TY - THES A1 - Bradeanu, Ioana Lavinia T1 - Photoionization and excitation of free variable size van der Waals clusters in the inner shell regime T1 - Photoionisation und Anregung von van der Waals Clustern variabler Größe im Bereich der Innerschalenanregung N2 - The studies presented in this thesis deal with resonant and non-resonant excitation of free variable size clusters using synchrotron radiation in the soft X-ray regime. The post collision interaction (PCI) effect is investigated in free variable size krypton and argon clusters near the Kr 3d and Ar 2p ionization energies. The core ionization energies of surface and bulk sites in variable size clusters can be clearly distinguished. This is mostly due to the polarization screening. It is found that the asymmetry, which is a consequence of PCI, is characteristically smaller for clusters than for isolated atoms. Moreover, there is less asymmetry for bulk sites than for surface sites in variable size rare gas clusters. We assign the results in terms of mechanisms that are based on quantum mechanical models of post collision interaction. Complementary experiments on the photoionization of free van der Waals clusters are performed by using zero kinetic energy (ZEKE) photoelectron spectroscopy in the Ar 2p-, Kr 3d-, Ne 1s-, and N2-regimes. The experimental approach is also suitable to detect cluster size dependent changes in electronic structure. This also allows us to study post collision interaction in variable size clusters. The parameters of the PCI profiles deduced for ZEKE experiments indicate that there are no significant changes in core ionization dynamics compared to near-threshold experiments. Results from model calculations in Kr 3d ionization energy indicate that different geometric sites can be clearly distinguished from each other by their substantial shift in Kr 3d ionization energy, though the dimer shows almost the same Kr 3d ionization energy as the free atom. A comparison with the experimental results indicates that there is resemblance with the model calculations, even though close-lying ionization energies are blended and require deconvolutions of the experimental spectra. It is evident from the present work that one can observe distinct shifts in core ionization energies in van der Waals clusters that are formed in wide size distributions of a jet expansion. The emission of ultraviolet fluorescence radiation from variable size argon clusters is investigated with high spectral resolution in the Ar 2p-excitation regime. The fluorescence excitation spectra reveal strong fluorescence intensity in the Ar 2p-continuum, but no evidence for the occurrence of discrete low-lying core-exciton states in the near-edge regime. This finding is different from the absorption and photoionization cross sections of argon clusters and the solid. The dispersed fluorescence shows a broad molecular band centered near 280 nm. The present results are consistent with the formation of singly charged, excited moieties within the clusters, which are assigned as sources of the radiative relaxation in the 280 nm regime. A fast energy transfer process (interatomic Coulombic decay, ICD) is assigned to be primarily the origin of these singly charged, excited cations besides intra-cluster electron impact ionization by Auger electrons. Our findings give possibly the first experimental evidence for ICD in the core level regime. Free, variable size nitrogen clusters are investigated in the N 1s excitation regime in comparison with the free molecule and solid nitrogen. The conversion of Rydberg states into core excitons, surface and bulk, was studied. The experimental results are simulated by ab initio calculations using (N2)13 as a reasonable prototype cluster structure that allows us to simulate both surface and bulk properties in comparison with the isolated molecule. The present results clearly show that there are specific properties, such as molecular orientation, in molecular van der Waals clusters, which do not exist in atomic van der Waals clusters. It is shown that inner and outer surface sites give rise to distinct energy shifts of the low lying surface core excitons. N2 - In der vorliegenden Dissertation wurden Experimente zur resonanten und nicht-resonanten Anregung von Clustern variabler Größe durchgeführt. Hierzu kam Synchrotronstrahlung im weichen Röntgenbereich zum Einsatz. Der "Post-Collision Interaction"-Effekt (PCI) wurde im Detail am Beispiel von Krypton und Argon-Clustern im Bereich der Kr 3d- und Ar 2p-Anregung studiert. Es lassen sich die Ionisierungsenergien von Atomen, die an der Oberfläche bzw. im Volumen gebunden sind, klar unterscheiden. Dies ist aufgrund der unterschiedlichen Polarisationsabschirmung möglich, die zu einer Verschiebung der Innerschalen-Ionisierungsenergien führt. Die Linienformen der Photoelektronenbanden werden asymmetrisch, wenn die Anregungsenergie geringfügig über der Ionisierungsenergie liegt. Dies lässt sich auf den PCI-Effekt zurückführen. Es wird beobachtet, dass die Asymmetrie vom isolierten Atom über Oberflächenatome zu den im Volumen gebundenen Atomen abnimmt. Diese Veränderung der Linienformen wird mit Hilfe von Mechanismen, die auf Grundlage von quantenmechanischen Modellen basieren, interpretiert. Komplementäre Experimente wurden an Argon- und Neon-Clustern zur Nullvolt-Photoelektronen-Spektroskopie (ZEKE) durchgeführt (Anregung der Ar 2p-Kante, Kr 3d-Kante, N2 1s und Ne 1s-Kante). Auch mit diesem Ansatz lassen sich größenabhängige Veränderungen der elektronischen Struktur in Clustern sowie die Bedeutung des PCI Effektes bestimmen. Ein Vergleich dieser Resultate mit der Anregung, die nahe der Ionisationsschwelle liegt, zeigt, dass es zu keiner signifikanten Veränderung der Ionisationsdynamik als Funktion der Anregungsenergie kommt. Berechnungen zur Ioniserungsenergien von Krypton-Clustern im Bereich der Kr 3d-Anregung zeigen, dass sich einzelne geometrische Orte klar in ihrer Ionisierungsenergie unterscheiden. Das Krypton-Dimer zeigt allerdings fast dieselbe 3d-Ioniserungsenergie wie das freie Atom. Der Vergleich mit den experimentellen Resultaten zeigt, dass eine gute übereinstimmung zwischen Modell und Experiment besteht. Allerdings müssen die experimentellen Spektren entfaltet werden, da die relativen Verschiebungen der Ionisierungsenergien zu gering sind und die Rumpflochlebensdauer zu einer Verbreiterung der Banden führt. Die Resultate belegen, dass sich ausgezeichnete Werte für Rumpfniveau-Ionisierungsenergien bestimmen lassen, obwohl die Cluster in breiten Größenverteilungen vorliegen. Dies lässt sich durch die ortsspezifische Photoionisation erklären. Die Emission von Fluoreszenzstrahlung im ultravioletten Spektralbereich nach Rumpfniveauanregung wurde im Fall von 2p-angeregten Argon-Clustern untersucht. Die hochaufgel östen Spektren zeigen hohe Intensität im 2p-Kontinuum, jedoch keinen Hinweis auf signifikante Beiträge im Bereich der Rumpfniveau-Excitonen. Dieses Ergebnis unterscheidet sich vom Absoprtions- und Photoionisationsquerschnitt von Argon-Clustern sowie festem Argon. Die dispergierte Fluoreszenz liefert eine intensive Bande bei 280 nm. Dieses Resultat lässt sich mit der Fluoreszenz von einfach geladenen, angeregten Argon-Clustern erklären. Die Bildung von einfach geladenen Ionen nach primärer Doppelionisation im Ar 2p-Kontinuum wird durch einen schnellen Energietransfer-Prozess (Interatomic Coulombic Decay, ICD) erklärt. Er läuft nach der Rumpfniveauanregung ab und liefert, neben der Elektronenstoßionisation durch schnelle Auger-Elektronen, einfach geladene Clusterfragmente, die nachfolgend strahlend relaxieren. Dieses Ergebnis ist als erster Hinweis darauf zu werten, dass der ICD-Prozess auch im Bereich der Innerschalenanregung auftritt. Freie Stickstoff-Cluster variabler Größe wurden im Bereich der N 1s-Anregung untersucht. Hier stand die Umwandlung der Rydberg-Zustände in die entsprechenden Oberflächen- und Volumen-Excitonen in Fokus der Studien. Die Resultate wurden mit denen zu freiem und kondensiertem Stickstoff verglichen. Die experimentellen Resultate lassen auch einen Vergleich mit ab initio Rechnungen zu, wofür (N2)13 als Prototyp-Cluster genutzt wurde, da hier sowohl oberflähen - als auch volumengebundene Moleküle auftreten. Diese Resultate zeigen signifikante Unterschiede im Vergleich zu atomaren Clustern. Es zeigt sich, dass die molekulare Orientierung die Lage der Excitonenbanden beeinflusßt. Ebenso treten signifikante Energieverschiebungen relativ zum isolierten Molekül auf, die sich durch Absorption von Zentren erklären lassen, die entweder auf der inneren bzw. äußeren Oberfläche der Cluster gebunden sind. KW - Photoionisation KW - Van-der-Waals-Cluster KW - Photoelektronenspektroskopie KW - Photoelektronen-Spektroskopie KW - van der Waals Clustern KW - Rumpfniveauanregung KW - PCI KW - ICD KW - photoelectron spectroscopy KW - van der Waals clusters KW - core level excitation KW - PCI KW - ICD Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-16372 ER - TY - THES A1 - Häming, Marc T1 - Electronic Many-Body Effects in organic Thin-Films and Interfaces T1 - Elektronische Vielteilcheneffekte in dünnen organischen Filmen und an organischen Grenzflächen N2 - The results of this thesis contribute to the understanding of the electronic properties of organic thin-films and interfaces. It is demonstrated that photoemission spectroscopy is very useful for studying surfaces and interfaces. Additionally it is shown, that many-body effects can be relevant for organic thin films, in particular at interfaces with strong interaction. These effects can have general implications for the material properties. In the first part of this thesis a systematic series of polyacene molecules is investigated with NEXAFS spectroscopy. The comparison of the data with core level and IPES data indicates that core excitations and core excitons need to be understood as many-body excitations. This finding implies for example that a high exciton binding energy is not necessarily associated with strong localization of the excited electron at the hole. As these effects apply also for valence excitons they can be relevant for the separation of charges and for the electron-hole recombination at interfaces. In the next chapter some fundamental effects in organic multilayer films and at organic-metal interfaces are studied with core level and NEXAFS spectroscopy. In this context a series of selected molecules is investigated, namely BTCDA, BTCDI, PTCDA and PTCDI. It is shown that in case of strong interface interaction a density of adsorbate-substrate states is formed which can lead to significant charge transfer satellites in the PES and NEXAFS spectra, similar to what is known for transition metal compounds. Moreover, it is demonstrated that the data can be modeled qualitatively by a basic approach which fuses the single impurity Anderson model with the description of charge transfer satellites by Sawatzky et al. This approach, which is equivalent to that of Gunnarsson and Schönhammer, allows even a relatively simple semi-quantitative analysis of the experimental data. The comparison of different adsorbate layers indicates that these many-body effects are particularly strong in case of partial occupation of the LUMO derived DOS. In the third part an organic multilayer film (SnPc), an organic-metal interface with strong coupling (SnPc/Ag) and an organic-organic interface (SnPc/PTCDA/Ag) are studied exemplarily with resonant Auger spectroscopy. The comparison of the data gives evidence for the contribution of many-body effects to the autoionization spectra. Furthermore, it is found that the electron-vibration coupling and the substrate-adsorbate charge transfer occurs on the time scale of the core hole life time. Moreover, the interaction at the organic-organic interface is weak, comparable to the intermolecular interaction in the multilayer films, despite a considerable rigid level shift for the SnPc layer. Furthermore, weak but significant electron-electron correlation is found for the molecular frontier orbitals, which are important for the substrate-adsorbate charge transfer. Therefore, these strongly coupled adsorbate films are briefly discussed within the context of the Hubbard model in the last part of this thesis. From the data derived in this work it can be estimated that such monolayer films are in the regime of medium correlations. Consequently one can expect for these adsorbate films properties which are related to the extraordinary behavior of strongly correlated materials, for which Mott metal-insulator transitions, sophisticated magnetic properties and superconductivity can be observed. Additionally some results from the investigation of alkyl/Si self-assembled monolayers are briefly discussed in the appendix. It is demonstrated exemplarily for the alkyl chains that the electronic band structure of short, finitely repeating units can be well modeled by a comparatively simple quantum well approach. In principle this approach can also be applied to higher dimensional systems, which makes it very useful for the description of E(k) relations in the regime of repeating units of intermediate length. Furthermore, the photoelectron and NEXAFS spectra indicate strong interaction at the alkyl/Si interface. It was found that the interface states can be modified by moderate x-ray irradiation, which changes the properties for charge transport through the SAM. N2 - Die Ergebnisse dieser Arbeit tragen zum generellen Verständnis der elektronischen Struktur von dünnen organischen Filmen und Grenzflächen bei. Es wird gezeigt, dass verschiedene Spektroskopieformen der Photoemission sehr hilfreich sind, um Oberflächen und Grenzflächen zu untersuchen. Die Daten in dieser Arbeit weisen darauf hin, dass Vielteilchen Effekte in organischen Dünnschichten eine wichtige Rolle spielen, besonders an Grenzflächen mit starker Wechselwirkung. Diese Effekte können für unterschiedliche Materialeigenschaften von Bedeutung sein. Im ersten Teil dieser Dissertation wird eine systematische Serie von Polyacen Molekülen mit NEXAFS Spektroskopie untersucht. Der Vergleich mit Rumpfniveau und IPES Daten zeigt, dass Rumpfanregungen und Rumpfexzitonen als Vielteilchenanregungen verstanden werden müssen. Dieser Befund impliziert zum Beispiel, dass eine große Exzitonenbindungsenergie nicht automatisch bedeutet, dass das angeregte Elektron nahe am Rumpfloch lokalisiert sein muss. Da diese Effekte auch für Valenzexzitonen auftreten, spielen sie auch bei der Separation von Ladungsträgern oder Rekombination von Elektronen und Löchern eine Rolle. Im nächsten Kapitel werden fundamentale Effekte in organischen Multilagenfilmen und Metall-Organik Grenzflächen mit Rumpfniveau- und NEXAFS Spektroskopie untersucht. Dies wird anhand der systematisch ausgewählten Molekülserie BTCDA, BTCDI, PTCDA, PTCDI durchgeführt. Es wird gezeigt, dass sich im Falle von starker Wechselwirkung an den Grenzflächen eine Substrat-Adsorbat-Zustandsdichte bildet, die zu starken Ladungstransfersatelliten führen kann, ähnlich wie sie für Übergangsmetallkomplexe bekannt sind. Die experimentellen Daten können mit einem Model verstanden werden, das das Single Impurity Anderson Modell mit dem Ansatz von Sawatzky et al. zur Beschreibung von Ladungstransfersatelliten in Übergangsmetallkomplexen vereint. Diese Herangehensweise ist equivalent zum Ansatz von Gunnarsson und Schönhammer für Adsorbate. Sie erlaubt jedoch eine relativ einfache semiquantitative Auswertung der experimentellen Daten. Ein Vergleich der Spektren für verschiedene Adsorbatschichten weist darauf hin, dass Vielteilcheneffekte besonders dann stark sind, wenn die vom LUMO abgeleitete Zustandsdichte teilweise gefüllt ist. Im dritten Teil dieser Arbeit wird exemplarisch jeweils ein organischer Multilagenfilm (SnPc), eine Organik-Metall Grenzfläche mit starker Wechselwirkung (SnPc/Ag) sowie eine Organik-Organik Grenzfläche (SnPc/PTCDA/Ag) mit resonanter Auger Spektroskopie untersucht. Durch den Vergleich der Daten wird der Beitrag der Vielteilcheneffekte zu den Autoionisationsspektren klar. Demnach laufen die Elektron-Vibrations-Kopplung und der Adsorbat-Substrat Ladungstransfer auf der Zeitskala der Rumpflochlebensdauer ab. Außerdem ist die Wechselwirkung an der Organik-Organik Grenzfläche zwischen SnPc und PTCDA sehr schwach, vergleichbar mit der intermolekularen Wechselwirkung in Multilagenschichten trotz einer parallelen Verschiebung aller elektronischen Niveaus in der SnPc Schicht. Desweiteren wird eine relativ schwache aber dennoch signifikante Elektron-Elektron Korrelation in den oberen Valenzorbitalen gefunden, die eine wichtige Rolle für den Ladungstransfer zwischen Adsorbat und Substrat spielt. Daher werden im letzten Teil dieser Dissertation die stark gekoppelten Adsorbat Filme kurz im Kontext des Hubbard Modells diskutiert. Mit den Daten aus dieser Arbeit können solche Monolagenfilme in den Bereich für mittlere Korrelationsstärke eingeordnet werden. Folglich kann man für solche Adsorbatfilme Eigenschaften erwarten, die dem außergewöhnlichen Verhalten stark korrelierter Systeme ähneln, für die z. B. Mott Metall-Isolator Übergänge, interessante magnetische Eigenschaften und Supraleitung beobachtet wurden. Zusätzlich werden im Anhang kurz einige Ergebnisse aus den Untersuchungen an einem Schichtsystem diskutiert, das aus einer Monolage Alkylketten auf dem anorganischen Halbleiter Silizium besteht und auch als self-assembled monolayer (SAM) bekannt ist. An den Alkylketten wird exemplarisch gezeigt, dass die elektronische Bandstruktur von kurzen, sich endlich wiederholenden Einheiten sehr gut durch einen relativ einfachen Quantentrog Ansatz wiedergegeben werden kann. Im Prinzip kann dieser Ansatz auch auf mehrdimensionale Systeme angewendet werden. Daher ist er für die Beschreibung von E(k) Relationen in intermediären Systemen mit endlichen Wiederholeinheiten sehr nützlich. Desweiteren wird in den Photoelektronen- und NEXAFS Spektren eine starke Wechselwirkung an der alkyl/Si Grenzfläche beobachtet. Es wird gezeigt, dass die Grenzflächenzustände durch moderate Röntgenstrahlung modifiziert werden können, was wiederum die Eigenschaften für Ladungstransport durch die Alkylschicht beeinflusst. KW - Organischer Stoff KW - Dünne Schicht KW - Grenzfläche KW - Elektronenstruktur KW - NEXAFS KW - (resonant) photoemission spectroscopy KW - organic thin-films KW - interfaces KW - charge transfer satellites KW - polyacene KW - PTCDA KW - phthalocyanine KW - self-assembled monolayer (SAM) KW - electron-vibration coupling Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-55494 ER - TY - THES A1 - Wießner, Michael T1 - Isolierte Moleküle und delokalisierte Zustände: Einblick in die elektronische Struktur organischer Adsorbate mittels winkelaufgelöster Photoemission T1 - Isolated molecules and delocalised states: Insight into the electronic structure of organic adsorbates by angle-resolved photoemission N2 - Die vorliegende Arbeit demonstriert an Hand von verschiedenen Modellsystemen wie detailliert sich die grundlegenden Eigenschaften molekularer Adsorbate mit der winkelaufgelösten Photoemission erkunden lassen. Die von Peter Puschnig et al. vorgestellte Verknüpfung zwischen Photoemissionsintensität und den Molekülorbitalen im Grundzustand mittels einer Fouriertransformation war dabei entscheidend, um die verschiedenen physikalischen Effekte einordnen und verstehen zu können. Während für Coronen oder HBC die Orbitale im Grundzustand sehr gut zum Experiment passen, lassen sich für PTCDA und NTCDA einige Abweichungen von der DFT-Rechnung auf Basis der (semi-)lokalen GGA- oder LDA-Funktionale erkennen, die sich bei Messungen mit s-Polarisation hervorheben lassen. Diese können auf den Einfluss des Endzustandes in der Photoemission zurückgeführt werden. Im Rahmen der Dysonorbitale lassen sich die dafür verantwortlichen Relaxationseffekte zwischen dem N-Elektronensystem des Moleküls im Grundzustand und dem (N-1)-Elektronensystem des zurückbleibenden Kations explizit beschreiben. Die Berechnung des Photoemissionssignals mittels Fouriertransformation des Grundzustandes kann darüber hinaus weitere physikalische Effekte nicht korrekt berücksichtigen. Erste Anzeichen hierfür konnten am PTCDA-HOMO bei einer Photonenenergie von 27 eV und s-Polarisation detektiert werden. Darüber hinaus kann die Näherung des Photoelektronenendzustands als ebene Welle den beobachteten zirkularen Dichroismus am HOMO und LUMO von PTCDA nicht erklären. Erst in der Erweiterung durch eine Partialwellenzerlegung des Photoelektronenendzustands tritt ein dichroisches Signal in der theoretischen Beschreibung auf. Für das delokalisierte pi-Elektronensystem von PTCDA ist aber selbst diese Verfeinerung noch nicht ausreichend, um das Experiment korrekt beschreiben und weitere Eigenschaften vorhersagen zu können. Qualitativ lassen sich die Veränderungen im CDAD bei der Transformation um 90° für HOMO und LUMO mit einem gruppentheoretischen Ansatz verstehen. Damit ist es möglich, den molekularen Zuständen ihre irreduzible Darstellung zuzuweisen, worüber sich für PTCDA die Verteilung der quantenmechanischen Phase rekonstruieren lässt. Dies ist deshalb äußerst bemerkenswert, da üblicherweise in physikalischen Experimenten nur die Intensität und keine Informationen über die Phase messbar sind. Damit können die Photoemissionsmessungen im k||-Raum vollständig in den Realraum transformiert werden, wodurch die laterale Ortsinformation über die höchsten besetzen Molekülorbitale von PTCDA zugänglich wird. Neben der Bestimmung der molekularen Orbitale, deren Struktur von der Anordnung der Atome im Molekül dominiert wird, enthält die winkelaufgelöste Photoemission Informationen über die Adsorbat-Substrat-Wechselwirkung. Für hoch geordnete Monolagen ist es möglich, die verschiedenen Verbreiterungsmechanismen zu trennen und zu analysieren. Bei den untersuchten Systemen sind die Verbreiterungen aufgrund von unterschiedlichen Adsorptionsplätzen oder Probeninhomogenitäten ebenso wie die experimentelle Auflösung der 2D-Analysatoren vernachlässigbar gegenüber Lebensdauereffekten und evtl. Verbreiterung aufgrund von Dispersionseffekten. Bereits bei den äußerst schwach wechselwirkenden Systemen Coronen auf Ag(111) und Au(111) unterscheiden sich die beiden Systeme in ihrer Lorentzverbreiterung beim HOMO. In erster Näherung lässt sich dies auf eine Lebensdauer des entstandenen Photolochs zurückführen, welches je nach Stärke der Substratkopplung unterschiedlich schnell mit Substratelektronen aufgefüllt werden kann. Die Lorentzbreite als Indikator für die Wechselwirkung bzw. Hybridisierungsstärke zeigt für die Systeme mit Ladungstransfer vom Substrat in das Molekül eine sehr viel größere Verbreiterung. Zum Beispiel beträgt die Lorentzbreite des LUMO für NTCDA/Ag(110) FWHM=427 meV, und somit eine mehr als fünfmal so große Verbreiterung als für das HOMO von Coronen/Au(111). Diese starke Verbreiterung geht im Fall von NTCDA/Ag(110) wie auch bei den untersuchten Systemen NTCDA/Cu(100) und PTCDA/Ag(110) einher mit einem Ladungstransfer vom Substrat ins Molekül, sowie mit der Ausbildung eines zusätzlichen charakteristischen Signals in der Winkelverteilung des LUMO, dem Hybridisierungszustand bei kx,y=0Å-1. Die Intensität dieses Zustands korreliert bei den Systemen NTCDA auf Cu(100) bzw. auf Ag(110) jeweils mit der Lorentzbreite des LUMO-Zustands. Die Hybridisierung zwischen Molekül und Substrat hat noch weitere Auswirkungen auf die beobachtbaren physikalischen Eigenschaften. So führt die starke Hybridisierung mit dem Substrat wiederum dazu, dass sich die intermolekulare Dispersion für die Elektronen im LUMO-Zustand deutlich verstärkt. Der direkte Überlapp der Wellenfunktionen ist im System PTCDA/Ag(110) laut DFT-Rechnungen relativ klein und führt lediglich zu einer Bandbreite von 60 meV. Durch die Hybridisierung mit den delokalisierten Substratbändern erhöht sich der Grad der Delokalisierung im LUMO-Zustand, d.h. die Bandbreite steigt auf 230 meV, wie das Experiment bestätigt. Im Gegensatz zu früheren STM/STS-basierten Messungen [Temirov2006] kann mit der Kombination aus DFT-Rechnung und ARPES-Experiment eindeutig nachgewiesen werden, dass das Substrat im Fall von PTCDA/Ag(110) die Bandbreite verstärken kann, sodass sich die effektive Masse der Lochladungsträger von meff=3,9me auf meff=1,1me reduziert. Im Blick auf die eingangs gestellte Frage, ob sich molekulare Adsorbate eher wie isolierte Moleküle oder als periodische Festkörper beschreiben lassen, kommt diese Arbeit auf ein differenziertes Ergebnis. In den Impulsverteilungen, die sich aus der Form der molekularen Wellenfunktionen ableiten lassen, spiegelt sich eindeutig der isolierte molekulare Charakter wieder. Dagegen zeigt sich in der Energiedispersion E(k||) ein delokalisierter, blochartiger Charakter, und es konnte demonstriert werden, dass es zu einem Vermischen von Metall- und Molekülwellenfunktionen kommt. Molekulare Adsorbate sind also beides, isolierte Moleküle und zweidimensionale Kristalle mit delokalisierten Zuständen. N2 - This work demonstrates the versatility of angular resolved photoemission (ARPES) in extracting fundamental properties of molecular condensates. With the technique proposed by Peter Puschnig et al., ARPES intensities of aromatic molecules can be linked to the absolute square of the fourier transformed molecular orbital. This allows experimentally identifying individual orbitals and understanding different physical mechanisms at the interface between an organic layer and a metal. This technique shows a clear agreement between theoretical intensity distributions, as e.g. derived from density functional theory (DFT), and the measurements on systems like coronene and HBC. Opposite to that, deviations occur on PTCDA and NTCDA for both local and semilocal density functionals, is s-polarized light is used. Additional measurements with different polarisation directions show, that relaxation effects in the final state lead to a mixing of the N-particle initial state with the N-1-particle final state. This phenomenon can be described theoretically within the framework of Dyson orbitals, in an approximate way already by introducing self-interaction corrected density functionals. Additional deviations from the simple approximation of the photoelectron by a plane wave can be made visible with circular polarised light. For the PTCDA HOMO and LUMO, circular dichroism appears in the angular distribution of the photoemission intensity, an effect that is by definition not included in the plane wave approximation. A refined approximation given by the partial wave expansion of the final state shows a distinct dichroism of both the HOMO and LUMO. But apparently this approximation is not able to describe the detailed circular dichroism angular distribution. In the future, this might be possible by applying the Independent Atomic Center (IAC) approximation including multiple intramolecular scattering. The origin of the dichroic signal can be elucidated by measurements with different incidence directions and applying group theory. The changes in the dichroism signal of the HOMO and LUMO upon rotation by 90° is different indicating on different irreducible representations for both states. This paves the way to reconstruct the intramolecular phase distribution for the rather simple PTCDA HOMO and LUMO. Access to this distribution is usually hindered by the measurement process itself due to the absolute square in the evaluation of the photoemission matrix elements. And finally with the knowledge of the intensity and the phase a transformation of the HOMO and LUMO to real space is possible. Next to the measurement of individual molecular orbitals, ARPES contains signatures from the molecule substrate interaction. For a unique identification of the several interaction mechanisms a commensurate lattice of molecules is indispensable. Otherwise different adsorption sites would sum up to a broad photoemission signal, both in energy and momentum direction. For the commensurate systems of coronene or HBC on the Ag(111) and Au(111) surfaces, this prerequisite is fulfilled. The analysis of the peak shape shows different Lorentzian broadenings of the adiabatic vibronic transition of the HOMO. This width can be approximately correlated to the lifetime of the photo hole. Therefor a stronger molecule metal interaction leads to a faster decay of the photo hole on the molecule and consequently to broader lorentzian line width. For example the lorentzian width of the hybridized NTCDA on Ag(110) is of FWHM=427 meV and therewith five times larger than the rather weakly interacting coronene on Au(111). The strong interaction for NTCDA on Ag(110) but also for the investigated systems NTCDA on Cu(100) and PTCDA on Ag(110) goes along with charge transfer from the substrate to the molecule, i.e. the LUMO gets filled for the molecules in the first layer. Moreover a hybridization occurs between the metal and the molecule resulting in an additional contribution to the LUMO in the momentum distribution at kx,y=0Å-1. In the direct comparison of the NTCDA/Ag(110) and NTCDA/Cu(100) adsorption systems, this intensity of this contribution can be linked to the interaction strength deduced from the lorentzian width of the respective LUMO. The hybridization has even more consequences on this interface system. The observable intermolecular band dispersion gets drastically enhanced due to the increased interaction strength mediated by the molecule substrate hybridization. The direct overlap of the PTCDA LUMO wave function is according to the DFT calculation rather small leading to a band width of only 60 meV. Opposite to that, the experiment as well as the calculation for a PTCDA layer adsorbed on a silver slab show a band width of 230 meV, which can only be explained by the additional adsorbate. And opposite to previous STM/STS measurements [Temirov2006] the observed substrate mediated band width enhancement is clearly observed for a molecular state, whose effective mass is reduced by this mechanism from meff=3,9me to meff=1,1me. In conclusion, this work demonstrates how the properties of electrons in molecules and at interfaces to a metal can be detected and characterised by the photoemission technique. If these systems are rather characterized by localized molecular orbitals than by delocalized bloch waves, depends on the individual properties. On the one hand the momentum dependency of the photoemission intensity of indivdual orbitals match nearly perfect the calculation on isolated molecules. On the other hand, the momentum dependent binding energies E(k||) show a bloch-like character, whose band width is amplified by the substrate interaction. This means, the molecular adsorbate is both, molecules and a 2D-crystal with delocalized states. KW - Organisches Molekül KW - Adsorbat KW - ARPES KW - Organische Moleküle KW - Hochgeordnete Monolagen KW - Molekülphysik KW - Festkörperphysik KW - Perylendianhydrid Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-95265 ER -