TY - THES A1 - Vogt, Matthias Guido T1 - Elektronische Eigenschaften von Wabengittern mit starker Spin-Bahn-Kopplung T1 - Electronic Properties of honeycomb lattices with strong spin-orbit coupling N2 - Im Rahmen dieser Arbeit wurden die elektronischen Eigenschaften von Graphen auf Metalloberflächen mittels Rastertunnelmikroskopie und Quasiteilcheninterferenz (englisch quasiparticle interference, QPI)-Messungen untersucht. Durch das Verwenden schwerer Substrate sollte die Spin-Bahn-Wechselwirkung des Graphen verstärkt werden und damit eine Bandlücke am K-Punkt der Bandstruktur mittels QPI beobachtet werden. Um das Messen von QPI auf Graphen zu testen, wurde auf der Oberfläche eines SiC(0001)-Kristalls durch Erhitzen Graphen erzeugt und mit dem Rastertunnelmikroskop untersucht. Dieses System wurde schon ausführlich in der Literatur beschrieben und bereits bekannte QPI-Messungen von Streuringen, die auf den Dirac-Kegeln des Graphen am K-Punkt basieren, konnte ich auf gr/SiC(0001) in guter Qualität erfolgreich reproduzieren. Anschließend wurde Graphen nach einem wohlbekannten Verfahren durch Aufbringen von Ethylen auf ein erhitztes Ir(111)-Substrat erzeugt. Dieses gr/Ir(111)-System diente auch als Grundlage für Interkalationsversuche von Bismut (gr/Bi/Ir(111)) und Gadolinium (gr/Gd/Ir(111)) zwischen das Graphen und das Substrat. Auf gr/Bi/Ir(111) wurde ein schon aus der Literatur bekanntes Netzwerk aus Versetzungslinien beobachtet, dem zusätzlich eine Temperaturabhängigkeit nachgewiesen werden konnte. Beim Versuch, Gadolinium zu interkalieren, wurden zwei verschieden Oberflächenstrukturen beobachtet, die auf eine unterschiedlich Anordnung bzw. Menge des interkalierten Gadoliniums zurückzuführen sein könnten. Auf keinem dieser drei Systeme konnten allerdings Streuringe mittels QPI beobachtet werden. Als Vorbereitung der Interkalation von Gadolinium wurden dessen Wachstum und magnetische Eigenschaften auf einem W(110)-Kristall untersucht. Dabei konnte eine aus der Literatur bekannte temperaturabhängige Austauschaufspaltung reproduziert werden. Darüber hinaus konnten sechs verschieden magnetische Domänen beobachtet werden. Zusätzlich sind auf der Oberfläche magnetische Streifen auszumachen, die möglicherweise auf einer Spinspirale basieren. Als Grundlage für die mögliche zukünftige Erzeugung Graphen-artiger Molekülgitter wurde das Wachstum von H-TBTQ und Me-TBTQ auf Ag(111) untersucht. Die Moleküle richten sich dabei nach der Oberflächenstruktur des Silber aus und bilden längliche Inseln, deren Kanten in drei Vorzugsrichtungen verlaufen. Auf H-TBTQ wurde zudem eine zweite, Windmühlen-artige Ausrichtung der Moleküle auf der Oberfläche beobachtet. Auf den mit den Molekülen bedeckten Stellen der Oberfläche wurde eine Verschiebung des Ag-Oberflächenzustands beobachtet, die mit einem Ladungstransfer vom Ag(111)-Substrat auf die TBTQ-Moleküle zu erklären sein könnte. N2 - In this thesis, the electronic properties of graphene on metal surfaces were investigated by scanning tunneling microscopy and quasiparticle interference (QPI) measurements. In order to enhance the spin orbital interaction of the graphene and possibly observe a band gap at the K-point of the band structure via QPI, substrates with heavy atoms were used. To test the ability to measure QPI on graphene, graphene was produced on the surface of a SiC(0001) crystal by heating and examined with a scanning tunneling microscope. This system has already been described in detail in the literature and I was able to successfully reproduce QPI measurements of clearly recognizable scattering rings, which are due to the Dirac cones of the graphene at the K-point Afterwards, graphene was produced by a well-known process by applying ethylene to a heated Ir(111) substrate. This gr/Ir(111) system also served as a basis for intercalation experiments of bismuth (gr/Bi/Ir(111)) and gadolinium (gr/Gd/Ir(111)) between the graphene and the substrate. On gr/Bi/Ir(111), a network of dislocation lines known from literature was observed, which also showed a temperature dependence. In the attempt to intercalate gadolinium, two different surface structures were observed which could be due to a different arrangement or quantity of the intercalated gadolinium. However, on none of these three systems scattering rings were observed by QPI. In preparation for the intercalation of gadolinium, its growth and magnetic properties were investigated on a W(110) substrate. A temperature-dependent exchange splitting of the surface density of states known from the literature could be reproduced. In addition, six different magnetic domains and magnetic stripes were observed on the surface, which may be based on a spin spiral. The growth of H-TBTQ and Me-TBTQ on Ag(111) was investigated as a basis for a possible subsequent generation of graphene-like molecular lattices in the future. The molecules are aligned to the surface structure of the silver and form elongated islands with edges in three preferred directions. H-TBTQ also appeared in a second, windmilllike orientation of the molecules on the surface. A shift of the Ag surface state was observed on the surface areas covered by the molecules, which might be explained by a charge transfer from the Ag(111) substrate to the TBTQ molecules. KW - Spin-Bahn-Wechselwirkung KW - Graphen KW - Rastertunnelmikroskopie KW - Wabengitter KW - Tribenzotriquinacen KW - Quasiteilcheninterferenz Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207506 ER - TY - THES A1 - Carinci, Flavio T1 - Quantitative Characterization of Lung Tissue Using Proton MRI T1 - Quantitative Charakterisierung des Lungengewebes mithilfe von Proton-MRT N2 - The focus of the work concerned the development of a series of MRI techniques that were specifically designed and optimized to obtain quantitative and spatially resolved information about characteristic parameters of the lung. Three image acquisition techniques were developed. Each of them allows to quantify a different parameter of relevant diagnostic interest for the lung, as further described below: 1) The blood volume fraction, which represents the amount of lung water in the intravascular compartment expressed as a fraction of the total lung water. This parameter is related to lung perfusion. 2) The magnetization relaxation time T\(_2\) und T� *\(_2\) , which represents the component of T\(_2\) associated with the diffusion of water molecules through the internal magnetic field gradients of the lung. Because the amplitude of these internal gradients is related to the alveolar size, T\(_2\) und T� *\(_2\) can be used to obtain information about the microstructure of the lung. 3) The broadening of the NMR spectral line of the lung. This parameter depends on lung inflation and on the concentration of oxygen in the alveoli. For this reason, the spectral line broadening can be regarded as a fingerprint for lung inflation; furthermore, in combination with oxygen enhancement, it provides a measure for lung ventilation. N2 - Die Magnetresonanztomographie (MRT) stellt ein einzigartiges Verfahren im Bereich der diagnostischen Bildgebung dar, da sie es ermöglicht, eine Vielzahl an diagnostischen Informationen ohne die Verwendung von ionisierenden Strahlen zu erhalten. Die Anwendung von MRT in der Lunge erlaubt es, räumlich aufgelöste Bildinformationen über Morphologie, Funktionalität sowie über die Mikrostruktur des Lungengewebes zu erhalten und diese miteinander zu kombinieren. Für die Diagnose und Charakterisierung von Lungenkrankheiten sind diese Informationen von höchstem Interesse. Die Lungenbildgebung stellt jedoch einen herausfordernden Bereich der MRT dar. Dies liegt in der niedrigen Protondichte des Lungenparenchyms begründet sowie in den relativ kurzen Transversal- Relaxationszeiten T\(_2\) und T� *\(_2\) , die sowohl die Bildau� ösung als auch das Signal-zu-Rausch Verhältnis beeinträchtigen. Des Weiteren benötigen die vielfältigen Ursachen von physiologischer Bewegung, welche die Atmung, den Herzschlag und den Blut� uss in den Lungengefasen umfassen, die Anwendung von schnellen sowie relativ bewegungsunemp� ndlichen Aufnahmeverfahren, um Risiken von Bildartefakten zu verringern. Aus diesen Gründen werden Computertomographie (CT) und Nuklearmedizin nach wie vor als Goldstandardverfahren gehandhabt, um räumlich aufgelöste Bildinformationen sowohl über die Morphologie als auch die Funktionalität der Lunge zu erhalten. Dennoch stellt die Lungen- MRT aufgrund ihrer Flexibilität sowohl eine vielversprechende Alternative zu den anderen Bildgebungsverfahren als auch eine mögliche Quelle zusätzlicher diagnostischer Informationen dar. ... KW - Lung KW - MRI KW - Kernspintomografie KW - Lunge Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151189 ER - TY - THES A1 - Brendel, Michael T1 - Correlation between Interface Energetics of Molecular Semiconductors and Opto-Electronic Properties of Planar Organic Solar Cells T1 - Der Zusammenhang zwischen der Energetik molekularer Halbleitergrenzflächen und den opto-elektronischen Eigenschaften planarer organischer Solarzellen N2 - It was the scope of this work to gain a deeper understanding of the correlation between Interface energetics of molecular semiconductors in planar organic solar cells and the corresponding optoelectronic characteristics. For this aim, different approaches were followed. At first, a direct variation of donor/acceptor (D/A) interface energetics of bilayer cells was achieved by utilizing systematically modified donor compounds. This change could be correlated to the macroscopic device performance. At second, the impact of interface energetics was illustrated, employing a more extended device architecture. By introducing a thin interlayer between a planar D/A heterojunction, an energetic staircase was established. Exciton dissociation in such devices could be linked to the cascade energy level alignment of the photo-active materials. Finally, two different fullerene molecules C60 and C70 were employed in co-evaporated acceptor phases. The expected discrepancy in their electronic structure was related to the transport properties of the corresponding organic photovoltaic cells (OPVCs). The fullerenes are created simultaneously in common synthesis procedures. Next to the photo-physical relevance, the study was carried-out to judge on the necessity of separating the components from each other by purification which constitutes the cost-determining step in the total production costs. N2 - Es war das Ziel dieser Arbeit ein tieferes Verständnis für die Beziehung zwischen der Grenzflächenenergetik der molekularen Halbleiter planarer, organischer Solarzellen und den zugehörigen opto-elektronischen Bauteileigenschaften zu gewinnen. Für diesen Zweck wurden verschiedene Ansätze verfolgt. Einerseits wurde eine Veränderung der Donator/Akzeptor (D/A) Grenzflächenenergetik von Bilagen-Solarzellen durch die Verwendung verschieden fluorierter Donatorverbindungen erreicht. Andererseits wurde der Einfluss der Grenzflächenenergetik anhand einer geänderten Bauteilarchitektur aufgezeigt. Durch das Einbringen einer dünnen Schicht zwischen der D/A Heterogrenzfläche, wurde eine energetische Treppe realisiert. In diesen Solarzellen konnte die Exzitonendissoziation mit der Kaskaden-Energielevel-Anpassung der molekularen Halbleiter in Verbindung gebracht werden. Abschließend wurden zwei verschiedene Fullerenmoleküle in ko-verdampften Akzeptorphasen eingesetzt. Der vermeintliche Unterschied in ihrer elektronischen Struktur wurde mit den Transporteigenschaften der organischen photovoltaischen Zellen korreliert. Auf herkömmlichen Syntheserouten werden die Fullerene simultan generiert. Neben Gründen der photo-physikalischen Relevanz, wurde die Studie durchgeführt, um die Notwendigkeit der Trennung der Komponenten voneinander zu beurteilen, da dieser Aufreinigungsschritt der Kosten-bestimmende Prozess für die Gesamtmaterialkosten ist KW - Organische Solarzelle KW - organic solar cell KW - planar heterojunction KW - interface energetics Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-155094 ER - TY - THES A1 - Klauer, Peter T1 - Vollständig integrierter Traveling-Wave-MPI-MRI-Hybridscanner T1 - Fully Integrated Traveling-Wave-MPI-MRI-Hybrid Scanner N2 - Magnetic Particle Imaging (MPI) ist ein neuartiges tomographisches Bildgebungsverfahren, welches in der Lage ist, dreidimensional die Verteilung von superparamagnetischen Nanopartikeln zu detektieren. Aufgrund des direkten Nachweises des Tracers ist MPI ein sehr schnelles und sensitives Verfahren [12] und benötigt für eine Einordnung des Tracers (z.B. im Gewebe) eine weitere bildgebende Modalität wie die Magnetresonanztomographie (MRI) oder die Computertomographie. Die strukturelle Einordnung wird häufig mit dem Fusion-Imaging-Verfahren durchgeführt, bei dem die Proben separat in den Geräten vermessen und die Datensätze retrospektiv korreliert werden [75][76]. In einem ersten Experiment wurde bereits ein Traveling-Wave-MPI-Scanner (TWMPI) [17] mit einem Niederfeld-MRI-Scanner kombiniert und die ersten Hybridmessung durchgeführt [15]. Der technische Aufwand, zwei separate Geräte aufzubauen sowie die Tatsache, dass ein MRI-Gerät bei 30mT sehr lange benötigt, diente als Motivation für ein integriertes TWMPIMRI- Hybridsystem, bei dem das dynamische lineare Gradientenarray (dLGA) eines TWMPI-Scanners intrinsisch das B0-Feld für ein MRI-Gerät erzeugen sollte. Das Ziel dieser Arbeit war es, die Grundlagen für einen integrierten TWMPI-MRIHybridscanner zu schaffen. Die Geometrie des dLGAs sollte dabei nicht verändert werden, damit TWMPI-Messungen weiterhin ohne Einschränkungen möglich sind. Zusammenfassend werden hier noch mal die wichtigsten Schritte und Ergebnisse dieser Arbeit aufgezeigt. Zu Beginn dieser Arbeit wurde mittels Magnetfeldsimulationen nach einer geeigneten Stromverteilung gesucht, um allein mit dem dLGA ein ausreichend homogenes Magnetfeld erzeugen zu können. Die Ergebnisse der Simulationen zeigten, dass bereits zwei unterschiedliche Ströme in 14 der 20 Einzelspulen des dLGAs genügten, um ein Field of View (FOV) mit der Größe 36mm x 12mm mit ausreichender Homogenität zu erreichen. Die Homogenität innerhalb des FOVs betrug dabei 3000 ppm. Für die angestrebte Feldstärke von 235mT waren Stromstärken von 129A und 124A nötig. Die hohen Ströme des dLGAs erforderten die Entwicklung eines dafür angepassten Verstärkers. Das ursprüngliche Konzept, welches auf einem linear angesteuerten Leistungstransistors aufbaute, wurde in zahlreichen Schritten so weit verbessert, dass die nötigen Stromstärken stabil an- und ausgeschaltet werden konnten. Mithilfe eines Ganzkörper-MRIs konnte erstmals das B0-Feld des dLGAs, welches durch den selbstgebauten Verstärker erzeugt wurde, gemessen und mit der Simulation verglichen werden. Zwischen den beiden Verläufen zeigte sich eine qualitativ gute Übereinstimmung. Das Finden des NMR-Signals stellte wegen des selbstgebauten Verstärkers eine Herausforderung dar, da zu diesem Zeitpunkt die nötige Präzision noch nicht erreicht wurde und der wichtigste Parameter, die Magnetfeldstärke im dLGA, nicht gemessen werden konnte. Dagegen konnte die Länge der Pulse für die Spin-Echo- Sequenz sehr gut gemessen werden, jedoch war der optimale Wert noch nicht bekannt. Durch iterative Messungen wurden die richtigen Einstellungen gefunden, die nach Änderungen an der Hardware jeweils angepasst wurden. Die Performanz des Verstärkers konnte anhand wiederholter Messungen des NMRSignals genauer untersucht werden. Es zeigte sich, dass die Präzision weiter verbessert werden musste, um reproduzierbare Ergebnisse zu erhalten. Mithilfe des NMR-Signals konnten auch das B0-Feld ausgemessen werden. Es zeigte eine gute Übereinstimmung zur Simulation. Mithilfe von vier Segmentspulen des dLGAs war es möglich einen linearen Gradienten entlang der z-Achse zu erzeugen. Ein Gradient wurde zusätzlich zum B0-Feld geschaltet und ebenfalls ausgemessen. Auch dieser Verlauf zeigte eine gute Übereinstimmung zur Simulation. Mithilfe des Gradienten wurde erfolgreich die Frequenzkodierung und die Phasenkodierung implementiert, durch die bei beiden Messungen zwei Proben anhand des Ortes unterschieden werden konnten. Damit war die Entwicklung des MRIScanners abgeschlossen. Der Aufbau des TWMPI-Scanners benötigte neben dem Bau des dLGAs die Anfertigung von Sattelspulen. Für die MPI-Messungen konnte der fehlende Teil der Sendekette sowie die gesamte Empfangskette von einer früheren Version benutzt werden. Auch für das MPI wurde die Funktionalität mithilfe einer Punktprobe und eines Phantoms überprüft, allerdings hier in zwei Dimensionen. Die Erweiterung zu einem Hybridscanner erforderte weitere Modifikationen gegenüber einem reinen TWMPI- bzw. MRI-Scanner. Es musste ein Weg gefunden werden, die Beschaltung des dLGAs für die jeweilige Modalität zügig anzupassen. Dafür wurde ein Steckbrett gebaut, das es erlaubt, die Verkabelung des dLGAs in kurzer Zeit zu ändern. Außerdem mussten innerhalb des dLGAs die Sattelspulen und die Empfangsspule des TWMPIs sowie die Empfangsspule des MRIs untergebracht werden. Ein modulares System erlaubte die gleichzeitige Anordnung aller Komponenten innerhalb des dLGAs. Das messbare FOV des MRIs ist der Homogenität des B0-Feldes angepasst, das FOV des TWMPI ist ausgedehnter. Zum Ende dieser Arbeit wurde erfolgreich eine Hybridmessung durchgeführt. Das Phantom bestand aus je zwei Kugeln gefüllt mit Öl und mit einem MPI-Tracer (Resovist). Mit TWMPI war die räumliche Abbildung der Resovistkugeln möglich, während mit MRI die der Ölkugeln möglich war. Diese in situ Messung zeigte die erfolgreiche Umsetzung des Konzeptes für den TWMPI-MRI-Hybridscanner. Zusammenfassend wurden in dieser Arbeit die Grundlagen für einen TWMPIMRI- Hybridscanner gelegt. Die größte Schwierigkeit bestand darin, ein ausreichend homogenes B0-Feld für das MRI zu erzeugen, mit dem man ein gutes NMRSignal aufnehmen konnte. Mit einer einfachen Stromverteilung, bestehend aus zwei unterschiedlichen Strömen, konnte ein ausreichend homogenes B0-Feld erzeugt werden. Durch komplexere Stromverteilungen lässt sich die Homogenität noch verbessern und somit das FOV vergrößern. Die MRI-Bildgebung wurde in dieser Arbeit für eine Dimension implementiert und soll in fortführenden Arbeiten auf 2D und 3D ausgedehnt werden. Letztendlich soll anhand eines MRI-Bildes die Partikelverteilung des MPI-Tracers in Lebewesen deren Anatomie zugeordnet werden. In [76][77][78] sind die ersten präklinischen Anwendungen mit dem TWMPI-Scanner durchgeführt worden. Diese Anwendungen erlangen eine höhere Aussagekraft durch die zusätzlichen Informationen eines TWMPI-MRI-Hybridscanners. In weiteren Arbeiten sollte zusätzlich die Größe des FOVs für das MRI erweitert werden. Außerdem macht es Sinn, einen elektronischen Schalter zum Umschalten des dLGAs zwischen MRI und MPI zu realisieren. Die nächste Version des Hybridscanners könnte beispielsweise ein komplett neu gestaltetes dLGA enthalten, in dem jede Segmentspule in radialer Richtung einmal geteilt wird und dadurch in eine innere und eine äußere Spule zerlegt wird. Für das MRI werden die beiden Spulenteile gegen geschaltet, um ein homogenes Feld in radialer Richtung zu erhalten. Für das TWMPI werden die Spulenteile gleichgeschaltet, um einen möglichst starken Feldgradienten zu erreichen. In dieser Arbeit wurde für die nächste Version eines TWMPI-MRI-Hybridscanners viel Wissen generiert, das äußerst hilfreich für das neue Design sein wird. Anhand der Vermessung des B0-Feldes hat sich gezeigt, dass die simulierten Magnetfelder gut mit den gemessenen Magnetfeldern übereinstimmen. Außerdem wurde viel gelernt über die Kombination von TWMPI mit MRI. N2 - Magnetic Particle Imaging (MPI) is a novel tomographic imaging technique, which can detect the distribution of superparamagnetic iron oxides in three dimensions. MPI is a fast and sensitive technique due to its immediate tracer detection [12] but needs another imaging modality like magnetic resonance imaging (MRI) or computed tomography for tracer classification (e.g. to tissue). The classification is often done with the fusion imaging technology where the sample is measured in different systems and the data are correlated afterwards [75][76]. In a first experiment a traveling-wave-MPI-scanner (TWMPI) [17] was combined with a low-field-MRIscanner and first hybrid measurements were acquired [15]. The motivation for an integrated TWMPI-MRI-hybrid system, in which the dynamic linear gradient array (dLGA) generates the main magnetic field B0 intrinsically, was such that an MRI-system at 30mT needs a long time for data acquisition as well as the higher technical effort for assembling two separate systems. The aim of this work was to establish the basic principles of an integrated TWMPIMRI- hybrid scanner. The geometry of the dLGA should not be altered in this process so that TWMPI-measurements are still possible without limitations. All important steps and measurements of this work are presented here in summary. At the beginning of this work it was necessary to find a suitable current configuration by the use of magnetic field simulations. The aim was to generate a magnetic field that is homogenous enough for NMR measurements only with the dLGA coils. The results of the simulations showed that only two different currents in 14 of the 20 dLGA coils are necessary to obtain a field of view (FOV) with a sufficiently homogeneity of 3000ppm and a size of 36mm x 12 mm. For the target field strength of 235mT currents of 129A and 124A are required. The high currents in the dLGA made it necessary to develop a custom amplifier. The original concept, which is based on a linear controlled power transistor, was improved in numerous steps so that the high currents could be turned on and off in a stable way. The magnetic field B0 of the dLGA, which was generated by the custom amplifier, could firstly be measured with the aid of a full-body MRI. Its comparison to the simulation showed a qualitative good agreement. A challenge was to find the NMR-signal because of the custom amplifier which did not have the necessary precision at this particular time and also the most important parameter, the magnetic field strength inside the dLGA, could not be measured. In contrast the length of the pulses for the spin-echo-sequence could be measured accurately, but the ideal value was not known. Iterative measurements were used to find the right adjustments, which had to be adapted after each change in the hardware. The amplifier performance could be analyzed more in detail by repeated measurements of the NMR-signal. They indicated that the precision had to be improved further to achieve reproducible results. The B0-field could be measured by means of the NMR-signal. It showed good agreement to the simulation. By means of four segment coils of the dLGA it was possible to create a linear gradient along the z-axis. as well as the gradient along the z-axis By means of the gradient frequency encoding and phase encoding were successfully implemented. Two samples could be differentiated by its location for both encoding methods. That completes the development of the MRI-scanner. The design of the TWMPI-scanner required the construction of the saddle coils besides the production of the dLGA. The missing parts of the transmit chain and the whole receive chain could be used from an earlier version for MPI-measurements. The functionality of the MPI was tested with a point sample and a phantom, but this time in two dimensions. The extension to a hybrid scanner required additional modifications compared to a pure TWMPI- or MRI-scanner. An efficient way had to be found to change the connections of the dLGA for the particular modality. A pinboard was built which made a rapid change of the connections of the dLGA possible. Furthermore the saddle coils and the receive coil of the TWMPI-system as well as the receive coil of the MRI had to be placed inside the dLGA. This problem was solved with a modular system which made it possible to simultaneously place all components inside the dLGA. The measurable FOV of the MRI is adapted to the homogeneity of the B0-field, the FOV of the TWMPI is larger. At the end of this work a hybrid measurement was successfully performed. The phantom consisted of two spheres filled with oil and another two spheres filled with an MPI-tracer (Resovist). With TWMPI the spatial resolution of the Resovist spheres was possible, while with MRI it was possible for the oil spheres. This in situ measurement showed the successful implementation of the TWMPI-MRIhybrid scanner concept. In summary the basic principles for a TWMPI-MRI-hybrid scanner were established in this work. The highest obstacle was the generation of a homogenous magnetic field B0 for MRI, which lead to a good NMR-signal. A simple current configuration, consisting of two different currents, generated a sufficient homogenous magnetic field. With more complex current configurations a more homogenous field and thereby a larger FOV is possible. MRI-imaging was implemented in this work in one dimension and should be extended to 2D and 3D in further projects. Eventually an MRI-image should be used to display a relation between particle distribution of the MPI-tracer in living creatures and their anatomy. The first preclinical applications were implemented with the TWMPI-scanner [76][77][78]. These applications would reach a higher information value with the use of a TWMPI-MRI-hybrid scanner. The size of the FOV for the MRI should be extended in further projects. Furthermore it is reasonable to realize an electric switch for changing the connections of the dLGA between MRI and MPI. The next version of the hybrid scanner could contain for example a completely newly designed dLGA in which every segment coil is divided radially. The segment coils would consist of an inner and an outer part. For MRI-measurements both magnetic fields work against each other to create a radially homogenous magnetic field. For TWMPI both magnetic fields work together to create a high magnetic field gradient. For the next version of a TWMPI-MRI-hybrid scanner a lot of know-how was created which will be helpful for the new design. By means of the B0 measurements it was shown that the simulated magnetic fields fit well to the measured ones. Furthermore plenty was learned for the combination of TWMPI and MRI. KW - Magnetpartikelbildgebung KW - Magnetic Particle Imaging KW - Hybridscanner KW - Magnetic Resonance Imaging KW - Traveling Wave Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161314 ER - TY - THES A1 - Kemmer, Jeannette T1 - Strukturelle und elektronische Eigenschaften metallischer Oberflächen unter dem Einfluss von Korrelationseffekten T1 - Structural and electronic properties of metallic surfaces under the influence of correlation effects N2 - Die vorliegende Arbeit untersucht mit Rastertunnelmikroskopie (RTM) und -spektroskopie (RTS) die Korrelation von strukturellen, elektronischen und magnetischen Eigenschaften auf metallischen Oberflächen. Zuerst wird der spin-aufgespaltene Oberflächenzustand des Ni(111) analysiert. Anschließend geht der Fokus über auf dünne Eisenfilme, die auf Rh(001) gewachsen wurden. Zuletzt wird die CePt$_5$/Pt(111)-Oberflächenlegierung untersucht. Nickel ist ein bekannter Ferromagnet und die (111)-Oberfläche war in der Vergangenheit schon mehrfach das Objekt theoretischer und experimenteller Studien. Trotz intensiver Bemühungen wurden inkonsistente Ergebnisse veröffentlicht und ein klares, konsistentes Bild ist noch nicht vorhanden. Aus diesem Grund wird die Ni(111)-Oberfläche mittels RTM und RTS erforscht, die den Zugang sowohl zu besetzten als auch unbesetzten Zuständen ermöglicht. Mit der Methode der Quasiteilcheninterferenz wird eine detailierte Beschreibung der Banddispersion erhalten. Die Austauschaufspaltung zwischen Minoritäts- und Majoritätsoberflächenzustands wird zu ∆E$_{ex}$ = (100 ± 8) meV ermittelt. Der Ansatzpunkt des Majoritätsbandes liegt bei E − E$_F$ = −(160 ± 8)meV und die effektive Masse beträgt m^* = +(0,14 ± 0,04)me. Des Weiteren liegt der Ansatzpunkt der Oberflächenresonanz der Majoritätladungsträger energetisch bei E−E$_F$ = −(235±5)meV mit einer effektiven Masse von m^* = +(0,36±0,05)m$_e$. Um unmissverständlich den dominierenden Spin-Kanal in der RTS zu identifizieren, wurden hexagonale Quantentröge durch reaktives Ionenätzen hergestellt und mit der Hilfe eines eindimensionalen Quantentrogmodells interpretiert. Die sechs Kanten eines Hexagons erscheinen unterschiedlich. Atomar aufgelöste Messungen zeigen, dass gegenüberliegende Kanten nicht nur eine unterschiedliche Struktur haben sondern auch unterschiedliche spektroskopische Eigenschaften, die durch einen alternierend auftauchenden oder abwesenden spektroskopischen Peak charakterisiert sind. Magnetische Messungen ergeben allerdings keine endgültigen Ergebnisse bezüglich des Ursprungs des Beobachtungen. Das zweite experimentelle Kapitel dreht sich um dünne Eisenfilme, die auf eine saubere Rh(001)-Oberfläche aufgebracht und diese dann mit RTM, RTS und spin-polarisierter (SP- )RTM untersucht werden. Eine nahezu defektfreie Rh(001)-Oberfläche ist notwendig, um ein Wachstum der Eisenfilme mit wenigen Defekten zu erhalten. Dies ist relevant, um das magnetische Signal korrekt interpretieren zu können und den möglichen Einfluss von Adsorbaten auszuschließen. Die erste atomare Lage Fe ordnet sich antiferromagnetisch in einer c(2 × 2)-Struktur an mit der leichten Magnetisierungsachse senkrecht zur Probenoberfläche. Die zweite und dritte Lage verhält sich ferromagnetisch mit immer kleiner werdenden Domänen für steigende Bedeckung. Ab 3,5 atomaren Lagen kommt es vermutlich zu einer Änderung der leichten Magnetisierungsrichtung von vertikal zu horizontal zur Probenebene. Dies wird durch kleiner werdende Domänengrößen und den gleichzeitig breiter werdenden Domänenwänden signalisiert. Temperaturabhängige spin-polarisierter RTM erlaubt es die Curietemperatur der zweiten Lage auf 80 K zu schätzen. Zusätzlich wurde bei dieser Bedeckung eine periodische Modulation der lokalen Zustandsdichte gemessen, die mit steigender Periodizität auch auf der dritten und vierten Lage erscheint. Temperatur- und spannungsabhängige Messungen unterstützen eine Interpretation der Daten auf der Grundlage einer Ladungsdichtewelle. Ich zeige, dass die beiden für gewöhnlich konkurrierende Ordnungen (Ladungs- und magnetische Ordnung) koexistieren und sich gegenseitig beeinflussen, was theoretische Rechnungen, die in Zusammenarbeit mit F. P. Toldin und F. Assaad durchgeführt wurden, bestätigen können. Im letzten Kapitel wurde die Oberflächenlegierung CePt$_5$/Pt(111) analysiert. Diese System bildet laut einer kürzlich erschienenen Veröffentlichung ein schweres Fermionengitter. Von der sauberen Pt(111)-Oberfläche ausgehend wurde die Oberflächenlegierung CePt$_5$/Pt(111) hergestellt. Die Dicke der Legierung (t in u.c.) lässt sich durch die aufgedampfte Menge an Cer variieren und die erzeugte Oberfläche wurde mit RTM und RTS für verschiedene Dicken unter- sucht. RTM-Bilder und LEED (engl.: low energy electron diffraction)-Daten zeigen konsistente Ergebnisse, die in Zusammenarbeit mit C. Praetorius analysiert wurden. Für Bedeckungen unter einer atomaren Lage Cer konnte keine geordnete Struktur mit dem RTM beobachtet werden. Für 2 u.c. wurde eine (2 × 2)-Rekonstruktion an der Oberfläche gemessen und für 3 u.c. CePt$_5$ wurde eine (3√3×3√3)R30◦-Rekonstruktion beobachtet. Der Übergang von 3 u.c. CePt5 zu 5 u.c. CePt$_5$ wurde untersucht. Mit Hilfe eines Strukturmodells schließe ich, dass es weder zu einer Rotation des atomaren Gitters noch zu einer Rotation des Übergitters kommt. Ab einer Bedeckung von 6 u.c. CePt5 erscheint eine weitere Komponente der CePt$_5$-Oberflächenlegierung, die keine Rekonstruktion mehr besitzt. Das atomare Gitter verläuft wieder entlang der kris- tallographischen Richtungen des Pt(111)-Kristalls und ist somit nicht mehr um 30^° gedreht. Für alle Bedeckungen wurden Spektroskopiekurven aufgenommen, die keinen Hinweis auf ein kohärentes schweres Fermionensystem geben. Eine Erklärung hierfür kommt aus einer LEED-IV Studie, die besagt, dass jede gemessene Oberfläche mit einer Pt(111)-Schicht terminiert ist. Das RTM ist sensitiv für die oberste Schicht und somit wäre der Effekt eines kohärenten schweren Fermionensystems nicht unbedingt messbar. N2 - The present work investigates the correlation of structural, electronic, and magnetic properties at metal surfaces by scanning tunneling microscopy (STM) and spectroscopy (STS). First I analyze the spin-split surface state of Ni(111). Subsequently the focus goes on iron thin films grown on Rh(001). Finally the heavy-fermion candidate CePt5/Pt(111) is investigated. Nickel is a well-known ferromagnet and its (111) surface has been the subject of several theoretical and experimental studies in the past. Despite intensive efforts, inconsistent results have been reported and a clear consistent picture is still missing. For this reason, the Ni(111) surface has been probed by STM and STS, which give access to both occupied and unoccupied states. By quasi-particle interference mapping a detailed description of the band dispersion is obtained. The exchange splitting between minority and majority spin states amounts to ∆E$_{ex}$ = (100 ± 8) meV. The onset of the majority band is located at E − E$_F$ = −(160 ± 8)meV and its effective mass is m^* = +(0,14 ± 0,04)me. Furthermore, the onset of the majority spin surface resonance is energetically located at E−E$_F$ = −(235±5)meV and with an effective mass equal to m^* = +(0,36±0,05)m$_e$. To unequivocally identify which spin channels dominate the STS signal, hexagonal quantum wells have been created by sputtering, and interpreted using a one-dimensional quantum well model. The six edges of the hexagon result to be unequal. Atomically resolved measurements show that adjacent edges have not only a different structure, but also different spectroscopic signatures characterized by an alternating sequence of presence and absence of an additional spectroscopic peak. Spin-dependent (SP-STM) measurements did not give any definite conclusion on the origin of this observation. The second experimental section deals with thin iron films deposited on a clean Rh(001) surface and examined by STM, STS and SP-STM. A nearly defect-free Rh(001) is necessary to obtain a growth of iron films with few defects. This is required to correctly interpret the magnetic signal excluding the possible influence of contaminants. The first atomic layer of Fe orders antiferromagnetically in a c(2 × 2)-structure with the easy magnetization axis perpendicular to the surface plane. The second and third layer behaves ferromagnetically with domains sizes which get progressively smaller by increasing the coverage. Above 3.5 atomic layers, a reorientation of the easy magnetization direction from out-of-plane to in-plane takes place. This is signaled by the size of magnetic domains which become smaller while at the same time domain walls become larger. Temperature-dependent SP-STM measurements allow to estimate a Curie temperature of approximatelly 80K for the second layer. At this coverage an additional periodic modulation of the local density of states is detected and persists, although with a shorter wavelength, in the third and fourth layer. Temperature and voltage-dependent measurements support an interpretation of these data based on the existence of a charge density wave. I show that these two usually competing orders (charge and magnetic order) coexist and influence each other, as also confirmed by theoretical calculations performed in collaboration with F. P. Toldin and F. Assaad. In the final chapter the CePt5/Pt(111) intermetallic surface compound has been analyzed. This system has been recently reported to give rise to a heavy Fermion lattice. Starting from the clean Pt(111) surface, the intermetallic surface compound CePt5/Pt(111) is prepared. The thickness of the alloy (t in u.c.) can be varied by the evaporated amount of cerium and the surface produced is examined with STM and STS for various thicknesses. STM images and LEED patterns analyzed in collaboration with C. Praetorius provide consistent results. For coverages below one atomic layer cerium no ordered structure with the STM was observed. For 2 u.c. a (2 × 2) surface structure and for 3 u.c. CePt5 a (3√3×3√3)R30◦-structure was observed. The transition from 3 u.c. CePt5 to 5 u.c. CePt5 was investigated. Supported by structural modelling I conclude that neither a rotation of the atomic lattice nor a rotation of the superstructure was observed. Starting at a coverage of 6 u.c. CePt5 the CePt5 intermetallic surface compound evolves into a different structure. The high symmetry direction is aligned with the underlying Pt(111) crystal and no longer rotated by 30. For all coverages spectroscopic data are acquired, which give no indication of a coherent heavy Fermion system. One explanation is based on a LEED-IV study, which says that any measured surface is terminated with a Pt(111)-layer. The STM is sensitive to the uppermost layer, and thus the effect of a coherent heavy Fermion system would not necessarily measurable. KW - Rastertunnelmikroskopie KW - Korrelation KW - Magnetische Wechselwirkung KW - Spin-polarisierte Rastertunnelmikroskopie KW - Korrelation KW - Metallische Oberflächen KW - Metalloberfläche KW - Physikalische Eigenschaft Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142475 ER - TY - THES A1 - Schmitt, Martin T1 - Strukturanalyse und magnetische Eigenschaften von Ketten aus 3d-Übergangsmetalloxiden auf Ir(001) und Pt(001) T1 - Structural analysis and magnetic properties of 3d transition-metal oxide chains on Ir(001) and Pt(001) N2 - In der vorliegenden Arbeit werden die strukturellen und magnetischen Eigenschaften verschiedener 3d-Übergangsmetalloxidketten (TMO-Ketten) auf Ir(001) und Pt(001) untersucht. Diese weisen eine (3 × 1) Struktur mit periodisch angeordneten Ketten auf, die nur über die Sauerstoffbindung an das Substrat gekoppelt sind. Während die Struktur durch experimentelle und theoretische Untersuchungen bestätigt ist, liegen für die magnetischen Eigenschaften ausschließlich Rechnungen vor. Zur Überprüfung dieser theoretischen Vorhersagen wird die Methode der spinpolarisierten Rastertunnelmikroskopie (SP-STM) verwendet, die die Abbildung der magnetischen Ordnung mit atomarer Auflösung erlaubt. Die Untersuchungen beginnen mit der Vorstellung der Ir(001) Oberfläche, die eine (5 × 1) Rekonstruktion aufweist. Eine Aufhebung dieser Rekonstruktion erreicht man durch das Heizen des Ir-Substrats in Sauerstoffatmosphäre unter Bildung einer (2 × 1) Sauerstoffrekonstruktion. Die Qualität der Oberfläche hängt dabei von der Wachstumstemperatur T und dem verwendeten Sauerstoffdruck pOx ab. Die bei T = 550°C und pOx = 1 × 10^−8 mbar hergestellte Sauerstoffrektonstruktion dient als Ausgangspunkt für die folgenden Präparationen von CoO2, FeO2 und MnO2-Ketten. Dazu wird jeweils eine drittel Monolage (ML) des Übergangsmetalls auf die Oberfläche des Substrates gedampft und die Probe unter Sauerstoffatmosphäre ein weiteres Mal geheizt. Auf diese Weise kann die (3 × 1) Struktur der bekannten Ketten bestätigt und die Gruppe der TMO-Ketten um die CrO2-Ketten erweitert werden. In der einschlägigen Fachliteratur wurden Vorhersagen bezüglich der magnetischen Struktur der TMO-Ketten publiziert, wonach entlang und zwischen CoO2-Ketten eine ferromagnetische (FM) und für FeO2 und MnO2-Ketten eine antiferromagnetische (AFM-) Kopplung vorliegt.Während die Überprüfung dieser Vorhersagen mit SP-STM für CoO2 und CrO2-Ketten keine Hinweise auf magnetische Strukturen liefert, liegen bei FeO2 und MnO2-Ketten unterschiedliche magnetische Phasen vor. In der Tat kann mit den experimentell gefundenen Einheitszellen die AFM-Kopplung entlang beider Ketten bestätigt werden. Im Gegensatz widersprechen die Kopplungen zwischen den Ketten den Berechnungen. Bei FeO2-Ketten liegt eine stabile FM Ordnung vor, die zu einer magnetischen (3 × 2) Einheitszelle mit einer leichten Magnetisierung in Richtung der Oberflächennormalen führt (out-of-plane). Die MnO2-Ketten weichen ebenfalls von der berechneten magnetischen kollinearen Ordnung zwischen benachbarten Ketten ab und zeigen eine chirale Struktur. Durch die Rotation der Mn-Spins um 120° in der Probenebenen (in-plane) entsteht eine magnetische (9 × 2) Einheitszelle, deren Periode durch neue DFT-Rechnungen bestätigt wird. Nach diesen Berechnungen handelt es sich um eine Spinspirale, die durch die Dzyaloshinskii-Moriya (DM-) Wechselwirkung bei einem Energiegewinn von 0,3 meV pro Mn-Atom gegenüber den kollinearen FM Zustand stabilisiert wird. Diese wird ähnlich wie bei bereits publizierten Clustern und Adatomen auf Pt(111) durch die Rudermann-Kittel-Kasuya-Yosida (RKKY-) Wechselwirkung vermittelt und erklärt den experimentell gefundenen einheitlichen Drehsinn der Spiralen. Die RKKY-Wechselwirkung zeigt eine starke Abhängigkeit von der Fermi-Oberfläche des Substrats. Im folgenden Kapitel werden deshalb mit TMO-Ketten auf Pt(001) die strukturellen und magnetischen Eigenschaften auf einem weiteren Substrat analysiert, wobei zum Zeitpunkt der Arbeit nur die Existenz der CoO2-Ketten aus der Literatur bekannt war. Vergleichbar mit Ir(001) besitzt auch Pt(001) eine rekonstruierte Oberfläche, die sich aber stabil gegenüber Oxidation zeigt. Dadurch muss die drittel ML des Übergangsmetalls direkt auf die Rekonstruktion aufgedampft werden. Das Wachstum des Übergangsmetalls ist dabei von der Temperatur des Substrats abhängig und beeinflusst das Ergebnis der nachfolgenden Oxidation. Diese erfolgt analog zum Wachstum der Ketten auf Ir(001) durch das Heizen der Probe in Sauerstoffatmosphäre und resultiert nur für das Aufdampfen des Übergangsmetalls auf kalte Pt(001) Oberflächen in Ketten mit der Periode von 3aPt. Auf diese Weise kann nicht nur die (3 × 1) Struktur der CoO2-Ketten bestätigt werden, sondern auch durch atomare Auflösung die Gruppe der TMO-Ketten um MnO2-Ketten auf Pt(001) erweitert werden. Im Gegensatz dazu sind die nicht magnetischen Messungen im Fall von Fe nicht eindeutig. Zwar liegen auch hier Ketten im Abstand des dreifachen Pt Gittervektors vor, trotzdem ist die (3 × 1) Struktur nicht nachweisbar. Dies liegt an einer Korrugation mit einer Periode von 2aPt entlang der Ketten, was ein Hinweis auf eine Peierls Instabilität sein kann. Entsprechend dem Vorgehen für Ir(001) werden für die TMO-Ketten auf Pt(001) SP-STM Messungen durchgeführt und die Vorhersage einer AFM-Kopplung für CoO2-Ketten überprüft. Auch hier können, wie im Fall von CoO2-Ketten und im Widerspruch zur Vorhersage, für beide Polarisationsrichtungen der Spitze keine magnetischen Strukturen gefunden werden. Darüber hinaus verhalten sich die MnO2-Ketten auf Pt(001) mit ihrer chiralen magnetischen Struktur ähnlich zu denen auf Ir(001). Dies bestätigt die Annahme einer indirekten DM-Wechselwirkung, wobei durch die 72° Rotation der Mn-Spins eine längere Periode der zykloidalen Spinspirale festgestellt wird. Die Erklärung dafür liegt in der Abhängigkeit der RKKY-Wechselwirkung vom Fermi-Wellenvektor des Substrats, während sich die DM-Wechselwirkung beim Übergang von Ir zu Pt nur wenig ändert. N2 - In this work the structural and magnetic properties of various 3d transition-metal oxide (TMO) chains on Ir(001) and Pt(001) are investigated. These exhibit a (3 × 1) structure with periodically arranged chains that are only coupled to the substrate by oxygen bonds. While the structure is confirmed by experiments and theory, the magnetic coupling is merely available by theory. To verify these theoretical predictions, the method of spin-polarized scanning tunneling microscopy (SP-STM) is used, which enables the detection of magnetic nanostructures by the high lateral resolution. First the Ir(001) surface is introduced, which exhibits a (5×1) reconstruction. Removal of this reconstruction is achieved by heating the Ir substrate in oxygen atmosphere to form a (2 × 1) oxygen reconstruction. The observed surface quality depends on both, the temperature T and the oxygen pressure pOx during growth. The best result is achieved with T = 550°C and pOx = 1 × 10^−8 mbar and thus serves as the starting point for the following preparations of CoO2, FeO2 and MnO2 chains. In each case one third of the monolayer (ML) of the transition-metal is evaporated onto the substrate and the sample is heated once more under an oxygen atmosphere. After this procedure not only the (3 × 1) structure of the known chain system is confirmed, but also the group of TMO chains could be extended by the CrO2 chains. In the literature, predictions have been published regarding the magnetic structure of the TMO chains. According to these, the coupling is ferromagnetic (FM) along and between CoO2 chains and antiferromagnetic (AFM) for FeO2 and MnO2 chains. While SP—STM results do not suggest a magnetic structure for CoO2 and CrO2, the measurements reveal magnetic structures for FeO2 and MnO2 chains. Comparing the calculations with the experimentally observed magnetic order, the AFM coupling along both TMO—chains can be confirmed. Contradictory to the theoretical predictions, the interchain coupling differs. For FeO2 chains we find stable FM coupling which lead to a magnetic (3 × 2) unit cell with an easy magnetization direction parallel to the surface normal (out-of-plane). The MnO2 also deviate from the calculated collinear order between adjacent chains and show a chiral system. The in-plane rotation of the Mn spins by 120° form a magnetic (9 × 2) unit cell whose period is confirmed by new DFT calculations. According to these calculations, the spin spiral is stabilized by the Dzyaloshinskii—Moriya interaction (DMI) with an energy gain of 0,3 meV per Mn atom with respect to the collinear FM state. Similar to already published systems consisting of magnetic clusters and adatoms on a Pt(111) surface, the DMI is mediated by the Rudermann—Kittel—Kasuya—Yoshida (RKKY) interaction and explains the experimentally found uniform direction of rotation of the spirals. The RKKY interaction depends on the Fermi surface of the substrate. Based on this fact, the growth of TMO chains is investigated in the following chapter, where only the existence of CoO2 chains is known from literature at the time of this work. Similar to Ir(001), Pt(001) also has a reconstructed surface that is now stable to oxidation. As a consequence, the transition-metal is evaporated directly on the reconstructed surface. Both the growth of the transition metal on the Pt(001) and the topography after the following growth procedure of TMO chains depend on the substrate temperature during evaporation. This procedure follows the TMO growth on Ir(001) by heating the sample in oxygen atmosphere and only results in a stripe pattern with a period of 3aPt for the evaporation on cold Pt(001). In this way not only the (3 × 1) structure of the CoO2 can be confirmed, but also the group of TMO chains is extended by MnO2 chains through atomic resolution scans. In contrast, the non-magnetic measurements in the case of Fe are not obvious. Although there are chains with the expected period of 3aPt, the (3 × 1) structure is not fully resolved along the chains due to a corrugation with a period of 2aPt along the chains, which could be an indication of a Peierls instability. Following the procedure for Ir(001) SP-STM investigations are performed to verify the prediction of an AFM coupling for CoO2 chains. Indeed, no magnetic structures of CoO2 chains are observed for both directions of tip polarization identical to the same chains on Ir(001). In addition, the MnO2 chains with their chiral magnetic structure on Pt(001) behave similarly to those on Ir(001). This confirms the assumption of an indirect DM interacation, where the 72° rotation of the Mn spins indicates a longer period of the cycloidal spin spiral. The explanation for this can be found in the dependence of the RKKY interaction on the Fermi wave vector of the substrate, while the DM interaction changes only slightly due to the transition from Ir to Pt. KW - Rastertunnelmikroskopie KW - Spinkette KW - Magnetische Wechselwirkung KW - Übergangsmetalloxide KW - Dzyaloshinskii–Moriya interaction KW - Dzyaloshinskii-Moriya Wechselwirkung KW - RKKY-Wechselwirkung KW - RKKY-interaction KW - indirect exchange coupling KW - indirekte Austauschkopplung Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-191823 ER - TY - THES A1 - Wegener, Sonja T1 - Dosimetrie unter Nicht-Gleichgewichtsbedingungen T1 - Dosimetry in non-equilibrium situations N2 - Für die Dosimetrie in der Strahlentherapie sind eine Reihe von Detektoren unterschiedlicher Bauform und Funktionsweise erhältlich. Detektoreigenschaften wie die Größe des aktiven Volumens, energieabhängiges Ansprechen und Feldstörungen durch Bauteile beeinflussen ihr Signal, so dass kein idealer, universell einsetzbarer Detektor existiert. Insbesondere unter Messbedingungen, bei denen sich die Teilchenfluenz am Ort der Messung stark ändert, können die Detektorsignale stark von den wahren Dosisverhältnissen abweichen, z.B. in kleinen Feldern. Im Rahmen dieser Arbeit wurde das Ansprechen verschiedener Detektortypen in solchen Extremsituationen analysiert. Dioden und Ionisationskammern verschiedener Bauformen und Größen wurden in verschiedenen Experimenten gegen Gafchromic-EBT3-Film verglichen. Das Ansprechen auf Streustrahlung konnte durch Ausblockung der Feldmitte untersucht werden, wobei zusätzlich geometrisch der Volumeneffekt korrigiert wurde. Dabei zeigte sich teils ein starkes Überansprechen. Ferner wurde gezeigt, dass die bei der Messung von Querprofilen, also sowohl in der Feldmitte, in Bereichen starker Dosisgradienten und außerhalb des Nutzfeldes, auftretenden Abweichungen durch die Verwendung einer Detektorkombination kompensiert werden können. Somit verbessert sich auch die Übereinstimmung mit den auf Film gemessenen Profilen. Für Ionisationskammern wurden effektive Messpunkte bestimmt, wobei die notwendigen Verschiebungen teils deutlich geringer waren als in den gängigen Dosimetrieprotokollen empfohlen. Insbesondere für kleinvolumige Ionisationskammern mit geringen Signalstärken kam es bei der Verwendung von im Bestrahlungsraum positionierten Elektrometern zu Störeinflüssen durch Streustrahlung. Diese Effekte konnten durch Reduzierung der das Elektrometer erreichenden Streustrahlung verringert werden. Anschließend ließ sich das Ansprechen im Aufbaubereich vergleichen. Hier zeigten sich insbesondere Unterschiede zwischen den Detektortypen, aber auch zwischen den verwendeten Polaritäten der Kammerspannung. Durch die Verwendung einer Bleifolie wurde der Einfluss von Elektronenkontamination herausgefiltert. Zusätzlich wurden das Ansprechen verschiedener Detektoren im oberflächennahen Bereich auch bei angelegten magnetischen Feldern von Feldstärken bis zu 1,1 T untersucht. In allen Fällen wurden Detektorgebrauchsgrenzen aufgezeigt. Die Erkenntnisse ermöglichen es, in den verschiedenen Extremsituationen geeignete Detektoren zu wählen, und eine Abschätzung der residualen Abweichungen durchzuführen. Gezeigt wurde auch, wo eine Detektorkombination die Genauigkeit verbessern kann. N2 - A multitude of different detectors is available for relative dosimetry in radiotherapy. Those detectors differ in their design and working principle. Depending on the detector details, the main drawbacks are the volume averaging effect or energy-dependent response. Consequently, there is no universally usable ideal detector. Especially under conditions without charged particle equilibrium, detector signals can deviate substantially from the real dose ratios, e.g. in small fields. In this work, the behavior of detectors of different types was analyzed for a range of extreme situations. Diodes and ionization chambers were compared against EBT3 film in several experiments. Detector response to scattered radiation was analyzed by blocking the central part of photon fields. The geometric volume averaging effect was corrected for simultaneously. Overresponse was observed, and the magnitude depended on the exact detector type. For profile measurements, detector response in the field center, the high gradient regions and out of the field can offset the results. A way to compensate the drawbacks of individual detectors by means of measurements with a detector combination was shown to improve the agreement of the measured profiles with profiles measured on EBT3 film. For ionization chambers, effective points of measurements were determined, which decreased with detector radius and were mostly smaller than the shifts usually recommended in dosimetry protocols. Especially for ionization chambers with very small volumes and, therefore, low signals, an offset current produced by irradiation of an electrometer positioned in the treatment room distorted the measured signals. The effect was greatly reduced by limiting the dose to the electrometer, e.g. by increasing the distance between the electrometer and the radiation source or by shielding sensitive electrometer parts with lead. Afterwards, the detector response in the build-up region was studied. Here, differences were observed between the detector types as well as the signs of the biasing voltage. Electron contamination was filtered out using a lead foil close to the collimator. In addition to that, the response of different detectors near the surface in the presence of magnetic fields was studied up to magnetic field strengths of 1.1 T. In all cases, detector limitations became obvious. This knowledge allows the choice of the proper detector for a given situation as well as an idea of the magnitude of the remaining error, as studied under the extreme model conditions described above. It was also shown how a combination of two detectors, for example, a diode and an ionization chamber, can improve the accuracy of the obtained data. KW - Dosimetrie KW - Strahlentherapie KW - Nichtgleichgewicht Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-184431 ER - TY - THES A1 - Ali, Qasim T1 - Distributed Control of Cooperating Mini UAVs T1 - Verteilte Regelung von Kooperierenden Mini UAVs N2 - Mini Unmanned Aerial Vehicles (MUAVs) werden immer beliebtere Forschungsplattformen. Vor allem in den letzten Jahren ziehen sie aufgrund ihrer Erschwinglichkeit und ihrer Flexibilität, die es erlaubt sie in fast allen Lebensbereichen einzusetzen, beträchtliche Aufmerksamkeit auf sich. MUAVs haben offensichtliche Vorteile gegenüber bemannten Plattformen einschließlich ihrer viel geringeren Herstellungs- und Betriebskosten, Risikovermeidung für den menschlichen Piloten, der Möglichkeit sicher niedrig und langsam fliegen zu können, und Realisierung von Operationen, die über die inhärenten Grenzen des menschlichen Körpers hinausgehen. Der Fortschritt in der Micro Electro-Mechanical System (MEMS) Technologie, Avionik und Miniaturisierung von Sensoren spielte auch eine bedeutende Rolle bei der Entwicklung der MUAVs. Diese Fluggeräte reichen von einfachem Spielzeug aus dem Elektrofachhandel bis zu hoch entwickelten, kommerziellen Plattformen, die die Durchführung neuer Aufgaben wie Offshore-Windkraftwerk Inspektionen, 3D-Modellierung von Gebäuden usw. erlauben. MUAVs sind auch umweltfreundlich, da sie weniger Luftverschmutzung und Lärm verursachen. Unbemannt ist daher unübertroffen. Aktuelle Forschung konzentriert sich auf die Möglichkeit mehrere kostengünstige Fluggeräte zusammen fliegen zu lassen, während die erforderliche relative räumliche Trennungen beibehalten wird. Dies ermöglicht es effizient Aufgaben zu erfüllen im Vergleich zu einem einzigen sehr teuren Fluggerät. Durch die Redundanz entfällt auch das Risiko des Scheiterns der Mission durch den Verlust eines einzigen Fluggeräts. Wertvolle Aufgaben, die kooperative Fluggeräte ausführen können, sind beispielsweise gemeinsame Lasttransporte, Such- und Rettungsmissionen, mobile Kommunikationsrelais, Sprühen von Pestiziden und Wetterbeobachtung. Obwohl die Realisierung von Flügen mit mehreren, gekoppelten UAVs komplex ist, rechtfertigen dennoch offensichtliche Vorteile diese mühsame und aufwändige Entwicklungsarbeit. Verteilte Steuerung von kooperierenden Einheiten ist ein multidisziplinäres Thema, das es erfordert in diversifizierten Bereichen zu arbeiten. Dazu gehören MUAV Hardware und Software, Kommunikationstechniken für den notwendigen Informationsaustausch, Flugdynamik, Regelungstechnik, insbesondere für verteilte / kooperative Steuerungstechniken, Graphentheorie für Kommunikationstopologie Modellierung und Sensoren-Technologie wie Differential GPS (DGPS). Für eine Flotte von Agenten, die in unmittelbarer Nähe fliegen, ist eine genaue Positionsbestimmung zwingend nötig um Kollisionen zu vermeiden und die Anforderungen für die meisten Missionen wie Georeferenzierung zu erfüllen. Für solche Szenarien ist DGPS ein potenzieller Kandidat. Ein Teil der Forschung konzentriert sich daher auf die Entwicklung von DGPS Code. Eines der Module dieser Forschung war Hardware-Implementierung. Ein einfacher Test-Aufbau zur Realisierung von Basisfunktionalitäten für Formationsflug von Quadrocoptern wurde am Lehrstuhl für Informationstechnik in der Luft- und Raumfahrt der Universität Würzburg entwickelt. Diese Testumgebung kann nicht nur zur Prüfung und Validierung von Algorithmen für Formationsflug in realer Umgebung genutzt werden, sondern dient auch zur Ausbildung von Studenten. Ein bereits vorhandener Prüfstand für einzelne Quadrocopter wurde mit den notwendigen Kommunikation und verteilten Steuerung erweitert, um Algorithmen für Formationsflüge in drei Freiheitsgraden (Roll / Nick / Gier) zu testen. Diese Studie umfasst die Bereiche der Kommunikation, Steuerungstechnik und Embedded-System-Programmierung. Das Bluetooth-Protokoll wurde für die gegenseitige Kommunikation zwischen zwei Quadrocoptern verwendet. Eine einfache Technik der Proportional-Integral-Differential (PID) Steuerung in Kombination mit Kalman-Filter wurde genutzt. Die MATLAB Instrument Control Toolbox wurde für die Datenanzeige, die Analyse und das Plotten verwendet. Plots können in Echtzeit gezeichnet werden und empfangene Daten können auch in Form von Dateien zur späteren Verwendung und Analyse gespeichert werden. Das System wurde preisgünstig, unter Berücksichtigung eines einfachen Aufbaus, entwickelt. Der vorgeschlagene Aufbau ist sehr flexibel und kann einfach an veränderte Anforderungen angepasst werden. Als verteiltes Steuerungsschema wurde ein zentralisierter, heterogener Formationsflug Positionsregler formuliert, der einen „explicit model following Linear Quadratic Regulator Proportional Integral (LQR PI)“ Regler verwendet. Der Anführer Quadrocopter ist ein stabiles Referenzmodell mit der gewünschten Dynamik, deren Ausgang vollkommen von den beiden Wingmen Quadrocopter verfolgt wird. Der Anführer selbst wird durch Pole Placement Steuerverfahren mit den gewünschten Stabilitätseigenschaften gesteuert, während die beiden Anhänger durch robuste und adaptive LQR PI Steuerverfahren geregelt werden. Für diese Studie wird ein Vollzustandsvektor der Quadrocopter betrachtet während nur die resultierende Leistung verfolgt wird. Die ausgewählte 3D Formationsgeometrie und die statische Stabilität bleibt unter einer Vielzahl von möglichen Störungen erhalten. Bei Kommunikationsverlust zwischen Anführer und einem der Anhänger, leitet der andere Anhänger die Daten, die er vom Anführer erhalten hat, an den betroffenen Anhänger weiter. Die Stabilität des Regelsystems wurde unter Verwendung von Singulärwerten analysiert. Der vorgeschlagene Ansatz für eng gekoppelten Formationsflug von MUAVs wurde mit Hilfe von umfangreichen Simulationen unter MATLAB® / Simulink® validiert und ergab viel versprechende Ergebnisse. Auch die Tracking-Leistung wurde für zeitlich veränderliche Befehle gezeigt. Die vorgeschlagene Architektur ist skalierbar und kann problemlos erweitert werden. Dieser Ansatz ist für die Szenarien geeignet, die eng gekoppelte Formationsflug benötigen, wie kooperatives Greifen oder gemeinsame Lasttransporte. Ein innovatives Framework für die Teamarbeit von zwei Quadrocopter Flotten wurde entwickelt. Als Beispielmission wurde ein Szenario gewählt, bei dem ein Feuer auf einer größeren Fläche gelöscht werden muss. Jede Formation hat ihre angegebene Formationsgeometrie und eine zugewiesene Aufgabe. Die Lageregelung für die Quadrocopter in einer der Formationen wurde durch ein LQR PI-Regelschema, das auf „explicit model following“ basiert, umgesetzt. Die Quadrocopter in anderen Formation werden durch ein LQR PI Servomechanismus Regelsystem gesteuert. Die beiden Steuersysteme werden in Bezug auf ihre Leistung und ihren Steuerungsaufwand verglichen. Beide Formationen werden durch entsprechende Bodenstationen durch virtuelle Anführer kommandiert. Die Bodenstationen tauschen die befohlene Höheninformation aus, um gegenseitig eine sichere Trennung zwischen den Formationen zu gewährleisten. Die Quadrocopter können kommandierte Solltrajektorien folgen und über erwünschten Punkten für eine vorgegebene Zeit schweben. Bei Kommunikationsverlust zwischen Bodenstation und einem der Quadcopter leitet der benachbarte Quadrocopter die Befehlsdaten, die er von der Bodenstation erhalten hat, an die betroffene Einheit weiter. Das vorgeschlagene Framework wurde durch umfangreiche Simulationen mit Hilfe von MATLAB® / Simulink® validiert und liefert sehr brauchbare Ergebnisse. Cluster-Rekonfiguration von Agenten wird in unserer Arbeit ebenfalls gezeigt. Dies erlaubt es die Formationsgeometrie während des Fluges auf eine beliebige neue Form umzuschalten. Für die genannten Anwendungen sind Konsens Algorithmen nicht erwünscht, da wir von den Quadrocopter Flotten fordern, dass sie dem von uns gewählten Weg folgen, und nicht ihren Weg selbst wählen. Eine Reihe der praktischen Probleme von Kommunikationsnetzen kann in geeigneter Weise durch Graphen dargestellt werden. Dies erleichtert die Problemformulierung und den Analyseprozess. Kommunikationstopologien für Netzwerke mit einer großen Anzahl von Einheiten, wie zum Beispiel Schwärme von Luftfahrzeugen, können durch einen graphentheoretischen Ansatz untersucht werden. Um die Bildung solcher Probleme zu erleichtern, wird der Graph mit Hilfe der Laplace-Matrix dargestellt. Eigenwerte der Laplace-Matrix wurden in unserer Studie angemessene Berücksichtigung gegeben einen Einblick in die Graphen / Subgraphen Eigenschaften zu verleihen. Der gleiche wurden genutzt um die bekannte Euler Formel zu verallgemeinern und somit auf Graphen und Subgraphen anwendbar zu machen. Eine modifizierte Euler-Formel wird ebenfalls vorgestellt. Die Verwendung der Graphentheorie in verteilten / kooperativen Regelsystemen wird auch durch Simulationen gezeigt. Kooperative Kontrolschemas, die auf auf Konsens-Algorithmen beruhenden, wurden für die Lageregelung von Quadrocopter-Flotten, in denen kein expliziter Anführer existiert, verwendet. Konsens-Algorithmen wurden in Kombination mit verschiedenen Steuersystemen verwendet, was zur Autonomie von Quadrocoptern beiträgt. Die Steuersysteme, die für diesen Zweck verwendet werden, umfassen LQR PI-Regelung basierend auf „model following“ und LQR PI Servo-Mechanismus. Die Regelungen wurden unter verschiedenen Kommunikationstopologien untersucht, darunter voll verbundene ungerichtete Graphen, gerichteten Graphen und Zyklus-Topologie. Der Informationsfluss unter den Agenten in einem Cluster wurde durch Laplace-Matrix modelliert. Die Auswirkungen von Eingangs Verzerrungen auf Konsens Werte wurden ebenfalls untersucht. Quadrocopter können durch gegenseitigen Konsens Flugbahnen verfolgen und die Zielpunkte erreichen. Die vorgeschlagenen Regelungssysteme wurden unter verschiedenen Kommunikationstopologien in Matlab / Simulink-Umgebung durch umfangreiche Simulationen validiert. Die Ergebnisse bescheinigen die Wirksamkeit der präsentierten Schemata mit dem zusätzlichen Vorteil der Einfachheit der Umsetzung. Das vorgeschlagene Regelungssystem ist skalierbar für große Gruppen von MUAVs. Für Formationsflug sind die Anforderungen an die Positionsgenauigkeit sehr hoch. GPS-Signale allein bieten keine ausreichend hohe Positionsgenauigkeit um die Anforderung zu erfüllen; eine Technik für die genauere Positionsbestimmung ist daher erforderlich, beispielsweise DGPS. Es existiert eine Anzahl von öffentlichen Codes für die GPS-Positionsbestimmung und Baseline-Bestimmung im Offline-Modus. Es existiert jedoch keine Software für DGPS, die Korrekturfaktoren der Basisstationen nutzt, ohne auf Doppel Differenz Informationen zu vertrauen. Um dies zu erreichen, wurde eine Methodik in MATLAB-Umgebung für DGPS mit C/A Pseudoranges nur auf einzelne Frequenz L1 eingeführt es machbar für Empfänger kostengünstig GPS zu nutzen. Unsere Basisstation wird an einem genau vermessen Referenzpunkt aufgestellt. Pseudoranges und geometrische Abstände werden an der Basisstation verglichen, um die Korrekturfaktoren zu berechnen. Diese Korrekturfaktoren, für aller gültigen Satelliten während einer Epoche, werden dann an einen Rover übergeben. Das Rover berücksichtigt innerhalb der entsprechenden Epoche diese für seine eigene wahre Positionsbestimmung. Zur Validierung der vorgeschlagenen Algorithmen wird unsere Rover ebenfalls an einer vorbestimmten Stelle platziert. Der vorgeschlagene Code ist ein geeignetes und einfaches Werkzeug für die Nachbearbeitung von GPS-Rohdaten für eine genaue Positionsbestimmung eines Rover, z.B. eines UAV während der Post-Missionsanalyse. N2 - Mini Unmanned Aerial Vehicles (MUAVs) are becoming popular research platform and drawing considerable attention, particularly during the last decade due to their afford- ability and multi-dimensional applications in almost every walk of life. MUAVs have obvious advantages over manned platforms including their much lower manufacturing and operational costs, risk avoidance for human pilots, flying safely low and slow, and realization of operations that are beyond inherent human limitations. The advancement in Micro Electro-Mechanical System (MEMS) technology, Avionics and miniaturization of sensors also played a significant role in the evolution of MUAVs. These vehicles range from simple toys found at electronic supermarkets for entertainment purpose to highly sophisticated commercial platforms performing novel assignments like offshore wind power station inspection and 3D modelling of buildings etc. MUAVs are also more environment friendly as they cause less air pollution and noise. Unmanned is therefore unmatched. Recent research focuses on use of multiple inexpensive vehicles flying together, while maintaining required relative separations, to carry out the tasks efficiently compared to a single exorbitant vehicle. Redundancy also does away the risk of loss of a single whole-mission dependent vehicle. Some of the valuable applications in the domain of cooperative control include joint load transportation, search and rescue, mobile communication relays, pesticide spraying and weather monitoring etc. Though realization of multi-UAV coupled flight is complex, however obvious advantages justify the laborious work involved... KW - Micro Air Vehicle KW - Dezentrale Steuerung KW - Distributed Control KW - Cooperating UAVs KW - Formation Flight KW - Graph Theory KW - Consensus Control KW - Quadcopter KW - Mini Unmanned Aerial Vehicle Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-140686 ER - TY - THES A1 - Bangert, Philip T1 - Magnetic Attitude Control of Miniature Satellites and its Extension towards Orbit Control using an Electric Propulsion System T1 - Magnetische Lageregelung von Kleinstsatelliten und ihre Erweiterung zur Orbitregelung durch die Integration eines Elektrischen Antriebssystems N2 - The attitude and orbit control system of pico- and nano-satellites to date is one of the bottle necks for future scientific and commercial applications. A performance increase while keeping with the satellites’ restrictions will enable new space missions especially for the smallest of the CubeSat classes. This work addresses methods to measure and improve the satellite’s attitude pointing and orbit control performance based on advanced sensor data analysis and optimized on-board software concepts. These methods are applied to spaceborne satellites and future CubeSat missions to demonstrate their validity. An in-orbit calibration procedure for a typical CubeSat attitude sensor suite is developed and applied to the UWE-3 satellite in space. Subsequently, a method to estimate the attitude determination accuracy without the help of an external reference sensor is developed. Using this method, it is shown that the UWE-3 satellite achieves an in-orbit attitude determination accuracy of about 2°. An advanced data analysis of the attitude motion of a miniature satellite is used in order to estimate the main attitude disturbance torque in orbit. It is shown, that the magnetic disturbance is by far the most significant contribution for miniature satellites and a method to estimate the residual magnetic dipole moment of a satellite is developed. Its application to three CubeSats currently in orbit reveals that magnetic disturbances are a common issue for this class of satellites. The dipole moments measured are between 23.1mAm² and 137.2mAm². In order to autonomously estimate and counteract this disturbance in future missions an on-board magnetic dipole estimation algorithm is developed. The autonomous neutralization of such disturbance torques together with the simplification of attitude control for the satellite operator is the focus of a novel on-board attitude control software architecture. It incorporates disturbance torques acting on the satellite and automatically optimizes the control output. Its application is demonstrated in space on board of the UWE-3 satellite through various attitude control experiments of which the results are presented here. The integration of a miniaturized electric propulsion system will enable CubeSats to perform orbit control and, thus, open up new application scenarios. The in-orbit characterization, however, poses the problem of precisely measuring very low thrust levels in the order of µN. A method to measure this thrust based on the attitude dynamics of the satellite is developed and evaluated in simulation. It is shown, that the demonstrator mission UWE-4 will be able to measure these thrust levels with a high accuracy of 1% for thrust levels higher than 1µN. The orbit control capabilities of UWE-4 using its electric propulsion system are evaluated and a hybrid attitude control system making use of the satellite’s magnetorquers and the electric propulsion system is developed. It is based on the flexible attitude control architecture mentioned before and thrust vector pointing accuracies of better than 2° can be achieved. This results in a thrust delivery of more than 99% of the desired acceleration in the target direction. N2 - Eine präzise Lage- und Orbitregelung stellt derzeit eine der größten Limitierungen der Einsatzmöglichkeiten von Kleinstsatelliten dar. Um zukünftige wissenschaftliche und kommerzielle Missionen auch mit dieser Klasse von Satelliten erfolgreich durchführen zu können, ist eine Leistungssteigerung bei gleichbleibender Größe und Masse nötig. Die vorliegende Arbeit beschäftigt sich mit der Verbesserung des Lageregelungssystems, der Vermessung der Ausrichtgenauigkeit im Orbit und der Herstellung von Orbitregelungskapazitäten mithilfe von fortschrittlicher Sensordatenanalyse und optimierter on-board Software. Die hier entwickelten Methoden wurden an im Orbit befindlichen Satelliten demonstriert und deren Gültigkeit gezeigt. Neben einer Methode um die typische CubeSat Lageerkennungssensorik im Orbit zu kalibrieren wurde ein Verfahren entwickelt, um die Ausrichtgenauigkeit ohne die Zuhilfenahme eines externen Referenzsensors zu bestimmen. Beide Verfahren wurden mithilfe des UWE-3 Satelliten im Orbit demonstriert. Die genaue Analyse der Dynamik eines Satelliten gibt Aufschluss über die vorwiegend herrschenden Störmomente. Für Kleinstsatelliten im erdnahen Orbit kann gezeigt werden, dass Störungen aufgrund von statischen magnetischen Verunreinigungen bei Weitem am meisten Einfluss auf die Dynamik des Satelliten haben. In dieser Arbeit wird eine Methode präsentiert, die Daten der Lageerkennung nutzt um das magnetische Dipolmoment eines Kleinstsatelliten zu bestimmen. Mithilfe dieses Verfahrens konnte das Dipolmoment von drei unterschiedlichen CubeSats im Bereicht von 23.1mAm² bis 137.2mAm² präzise bestimmt werden. Um die Lageregelungsgenauigkeit zu steigern wird ein Software Konzept präsentiert, welches die bekannten Störungen der Satellitendynamik inherent und energieoptimiert kompensiert. Die Anwendung dieser on-board Software wurde mit UWE-3 in einer Vielzahl von Lageregelungsexperimenten im Orbit demonstriert. Die Integration von elektrischen Antrieben wird zukünftigen Kleinstsatelliten die Möglichkeit zur Orbitkontrolle geben und damit viele neue Anwendungsszenarien eröffnen. Die Qualifizierung und Vermessung der Triebwerke im Orbit stellt jedoch eine technische Schwierigkeit dar, da Schübe im Bereich von µN gemessen werden müssen. Ein Verfahren zur genauen Bestimmung des Schubs eines solchen Triebwerks basierend auf dessen Auswirkung auf die Satellitendynamik wurde entwickelt und wird hier mit Hilfe von Simulationen für die UWE-4 Mission demonstriert. Es wird gezeigt, dass mit Hilfe von UWE-4 der Schub der Triebwerke mit einer hohen Genauigkeit von 1% Fehler für Schübe größer 1µN gemessen werden können. Eine magnetische Lageregelung unter Zuhilfenahme der elektischen Antriebe stellt das Konzept der hybriden Lage- und Orbitregelung für UWE-4 dar. Die damit erzielbare Leistung hinsichtlich der Ausrichtgenauigkeit sowie Orbitregelung wurde untersucht und ist hier für verschiedene Szenarien gezeigt. T3 - Forschungsberichte in der Robotik = Research Notes in Robotics - 19 KW - Satellit KW - Lageregelung KW - Plasmaantrieb KW - Attitude Determination and Control KW - Attitude Dynamics KW - Thrust Vector Control KW - Kleinsatellit Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177020 SN - 978-3-945459-28-7 (online) SN - 1868-7474 ER - TY - THES A1 - Werner, Jan T1 - Numerical Simulations of Heavy Fermion Systems: From He-3 Bilayers to Topological Kondo Insulators T1 - Numerische Simulationen von Schwer-Fermionen-Systemen: Von He-3-Doppellagen zu Topologischen Kondo Isolatoren N2 - Even though heavy fermion systems have been studied for a long time, a strong interest in heavy fermions persists to this day. While the basic principles of local moment formation, Kondo effect and formation of composite quasiparticles leading to a Fermi liquid, are under- stood, there remain many interesting open questions. A number of issues arise due to the interplay of heavy fermion physics with other phenomena like magnetism and superconduc- tivity. In this regard, experimental and theoretical investigations of He-3 can provide valuable insights. He-3 represents a unique realization of a quantum liquid. The fermionic nature of He-3 atoms, in conjunction with the absence of long-range Coulomb repulsion, makes this material an ideal model system to study Fermi liquid behavior. Bulk He-3 has been investigated for quite some time. More recently, it became possible to prepare and study layered He-3 systems, in particular single layers and bilayers. The pos- sibility of tuning various physical properties of the system by changing the density of He-3 and using different substrate materials makes layers of He-3 an ideal quantum simulator for investigating two-dimensional Fermi liquid phenomenology. In particular, bilayers of He-3 have recently been found to exhibit heavy fermion behavior. As a function of temperature, a crossover from an incoherent state with decoupled layers to a coherent Fermi liquid of composite quasiparticles was observed. This behavior has its roots in the hybridization of the two layers. The first is almost completely filled and subject to strong correlation effects, while the second layer is only partially filled and weakly correlated. The quasiparticles are formed due to the Kondo screening of localized moments in the first layer by the second-layer delocalized fermions, which takes place at a characteristic temperature scale, the coherence scale Tcoh. Tcoh can be tuned by changing the He-3 density. In particular, at a certain critical filling, the coherence scale is expected to vanish, corresponding to a divergence of the quasiparticle effective mass, and a breakdown of the Kondo effect at a quantum critical point. Beyond the critical point, the layers are decoupled. The first layer is a local moment magnet, while the second layer is an itinerant overlayer. However, already at a filling smaller than the critical value, preempting the critical point, the onset of a finite sample magnetization was observed. The character of this intervening phase remained unclear. Motivated by these experimental observations, in this thesis the results of model calcula- tions based on an extended Periodic Anderson Model are presented. The three particle ring exchange, which is the dominant magnetic exchange process in layered He-3, is included in the model. It leads to an effective ferromagnetic interaction between spins on neighboring sites. In addition, the model incorporates the constraint of no double occupancy by taking the limit of large local Coulomb repulsion. By means of Cellular DMFT, the model is investigated for a range of values of the chemical potential µ and inverse temperature β = 1/T . The method is a cluster extension to the Dy- namical Mean-Field Theory (DMFT), and allows to systematically include non-local correla- tions beyond the DMFT. The auxiliary cluster model is solved by a hybridization expansion CTQMC cluster solver, which provides unbiased, numerically exact results for the Green’s function and other observables of interest. As a first step, the onset of Fermi liquid coherence is studied. At low enough temperature, the self-energy is found to exhibit a linear dependence on Matsubara frequency. Meanwhile, the spin susceptibility crossed over from a Curie-Weiss law to a Pauli law. Both observations serve as fingerprints of the Fermi liquid state. The heavy fermion state appears at a characteristic coherence scale Tcoh. This scale depends strongly on the density. While it is rather high for small filling, for larger filling Tcoh is increas- ingly suppressed. This involves a decreasing quasiparticle residue Z ∼ Tcoh and an enhanced mass renormalization m∗/m ∼ Tcoh−1. Extrapolation leads to a critical filling, where the co- herence scale is expected to vanish at a quantum critical point. At the same time, the effective mass diverges. This corresponds to a breakdown of the Kondo effect, which is responsible for the formation of quasiparticles, due to a vanishing of the effective hybridization between the layers. Taking only single-site DMFT results into account, the above scenario seems plausible. However, paramagnetic DMFT neglects the ring exchange interaction completely. In or- der to improve on this, Cellular DMFT simulations are conducted for small clusters of size Nc = 2 and 3. The results paint a different physical picture. The ring exchange, by favor- ing a ferromagnetic alignment of spins, competes with the Kondo screening. As a result, strong short-range ferromagnetic fluctuations appear at larger values of µ. By lowering the temperature, these fluctuations are enhanced at first. However, for T < Tcoh they are increas- ingly suppressed, which is consistent with Fermi liquid coherence. However, beyond a certain threshold value of µ, fluctuations persist to the lowest temperatures. At the same time, while not apparent in the DMFT results, the total occupation n increases quite strongly in a very narrow range around the same value of µ. The evolution of n with µ is always continuous, but hints at a discontinuity in the limit Nc → ∞. This first-order transition breaks the Kondo effect. Beyond the transition, a ferromagnetic state in the first layer is established, and the second layer becomes a decoupled overlayer. These observations provide a quite appealing interpretation of the experimental results. As a function of chemical potential, the Kondo breakdown quantum critical point is preempted by a first-order transition, where the layers decouple and the first layer turns into a ferromagnet. In the experimental situation, where the filling can be tuned directly, the discontinuous transition is mirrored by a phase separation, which interpolates between the Fermi liquid ground state at lower filling and the magnetic state at higher filling. This is precisely the range of the intervening phase found in the experiments, which is characterized by an onset of a finite sample magnetization. Besides the interplay of heavy fermion physics and magnetic exchange, recently the spin- orbit coupling, which is present in many heavy fermion materials, attracted a lot of interest. In the presence of time-reversal symmetry, due to spin-orbit coupling, there is the possibility of a topological ground state. It was recently conjectured that the energy scale of spin-orbit coupling can become dom- inant in heavy fermion materials, since the coherence scale and quasiparticle bandwidth are rather small. This can lead to a heavy fermion ground state with a nontrivial band topology; that is, a topological Kondo insulator (TKI). While being subject to strong correlation effects, this state must be adiabatically connected to a non-interacting, topological state. The idea of the topological ground state realized in prototypical Kondo insulators, in par- ticular SmB6, promises to shed light on some of the peculiarities of these materials, like a residual conductivity at the lowest temperatures, which have remained unresolved so far. In this work, a simple two-band model for two-dimensional topological Kondo insulators is devised, which is based on a single Kramer’s doublet coupled to a single conduction band. The model is investigated in the presence of a Hubbard interaction as a function of interaction strength U and inverse temperature β. The bulk properties of the model are obtained by DMFT, with a hybridization expansion CTQMC impurity solver. The DMFT approximation of a local self-energy leads to a very simple way of computing the topological invariant. The results show that with increasing U the system can be driven through a topological phase transition. Interestingly, the transition is between distinct topological insulating states, namely the Γ-phase and M-phase. This appearance of different topological phases is possible due to the symmetry of the underlying square lattice. By adiabatically connecting both in- teracting states with the respective non-interacting state, it is shown that the transition indeed drives the system from the Γ-phase to the M-phase. A different behavior can be observed by pushing the bare position of the Kramer’s doublet to higher binding energies. In this case, the non-interacting starting point has a trivial band topology. By switching on the interaction, the system can be tuned through a quantum phase transition, with a closing of the band gap. Upon reopening of the band gap, the system is in the Γ-phase, i. e. a topological insulator. By increasing the interaction strength further, the system moves into a strongly correlated regime. In fact, close to the expected transition to the M phase, the mass renormalization becomes quite substantial. While absent in the para- magnetic DMFT simulations conducted, it is conceivable that instead of a topological phase transition, the system undergoes a time-reversal symmetry breaking, magnetic transition. The regime of strong correlations is studied in more detail as a function of temperature, both in the bulk and with open boundary conditions. A quantity which proved very useful is the bulk topological invariant Ns, which can be generalized to finite interaction strength and temperature. In particular, it can be used to define a temperature scale T ∗ for the onset of the topological state. Rescaling the results for Ns, a nice data collapse of the results for different values of U, from the local moment regime to strongly mixed valence, is obtained. This hints at T ∗ being a universal low energy scale in topological Kondo insulators. Indeed, by comparing T ∗ with the coherence scale extracted from the self-energy mass renormalization, it is found that both scales are equivalent up to a constant prefactor. Hence, the scale T ∗ obtained from the temperature dependence of topological properties, can be used as an independent measure for Fermi liquid coherence. This is particularly useful in the experimentally relevant mixed valence regime, where charge fluctuations cannot be neglected. Here, a separation of the energy scales related to spin and charge fluctuations is not possible. The importance of charge fluctuations becomes evident in the extent of spectral weight transfer as the temperature is lowered. For mixed valence, while the hybridization gap emerges, a substantial amount of spectral weight is shifted from the vicinity of the Fermi level to the lower Hubbard band. In contrast, this effect is strongly suppressed in the local moment regime. In addition to the bulk properties, the spectral function for open boundaries is studied as a function of temperature, both in the local moment and mixed valence regime. This allows an investigation of the emergence of topological edge states with temperature. The method used here is the site-dependent DMFT, which is a generalization of the conventional DMFT to inhomogeneous systems. The hybridization expansion CTQMC algorithm is used as impurity solver. By comparison with the bulk results for the topological quantity Ns, it is found that the temperature scale for the appearance of the topological edge states is T ∗, both in the mixed valence and local moment regime. N2 - Obwohl Heavy-Fermion-Systemen bereits seit vielen Jahrzehnten intensiv untersucht werden, ist auch heute ein großes Interesse an Heavy Fermions vorhanden. Obwohl die grundlegenden Konzepte wie die Ausbildung lokaler Momente, der Kondo-Effekt und die zur Entstehung einer Fermi-Flüssigkeit führenden, koha¨renten Quasiteilchen gut verstanden sind, gibt es weiterhin viele offene Fragestellungen. Diese ergeben sich u.a. aus dem Zusammenspiel von Heavy Fermions mit anderen Phänomenen wie Magnetismus und Supraleitung. In dieser Hinsicht können Untersuchungen an He-3 sehr wertvolle Einsichten liefern. Das liegt darin begründet, dass He-3 eine einzigartige Realisierung einer Quanten-Flu¨ssigkeit darstellt. Da He-3-Atome Fermionen sind, und da die langreichweitige Coulomb-Abstoßung keine Rolle spielt, ist dieses Material in idealer Weise dazu geeignet, um Fermi-Flüssigkeiten zu studieren. In drei Dimensionen wird He-3 bereits seit La¨ngerem untersucht. Vor Kurzem gelang es dann auch, Schichtsysteme aus He-3 zu erzeugen und zu untersuchen. Damit ergibt sich die Möglichkeit, die Phänomenologie zweidimensionaler Fermi-Flu¨ssigkeiten detailliert zu unter- suchen. He-3-Schichtsysteme stellen einen idealen Quanten-Simulator für diese Systeme dar, da sich durch Variation der He-3-Konzentration und durch die Wahl verschiedener Substrat- materialien unterschiedliche Eigenschaften der Fermi-Flüssigkeit gezielt einstellen lassen. So wurde in He-3-Doppellagen ein Heavy-Fermion-Verhalten nachgewiesen. In Abha¨ngig- keit der Temperatur wurde ein kontinuierlicher Übergang von einem inkohärenten Zustand mit entkoppelten Lagen zu einer koha¨renten Fermi-Flüssigkeit aus Quasiteilchen mit gemischtem Charakter beobachtet. Dieses Verhalten hat seinen Ursprung in der Hybridisierung der beiden Lagen. Die erste Lage ist beinahe vollständig gefüllt und von starken Korrelationseffekten beeinflusst, wa¨hrend die zweite Lage nur teilgefüllt ist und Korrelationen eine geringe Rolle spielen. Die Quasiteilchen entstehen bei der Kondo-Abschirmung der lokalisierten Momente der ersten Lage durch die delokalisierten Fermionen der zweiten Lage, die bei einer charakteristischen Temperatur-Skala, der Kohärenz-Skala Tcoh stattfindet. Durch das Verändern der Dichte von He-3-Atomen lässt sich Tcoh variieren. Dabei zeigte sich, dass bei einer kritischen Dichte ein Verschwinden der Kohärenzskala zu erwarten ist. Dies korrespondiert mit einer Divergenz der effektiven Masse der Quasiteilchen, und einem Zusammenbrechen des Kondo-Effekts an einem quantenkritischen Punkt. Jenseits dieses kritischen Punktes sind die Lagen vollständig entkoppelt. Die erste Lage ist ein Magnet von lokalen Momenten, während die zweite Lage einen itineranten Overlayer darstellt. Allerdings wurde bereits bei einer Dichte, die kleiner ist als der kritische Wert, die Herausbildung einer endlichen Magnetisierung der Probe beobachtet. Der Charakter dieser Zwischenphase, die dem kritischen Punkt voraus geht, blieb allerdings ungeklärt. In dieser Arbeit werden Resultate von Modellrechnungen eines erweiterten Periodischen Anderson Modell vorgestellt, die von den experimentellen Beobachtungen motiviert wur- den. Dabei ist der Ringaustausch dreier Teilchen, also der dominante magnetische Aus- tauschmechanismus in Schichtsystemen aus He-3, im Modell explizit enthalten. Dieser fu¨hrt zu einer effektiv ferromagnetischen Wechselwirkung zwischen Spins auf benachbarten Gitterplätzen. Zudem berücksichtigt das Modell die Bedingung, dass keine Doppelbesetzung von Gitterplätzen auftritt, indem der Grenzfall einer sehr großen lokalen Coulomb-Abstoßung angenommen wird. Mit Hilfe der Cellular DMFT wird das Modell als Funktion der Parameter chemisches Potential µ und inverse Temperature β = 1/T untersucht. Diese Methode stellt eine Cluster- Erweiterung der Dynamical Mean-Field Theory (DMFT) dar, und erlaubt es, auf systemati- sche Weise nichtlokale Korrelationen zu berücksichtigen, die über die DMFT-Approximation hinaus gehen. Für die Lösung der in jedem Iterationsschritt auftretenden Cluster-Modelle wird ein CTQMC-Cluster-Lo¨ser eingesetzt, der auf der Hybridisierungentwicklung basiert. Dieser liefert unverzehrte, numerisch exakte Ergebnisse für die Greensche Funktion und andere Observablen. In einem ersten Schritt wird die Entstehung der kohärenten Fermi-Flüssigkeitsphase unter- sucht. Bei ausreichend tiefer Temperatur zeigt die Selbst-Energie in Matsubara-Frequenzen eine lineare Frequenzabhängigkeit. Gleichzeitig findet in der Spin-Suszeptibilität ein Über- gang von einem Verhalten nach Curie-Weiss-Gesetz zu einem Pauli-Verhalten statt. Beide Beobachtungen sind eindeutige Hinweise auf einen Fermi-Flüssigkeitszustand. Heavy Fermions bilden sich unterhalb der Kohärenz-Skala Tcoh aus. Diese hängt stark von der He-3-Dichte ab. Tcoh ist bei kleiner Füllung recht hoch, wird bei größerer Fu¨llung allerdings zunehmend unterdrückt. Dies bedingt ein abnehmendes Quasiteilchen-Gewicht Z ∼ Tcoh und eine zunehmende Massenrenormierung m∗/m ∼ Tcoh−1. Durch Extrapolation erhält man einen quantenkritischen Punkt, an dem die Kohärenzskala verschwindet. Gleichzeitig divergiert hier die effektive Masse. Dies entspricht dem Zusammenbrechen des Kondo- Effekts, der für die Entstehung der Quasiteilchen verantwortlich ist, da die effektive Hybri- disierung zwischen den Lagen verschwindet. Berücksichtigt man nur Ergebnisse von paramagnetischer DMFT, so erscheint das obige Szenario plausibel. Allerdings wird in diesem Fall der Ringaustausch komplett vernachlässigt. Um diese Situation zu verbessern, werden Simulationen mit Hilfe von Cellular DMFT an kleinen Clustern der Gro¨ßen Nc = 2 and 3 durchgeführt. Die Ergebnisse zeichnen ein anderes physikalisches Bild. Der Ringaustausch konkurriert mit der Kondoabschirmung der lokalen Momente, da er eine ferromagnetische Ausrichtung der Spins bevorzugt. Daraus resultieren auf kurzen Längenskalen für steigendes µ starke ferromagnetische Fluktuationen. Mit sinkender Temperatur werden diese zunächst verstärkt, dann für T < Tcoh allerdings zunehmend unterdrückt. Dies ist konsistent mit einer kohärenten Fermi-Flüssigkeit. Bei Überschreiten eines gewissen Schwellwertes für µ bestehen die starken Fluktuationen bis zu den tiefsten Temperaturen, die in der Simulation erreicht wurden. Gleichzeitig, zeigt sich ein starker Anstieg der Gesamtbesetzung n in einem engen Fenster um denselben Schwellwert von µ. Dieses Verhalten fehlt in den DMFT-Resultaten vollständig. Die Entwicklung von n mit µ ist stets kontinuierlich, weist allerdings auf eine Diskontinuität im Grenzfall Nc → ∞ hin. Dieser Ü bergang erster Ordnung lässt den Kondo-Effekt abrupt zusammenbrechen. Jenseits des Übergangs ist in der ersten Lage ein ferromagnetischer Zustand ausgebildet, während die zweite Lage ein davon entkoppelter Overlayer wird. ... KW - Fermionensystem KW - Heavy Fermion Systems KW - Starke Kopplung KW - Fermi-Flüssigkeit KW - Topologischer Isolator KW - Stark korrelierte Fermionen KW - topologische Isolatoren Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112039 ER -