TY - JOUR A1 - Dirscherl, Mariel A1 - Dietz, Andreas J. A1 - Kneisel, Christof A1 - Kuenzer, Claudia T1 - Automated mapping of Antarctic supraglacial lakes using a Machine Learning approach JF - Remote Sensing N2 - Supraglacial lakes can have considerable impact on ice sheet mass balance and global sea-level-rise through ice shelf fracturing and subsequent glacier speedup. In Antarctica, the distribution and temporal development of supraglacial lakes as well as their potential contribution to increased ice mass loss remains largely unknown, requiring a detailed mapping of the Antarctic surface hydrological network. In this study, we employ a Machine Learning algorithm trained on Sentinel-2 and auxiliary TanDEM-X topographic data for automated mapping of Antarctic supraglacial lakes. To ensure the spatio-temporal transferability of our method, a Random Forest was trained on 14 training regions and applied over eight spatially independent test regions distributed across the whole Antarctic continent. In addition, we employed our workflow for large-scale application over Amery Ice Shelf where we calculated interannual supraglacial lake dynamics between 2017 and 2020 at full ice shelf coverage. To validate our supraglacial lake detection algorithm, we randomly created point samples over our classification results and compared them to Sentinel-2 imagery. The point comparisons were evaluated using a confusion matrix for calculation of selected accuracy metrics. Our analysis revealed wide-spread supraglacial lake occurrence in all three Antarctic regions. For the first time, we identified supraglacial meltwater features on Abbott, Hull and Cosgrove Ice Shelves in West Antarctica as well as for the entire Amery Ice Shelf for years 2017–2020. Over Amery Ice Shelf, maximum lake extent varied strongly between the years with the 2019 melt season characterized by the largest areal coverage of supraglacial lakes (~763 km\(^2\)). The accuracy assessment over the test regions revealed an average Kappa coefficient of 0.86 where the largest value of Kappa reached 0.98 over George VI Ice Shelf. Future developments will involve the generation of circum-Antarctic supraglacial lake mapping products as well as their use for further methodological developments using Sentinel-1 SAR data in order to characterize intraannual supraglacial meltwater dynamics also during polar night and independent of meteorological conditions. In summary, the implementation of the Random Forest classifier enabled the development of the first automated mapping method applied to Sentinel-2 data distributed across all three Antarctic regions. KW - Antarctica KW - Antarctic ice sheet KW - supraglacial lakes KW - surface melt KW - hydrology KW - ice sheet dynamics KW - sentinel-2 KW - remote sensing KW - random forest KW - machine learning Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203735 SN - 2072-4292 VL - 12 IS - 7 ER - TY - THES A1 - Üreyen, Soner T1 - Multivariate Time Series for the Analysis of Land Surface Dynamics - Evaluating Trends and Drivers of Land Surface Variables for the Indo-Gangetic River Basins T1 - Multivariate Zeitreihen zur Analyse von Landoberflächendynamiken - Auswertung von Trends und Treibern von Landoberflächenvariablen für Flusseinzugsgebiete der Indus-Ganges Ebene N2 - The investigation of the Earth system and interplays between its components is of utmost importance to enhance the understanding of the impacts of global climate change on the Earth's land surface. In this context, Earth observation (EO) provides valuable long-term records covering an abundance of land surface variables and, thus, allowing for large-scale analyses to quantify and analyze land surface dynamics across various Earth system components. In view of this, the geographical entity of river basins was identified as particularly suitable for multivariate time series analyses of the land surface, as they naturally cover diverse spheres of the Earth. Many remote sensing missions with different characteristics are available to monitor and characterize the land surface. Yet, only a few spaceborne remote sensing missions enable the generation of spatio-temporally consistent time series with equidistant observations over large areas, such as the MODIS instrument. In order to summarize available remote sensing-based analyses of land surface dynamics in large river basins, a detailed literature review of 287 studies was performed and several research gaps were identified. In this regard, it was found that studies rarely analyzed an entire river basin, but rather focused on study areas at subbasin or regional scale. In addition, it was found that transboundary river basins remained understudied and that studies largely focused on selected riparian countries. Moreover, the analysis of environmental change was generally conducted using a single EO-based land surface variable, whereas a joint exploration of multivariate land surface variables across spheres was found to be rarely performed. To address these research gaps, a methodological framework enabling (1) the preprocessing and harmonization of multi-source time series as well as (2) the statistical analysis of a multivariate feature space was required. For development and testing of a methodological framework that is transferable in space and time, the transboundary river basins Indus, Ganges, Brahmaputra, and Meghna (IGBM) in South Asia were selected as study area, having a size equivalent to around eight times the size of Germany. These basins largely depend on water resources from monsoon rainfall and High Mountain Asia which holds the largest ice mass outside the polar regions. In total, over 1.1 billion people live in this region and in parts largely depend on these water resources which are indispensable for the world's largest connected irrigated croplands and further domestic needs as well. With highly heterogeneous geographical settings, these river basins allow for a detailed analysis of the interplays between multiple spheres, including the anthroposphere, biosphere, cryosphere, hydrosphere, lithosphere, and atmosphere. In this thesis, land surface dynamics over the last two decades (December 2002 - November 2020) were analyzed using EO time series on vegetation condition, surface water area, and snow cover area being based on MODIS imagery, the DLR Global WaterPack and JRC Global Surface Water Layer, as well as the DLR Global SnowPack, respectively. These data were evaluated in combination with further climatic, hydrological, and anthropogenic variables to estimate their influence on the three EO land surface variables. The preprocessing and harmonization of the time series was conducted using the implemented framework. The resulting harmonized feature space was used to quantify and analyze land surface dynamics by means of several statistical time series analysis techniques which were integrated into the framework. In detail, these methods involved (1) the calculation of trends using the Mann-Kendall test in association with the Theil-Sen slope estimator, (2) the estimation of changes in phenological metrics using the Timesat tool, (3) the evaluation of driving variables using the causal discovery approach Peter and Clark Momentary Conditional Independence (PCMCI), and (4) additional correlation tests to analyze the human influence on vegetation condition and surface water area. These analyses were performed at annual and seasonal temporal scale and for diverse spatial units, including grids, river basins and subbasins, land cover and land use classes, as well as elevation-dependent zones. The trend analyses of vegetation condition mostly revealed significant positive trends. Irrigated and rainfed croplands were found to contribute most to these trends. The trend magnitudes were particularly high in arid and semi-arid regions. Considering surface water area, significant positive trends were obtained at annual scale. At grid scale, regional and seasonal clusters with significant negative trends were found as well. Trends for snow cover area mostly remained stable at annual scale, but significant negative trends were observed in parts of the river basins during distinct seasons. Negative trends were also found for the elevation-dependent zones, particularly at high altitudes. Also, retreats in the seasonal duration of snow cover area were found in parts of the river basins. Furthermore, for the first time, the application of the causal discovery algorithm on a multivariate feature space at seasonal temporal scale revealed direct and indirect links between EO land surface variables and respective drivers. In general, vegetation was constrained by water availability, surface water area was largely influenced by river discharge and indirectly by precipitation, and snow cover area was largely controlled by precipitation and temperature with spatial and temporal variations. Additional analyses pointed towards positive human influences on increasing trends in vegetation greenness. The investigation of trends and interplays across spheres provided new and valuable insights into the past state and the evolution of the land surface as well as on relevant climatic and hydrological driving variables. Besides the investigated river basins in South Asia, these findings are of great value also for other river basins and geographical regions. N2 - Die Untersuchung von Erdsystemkomponenten und deren Wechselwirkungen ist von großer Relevanz, um das Prozessverständnis sowie die Auswirkungen des globalen Klimawandels auf die Landoberfläche zu verbessern. In diesem Zusammenhang liefert die Erdbeobachtung (EO) wertvolle Langzeitaufnahmen zu einer Vielzahl an Landoberflächenvariablen. Diese können als Indikator für die Erdsystemkomponenten genutzt werden und sind essenziell für großflächige Analysen. Flusseinzugsgebiete sind besonders geeignet um Landoberflächendynamiken mit multivariaten Zeitreihen zu analysieren, da diese verschiedene Sphären des Erdsystems umfassen. Zur Charakterisierung der Landoberfläche stehen zahlreiche EO-Missionen mit unterschiedlichen Eigenschaften zur Verfügung. Nur einige wenige Missionen gewährleisten jedoch die Erstellung von räumlich und zeitlich konsistenten Zeitreihen mit äquidistanten Beobachtungen über großräumige Untersuchungsgebiete, wie z.B. die MODIS Sensoren. Um bisherige EO-Analysen zu Landoberflächendynamiken in großen Flusseinzugsgebieten zu untersuchen, wurde eine Literaturrecherche durchgeführt, wobei mehrere Forschungslücken identifiziert wurden. Studien untersuchten nur selten ein ganzes Einzugsgebiet, sondern konzentrierten sich lediglich auf Teilgebietsgebiete oder regionale Untersuchungsgebiete. Darüber hinaus wurden transnationale Einzugsgebiete nur unzureichend analysiert, wobei sich die Studien größtenteils auf ausgewählte Anrainerstaaten beschränkten. Auch wurde die Analyse von Umweltveränderungen meistens anhand einer einzigen EO-Landoberflächenvariable durchgeführt, während eine synergetische Untersuchung von sphärenübergreifenden Landoberflächenvariablen kaum unternommen wurde. Um diese Forschungslücken zu adressieren, ist ein methodischer Ansatz notwendig, der (1) die Vorverarbeitung und Harmonisierung von Zeitreihen aus mehreren Quellen und (2) die statistische Analyse eines multivariaten Merkmalsraums ermöglicht. Für die Entwicklung und Anwendung eines methodischen Frameworks, das raum-zeitlich übertragbar ist, wurden die transnationalen Einzugsgebiete Indus, Ganges, Brahmaputra und Meghna (IGBM) in Südasien, deren Größe etwa der achtfachen Fläche von Deutschland entspricht, ausgewählt. Diese Einzugsgebiete hängen weitgehend von den Wasserressourcen des Monsunregens und des Hochgebirges Asiens ab. Insgesamt leben über 1,1 Milliarden Menschen in dieser Region und sind zum Teil in hohem Maße von diesen Wasserressourcen abhängig, die auch für die größten zusammenhängenden bewässerten Anbauflächen der Welt und auch für weitere inländische Bedarfe unerlässlich sind. Aufgrund ihrer sehr heterogenen geographischen Gegebenheiten ermöglichen diese Einzugsgebiete eine detaillierte sphärenübergreifende Analyse der Wechselwirkungen, einschließlich der Anthroposphäre, Biosphäre, Kryosphäre, Hydrosphäre, Lithosphäre und Atmosphäre. In dieser Dissertation wurden Landoberflächendynamiken der letzten zwei Jahrzehnte anhand von EO-Zeitreihen zum Vegetationszustand, zu Oberflächengewässern und zur Schneebedeckung analysiert. Diese basieren auf MODIS-Aufnahmen, dem DLR Global WaterPack und dem JRC Global Surface Water Layer sowie dem DLR Global SnowPack. Diese Zeitreihen wurden in Kombination mit weiteren klimatischen, hydrologischen und anthropogenen Variablen ausgewertet. Die Harmonisierung des multivariaten Merkmalsraumes ermöglichte die Analyse von Landoberflächendynamiken unter Nutzung von statistischen Methoden. Diese Methoden umfassen (1) die Berechnung von Trends mittels des Mann-Kendall und des Theil-Sen Tests, (2) die Berechnung von phänologischen Metriken anhand des Timesat-Tools, (3) die Bewertung von treibenden Variablen unter Nutzung des PCMCI Algorithmus und (4) zusätzliche Korrelationstests zur Analyse des menschlichen Einflusses auf den Vegetationszustand und die Wasseroberfläche. Diese Analysen wurden auf jährlichen und saisonalen Zeitskalen und für verschiedene räumliche Einheiten durchgeführt. Für den Vegetationszustand wurden weitgehend signifikant positive Trends ermittelt. Analysen haben gezeigt, dass landwirtschaftliche Nutzflächen am meisten zu diesen Trends beitragen haben. Besonders hoch waren die Trends in ariden Regionen. Bei Oberflächengewässern wurden auf jährlicher Ebene signifikant positive Trends festgestellt. Auf Pixelebene wurden jedoch sowohl regional als auch saisonal Cluster mit signifikant negativen Trends identifiziert. Die Trends für die Schneebedeckung blieben auf jährlicher Ebene weitgehend stabil, jedoch wurden in Teilen der Einzugsgebiete zu bestimmten Jahreszeiten signifikant negative Trends beobachtet. Die negativen Trends wurden auch für höhenabhängige Zonen festgestellt, insbesondere in hohen Lagen. Außerdem wurden in Teilen der Einzugsgebiete Rückgänge bei der saisonalen Dauer der Schneebedeckung ermittelt. Darüber hinaus ergab die Untersuchung des multivariaten Merkmalsraums auf kausale Zusammenhänge auf saisonaler Ebene erstmals Aufschluss über direkte und indirekte Relationen zwischen EO-Landoberflächenvariablen und den entsprechenden Einflussfaktoren. Zusammengefasst wurde die Vegetation durch die Wasserverfügbarkeit, die Oberflächengewässer durch den Abfluss und indirekt durch den Niederschlag sowie die Schneebedeckung durch Niederschlag und Temperatur mit räumlichen und saisonalen Unterschieden kontrolliert. Zusätzliche Analysen wiesen auf einen positiven Zusammenhang zwischen dem menschlichen Einfluss und den zunehmenden Trends in der Vegetationsfläche hin. Diese sphärenübergreifenden Untersuchungen zu Trends und Wechselwirkungen liefern neue und wertvolle Einblicke in den vergangenen Zustand von Landoberflächendynamiken sowie in die relevanten klimatischen und hydrologischen Einflussfaktoren. Neben den untersuchten Einzugsgebieten in Südasien sind diese Erkenntnisse auch für weitere Einzugsgebiete und geographische Regionen von großer Bedeutung. KW - Multivariate Analyse KW - Zeitreihe KW - Fernerkundung KW - Geographie KW - Multivariate Time Series KW - River Basins KW - Earth Observation KW - Remote Sensing Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-291941 ER - TY - JOUR A1 - Näschen, Kristian A1 - Diekkrüger, Bernd A1 - Evers, Mariele A1 - Höllermann, Britta A1 - Steinbach, Stefanie A1 - Thonfeld, Frank T1 - The impact of land use/land cover change (LULCC) on water resources in a tropical catchment in Tanzania under different climate change scenarios JF - Sustainability N2 - Many parts of sub-Saharan Africa (SSA) are prone to land use and land cover change (LULCC). In many cases, natural systems are converted into agricultural land to feed the growing population. However, despite climate change being a major focus nowadays, the impacts of these conversions on water resources, which are essential for agricultural production, is still often neglected, jeopardizing the sustainability of the socio-ecological system. This study investigates historic land use/land cover (LULC) patterns as well as potential future LULCC and its effect on water quantities in a complex tropical catchment in Tanzania. It then compares the results using two climate change scenarios. The Land Change Modeler (LCM) is used to analyze and to project LULC patterns until 2030 and the Soil and Water Assessment Tool (SWAT) is utilized to simulate the water balance under various LULC conditions. Results show decreasing low flows by 6–8% for the LULC scenarios, whereas high flows increase by up to 84% for the combined LULC and climate change scenarios. The effect of climate change is stronger compared to the effect of LULCC, but also contains higher uncertainties. The effects of LULCC are more distinct, although crop specific effects show diverging effects on water balance components. This study develops a methodology for quantifying the impact of land use and climate change and therefore contributes to the sustainable management of the investigated catchment, as it shows the impact of environmental change on hydrological extremes (low flow and floods) and determines hot spots, which are critical for environmental development. KW - SWAT model KW - Land Change Modeler KW - Scenario analysis KW - Extreme flows KW - Tanzania KW - Kilombero Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193825 SN - 2071-1050 VL - 11 IS - 24 ER - TY - JOUR A1 - Latifi, Hooman A1 - Valbuena, Ruben T1 - Current trends in forest ecological applications of three-dimensional remote sensing: Transition from experimental to operational solutions? JF - Forests N2 - The alarming increase in the magnitude and spatiotemporal patterns of changes in composition, structure and function of forest ecosystems during recent years calls for enhanced cross-border mitigation and adaption measures, which strongly entail intensified research to understand the underlying processes in the ecosystems as well as their dynamics. Remote sensing data and methods are nowadays the main complementary sources of synoptic, up-to-date and objective information to support field observations in forest ecology. In particular, analysis of three-dimensional (3D) remote sensing data is regarded as an appropriate complement, since they are hypothesized to resemble the 3D character of most forest attributes. Following their use in various small-scale forest structural analyses over the past two decades, these sources of data are now on their way to be integrated in novel applications in fields like citizen science, environmental impact assessment, forest fire analysis, and biodiversity assessment in remote areas. These and a number of other novel applications provide valuable material for the Forests special issue “3D Remote Sensing Applications in Forest Ecology: Composition, Structure and Function”, which shows the promising future of these technologies and improves our understanding of the potentials and challenges of 3D remote sensing in practical forest ecology worldwide. KW - 3D remote sensing KW - composition KW - forest ecology KW - function KW - structure Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193282 SN - 1999-4907 VL - 10 IS - 10 ER - TY - JOUR A1 - Ghazaryan, Gohar A1 - Rienow, Andreas A1 - Oldenburg, Carsten A1 - Thonfeld, Frank A1 - Trampnau, Birte A1 - Sticksel, Sarah A1 - Jürgens, Carsten T1 - Monitoring of urban sprawl and densification processes in Western Germany in the light of SDG indicator 11.3.1 based on an automated retrospective classification approach JF - Remote Sensing N2 - By 2050, two-third of the world’s population will live in cities. In this study, we develop a framework for analyzing urban growth-related imperviousness in North Rhine-Westphalia (NRW) from the 1980s to date using Landsat data. For the baseline 2017-time step, official geodata was extracted to generate labelled data for ten classes, including three classes representing low, middle, and high level of imperviousness. We used the output of the 2017 classification and information based on radiometric bi-temporal change detection for retrospective classification. Besides spectral bands, we calculated several indices and various temporal composites, which were used as an input for Random Forest classification. The results provide information on three imperviousness classes with accuracies exceeding 75%. According to our results, the imperviousness areas grew continuously from 1985 to 2017, with a high imperviousness area growth of more than 167,000 ha, comprising around 30% increase. The information on the expansion of urban areas was integrated with population dynamics data to estimate the progress towards SDG 11. With the intensity analysis and the integration of population data, the spatial heterogeneity of urban expansion and population growth was analysed, showing that the urban expansion rates considerably excelled population growth rates in some regions in NRW. The study highlights the applicability of earth observation data for accurately quantifying spatio-temporal urban dynamics for sustainable urbanization and targeted planning. KW - impervious surface KW - Landsat time series KW - change detection KW - SDG 11.3.1 KW - population change Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236671 SN - 2072-4292 VL - 13 IS - 9 ER - TY - JOUR A1 - Fekri, Erfan A1 - Latifi, Hooman A1 - Amani, Meisam A1 - Zobeidinezhad, Abdolkarim T1 - A training sample migration method for wetland mapping and monitoring using Sentinel data in Google Earth Engine JF - Remote Sensing N2 - Wetlands are one of the most important ecosystems due to their critical services to both humans and the environment. Therefore, wetland mapping and monitoring are essential for their conservation. In this regard, remote sensing offers efficient solutions due to the availability of cost-efficient archived images over different spatial scales. However, a lack of sufficient consistent training samples at different times is a significant limitation of multi-temporal wetland monitoring. In this study, a new training sample migration method was developed to identify unchanged training samples to be used in wetland classification and change analyses over the International Shadegan Wetland (ISW) areas of southwestern Iran. To this end, we first produced the wetland map of a reference year (2020), for which we had training samples, by combining Sentinel-1 and Sentinel-2 images and the Random Forest (RF) classifier in Google Earth Engine (GEE). The Overall Accuracy (OA) and Kappa coefficient (KC) of this reference map were 97.93% and 0.97, respectively. Then, an automatic change detection method was developed to migrate unchanged training samples from the reference year to the target years of 2018, 2019, and 2021. Within the proposed method, three indices of the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and the mean Standard Deviation (SD) of the spectral bands, along with two similarity measures of the Euclidean Distance (ED) and Spectral Angle Distance (SAD), were computed for each pair of reference–target years. The optimum threshold for unchanged samples was also derived using a histogram thresholding approach, which led to selecting the samples that were most likely unchanged based on the highest OA and KC for classifying the test dataset. The proposed migration sample method resulted in high OAs of 95.89%, 96.83%, and 97.06% and KCs of 0.95, 0.96, and 0.96 for the target years of 2018, 2019, and 2021, respectively. Finally, the migrated samples were used to generate the wetland map for the target years. Overall, our proposed method showed high potential for wetland mapping and monitoring when no training samples existed for a target year. KW - wetland KW - Google Earth Engine (GEE) KW - training sample migration KW - sentinel Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-248542 SN - 2072-4292 VL - 13 IS - 20 ER - TY - JOUR A1 - Schönbrodt-Stitt, Sarah A1 - Ahmadian, Nima A1 - Kurtenbach, Markus A1 - Conrad, Christopher A1 - Romano, Nunzio A1 - Bogena, Heye R. A1 - Vereecken, Harry A1 - Nasta, Paolo T1 - Statistical Exploration of SENTINEL-1 Data, Terrain Parameters, and in-situ Data for Estimating the Near-Surface Soil Moisture in a Mediterranean Agroecosystem JF - Frontiers in Water N2 - Reliable near-surface soil moisture (θ) information is crucial for supporting risk assessment of future water usage, particularly considering the vulnerability of agroforestry systems of Mediterranean environments to climate change. We propose a simple empirical model by integrating dual-polarimetric Sentinel-1 (S1) Synthetic Aperture Radar (SAR) C-band single-look complex data and topographic information together with in-situ measurements of θ into a random forest (RF) regression approach (10-fold cross-validation). Firstly, we compare two RF models' estimation performances using either 43 SAR parameters (θNov\(^{SAR}\)) or the combination of 43 SAR and 10 terrain parameters (θNov\(^{SAR+Terrain}\)). Secondly, we analyze the essential parameters in estimating and mapping θ for S1 overpasses twice a day (at 5 a.m. and 5 p.m.) in a high spatiotemporal (17 × 17 m; 6 days) resolution. The developed site-specific calibration-dependent model was tested for a short period in November 2018 in a field-scale agroforestry environment belonging to the “Alento” hydrological observatory in southern Italy. Our results show that the combined SAR + terrain model slightly outperforms the SAR-based model (θNov\(^{SAR+Terrain}\) with 0.025 and 0.020 m3 m\(^{−3}\), and 89% compared to θNov\(^{SAR}\) with 0.028 and 0.022 m\(^3\) m\(^{−3}\, and 86% in terms of RMSE, MAE, and R2). The higher explanatory power for θNov\(^{SAR+Terrain}\) is assessed with time-variant SAR phase information-dependent elements of the C2 covariance and Kennaugh matrix (i.e., K1, K6, and K1S) and with local (e.g., altitude above channel network) and compound topographic attributes (e.g., wetness index). Our proposed methodological approach constitutes a simple empirical model aiming at estimating θ for rapid surveys with high accuracy. It emphasizes potentials for further improvement (e.g., higher spatiotemporal coverage of ground-truthing) by identifying differences of SAR measurements between S1 overpasses in the morning and afternoon. KW - near-surface soil moisture KW - Sentinel-1 single-look complex data KW - SAR backscatters KW - terrain parameters KW - Alento hydrological observatory KW - Mediterranean environment Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259062 VL - 3 ER - TY - JOUR A1 - Hagg, Wilfried A1 - Mayr, Elisabeth A1 - Mannig, Birgit A1 - Reyers, Mark A1 - Schubert, David A1 - Pinto, Joaquim G. A1 - Peters, Juliane A1 - Pieczonka, Tino A1 - Juen, Martin A1 - Bolch, Tobias A1 - Paeth, Heiko A1 - Mayer, Christoph T1 - Future climate change and its impact on runoff generation from the debris-covered Inylchek glaciers, Central Tian Shan, Kyrgyzstan JF - Water N2 - The heavily debris-covered Inylchek glaciers in the central Tian Shan are the largest glacier system in the Tarim catchment. It is assumed that almost 50% of the discharge of Tarim River are provided by glaciers. For this reason, climatic changes, and thus changes in glacier mass balance and glacier discharge are of high impact for the whole region. In this study, a conceptual hydrological model able to incorporate discharge from debris-covered glacier areas is presented. To simulate glacier melt and subsequent runoff in the past (1970/1971–1999/2000) and future (2070/2071–2099/2100), meteorological input data were generated based on ECHAM5/MPI-OM1 global climate model projections. The hydrological model HBV-LMU was calibrated by an automatic calibration algorithm using runoff and snow cover information as objective functions. Manual fine-tuning was performed to avoid unrealistic results for glacier mass balance. The simulations show that annual runoff sums will increase significantly under future climate conditions. A sensitivity analysis revealed that total runoff does not decrease until the glacier area is reduced by 43%. Ice melt is the major runoff source in the recent past, and its contribution will even increase in the coming decades. Seasonal changes reveal a trend towards enhanced melt in spring, but a change from a glacial-nival to a nival-pluvial runoff regime will not be reached until the end of this century. KW - glaciers KW - debris-covered glaciers KW - hydrological modelling KW - climate scenarios KW - Tian Shan Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197592 SN - 2073-4441 VL - 10 IS - 11 ER - TY - JOUR A1 - Forkuor, Gerald A1 - Hounkpatin, Ozias K.L. A1 - Welp, Gerhard A1 - Thiel, Michael T1 - High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: a comparison of machine learning and multiple linear regression models JF - PLOS One N2 - Accurate and detailed spatial soil information is essential for environmental modelling, risk assessment and decision making. The use of Remote Sensing data as secondary sources of information in digital soil mapping has been found to be cost effective and less time consuming compared to traditional soil mapping approaches. But the potentials of Remote Sensing data in improving knowledge of local scale soil information in West Africa have not been fully explored. This study investigated the use of high spatial resolution satellite data (RapidEye and Landsat), terrain/climatic data and laboratory analysed soil samples to map the spatial distribution of six soil properties–sand, silt, clay, cation exchange capacity (CEC), soil organic carbon (SOC) and nitrogen–in a 580 km2 agricultural watershed in south-western Burkina Faso. Four statistical prediction models–multiple linear regression (MLR), random forest regression (RFR), support vector machine (SVM), stochastic gradient boosting (SGB)–were tested and compared. Internal validation was conducted by cross validation while the predictions were validated against an independent set of soil samples considering the modelling area and an extrapolation area. Model performance statistics revealed that the machine learning techniques performed marginally better than the MLR, with the RFR providing in most cases the highest accuracy. The inability of MLR to handle non-linear relationships between dependent and independent variables was found to be a limitation in accurately predicting soil properties at unsampled locations. Satellite data acquired during ploughing or early crop development stages (e.g. May, June) were found to be the most important spectral predictors while elevation, temperature and precipitation came up as prominent terrain/climatic variables in predicting soil properties. The results further showed that shortwave infrared and near infrared channels of Landsat8 as well as soil specific indices of redness, coloration and saturation were prominent predictors in digital soil mapping. Considering the increased availability of freely available Remote Sensing data (e.g. Landsat, SRTM, Sentinels), soil information at local and regional scales in data poor regions such as West Africa can be improved with relatively little financial and human resources. KW - Agricultural soil science KW - Forecasting KW - Machine learning KW - Support vector machines KW - Paleopedology KW - Trees KW - Clay mineralogy KW - Remote sensing KW - South-western Burkina Faso Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-180978 VL - 12 IS - 1 ER - TY - JOUR A1 - Philipp, Marius A1 - Dietz, Andreas A1 - Ullmann, Tobias A1 - Kuenzer, Claudia T1 - Automated extraction of annual erosion rates for Arctic permafrost coasts using Sentinel-1, Deep Learning, and Change Vector Analysis JF - Remote Sensing N2 - Arctic permafrost coasts become increasingly vulnerable due to environmental drivers such as the reduced sea-ice extent and duration as well as the thawing of permafrost itself. A continuous quantification of the erosion process on large to circum-Arctic scales is required to fully assess the extent and understand the consequences of eroding permafrost coastlines. This study presents a novel approach to quantify annual Arctic coastal erosion and build-up rates based on Sentinel-1 (S1) Synthetic Aperture RADAR (SAR) backscatter data, in combination with Deep Learning (DL) and Change Vector Analysis (CVA). The methodology includes the generation of a high-quality Arctic coastline product via DL, which acted as a reference for quantifying coastal erosion and build-up rates from annual median and standard deviation (sd) backscatter images via CVA. The analysis was applied on ten test sites distributed across the Arctic and covering about 1038 km of coastline. Results revealed maximum erosion rates of up to 160 m for some areas and an average erosion rate of 4.37 m across all test sites within a three-year temporal window from 2017 to 2020. The observed erosion rates within the framework of this study agree with findings published in the previous literature. The proposed methods and data can be applied on large scales and, prospectively, even for the entire Arctic. The generated products may be used for quantifying the loss of frozen ground, estimating the release of stored organic material, and can act as a basis for further related studies in Arctic coastal environments. KW - permafrost KW - coastal erosion KW - deep learning KW - change vector analysis KW - Google Earth Engine KW - synthetic aperture RADAR Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-281956 SN - 2072-4292 VL - 14 IS - 15 ER -