TY - JOUR A1 - Wörsdörfer, Philipp A1 - Dalda, Nahide A1 - Kern, Anna A1 - Krüger, Sarah A1 - Wagner, Nicole A1 - Kwok, Chee Keong A1 - Henke, Erik A1 - Ergün, Süleyman T1 - Generation of complex human organoid models including vascular networks by incorporation of mesodermal progenitor cells JF - Scientific Reports N2 - Organoids derived from human pluripotent stem cells are interesting models to study mechanisms of morphogenesis and promising platforms for disease modeling and drug screening. However, they mostly remain incomplete as they lack stroma, tissue resident immune cells and in particular vasculature, which create important niches during development and disease. We propose, that the directed incorporation of mesodermal progenitor cells (MPCs) into organoids will overcome the aforementioned limitations. In order to demonstrate the feasibility of the method, we generated complex human tumor as well as neural organoids. We show that the formed blood vessels display a hierarchic organization and mural cells are assembled into the vessel wall. Moreover, we demonstrate a typical blood vessel ultrastructure including endothelial cell-cell junctions, a basement membrane as well as luminal caveolae and microvesicles. We observe a high plasticity in the endothelial network, which expands, while the organoids grow and is responsive to anti-angiogenic compounds and pro-angiogenic conditions such as hypoxia. We show that vessels within tumor organoids connect to host vessels following transplantation. Remarkably, MPCs also deliver Iba1\(^+\) cells that infiltrate the neural tissue in a microglia-like manner. KW - Developmental biology KW - Stem cells Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-202681 VL - 9 ER - TY - JOUR A1 - Aktas, Bertal H. A1 - Upcin, Berin A1 - Henke, Erik A1 - Padmasekar, Manju A1 - Qin, Xuebin A1 - Ergün, Süleyman T1 - The Best for the Most Important: Maintaining a Pristine Proteome in Stem and Progenitor Cells JF - Stem Cells International N2 - Pluripotent stem cells give rise to reproductively enabled offsprings by generating progressively lineage-restricted multipotent stem cells that would differentiate into lineage-committed stem and progenitor cells. These lineage-committed stem and progenitor cells give rise to all adult tissues and organs. Adult stem and progenitor cells are generated as part of the developmental program and play critical roles in tissue and organ maintenance and/or regeneration. The ability of pluripotent stem cells to self-renew, maintain pluripotency, and differentiate into a multicellular organism is highly dependent on sensing and integrating extracellular and extraorganismal cues. Proteins perform and integrate almost all cellular functions including signal transduction, regulation of gene expression, metabolism, and cell division and death. Therefore, maintenance of an appropriate mix of correctly folded proteins, a pristine proteome, is essential for proper stem cell function. The stem cells' proteome must be pristine because unfolded, misfolded, or otherwise damaged proteins would interfere with unlimited self-renewal, maintenance of pluripotency, differentiation into downstream lineages, and consequently with the development of properly functioning tissue and organs. Understanding how various stem cells generate and maintain a pristine proteome is therefore essential for exploiting their potential in regenerative medicine and possibly for the discovery of novel approaches for maintaining, propagating, and differentiating pluripotent, multipotent, and adult stem cells as well as induced pluripotent stem cells. In this review, we will summarize cellular networks used by various stem cells for generation and maintenance of a pristine proteome. We will also explore the coordination of these networks with one another and their integration with the gene regulatory and signaling networks. KW - Endoplasmic-Reticulum Stress KW - Heme-regulated inhibitor KW - Human Muse Cells KW - Transcription factor NRF1 KW - ER-Stress KW - Hematopoietic Stem KW - Quality-control KW - Messenger-RNAs KW - Neural Differentiation KW - Translation Initiation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227769 ER -