for quantum computing and for application in technologies like single photon sources and quantum dot lazers. Previous studies have demonstrated how quantum dots can be integrated with and linked to semiconductor resonator. For this reason, it is necessary to better understand and optimize the epitaxial growth of quantum dots. Within the context of this work, the Bragg-Resonators must be optimized so that Q factors of up to 165.000 can be realized. Extensive studies of these samplings indicate a complex dependency between Q factors and diameter of the micropillar. This is how a quasi-periodic Q factor oscillation looks. One factor for these oscillations is the composition of the side flanks of the resonator micropillars, caused by the various properties of AIAs and GaAs during processing the micropillar. In addition, both optically and electrically pumped single photon sources have been realized on the basis of this structure. Due to the fact that the position of the quantum dot within the resonator micropillar has a significant effect on the efficiency of the coupling between the resonator and the quantum dot, a further goal was to control the position of the quantum dot. With a precise positioning, it should be possible to place a micropillar directly over a quantum dot, thus the quantum dot is located in the center of the pillar mode. A particular challenge in the scope of work was to position the quantum dots with a distance of at least half of the target micropillar diameter,in other words, between 0,5μm and 2μm. The positioning must be done in such a way so that a AIAs/GaAs DBR micropillar can be processed over the quantum dot. Therefore processes were developed to place a lattice of holes on an MBE grown sample via Electron Beam Lithography. The lithographical process was optimized by additional steps of wet chemical cleaning, and cleaning with hydrogen under ultra high vacuum, to avoid defects during MBE overgrowth. InAs quantum dots have positions on a given structure in a distance of several micrometers to each other. It could be proved by processing gold pattern, that 30% of the quantum dots are placed within 50 nm precision and 60% within 100 nm . In the following work quantum dots have been placed in DBR micro pillars and photonic crystals. Because quantum dots have a wide spectral range and because they can be integrated in micropillars, they are also of interest for applications within telecommunication systems. Therefore the spectral range around 1300 nm and 1550 nm has to be re- ached to link them to fiber cable. Former studies have shown results tight under 1300nm. Nitrogen is an additional way to get InAs quantum emitting at 1300nm at 8 K. Until now research for InAs quantum dots containing nitrogen was focused on high density dots for laser application. The Dot- In-A-Well design was transferred, in this work, to this problem by using nitrogen in a well above the quantum dots. With this development, single quantum dots, emitting above 1300nm at 8 K, have been grown for the first time. The next step would be to integrated this InAs Quantum dots with the nitrogen well, within the micro pillar to achieve single photon sources at 1300nm. KW - Quantenpunkt KW - Molekularstrahlepitaxie KW - Mikroresonator KW - Drei-Fünf-Halbleiter KW - Optischer Resonator Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159024 ER - TY - THES A1 - Aulbach, Julian T1 - Gold-Induced Atomic Wires on Terraced Silicon Surfaces: Formation and Interactions of Silicon Spin Chains T1 - Goldinduzierte Nanodrähte auf gestuften Silizium Oberflächen: Ausbildung und Wechselwirkung von Siliziumspinketten N2 - Atomic nanowires formed by self-assembled growth on semiconducting surfaces represent a feasible physical realization of quasi-1D electron systems and can be used to study fascinating 1D quantum phenomena. The system in the focus of this thesis, Si(553)-Au, is generated by Au adsorption onto a stepped silicon surface. It features two different chain types, interspersed with each other: A Au chain on the terrace, and a honeycomb chain of graphitic silicon located at the step edge. The silicon atoms at the exposed edges of the latter are predicted to be spin-polarized and charge-ordered [1], leading to an ordered array of local magnetic moments referred to as ``spin chains''. The present thesis puts this spin chain proposal to an experimental test. A detailed scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) scrutiny reveals a distinct unoccupied density of states (DOS) feature localized at every third Si step-edge atom, which aligns perfectly with the density functional theory (DFT) prediction. This finding provides strong evidence for the formation of spin chains at the Si(553)-Au step edges, and simultaneously rules out the interpretation of previous studies which attributed the x3 step-edge superstructure to a Peierls instability. To study the formation of spin chains in further detail, an additional member of the so-called Si(hhk)-Au family -- Si(775)-Au -- is analyzed. Based on DFT modeling (performed by S.C. Erwin, Naval Research Laboratory, USA) and detailed STM and STS experiments, a new structure model for this surface is developed, and the absence of spin chains at the Si(775)-Au step edges is demonstrated. The different step-edge charge distributions of all known Si(hhk)-Au surfaces are traced back to an electron transfer between the terrace and the step edge. Accordingly, an unintentional structure defect should create a localized spin at the Si(775)-Au step edge. This prediction is verified experimentally, and suggest that surface chemistry can be used to create and destroy Si spin chains. Having clarified why spin chains form on some Si(hhk)-Au surfaces but not on others, various interaction effects of the Si(553)-Au spin chains are inspected. A collaborative analysis by SPA-LEED (M. Horn-von Hoegen group, University of Duisburg-Essen, Germany), DFT (S.C. Erwin), and STM reveals strong lateral coupling between adjacent spin chains, bearing interesting implications for their magnetic ordering. The centered geometry uncovered leads to magnetic frustration, and may stabilize a 2D quantum spin liquid. Moreover, a complex interplay between neighboring Au and Si chains is detected. Specifically, the interaction is found effectively ``one-way'', i.e., the Si step edges respond to the Au chains but not vice versa. This unidirectional effect breaks the parity of the Si chains, and creates two different configurations of step edges with opposite directionality. In addition to the static properties of the Si(553)-Au surface mentioned above, the occurrence of solitons in both wire types is witnessed in real space by means of high-resolution STM imaging. The solitons are found to interact with one another such that both move in a coupled fashion along the chains. Likewise, STM experiments as a function of the tunneling current suggest an excitation of solitons along the step edge by the STM tunneling tip. Solitons are also found to play an essential role in the temperature-dependent behavior of the Si(553)-Au step edges. It is an accepted fact that the distinct x3 superstructure of the Si(553)-Au step edges vanishes upon heating to room temperature. As a first step in exploring this transition in detail over a large temperature range, a previously undetected, occupied electronic state associated with the localized step-edge spins is identified by means of angle-resolved photoemission spectroscopy (ARPES). A tracking of this state as a function of temperature reveals an order-disorder-type transition. Complementary STM experiments attribute the origin of this transition to local, thermally activated spin site hops, which correspond to soliton-anitsoliton pairs. Finally, a manipulation of the Si(553)-Au atomic wire array is achieved by the stepwise adsorption of potassium atoms. This does not only increase the filling of the Au-induced surface bands culminating in a metal-insulator transition (MIT), but also modifies the Si step-edge charge distribution, as indicated by STM and ARPES experiments. [1] S. C. Erwin and F. Himpsel, Intrinsic magnetism at silicon surfaces, Nat. Commun. 1, 58 (2010). N2 - Durch Selbstorganisation erzeugte atomare Nanodrähte auf Halbleiteroberflächen erlauben die experimentelle Realisierung quasi-eindimensionaler Elektronensysteme und ermöglichen so die Untersuchung faszinierender eindimensionaler Quantenphänomene. Das Nanodrahtsystem im Zentrum dieser Arbeit [Si(553)-Au] lässt sich durch Adsorption von Goldatomen auf eine gestufte Siliziumoberfläche herstellen. Es besteht aus zwei unterschiedlichen, alternierend angeordneten Kettenarten. Auf jeder Terrasse befindet sich eine Goldkette, während die Stufenkanten aus einer graphitartigen Honigwabenstruktur aus Silizium aufgebaut sind. Für die Stufenkantenatome der Siliziumhonigwabenkette wurde eine Ladungsordnung mit vollständiger Spin-Polarisation jedes dritten Stufenkantenatoms vorhergesagt [1]. Dies entspricht einer regelmäßigen Anordnung von lokalen magnetischen Momenten, die als ``Spinketten'' bezeichnet werden. Die vorliegende Arbeit unterzieht diese theoretische Voraussage einem experimentellen Test. Mittels Rastertunnelmikroskopie (engl. scanning tunneling microscopy, STM) und Rastertunnelspektroskopie (engl. scanning tunneling spectroscopy, STS) wurde die lokale Zu-standsdichte entlang der Stufenkante charakterisiert. Die experimentellen Befunde zeigen eine nahezu perfekte Übereinstimmung mit dem theoretisch vorhergesagten Spinketten-Szenario. Gleichzeitig konnte eine bis dato in der Literatur überwiegend favorisierte Peierls-Instabilität ausgeschlossen werden. Um die Ausbildung von Spinketten auf goldinduzierten gestuften Siliziumoberflächen genau-er zu verstehen, wurde ein weiteres Probensystem der sogenannten Si(hhk)-Au-Familie -- Si(775)-Au -- detailliert untersucht. Basierend auf Dichte-Funktional-Theorie Rechnungen (durchgeführt von S.C. Erwin, Naval Research Laboratory, USA) und STM/STS-Experimen-ten wurde ein neues Strukturmodell für diese Oberfläche entwickelt. Außerdem konnte die Abwesenheit von Spinketten an den Si(775)-Au-Stufenkanten nachgewiesen werden. Als Ursache für die variierende Ladungsanhäufung an den Stufenkanten der Si(hhk)-Au-Systeme konnte ein Ladungsaustausch zwischen der Terrasse und der Stufenkante ausgemacht werden. Weiter wurde gezeigt, dass ein struktureller Defekt einen lokalisierten Spin an der Si(775)-Au-Stufenkante erzeugen kann. Dies untermauert das Bild des Ladungstransfers zwischen Terrasse und Stufenkante und legt außerdem nahe, Siliziumspinketten mit Hilfe von Oberflächenchemie zu modifizieren. Neben der Etablierung des Spinketten-Szenarios wurden verschiedene Wechselwirkungseffekte der Si(553)-Au-Spinkette mit ihrer Umgebung untersucht. In Zusammenarbeit mit der Gruppen um Prof. M. Horn-von Hoegen (Universität Duisburg-Essen) und S.C. Erwin konnte eine starke laterale Kopplung zwischen benachbarten Spinketten festgestellt werden, welche interessante Konsequenzen für die magnetische Ordnung der lokalisierten Spins mit sich bringt. Die entdeckte zentrierte Dreiecksanordnung der Spins führt zu magnetischer Frustration und suggeriert die Ausbildung einer zweidimensionalen Spin-Flüssigkeit. Des Weiteren konnte ein unerwartetes Wechselspiel zwischen benachbarten Gold- und Siliziumketten festgestellt werden. Es zeigte sich, dass die Goldketten auf die Siliziumketten einwirken, jedoch nicht umgekehrt. Diese lediglich in einer Richtung wirkende Beeinflussung erzeugt einen Symmetriebruch entlang der Siliziumstufenkante, der dazu führt, dass zwei Arten von Stufenkanten mit unterschiedlicher Direktionalität auftreten. Darüber hinaus konnte mit Hilfe hochaufgelöster STM-Aufnahmen die Existenz von Solitonen in beiden Kettenarten nachgewiesen werden. Dabei stellte sich heraus, dass die beiden Soliton-Typen miteinander wechselwirken und sich daher wider Erwarten nicht unabhängig sondern aneinander gekoppelt durch die Kettenstrukturen bewegen. Weiterhin suggerieren tunnelstromabhängige STM-Messungen, dass sich Solitonen in der Siliziumkette mit der Tunnelspitze des Rastertunnelmikroskops anregen lassen. Solitonen konnte außerdem eine wichtige Rolle im temperaturabhängigen Verhalten der Siliziumstufenkanten zugeschrieben werden. Es war bereits seit Längerem bekannt, dass die ausgeprägte x3 Überstruktur, die sich bei tiefen Temperaturen entlang der Stufenkante beobachten lässt, bei Raumtemperatur verschwindet. Um diese Temperaturabhängigkeit genauer zu untersuchen, wurde ein neu entdeckter, elektronischer Zustand, der sich den an der Stufenkanten lokalisierten Spins zuordnen lässt, mittels winkelaufgelöster Photoelektronenspektroskopie temperaturabhängig analysiert. Dabei stellte sich heraus, dass es sich bei dem Phasenübergang um einen speziellen Ordnungs-Unordnungs-Übergang handelt. Mit Hilfe komplementärer STM-Messungen konnte ein thermisch aktivierter Platzwechsel der lokalisierten Elektronenspins (d.h. die Erzeugung von Soliton-Antisoliton-Paaren) für das temperaturabhängige Verhalten der Siliziumstufenkante verantwortlich gemacht werden. Weiterhin konnte eine gezielte Manipulation des Si(553)-Au-Nanodrahtsystems durch sukzessive Dotierung mit Kaliumatomen realisiert werden. Dabei wurde ein Anstieg der Befüllung der goldinduzierten Oberflächenbänder, der letztendlich zu einem Metall-Isolator-Übergang führt, beobachtet. Außerdem deuten die experimentellen Befunde auf eine Modifizierung der Spinketten entlang der Stufenkante hin. [1] S. C. Erwin and F. Himpsel, Intrinsic magnetism at silicon surfaces, Nat. Commun. 1, 58 (2010). KW - Rastertunnelmikroskopie KW - Spinkette KW - ARPES KW - Tunnelspektroskopie KW - Quasi-1D Elektronensysteme KW - Atomketten Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169347 ER - TY - THES A1 - Razinskas, Gary T1 - Functional plasmonic nanocircuitry T1 - Funktionelle plasmonische Nanoschaltkreise N2 - In this work, functional plasmonic nanocircuitry is examined as a key of revolutionizing state-of-the-art electronic and photonic circuitry in terms of integration density and transmission bandwidth. In this context, numerical simulations enable the design of dedicated devices, which allow fundamental control of photon flow at the nanometer scale via single or multiple plasmonic eigenmodes. The deterministic synthesis and in situ analysis of these eigenmodes is demonstrated and constitutes an indispensable requirement for the practical use of any device. By exploiting the existence of multiple eigenmodes and coherence - both not accessible in classical electronics - a nanoscale directional coupler for the ultrafast spatial and spatiotemporal coherent control of plasmon propagation is conceived. Future widespread application of plasmonic nanocircuitry in quantum technologies is boosted by the promising demonstrations of spin-optical and quantum plasmonic nanocircuitry. N2 - In dieser Arbeit werden funktionelle plasmonische Schaltkreise als Schlüssel zur Revolutionierung modernster elektronischer und photonischer Schaltkreise in Bezug auf deren Integrationsdichte und Übertragungsbandbreite untersucht. Mit Hilfe numerischer Simulationen werden Bauelemente speziell für die Steuerung des Photonenflusses im Nanometerbereich mittels einzelner bzw. mehrerer plasmonischer Eigenmoden konzipiert. Die deterministische Synthese und Analyse solcher Eigenmoden wird aufgezeigt und stellt eine unverzichtbare Voraussetzung für die praktische Anwendung eines jeden Nanoschaltkreises dar. Durch die Existenz mehrerer Eigenmoden und Kohärenz - beide in der klassischen Elektronik nicht zugänglich - lässt sich ein nanoskaliger Richtkoppler für die ultraschnelle räumliche und räumlich-zeitliche kohärente Kontrolle der Plasmonenausbreitung entwerfen. Künftig werden plasmonische Schaltkreise aufgrund der vielversprechenden Demonstrationen von spinoptischen und quantenplasmonischen Schaltkreisen in Quantentechnologien weite Verbreitung finden. KW - Nanooptik KW - Plasmon KW - Ultrakurzer Lichtpuls KW - Nanostruktur KW - Wellenleiter KW - Integrated circuit KW - Ultrafast information processing KW - Surface plasmon KW - Mode propagation KW - Coherent control KW - Integriert-optisches Bauelement KW - Ultraschnelle Informationsverarbeitung KW - Oberflächenplasmon KW - Modenpropagation KW - Kohärente Kontrolle Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166917 ER - TY - THES A1 - Grauer, Stefan T1 - Transport Phenomena in Bi\(_2\)Se\(_3\) and Related Compounds T1 - Transport Phänomene in Bi\(_2\)Se\(_3\) und verwandten Materialien N2 - One of the most significant technological advances in history was driven by the utilization of a new material class: semiconductors. Its most important application being the transistor, which is indispensable in our everyday life. The technological advance in the semiconductor industry, however, is about to slow down. Making transistors ever smaller to increase the performance and trying to reduce and deal with the dissipative heat will soon reach the limits dictated by quantum mechanics with Moore himself, predicting the death of his famous law in the next decade. A possible successor for semiconductor transistors is the recently discovered material class of topological insulators. A material which in its bulk is insulating but has topological protected metallic surface states or edge states at its boundary. Their electrical transport characteristics include forbidden backscattering and spin-momentum-locking with the spin of the electron being perpendicular to its momentum. Topological insulators therefore offer an opportunity for high performance devices with low dissipation, and applications in spintronic where data is stored and processed at the same point. The topological insulator Bi\(_2\)Se\(_3\) and related compounds offer relatively high energy band gaps and a rather simple band structure with a single dirac cone at the gamma point of the Brillouin zone. These characteritics make them ideal candidates to study the topological surface state in electrical transport experiments and explore its physics. N2 - Einer der wichtigsten technologischen Fortschritte der Geschichte wurde von der Nutzung einer neuen Materialklasse getrieben: Halbleitern. Ihre wichtigste Anwendung ist der Transistor, welcher unverzichtbar für unseren Alltag geworden ist. Allerdings ist der technologische Fortschritt in der Halbleiterindustrie dabei sich zu verlangsamen. Versuche die Transistoren immer kleiner zu machen und die Abwärme zu regulieren und zu reduzieren werden bald ihr, durch die Quantenmechanik vorgeschriebenes, Ende erreichen. Moore selbst hat schon das Ende seines berühmten Gesetzes für das nächste Jahrzehnt vorhergesagt. Ein möglicher Nachfolger für Halbleitertransistoren ist die kürzlich entdeckte Materialklasse der topologischen Isolatoren. Ein Material, dass in seinem Volumen isolierend ist, aber an seinen Grenzen durch die Topologie geschützte metallische Oberflächenzustände oder Randkanäle hat. Deren elektrischen Transporteigenschaften umfassen unterdrückte Rückstreuung und Spin-Impuls-Kopplung, wobei der Spin des Elektrons senkrecht zu seinem Impuls ist. Topologische Isolatoren bieten daher die Möglichkeit für hochleistungsfähige Bauteile mit niedrigem Widerstand und für Anwendungen in der Spintronik, in der Daten an der gleichen Stelle gespeichert und prozessiert werden. Der topologische Isolator Bi\(_2\)Se\(_3\) und verwandte Materialien weisen eine relativ hohe Energielücke und eine eher einfache Bandstruktur mit einem einzigen Dirac-Kegel am Gammapunkt der Brilloiun Zone auf. Diese Eigenschaften machen sie zu idealen Kandidaten um den topologischen Oberflächenzustand in elektrischen Transportexperimenten zu untersuchen und seine neue Physik zu entdecken. KW - Topologischer Isolator KW - Bismutselenide KW - Transportprozess KW - QAHE KW - Bi2Se3 KW - Magnetic Topological Insulator KW - Quanten-Hall-Effekt KW - Axion KW - Oberflächenzustand Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157666 SN - 978-3-8439-3481-7 PB - Verlag Dr. Hut GmbH ER - TY - THES A1 - Dremel, Kilian T1 - Modellbildung des Messprozesses und Umsetzung eines modellbasierten iterativen Lösungsverfahrens der Schnittbild-Rekonstruktion für die Röntgen-Computertomographie T1 - Modeling of the process of measurement and development of a model-based iterative reconstruction for X-ray computed tomography N2 - In der computertomographischen Schnittbildgebung treten Artefakte, also Anteile des Ergebnisses auf, die nicht Teil des gemessenen Objekts sind und die somit die Auswertbarkeit der Ergebnisse beeinflussen. Viele dieser Artefakte sind auf die Inkonsistenz des Modells der Rekonstruktion zur Messung zurückzuführen. Gerade im Hinblick auf Artefakte durch die Energieabhängigkeit der rekonstruierten Schwächungskoeffizienten und Abweichungen der Geometrieinformation des Rekonstruktionsmodells wird häufig der Weg einer Nachbearbeitung der Messdaten beschritten, um Rekonstruktionsartefakte zu vermeiden. Im Zuge dieser Arbeit wird ein Modell der computertomographischen Aufnahme mit Konzentration auf industrielle und materialwissenschaftliche Systeme erstellt, das nicht genutzt wird um die Messdaten zu verändern, sondern um das Rekonstruktionsmodell der Aufnahmerealität anzupassen. Zunächst werden iterative Rekonstruktionsverfahren verglichen und ein passender Algorithmus ausgewählt, der die gewünschten Modifikationen des Aufnahmemodells erlaubt. Für diese Modifikationen werden bestehende Methoden erweitert und neue modellbasierte Ansätze entwickelt, die in den Rekonstruktionsablauf integriert werden können. Im verwendeten Modell werden die Abhängigkeiten der rekonstruierten Werte vom polychromatischen Röntgenspektrum in das Simulationsmodell des Rekonstruktionsprozesses eingebracht und die Geometrie von Brennfleck und Detektorelementen integriert. Es wird gezeigt, dass sich durch die verwendeten Methoden Artefakte vermeiden lassen, die auf der Energieabhängigkeit der Schwächungskoeffizienten beruhen und die Auflösung des Rekonstruktionsbildes durch Geometrieannahmen gesteigert werden kann. Neben diesen Ansätzen werden auch neue Erweiterungen der Modellierung umgesetzt und getestet. Das zur Modellierung verwendete Röntgenspektrum der Aufnahme wird im Rekonstruktionsprozess angepasst. Damit kann die benötigte Genauigkeit dieses Eingangsparameters gesenkt werden. Durch die neu geschaffene Möglichkeit zur Rekonstruktion der Kombination von Datensätzen die mit unterschiedlichen Röntgenspektren aufgenommen wurden wird es möglich neben dem Schwächungskoeffizienten die Anteile der Comptonabsorption und der photoelektrischen Absorption getrennt zu bestimmen. Um Abweichungen vom verwendeten Geometriemodell zu berücksichtigen wird eine Methode auf der Basis von Bildkorrelation implementiert und getestet, mit deren Hilfe die angenommene Aufnahmegeometrie automatisch korrigiert wird. Zudem wird in einem neuartigen Ansatz zusätzlich zur detektorinternen Streustrahlung die Objektstreustrahlung während des Rekonstruktionsprozesses deterministisch simuliert und so das Modell der Realität der Messdatenaufnahme angepasst. Die Umsetzung des daraus zusammengesetzten Rekonstruktionsmodells wird an Simulationsdatensätzen getestet und abschließend auf Messdaten angewandt, die das Potential der Methode aufzeigen. N2 - In computed tomography, parts of the result which are not features of the measured object -- so called artifacts -- occur and thus impair the evaluability of the results. Reconstruction methods require a model of the measurement. Many artifacts are induced by the inconsistency between the model of reconstruction and the measurement. Especially with regard to artifacts due to the energy dependence of the reconstructed attenuation coefficients and deviations of the geometry information of the reconstruction model, a frequently used method is the postprocessing of the measurement data to avoid reconstruction artifacts. In this thesis a model of computed tomography measurements with focus on systems used for industrial and material science purposes is developed that is not used to change the measured data, but to adapt the reconstruction model to the reality of measurement. Firstly, iterative reconstruction methods are compared and a suitable algorithm is selected that allows the desired modifications of the model. Therefore existing methods are extended and new model-based approaches are developed that can be integrated in the reconstruction process. The dependencies of the reconstructed values ??from the polychromatic X-ray spectrum are incorporated into the simulation model of the reconstruction process and the geometry of the focal spot and detector elements are integrated. Thereby artefacts caused by the energy-dependency of the attenuation coefficients are shown to be reduced and the resolution of the resulting data is shown to be increased by geometric modelling. Alongside these approaches of modeling new methods are developed and implemented. The X-ray spectrum used for the modeling is adapted during the reconstruction. Thereby the accuracy needed for this input parameter is lowered. Due to possibility of the combination of data sets scanned using different spectra the reconstruction of the Compton- and photoelectric parts of the attenuation coefficient becomes possible. To consider deviations of the geometry model used in the reconstruction a correlation-based method is implemented and tested to automatically correct these aberrations. In addition to radiation scattered within the detector, a new method is developed to simulate the object scattering during the reconstruction process and the model is therefore adapted to the reality of the measurement. The implementation of the reconstruction model composed therefrom is tested on simulation data sets and finally applied to measurement data which show the potential of the method. KW - Dreidimensionale Rekonstruktion KW - Computertomografie KW - Modellbasierte Rekonstruktion Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157718 ER -