TY - THES A1 - Zenk, Markus T1 - On Numerical Methods for Astrophysical Applications T1 - Über numerische Methoden für astrophysikalische Anwendungen N2 - Diese Arbeit befasst sich mit der Approximation der Lösungen von Modellen zur Beschreibung des Strömungsverhaltens in Atmosphären. Im Speziellen umfassen die hier behandelten Modelle die kompressiblen Euler Gleichungen der Gasdynamik mit einem Quellterm bezüglich der Gravitation und die Flachwassergleichungen mit einem nicht konstanten Bodenprofil. Verschiedene Methoden wurden bereits entwickelt um die Lösungen dieser Gleichungen zu approximieren. Im Speziellen geht diese Arbeit auf die Approximation von Lösungen nahe des Gleichgewichts und, im Falle der Euler Gleichungen, bei kleinen Mach Zahlen ein. Die meisten numerischen Methoden haben die Eigenschaft, dass die Qualität der Approximation sich mit der Anzahl der Freiheitsgrade verbessert. In der Praxis werden deswegen diese numerischen Methoden auf großen Computern implementiert um eine möglichst hohe Approximationsgüte zu erreichen. Jedoch sind auch manchmal diese großen Maschinen nicht ausreichend, um die gewünschte Qualität zu erreichen. Das Hauptaugenmerk dieser Arbeit ist darauf gerichtet, die Qualität der Approximation bei gleicher Anzahl von Freiheitsgrade zu verbessern. Diese Arbeit ist im Zusammenhang einer Kollaboration zwischen Prof. Klingenberg des Mathemaitschen Instituts in Würzburg und Prof. Röpke des Astrophysikalischen Instituts in Würzburg entstanden. Das Ziel dieser Kollaboration ist es, Methoden zur Berechnung von stellarer Atmosphären zu entwickeln. In dieser Arbeit werden vor allem zwei Problemstellungen behandelt. Die erste Problemstellung bezieht sich auf die akkurate Approximation des Quellterms, was zu den so genannten well-balanced Schemata führt. Diese erlauben genaue Approximationen von Lösungen nahe des Gleichgewichts. Die zweite Problemstellung bezieht sich auf die Approximation von Strömungen bei kleinen Mach Zahlen. Es ist bekannt, dass Lösungen der kompressiblen Euler Gleichungen zu Lösungen der inkompressiblen Euler Gleichungen konvergieren, wenn die Mach Zahl gegen null geht. Klassische numerische Schemata zeigen ein stark diffusives Verhalten bei kleinen Mach Zahlen. Das hier entwickelte Schema fällt in die Kategorie der asymptotic preserving Schematas, d.h. das numerische Schema ist auf einem diskrete Level kompatibel mit dem auf dem Kontinuum gezeigten verhalten. Zusätzlich wird gezeigt, dass die Diffusion des hier entwickelten Schemas unabhängig von der Mach Zahl ist. In Kapitel 3 wird ein HLL approximativer Riemann Löser für die Approximation der Lösungen der Flachwassergleichungen mit einem nicht konstanten Bodenprofil angewendet und ein well-balanced Schema entwickelt. Die meisten well-balanced Schemata für die Flachwassergleichungen behandeln nur den Fall eines Fluids im Ruhezustand, die so genannten Lake at Rest Lösungen. Hier wird ein Schema entwickelt, welches sich mit allen Gleichgewichten befasst. Zudem wird eine zweiter Ordnung Methode entwickelt, welche im Gegensatz zu anderen in der Literatur nicht auf einem iterativen Verfahren basiert. Numerische Experimente werden durchgeführt um die Vorteile des neuen Verfahrens zu zeigen. In Kapitel 4 wird ein Suliciu Relaxations Löser angepasst um die hydrostatischen Gleichgewichte der Euler Gleichungen mit einem Gravitationspotential aufzulösen. Die Gleichungen der hydrostatischen Gleichgewichte sind unterbestimmt und lassen deshalb keine Eindeutigen Lösungen zu. Es wird jedoch gezeigt, dass das neue Schema für eine große Klasse dieser Lösungen die well-balanced Eigenschaft besitzt. Für bestimmte Klassen werden Quadraturformeln zur Approximation des Quellterms entwickelt. Es wird auch gezeigt, dass das Schema robust, d.h. es erhält die Positivität der Masse und Energie, und stabil bezüglich der Entropieungleichung ist. Die numerischen Experimente konzentrieren sich vor allem auf den Einfluss der Quadraturformeln auf die well-balanced Eigenschaften. In Kapitel 5 wird ein Suliciu Relaxations Schema angepasst für Simulationen im Bereich kleiner Mach Zahlen. Es wird gezeigt, dass das neue Schema asymptotic preserving und die Diffusion kontrolliert ist. Zudem wird gezeigt, dass das Schema für bestimmte Parameter robust ist. Eine Stabilität wird aus einer Chapman-Enskog Analyse abgeleitet. Resultate numerische Experimente werden gezeigt um die Vorteile des neuen Verfahrens zu zeigen. In Kapitel 6 werden die Schemata aus den Kapiteln 4 und 5 kombiniert um das Verhalten des numerischen Schemas bei Flüssen mit kleiner Mach Zahl in durch die Gravitation geschichteten Atmosphären zu untersuchen. Es wird gezeigt, dass das Schema well-balanced ist. Die Robustheit und die Stabilität werden analog zu Kapitel 5 behandelt. Auch hier werden numerische Tests durchgeführt. Es zeigt sich, dass das neu entwickelte Schema in der Lage ist, die Dynamiken besser Aufzulösen als vor der Anpassung. Das Kapitel 7 beschäftigt sich mit der Entwicklung eines multidimensionalen Schemas basierend auf der Suliciu Relaxation. Jedoch ist die Arbeit an diesem Ansatz noch nicht beendet und numerische Resultate können nicht präsentiert werden. Es wird aufgezeigt, wo sich die Schwächen dieses Ansatzes befinden und weiterer Entwicklungsbedarf besteht. N2 - This work is concerned with the numerical approximation of solutions to models that are used to describe atmospheric or oceanographic flows. In particular, this work concen- trates on the approximation of the Shallow Water equations with bottom topography and the compressible Euler equations with a gravitational potential. Numerous methods have been developed to approximate solutions of these models. Of specific interest here are the approximations of near equilibrium solutions and, in the case of the Euler equations, the low Mach number flow regime. It is inherent in most of the numerical methods that the quality of the approximation increases with the number of degrees of freedom that are used. Therefore, these schemes are often run in parallel on big computers to achieve the best pos- sible approximation. However, even on those big machines, the desired accuracy can not be achieved by the given maximal number of degrees of freedom that these machines allow. The main focus in this work therefore lies in the development of numerical schemes that give better resolution of the resulting dynamics on the same number of degrees of freedom, compared to classical schemes. This work is the result of a cooperation of Prof. Klingenberg of the Institute of Mathe- matics in Wu¨rzburg and Prof. R¨opke of the Astrophysical Institute in Wu¨rzburg. The aim of this collaboration is the development of methods to compute stellar atmospheres. Two main challenges are tackled in this work. First, the accurate treatment of source terms in the numerical scheme. This leads to the so called well-balanced schemes. They allow for an accurate approximation of near equilibrium dynamics. The second challenge is the approx- imation of flows in the low Mach number regime. It is known that the compressible Euler equations tend towards the incompressible Euler equations when the Mach number tends to zero. Classical schemes often show excessive diffusion in that flow regime. The here devel- oped scheme falls into the category of an asymptotic preserving scheme, i.e. the numerical scheme reflects the behavior that is computed on the continuous equations. Moreover, it is shown that the diffusion of the numerical scheme is independent of the Mach number. In chapter 3, an HLL-type approximate Riemann solver is adapted for simulations of the Shallow Water equations with bottom topography to develop a well-balanced scheme. In the literature, most schemes only tackle the equilibria when the fluid is at rest, the so called Lake at rest solutions. Here a scheme is developed to accurately capture all the equilibria of the Shallow Water equations. Moreover, in contrast to other works, a second order extension is proposed, that does not rely on an iterative scheme inside the reconstruction procedure, leading to a more efficient scheme. In chapter 4, a Suliciu relaxation scheme is adapted for the resolution of hydrostatic equilibria of the Euler equations with a gravitational potential. The hydrostatic relations are underdetermined and therefore the solutions to that equations are not unique. However, the scheme is shown to be well-balanced for a wide class of hydrostatic equilibria. For specific classes, some quadrature rules are computed to ensure the exact well-balanced property. Moreover, the scheme is shown to be robust, i.e. it preserves the positivity of mass and energy, and stable with respect to the entropy. Numerical results are presented in order to investigate the impact of the different quadrature rules on the well-balanced property. In chapter 5, a Suliciu relaxation scheme is adapted for the simulations of low Mach number flows. The scheme is shown to be asymptotic preserving and not suffering from excessive diffusion in the low Mach number regime. Moreover, it is shown to be robust under certain parameter combinations and to be stable from an Chapman-Enskog analysis. Numerical results are presented in order to show the advantages of the new approach. In chapter 6, the schemes developed in the chapters 4 and 5 are combined in order to investigate the performance of the numerical scheme in the low Mach number regime in a gravitational stratified atmosphere. The scheme is shown the be well-balanced, robust and stable with respect to a Chapman-Enskog analysis. Numerical tests are presented to show the advantage of the newly proposed method over the classical scheme. In chapter 7, some remarks on an alternative way to tackle multidimensional simulations are presented. However no numerical simulations are performed and it is shown why further research on the suggested approach is necessary. KW - Strömung KW - Numerical Methods KW - Hyperbolic Partial Differential Equations KW - Well-Balanced KW - Asymptotic Preserving KW - Atmosphäre KW - Mathematisches Modell KW - PDE Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162669 ER - TY - THES A1 - Ganse, Urs T1 - Kinetische Simulationen solarer Typ II Radiobursts T1 - Kinetic Simulations of Solar Type II Radio Bursts N2 - Die Emission solarer Typ II Radiobursts ist ein seit Jahrzehnten beobachtetes Phänomen der heliosphärischen Plasmaphysik. Diese Radiobursts, die im Zusammenhang mit der Propagation koronaler Schockfronten auftreten, zeigen ein charakteristisches, zweibandiges Emissionsspektrum. Mit expandierendem Schock driften sie zu niedrigeren Frequenzen. Analytische Theorien dieser Emission sagen nichtlineare Plasmawellenwechselwirkung als Ursache voraus, doch aufgrund des geringen Sonnenabstands der Emissionsregion ist die in-situ Datenlage durch Satellitenmessungen äusserst schlecht, so dass eine endgültige Verifikation der vorhergesagten Vorgänge bisher nicht möglich war. Mit Hilfe eines kinetischen Plasma-Simulationscodes nach dem Particle-in-Cell Prinzip wurde in dieser Dissertation die Plasmaumgebung in der Foreshock-Region einer koronalen Schockfront modelliert. Das Propagations- und Kopplungsverhalten elektrostatischer und elektromagnetischer Wellenmoden wurde untersucht. Die vollständige räumliche Information über die Wellenzusammensetzung in der Simulation erlaubt es, die Kinematik nichtlinearer Wellenkopplungen genauestens zu untersuchen. Es zeigte sich ein mit der analytischen Theorie der Drei-Wellen-Wechselwirkung konsistentes Bild der Erzeugung solarer Radiobursts: durch elektromagnetischen Zerfall elektrostatischer Moden kommt es zur Erzeugung fundamentaler, sowie durch Verschmelzung gegenpropagierender elektrostatischer Moden zur Anregung harmonischer Radioemission. Kopplungsstärken und Winkelabhängigkeit dieser Prozesse wurden untersucht. Mit dem somit zur Verfügung stehenden, numerischen Laborsystem wurde die Parameter-Abhängigkeit der Wellenkopplungen und entstehenden Radioemissionen bezüglich Stärke des Elektronenbeams und des solaren Abstandes untersucht. N2 - The emission of solar type II radiobursts is a phenomenon of heliospheric plasma physics which has been observed for several decades. These radio bursts, which appear in conjunction with propagating coronal shocks, show a characteristic two-banded emission spectrum, drifting towards lower frequencies as the shock expands. Analytic theories predict nonlinear plasma wave interaction as the cause of these emissions. However, due to its low solar distance, in-situ satellite measurements of the emission regions’ properties are extremely scarce. Hence, a conclusive verification of the predicted processes was hitherto not attainable. Using a kinetic plasma simulation code based on the particle-in-cell approach, the plasma environment in a coronal shock’s foreshock region was modelled in this thesis. The propagation and coupling behaviour of electrostatic and electromagnetic wavemodes was investigated. Complete spatial information of the wave composition as obtainable from the simulations allowed to finely analyze the kinematics of nonlinear wave interactions. The results showed excitation of solar radiobursts in agreement with analytics predictions of three wave interaction processes, based on the nonlinear processes: electromagnetic decay of electrostatic modes is responsible for the fundamental and coalcescense of counterpropagating electrostatic waves responsable for the harmonic radio emission. Coupling strengths and angular dependences of these processes were then studied. With the numerical laboratory system obtained through this modelling effort, the parameter dependence of wave copulings and resulting radio emissions were explored, based on variation of electron beam strength and solar distance of the emission region. KW - Heliosphäre KW - Burst KW - Mathematisches Modell KW - Heliosphere KW - Plasma Physics KW - Electromagnetic Waves KW - Electrostatic Waves KW - Nonlinear Interaction KW - Plasma KW - Elektromagnetische Welle KW - Elektrostatische Welle Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73676 ER - TY - THES A1 - Rüger, Michael T1 - Ein zeitabhängiges, selbstkonsistentes hadronisch-leptonisches Strahlungsmodell zur Modellierung der Multiwellenlängenemission von Blazaren T1 - A time-dependent, selfconsistent hadronic-leptonic emission modell for the multiwavelength emission of blazars N2 - Diese Arbeit beschäftigt sich mit Strahlungsprozessen in Blazaren. Bei den Blazaren handelt es sich um eine Unterkategorie der aktiven Galaxienkerne, bei denen die Jetachse in Richtung des Beobachters zeigt. Charakteristisch für die Blazare ist ein Multifrequenzspektrum der Photonen, welches sich vom Radiobereich bis hin zur Gamma-Strahlung mit TeV-Energien erstreckt. Insbesondere der Gamma-Bereich rückt aktuell in den Fokus der Betrachtung mit Experimenten wie zum Beispiel FERMI und MAGIC. Ziel dieser Arbeit ist die Modellierung der auftretenden Strahlungsprozesse und die Beschreibung der Multifrequenzspektren der Blazare mit Hilfe eines hadronisch-leptonischen Modells. Grundlage hierfür ist ein selbstkonsistentes Synchrotron-Selbst-Compton-Modell (SSC), welches zur Beschreibung des Spektrums der Quelle 1 ES 1218+30.4 verwendet wird. Dabei wird die Parameterwahl unterstützt durch eine Abschätzung der Masse des zentralen schwarzen Loches. Das hier behandelte SSC-Modell wird dahingehend untersucht, wie es sich unter Veränderung der Modellparameter verhält. Dabei werden Abhängigkeiten des Photonenspektrums von Änderungsfaktoren der Parameter abgeleitet. Außerdem werden diese Abhängigkeiten in Relation gesetzt und aus dieser Betrachtung ergibt sich die Schlussfolgerung, dass unter der Voraussetzung eines festen Spektralindex der Elektronenverteilung die Wahl eines Parametersatzes zur Modellierung eines Photonenspektrums eindeutig ist. Zur Einführung eines zeitabhängigen, hadronischen Modells wird das SSCModell um die Anwesenheit nichtthermischer Protonen erweitert. Dadurch kann Proton-Synchrotron-Strahlung einen Beitrag im Gamma-Bereich leisten. Außerdem werden durch Proton-Photon-Wechselwirkung Pionen erzeugt. Aus deren Zerfall werden zusammen mit der Paarbildung aus Photon-Photon-Absorption sekundäre Elektronen und Positronen produziert, die wiederum zum Hochenergiespektrum beitragen. Neben den Pionen werden bei der Proton-Photon- Wechselwirkung außerdem noch Neutrinos und Neutronen erzeugt, die einen direkten Einblick in die Emissionsregion erlauben. Das hier vorgestellte hadronische Modell wird auf die Quelle 3C 279 angewandt. Für diese Quelle reicht mit der Detektion im VHE-Bereich der SSCAnsatz nicht aus, um das Photonenspektrum zu beschreiben. Mit dem vorgelegten Modell gelingt die Beschreibung des Spektrums in den SSC-kritischen Bereichen sehr gut. Insbesondere können verschiedene Flusszustände modelliert und allein durch Veränderung der Maximalenergien von Protonen und Elektronen ineinander überführt werden. Diese einfache Möglichkeit der Modellierung der Variabilität der Quelle unterstreicht die Wahl des hadronischen Ansatzes. Somit wird hier ein sehr gutes Werkzeug zur Untersuchung der Emissionsprozesse in Blazaren geliefert. Darüber hinaus ist mit der Abschätzung des Neutrino-Flusses zwar die Detektion von 3C 279 als Punktquelle mit IceCube unwahrscheinlich, jedoch liefert das Modell generell die Möglichkeit im Kontext des Multimessenger-Ansatzes Antworten zu liefern. Im gleichen Kontext wird auch der Beitrag zur kosmischen Strahlung durch entweichende Neutronen untersucht. N2 - This doctoral thesis discusses the radiative processes of blazars. Blazars are a subcategory of active galactic nuclei, where the jet axis points towards the observer. The typical spectrum of blazars ranges from radio frequencies up to the gamma ray regime at TeV energy. Current experiments like FERMI or MAGIC focus on the observation of gamma rays. Aim of this thesis is the modelling of the radiative processes and the description of the photon spectra of blazars using a lepto-hadronic emission model. It is based on a synchrotron self Compton model (SSC), which is applied to the source 1 ES 1218+30.4. The choice of parameters is supported by an estimation of the mass of the central black hole. It is shown how the SSC model reacts on the variation of the model parameters. The dependencies of the spectrum on the changing factors of the parameters are derived. The examination of these factors leads to the conclusion, that for a fixed spectral index of the electron distribution a particular choice of parameters to model the photon spectrum is unique. To introduce a time-dependent hadronic model the SSC model is extended by the presence of non-thermal protons, which leads to proton synchrotron radiation and proton photon interaction producing pions. Pion decay cascades together with pair creation due to photon photon absorption produce secondary electrons and positrons, which contribute to the high energy spectrum. In addition to that proton photon interaction creates neutrons and neutrinos, which provide a direct insight into the emission region. The presented hadronic model is applied to the source 3C 279. This blazar cannot be modelled by the one-zone SSC approach. The hadronic model solves the problems of the SSC model regarding this source. Different flux states are described by only changing the maximum energies of protons and electrons. This simple approach stresses the choice of the hadronic model to consider 3C 279. With this results we have a powerful tool for the examination of emission processes in blazars. With the estimated neutrino flux no detection as point source by IceCube is expected. However, in general it is possible to deliver answers with this model to the multi-messenger approach. In the same context the contribution of outgoing neutrons to cosmic rays is considered. KW - Blazar KW - Strahlung KW - Mathematisches Modell KW - Aktive Galaxienkerne Blazare KW - Aktiver galaktischer Kern KW - AGN KW - blazar Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-56955 ER -