TY - THES A1 - Ferraro, Antonio T1 - Entwicklung potenzieller (ir-)reversibler Inhibitoren der Enoyl-ACP-Reduktase FabI in S. aureus/ E. coli und der Thiolase FadA5 in M. tuberculosis T1 - Development of potential irreversible/reversible inhibitors of the enoyl-ACP reductase FabI in S. aureus/ E. coli and of the thiolase FadA5 in M. tuberculosis N2 - Antimikrobielle Resistenzen stellen eine weltweite Herausforderung dar und sind mit einer hohen Morbidität und Mortalität verbunden. Die Letalitätsrate durch multiresistente Keime steigt stetig an, weshalb die WHO im Jahr 2017 eine Prioritätenliste resistenter Keime erstellte, die die Entwicklung neuer Antibiotika vorantreiben soll. Diese umfasst vornehmlich gramnegative Bakterien, da diese aufgrund ihres Zellaufbaus sowie diverser Resistenzmechanismen besonders widerstandsfähig gegenüber dem Angriff vieler Antibiotika sind. Einige grampositive Keime (z.B. S. aureus) stehen ebenfalls auf dieser Liste und stellen eine große Herausforderung für die Medizin dar. Infolgedessen ist die Entwicklung neuer Antiinfektiva mit neuen Angriffspunkten gegen resistente Pathogene zwingend nötig, um mit bisherigen Resistenzen umgehen zu können. Die vorliegende Arbeit beschäftigt sich mit der Entwicklung und Synthese von kovalent (reversibel) bindenden Inhibitoren der Enoyl-ACP-Reduktase FabI (Staphylococcus aureus, Escherichia coli) und der Thiolase FadA5 (Mycobacterium tuberculosis). Beide Enzyme sind essenziell für das Überleben des jeweiligen Bakteriums. FabI ist ein wichtiges und geschwindigkeitsbestimmendes Schlüsselenzym der Fettsäuresynthese Typ II diverser Bakterien. Hierbei werden wichtige Phospholipide hergestellt, die für den Aufbau der Zellmembran nötig sind. Schiebel et al. ist es gelungen, einen potenten Inhibitor für den Erreger S. aureus sowie E. coli zu entwickeln und zu charakterisieren. Ausgehend von dieser Verbindung wurde eine Substanzbibliothek mit verschiedenen „warheads“ hergestellt. Hierbei wurde die Verknüpfung zwischen dem Pyridon-Grundgerüst und der elektrophilen Gruppe sowie die über den Ether verknüpften aromatischen Ringsysteme variiert. Diese Verbindungen wurden hinsichtlich ihrer inhibitorischen Aktivität am jeweiligen Enzym getestet. Anschließend wurde von Verbindung 32 und 33, die jeweils eine gute Inhibition des Enzyms aufweisen, der IC50-Wert gemessen. Beide Verbindungen weisen eine 50-prozentige Reduktion der Enzymaktivität im mittleren nanomolaren Bereich auf. Zusätzlich wurde Verbindung 32 in einem sogenannten „jump-dilution“-Assay auf kovalente Inhibition getestet. Durch dieses Experiment konnte eine kovalente Inhibition des Enzyms ausgeschlossen werden. Die Reaktivität der eingesetzten „warheads“ wurde gegenüber einem Tripeptid mittels eines LC/MS-Iontrap-Systems bestimmt. Die untersuchten Verbindungen zeigten keine signifikante Reaktion mit der im Tripeptid eingebauten nukleophilen Aminosäure Tyrosin, deren Nukleophilie bei dem pH-Wert des Tests (pH = 8.2 und 10.8) nicht hoch genug ist. Um einen Einblick in den Bindemodus der Verbindungen zu erhalten, wurden ferner Kristallisationsversuche durchgeführt. Die erhaltenen Kristallstrukturen zeigen, dass die Verbindungen mit dem gewünschten Bindemodus am Zielenzym binden, aber eine kovalente Modifizierung des Tyrosins146 durch die eingesetzten „warheads“ aufgrund der großen Entfernung (6 Å zwischen elektrophiler Gruppe und Tyrosin146), unwahrscheinlich ist. Zusätzlich wurden die physikochemischen Eigenschaften (Stabilität, Wasserlöslichkeit und logP) der Verbindung 32 sowie Verbindung 33 charakterisiert. M. tuberculosis ist der Erreger der global verbreiteten Infektionskrankheit Tuberkulose (TB), die zu den zehn häufigsten Todesursachen weltweit gehört. Das Bakterium kann das im menschlichen Körper vorkommende Cholesterol metabolisieren und nutzt dessen Abbauprodukte als wichtige Kohlenstoffquelle. Die Thiolase FadA5 ist bei diesem Abbau ein wichtiges Enzym und konnte als potenzielles innovatives Target für neue Antibiotika definiert werden. Durch Dockingstudien konnten zwei potenzielle Leitstrukturen als Inhibitoren der Thiolase FadA5 identifiziert werden. Im Rahmen dieser Arbeit wurden die vorgeschlagenen Strukturen mit dem gewünschten „warhead“ synthetisiert und hinsichtlich ihrer inhibitorischen Aktivität gegenüber dem Enzym untersucht. Die Zielverbindungen zeigen keine signifikante Hemmung sowie kovalente Bindung über die eingesetzten „warheads“ an die Thiolase FadA5. N2 - Antimicrobial resistance poses a global challenge and is associated with high morbidity and mortality. The case fatality rate of infections caused by multidrug-resistant pathogens continues to be on the rise, causing the WHO to compile a priority pathogens list that is supposed to advance the development of new antimicrobial compounds. The list is mainly comprised of gramnegative bacteria, since these are especially resilient to many antibiotics. This is due to their cellular structure and various mechanisms of resistance. Some grampositive bacteria are also a danger to public health and are therefore part of this list. Consequently, there is an urgent need for the development of new antiinfectives with novel modes of action, so that the current resistance situation can be adequately addressed. This work is concerned with the development and synthesis of covalent reversible inhibitors of the enoyl-ACP reductase FabI (Staphylococcus aureus, Escherichia Coli) and the thiolase FadA5 (Mycobacterium tuberculosis). Both enzymes are critically important for the survival of the respective bacteria. FabI is an essential and rate determining enzyme of the type II fatty acid synthesis of various bacteria. A number of important phospholipids required for the cell membrane are biosynthesized via this metabolic pathway. Schiebel et al. were able to develop and characterize a potent inhibitor for S. aureus and E. Coli. Using this compound as a starting point, a library of compounds carrying various “warheads” was synthesized. Further structural variations were introduced by using different linkers between the pyridone scaffold and the electrophilic group as well as diverse aromatic rings connected via the ether bridge. These compounds were assayed concerning their inhibitory activity at the respective enzyme. Of these, substances 32 and 33 showed good inhibition of the enzyme, prompting the determination of the IC50 values. The two substances were able to reduce enzymatic activity by 50% at nanomolar concentration levels. In addition, substance 32 was characterized concerning its ability to covalently inhibit its molecular target by means of the so-called jump dilution assay. This experiment showed no covalent inhibition of the target enzyme. The individual reactivity of the warhead moieties present in the library was determined against a synthetic tripeptide by using a LC/MS iontrap system. All the examined compounds showed no reaction with the nucleophilic amino acid tyrosine contained in the tripeptide at significant levels, which indicates that its nucleophilicity is insufficient at the pH of the assay (pH = 8,2 and 10,8, respectively). Crystallization experiments were conducted to ascertain the binding mode of the compounds. The crystal structures showed the substances binding to the enzyme in the desired pose, yet a covalent modification of tyrosine146 remains unlikely due to the large distance (6 Å) between the electrophilic moiety and the amino acid. Additionally, some physicochemical properties (Stability, aqueous solubility and logP) of compounds 32 and 33 were characterized. M. tuberculosis is the causative pathogen of the globally occurring infectious disease tuberculosis, which belongs to the 10 most frequently occurring causes of death worldwide. The germ is able to metabolize the cholesterol present in the human body and uses its degradation products as an important carbon source. The thiolase FadA5 is involved in this metabolic pathway and was identified as a potentially innovative target for novel antibiotics. Docking studies enabled the identification of two potential lead structures for inhibitors of FadA5. In this work, the proposed structures carrying the desired warheads were synthesized and characterized concerning their inhibitory activity at the target enzyme. The target compounds showed no significant inhibition or covalent binding to FadA5. KW - Enoyl-acyl-carrier-protein-Reductase KW - Enoyl-ACP-Reduktase KW - Thiolase KW - FadA5 KW - M. tuberculosis KW - FabI KW - Acyltransferasen KW - Inhibitor Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-238392 ER - TY - THES A1 - Plank, Christina T1 - Untersuchung von Dihydroisochinolinonderivaten als mögliche Inhibitoren von Hsc70 T1 - Analyzing dihydroisoquinolinone derivatives as potential inhibitors of Hsc70 N2 - Einhergehend mit einer steigenden Lebenserwartung nimmt auch die Zahl der am Multiplen Myelom Erkrankten zu. Bis dato gibt es nur wenige Therapieansätze dieser selten vorkommenden Blutkrebserkrankung. Im Zusammenhang mit der Entstehung des Multiplen Myeloms stehen vor allem zwei bedeutende Hitzeschockproteine: Hsp90 und Hsp70. Beide haben die Aufgabe, Zellen vor Apoptose zu schützen. In proliferierenden Plasmazellen ist eine Überexpression an Hsp90 zu beobachten. Entwickelte Inhibitoren führten zwar zu einer verminderten Hsp90-Aktivität, allerdings wurde diese durch eine vermehrte Expression von Hsp70 kompensiert, weshalb Myelomzellen weiterhin proliferierten. Aus diesem Grund bietet sich Hsp70 als weiterer Angriffspunkt in der Therapierung des Multiplen Myeloms an. Die bislang entwickelten Inhibitoren binden entweder an die Nukleotid- oder Substratbindedomäne. Da beide Stellen unspezifisch sind, wurden durch virtuelles Screening potenzielle Inhibitoren für Hsp70 identifiziert, welche in vitro und in vivo tatsächlich Effekte hinsichtlich der Herunterregulierung von Hsp70 zeigten. Ob die entwickelten Substanzen jedoch direkt an Hsp70 binden, war die Fragestellung der vorliegenden Arbeit. In dieser Arbeit wurde untersucht, inwiefern die entwickelten Inhibitoren an Hsp70 binden und dieses inhibieren. Die humane Hsp70-Familie besitzt sechzehn Mitglieder, die alle ähnliche Aufgaben und Strukturmerkmale aufweisen. Für die durchgeführten Versuche wurde die Hsp70-Isoform Hsc70 verwendet. In einem Protein-Ligand-Assay konnte gezeigt werden, dass die meisten Verbindungen durch Aggregatbildung zu einer Inhibition von Hsc70 führten. Durch Zugabe von Detergenz konnten die gebildeten Aggregate aufgebrochen und so der Inhibitionseffekt aufgehoben bzw. deutlich reduziert werden. Damit konnte gezeigt werden, dass die in Zell- und Mausversuchen beobachteten Effekte vermutlich nicht auf eine direkte Inhibition von Hsc70 zurückzuführen sind. Ob diese Effekte nun ebenfalls auf Aggregatbildung beruhen oder aber ein anderes Protein als das vermutete Hsc70 inhibiert wird, was über eine Signalkaskade zur Inhibition von Hsc70 führt, wäre eine interessante Fragestellung für weitere Untersuchungen. Da sowohl in NMR-Versuchen als auch dem durchgeführten Protein-Ligand-Assay gezeigt werden konnte, dass die vormals als potenzielle Inhibitoren entwickelten Verbindungen nur schwach aktiv sind, wurde durch Fragment-basierte Ansätze eine andere Bindestelle für mögliche Inhibitoren identifiziert. Hierbei konnte N-Acetyl-D-Glucosamin in der Nukleotidbindedomäne von Hsc70 detektiert werden. Hieraus könnten sich neue Ansätze zur Entwicklung neuartiger in silico entwickelter Hsc70-Inhibitoren ergeben. Ausgangspunkt für die Docking-Studien zur Entwicklung neuer Hsp70-Inhibitoren war die Kristallstruktur von bHsc70 ED 1-554, einer trunkierten Doppelmutante des nativen Hsc70. Bis dato ist diese 554 Aminosäuren umfassende Mutante die einzige Hsc70-Variante von der die Zweidomänenstruktur kristallisiert werden konnte. Für dieses Konstrukt wurde zunächst ein optimiertes Aufreinigungsprotokoll entwickelt, um dann Kristallisationsversuche mit ausgewählten AH-Verbindungen, die in den Docking-Studien entwickelt wurden, durchzuführen. Hierbei konnte jedoch keine Bindung festgestellt werden. Die Kristallisation mit Ver-155008, einem bekannten Hsc70-Inhibitor, führte jedoch zur ersten Zweidomänenstruktur von Hsc70 mit gebundenem Ver-155008. Neben der obigen Fragestellung wurde außerdem untersucht, wie funktional aktiv das trunkierte Hsc70-Konstrukts ist. Hier zeigte sich, dass aufgrund des fehlenden C-Terminus zwar eine geringe Aktivität von 30 % im Vergleich zur Volllänge zu beobachten war. Für eine nahezu vollständige Rückfaltungsaktivität ist aber der C-Terminus essentiell. Weiterhin konnte in ITC-Versuchen der Kd-Wert von Ver-155008 an die verwendete Mutante ermittelt werden, der dem bereits bekannten Kd von Ver-155008 an das native Hsc70 ähnlich ist. N2 - Coming along with an increasing life span, the number of multiple myeloma incidences permanently increases. By now, there is no possibility to cure this rare blood cancer disease. In multiple myeloma, there are two major proteins playing a crucial role in its development: Hsp70 and Hsp90. Both prevent cells from apoptosis. In proliferating plasma cells, Hsp90 is overexpressed. Inhibitors for Hsp90, however, led to an overexpression of Hsp70. Therefore, Hsp70 seems to be an attractive target in multiple myeloma. Developed Hsp70 inhibitors are likely to bind either to the nucleotide or substrate binding domain. Since both domains are likely unspecific, new inhibitors were designed by virtual screening which indeed showed inhibition effects on Hsp70 in vitro and in vivo. Nevertheless, the question had to be answered whether these compounds directly bind to Hsp70 or if the expression of Hsp70 is downregulated through a signal cascade in the cell. In this thesis, it was analyzed whether and how in silico designed and in cell-based assays active compounds inhibit Hsp70. The human Hsp70 family comprises 16 members which have similar structures and functions in the cell. For all conducted experiments, Hsp70 isoform 8, also known as Hsc70, was used. In a protein-ligand assay, it was shown that the compounds inhibit Hsc70 due to aggregate formation. Upon the addition of detergent, aggregates were broken down and the inhibition effect was reversed. Therefore the effects that have been observed in cell and mouse experiments are most likely not due to a direct inhibition of Hsc70. Whether these effects are due to aggregate formation or whether another protein was inhibited which then led to a downregulation of Hsc70 via a signal cascade, is a challenging question for further studies. Since it was shown both in protein-ligand assays and NMR experiments that the favored compounds were only weakly active, fragment-based screening was used to find a new core structure for further design studies. N-acetyl-D-glucosamine was found to bind to the NBD of Hsc70 which now might serve as a starting point for the development of novel Hsp70 inhibitors. For all docking studies that have been conducted to develop novel Hsc70 inhibitors, the crystal structure of bHsc70 ED 1-554 was used, which is a truncated and double-mutated version of the native Hsc70. This construct has been the only crystal structure so far of which the two-domain structure of Hsc70 has been determined. For this construct a purification protocol was optimized to use bHsc70 ED 1-554 for crystallization experiments to determine the binding of the in silico developed AH compounds. Although no binding of these compounds could be observed, the two-domain structure of bHsc70 ED 1-554 with bound Ver-155008, a known Hsc70 inhibitor, could be determined. Besides, the activity of this truncated Hsc70 double-mutant was analyzed. Due to the lacking C terminus, which is important for the interaction with client proteins, a reduced activity of about 30 % was observed. Nevertheless, in ITC experiments the Kd value of the binding of Ver-155008 to bHsc70 ED 1-554 showed that the affinity is similar to that of native Hsc70. KW - Hitzeschockproteine KW - Dihydroisochinolinderivate KW - Hsc70 KW - Inhibitor KW - Multiples Myelom KW - Dihydroisochinolinonderivate Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162655 ER - TY - THES A1 - Sawatzky, Edgar T1 - Design und Synthese selektiver Butyrylcholinesterase (BChE) Inhibitoren zur Entwicklung von Radiopharmazeutika zur Erforschung der Alzheimer Erkrankung T1 - Design and Synthesis of Selective Butyrylcholinesterase (BChE) Inhibitors for the Development of Radiotracers to Investigate the Role of BChE in Alzheimer’s Disease N2 - Although the physiological roles of BChE are not yet determined to date, the importance of this enzyme is continuously increasing as it was found to be associated with several disorders like diabetes mellitus type 2, cardiovascular diseases, obesity and especially with Alzheimer’s disease (AD). In consequence, for investigations of BChE’s pathological role in these diseases and to find new medication strategies, the development of selective and potent inhibitors is necessary. For this purpose, the current work progresses in five chapters on the exploration of the chemical, physical and biochemical properties of tetrahydroquinazoline based carbamates which were previously reported to be selective BChE inhibitors with potency in the low nanomolar range. 1) A Novel Way to Radiolabel Human Butyrylcholinesterase for PET through Irreversible Transfer of the Radiolabeled Moiety: PET-radiotracers represent an innovative tool to determine the distribution and the expression of a biological target in vivo. BChE lacks to a large degree of such tracers with a few exceptions. In this work, methods were developed to incorporate the radioisotopes 11C and 18F into the carbamate moiety of an tetrahydroquinazoline based inhibitor. In contrast to reversibly acting PET-probes, the described radiotracers were proven by kinetic studies to transfer the radioisotope covalently onto the active site of BChE, thus labeling the enzyme directly and permanently. 2) Discovery of Highly Selective and Nanomolar Carbamate-Based Butyrylcholinesterase Inhibitors by Rational Investigation into Their Inhibition Mode: To investigate the role of the tetrahydroquinazoline carrier scaffold on BChE inhibition, carbamate based inhibitors were synthesized. These compounds were successively used to perform kinetic investigations to determine their inhibition mode. Based on these data, a plausible binding model was postulated explaining the influence of the tetrahydroquinazoline carrier scaffold for binding at BChE’s active site just before carbamate transfer takes place. Additionally, these compounds feature neuroprotective properties and prevent oxidative stress induced cell death in their carbamate form as well as after the release of the tetrahydroquinazoline carrier scaffold. 3) Dual Addressing of Butyrylcholinesterase by Targeting the Catalytic Active Site (CAS) and the Peripheral Anionic Site (PAS): Compounds which are dual-targeting the CAS and the PAS of BChE are the most potent and selective BChE inhibitors to date with inhibition values in the picomolar range. In this work, a strategy is described how to turn tetrahydroquinazoline based carbamates into dual binding BChE inhibitors. These inhibitors feature a carbamate moiety which is covalently transferred onto the CAS of BChE, and in addition provide a second pharmacophore connected via a linker to the carbamate moiety which is proposed to target the PAS. Preliminary results reveal a high tolerance of BChE towards different linker lengths without decrease in affinity. 4) Investigation into Selective Debenzylation and Ring Cleavage of Quinazoline based Heterocycles: The tetrahydroquinazoline system is well investigated in terms of its synthesis and its selective oxidation. To explore the reactivity of this system, a tetracyclic tetrahydroquinazoline was exposed to common reduction agents. These experiments revealed a high sensitivity of the tetrahydroquinazoline core towards several reduction conditions 5) Experimental and Theoretical Investigation into the Stability of Cyclic Aminals: Tetrahydroquinazolines are known to degrade in acidic media through hydrolysis of their aminal system; but literature is lacking of a systematic investigation into this behavior. Therefore, different tetrahydroquinazolines were synthesized and exposed to phosphate buffered systems with defined pH-values. A clear increase of the hydrolysis rate of the aminal system was determined in dependency of an increasing acidic media. Computational studies predicted and experimental studies proved that hydrolysis takes place in an acidic environment while the condensation of this system is preferred in neutral or basic aqueous media. N2 - Obwohl die physiologische Funktion der BChE zum aktuellen Zeitpunkt noch nicht vollständig aufgeklärt ist, so ist die Bedeutung dieses Enzyms hinsichtlich seiner möglichen Involvierung bei Diabetes mellitus Typ 2, kardiovaskulären Erkrankungen, Übergewicht und der Alzheimer-Erkrankung stetig steigend. Die Entwicklung von selektiven und hochwirksamen Inhibitoren ist daher notwendig um die Rolle der BChE im pathologischen Verlauf dieser Erkrankungen beurteilen zu können und ggf. neue Therapiemöglichkeiten zu eröffnen. In der hier durchgeführten Arbeit wurde in fünf Kapiteln die chemischen, physikalischen und pharmakologischen Eigenschaften von Tetrahydrochinazolin basierten Carbamaten untersucht. 1) Eine neuartige Methode zur PET-Radiomarkierung der menschlichen BChE durch den irreversiblen Transfer eines radioaktiv markierten Carbamatrestes: PET-Radiopharmaka (auch Radiotracer genannt) werden häufig verwendet, um die Verteilung biologischer Zielmoleküle in vivo bestimmen zu können. In der hier präsentierten Arbeit wurden Methoden entwickelt, um die beiden PET-Radioisotope 11C und 18F in den Carbamatrest eines Tetrahydrochinazolin basierten Inhibitors zu integrieren. Im Gegensatz zu herkömmlichen, reversibel agierenden PET-Radiotracern konnte bei den hier beschriebenen Radiotracern mittels kinetischer Untersuchungen gezeigt werden, dass sie den radioaktiv markierten Rest kovalent auf die BChE übertragen können, sodass das Enzym direkt und kontinuierlich radioaktiv markiert wird. 2) Entwicklung hochselektiver Carbamat-basierter BChE Inhibitoren durch rationale Untersuchung ihres Bindemoduses: Um den Einflusses des Tetrahydrochinazolingerüstes zur Hemmung der BChE untersuchen zu können, wurden veschiedenartige Tetrahydrochinazolin basierete Inhibitoren synthetisiert. Der Bindemodus dieser Verbindungen wurde dabei eingehend mittels ihrer Inhibitionskinetik untersucht. Auf Grundlage der dabei erhaltenen Daten konnte mithilfe computergestützter Methoden ein Bindemodell entwickelt werden, welches den Einfluss des Tetrahydrochinazolingerüstes zur Bindung des gesamten Inhibitors in das aktive Zentrum der BChE qualitativ wiederspiegelt bevor die eigentliche Inhibition durch den Carbamattransfer auf das aktive Zentrum stattfindet. Zusätzlich konnte gezeigt werden, dass die hier synthetisierten Verbindungen neuroprotektive Eigenschaften aufweisen, indem sie oxidativem Stress entgegenwirken. 3) Duale Adressierung des katalytisch aktivem Zentrums (CAS) und der peripheren anionischen Bindestelle (PAS) der Butyrylcholinesterase: Verbindungen, welche sowohl die CAS als auch die PAS der BChE simultan adressieren, gehören zu den potentesten und selektivsten BChE Inhibitoren mit Inhibitionswerten im pikomolarem Bereich. In der hier vorliegenden Arbeit wurde eine Strategie entwickelt, wie Tetrahydrochinazolin basierte Inhibitoren so modifiziert werden müssen, damit diese ebenfalls als dual-aktive Inhibitoren wirksam werden. Diese Inhibitoren weisen eine Carbamatfunktionalität auf, welche kovalent auf die CAS der BChE übertragen wird, und besitzen darüber hinaus ein zweites Pharmakophor, welches über einen Linker mit dem Carbamatrest chemisch verknüpft ist und an die PAS bindet. 4) Untersuchungen zur selektiven Debenzylierung und Ringspaltung von Chinazolin basierten Heterozyklen: Das Tetrahydrochinazolinsystem ist in der Literatur ausgiebig hinsichtlich seiner Synthese und selektiven Oxidation beschrieben worden. Um den Einfluss reduktiver Bedingungen auf dieses System zu untersuchen, wurde ein tetrazyklisches Tetrahydrochinazolin gezielt mit verschiedenen Reduktionsmitteln umgesetzt. Informationen über die Reaktivität des Tetrahydrochinazolinsystems sind unumgänglich bei der Entwicklung neuer Verbindungen auf Grundlage dieses Systems, um Nebenreaktionen zu vermeiden. 5) Experimentelle und Theoretische Untersuchungen zur Stabilität zyklischer Aminale: Tetrahydrochinazoline weisen ein Aminalsystem auf, welches im sauren Milieu hydrolytisch gespalten werden kann. Um die Stabilität dieses Systems systematisch zu untersuchen, wurden Tetrahydrochinazoline synthetisiert und in einem wässrigen Phosphat-gepuffertem System mit definiertem pH-Wert inkubiert. Bei diesen Untersuchungen konnte ein klarer Zusammenhang zwischen einem sinkendem pH-Wert und einer beschleunigten Zersetzung der Testsubstanzen beobachtet werden. Außerdem konnte mittels quantenmechanischen Berechnungen und weiteren Experimenten gezeigt werden, dass diese Reaktion im alkalischen oder neutralem Milieu reversibel ist. KW - Cholinesterase KW - Butyrylcholinesterase KW - Tetrahydrochinazoline KW - Carbamate KW - Alzheimer KW - Radiopharmaka KW - Radioindikator KW - Inhibitor KW - Alzheimerkrankheit Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144037 ER - TY - THES A1 - Kesetovic, Diana T1 - Synthesis and biological testing of potential anti-tuberculosis drugs targeting the β-ketoacyl ACP synthase T1 - Synthese und biologische Untersuchung von β-ketoacyl-ACP-Synthase-Inhibitoren als potentielle Antituberkulotika N2 - With 9.6 million new cases and 1.5 million deaths in 2014, tuberculosis (TB) is alongside with AIDS the most deadly infection.‎ Foremost, the increased prevalence of resistant strains of M. tuberculosis among the TB-infected population represents a serious thread. Hence, in the last decades, novel drug targets have been investigated worldwide. So far a relatively unexplored target is the cell wall enzyme β-ketoacyl-ACP-synthase “KasA”, which plays a crucial role in maintaining the membrane impermeability and hence the cell ability to resist to the immune response and drug therapy. KasA is a key enzyme in the fatty acid synthase “FAS-II” elongation cycle, responsible for the extension of the growing acyl chain within the biosynthesis of precursors for the most hydrophobic constituents of the cell wall – mycolic acids. Design of the novel KasA inhibitors, performed in the research group of Prof. Sotriffer by C. Topf and B. Schaefer, was based on the recently published crystal structure of KasA‎ in complex with its known inhibitor thiolactomycin (TLM). Considering the essential ligand-enzyme interactions, a pharmacophore model was built and applied in the virtual screening of a modified ZINC database. Selected hits with the best in silico affinity data have been reported by Topf‎ and Schaefer‎. In this work, two of the obtained hits were synthesized and their structure was systematically varied. First, a virtual screening hit, chromone-2-carboxamide derivative GS-71, was modified in the amide part. Since the most of the products possessed a very low solubility in the aqueous buffer medium used in biological assays, polar groups (nitro, succinamidyl and trimethyl-amino substituent in position 6 of the chromone ring or hydroxyl group on the benzene ring in the amide part have been inserted to the molecule. Further variations yielded diaryl ketones, diaryl ketone bearing a succinamidyl substituent, carboxamide bearing a methylpiperazinyl-4-oxobutanamido group and methyl-malonyl ester amides. Basically, the essential structural features necessary for the ligand-enzyme interactions have been maintained. The latter virtual screening hit, a pyrimidinone derivative VS-8‎ was synthesized and the structure was modified by substitution in positions 2, 4, 5 and 6 of the pyrimidine ring. Due to autofluorescence, detected in most of the products, this model structure was not further varied. Simultaneously, experiments on solubilization of the first chromone-2-carboxamides with cyclodextrins, cyclic oligosacharides known to form water-soluble inclusion complexes, were performed. Although the assessed solubility of the chromone 3b/DIMEB (1:3) mixture exceeded 14-fold the intrinsic one, the achieved 100 µM solubility was still not sufficient to be used as a stock solution in the binding assay. The experiments with cyclodextrin in combination with DMSO were ineffective. Owing to high material costs necessary for the appropriate cyclodextrin amounts, the aim focused on structural modification of the hydrophobic products. Precise structural data have been obtained from the solved crystal structures of three chromone derivatives: the screening hit GS-71 (3b), its trimethylammonium salt (18) and 6-nitro-substituted N-benzyl-N-methyl-chromone-2-carboxamide (9i). The first two compounds are nearly planar with an anti-/trans-rotamer configuration. In the latter structure, the carboxamide bridge is bent out of the chromone plane, showing an anti-rotamer, too. Considering the relatively low partition coefficient of compound 3b (cLogP = 2.32), the compound planarity and correlating tight molecular packing might be the factors significantly affecting its poor solubility. Regarding the biological results of the chromone-based compounds, similar structure-activity correlations could be drawn from the binding assay and the whole cell activity testing on M. tuberculosis. In both cases, the introduction of a nitro group to position 6 of the chromone ring and the presence of a flexible substituent in the amide part showed a positive effect. In the binding study, the nitro group at position 4 on the N-benzyl residue was of advantage, too. The highest enzyme affinity was observed for N-(4-nitrobenzyl)-chromone-2-carboxamide 4c (KD = 34 µM), 6-nitro substituted N-benzyl-chromone-2-carboxamide 9g (KD = 40 µM) and 6‑nitro-substituted N-(4-nitrobenzyl)-chromone-2-carboxamide 9j (KD = 31 µM), which could not be attributed to the fluorescence quenching potential of the nitro group. The assay interference potential of chromones, due to a covalent binding on the enzyme sulfhydryl groups, was found to be negligible at the assay conditions. Moderate in vivo activity was detected for 6‑nitro-substituted N-benzyl-chromone-2-carboxamide 9g and its N-benzyl-N-methyl-, N‑furylmethyl-, N-cyclohexyl- and N-cyclohexylmethyl derivatives 9i, 9d, 9e, 9f, for which MIC values 20 – 40 µM were assessed. Cytotoxicity was increased in the N‑cyclohexylmethyl derivative only. None of the pyrimidine-based compounds showed activity in vivo. The affinity of the model structure, VS-8, surpassed with KD = 97 µM the assessed affinity of TLM (KD = 142 µM). Since for the model chromone compound GS-71 no reliable KasA binding data could be obtained, a newly synthesized chromone derivative 9i was docked into the KasA binding site, in order to derive correlation between the in silico and in vitro assessed affinity. For the 6‑nitro-derivative 9i a moderate in vivo activity on M. tuberculosis was obtained. The in silico predicted pKi values for TLM and 9i were higher than the corresponding in vitro results, maintaining though a similar tendency, i.e., the both affinity values for compound 9i (pKi predicted = 6.64, pKD experimental = 4.02) surpassed those obtained for TLM (pKi predicted = 5.27, pKD experimental = 3.84). Nevertheless, the experimental pKD values are considered preliminary results. The binding assay method has been improved in order to acquire more accurate data. Owing to the method development, limited enzyme batches and solubility issues, only selected compounds could be evaluated. The best hits, together with the compounds active on the whole cells of M. tuberculosis, will be submitted to the kinetic enzyme assay, in order to confirm the TLM-like binding mechanism. Regarding the in vivo testing results, no correlations could be drawn between the predicted membrane permeability values and the experimental data, as for the most active compounds 9e and 9f, a very low permeability was anticipated (0.4 and 0.7 %, respectively). Further biological tests would be required to investigate the action- or transport mode. N2 - Mit 9.6 Millionen Neuerkrankungen und 1.5 Millionen Todesfällen im Jahr 2014 ist Tuberkulose (TB) neben AIDS die häufigste Todesursache unter Infektionskrankheiten.‎ Insbesondere die zunehmende Verbreitung resistenter Stämme von M. tuberculosis stellt eine ernste Gefahr dar. In den letzten Jahrzehnten wurde daher weltweit nach neuen möglichen Wirkstoff-Zielen gesucht. Bisher noch relativ unerforschtes Ziel ist das Zellwand-Enzym β Ketoacyl-ACP-Synthase "KasA", das eine entscheidende Rolle bei der Aufrechterhaltung der Membran-Dichtigkeit spielt, und somit den Zellen ermöglicht, gegen den Immunabwehr und Arzneimitteltherapie Resistenz zu zeigen. KasA ist ein Schlüsselenzym in der Fettsäure-Synthase-(FAS-II)-Elongationsrunde, die für die Erweiterung der wachsenden Acylkette während der Biosynthese der Vorstufen der hydrophobesten Zellwand-Bestandteilen – der Mykolsäuren, verantwortlich ist. Das Design der neuen KasA-Hemmer, das im Arbeitskreis von Prof. Sotriffer von C. Topf und B. Schäfer durchgeführt wurde, basiert auf der kürzlich veröffentlichten Kristallstruktur von KasA im Komplex mit seinem bekannten Inhibitor Thiolactomycin (TLM)‎. In Anbetracht der essentiellen Ligand-Enzym-Wechselwirkungen wurde ein Pharmakophor-Modell erstellt und im virtuellen Screening einer modifizierten ZINC-Datenbank angewendet. Die ausgewählten “Hits“ mit den besten In-silico-Affinitätsdaten wurden in den Doktorarbeiten von Topf‎ und Schaefer‎ veröffentlicht. In Rahmen dieser Arbeit wurden zwei der erhaltenen “Hits“ synthetisiert und ihre Struktur systematisch variiert. Erste Modellstruktur, das Chromon-2-Carboxamid-Derivat GS-71‎. wurde zunächst in dem Amid-Rest modifiziert. Da die meisten Produkte (3a-p, 4a-k) eine sehr geringe Löslichkeit im wässrigen Puffermedium aufwiesen, wurden polare Gruppen in das Molekül eingefügt (Nitro, Succinamidyl- und Trimethyl-Amino-Substituenten in der 6 Stellung des Chromon-Rings, oder eine Hydroxyl-Gruppe am Benzolring im Amid-Teil. Weitere Variationen ergaben Diarylketone, ein Diarylketon mit der Succinamidyl Kette, ein Carboxamid mit dem Methylpiperazinyl-4-oxobutanamido-Substituenten und Methyl-Malonyl-Ester-Amide. Grundsätzlich wurden alle Strukturmerkmale notwendig für die Ligand-Enzym-Wechselwirkungen beibehalten. Die letztere Modellstruktur aus dem virtuellen Screening, das Pyrimidinon Derivat VS-8‎ wurde synthetisiert, und die Struktur wurde durch Substitution in den Positionen 2, 4, 5 und 6 des Pyrimidin-Rings modifiziert. Wegen Eigenfluoreszenz, detektiert in den meisten Produkten, wurde diese Modellstruktur nicht weiter variiert. Gleichzeitig wurden Experimente zur Solubilisierung der ersten Chromon-2-Carbonsäureamide mit Cyclodextrinen, cyclischen Oligosacchariden, die bekanntlich wasserlösliche Einschlusskomplexe bilden, durchgeführt. Obwohl die gemessene Löslichkeit des 3b/DIMEB (1:3)-Gemisches die intrinsische Löslichkeit um das 14-fache überschritt, war die erzielte Löslichkeit von 100 µM noch nicht ausreichend, um diese Lösung als Stammlösung im Assay zu verwenden. Die Experimente mit Cyclodextrin in Kombination mit DMSO waren unproduktiv. Aufgrund der hohen Materialkosten für die benötigten Cyclodextrinmengen wurden die Löslichkeit-Tests an dieser Stelle abgebrochen und eine strukturelle Modifizierung der hydrophoben Produkte stand in Vordergrund des Interesses. Genaue Strukturdaten wurden aus den aufgeklärten Kristallstrukturen von drei Chromon-Derivaten, der Modellstruktur GS-71 (3b), seiner Trimethylammoniumsalz (18) und dem 6‑Nitro-substituierten N-Benzyl-N-methyl-Chromon-2-Carboxamid (9i), erhalten. Die ersten beiden Verbindungen sind mit einer anti-/trans-Rotamer Konfiguration fast planar. Die Carbonsäureamid-Brücke der letzteren Struktur, die ebenso ein anti-Rotamer darstellt, wird aus der Chromon Ebene gebogen. Angesichts des relativ geringen Verteilungskoeffizientes der Verbindung 3b (clogP = 2.32), die Ebenheit des Moleküls und das damit verbundene enge Molekülpackung könnten die wesentlich schlechtere Löslichkeit begründen. In Bezug auf die biologischen Ergebnisse der Chromon-basierten Verbindungen, ähnliche Struktur-Aktivitäts-Beziehungen können aus dem Bindungs-Assay, sowie aus dem Ganzzellaktivitätstests auf M. tuberculosis gezogen werden. In beiden Fällen zeigte die Einführung einer Nitrogruppe in die Position 6 des Chromon-Rings und das Vorhandensein eines flexiblen Substituents im Amidrest einen positiven Effekt. In dem Bindungs-Assay war die Nitrogruppe in Position 4 des N-Benzyl-Rests ebenso vorteilhaft. Die höchste Enzymaffinität wurde im Falle des N-(4-Nitrobenzyl)-Chromon-2-Carboxamid 4c (KD = 34 µM), des substituierten 6-nitro-N-Benzyl-Chromon-2-Carboxamid 9g (KD = 40 µM) und des 6-Nitro-substituierten N-(4-Nitrobenzyl)-Chromon-2-Carboxamid 9j (KD = 31 µM), beobachtet, allerdings konnte sie nicht dem Fluoreszenzlöschungspotenzial der Nitrogruppe zugeschrieben werden. Das Assay-Störpotential der Chromonverbindungen aufgrund einer kovalenten Bindung an die Sulfhydryl-Gruppen des Enzyms zeigte sich in den Assay-Bedingungen als vernachlässigbar. Moderate in vivo-Aktivitäten wurden für den 6-nitro substituierten N‑Benzyl-Chromon-2-Carboxamid 9g und dessen N-Benzyl-N-Methyl- (9i), N‑Furfurylmethyl-(9d), N-Cyclohexyl- (9e) und N-Cyclohexylmethyl- (9f) Derivate, für denen die MIC-Werte zwischen 20 und 40 µM erhalten wurden (siehe Tab. 17). Die Zytotoxizität wurde erhöht nur im Falle des N-Cyclohexylmethyl Derivates. Keine der Pyrimidin-basierten Verbindungen wies eine Aktivität in vivo auf. Die KasA-Affinität der Modellstruktur VS-8 übertraf mit KD = 97 µM die gemessene Affinität von TLM (KD = 142 µM). Da für die Modell Chromon-Verbindung GS-71 keine zuverlässigen KasA Bindungsdaten erhalten werden konnten, ein neu-synthetisierte Chromon-Derivat 9i wurde in die KasA Bindungsstelle gedockt, um die Korrelation zwischen den In-silico- und In-vitro-Affinitätswerten abzuleiten. Für den 6-Nitroderivat 9i wurde eine mäßige Aktivität in vivo auf M. tuberculosis bestimmt. Die in silico-vorhergesagten pKi-Werte für TLM und 9i waren allgemein höher als die entsprechenden experimentellen Ergebnisse. Sie bewiesen allerdings eine ähnliche Tendenz, d.h. die beiden Affinitätswerte für die Verbindung 9i (pKi vorhergesagt = 6.64, pKD experimentell = 4.02) übertrafen die Werte von TLM (pKi vorhergesagt = 5.27, pKD experimentell = 3.84). Dennoch sind die experimentellen Affinitätsdaten nur als vorläufige Resultate zu betrachten, solange die Bindungsweise mittels des kinetischen Enzymassays verifiziert wird. Die Assay-Methode wurde verbessert, um zuverlässigere Daten zu erhalten. Aufgrund der Verfahrensentwicklung, den limitierten Enzymchargen und Löslichkeitsprobleme konnten nur ausgewählte Verbindungen bewertet werden. Die besten “Hits“, zusammen mit den Verbindungen, die auf den ganzen Zellen von M. tuberculosis aktiv waren, werden dem kinetischen Enzymtest vorgelegt. In Bezug auf die In-vivo-Testergebnisse, es konnten keine Korrelationen zwischen den vorhergesagten Membranpermeabilität-Werten und den experimentellen Daten gezogen werden, da bei den wirksamsten Verbindungen 9e und 9f nur eine sehr geringe Permeabilität erwartet wurde (zu 0.4 und 0.7 %). Weitere biologische Tests wären erforderlich, um das Wirkungsmechanismus oder die Transportweise zu untersuchen. KW - Tuberkelbakterium KW - Inhibitor KW - Ketoacyl-ACP-Synthase KW - Arzneimitteldesign KW - Tuberculosis KW - Enzyme inhibitor KW - Synthesis KW - Ketoacyl-ACP-synthase KW - Chromone KW - Pyrimidinone KW - Tuberkulose KW - Synthese KW - Zellwand KW - Enzym Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131301 ER - TY - THES A1 - Vogel, Simon T1 - Untersuchungen von Thiazolidindionen und verwandten Fünfringheterozyklen als Leitstruktur potenzieller Inhibitoren der Enoyl-ACP-Reduktase InhA des Mycobacterium tuberculosis T1 - Analysis of thiazolidindiones and related five membered heterocycles as lead structures of novel inhibitors of enoyl-ACP-reductase InhA from Mycobacterium tuberculosis N2 - Weltweit zählt die Tuberkulose zu den tödlichsten und am weitesten verbreiteten Infektionskrankheiten. Missstände in der ohnehin komplexen Therapie einerseits und fehlende Entwicklung neuartiger adäquater Wirkstoffe andererseits, führten zur Entstehung von multi- und sogar total-resistenten Keimen. Der Haupterreger ist das Mycobacterium tuberculosis. Charakteristisch für Mykobakterien ist eine dicke und undurchlässige wachsartige Zellwand mit einem großen Anteil an bestimmten Fettsäuren. Die mykobakterielle Biosynthese dieser Fettsäuren unterscheidet sich stark von eukaryotischen Zellen. Die selektive Beeinflussung dieses Systems führt zu nicht überlebensfähigen Mykobakterien und stellt somit ein idealer Angriffspunkt für Arzneistoffe dar. Die vorliegende Arbeit befasst sich mit der Entwicklung neuartiger direkter Hemmstoffe von InhA, einem für den Zellwandaufbau des Mycobacterium tuberculosis essenziellem Enzym. Es wurden zwei photometrische gekoppelt-enzymatische Assay-Systeme im 96-Well-Format entwickelt, die sich das Absorptions- bzw. Fluoreszenzverhalten des Coenzyms NADH zu Nutze machen. Das hierzu benötigte Enzym InhA wurde überexprimiert und aufgereinigt. Mehrere Synthesemethoden für das im Testverfahren verwendete Substrat 2-trans-Octenoyl-CoA (2toCoA) wurden etabliert. Die etablierten Assay-Systeme wurden mit Hilfe von Positivkontrollen validiert. Grundlegende Experimente zur Errichtung einer substratunabhängigen orthogonalen Methode mittels MST wurden getätigt. Basierend auf den Ergebnissen eines in Vorarbeiten durchgeführten virtuellen Screenings wurden erste potenzielle Inhibitoren kommerziell erworben und getestet. Nachfolgend wurde mit der Synthese von Derivaten begonnen, welche auf iterativem Wege optimiert wurden (Testung – Docking – Synthese neuer Derivate). Hierdurch wurde eine umfassende Substanzbibliothek bestehend aus insgesamt 254 Verbindungen aufgebaut. Diese setzte sich aus unterschiedlich substituierten Thiazolidin-2,4-dionen- und Thiazolin-2-on-Derivaten, Derivaten der ähnlich strukturierten Fünfring-Heterozyklen Rhodanine, Thiohydantoine und Hydantoine und weiteren Strukturklassen bestehend aus Biphenylether-, Pyrrolidoncarboxamid-, Pyridon- und Sulfonamid-Derivaten zusammen. Die Verbindungen wurden entweder selbst synthetisiert, kommerziell erworben oder von Kooperationspartnern bezogen. Neben der Etablierung zuverlässiger und effizienter Syntheserouten stand hierbei ebenso die strukturelle Aufklärung der stereochemischen Verhältnisse der Produkte im Mittelpunkt. Die Verbindungen der aufgebauten Substanzbibliothek wurden mit dem etablierten InhA-Testsystem auf ihre inhibitorischen Eigenschaften gegenüber InhA untersucht. Soweit möglich wurden Struktur-Aktivitätsbeziehungen abgeleitet. Insbesondere einige disubstituierte Thiazolidindione zeigten eine schwache Hemmung von bis zu 25 %. Die zur Aufklärung des Inhibitionsmechanismus durchgeführten Experimente deuten auf eine unkompetitive Hemmung hin. Bei den direkten Testungen an Mykobakterien konnten die inhibitorischen Eigenschaften hingegen nicht bestätigt werden. Weiterhin wurden Testungen an Cystein- und Serin-Proteasen von Erregern anderer Infektionskrankheiten durchgeführt. Das Thiazolinon SV102 wurde hierbei als nicht-kompetitiver Hemmstoff von Cathepsin B mit einem Ki-Wert von 1.3 µM identifiziert. Die Synthese und Testung weiterer Thiazolin-2-on-Derivate sowie Cokristallisationsversuche mit Cathepsin B sind somit in Betracht zu ziehen. Die getesteten Thiazolidindion-Derivate der Substanzbibliothek zeigten hierbei mittelstarke bis gute Hemmeigenschaften, die ebenfalls an den Erregern beobachtbar waren. Relativiert werden diese vielversprechenden Ergebnisse allerdings durch eine ebenfalls zu beobachtende Zytotoxizität. Weiterhin konnte eine antibakterielle Wirkung der untersuchten Verbindungen in zellulären Assay-Systemen nicht gezeigt werden. Abschließend wurde die Eignung der Thiazolidindione und verwandter Fünfringheterozyklen als Leitstruktur für potenzielle InhA-Inhibitoren, aber auch die Eignung dieser Verbindungsklasse als potenzielle Leitstruktur per se diskutiert. N2 - Tuberculosis is one of the most deadly infectious diseases and it is highly prevalent world-wide. The issues arising from the complexity of the current treatments schemes as well as the lacking development of effective new drugs have led to the formation of multi- or even totally drug-resistant strains of Mycobacterium tuberculosis which is known as the major microbial species causing tuberculosis. Mycobacteria are characterized by a unique, thick and waxy cell wall that functions as a nearly impermeable barrier due to its high concentration of mycolic acids. The biosynthesis of these fatty acids requires the presence of a specific set of mycobacterial enzymes that differ markedly from their eukaryotic counterparts. Disturbance in the proper formation of this essential cell wall unvariably interferes with mycobacterial survival. Thus, the mycobacterial fatty acid synthesis pathway is an attractive target for the development of selective new drugs against Mycobacterium tuberculosis. The aim of this work was the synthesis and optimization of thiazolidindiones and related five membered heterocycles as lead structures for the development of novel, direct inhibitors of InhA, an essential enzyme in the biosynthesis of mycolic acids. Two coupled photometric enzyme assays that monitor the absorption of the involved cofactor NADH were developed in a 96-well-plate format. For this purpose, the enzyme InhA was recombinantly expressed and purified from E.coli. Several routes of synthesis for its substrate 2-trans-octenoyl-CoA were established. Assay systems were validated by characterizing positive controls known from the literature, and an orthogonal analysis method was introduced by using microscale thermophoresis. Thiazolidindiones as lead compound structure were discovered by performing a virtual screening campaign in preliminary works. Several substances were commercially acquired and tested in the established InhA-assay-system. Based on these results the syntheses of further compounds were started and optimized in an iterative manner (testing – docking – synthesis of new derivatives). Thus, a large compound library of 254 substances was built up. It consists of different substituted thiazolidindiones, thiazolinons and related five membered heterocycles such as rhodanines, thiohydantoines and hydantoines as well as further compound classes, namely, derivatives of biphenylethers, pyrrolidoncarboxamides, pyridines and sulfonamides. The compounds were either synthesized, received from collaboration partners, or acquired commercially. Concerning the synthetic work, the focus was on developing effective routes of synthesis, elucidating reaction mechanisms and determining the stereochemical properties of the received products. The compound library was subsequently tested against InhA by using the previously established assay systems. As far as possible, structure-activity relationships were derived. In particular, some disubstitued thiazolidindiones showed moderate inhibitory properties of up to 25 % when tested against the purified enzyme. Kinetic experiments performed to obtain information about the mode of inhibition indicated that thiazolidinediones acted as uncompetitive inhibitors of InhA. However, these results could not be confirmed in direct measurements using mycobacteria. Further measurements against various cysteine- and serine-proteases were performed. The thiazolinone SV102 was identified as non-competitive inhibitor of cathepsin B (Ki = 1.3 µM). Consequently, synthesis of new derivates as well as co-crystallization experiments should be taken into consideration. Thiazolidinedione derivatives also showed proper inhibition of isolated proteases. This inhibitory activity also was also observed in direct measurements against trypanosoma and leishmania but was actually accompanied by a certain extent of cytotoxicity. Finally, the question was addressed of whether thiazolidindiones and related five membered heterocycles should be seen as a privileged scaffold in drug development, or just as promiscuous binders that should be excluded from drug discovery. KW - Thiazolidindione KW - Tuberkelbakterium KW - Enoyl-acyl-carrier-protein-Reductase KW - Inhibitor Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-113792 ER - TY - THES A1 - Topf, Christine T1 - Design, Synthese und biologische Testung von KasA-Inhibitoren als potentielle Wirkstoffe gegen Mycobacterium tuberculosis T1 - Design, synthesis and biological testing of KasA-inhibitors as potential drugs against mycobacterium tuberculosis N2 - Im Mittelpunkt dieser Arbeit stand die Entwicklung neuer Wirkstoffe gegen Tuberkulose, einer schwerwiegenden bakteriellen Infektionskrankheit, die am häufigsten die Lunge befällt. Die Entwicklung neuer Arzneistoffe gegen diese Erkrankung ist immens wichtig, da nach Angaben der WHO weltweit jährlich über 1 Million Menschen an den Folgen der Tuberkulose sterben, derzeit kein effizienter Impfstoff zur Verfügung steht und sich die Therapiemöglichkeiten auf wenige Arzneistoffe beschränken. Zudem steigt weltweit das Auftreten von arzneistoff- und totalresistenten Tuberkuloseformen. Tuberkulose wird vorwiegend durch das Mycobacterium tuberculosis erregt. Eine Besonderheit des M. tuberculosis stellt die mykobakterielle Zellwand dar, da diese durch einen hohen Anteil an Fettsäuren besonders wachsartig und dick ist. Die mykobakterielle Fettsäuresynthese unterscheidet sich signifikant von der Synthese eukaryotischer Fettsäuren. Daher besteht die Möglichkeit, Inhibitoren der mykobakteriellen Fettsäuresynthese als effektive und selektive neue Antituberkulotika zu entwickeln. Zielstruktur dieser Arbeit ist KasA (β-Ketoacylsynthase), ein Enzym der mykobakteriellen Fettsäuresynthese II, das die Kondensation zwischen der wachsenden Fettsäurekette und Malonyl-ACP katalysiert. Ein literaturbekannter KasA-Inhibitor ist Thiolactomycin, ein Thiolacton-Derivat mit einer schwachen inhibitorischen Aktivität (IC50: 242 µM; Kd 226 µM), für den eine KasA-Komplexstruktur verfügbar ist. Ziel der Arbeit war es, mittels computergestützten Wirkstoffdesigns neue Leitstrukturen für KasA-Inhibitoren zu entwickeln und davon abgeleitet Substanzbibliotheken kleiner Moleküle zu synthetisieren. Zur Bestimmung der In-vitro-Aktivitäten sollte KasA exprimiert und ein Assay etabliert werden. Theoretische und experimentelle Affinitäten sollten anschließend analysiert und bewertet werden. Zur Identifizierung neuer potenzieller KasA-Inhibitoren wurde mit Hilfe des Thiolactomycin-Bindemodus ein Pharmakophor-Modell erstellt. In diesem wurden die essentielle Wasserstoffbrücke zwischen den Histidinen und dem Carbonyl-Sauerstoff des Thiolactonrings, zwei hydrophobe Bereiche und ein verbindendes Strukturelement definiert und das Volumen des Pharmakophors begrenzt. Das Screening der Datenbank erfolgte mit GOLD4.0 und GOLDscore. Zur Identifizierung der 16 aussichtsreichsten Verbindungen wurden Rescorings mit ChemScore und sfc_score290m durchgeführt, sowie verschiedene physikochemische Deskriptoren und der errechnete Bindungsmodus einbezogen. Ausgewählte Verbindungen des Screenings wurden synthetisiert. Weitere Variationen wurden durch Einführung von Substituenten und Bromierung und Nitrierung der Grundgerüste erhalten. Zur biologischen Testung dieser Verbindungen konnte KasA in M. smegmatis exprimiert werden. Die Reinigung des Proteins erfolgte mittels Affinitäts- und Größenausschlusschromatographie. Affinitätswerte an KasA konnten mit einem Fluoreszenzassays bestimmt werden, da in jedem KasA-Monomer vier Tryptophane zur intrinsischen Fluoreszenz beitragen. Die Bindung eines Inhibitors in die TLM-Bindetasche führte zum Quenching der Fluoreszenz von KasA und konnte unter Berücksichtigung von Verdünnungs- und inneren Filtereffekten zur Berechnung der Dissoziationskonstante Kd herangezogen werden. Die In-vitro-Untersuchungen der Inhibitoren von KasA zeigten im Vergleich zu TLM eine Verbesserung der Affinität bis zu einem Faktor von 11, die beste Verbindung war das Nitroisatin-Derivat 2l (22.1 µM). Einen Hinweis auf Hemmung des Wachstums von Mykobakterien war für die Verbindungen 2e (5-Nitro-1-phenethyl-2,3-indolindion) und 3a (5,7-Dibrom-1-(4-chlorbenzyl)indolin-2,3-dion) ersichtlich. Die übrigen Verbindungen zeigten keine Aktivität, was dadurch bedingt sein kann, dass sie Substanzen nicht lipophil genug sind (clogP-Werte zwischen 1 und 3), um die mykobakterielle Zellwand zu durchdringen. Analog dem Docking im Rahmen des virtuellen Screenings wurde ein Docking mit GOLD4.0 und GOLDscore für die Substanzbibliothek durchgeführt. Verglichen mit den In-vitro-Affinitäten konnte eine gute Übereinstimmung in der Differenzierung der Substanzklassen gefunden werden. Da kleine Moleküle mit großer biologischer Aktivität zu bevorzugen sind, wurde die „ligand efficiency“, die inhibitorische Potenz unabhängig vom Molekulargewicht, für die Verbindungen berechnet. Für die Substanzbibliothek wurde eine gute Korrelation von „ligand efficiency“ und GOLDscore pro Schweratom erzielt (R2=0.65), beste Substanzgruppen waren monoalkylierte Uracil- und Isatin-Derivate. Der beste Wert wurde für das Isatin-Derivat 1a erzielt. Mit den erarbeiteten theoretischen und experimentellen Ergebnissen und den etablierten Methoden bietet diese Arbeit eine wichtige Grundlage, um erste „hits“ von KasA-Inhibitoren zu neuen Leitstrukturen für Wirkstoffe gegen Mycobakterium tuberculosis zu entwickeln. N2 - This work focused on the development of new antibiotics against tuberculosis, a severe bacterial infection mainly affecting the lung. Currently, according to the WHO more than 1 million people annually die from tuberculosis. Furthermore, the therapy is limited to inefficient vaccines and a small number of antibiotics, and complicated by multi- or even totally resistant mycobacterial strains occurring worldwide. Thus, new active compounds against tuberculosis are urgently needed. Tuberculosis is mainly caused by Mycobacterium tuberculosis, which is characterized by a unique thick and waxy cell wall containing a high percentage of mycolic acids. Due to the fact that the biosynthesis of mycolic acids is not carried out in eukaryotes, it is a reasonable strategy to design inhibitors of the FAS II system as effective and selective antibiotics against mycobacteria. The enzyme of interest in our work is the β-keto-acyl ACP synthase (KasA), an elongating enzyme in the FAS II system of Mycobacterium tuberculosis which catalyses the condensation between the mycolic acid and malonyl-ACP. Recently, a crystal structure of KasA in complex with Thiolactomycin, a weak thiolactone-type inhibitor (IC50: 242 µM; Kd 226 µM), was solved. Aim of this work was to identify new potential lead structures for KasA-inhibitors by virtual screening. A library of small molecules was synthesized and tested for ability to inhibit KasA, therefore KasA was expressed. In silico and in vitro affinities were analyzed and compared. To identify new lead structures for potential KasA inhibitors, a pharmacophore model based on TLM was developed. This contained the essential H-bond between the carbonyl-oxygen of TLM with the histidines, two hydrophobic features and a linker feature between them. Additionally, volume constraints were applied to limit the size of molecules matching the pharmacophore model. Screening of a database of commercially available compounds was performed with GOLD4.0 and GOLDscore. 16 Promising structures were identified by implementation of rescorings with ChemScore and sfc_score290m, by calculation of physicochemical descriptors and by visual inspection of the predicted binding mode. Selected substances of the virtual screening were synthesized. Based on these substances the core fragments were varied by bromination and nitration. Via subsequent introduction of substituents a small library of compounds was created. For biological testings KasA was expressed in M. smegmatis. Purification of the protein was achieved by affinity and size exclusion chromatography. Dissociation constants were determined by a fluorescence assay: In each KasA monomer four tryptophanes cause intrinsic fluorescence, thus binding of inhibitors led to quenching of the fluorescence. Therefore, dissociation constants of ligands were calculated considering the dilution and inner filter effects. The in vitro studies of the KasA inhibitors showed, in comparison to TLM, a 11fold improvement of the affinity. The best inhibitor was the nitroisatine derivative 2l (22.1 µM). 2e (5-Nitro-1-phenethyl-2,3-indolindione) and 3a (5,7-Dibromo-1-(4-chlorbenzyl)indolin-2,3-dione) were able to inhibit the growth of mycobacteria. No other substances showed any antimycobacterial activity, which might be due to their low lipophilicity (clogP varies from 1 to 3), hence which hinders an efficient penetration through the highly lipophilic mycobacterial cell wall. In the future, the precise cause of this fact has to be determined to counteract with systematic structural modifications. The compound library was docked into KasA by using GOLD4.0 and GOLDscore with analogous settings as in the virtual screening. The analysis of the results showed an agreement between in vitro and in silico outcomes for the substance classes. As small molecules of high activity are preferred in drug development, ligand efficiencies of the inhibitors were calculated which describe inhibitory potency independent of molecular weight. A good correlation between ligand efficiency and GOLDscore per heavy atom was observed. Best ligand efficiencies were obtained by the classes of monoalkylated uracile- and isatine-derivatives, the best substance was the isatine-derivative 1a. Due to the established methods combined with computer-based and experimental results, this work provides an important foundation for the future development of first “hits” of KasA-inhibitors to new lead structures of new drugs against mycobacterium tuberculosis. KW - Tuberkelbakterium KW - Arzneimitteldesign KW - Ketoacyl-ACP-Synthase KW - Inhibitor KW - Virtuelles Screening KW - Fettsäuresynthese-II KW - KasA KW - Mykobakterien KW - virtual screening KW - fatty acid synthesis II KW - KasA Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-77865 ER - TY - THES A1 - Waltenberger, Constanze Ricarda Maria T1 - Virtuelles Screening nach einer neuen Inhibitorklasse der Enoyl-ACP-Reduktase InhA aus Mycobacterium tuberculosis T1 - Virtual screening for a new inhibitor class of the enoyl-ACP-reductase InhA of Mycobacterium tuberculosis N2 - Die Zahl der Tuberkuloseerkrankungen ist in den letzten Jahrzehnten weltweit gestiegen. Da es an innovativen Antituberkulotika mangelt, werden nach wie vor Medikamente der ersten Generation eingesetzt. Das wachsende Problem sind multi-resistente und extrem-resistente Bakterienstämme, die kaum oder gar nicht auf die medikamentöse Therapie ansprechen. Charakteristisch für M. tuberculosis ist eine dicke Zellwand. Der Aufbau der Zellwand ermöglicht es dem Bakterium in den Makrophagen zu persistieren und sich dort zu vermehren. Die Zellwand ist reich an Mykolsäuren und so wenig durchlässig für Fremdstoffe. Das mykobakterielle Zellwandskelett kann man in zwei Teile unterteilen, den Zellwandkern und die äußere Lipidhülle. Die freien Lipide der äußeren Lipidhülle dienen als Signalmoleküle im Krankheitsverlauf und interkalieren mit den Mykolsäuren des Zellwandkerns. M. tuberculosis besitzt für die Fettsäurebiosynthese zwei Enzymkomplexe: Die Typ-I-Fettsäuresynthase, die auch in Säugetieren zu finden ist, produziert Fettsäuren von C16- bis C26-Kettenlänge, die dann in der Typ-II-Fettsäuresynthase (FAS-II) zu Meromykolsäuren verlängert werden. Im Synthesezyklus des FAS-II sind mehrere monofunktionale Enzyme hintereinander geschaltet. Wird eines dieser Enzyme in seiner Funktion gestört, kumulieren Zwischenprodukte und benötigte Zellwandlipide können nicht synthetisiert werden. In der Folge wird die Zellwand instabil und das Bakterium stirbt. Die mykobakterielle Lipidbiosynthese ist somit ein ideales Target für die Entwicklung neuer Antituberkulotika. Ziel dieser Arbeit war es, eine neue Inhibitorklasse des FAS-II Enzyms InhA des M. tuberculosis mittels virtuellem Screening zu finden. Für das virtuelle Screening wurden drei aufeinander aufbauende Pharmakophorhypothesen entwickelt und mit diesen zwei unabhängige Datenbanken durchsucht. Als Grundlage für die Berechnungen des virtuellen Screenings diente die PDB Röntgenkristallstruktur 2h7m mit dem Liganden 1-Cyclohexyl-N-(3,5-dichlorophenyl)-5-oxopyrrolidin-3-carboxamid. Für die Erstellung der Pharmakophorhypothesen wurden zuerst die Strukturen des Enzyms mit und ohne Ligand bezüglich ihrer Konformationsunterschiede vor allem im Bereich der Bindetasche analysiert. Als nächstes wurden die Wechselwirkungen des Liganden mit den Aminosäuren der Bindetasche und dem Cofaktor näher analysiert und die verschiedenen Wechselwirkungsarten hinsichtlich ihrer Relevanz für eine inhibitorische Aktivität beurteilt. Schließlich wurde eine Bindetaschenanalyse durchgeführt und Hotspots für unterschiedliche chemische Funktionalitäten berechnet. Für das Datenbankenscreening wurden das ZINC 'drug-like' Subset (2005) und CCGs MOE 2006 Vendor Compound 3D Collection verwendet, beides Datenbanken exklusiv kommerziell erhältlicher Verbindungen. Das ZINC 'drug-like' Subset wurde über einen für InhA individuell angepassten hierarchischen Filter numerisch reduziert. Von den verbleibenden Verbindungen wurde eine Konformerendatenbank berechnet. Die MOE 2006 Vendor Compound 3D Collection lag bereits als Konformerendatenbank vor und wurde für das Screening 'as-is' verwendet. Mit den Pharmakophorhypothesen I und II wurde das reduzierte ZINC 'drug-like' Subset gescreent. Für die Treffer wurden Fingerprints berechnet, sie danach mithilfe des Tanimotokoeffizienten nach ihrer Ähnlichkeit in Cluster eingeteilt und visuell analysiert; 149 Verbindungen wurden für die Dockingsimulationen ausgewählt. Die MOE Konformerendatenbank wurde ebenso über einen für InhA individuell angepassten hierarchischen Filter numerisch reduziert und mit der Pharmakophorhypothese III gescreent, 28 Verbindungen wurden für die Dockingsimulationen ausgewählt. Die Dockingsimulationen wurden mit den Programmen MOE Dock und Autodock durchgeführt. Die Ergebnisse wurden numerisch ausgewertet und innerhalb der Bindetasche relativ zur jeweiligen zugrunde liegenden Pharmakophorhypothese visuell analysiert; 27 Substanzen wurden schließlich für die Testungen ausgewählt. Die Testungen erfolgten mit einem enzymatischen Assay und einem Assay an attenuierten M. tuberculosis Für die Etablierung des enzymatischen Assays wurde das Enzym InhA mittels Vektortransformation in E. coli überexprimiert und säulenchromatographisch aufgereinigt. Das Substrat 2-trans-Octenoyl-Coenzym A wurde synthetisiert. Von den 27 ausgewählten Substanzen waren 9 im Handel erhältlich und wurden schließlich auf ihre inhibitorische Aktivität getestet. Es wurden ein Thiazolidin-2,4-dion, ein 2-Thioxoimidazolidin-4-on und ein Sulfonamid als aktive Substanzen gefunden. N2 - Worldwide the number of tuberculosis cases has increased in the decades. Since there is a lack of innovative anti-tuberculosis drugs, the first-generation drugs are still used as gold standard. Therefore, strains of mycobacteria, that respond only little or not at all to drug therapy, picture a growing problem. Characteristic of M. tuberculosis is its thick cell wall. The structure of the cell wall allows the bacterium to persist in the macrophages and to multiply there. The cell wall is rich in mycolic acids and, in this, little permeable to xenobiotics. The mycobacterial cell wall skeleton can be divided into two parts, the cell wall core and the outer lipid envelope. The free lipids of the outer lipid envelope serve as signalling molecules in course of the disease, and intercalate with the mycolic acids of the cell wall core. For fatty acid biosynthesis M. tuberculosis has two enzyme complexes: the type I fatty acid synthase, which is also found in mammals, produces fatty acids of C16 to C26 chain length; subsequently, these are extended to meromycolic acids in the type II fatty acid synthase (FAS II). The synthesis cycle of FAS-II consists of mono-functional enzymes that build up on each other. If one of these enzymes is disturbed in its functionality, intermediates accumulate and required cell wall lipids can not be synthesized. As a result, the cell wall turns unstable and the bacterium dies. Therefore, the mycobacterial lipid biosynthesis is an ideal target for developing new antituberculous drugs. The aim of this study was to develop a new inhibitor class of the mycobacterial FAS-II enzyme InhA by means of virtual screening. For the virtual screening three consecutive pharmacophore hypotheses were developed, and with these two independent databases were screened. As a basis for the calculations of the virtual screening the PDB X-ray crystal structure 2h7m with the ligand 1-cyclohexyl-N-(3,5-dichlorophenyl)-5-oxopyrrolidine-3-carboxamide was used. In order to construct the pharmacophore hypotheses, first, the structures of the enzyme with and without a ligand were analyzed for their conformational differences, in particular with respect to the geometry of the binding pocket. Next, the interactions of the ligand with the amino acids of the binding pocket and with the cofactor were analyzed in detail; thereby, the different types of interactions were assessed in terms of their relevance for the inhibitory activity. Finally, a hot spot analysis of the active site was carried out for different chemical functionalities. The ZINC 'drug-like' subset (2005) and CCG's 2006 Vendor MOE 3D compound collection were used for the database screening, both being databases of commercially available compounds. The ZINC 'drug-like' subset was numerically reduced by a hierarchical filter customized for InhA; of the remaining compounds a database of conformers was calculated. The MOE 2006 Vendor 3D Compound Collection was already available as a conformer database. The reduced ZINC 'drug-like' subset was screened with the pharmacophore hypotheses I and II. After calculating fingerprints the hits were clustered according to their similarity using the Tanimoto coefficient and visually analyzed; 149 compunds were selected for the docking simulations. The MOE conformers database also was numerically reduced by a hierarchical filter customized for InhA, and then screened with the pharmacophore hypothesis III, 28 compounds were chosen for the docking simulations. The docking simulations were performed with the programs MOE Dock and Autodock. The results were evaluated numerically, and analyzed visually within the binding pocket relative to the respective underlying pharmacophore hypothesis. Finally, 27 substances were selected for testing. The tests were carried out using an enzymatic assay and an assay on attenuated M. tuberculosis. For establishing the enzymatic assay, the enzyme InhA was overexpressed using vector transformation into E. coli and purified by column chromatography. The substrate 2-trans-octenoyl-coenzyme A was synthesized. Of the 27 selected compounds 9 substances were commercially available and were tested for their inhibitory activity. A thiazolidine-2,4-dione, a 2-thioxoimidazolidine-4-one and a sulfonamide were found to be active. KW - Screening KW - Tuberkelbakterium KW - Enoyl-acyl-carrier-protein-Reductase KW - Inhibitor KW - Virtuelles Screening KW - Enoyl-ACP-Reduktase KW - InhA KW - neue Inhibitorklasse KW - Tuberkulose KW - Virtual Screening KW - enoyl-ACP-reductase KW - InhA KW - new inhibitor class Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73736 ER - TY - THES A1 - Schulz, Franziska T1 - Synthese und Testung von Aziridin-2-carboxylaten als Cystein-Protease-Inhibitoren T1 - synthesis and testing of aziridine-2-carboxylates as inhibitors of cysteine proteases N2 - Das Ziel der vorliegenden Arbeit war es, eine neue Struktur abgeleitet von den potenten Aziridin-2,3-dicarboxylaten zu synthetisieren und diese dann an verschiedenen humanen und parasitären Cystein-Proteasen zu testen. Dafür wurde als Baustein die Aziridin-2-carbonsäure gewählt, die an C3-Position unsubstituiert ist und an C2-Position eine Carboxyl-Funktion trägt. Außerdem sollte der Ringstickstoff im Gegensatz zu den bisher bekannten N-acylierten Aziridin-2,3-dicarboxylaten basische Eigenschaften besitzten. Die Struktur der synthetisierten Azridin-2-carboxylate ist daher wie folgt gewählt worden: Die durch Cromwell-Synthese erhaltenen Verbindungen wurden als Racemate oder als Diastereomerengemische erhalten. Dabei wurden die Diastereomeren-Verhältnisse der einzelnen Verbindungen über die Integrale in den 1H-NMR-Spektren bestimmt. Die an Position R3 mit einer Aminosäure substituierten Aziridin-2-carboxylate wurden durch eine Modifikation der Cromwell-Synthese erhalten. Es wurden insgesamt 27 Azridin-2-carboxylate synthetisiert, die dann an verschiedenen Proteasen getestet wurden. Zu den getesteten Cystein-Proteasen gehören die parasitären Enzyme Falcipain 2, 3 und Rhodesain, die virale SARS-CoV Mpro und die humanen Proteasen Cathepsin B und L. Es wurde jeweils ein Screening der Substanzen an den Proteasen durchgeführt. Bei den wirksamen Verbindungen wurden dann die Ki-, ki-, k2nd- oder IC50-Werte bestimmt. Außerdem wurden die Substanzen auch an der SAP2, einer Aspartat-Protease aus Candida albicans, getestet, an der sie allerdings kaum eine Hemmwirkung zeigten. Bei den nicht-selektiven Inhibitoren stellte sich die Verbindung 9.1a, die auch an Rhodesain eine gute Aktivität besitzt, als ein noch potenterer Inhibitor heraus. Hauptsächlich zeigten an Rhodesain Verbindungen eine gute Hemmwirkung, die Nε- oder Nα-geschütztes Lysin-, Phenylalanin- oder Asparaginsäureester als Substituenten enthalten. Dabei waren die Verbindungen 9.1a/b, 4.9b und 4.8a/b die potentesten Inhibitoren am Rhodesain und 9.1b, 9.2, 4.4b und 4.8b an Falcipain 2 und 3. An der SARS-CoV Mpro hemmte die Verbindung 9.1b am besten. Es wurde weiterhin die Abhängigkeit der Aktivität der parasitären Cystein-Protease Rhodesain vom pH-Wert bestimmt, indem die Fluoreszenzzunahme durch die hydrolytische Spaltung des Substrates durch das Enzym bei pH-Werten zwischen 2.5 und 8.0 über 30 min vermessen wurde. Dabei zeigte sich, dass das Rhodesain in einem sehr weiten pH-Bereich von 3.0 – 8.0 eine sehr hohe Aktivität aufweist (80 – 100 %) und erst im relativ sauren Bereich bei pH 2.5 die Aktivität nachlässt (~ 60 %). Außerdem wurde auch die Hemmung von Rhodesain durch 9.1b in Abhängigkeit vom pH-Wert analysiert, wobei die Hemmstärke im sauren pH-Bereich durch die Protonierung des Stickstoffes des Aziridinringes sehr stark zunahm. Im Rahmen des SFB630 („Erkennung, Gewinnung und funktionale Analyse von Wirkstoffen gegen Infektionskrankheiten“) konnten viele der synthetisierten Verbindungen an verschiedenen Krankheitserregern, wie Trypanosoma brucei brucei, Leishmania major, sowie an sog. Problemkeimen, zu denen die gram-negativen Erreger Pseudomonas aeruginosa und Escheria coli, sowie die gram-positiven Staphylococcus-Arten S. aureus (Linie 325, 8325) und S. epidermidis (Linie RP62) gehören, untersucht werden. Dabei stellten sich die Verbindungen 9.1a/b an Trypanosoma brucei brucei als wirksame Inhibitoren gegen den Erreger heraus. Dies korreliert auch sehr gut mit der hohen Aktivität der beiden Verbindungen gegen Rhodesain (9.1a: Ki: 15.41 µM; 9.1b: Ki: 2.99 µM), wobei die Verbindung 9.1b allerdings an Makrophagen toxisch wirkte (9.1b: IC50: 80 µM). Außerdem war 9.1b auch ein Inhibitor des Wachstumes und der Biofilmbildung von S. aureus. Gegenüber Plasmodium falciparum zeigten die Verbindungen 4.9a/b (4.9a: IC50: 0.5 µM; 4.9b: IC50: 2.2 µM) und 9.4 (9.4: IC50: 1.7 µM) die größte Aktivität, wobei allerdings diese Verbindungen keine Hemmung an den Falcipainen aufwiesen und somit das Target der Inhibition noch ungeklärt ist. Im Rahmen eines Auslandsaufenthaltes in der Arbeitsgruppe von Prof. Dr. Philip Rosenthal, San Francisco, California, wurde außerdem ein Screening verschiedener im Arbeitskreis synthetisierter Substanzklassen an Falcipain 2, 3 und an Plasmodium falciparum durchgeführt. Die dabei getesteten Substanzklassen sind in Abb. 6.1 aufgezeigt. Die Aziridin-2,3-dicarboxylate II-c, I-v und I-j zeigten dabei die beste Aktivität, sowohl an den Falcipainen als auch an dem Parasiten. Unter den Epoxiden und an Position C3 substituierten Aziridin-2-carboxylaten ist die Verbindung IV-2 die einzige, die eine Hemmwirkung aufweist. Unter den anderen getesten Verbindungen zeigten nur die Ethacrynsäure-Derivate VII-b und VII-f eine antiplasmodiale Aktivität. N2 - The goal of the present work was the syntheses of a new structure derived from the aziridine-2,3-dicarboxylate motif, and the testing against different human and parasitic cysteine proteases. Therefore we chose the aziridine-2-carboxylate motif as building block which is unsubstituted at position C3 of the azridine ring and substituted with a carboxyl function at position C2. In addition to this, the nitrogen of the ring should have basic properties in opposite to the common N-acylated aziridine-2,3-dicarboxylates. The compounds were obtained as racemic or diastereomeric mixtures by the Cromwell synthesis. The diastereomeric excesses were determined by analysis of the integrals of the signals of the ring protons in the 1H-NMR spectra. The aziridine-2-carboxylates substituted with an amino acid ester at position R3 were synthesized by a modification of the Cromwell synthesis. Overall, 27 new aziridine-2-carboxylates were synthesized as new potential irreversible inhibitors of cysteine proteases. The aziridine-2-carboxylates were tested against the parasitic cysteine proteases falcipain 2 and 3 and rhodesain, the viral SARS-CoV Mpro and the human enzymes cathepsin B and L. First, we screened the aziridine-2-carboxylates to identify new potential agents against the proteases. Then we determined the inhibition constants Ki, ki, k2nd or IC50 for the most potent compounds. Against the aspartatic protease SAP2 from Candida albicans the aziridine-2-carboxylates showed no activity. In order to determine the inhibition constants we chose the continuous assay according to Tian and Tsou. The inhibition constants against SARS-CoV Mpro and SAP2 were determined using a FRET assay. Within the non-selective inhibitors the compound 9.1a was identified as a very potent inhibitor of cathepsin L and rhodesain. Compounds showing activity against rhodesain are the Nε- or Nα-protected lysine, phenylalanine or aspartic acid derivatives. Thus, the aziridine-2-carboxylates 9.1a/b, 4.9b and 4.8a/b were the most potent inhibitors against rhodesain and 9.1b, 9.2, 4.4b and 4.8b against falcipain 2 and 3. Against the SARS-CoV Mpro the compound 9.1b showed the highest activity. In order to analyse the pH-dependency of hydrolytic activity of the parasitic cysteine protease rhodesain we determined the activity of the enzyme in dilution assays measuring the increase of the fluorescence at different pH values between 2.5 and 8.0. Rhodesain was active in a wide pH range from 3.0 – 8.0 (80 – 100 %) with decreased activity at pH 2.5 (~ 60 %). In addition to this, we determined the pH-dependence of the inhibition constants of 9.1b against rhodesain. We found that the inhibition potency increased at an acid pH range due to the protonation of the basic nitrogen of the aziridine ring. Within the framework of the Collaborative Research Centre SFB 630 most compounds were examined for the activity against various pathogens: Trypanosoma brucei brucei, Leishmania major, the gramnegative bacteria Pseudomonas aeruginosa and Escheria coli, as well as grampositive Staphylococcus strains S. aureus (Linie 325, 8325) and S. epidermidis (line RP62). Tests against Trypanosoma brucei brucei revealed some active compounds which are not cytotoxic against the host cells, the macrophages (IC50 > 100 µM). The best compounds against this pathogen were 9.1a/b (9.1a: Ki: 15.41 µM; 9.1b: Ki: 2.99 µM). These results correlate well with the inhibition constants of this compounds against rhodesain, but unfortunaly 9.1b showed cytotoxity against the macrophages (9.1b: IC50: 80 µM). Furthermore, 9.1b inhibited the growth and biofilm production of S. aureus. The compounds 4.9a/b (4.9a: IC50: 0.5 µM; 4.9b: IC50: 2.2 µM) and 9.4 (9.4: IC50: 1.7 µM) showed the highest activity against Plasmodium falciparum, but unfortunaly they did not inhibit falcipain 2 or 3 and so the target of the inhibition of the pathogen is uncertain. Within the framework of another collaboration with the working group of Prof. Dr. Philip Rosenthal, San Francisco, California, I determined the inhibition constants of series of different compounds (scheme 6.1) against falcipain 2, falcipain 3 and Plasmodium falciparum. The aziridine-2,3-dicarboxylates II-c, I-v and I-j showed the highest activity both against the falcipains and the pathogen Plasmodium falciparum. Within the series of epoxides and the aziridine-2-carboxylates substituted at position 3 only the compound IV-2 showed activity against the pathogen. Besides this, the ethacrynic acid derivates VII-b and VII-f showed a high antiplasmodial activity. KW - Aziridine KW - Cysteinproteasen KW - Inhibitor KW - Aziridin-2-carboxylate KW - Cystein-Proteasen KW - Inhibitor KW - aziridine KW - cysteine proteases KW - inhibitors Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-19891 ER - TY - THES A1 - Vicik, Radim T1 - Synthese und Eigenschaften N-Acylierter Aziridin-2,3-dicarboxylate als selektive, peptidomimetische Inhibitoren von Cystein-Proteasen der Cathepsin-L-Subfamilie T1 - Synthesis and Properties N-Acylated Aziridin-2,3-dicarboxylates as selective, peptidomimetic Inhibitors of Cystein Proteases of Cathepsin-L-Subfamily N2 - Die Cystein-Proteasen der Säuger und Parasiten wurden erst in den letzten zwei Jahrzehnten als pharmazeutisch/medizinisches Target erkannt. Die genauen Aufgaben der einzelnen Enzyme dieser sehr umfangreichen und ständig wachsenden Protease-Familie bleiben zwar teilweise noch unbekannt, es ist jedoch klar, dass ihre Aufgabe nicht nur der unspezifische Protein-Abbau ist. Das Ziel der vorliegenden Arbeit waren die Synthese einer Reihe peptidomimetischer Inhibitoren mit elektrophilem Aziridin-2,3-dicarbonsäure-Baustein und deren Testung an den Proteasen Cathepsin B (human), Cathepsin L (Paramecium tetraurelia), Falcipain-2 (Plasmodium falciparum) und Rhodesain (Trypanosoma brucei rhodesiense). Die Verbindungen sind als irreversible Inhibitoren der Proteasen konzipiert. Der Aziridin-Baustein als Elektrophil wird durch den Cystein-Rest des aktiven Zentrums der Proteasen angegriffen, es erfolgt eine nucleophile Ringöffnung und damit die irreversible Alkylierung der Proteasen. Die Aziridin-Bausteine wurden entweder stereoselektiv aus Tartraten oder als Racemate aus Fumaraten dargestellt. Durch NMR-spektroskopische Versuche wurde der Mechanismus der Epimerisierung der als Intermediate der stereoselektiven Synthese auftretenden Azidoalkohole aufgeklärt. Die N-Acylierung des Aziridin-Bausteins mit den Aminosäuren bzw. Dipeptiden erfolgte über Segmentkopplungen oder über eine schrittweise Anknüpfung der Aminosäuren. Es wurden dabei verschiedenste Methoden der Peptidchemie eingesetzt. Die Hemmkonstanten der synthetisierten Substanzen wurden in einem kontinuierlichen fluorimetrischen Mikrotiterplatten-Assay bei Inhibitor-Konzentrationen von 0.35 - 140 µM ermittelt. Als Substrat diente für alle Enzyme Z-Phe-Arg-AMC. Der Nachweis der Irreversibilität der Hemmung wurde durch Dialyse-Versuche und die Affinitätsmarkierung von Cathepsin L und Falcipain 2 mit Hilfe eines Biotin-markierten Inhibitors erbracht. Bei Inhibitoren, die eine zeitabhängige Hemmung aufweisen, wurden die Alkylierungskonstanten (ki –Werte) ermittelt. Diese sind im Vergleich zu den Konstanten der Epoxysuccinyl-Peptide ca. 1000x kleiner, was frühere Untersuchungen bestätigt. Aus den ermittelten Dissoziationskonstanten (Ki) ist die Selektivität für Cathepsin-L-ähnliche Proteasen eindeutig. Dabei wird die Reihenfolge RD > CL > FP >>> CB gefunden. Der beste Inhibitor für alle Enzyme ist die Substanz 116C (BOC-(S)-Leu-(S)-Azy-(S,S)-Azi(OBn)2), für die Hemmkonstanten im unteren micromolaren bzw. sogar nanomolaren Bereich gefunden werden. Unter den Substanzen finden sich auch einige, die für einzelne Enzyme selektiv sind. Für CL sind es die Verbindungen 517C, 105G, Z-023B, 023A; für CB 034A und 013B und für RD 112C, 222C, 105B, 013A. Dabei gibt es zwei Inhibitoren (105A, 517G), die selektiv nur die parasitären Enzyme FP und RD hemmen. Die Analyse der Struktur-Wirkungs-Beziehungen ergab, dass in Abhängigkeit von den Substituenten am Aziridinring (Benzylester, Ethylester, Disäure), von den Substituenten am Aziridin-Stickstoff (Phe-Ala, Leu-Xxx, Gly-Xxx, Xxx = cyclische Aminosäure) und der Stereochemie unterschiedliche Bindungsmodi vorliegen müssen. Erste Docking-Versuche, die in Kooperation mit der Arbeitsgruppe Baumann (Institut für Pharmazie und LMC, Universität Würzburg) durchgeführt wurden, bestätigen dies. Postuliert wird für Inhibitoren, die die Sequenz Leu-Pro enthalten, eine Bindung an die S`- Seite von Cathepsin L. Dies erklärt die Selektivität dieser Inhibitoren, denn innerhalb der S`-Substratbindungstaschen finden sich die größten strukturellen Unterschiede zwischen Cathepsin B und den Cathepsin-L-ähnlichen Proteasen. Im Gegensatz dazu wird für eines der Phe-Ala-Derivate eine Bindung an die S-Taschen postuliert, die zwischen den einzelnen Proteasen geringere strukturelle Unterschiede aufweisen. Dieser Inhibitor hemmt, wie fast alle Phe-Ala-Derivate, dementsprechend auch Cathepsin B besser als die Leu-Xxx-Derivate. In Rahmen einer Kooperation mit der Arbeitsgruppe Engels Institut für Organische Chemie, Universität Würzburg) wurden quantenchemische Rechnungen durchgeführt, die u.a. den Einfluss von Substituenten auf die Kinetik und Thermodynamik der nucleophilen Ringöffnung untersuchten. Vorhergesagt wurde, dass Substituenten am Aziridin-Stickstoff, die den Übergangzustand stabilisieren (N-Formyl), zu einer besseren Hemmung führen sollten. Das darauf hin synthetisierte N-Formylaziridin-2,3-dicarboxylat 008B weist eine etwa 5000x bessere Hemmung von CL auf als das nicht-formylierte Diethylaziridin-2,3-dicarboxylat. Die gezielt als "affinity label" entwickelte Biotin-markierte Verbindung 999C wurde zur Identifizierung von Cystein-Proteasen, die von Plasmodium falciparum exprimiert werden, eingesetzt (Kooperation mit der Arbeitsgruppe Gelhaus/Leippe, Institut für Zoologie, Universität Kiel). N2 - Mammalian and parasitic cysteine proteases have been discovered as potential drug targets within the last two decades. The physiological and pathophysiological functions of this huge and growing family of proteases are not yet known in detail. However, their role is no longer considered to be only unspecific protein degradation. The goal of the present work was the syntheses of a series of peptidomimetic cysteine protease inhibitors containing aziridine-2,3-dicarboxylate as electrophilic fragment, and the testing of the synthesized compounds on the cysteine proteases cathepsin B (human), cathepsin L (Paramecium tetraurelia), falcipain 2 (Plasmodium falciparum), and rhodesain (Trypanosoma brucei rhodesiense. The compounds are designed as irreversible protease inhibitors. The aziridine ring represents an electophilic building block which is attacked by the cysteine residue of the proteases` active sites. As a consequence, the nucleophilic ring opening reaction leads to irreversible enzyme alkylation. The aziridine building blocks were synthesized stereoselectively in a chiral pool synthesis starting from tartrates, and as racemates starting from fumarates, respectively. NMR spectroscopic studies were used to clarify the mechanism of epimerization occurring during the synthesis of the azido alcohols which are intermediates of the stereoselective synthetic route. The N-acylation of the aziridines with amino acids or dipeptides was carried out via segment or subsequent peptide coupling. Various methods of peptide chemistry were used. The inhibition constants were determined in fluorimetric microplate enzyme assays with inhibitor concentrations between 0.35-140 µM. In all cases, the substrate Z-Phe-Arg-AMC was used. The irreversibility of inhibition was proven by dialysis assays, and by affinity labelling of CL and falcipain using a biotinylated inhibitor. The alkylation rate constant ki was determined in cases where time-dependent inhibition could be observed. In comparison to epoxysuccinyl peptides the ki -values are lower by three orders of magnitude confirming previous investigations. The Ki values unambiguously show that the compounds exhibit a selectivity for the CL-like enzymes. The order of inhibition potency is RD > CL > FP >>> CB. The most potent inhibitor is 116C (BOC-(S)-Leu-(S)-Azy-(S,S)-Azi(OBn)2) with inhibition constants in the submicromolar and even nanomolar range. Some compounds exhibit selectivity for single enzymes: CL: 517C, 105G, Z-023B, 023A; CB: 034A, 013B; RD: 112C, 222C, 105B, 013A. Compounds 105A and 517G selectively inhibit the parasitic proteases FP and RD. The analysis of the structure-activity-relationship led to the assumption that different binding modes have to exist in dependence on the aziridine ring substituents (benzyl ester, ethyl ester, diacid), of the aziridine nitrogen substituents (Phe-Ala, Leu-Xxx, Gly-Xxx, Xxx = cyclic amino acid), and of the stereochemistry, respectively. First docking experiments, performed in cooperation with Dr. Baumann`s group (Institue of Pharmay and Food Chemistry, University of Wuerzburg), confirm this assumption. Inhibitors containing a Leu-Pro sequence are predicted to bind into the S`-subsites of CL. Since the most striking structural difference between CB and CL-like proteases is found within these S`-subsites the selectivity between the enzymes may be due to binding into these subsites. In contrast, for a Phe-Ala derivative the docking postulates binding into the S-subsites which do not differ much between the enzymes. As a consequence, CB is inhibited much better by Phe-Ala-derivatives than by Leu-Xxx-derivatives. In cooperation with Prof. Engels` group (Institute of Organic Chemistry, University of Wuerzburg) quantumchemical computations were performed analyzing the influence of substituents on the thermodynamics and kinetics of the nucleophilic ring opening. These calculations predicted that substituents stabilizing the transition state (N-formyl) should improve inhibition potency. In order to proof this predicition the compound 008B (N-formyl aziridine-2,3-dicarboxylate) was synthesized and tested. Indeed, the compound is about 5000x more potent on CL than the non-formylated diethyl aziridine-2,3-dicarboxylate. The principal mechanism of inhibition - the nucleophilic ring opening - was proven in a model reaction by means of NMR spectroscopy and mass spectrometry. The biotinylated compound 999C was designed as an affinity labelling inhibitor usable to label and to identify cysteine proteases expressed by Plasmodium falciparum (cooperation with the group of Dr. Gelhaus, Prof. Leippe, Institute of Zoology, University of Kiel). KW - Aziridine KW - Cysteinproteasen KW - Inhibitor KW - Cystein KW - Protease KW - irreversibel KW - Aziridin KW - Cathepsin KW - cystein KW - protease KW - irreversible KW - aziridin KW - cathepsin Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-11127 ER -