TY - JOUR A1 - Arlt, Wiebke A1 - Biehl, Michael A1 - Taylor, Angela E. A1 - Hahner, Stefanie A1 - Libé, Rossella A1 - Hughes, Beverly A. A1 - Schneider, Petra A1 - Smith, David J. A1 - Stiekema, Han A1 - Krone, Nils A1 - Porfiri, Emilio A1 - Opocher, Giuseppe A1 - Bertherat, Jerôme A1 - Mantero, Franco A1 - Allolio, Bruno A1 - Terzolo, Massimo A1 - Nightingale, Peter A1 - Shackleton, Cedric H. L. A1 - Bertagna, Xavier A1 - Fassnacht, Martin A1 - Stewart, Paul M. T1 - Urine Steroid Metabolomics as a Biomarker Tool for Detecting Malignancy in Adrenal Tumors JF - The Journal of Clinical Endocrinology & Metabolism N2 - Context: Adrenal tumors have a prevalence of around 2% in the general population. Adrenocortical carcinoma (ACC) is rare but accounts for 2–11% of incidentally discovered adrenal masses. Differentiating ACC from adrenocortical adenoma (ACA) represents a diagnostic challenge in patients with adrenal incidentalomas, with tumor size, imaging, and even histology all providing unsatisfactory predictive values. Objective: Here we developed a novel steroid metabolomic approach, mass spectrometry-based steroid profiling followed by machine learning analysis, and examined its diagnostic value for the detection of adrenal malignancy. Design: Quantification of 32 distinct adrenal derived steroids was carried out by gas chromatography/mass spectrometry in 24-h urine samples from 102 ACA patients (age range 19–84 yr) and 45 ACC patients (20–80 yr). Underlying diagnosis was ascertained by histology and metastasis in ACC and by clinical follow-up [median duration 52 (range 26–201) months] without evidence of metastasis in ACA. Steroid excretion data were subjected to generalized matrix learning vector quantization (GMLVQ) to identify the most discriminative steroids. Results: Steroid profiling revealed a pattern of predominantly immature, early-stage steroidogenesis in ACC. GMLVQ analysis identified a subset of nine steroids that performed best in differentiating ACA from ACC. Receiver-operating characteristics analysis of GMLVQ results demonstrated sensitivity = specificity = 90% (area under the curve = 0.97) employing all 32 steroids and sensitivity = specificity = 88% (area under the curve = 0.96) when using only the nine most differentiating markers. Conclusions: Urine steroid metabolomics is a novel, highly sensitive, and specific biomarker tool for discriminating benign from malignant adrenal tumors, with obvious promise for the diagnostic work-up of patients with adrenal incidentalomas. KW - adrenal cortex hormones KW - urine KW - adrenal cortex neoplasms KW - mass spectrometry KW - metabolomics Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-154682 VL - 96 IS - 12 SP - 3775 EP - 3784 ER - TY - JOUR A1 - Dinnes, Jacqueline A1 - Bancos, Irina A1 - di Ruffano, Lavinia Ferrante A1 - Chortis, Vasileios A1 - Davenport, Clare A1 - Bayliss, Susan A1 - Sahdev, Anju A1 - Guest, Peter A1 - Fassnacht, Martin A1 - Deeks, Jonathan J A1 - Arlt, Wiebke T1 - Imaging for the diagnosis of malignancy in incidentally discovered adrenal masses: a systematic review and meta-analysis JF - European Journal of Endocrinology N2 - Objective: Adrenal masses are incidentally discovered in 5% of CT scans. In 2013/2014, 81 million CT examinations were undertaken in the USA and 5 million in the UK. However, uncertainty remains around the optimal imaging approach for diagnosing malignancy. We aimed to review the evidence on the accuracy of imaging tests for differentiating malignant from benign adrenal masses. Design: A systematic review and meta-analysis was conducted. Methods: We searched MEDLINE, EMBASE, Cochrane CENTRAL Register of Controlled Trials, Science Citation Index, Conference Proceedings Citation Index, and ZETOC (January 1990 to August 2015). We included studies evaluating the accuracy of CT, MRI, or F-18-fluoro-deoxyglucose (FDG)-PET compared with an adequate histological or imaging-based follow-up reference standard. Results: We identified 37 studies suitable for inclusion, after screening 5469 references and 525 full-text articles. Studies evaluated the accuracy of CT (n = 16), MRI (n = 15), and FDG-PET (n = 9) and were generally small and at high or unclear risk of bias. Only 19 studies were eligible for meta-analysis. Limited data suggest that CT density >10 HU has high sensitivity for detection of adrenal malignancy in participants with no prior indication for adrenal imaging, that is, masses with <= 10 HU are unlikely to be malignant. All other estimates of test performance are based on too small numbers. Conclusions: Despite their widespread use in routine assessment, there is insufficient evidence for the diagnostic value of individual imaging tests in distinguishing benign from malignant adrenal masses. Future research is urgently needed and should include prospective test validation studies for imaging and novel diagnostic approaches alongside detailed health economics analysis. KW - Positron-emission-tomography KW - Cell lung canger KW - Adrenocortial carcinomas KW - Disease prevalence KW - Spin echo KW - Contrast-enhanced CT KW - Test accuracy KW - Methodological quality KW - F-18-FDG PET/CT KW - MR Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-188086 VL - 175 IS - 2 ER -