TY - THES A1 - Heiligenthal, Sven T1 - Strong and Weak Chaos in Networks of Semiconductor Lasers with Time-Delayed Couplings T1 - Starkes und Schwaches Chaos in Netzwerken aus Halbleiterlasern mit zeitverzögerten Kopplungen N2 - This thesis deals with the chaotic dynamics of nonlinear networks consisting of semiconductor lasers which have time-delayed self-feedbacks or mutual couplings. These semiconductor lasers are simulated numerically by the Lang-Kobayashi equations. The central issue is how the chaoticity of the lasers, measured by the maximal Lyapunov exponent, changes when the delay time is changed. It is analysed how this change of chaoticity with increasing delay time depends on the reflectivity of the mirror for the self-feedback or the strength of the mutal coupling, respectively. The consequences of the different types of chaos for the effect of chaos synchronization of mutually coupled semiconductor lasers are deduced and discussed. At the beginning of this thesis, the master stability formalism for the stability analysis of nonlinear networks with delay is explained. After the description of the Lang-Kobayashi equations and their linearizations as a model for the numerical simulation of semiconductor lasers with time-delayed couplings, the artificial sub-Lyapunov exponent $\lambda_{0}$ is introduced. It is explained how the sign of the sub-Lyapunov exponent can be determined by experiments. The notions of "strong chaos" and "weak chaos" are introduced and distinguished by their different scaling properties of the maximal Lyapunov exponent with the delay time. The sign of the sub-Lyapunov exponent $\lambda_{0}$ is shown to determine the occurence of strong or weak chaos. The transition sequence "weak to strong chaos and back to weak chaos" upon monotonically increasing the coupling strength $\sigma$ of a single laser's self-feedback is shown for numerical calculations of the Lang-Kobayashi equations. At the transition between strong and weak chaos, the sub-Lyapunov exponent vanishes, $\lambda_{0}=0$, resulting in a special scaling behaviour of the maximal Lyapunov exponent with the delay time. Transitions between strong and weak chaos by changing $\sigma$ can also be found for the Rössler and Lorenz dynamics. The connection between the sub-Lyapunov exponent and the time-dependent eigenvalues of the Jacobian for the internal laser dynamics is analysed. Counterintuitively, the difference between strong and weak chaos is not directly visible from the trajectory although the difference of the trajectories induces the transitions between the two types of chaos. In addition, it is shown that a linear measure like the auto-correlation function cannot unambiguously reveal the difference between strong and weak chaos either. Although the auto-correlations after one delay time are significantly higher for weak chaos than for strong chaos, it is not possible to detect a qualitative difference. If two time-scale separated self-feedbacks are present, the shorter feedback has to be taken into account for the definition of a new sub-Lyapunov exponent $\lambda_{0,s}$, which in this case determines the occurence of strong or weak chaos. If the two self-feedbacks have comparable delay times, the sub-Lyapunov exponent $\lambda_{0}$ remains the criterion for strong or weak chaos. It is shown that the sub-Lyapunov exponent scales with the square root of the effective pump current $\sqrt{p-1}$, both in its magnitude and in the position of the critical coupling strengths. For networks with several distinct sub-Lyapunov exponents, it is shown that the maximal sub-Lyapunov exponent of the network determines whether the network's maximal Lyapunov exponent scales strongly or weakly with increasing delay time. As a consequence, complete synchronization of a network is excluded for arbitrary networks which contain at least one strongly chaotic laser. Furthermore, it is demonstrated that the sub-Lyapunov exponent of a driven laser depends on the number of the incoherently superimposed inputs from unsynchronized input lasers. For networks of delay-coupled lasers operating in weak chaos, the condition $|\gamma_{2}|<\mathrm{e}^{-\lambda_{\mathrm{m}}\,\tau}$ for stable chaos synchronization is deduced using the master stability formalism. Hence, synchronization of any network depends only on the properties of a single laser with self-feedback and the eigenvalue gap of the coupling matrix. The characteristics of the master stability function for the Lang-Kobayashi dynamics is described, and consequently, the master stability function is refined to allow for precise practical prediction of synchronization. The prediction of synchronization with the master stability function is demonstrated for bidirectional and unidirectional networks. Furthermore, the master stability function is extended for two distinct delay times. Finally, symmetries and resonances for certain values of the ratio of the delay times are shown for the master stability function of the Lang-Kobyashi equations. N2 - Die vorliegende Arbeit beschäftigt sich mit der chaotischen Dynamik von nichtlinearen Netzwerken, die aus Halbleiterlasern bestehen, welche ihrerseits eine zeitverzögerte Selbstrückkopplung oder gegenseitige Kopplungen aufweisen. Diese Halbleiterlaser werden numerisch mit Hilfe der Lang-Kobayashi-Gleichungen simuliert. Die zentrale Fragestellung ist dabei, wie sich die Chaotizität der Laser, die in Form des größten Lyanpunov-Exponenten gemessen wird, mit der Verzögerungszeit ändert. Des Weiteren wird untersucht, wie diese Veränderung der Chaotizität bei Zunahme der zeitlichen Verzögerung entweder von der Reflektivität des Spiegels der Selbstrückkopplung oder aber von der Stärke der gegenseitigen Kopplungen abhängt. Die Folgen der unterschiedlichen Arten von Chaos für den Effekt der Chaossynchronisation gegenseitig gekoppelter Halbleiterlaser werden hergeleitet und diskutiert. Zu Beginn dieser Arbeit wird zunächst der Master-Stability-Formalismus für die Stabilitätsanalyse von nichtlinearen Netzwerken mit Zeitverzögerung erklärt. Nach der Beschreibung der Lang-Kobayshi-Gleichungen und deren Linearisierungen als Modell für die numerische Simulation von Halbleiterlasern mit zeitverzögerten Kopplungen wird der künstliche Sub-Lyapunov-Exponent $\lambda_{0}$ eingeführt. Es wird erläutert, wie das Vorzeichen des Sub-Lyapunov-Exponenten in Experimenten bestimmt werden kann. Die Termini "starkes Chaos" und "schwaches Chaos" werden eingeführt. Diese werden auf Basis der unterschiedlichen Skalierungseigenschaften des größten Lyapunov-Exponenten mit der Verzögerungszeit unterschieden. Es wird gezeigt, dass das Vorzeichen des Sub-Lyapunov-Exponenten $\lambda_{0}$ das Auftreten von starkem oder schwachem Chaos bestimmt. Die Übergangssequenz "schwaches zu starkem Chaos und wieder zurück zu schwachem Chaos" bei monotoner Erhöhung der Kopplungsstärke $\sigma$ eines einzelnen Lasers mit Selbstrückkopplung wird für numerische Berechnungen der Lang-Kobayashi-Gleichungen dargestellt. Beim Übergang zwischen starkem und schwachem Chaos verschwindet der Sub-Lyapunov-Exponent, $\lambda_{0}=0$, was zu einem speziellen Skalierungsverhalten des größten Lyapunov-Exponenten mit der Verzögerungszeit führt. Übergänge zwischen starkem und schwachem Chaos durch Änderung von $\sigma$ können auch für die Rössler- und Lorenz-Dynamik gefunden werden. Der Zusammenhang zwischen dem Sub-Lyapunov-Exponenten und den zeitabhängigen Eigenwerten der Jacobi-Matrix der internen Laserdynamik wird analysiert. Anders als intuitiv erwartet, ist der Unterschied zwischen starkem und schwachem Chaos nicht unmittelbar anhand der Trajektorie ersichtlich, obwohl der Unterschied der Trajektorien die Übergänge zwischen den beiden Chaosarten induziert. Darüber hinaus wird gezeigt, dass ein lineares Maß wie die Autokorrelationsfunktion den Unterschied zwischen starkem und schwachem Chaos auch nicht eindeutig aufzeigen kann. Obwohl die um eine Verzögerungszeit verschobenen Autokorrelationen für schwaches Chaos signifikant größer als für starkes Chaos sind, ist es nicht möglich, einen qualitativen Unterschied festzustellen. Bei Vorliegen zweier zeitskalenseparierter Selbstrückkopplungen muss die kürzere Rückkopplung bei der Definition eines neuen Sub-Lyapunov-Exponenten $\lambda_{0,s}$ berücksichtigt werden, welcher dann das Auftreten von starkem oder schwachem Chaos bestimmt. Falls die beiden Selbstrückkopplungen vergleichbare Verzögerungszeiten aufweisen, so ist der Sub-Lyapunov-Exponent $\lambda_{0}$ nach wie vor das Kriterium für starkes oder schwaches Chaos. Es wird gezeigt, dass der Sub-Lyapunov-Exponent mit der Quadratwurzel des effektiven Pumpstroms $\sqrt{p-1}$ skaliert, und zwar sowohl bezüglich seiner Größe als auch bezüglich der Position der kritischen Kopplungsstärken. Für Netzwerke mit mehreren unterschiedlichen Sub-Lyapunov-Exponenten wird gezeigt, dass der größte Sub-Lyapunov-Exponent des Netzwerks bestimmt, ob der größte Lyapunov-Exponent des Netzwerks mit zunehmender Verzögerungszeit stark oder schwach skaliert. Folglich ist vollständige Synchronisation eines Netzwerks für beliebige Netzwerke, die wenigstens einen stark chaotischen Laser beinhalten, ausgeschlossen. Zudem wird gezeigt, dass der Sub-Lyapunov-Exponent eines getriebenen Lasers von der Anzahl der inkohärent superponierten Eingangssignale der nicht synchronisierten Eingangslaser abhängt. Für Netzwerke aus zeitverzögert gekoppelten Lasern, die im schwachen Chaos betrieben werden, wird die Bedingung $|\gamma_{2}|<\mathrm{e}^{-\lambda_{\mathrm{m}}\,\tau}$ für stabile Chaossynchronisation mit Hilfe des Master-Stability-Formalismus hergeleitet. Folglich hängt die Synchronisation eines jeden Netzwerks nur von den Eigenschaften eines einzelnen Lasers mit Selbstrückkopplung und von der Eigenwertlücke der Kopplungsmatrix ab. Die spezifischen Eigenschaften der Master-Stability-Funktion der Lang-Kobayashi-Dynamik werden beschrieben, und dementsprechend wird die Master-Stability-Funktion angepasst, um eine präzise praktische Vorhersage von Synchronisation zu ermöglichen. Die Vorhersage von Synchronisation mittels der Master-Stability-Funktion wird für bidirektionale und unidirektionale Netzwerke demonstriert. Ferner wird die Master-Stability-Funktion für den Fall zweier unterschiedlicher Verzögerungszeiten erweitert. Schließlich werden Symmetrien und Resonanzen bei bestimmten Werten des Verhältnisses der Verzögerungszeiten für die Master-Stability-Funktion der Lang-Kobyashi-Gleichungen aufgezeigt. KW - Halbleiterlaser KW - Nichtlineares dynamisches System KW - Chaotisches System KW - Nonlinear Dynamics KW - Chaos KW - Synchronization KW - Networks KW - Delay-Differential Equations KW - Semiconductor Lasers KW - Simulation KW - Chaostheorie KW - Nichtlineares System KW - Dynamisches System KW - Synchronisierung KW - Netzwerk Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-77958 ER - TY - THES A1 - Ruttor, Andreas T1 - Neural Synchronization and Cryptography T1 - Neuronale Synchronisation und Kryptographie N2 - Neural networks can synchronize by learning from each other. For that purpose they receive common inputs and exchange their outputs. Adjusting discrete weights according to a suitable learning rule then leads to full synchronization in a finite number of steps. It is also possible to train additional neural networks by using the inputs and outputs generated during this process as examples. Several algorithms for both tasks are presented and analyzed. In the case of Tree Parity Machines the dynamics of both processes is driven by attractive and repulsive stochastic forces. Thus it can be described well by models based on random walks, which represent either the weights themselves or order parameters of their distribution. However, synchronization is much faster than learning. This effect is caused by different frequencies of attractive and repulsive steps, as only neural networks interacting with each other are able to skip unsuitable inputs. Scaling laws for the number of steps needed for full synchronization and successful learning are derived using analytical models. They indicate that the difference between both processes can be controlled by changing the synaptic depth. In the case of bidirectional interaction the synchronization time increases proportional to the square of this parameter, but it grows exponentially, if information is transmitted in one direction only. Because of this effect neural synchronization can be used to construct a cryptographic key-exchange protocol. Here the partners benefit from mutual interaction, so that a passive attacker is usually unable to learn the generated key in time. The success probabilities of different attack methods are determined by numerical simulations and scaling laws are derived from the data. If the synaptic depth is increased, the complexity of a successful attack grows exponentially, but there is only a polynomial increase of the effort needed to generate a key. Therefore the partners can reach any desired level of security by choosing suitable parameters. In addition, the entropy of the weight distribution is used to determine the effective number of keys, which are generated in different runs of the key-exchange protocol using the same sequence of input vectors. If the common random inputs are replaced with queries, synchronization is possible, too. However, the partners have more control over the difficulty of the key exchange and the attacks. Therefore they can improve the security without increasing the average synchronization time. N2 - Neuronale Netze, die die gleichen Eingaben erhalten und ihre Ausgaben austauschen, können voneinander lernen und auf diese Weise synchronisieren. Wenn diskrete Gewichte und eine geeignete Lernregel verwendet werden, kommt es in endlich vielen Schritten zur vollständigen Synchronisation. Mit den dabei erzeugten Beispielen lassen sich weitere neuronale Netze trainieren. Es werden mehrere Algorithmen für beide Aufgaben vorgestellt und untersucht. Attraktive und repulsive Zufallskräfte treiben bei Tree Parity Machines sowohl den Synchronisationsvorgang als auch die Lernprozesse an, so dass sich alle Abläufe gut durch Random-Walk-Modelle beschreiben lassen. Dabei sind die Random Walks entweder die Gewichte selbst oder Ordnungsparameter ihrer Verteilung. Allerdings sind miteinander wechselwirkende neuronale Netze in der Lage, ungeeignete Eingaben zu überspringen und so repulsive Schritte teilweise zu vermeiden. Deshalb können Tree Parity Machines schneller synchronisieren als lernen. Aus analytischen Modellen abgeleitete Skalengesetze zeigen, dass der Unterschied zwischen beiden Vorgängen von der synaptischen Tiefe abhängt. Wenn die beiden neuronalen Netze sich gegenseitig beeinflussen können, steigt die Synchronisationszeit nur proportional zu diesem Parameter an; sie wächst jedoch exponentiell, sobald die Informationen nur in eine Richtung fließen. Deswegen lässt sich mittels neuronaler Synchronisation ein kryptographisches Schlüsselaustauschprotokoll realisieren. Da die Partner sich gegenseitig beeinflussen, der Angreifer diese Möglichkeit aber nicht hat, gelingt es ihm meistens nicht, den erzeugten Schlüssel rechtzeitig zu finden. Die Erfolgswahrscheinlichkeiten der verschiedenen Angriffe werden mittels numerischer Simulationen bestimmt. Die dabei gefundenen Skalengesetze zeigen, dass die Komplexität eines erfolgreichen Angriffs exponentiell mit der synaptischen Tiefe ansteigt, aber der Aufwand für den Schlüsselaustausch selbst nur polynomial anwächst. Somit können die Partner jedes beliebige Sicherheitsniveau durch geeignete Wahl der Parameter erreichen. Außerdem wird die effektive Zahl der Schlüssel berechnet, die das Schlüsselaustauschprotokoll bei vorgegebener Zeitreihe der Eingaben erzeugen kann. Der neuronale Schlüsselaustausch funktioniert auch dann, wenn die Zufallseingaben durch Queries ersetzt werden. Jedoch haben die Partner in diesem Fall mehr Kontrolle über die Komplexität der Synchronisation und der Angriffe. Deshalb gelingt es, die Sicherheit zu verbessern, ohne den Aufwand zu erhöhen. KW - Neuronale Netze KW - Synchronisation KW - Kryptographie KW - Statistische Physik KW - Nichtlineare Dynamik KW - neural networks KW - synchronization KW - cryptography KW - statistical physics KW - nonlinear dynamics Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-23618 ER -