TY - JOUR A1 - Frey, Anna A1 - Gassenmaier, Tobias A1 - Hofmann, Ulrich A1 - Schmitt, Dominik A1 - Fette, Georg A1 - Marx, Almuth A1 - Heterich, Sabine A1 - Boivin-Jahns, Valérie A1 - Ertl, Georg A1 - Bley, Thorsten A1 - Frantz, Stefan A1 - Jahns, Roland A1 - Störk, Stefan T1 - Coagulation factor XIII activity predicts left ventricular remodelling after acute myocardial infarction JF - ESC Heart Failure N2 - Aims Acute myocardial infarction (MI) is the major cause of chronic heart failure. The activity of blood coagulation factor XIII (FXIIIa) plays an important role in rodents as a healing factor after MI, whereas its role in healing and remodelling processes in humans remains unclear. We prospectively evaluated the relevance of FXIIIa after acute MI as a potential early prognostic marker for adequate healing. Methods and results This monocentric prospective cohort study investigated cardiac remodelling in patients with ST-elevation MI and followed them up for 1 year. Serum FXIIIa was serially assessed during the first 9 days after MI and after 2, 6, and 12 months. Cardiac magnetic resonance imaging was performed within 4 days after MI (Scan 1), after 7 to 9 days (Scan 2), and after 12 months (Scan 3). The FXIII valine-to-leucine (V34L) single-nucleotide polymorphism rs5985 was genotyped. One hundred forty-six patients were investigated (mean age 58 ± 11 years, 13% women). Median FXIIIa was 118 % (quartiles, 102–132%) and dropped to a trough on the second day after MI: 109%(98–109%; P < 0.001). FXIIIa recovered slowly over time, reaching the baseline level after 2 to 6 months and surpassed baseline levels only after 12 months: 124 % (110–142%). The development of FXIIIa after MI was independent of the genotype. FXIIIa on Day 2 was strongly and inversely associated with the relative size of MI in Scan 1 (Spearman’s ρ = –0.31; P = 0.01) and Scan 3 (ρ = –0.39; P < 0.01) and positively associated with left ventricular ejection fraction: ρ = 0.32 (P < 0.01) and ρ = 0.24 (P = 0.04), respectively. Conclusions FXIII activity after MI is highly dynamic, exhibiting a significant decline in the early healing period, with reconstitution 6 months later. Depressed FXIIIa early after MI predicted a greater size of MI and lower left ventricular ejection fraction after 1 year. The clinical relevance of these findings awaits to be tested in a randomized trial. KW - blood coagulation factor XIII KW - ST-elevation myocardial infarction KW - healing and remodelling processes KW - cardiac magnetic resonance imaging Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236013 VL - 7 IS - 5 ER - TY - JOUR A1 - Salinger, Tim A1 - Hu, Kai A1 - Liu, Dan A1 - Taleh, Scharoch A1 - Herrmann, Sebastian A1 - Oder, Daniel A1 - Gensler, Daniel A1 - Müntze, Jonas A1 - Ertl, Georg A1 - Lorenz, Kristina A1 - Frantz, Stefan A1 - Weidemann, Frank A1 - Nordbeck, Peter T1 - Association between Comorbidities and Progression of Transvalvular Pressure Gradients in Patients with Moderate and Severe Aortic Valve Stenosis JF - Cardiology Research and Practice N2 - Background. Fast progression of the transaortic mean gradient (P-mean) is relevant for clinical decision making of valve replacement in patients with moderate and severe aortic stenosis (AS) patients. However, there is currently little knowledge regarding the determinants affecting progression of transvalvular gradient in AS patients. Methods. This monocentric retrospective study included consecutive patients presenting with at least two transthoracic echocardiography examinations covering a time interval of one year or more between April 2006 and February 2016 and diagnosed as moderate or severe aortic stenosis at the final echocardiographic examination. Laboratory parameters, medication, and prevalence of eight known cardiac comorbidities and risk factors (hypertension, diabetes, coronary heart disease, peripheral artery occlusive disease, cerebrovascular disease, renal dysfunction, body mass index >= 30 Kg/m(2), and history of smoking) were analyzed. Patients were divided into slow (P-mean < 5 mmHg/year) or fast (P-mean >= 5 mmHg/year) progression groups. Results. A total of 402 patients (mean age 78 +/- 9.4 years, 58% males) were included in the study. Mean follow-up duration was 3.4 +/- 1.9 years. The average number of cardiac comorbidities and risk factors was 3.1 +/- 1.6. Average number of cardiac comorbidities and risk factors was higher in patients in slow progression group than in fast progression group (3.3 +/- 1.5 vs 2.9 +/- 1.7; P = 0.036). Patients in slow progression group had more often coronary heart disease (49.2% vs 33.6%; P = 0.003) compared to patients in fast progression group. LDL-cholesterol values were lower in the slow progression group (100 +/- 32.6 mg/dl vs 110.8 +/- 36.6 mg/dl; P = 0.005). Conclusion. These findings suggest that disease progression of aortic valve stenosis is faster in patients with fewer cardiac comorbidities and risk factors, especially if they do not have coronary heart disease. Further prospective studies are warranted to investigate the outcome of patients with slow versus fast progression of transvalvular gradient with regards to comorbidities and risk factors. KW - Valvular heart-desease KW - Prognostic impact KW - Risk-factors KW - Chronic heart-failure KW - Prevalence KW - mild KW - statins KW - therapy KW - mortality Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227291 ER - TY - JOUR A1 - Lorenz, Kristina A1 - Rosner, Marsha Rich T1 - Harnessing RKIP to combat heart disease and cancer JF - Cancers N2 - Cancer and heart disease are leading causes of morbidity and mortality worldwide. These diseases have common risk factors, common molecular signaling pathways that are central to their pathogenesis, and even some disease phenotypes that are interdependent. Thus, a detailed understanding of common regulators is critical for the development of new and synergistic therapeutic strategies. The Raf kinase inhibitory protein (RKIP) is a regulator of the cellular kinome that functions to maintain cellular robustness and prevent the progression of diseases including heart disease and cancer. Two of the key signaling pathways controlled by RKIP are the β-adrenergic receptor (βAR) signaling to protein kinase A (PKA), particularly in the heart, and the MAP kinase cascade Raf/MEK/ERK1/2 that regulates multiple diseases. The goal of this review is to discuss how we can leverage RKIP to suppress cancer without incurring deleterious effects on the heart. Specifically, we discuss: (1) How RKIP functions to either suppress or activate βAR (PKA) and ERK1/2 signaling; (2) How we can prevent cancer-promoting kinase signaling while at the same time avoiding cardiotoxicity. KW - RKIP KW - ERK1/2 KW - PKA KW - βAR KW - heart failure KW - cancer Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-262185 SN - 2072-6694 VL - 14 IS - 4 ER - TY - JOUR A1 - Tolstik, Elen A1 - Ali, Nairveen A1 - Guo, Shuxia A1 - Ebersbach, Paul A1 - Möllmann, Dorothe A1 - Arias-Loza, Paula A1 - Dierks, Johann A1 - Schuler, Irina A1 - Freier, Erik A1 - Debus, Jörg A1 - Baba, Hideo A. A1 - Nordbeck, Peter A1 - Bocklitz, Thomas A1 - Lorenz, Kristina T1 - CARS imaging advances early diagnosis of cardiac manifestation of Fabry disease JF - International Journal of Molecular Sciences N2 - Vibrational spectroscopy can detect characteristic biomolecular signatures and thus has the potential to support diagnostics. Fabry disease (FD) is a lipid disorder disease that leads to accumulations of globotriaosylceramide in different organs, including the heart, which is particularly critical for the patient’s prognosis. Effective treatment options are available if initiated at early disease stages, but many patients are late- or under-diagnosed. Since Coherent anti-Stokes Raman (CARS) imaging has a high sensitivity for lipid/protein shifts, we applied CARS as a diagnostic tool to assess cardiac FD manifestation in an FD mouse model. CARS measurements combined with multivariate data analysis, including image preprocessing followed by image clustering and data-driven modeling, allowed for differentiation between FD and control groups. Indeed, CARS identified shifts of lipid/protein content between the two groups in cardiac tissue visually and by subsequent automated bioinformatic discrimination with a mean sensitivity of 90–96%. Of note, this genotype differentiation was successful at a very early time point during disease development when only kidneys are visibly affected by globotriaosylceramide depositions. Altogether, the sensitivity of CARS combined with multivariate analysis allows reliable diagnostic support of early FD organ manifestation and may thus improve diagnosis, prognosis, and possibly therapeutic monitoring of FD. KW - coherent anti-Stokes Raman scattering (CARS) microscopy KW - Raman micro-spectroscopy KW - cardiovascular diseases KW - Fabry Disease (FD) KW - Gb3 and lyso-Gb3 biomarkers KW - multivariate data analysis KW - immunohistochemistry Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284427 SN - 1422-0067 VL - 23 IS - 10 ER - TY - JOUR A1 - Wölfel, Angela A1 - Sättele, Mathias A1 - Zechmeister, Christina A1 - Nikolaev, Viacheslov O. A1 - Lohse, Martin J. A1 - Boege, Fritz A1 - Jahns, Roland A1 - Boivin-Jahns, Valérie T1 - Unmasking features of the auto-epitope essential for β\(_1\)-adrenoceptor activation by autoantibodies in chronic heart failure JF - ESC Heart Failure N2 - Aims Chronic heart failure (CHF) can be caused by autoantibodies stimulating the heart via binding to first and/or second extracellular loops of cardiac β1-adrenoceptors. Allosteric receptor activation depends on conformational features of the autoantibody binding site. Elucidating these features will pave the way for the development of specific diagnostics and therapeutics. Our aim was (i) to fine-map the conformational epitope within the second extracellular loop of the human β\(_1\)-adrenoceptor (β1ECII) that is targeted by stimulating β\(_1\)-receptor (auto)antibodies and (ii) to generate competitive cyclopeptide inhibitors of allosteric receptor activation, which faithfully conserve the conformational auto-epitope. Methods and results Non-conserved amino acids within the β\(_1\)EC\(_{II}\) loop (compared with the amino acids constituting the ECII loop of the β\(_2\)-adrenoceptor) were one by one replaced with alanine; potential intra-loop disulfide bridges were probed by cysteine–serine exchanges. Effects on antibody binding and allosteric receptor activation were assessed (i) by (auto)antibody neutralization using cyclopeptides mimicking β1ECII ± the above replacements, and (ii) by (auto)antibody stimulation of human β\(_1\)-adrenoceptors bearing corresponding point mutations. With the use of stimulating β\(_1\)-receptor (auto)antibodies raised in mice, rats, or rabbits and isolated from exemplary dilated cardiomyopathy patients, our series of experiments unmasked two features of the β\(_1\)EC\(_{II}\) loop essential for (auto)antibody binding and allosteric receptor activation: (i) the NDPK\(^{211–214}\) motif and (ii) the intra-loop disulfide bond C\(^{209}\)↔C\(^{215}\). Of note, aberrant intra-loop disulfide bond C\(^{209}\)↔C\(^{216}\) almost fully disrupted the functional auto-epitope in cyclopeptides. Conclusions The conformational auto-epitope targeted by cardio-pathogenic β\(_1\)-receptor autoantibodies is faithfully conserved in cyclopeptide homologues of the β\(_1\)EC\(_{II}\) loop bearing the NDPK\(^{211–214}\) motif and the C\(^{209}\)↔C\(^{215}\) bridge while lacking cysteine C216. Such molecules provide promising tools for novel diagnostic and therapeutic approaches in β\(_1\)-autoantibodypositive CHF. KW - antibody/autoantibody KW - β1-adrenoceptor/β1-adrenergic receptor KW - chronic heart failure KW - conformational auto-epitope KW - cyclic peptides/cyclopeptides KW - cyclopeptide therapy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-235974 VL - 7 IS - 4 ER - TY - JOUR A1 - Janz, Anna A1 - Walz, Katharina A1 - Cirnu, Alexandra A1 - Surjanto, Jessica A1 - Urlaub, Daniela A1 - Leskien, Miriam A1 - Kohlhaas, Michael A1 - Nickel, Alexander A1 - Brand, Theresa A1 - Nose, Naoko A1 - Wörsdörfer, Philipp A1 - Wagner, Nicole A1 - Higuchi, Takahiro A1 - Maack, Christoph A1 - Dudek, Jan A1 - Lorenz, Kristina A1 - Klopocki, Eva A1 - Ergün, Süleyman A1 - Duff, Henry J. A1 - Gerull, Brenda T1 - Mutations in DNAJC19 cause altered mitochondrial structure and increased mitochondrial respiration in human iPSC-derived cardiomyocytes JF - Molecular Metabolism N2 - Highlights • Loss of DNAJC19's DnaJ domain disrupts cardiac mitochondrial structure, leading to abnormal cristae formation in iPSC-CMs. • Impaired mitochondrial structures lead to an increased mitochondrial respiration, ROS and an elevated membrane potential. • Mutant iPSC-CMs show sarcomere dysfunction and a trend to more arrhythmias, resembling DCMA-associated cardiomyopathy. Background Dilated cardiomyopathy with ataxia (DCMA) is an autosomal recessive disorder arising from truncating mutations in DNAJC19, which encodes an inner mitochondrial membrane protein. Clinical features include an early onset, often life-threatening, cardiomyopathy associated with other metabolic features. Here, we aim to understand the metabolic and pathophysiological mechanisms of mutant DNAJC19 for the development of cardiomyopathy. Methods We generated induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) of two affected siblings with DCMA and a gene-edited truncation variant (tv) of DNAJC19 which all lack the conserved DnaJ interaction domain. The mutant iPSC-CMs and their respective control cells were subjected to various analyses, including assessments of morphology, metabolic function, and physiological consequences such as Ca\(^{2+}\) kinetics, contractility, and arrhythmic potential. Validation of respiration analysis was done in a gene-edited HeLa cell line (DNAJC19tv\(_{HeLa}\)). Results Structural analyses revealed mitochondrial fragmentation and abnormal cristae formation associated with an overall reduced mitochondrial protein expression in mutant iPSC-CMs. Morphological alterations were associated with higher oxygen consumption rates (OCRs) in all three mutant iPSC-CMs, indicating higher electron transport chain activity to meet cellular ATP demands. Additionally, increased extracellular acidification rates suggested an increase in overall metabolic flux, while radioactive tracer uptake studies revealed decreased fatty acid uptake and utilization of glucose. Mutant iPSC-CMs also showed increased reactive oxygen species (ROS) and an elevated mitochondrial membrane potential. Increased mitochondrial respiration with pyruvate and malate as substrates was observed in mutant DNAJC19tv HeLa cells in addition to an upregulation of respiratory chain complexes, while cellular ATP-levels remain the same. Moreover, mitochondrial alterations were associated with increased beating frequencies, elevated diastolic Ca\(^{2+}\) concentrations, reduced sarcomere shortening and an increased beat-to-beat rate variability in mutant cell lines in response to β-adrenergic stimulation. Conclusions Loss of the DnaJ domain disturbs cardiac mitochondrial structure with abnormal cristae formation and leads to mitochondrial dysfunction, suggesting that DNAJC19 plays an essential role in mitochondrial morphogenesis and biogenesis. Moreover, increased mitochondrial respiration, altered substrate utilization, increased ROS production and abnormal Ca\(^{2+}\) kinetics provide insights into the pathogenesis of DCMA-related cardiomyopathy. KW - cell biology KW - molecular biology KW - dilated cardiomyopathy with ataxia KW - genetics KW - metabolism KW - mitochondria KW - OXPHOS KW - ROS KW - contractility Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350393 SN - 2212-8778 VL - 79 ER - TY - JOUR A1 - Rebs, Sabine A1 - Streckfuss-Bömeke, Katrin T1 - How can we use stem cell-derived cardiomyocytes to understand the involvement of energetic metabolism in alterations of cardiac function? JF - Frontiers in Molecular Medicine N2 - Mutations in the mitochondrial-DNA or mitochondria related nuclear-encoded-DNA lead to various multisystemic disorders collectively termed mitochondrial diseases. One in three cases of mitochondrial disease affects the heart muscle, which is called mitochondrial cardiomyopathy (MCM) and is associated with hypertrophic, dilated, and noncompact cardiomyopathy. The heart is an organ with high energy demand, and mitochondria occupy 30%–40% of its cardiomyocyte-cell volume. Mitochondrial dysfunction leads to energy depletion and has detrimental effects on cardiac performance. However, disease development and progression in the context of mitochondrial and nuclear DNA mutations, remains incompletely understood. The system of induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CM) is an excellent platform to study MCM since the unique genetic identity to their donors enables a robust recapitulation of the predicted phenotypes in a dish on a patient-specific level. Here, we focus on recent insights into MCM studied by patient-specific iPSC-CM and further discuss research gaps and advances in metabolic maturation of iPSC-CM, which is crucial for the study of mitochondrial dysfunction and to develop novel therapeutic strategies. KW - mitochondrial cardiomyopathy KW - iPSC-cardiomyocytes KW - maturation strategies KW - Barth syndrome KW - Friedreich’s ataxia KW - lysosomal storage disorders Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-327344 VL - 3 ER -