TY - THES A1 - Neumann, Daniel T1 - Advances in Fast MRI Experiments T1 - Neue Methoden in der MR-Bildgebung N2 - Magnetic Resonance Imaging (MRI) is a non-invasive medical imaging technique, that is rou- tinely used in clinical practice for detection and diagnosis of a wide range of different diseases. In MRI, no ionizing radiation is used, making even repeated application unproblematic. This is an important advantage over other common imaging methods such as X-rays and Computer To- mography. One major drawback of MRI, however, are long acquisition times and associated high costs of experiments. Since the introduction of MRI, several important technical developments have been made to successfully reduce acquisition times. In this work, novel approaches were developed to increase the efficiency of MRI acquisitions. In Chapter 4, an improved radial turbo spin-echo (TSE) combined acquisition and reconstruction strategy was introduced. Cartesian turbo spin-echo sequences [3] are widely used especially for the detection and diagnosis of neurological pathologies, as they provide high SNR images with both clinically important proton density and T2 contrasts. TSE acquisitions combined with radial sampling are very efficient, since it is possible to obtain a number of ETL images with different contrasts from a single radial TSE measurement [56–58]. Conventionally, images with a particular contrast are obtained from both radial and Cartesian TSE acquisitions by combining data from different echo times into a single image. In the radial case, this can be achieved by employing k-space weighted image contrast (KWIC) reconstruction. In KWIC, the center region of k-space is filled exclusively with data belonging to the desired contrast while outer regions also are assembled with data acquired at other echo times. However, this data sharing leads to mixed contrast contributions to both Cartesian and radial TSE images. This is true especially for proton density weighted images and therefore may reduce their diagnostic value. In the proposed method, an adapted golden angle reordering scheme is introduced for radial TSE acquisitions, that allows a free choice of the echo train length and provides high flexibility in image reconstruction. Unwanted contrast contaminations are greatly reduced by employing a narrow-band KWIC filter, that restricts data sharing to a small temporal window around the de- sired echo time. This corresponds to using fewer data than required for fully sampled images and consequently leads to images exhibiting aliasing artifacts. In a second step, aliasing-free images are obtained using parallel imaging. In the neurological examples presented, the CG-SENSE algorithm [42] was chosen due to its stable convergence properties and its ability to reconstruct arbitrarily sampled data. In simulations as well as in different in vivo neurological applications, no unwanted contrast contributions could be observed in radial TSE images reconstructed with the proposed method. Since this novel approach is easy to implement on today’s scanners and requires low computational power, it might be valuable for the clinical breakthrough of radial TSE acquisitions. In Chapter 5, an auto-calibrating method was introduced to correct for stimulated echo contribu- tions to T2 estimates from a mono-exponential fit of multi spin-echo (MSE) data. Quantification of T2 is a useful tool in clinical routine for the detection and diagnosis of diseases as well as for tis- sue characterization. Due to technical imperfections, refocusing flip angles in a MSE acquisition deviate from the ideal value of 180○. This gives rise to significant stimulated echo contributions to the overall signal evolution. Therefore, T2 estimates obtained from MSE acquisitions typically are notably higher than the reference. To obtain accurate T2 estimates from MSE acquisitions, MSE signal amplitudes can be predicted using the extended phase graph (EPG, [23, 24]) algo- rithm. Subsequently, a correction factor can be obtained from the simulated EPG T2 value and applied to the MSE T2 estimates. However, EPG calculations require knowledge about refocus- ing pulse amplitudes, T2 and T1 values and the temporal spacing of subsequent echoes. While the echo spacing is known and, as shown in simulations, an approximate T1 value can be assumed for high ratios of T1/T2 without compromising accuracy of the results, the remaining two parameters are estimated from the data themselves. An estimate for the refocusing flip angle can be obtained from the signal intensity ratio of the second to the first echo using EPG. A conventional mono- exponential fit of the MSE data yields a first estimate for T2. The T2 correction is then obtained iteratively by updating the T2 value used for EPG calculations in each step. For all examples pre- sented, two iterations proved to be sufficient for convergence. In the proposed method, a mean flip angle is extracted across the slice. As shown in simulations, this assumption leads to greatly reduced deviations even for more inhomogeneous slice profiles. The accuracy of corrected T2 values was shown in experiments using a phantom consisting of bottles filled with liquids with a wide range of different T2 values. While T2 MSE estimates were shown to deviate significantly from the spin-echo reference values, this is not the case for corrected T2 values. Furthermore, applicability was demonstrated for in vivo neurological experiments. In Chapter 6, a new auto-calibrating parallel imaging method called iterative GROG was pre- sented for the reconstruction of non-Cartesian data. A wide range of different non-Cartesian schemes have been proposed for data acquisition in MRI, that present various advantages over conventional Cartesian sampling such as faster acquisitions, improved dynamic imaging and in- trinsic motion correction. However, one drawback of non-Cartesian data is the more complicated reconstruction, which is ever more problematic for non-Cartesian parallel imaging techniques. Iterative GROG uses Calibrationless Parallel Imaging by Structured Low-Rank Matrix Completion (CPI) for data reconstruction. Since CPI requires points on a Cartesian grid, it cannot be used to directly reconstruct non-Cartesian data. Instead, Grappa Operator Gridding (GROG) is employed in a first step to move the non-Cartesian points to the nearest Cartesian grid locations. However, GROG requires a fully sampled center region of k-space for calibration. Combining both methods in an iterative scheme, accurate GROG weights can be obtained even from highly undersampled non-Cartesian data. Subsequently, CPI can be used to reconstruct either full k- space or a calibration area of arbitrary size, which can then be employed for data reconstruction with conventional parallel imaging methods. In Chapter 7, a new 2D sampling scheme was introduced consisting of multiple oscillating effi- cient trajectories (MOET), that is optimized for Compressed Sensing (CS) reconstructions. For successful CS reconstruction of a particular data set, some requirements have to be met. First, ev- ery data sample has to carry information about the whole object, which is automatically fulfilled for the Fourier sampling employed in MRI. Additionally, the image to be reconstructed has to be sparse in an arbitrary domain, which is true for a number of different applications. Last, data sam- pling has to be performed in an incoherent fashion. For 2D imaging, this important requirement of CS is difficult to achieve with conventional Cartesian and non-Cartesian sampling schemes. Ra- dial sampling is often used for CS reconstructions of dynamic data despite the streaking present in undersampled images. To obtain incoherent aliasing artifacts in undersampled images while at the same time preserving the advantages of radial sampling for dynamic imaging, MOET com- bines radial spokes with oscillating gradients of varying amplitude and alternating orientation orthogonal to the readout direction. The advantage of MOET over radial sampling in CS re- constructions was demonstrated in simulations and in in vivo cardiac imaging. MOET provides superior results especially when used in CS reconstructions with a sparsity constraint directly in image space. Here, accurate results could be obtained even from few MOET projections, while the coherent streaking artifacts present in the case of radial sampling prevent image recovery even for smaller acceleration factors. For CS reconstructions of dynamic data with sparsity constraint in xf-space, the advantage of MOET is smaller since the temporal reordering is responsible for an important part of incoherency. However, as was shown in simulations of a moving phantom and in the reconstruction of ungated cardiac data, the additional spatial incoherency provided by MOET still leads to improved results with higher accuracy and may allow reconstructions with higher acceleration factors. N2 - Die Magnetresonanztomographie (MRT) ist ein wichtiges nicht-invasives medizinisches Bildge- bungsverfahren, das im klinischen Alltag zur Entdeckung und Diagnose einer Vielzahl von Krank- heiten verwendet wird. Im Gegensatz zu anderen Methoden wie Röntgen und Computertomo- graphie kommt die MRT ohne den Einsatz ionisierender Strahlung aus, was selbst häufige An- wendungen ohne gesundheitliche Risiken erlaubt. Einer der größten Nachteile der MRT sind lange Messzeiten, die in Kombination mit der teuren Technik hohe Untersuchungskosten bedin- gen. Obwohl in der Vergangenheit durch die Entwicklung von sowohl verbesserter Hardware als auch neuen Rekonstruktionsverfahren bereits bedeutende Fortschritte in Bezug auf die Akquisi- tionsdauer erzielt werden konnten, ist eine weitere Beschleunigung nach wie vor ein wichtiges Forschungsgebiet im Bereich der MRT. Ziel dieser Arbeit war daher die Entwicklung neuer An- sätze zur Steigerung der Effizienz von MRT Experimenten. In Kapitel 4 wurde eine kombinierte Akquisitions- und Rekonstruktionsstrategie für radiale Turbo Spin-Echo (TSE) Experimente vorgestellt. Im klinischen Alltag sind kartesische TSE Sequenzen zur Untersuchung diverser Krankheitsbilder weit verbreitet, da sie ein hohes SNR aufweisen und die Aufnahme der klinisch wichtigen Bilder mit Protonendichte- und T2-Kontrast erlauben. Im Gegensatz zu kartesischem Abtasten, wo aus einem Datensatz lediglich ein Bild mit bes- timmtem Kontrast erzeugt wird, sind radiale TSE Akquisitionen hocheffizient, da hier aus einem Datensatz mehrere Bilder mit verschiedenem Kontrast gewonnen werden können. In beiden Fällen wird in konventionellen Rekonstruktionsmethoden jedes Bild eines definierten Kontrasts durch das Zusammensetzen eines vollständig abgetasteten k-Raums mit Daten von verschiedenen Echozeiten erzeugt. Im radialen Fall geschieht dies durch die sogenannte "k-space weighted im age contrast" (KWIC) Rekonstruktion. Hierbei wird das Zentrum des k-Raums ausschließlich mit zum gewünschten Kontrast gehörigen Daten gefüllt, während die äußeren Bereiche des k-Raums auch Daten von anderen Echozeiten enthalten. Obwohl der Kontrast von MRT Bildern haupt- sächlich von den Daten im k-Raum Zentrum dominiert wird, führt die Kombination von Daten verschiedener Echozeiten in sowohl radialen als auch kartesischen TSE Bildern zu einem uner- wünschten Mischkontrast. Dieser Effekt wird vor allem in protonendichtegewichteten Bildern sichtbar und kann somit deren diagnostischen Wert deutlich verringern. Ein unerwünschter Mischkontrast kann verhindert werden, indem die Bandbreite des KWIC- Filters auf ein kleines zeitliches Fenster um die angestrebte Echozeit herum eingeschränkt wird. Um eine freie Wahl der Echozuglänge und hohe Flexibilität in der Bildrekonstruktion zu er- möglichen, wurde für die radiale TSE Akquisition ein angepasstes Abtastschema unter Verwen- dung des goldenen Winkels vorgestellt. Da bei einem KWIC-Filter mit reduzierter Bandbre- ite für jedes Bild weniger Daten zur Verfügung stehen als für einen voll abgetasteten k-Raum benötigt, weisen rekonstruierte Bildern Einfaltungsartefakte auf. Diese werden in einem zweiten Schritt durch die Anwendung paralleler Bildgebung beseitigt. In den gezeigten Beispielen wurde dazu der CG-SENSE Algorithmus verwendet, da er stabile Konvergenz aufweist und für die Rekonstruktion von Daten mit irregulären Abtastschema angewandt werden kann. Anschließend werden bestehende Korrelationen der Bilderserie zur Reduktion verbleibender Artefakte und zu einer Verbesserung des SNR ausgenutzt. Wie mittels Simulationen gezeigt und für neurologische Daten bestätigt, weisen radiale TSE Bilder, die mit dieser Methode rekonstruiert wurden, keinen sichtbaren Mischkontrast mehr auf. Die erreichte Bildqualität ist hierbar vergleichbar mit kon- ventionellen Rekonstruktionsmethoden. Da die vorgestellte Rekonstruktion einfach auf heutigen Scannern implementiert werden kann und lediglich niedrige Rechenkapazitäten benötigt, könnte sie einen wichtigen Beitrag für den klinischen Durchbruch radialer TSE Akquisitionen darstellen. In Kapitel 5 wurde eine selbstkalibrierende Methode zur Korrektur von aus Multi Spin-Echo (MSE) Bildern gewonnenen T2 Karten vorgestellt. In der klinischen Anwendung spielt die Quan- tifizierung von T2 unter anderem bei der Diagnose von Krankheiten sowie bei der Klassifizierung von Gewebe eine wichtige Rolle. Eine MSE Sequenz verwendet mehrere RF-Pulse, um ein einzelnes Spin-Echo wiederholt zu refokussieren. Idealerweise betragen die Flipwinkel der Re- fokussierungspulse hierbei exakt 180○, um einen exponentiellen Signalabfall zu erhalten. Auf- grund technischer Ungenauigkeiten weichen die Werte der Flipwinkel von Refokussierungspulsen jedoch grundsätzlich von 180○ ab. Niedrigere Flipwinkel führen zu stimulierten Echos, die wesentlich zu den einzelnen Echoamplituden beitragen und den Signalabfall entlang des Echozugs deutlich verlängern können. Somit weisen auch T2 Werte, die aus solchen Bilderserien berech- net werden, eine teilweise deutliche Erhöhung auf. Um exakte Werte zu erhalten, kann der MSE Signalverlauf mittels des "extended phase graph" (EPG) Algorithmus abgeschätzt und so ein Kor- rekturfaktor ermittelt werden. Hierzu müssen die Flipwinkel der Refokussierungspulse, T1 und T2 Werte sowie der zeitliche Abstand der Echos (ESP) bekannt sein. Wie in Simulationen gezeigt wurde, kann T1 für hohe Werte des Quotienten T1/T2 abgeschätzt werden, ohne an Genauigkeit der T2 Ergebnisse einzubüßen. Abschätzungen der verbleibenden benötigten Parameter können direkt aus den Daten selbst gewonnen werden. Während der Flipwinkel aus den Intensitäten der ersten beiden Echos berechnet wird, liefert ein mono-exponentieller Fit der MSE Bilderserie eine erste Näherung für T2. Die Korrektur für die T2 Werte kann anschließend aus den EPG Sig- nalverläufen berechnet werden. Durch Aktualisierung von T2 und erneuter Ausführung des EPG-Algorithmus wird die Genauigkeit der Korrektur iterativ erhöht, wobei schon eine sehr geringe Zahl von Iterationen zu Konvergenz führt. Wie in Simulationen und in Phantomexperimenten für verschiedenste T2-Werte gezeigt, weisen korrigierte T2 Werte eine hohe Genauigkeit auf. Dies gilt auch für niedrigere nominelle Flipwinkel als 180○ und ist somit von speziellem Interesse bei höheren Feldstärken B0, wo Grenzwerte der spezifischen Absorptionsrate die Einstrahlung einer Vielzahl von RF-Pulsen hoher Amplitude verbietet. In Kapitel 6 wurde iteratives GROG, eine neue selbstkalibrierende iterative parallele Bildge- bungsmethode für die Rekonstruktion von nichtkartesischen Daten vorgestellt. Es sind eine Vielzahl nichtkartesischer Trajektorien für MRT Messungen bekannt, die zahlreiche Vorteile gegenüber kartesischer Bildgebung bieten. Dazu gehören unter anderem eine schnellere Akquisi- tion, verbesserte dynamische Bildgebung sowie die Möglichkeit zur intrinischen Bewegungskor- rektur. Ein Nachteil nichtkartesischer Daten jedoch ist eine aufwendigere Rekonstruktion, sowohl bei voll abgetasteten Datensätzen als insbesondere auch in der parallelen Bildgebung. Itera- tives GROG verwendet Calibrationless Parallel Imaging by Structured Low-Rank Matrix Com- pletion (CPI) zur Rekonstruktion fehlender Daten. Diese Methode benötigt Daten auf karte- sischen Gitterpunkten und kann nicht direkt für nichtkartesische Experimente angewandt wer- den. Stattdessen werden die nichtkartesischen Daten zunächst mittels Grappa Operator Gridding (GROG) in einem ersten Schritt auf ein kartesisches Gitter verschoben. GROG basiert auf paral- leler Bildgebung und benötigt einen voll abgetasteten Teil des k-Raums zur Kalibrierung. Erste Kalibrationsdaten können gewonnen werden, indem die nichtkartesischen Punkte ohne Änderung auf die nächsten kartesischen Gitterpunkte verschoben werden und eine CPI-Rekonstruktion eines zentralen k-Raum Bereichs durchgeführt wird. Anschließend wird GROG angewandt um exakte Werte der kartesischen Gitterpunkte zu erhalten und der Prozess wird iteriert. Nach Kon- vergenz können entweder Kalibrationsdaten gewünschter Größe für eine konventionelle parallele Bildgebungsmethode erzeugt oder artefaktfreie Bilder mit CPI rekonstruiert werden. In Kapitel 7 wurde ein neues Abtastungsschema für die 2D Bildgebung vorgestellt, das aus Multiplen Oszillierenden Effizienten Trajektorien (MOET) besteht und optimierte Compressed Sensing (CS) Rekonstruktionen ermöglicht. Für eine erfolgreiche Anwendung von Compressed Sensing müssen einige Voraussetzungen erfüllt sein. Erstens muss jeder Datenpunkt Informa- tionen über das ganze Objekt enthalten, was bei der MRT aufgrund der Datenakquisition im Fourier-Raum automatisch erfüllt ist. Weiterhin muss das gemessene Objekt in einer beliebigen Basis sparse sein. Dies ist für viele verschiedene Anwendungen in der MRT der Fall. Drittens muss für CS Rekonstruktionen die Datenakquisition im k-Raum einem inkohärenten Muster fol- gen. Diese wichtige Voraussetzung ist in der zweidimensionalen Bildgebung mit konventionellen kartesischen und nicht-kartesischen Abtastschemata nur schwer zu erreichen. Deshalb wird für CS Rekonstruktionen häufig eine radiale Trajektorie eingesetzt, trotz der kohärenten streaking- Artefakte in unterabgetasteten Bildern. MOET verwendet daher eine Kombination von radialen Projektionen zusammen mit oszillierenden Gradienten auf der zur Ausleserichtung orthogonalen Achse. So erhält man inkohärente Aliasing-Artefakte und bewahrt gleichzeitig die Vorteile der radialen Bildgebung für die dynamische MRT. Die Überlegenheit von MOET gegenüber radi- aler Bildgebung für CS Rekonstruktionen konnte in Simulationen sowie in der Herzbildgebung aufgezeigt werden. Dies gilt insbesondere für CS Rekonstruktionen direkt im Bildraum, wo MOET gute Resultate liefert während die kohärenten Artefakte bei radialer Bildgebung eine genaue Bildwiederherstellung verhindert. Bei Rekonstruktionen dynamischer Daten, wo Sparsität im xf-Raum ausgenutzt wird, ist der Vorteil von MOET weniger ausgeprägt, da hier bere- its die zeitliche Anordnung der Projektionen einen wesentlichen Beitrag zur Charakteristik der Aliasingartefakte liefert. Wie in Simulationen und für die in vivo Herzbildgebung gezeigt werden konnte, erlaubt die zusätzliche räumliche Inkohärenz von MOET jedoch auch in diesem Fall eine höhere Genauigkeit sowie Rekonstruktionen von Daten höherer Beschleunigung. KW - Kernspintomografie KW - Parallele Bildgebung KW - nichtkarthesische Bildgebung KW - Turbo Spin-Echos KW - Compressed Sensing KW - Parallel Imaging KW - non-Cartesian Imaging KW - Compressed Sensing KW - MRI KW - MRT KW - NMR-Tomographie Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-108165 ER - TY - THES A1 - Lother, Steffen Reiner T1 - Entwicklung eines 3D MR-Tomographen zur Erdfeld- und multimodalen MR-MPI-Bildgebung T1 - Development of a 3D MRI-System for Earth Field MRI and the Combination MRI-MPI N2 - Das Ziel dieser Arbeit war die Entwicklung und die Anfertigung eines 3D Erdfeld-NMR Tomographen, um damit die benötigte Technik der MR eines MR-MPI-Tomographen am Lehrstuhl zu etablieren. Daraufhin wurden alle nötigen Komponenten für ein komplettes 3D Erdfeld-NMR-System entwickelt, gebaut und getestet. Mit diesem Wissen wurde in enger Zusammenarbeit mit der MPI-Arbeitsgruppe am Lehrstuhl ein multimodaler MR-MPI-Tomograph angefertigt und die prinzipielle Machbarkeit der technischen Kombination dieser zwei Modalitäten (MRT/MPI) in einer einzigen Apparatur gezeigt. Auf diesem Entwicklungsweg sind zusätzlich innovative Systemkomponenten entstanden, wie der Bau eines neuen Präpolarisationssystems, mit dem das Präpolarisationsfeld kontrolliert und optimiert abgeschaltet werden kann. Des Weiteren wurde ein neuartiges 3D Gradientensystem entwickelt, das parallel und senkrecht zum Erdmagnetfeld ausgerichtet werden kann, ohne die Bildgebungseigenschaften zu verlieren. Hierfür wurde ein 3D Standard-Gradientensystem mit nur einer weiteren Spule, auf insgesamt vier Gradientenspulen erweitert. Diese wurden entworfen, gefertigt und anhand von Magnetfeldkarten ausgemessen. Anschließend konnten diese Ergebnisse mit der hier präsentierten Theorie und den Simulationsergebnissen übereinstimmend verglichen werden. MPI (Magnetic Particle Imaging) ist eine neue Bildgebungstechnik mit der nur Kontrastmittel detektiert werden können. Das hat den Vorteil der direkten und eindeutigen Detektion von Kontrastmitteln, jedoch fehlt die Hintergrundinformation der Probe. Wissenschaftliche Arbeiten prognostizieren großes Potential, die Hintergrundinformationen der MRT mit den hochauflösenden Kontrastmittelinformationen mittels MPI zu kombinieren. Jedoch war es bis jetzt nicht möglich, diese beiden Techniken in einer einzigen Apparatur zu etablieren. Mit diesem Prototyp konnte erstmalig eine MR-MPI-Messung ohne Probentransfer durchgeführt und die empfindliche Lokalisation von Kontrastmittel mit der Überlagerung der notwendigen Hintergrundinformation der Probe gezeigt werden. Dies ist ein Meilenstein in der Entwicklung der Kombination von MRT und MPI und bringt die Vision eines zukünftigen, klinischen, multimodalen MR-MPI-Tomographen ein großes Stück näher. N2 - Developement of an 3D MRI System for Earth Field MRI and the Kombination with MPI KW - NMR-Spektroskopie KW - Erdmagnetismus KW - Kernspintomografie KW - 3D Erdfeld-NMR Tomograph KW - MR-MPI-Tomograph KW - Präpolarisationssystems KW - Gradientensystem KW - Magnetresonanztomographie KW - Systembau KW - Erdfeld KW - Magnetpartikelbildgebung Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-99181 ER - TY - THES A1 - Choli, Morwan T1 - Hybridmethoden zur Reduzierung der spezifischen Absorptionsrate für neuroradiologische MRT-Untersuchungen an Hochfeldsystemen T1 - Hybrid methods for reducing specific Absorption rate in neuroradiologic MRI-examinations at high-field MR-systems N2 - Die klinische Magnetresonanztomografie (MRT) operiert meist bei einer Magnetfeldstärke von 1,5 Tesla (T). Es halten jedoch immer mehr 3T MRT-Systeme Einzug im klinischen Alltag und seit kurzem auch 7T Ganzkörper-MRT-Systeme in die Grundlagenforschung. Höhere Magnetfeldstärken führen grundsätzlich zum einem verbesserten Signal-zu-Rausch- Verhältnis, welches sich gewinnbringend in eine erhöhte Ortsauflösung oder schnellere Bildaufnahme äußert. Ein Nachteil ist aber die dabei im Patienten deponierte Hochfrequenz-Energie (HF-Energie), welche quadratisch mit ansteigender Feldstärke zusammenhängt. Charakterisiert wird diese durch die spezifische Absorptionsrate (SAR) und ist durch vorgegebene gesetzliche Grenzwerte beschränkt. Moderne, SAR-intensive MRT-Techniken (z.B. Multispinecho-Verfahren) sind bereits bei 1,5T nahe den zulässigen SAR-Grenzwerten und somit nicht unverändert auf Hochfeld-Systeme übertragbar. In dieser Arbeit soll das Potential modularer Hybrid-MRT-Techniken genutzt werden, um das SAR bei besonders SAR-intensiven MRT-Verfahren ohne signifikante Einbußen in der Bildqualität erheblich zu verringern. Die Hybrid-Techniken sollen in Verbindung mit zusätzlichen Methoden der SAR-Reduzierung den breiteren Einsatz SAR-intensiver MRT-Techniken an hohen Magnetfeldern ermöglichen. Ziel dieser Arbeit ist es, routinefähige und SAR-reduzierte MRT-Standard-Protokolle für neuroanatomische Humanuntersuchungen mit räumlicher Höchstauflösung bei Magnetfeldern von 3T und 7T zu etablieren. N2 - Spin echo based MRI sequences builds one of the main priorities in the medical/-morphological MRI imaging. Especially T2-weighted spin-echo sequences and the multi-spin-echo RARE imaging sequence represents one of the basic methods, which allows to minimize measurement times down to minutes or seconds. Modern MRI systems usually have a magnetic field strength beyond 1.5T. In order to acquire high resolution images with acceptable acquisition times, high RF power is needed. In many cases the intrinsic safety limits of the radiated power are already exeeded at field strengths of 3T. This leads often to restrictions for the full performance. In research systems of 7T and more T2-weighted images are only feasible with significant amount of time. Especially in RARE imaging methods, which require a large number of refocusing pulses, this is a significant restriction factor. Therefore, in recent years there were further development of hybrid sequences which combines different acquisition methods together into one, to exploit their fully advantages of the basic methods and to minimize ... KW - Kernspintomografie KW - spezifische Absorptionsrate KW - Magnetresonanztomografie KW - Hybridbildgebung KW - Absorption Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-100023 ER - TY - THES A1 - Wichmann, Tobias T1 - Spulen-Arrays mit bis zu 32 Empfangselementen für den Einsatz an klinischen NMR-Geräten T1 - Coil-Arrays with up to 32 receive channels for the use on clinical NMR systems N2 - In dieser Arbeit wurden für spezielle Anwendungen an klinischen MR-Geräten optimierte Phased-Array-Spulen entwickelt. Das Ziel war, durch die Verwendung neuer Spulen entweder neue Anwendungsgebiete für klinische MR-Geräte zu eröffnen oder bei bestehenden Applikationen die Diagnosemöglichkeiten durch eine Kombination von höherem SNR und kleineren g-Faktoren im Vergleich zu bestehenden Spulen zu verbessern. In Kapitel 3 wurde untersucht, ob es durch den Einsatz neu entwickelter, dedizierter Kleintierspulen sinnvoll möglich ist, Untersuchungen an Kleintieren an klinischen MR-Geräten mit einer Feldstärke von 1,5T durchzuführen. Der Einsatz dieser Spulen verspricht dem klinischen Anwender Studien an Kleintieren durchführen zu können, bei denen er den gleichen Kontrast wie bei einer humanen Anwendung erhält und gleichzeitig Kontrastmittel sowie Sequenzen, die klinisch erprobt sind, einzusetzen. Durch die gewählten geometrischen Abmessungen der Spulen ist es möglich, Zubehör von dedizierten Tier-MR-Geräten, wie z. B. Tierliegen oder EKG- bzw. Atemtriggereinheiten, zu verwenden. Durch Vorversuche an für Ratten dimensionierten Spulen wurden grundlegende Zusammenhänge zwischen verwendetem Entkopplungsmechanismus und SNR bzw. Beschleunigungsfähigkeit erarbeitet. Für Ratten wurde gezeigt, dass in akzeptablen Messzeiten von unter fünf Minuten MR-Messungen des Abdomens in sehr guter Bildqualität möglich sind. Ebenfalls gezeigt wurde die Möglichkeit durch den Einsatz von paralleler Bildgebung sowie Kontrastmitteln hochaufgelöste Angiographien durchzuführen. Es stellte sich heraus, dass bei 1,5T dedizierte Mäusespulen bei Raumtemperatur von den SNR-Eigenschaften am Limit des sinnvoll Machbaren sind. Trotzdem war es möglich, auch für Mäuse ein 4-Kanal-Phased-Array zu entwickeln und den Einsatz bei kontrastmittelunterstützten Applikationen zu demonstrieren. Insgesamt wurde gezeigt, dass durch den Einsatz von speziellen, angepassten Kleintierspulen auch Tieruntersuchungen an klinischen MR-Geräten mit niedriger Feldstärke durchführbar sind. Obwohl sich die Bestimmung der Herzfunktion an MR-Geräten im klinischen Alltag zum Goldstandard entwickelt hat, ist die MR-Messung durch lange Atemanhaltezyklen für einen Herzpatienten sehr mühsam. In Kapitel 4 wurde deswegen die Entwicklung einer 32-Kanal-Herzspule beschrieben, welche den Komfort für Patienten deutlich erhöhen kann. Schon mit einem ersten Prototypen für 3T war es möglich, erstmals Echtzeitbildgebung mit leicht reduzierter zeitlicher Auflösung durchzuführen und damit auf das Atemanhalten komplett zu verzichten. Dies ermöglicht den Zugang neuer Patientengruppen, z. B. mit Arrythmien, zu MR-Untersuchungen. Durch eine weitere Optimierung des Designs wurde das SNR sowie das Beschleunigungsvermögen signifikant gesteigert. Bei einem Beschleunigungsfaktor R = 5 in einer Richtung erhält man z. B. gemittelt über das gesamte Herz ein ca. 60 % gesteigertes SNR zu dem Prototypen. Die Kombination dieser Spule zusammen mit neuentwicklelten Methoden wie z. B. Compressed- Sensing stellt es in Aussicht, die Herzfunktion zukünftig in der klinischen Routine in Echtzeit quantifizieren zu können. In Kapitel 5 wurde die Entwicklung einer optimierten Brustspulen für 3T beschrieben. Bei Vorversuchen bei 1,5T wurden Vergleiche zwischen der Standardspule der Firma Siemens Healthcare und einem 16-Kanal-Prototypen durchgeführt. Trotz größerem Spulenvolumen zeigt die Neuentwicklung sowohl hinsichtlich SNR als auch paralleler Bildgebungseigenschaften eine signifikante Verbesserung gegenüber der Standardspule. Durch die Einhaltung aller Kriterien für Medizinprodukte kann diese Spule auch für den klinischen Einsatz verwendet werden. Mit den verbesserten Eigenschaften ist es beispielsweise möglich, bei gleicher Messdauer eine höhere Auflösung zu erreichen. Aufgrund des intrinsischen SNR-Vorteils der 3 T-Spule gegenüber der 1,5 T-Spule ist es dort sogar möglich, bei höheren Beschleunigungsfaktoren klinisch verwertbare Schnittbilder zu erzeugen. Zusammenfassend wurden für alle drei Applikationen NMR-Empfangsspulen entwickelt, die im Vergleich zu den bisher verfügbaren Spulen, hinsichtlich SNR und Beschleunigungsvermögen optimiert sind und dem Anwender neue Möglichkeiten bieten. N2 - Purpose of this work was to develop optimized phased array coils for clinical magnetic resonance imaging (MRI) systems for applications were dedicated coils were not readily available. Chapter 3 evaluates the use of dedicated small animal coils on clinical MR scanners with a field strength of 1,5T instead of using special animal-systems with higher intrinsic signal-to-noise ratio. Advantage of the clinical system is the availability and the portability of the results of animal studies to human applications because sequences can easily be adopted. The available contrast is similar and clinically tested contrast agents can directly be used. Comparisons of different array decoupling methods with respect to SNR and parallel imaging performance have been conducted on coils with the standard size of rat-coils on animal scanners as part of this work. This geometry made it possible to directly use accessories of these systems like animal beds and monitoring systems. It showed that it is possible to acquire images of the abdomen of the rat in under five minutes in very good image quality with such setup. It was also used for high resolution angiographie in very short scanning time due to the use of parallel imaging techniques. However it has shown that the use of dedicated mouse coils is at the very limit of SNR at 1.5 T. Nevertheless a four channel phased array coil was built and tested. The results are described within this work. Another application which can benefit of novel dedicated coils is the assessment of cardiac function. Especially for heart patients it can be very exhausting to hold breath for a longer period of time, which is required by the current standard protocol for cardiac imaging. The combination of 3T and many available receive channels is a very promising combination to shorten the scan time. Chapter 4 describes the development of a 32 channel cardiac phased array coil for 3T to investigate this idea. Starting with an existing coil for 1.5T a first prototype was developed which was the first coil to demonstrate real-time cardiac imaging with only slightly reduced temporal resolution. A further optimization of this coil led to a completely new coil with higher SNR performance and better parallel imaging abilities and was a further step towards real-time imaging of the heart in clinical routine. Chapter 5 describes the development of an optimized 16 channel breast coil for 3T which can be used in clinical routine. Tests at 1.5T were conducted to find the best coil element layout . It was also possible to compare the prototypes at this field strength to an existing breast coil of Siemens Healthcare. Better SNR and parallel imaging performance could be achieved due to the possibility of adjusting the coil size to different breast sizes and therefore optimizing the filling factor. These improved qualities will allow to have higher resolution in the same scan time compared to the current standard in clinical routine. In conclusion it has been shown that these applications can benefit from dedicated array coils due to better SNR and parallel imaging performance. KW - Kernspintomografie KW - NMR-Tomographie KW - Spulen-Array KW - magnetic resonance imaging KW - coil-array KW - Magnetspule KW - Magnetische Kernresonanz Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-79358 ER - TY - THES A1 - Basse-Lüsebrink, Thomas Christian T1 - Application of 19F MRI for in vivo detection of biological processes T1 - Anwendung der 19F MRT zur in-vivo Detektion von biologischen Prozessen N2 - This thesis focuses on various aspects and techniques of 19F magnetic resonance (MR). The first chapters provide an overview of the basic physical properties, 19F MR and MR sequences related to this work. Chapter 5 focuses on the application of 19F MR to visualize biological processes in vivo using two different animal models. The dissimilar models underlined the wide applicability of 19F MR in preclinical research. A subsection of Chapter 6 shows the application of compressed sensing (CS) to 19F turbo-spin-echo chemical shift imaging (TSE-CSI), which leads to reduced measurement time. CS, however, can only be successfully applied when a sufficient signal-to-noise ratio (SNR) is available. When the SNR is low, so-called spike artifacts occur with the CS algorithm used in the present work. However, it was shown in an additional subsection that these artifacts can be reduced using a CS-based post processing algorithm. Thus, CS might help overcome limitations with time consuming 19F CSI experiments. Chapter 7 deals with a novel technique to quantify the B+1 profile of an MR coil. It was shown that, using a specific application scheme of off resonant pulses, Bloch-Siegert (BS)-based B+1 mapping can be enabled using a Carr Purcell Meiboom Gill (CPMG)-based TSE sequence. A fast acquisition of the data necessary for B+1 mapping was thus enabled. In the future, the application of BS-CPMG-TSE B+1 mapping to improve quantification using 19F MR could therefore be possible. N2 - Diese Arbeit handelt von verschiedenen Aspekten und Techniken der 19F Magnet Resonanz Tomographie (MRT). In den ersten Kapiteln wird auf grundlegenden physikalischen Eigenschaften der MRT, die 19F MRT und MRT Sequenzen eingegangen. Kapitel 5 behandelt die Anwendung von 19F MRT zur in vivo Visualisierung von biologischen Prozessen. Dazu wurden zwei verschiedene Tiermodelle benützt. Diese stark unterschiedlichen Modelle markieren die breite Anwendungsmöglichkeit der 19F MR Bildgebung in der präklinischen Forschung. In einem Unterabschnitt des Kapitels 6 wurde gezeigt, dass Compressed Sensing (CS) zur Beschleunigung von 19F Turbo-Spin-Echo Chemical Shift Imaging (TSE-CSI) Experimenten beitragen kann. Allerdings kann CS nur erfolgreich angewendet werden, wenn ein ausreichendes Signal-Rausch-Verhältnis (SNR) vorhanden ist. Denn ist das nicht der Fall und wird der CS Algorithmus dieser Arbeit verwendet, dann entstehen sogenannte spike Artefakte. In einem weiteren Unterabschnitt wurde aber gezeigt, dass diese Artefakte mit einem CS basierten Algorithmus in der Nachbearbeitung der Daten reduziert werden. Zusammenfassend lässt sich sagen, dass CS, die Beschränkungen durch zeitaufwändigen 19F CSI Experimenten überwinden kann. Kapitel 7 handelt von einer neuartigen Technik um das B+1 Profil einer MR Spule quantitativ auszumessen. Es wurde gezeigt, dass mit einem bestimmten Anwendungsschema von offresonanten Pulsen das Bloch-Siegert (BS)-basiertes B+1 Mapping mit Hilfe einer Carr Purcell Meiboom Gill (CPMG) basierten TSE Sequenz betrieben werden kann. Somit wurde eine schnelle Aufnahme der Daten, die für das B+1 Mapping benötigt werden, erreicht. In der Zukunft könnte das BS-CPMG-TSE B+1 Mapping möglicherweise dazu beitragen, die Quantifizierung mittels 19F MRI zu verbessern. KW - Kernspintomografie KW - Fluor-19 KW - Bloch-Siegert KW - Compressed Sensig KW - 19F-MR KW - Rekonstruktion KW - NMR-Tomographie KW - NMR-Bildgebung Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-77188 ER - TY - THES A1 - Joseph, Arun Antony T1 - Real-time MRI of Moving Spins Using Undersampled Radial FLASH T1 - Echtzeit MRI von bewegten Spins mithilfe der unterabgetasteten radialen FLASH sequenz N2 - Nuclear spins in motion is an intrinsic component of any dynamic process when studied using magnetic resonance imaging (MRI). Moving spins define many functional characteristics of the human body such as diffusion, perfusion and blood flow. Quantitative MRI of moving spins can provide valuable information about the human physiology or of a technical system. In particular, phase-contrast MRI, which is based on two images with and without a flow-encoding gradient, has emerged as an important diagnostic tool in medicine to quantify human blood flow. Unfortunately, however, its clinical usage is hampered by long acquisition times which only provide mean data averaged across multiple cardiac cycles and therefore preclude Monitoring the immediate physiological responses to stress or exercise. These limitations are expected to be overcome by real-time imaging which constitutes a primary aim of this thesis. Short image acquisition times, as the core for real-time phase-contrast MRI, can be mainly realized through undersampling of the acquired data. Therefore the development focused on related technical aspects such as pulse sequence design, k-space encoding schemes and image reconstruction. A radial encoding scheme was experimentally found to be robust to motion and less sensitive to undersampling than Cartesian encoding. Radial encoding was combined with a FLASH acquisition technique for building an efficient real-time phase-contrast MRI sequence. The sequence was further optimized through overlapping of gradients to achieve the shortest possible echo time. Regularized nonlinear inverse reconstruction (NLINV), a technique which jointly estimates the image content and its corresponding coil sensitivities, was used for image reconstruction. NLINV was adapted specifically for phase-contrast MRI to produce both Magnitude images and phase-contrast maps. Real-time phase-contrast MRI therefore combined two highly undersampled (up to a factor of 30) radial gradient-echo acquisitions with and without a flow-encoding gradient with modified NLINV reconstructions. The developed method achieved real-time phase-contrast MRI at both high spatial (1.3 mm) and temporal resolution (40 ms). Applications to healthy human subjects as well as preliminary studies of patients demonstrated real-time phase-contrast MRI to offer improved patient compliance (e.g., free breathing) and immediate access to physiological variations of flow parameters (e.g., response to enhanced intrathoracic pressure). In most cases, quantitative blood flow was measured in the ascending aorta as an important blood vessel of the cardiovascular circulation system commonly studied in the clinic. The performance of real-time phase-contrast MRI was validated in comparison to standard Cine phase-contrast MRI using studies of flow phantoms as well as under in vivo conditions. The evaluations confirmed good agreement for comparable results. As a further extension to real-time phase-contrast MRI, this thesis implemented and explored a dual-echo phase-contrast MRI method which employs two sequential gradient echoes with and without flow encoding. The introduction of a flow-encoding gradient in between the two echoes aids in the further reduction of acquisition time. Although this technique was efficient under in vitro conditions, in vivo studies showed the influence of additional motion-induced Phase contributions. Due to these additional temporal phase information, the approach showed Little promise for quantitative flow MRI. As a further method three-dimensional real-time phase-contrast MRI was developed in this thesis to visualize and quantify multi-directional flow at about twice the measuring time of the standard real-time MRI method, i.e. at about 100 ms temporal resolution. This was achieved through velocity mapping along all three physical gradient directions. Although the method is still too slow to adequately cover cardiovascular blood flow, the preliminary results were found to be promising for future applications in tissues and organ systems outside the heart. Finally, future developments are expected to benefit from the adaptation of model-based reconstruction techniques to real-time phase-contrast MRI. N2 - Die Bewegung der Kernspins ist eine wesentliche Eigenschaft von dynamischen Vorgängen, die mit Hilfe der Magnetresonanztomographie (MRT) untersucht werden. Bewegte oder fließende Spins charakterisieren viele Funktionen des menschlichen Körpers, wie z.B. die Gewebeperfusion und den Blutfluss in den Gefäßen. Die quantitative MRT von bewegten Spins kann daher wertvolle Informationen über die menschliche Physiologie oder auch über ein technisches System geben. Insbesondere die Phasenkontrast-MRT, die auf der Aufnahme von zwei Bildern mit und ohne flusskodierenden Gradienten basiert, hat sich als ein wichtiges diagnostisches Werkzeug in der Medizin entwickelt, um den Blutfluss funktionell zu quantifizieren. Die klinische Nutzung ist jedoch durch die langen Messzeiten eingeschränkt, da die Daten über mehrere Herzzyklen gemittelt werden müssen und damit die Untersuchung unmittelbarer physiologischer Reaktionen auf Stress und/oder Muskelbelastung ausgeschlossen ist. Ein primäres Ziel dieser Arbeit war es, diese Einschränkungen durch die Entwicklung einer MRT-Flussmessung in Echtzeit zu überwinden. Entscheidende Grundlage jeder Echtzeit-MRT sind kurze Aufnahmezeiten, die vor allem durch eine Reduktion der aufgenommenen Daten (Unterabtastung) realisiert werden. Daher konzentrierte sich die hier vorgestellte Entwicklung auf die damit verbundenen technischen Aspekte wie die MRT-Sequenz zur Datenaufnahme, das räumliche Kodierungsschema, und die Bildrekonstruktion. Experimentell erwies sich ein radiales Kodierungsschema als robust gegenüber Bewegungen und relativ unempfindlich gegenüber milder Unterabtastung. Dieses Kodierungsschema wurde mit der FLASH Aufnahmetechnik für eine effiziente Phasenkontrast-Sequenz in Echtzeit kombiniert. Zusätzlich wurde die Sequenz durch Überlappung von Gradienten hinsichtlich einer kurzen Echozeit optimiert. Für die Bildrekonstruktion wurde die regularisierte nichtlineare inverse Rekonstruktion (NLINV) verwendet, bei der die Bildinformation und die entsprechenden pulensensitivitäten gleichzeitig geschätzt werden. NLINV wurde speziell für die Phasenkontrast-MRT angepasst, um sowohl Betragsbilder als auch robuste Phasenkontrast-Karten mit hoher raumzeitlicher Genauigkeit zu berechnen. Das erarbeitete Verfahren der Phasenkontrast-MRT in Echtzeit kombiniert daher zwei stark unterabgetastete (bis zu einem Faktor von 30) und unterschiedlich flusskodierte, radiale Gradientenecho-Aufnahmen mit einer modifizierten NLINV Rekonstruktion. Mit dieser Methode wurde sowohl eine gute räumliche Auflösung (1.3 mm), als auch eine hohe zeitliche Auflösung (40 ms) erreicht. Bei Anwendungen an gesunden Probanden sowie vorläufigen Untersuchungen von Patienten konnte nachgewiesen werden, dass die Phasenkontrast-MRT in Echtzeit einen verbesserten Komfort für die Patienten (z.B. freie Atmung) und unmittelbaren Zugang zu physiologischen Veränderungen der Flussparameter bietet (z.B. Reaktion auf erhöhten Druck im Brustraum). In den meisten Fällen wurden quantitative Blutflussmessungen in der aufsteigenden Aorta, einem klinisch wichtigen Gefäß des Herz-Kreislauf-Systems, vorgenommen. Die Messungen mit der Phasenkontrast-MRT in Echtzeit wurden mit der EKG-getriggerten Cine Phasenkontrast-MRT (klinischer Standard) an einem Flussphantom und unter in vivo Bedingungen verglichen. Die Ergebnisse zeigten unter vergleichbaren Bedingungen gute Übereinstimmung. Im Rahmen dieser Arbeit wurde zusätzlich eine Doppelecho-Variante der Phasenkontrast-MRT in Echtzeit implementiert. Das Einfügen eines flusskodierenden Gradienten zwischen den beiden Echos führte zu einer weiteren Reduzierung der Messzeit. Obwohl sich diese Technik unter in vitro Bedingungen als tauglich erwies, zeigten sich bei in vivo Studien störende Einflüsse durch bewegungsinduzierte Phasenbeiträge, die wenig Erfolg für quantitative Flussmessungen versprechen. Als weitere Methode wurde in dieser Arbeit eine dreifach kodierte Sequenz zur Phasenkontrast-MRT entwickelt, um multidirektionalen Fluss zu untersuchen. Die Geschwindigkeitskodierung entlang aller drei physikalischen Gradientenrichtungen führte zu einer verlängerten Messzeit (zeitliche Auflösung � 100 ms) gegenüber der Echtzeit-Flussmessung in nur einer Richtung. Obwohl das Verfahren noch zu langsam ist, um den kardiovaskulären Blutfluss adäquat zu beschreiben, waren vorläufige Ergebnisse in Körperregionen außerhalb des Herzens für zukünftige klinische Anwendungen sehr vielversprechend. Es ist zu erwarten, dass entsprechende Weiterentwicklungen von modellbasierten ekonstruktionsverfahren profitieren werden. KW - Kernspintomografie KW - Real-time MRI Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-94000 ER - TY - THES A1 - Kreutner, Jakob T1 - Charakterisierung des Knochens und seiner Mikrostruktur mit hochauflösender 3D-MRT T1 - Characterization of Bone and its Microstructure using High-resolution 3D-MRI N2 - Neue Therapieansätze durch Tissue Engineering erfordern gleichzeitig angepasste Diagnosemöglichkeiten und nicht-invasive Erfolgskontrollen. Speziell die 3D-MR-Bildgebung ist ein vielversprechendes Instrument, um Parameter mit hoher räumlicher Präzision zu quantifizieren. Vor diesem Hintergrund wurden im Rahmen dieser Arbeit neue Ansätze für die hochauflösende 3D-MRT in vivo entwickelt und deren Eignung im Bereich des Tissue Engineerings gezeigt. Welchen Vorteil die Quantifizierung von Parametern bietet, konnte im Rahmen einer prä-klinischen Studie an einem Modell der Hüftkopfnekrose gezeigt werden. Der Therapieverlauf wurde zu verschiedenen Zeitpunkten kontrolliert. Trotz der niedrigen räumlichen Auflösung, konnten durch eine systematische Auswertung der Signalintensitäten von T1- und T2-FS-gewichteten Aufnahmen Rückschlüsse über Veränderungen in der Mikrostruktur gezogen werden, die darüber hinaus in guter Übereinstimmung mit Ergebnissen von ex vivo µCT-Aufnahmen waren. Dort konnte eine Verdickung der Trabekelstruktur nachgewiesen werden, welche sehr gut mit einer Signalabnahme in den T1-gewichteten Aufnahmen korrelierte. Die radiale Auswertung der Daten erlaubte dabei eine komprimierte Darstellung der Ergebnisse. Dadurch wurde eine effiziente Auswertung der umfangreichen Daten (verschiedene Tiere an mehreren Zeitpunkten mit einer Vielzahl an Einzelaufnahmen) ermöglicht und eine unabhängige Bewertung erreicht. Um die Limitationen der begrenzten Auflösung von 2D-Multi-Schichtaufnahmen aufzuheben, wurden neue Ansätze für eine hochaufgelöste 3D-Aufnahme entwickelt. Hierfür wurden Spin-Echo-basierte Sequenzen gewählt, da diese eine genauere Abbildung der Knochenmikrostruktur erlauben als Gradienten-Echo-basierte Methoden. Zum einen wurde eine eigene 3D-FLASE-Sequenz entwickelt und zum anderen eine modifizierte 3D-TSE-Sequenz. Damit an Patienten Aufnahmen bei klinischer Feldstärke von 1,5 T mit einer hohen räumlichen Auflösung innerhalb einer vertretbaren Zeit erzielt werden können, muss eine schnelle und signalstarke Sequenz verwendet werden. Eine theoretische Betrachtung bescheinigte der TSE-Sequenz eine um 25 % höhere Signaleffizienz verglichen mit einer FLASE-Sequenz mit identischer Messzeit. Dieser Unterschied konnte auch im Experiment nachgewiesen werden. Ein in vivo Vergleich der beiden Sequenzen am Schienbein zeigte eine vergleichbare Darstellung der Spongiosa mit einer Auflösung von 160 × 160 × 400 µm. Für die Bildgebung des Hüftkopfs mit der neuen Sequenz waren jedoch aufgrund der unterschiedlichen Anatomie weitere Modifikationen notwendig. Um längere Messzeiten durch ein unnötig großes Field-of-View zu vermeiden, mussten Einfaltungsartefakte unterdrückt werden. Dies wurde durch die orthogonale Anwendung der Anregungs- und Refokussierungspulse in der TSE-Sequenz effizient gelöst. Technisch bedingt konnte jedoch nicht eine vergleichbare Auflösung wie am Schienbein realisiert werden. Der Vorteil der 3D-Bildgebung, dass Schichtdicken von deutlich weniger als 1 mm erreicht werden können, konnte jedoch erfolgreich auf den Unterkiefer übertragen werden. Der dort verlaufende Nervus Mandibularis ist dabei eine wichtige Struktur, deren Verlauf im Vorfeld von verschiedenen operativen Eingriffen bekannt sein muss. Er ist durch eine dünne knöcherne Wand vom umgebenden Gewebe getrennt. Im Vergleich mit einer 3D-VIBE-Sequenz zeigte die entwickelte 3D-TSE-Sequenz mit integrierter Unterdrückung von Einfaltungsartefakten eine ähnlich gute Lokalisierung des Nervenkanals über die gesamte Länge der Struktur. Dies konnte in einer Studie an gesunden Probanden mit verschiedenen Beobachtern nachgewiesen werden. Durch die neue Aufnahmetechnik konnte darüber hinaus die Auflösung im Vergleich zu bisherigen Studien deutlich erhöht werden, was insgesamt eine präzisere Lokalisierung des Nervenkanals erlaubt. Ein Baustein des Tissue Engineerings sind bio-resorbierbare Materialien, deren Abbau- und Einwachsverhalten noch untersucht werden muss, bevor diese für die klinische Anwendung zugelassen werden. Die durchgeführten in vitro µMR-Untersuchungen an Polymerscaffolds zeigten die reproduzierbare Quantifizierung der Porengröße und Wandstärke. Darüber hinaus wurde eine inhomogene Verteilung der Strukturparameter beobachtet. Die Ergebnisse waren in guter Übereinstimmung mit µCT-Aufnahmen als Goldstandard. Unterschiedliche Varianten der Scaffolds konnten identifiziert werden. Dabei bewies sich die MR-Bildgebung als zuverlässige Alternative. Insgesamt zeigen die Ergebnisse dieser Arbeit, welche Vorteile und Anwendungsmöglichkeiten die 3D-MRT-Bildgebung bietet, und dass auch mit klinischer Feldstärke in vivo Voxelgrößen im Submillimeterbereich für alle Raumrichtungen erreichbar sind. Die erzielten Verbesserungen in der räumlichen Auflösung erhöhen die Genauigkeit der verschiedenen Anwendungen und ermöglichen eine bessere Identifikation von kleinen Abweichungen, was eine frühere und zuverlässigere Diagnose für Patienten verspricht. N2 - New tissue engineering based therapies require adjusted diagnostic methods as well as non-invasive therapy monitoring. Especially 3D MR imaging is a promising tool for parameter quantification at high spatial precision. To serve that need new approaches for high resolution in vivo 3D MRI were developed and their applications in combination with tissue engineering have been demonstrated. The advantages of parameter quantification have been demonstrated in a preclinical study of a femoral heck necrosis model in a large animal. Therapy progress has been monitored at different time points. Despite a commonly used 2D imaging protocol a systematic evaluation of signal intensities from T1 and T2-FS weighted images allowed to draw conclusions about changes in bone microstructure. These results were in good agreement with ex vivo µCT images. The observed increase of trabecular thickness were highly correlated with a signal decrease in the T1 weighted images. The radial evaluation of the data allowed a compressed representation of the results. This lead to an efficient evaluation of numerous data (different animals at various time points with huge number of images each) and allowed an observer independent evaluation. To overcome the limitations from the limited spatial resolution in 2D multi slice images, new approaches for a high-resolution 3D imaging were developed. The focus was on spin echo based sequences due to their better representation of bone microstructure compared to gradient echo based sequences. On one hand a 3D FLASE sequence was developed and on the other hand a modified 3D TSE sequence. To achieve a high resolution in vivo at clinical field strength of 1.5 T within a reasonable scan time, a fast and signal intense sequence is strongly required. A theoretical evaluation of signal equations attributed an increase of 25 % to the TSE sequence compared to the FLASE sequence at identical scan time and resolution. This difference was also observed in experimental results. An in vivo comparison of both sequences at the distal tibia showed a comparable depiction of bone microstructure at a resolution of 160 × 160 × 400 µm. To apply this sequence for high resolution imaging of the femoral head, further modifications were necessary due to the different anatomy. A large field of view had to be avoided to reduce the overall scan time, thus aliasing artifacts had to be suppressed. This was achieved by orthogonal application of excitation and refocusing pulses in the TSE sequence. However, due to technical limitations the achievable resolution was lower than at the distal tibia. A slice thickness much smaller than 1 mm is one of the biggest advantages of 3D MRI and this sequence was successfully applied to imaging of the mandible. The course of the mandibular canal must be known before many surgeries, in order to avoid damaging this structure. The canal is separated from the surrounding only by a small bony wall. In comparison to a 3D VIBE sequence the developed 3D TSE sequence with incorporated aliasing suppression showed a comparable good localization of the canal across the full length of the structure. This was demonstrated in a study with various healthy volunteers and different observers. In comparison to previous results the new imaging technique allowed an increase of spatial resolution to a isotropic voxel size of 0.5 mm, which in total provides a higher precision for localizing the nerve canal. One important element in tissue engineering are bio resorbable materials. Their degradation and ingrowth process must be evaluated before they can be approved for clinical application. The performed in vitro µMRstudies at polymer scaffolds showed a reproducible quantification of pore size and wall thickness for different samples. Additionally, an inhomogeneous distribution of parameters in some samples was observed. The results were in good agreement with data based on µCT images, which are considered to be gold standard for this evaluation and showed significant differences between different groups of scaffolds. The results of this work demonstrate the advantages and possible applications of 3D MRI in clinical applications. Even at clinical field strength it is possible to achieve submillimeter resolution for all three spatial dimension within reasonable scan time. The achieved improvements in spatial resolution allow for an improved precision of the different applications as well as a better identification of small local deviations, which promises an earlier and more reliable diagnosis for patients. KW - Kernspintomografie KW - Mikrostruktur KW - Knochen KW - hochauflösende Bildgebung KW - 3D-Bildgebung KW - Knochenstruktur KW - Spin-Echo KW - Trabekel KW - Hüftkopfnekrose KW - Tissue Engineering Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-168858 ER - TY - THES A1 - Gram, Maximilian T1 - Neue Methoden der Spin-Lock-basierten Magnetresonanztomographie: Myokardiale T\(_{1ρ}\)-Quantifizierung und Detektion magnetischer Oszillationen im nT-Bereich T1 - New methods of spin-lock-based magnetic resonance imaging: myocardial T\(_{1ρ}\) quantification and detection of magnetic oscillations in the nT range N2 - Das Ziel der vorliegenden Arbeit war die Entwicklung neuer, robuster Methoden der Spin-Lock-basierten MRT. Im Fokus stand hierbei vorerst die T1ρ-Quantifizierung des Myokards im Kleintiermodell. Neben der T1ρ-Bildgebung bietet Spin-Locking jedoch zusätzlich die Möglichkeit der Detektion ultra-schwacher, magnetischer Feldoszillationen. Die Projekte und Ergebnisse, die im Rahmen dieses Promotionsvorhabens umgesetzt und erzielt wurden, decken daher ein breites Spektrum der Spin-lock basierten Bildgebung ab und können grob in drei Bereiche unterteilt werden. Im ersten Schritt wurde die grundlegende Pulssequenz des Spin-Lock-Experimentes durch die Einführung des balancierten Spin-Locks optimiert. Der zweite Schritt war die Entwicklung einer kardialen MRT-Sequenz für die robuste Quantifizierung der myokardialen T1ρ-Relaxationszeit an einem präklinischen Hochfeld-MRT. Im letzten Schritt wurden Konzepte der robusten T1ρ-Bildgebung auf die Methodik der Felddetektion mittels Spin-Locking übertragen. Hierbei wurden erste, erfolgreiche Messungen magnetischer Oszillationen im nT-Bereich, welche lokal im untersuchten Gewebe auftreten, an einem klinischen MRT-System im menschlichen Gehirn realisiert. N2 - The main goal of the present work was to develop new, robust methods of spin-lock-based MRI. The initial focus was on T1ρ quantification of the myocardium in small animal models. However, in addition to T1ρ imaging, spin-locking offers the possibility of detecting ultra-weak magnetic field oscillations. The projects and results realized and obtained in this PhD project therefore cover a broad spectrum of spin-lock based imaging and can be roughly divided into three areas. The first step was to optimize the basic pulse sequence of the spin-lock experiment by introducing balanced spin-locking. The second step was to develop a cardiac MRI sequence for robust quantification of the myocardial T1ρ relaxation time on a preclinical high-field MRI scanner. In the final step, concepts of robust T1ρ imaging were adapted to spin-lock based magnetic field detection. First successful measurements of magnetic field oscillations in the nT range, which occur locally inside the tissue under investigation, were realized on a clinical MRI system in the human brain. KW - Kernspintomografie KW - Magnetresonanztomographie KW - Kernspinresonanz KW - Spin-Lock KW - T1ρ KW - T1rho KW - Kardio-MRT KW - Rotary Excitation KW - Myokardiale T1ρ-Quantifizierung KW - Felddetektion KW - funktionelle MRT Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-322552 ER -