TY - JOUR A1 - González, María Magdalena A1 - Dorner, Daniela A1 - Bretz, Thomas A1 - García-González, José Andrés T1 - Unbiased long-term monitoring at TeV energies JF - Galaxies N2 - For the understanding of the variable, transient and non-thermal universe, unbiased long-term monitoring is crucial. To constrain the emission mechanisms at the highest energies, it is important to characterize the very high energy emission and its correlation with observations at other wavelengths. At very high energies, only a limited number of instruments is available. This article reviews the current status of monitoring of the extra-galactic sky at TeV energies. KW - monitoring KW - very high energies (VHE) KW - TeV energies Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197389 SN - 2075-4434 VL - 7 IS - 2 ER - TY - THES A1 - Lange, Sebastian T1 - Turbulenz und Teilchentransport in der Heliosphäre - Simulationen von inkompressiblen MHD-Plasmen und Testteilchen - T1 - Turbulence and particle transport within the heliosphere - simulations of incompressible MHD-plasmas and test particles - N2 - Die Herkunft hochenergetischer solarer Teilchen konnte in den vergangenen Jahren eindeutig auf Schockbeschleunigung an koronalen Masseauswürfen zurückgeführt werden. Durch resonante Interaktionen zwischen Wellen und Teilchen werden zum einen geladene Teilchen unter Veränderung ihrer Energie gestreut, zum anderen wird die Dynamik der Plasmawellen in solchen Beschleunigungsregionen durch diese Prozesse von selbstgenerierten Wellenmoden maßgeblich beeinflusst. Mittels numerischer Modellierungen wurden im Rahmen dieser Arbeit die grundlegenden physikalischen Regimes der Turbulenz und des Teilchentransports beschrieben. Die Simulation der Plasmadynamik bedient sich der Methodik der Magnetohydrodynamik, wohingegen kinetische Einzelteilchen durch die elementaren Bewegungsgleichungen der Elektrodynamik berechnet werden. Es konnten die Turbulenztheorien von Goldreich und Sridhar unter heliosphärischen Bedingungen bei drei solaren Radien bestätigt werden. Vor allem zeigten sich Hinweise für das Erreichen der kritischen Balance, einem Schlüsselparameter dieser Theorien. Weiterhin werden Ergebnisse der dynamischen Entwicklung angeregter Wellenmoden präsentiert, in denen die Bedeutsamkeit für die gesamte Turbulenz gezeigt werden konnte. Als zentraler Prozess bei hohen Energien hat sich das wave-steepening herausgestellt, das als effizienter Energietransportmechanismus in paralleler Richtung zum Hintergrundmagnetfeld identifiziert wurde und somit turbulente Strukturen bei hohen parallelen Wellenzahlen erklärt, deren Entstehung das Goldreich-Sridhar Modell nicht beschreiben kann. Darüber hinaus wurden grundlegende Erkenntnisse über die quasilineare Theorie des Teilchentransports erzielt. Im Speziellen konnte ein tieferes Verständnis für die Interpretation der Diffusionskoeffizienten von Welle-Teilchen Wechselwirkungen erlangt werden. Simulationen zur Streuung an angeregten Wellenmoden zeigten erstmals komplexe resonante Strukturen die im Rahmen analytischer Modelle nicht mehr adäquat beschrieben werden können. N2 - In the past years, the origin of high energetic solar particles could be clearly connected to shock acceleration at coronal mass ejections. Caused by resonant wave-particle interactions, on the one hand, the particles change their energy because of scattering, on the other hand, the dynamics of plasma waves in such acceleration regions are significantly influenced by these processes through self--generated wave modes. In this dissertation, the basic physical regime of turbulence and particle transport were described via numerical modeling. The simulation of the plasma dynamics uses the methodology of magnetohydrodynamics, whereas the kinetic description of single particles is calculated by elementary electrodynamic equations of motion. The common plasma turbulence theories by Goldreich and Sridhar could be confirmed by simulations resembling conditions at three solar radii. Foremost, evidence for the critical balance has been found, which is a key parameter of these theories. Furthermore, results of the dynamic evolution of amplified wavemodes are presented, which are very important for the general turbulence development. In this context, the wave-steepening was identified as a central process, which is an efficient energy transport mechanism in parallel direction to the magnetic background field. This explains turbulent structures at high parallel wavenumbers, which are not described by the Goldreich-Sridhar model. Moreover, a fundamental understanding of the quasilinear theory of particle transport has been achieved. Specifically, more detailed insight into the interpretation of the diffusion coefficients of wave-particle interactions could be obtained. For the first time, simulations of particle scattering at amplified wave modes showed complex resonant structures, which cannot be described by analytical approaches adequately. KW - Heliosphäre KW - Sonnenwind KW - Turbulente Strömung KW - Transportprozess KW - Teilchentransport KW - turbulence KW - high-energy particles KW - heliosphere KW - magnetohydrodynamics KW - Numerisches Modell KW - Turbulenz KW - Energiereiches Teilchen KW - Magnetohydrodynamik Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74012 ER - TY - THES A1 - Deppisch, Frank T1 - Towards a reconstruction of the SUSY seesaw model T1 - Zur Rekonstruktion des SUSY Seesaw Modells N2 - In this work, we studied in great detail how the unknown parameters of the SUSY seesaw model can be determined from measurements of observables at or below collider energies, namely rare flavor violating decays of leptons, slepton pair production processes at linear colliders and slepton mass differences. This is a challenging task as there is an intricate dependence of the observables on the unknown seesaw, light neutrino and mSUGRA parameters. In order to separate these different influences, we first considered two classes of seesaw models, namely quasi-degenerate and strongly hierarchical right-handed neutrinos. As a generalisation, we presented a method that can be used to reconstruct the high energy seesaw parameters, among them the heavy right-handed neutrino masses, from low energy observables alone. N2 - In dieser Arbeit wurde detailliert untersucht wie die unbekannten Parameter des supersymmetrischen Seesaw-Modells durchMessung von niederenergetischen Observablen (Lepton-Flavor verletzende seltene Zerfälle der Leptonen, Slepton-Paar-Produktion an Elektron-Positron Linearbeschleunigern und Sleptonmassen-Differenzen) bestimmt werden können. Wegen des komplizierten Zusammenhangs zwischen diesen Messgrößen und den Seesaw-, Neutrino-, und SUSY-Parametern stellt dies eine große Herausforderung dar. Um die verschiedenen Einflüsse zu trennen, wurden zuerst zwei Klassen von Seesaw-Modellen betrachtet, nämlich solche die durch (quasi-)entartete und stark hierarchische rechtshändige Neutrinomassen charakterisiert sind. Zur Verallgemeinerung wurde zum Abschluss eine allgemeine Methode präsentiert, mittels der die zugrunde liegenden Hochenergie-Parameter des Seesaw-Modells allein durch niederenergetische Observable rekonstruiert werden können. KW - Supersymmetrie KW - Lepton KW - Flavour KW - Symmetriebrechung KW - Supersymmetrie KW - Neutrinos KW - Flavorphysik KW - Beschleunigerphysik KW - Physik jenseits des Standardmodells KW - Supersymmetry KW - Neutrinos KW - Flavor physics KW - Collider physics KW - Physics beyond the Standard Model Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-12757 ER - TY - JOUR A1 - Roelofs, Freek A1 - Blackburn, Lindy A1 - Lindahl, Greg A1 - Doeleman, Sheperd S. A1 - Johnson, Michael D. A1 - Arras, Philipp A1 - Chatterjee, Koushik A1 - Emami, Razieh A1 - Fromm, Christian A1 - Fuentes, Antonio A1 - Knollmüller, Jakob A1 - Kosogorov, Nikita A1 - Müller, Hendrik A1 - Patel, Nimesh A1 - Raymond, Alexander A1 - Tiede, Paul A1 - Traianou, Efthalia A1 - Vega, Justin T1 - The ngEHT analysis challenges JF - Galaxies N2 - The next-generation Event Horizon Telescope (ngEHT) will be a significant enhancement of the Event Horizon Telescope (EHT) array, with ∼10 new antennas and instrumental upgrades of existing antennas. The increased uv-coverage, sensitivity, and frequency coverage allow a wide range of new science opportunities to be explored. The ngEHT Analysis Challenges have been launched to inform the development of the ngEHT array design, science objectives, and analysis pathways. For each challenge, synthetic EHT and ngEHT datasets are generated from theoretical source models and released to the challenge participants, who analyze the datasets using image reconstruction and other methods. The submitted analysis results are evaluated with quantitative metrics. In this work, we report on the first two ngEHT Analysis Challenges. These have focused on static and dynamical models of M87* and Sgr A* and shown that high-quality movies of the extended jet structure of M87* and near-horizon hourly timescale variability of Sgr A* can be reconstructed by the reference ngEHT array in realistic observing conditions using current analysis algorithms. We identify areas where there is still room for improvement of these algorithms and analysis strategies. Other science cases and arrays will be explored in future challenges. KW - very long baseline interferometry KW - black holes KW - active galactic nuclei KW - radio astronomy KW - imaging KW - instrument design KW - telescopes KW - algorithms KW - data analysis Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304976 SN - 2075-4434 VL - 11 IS - 1 ER - TY - THES A1 - Nürnberger, Dieter T1 - The Galactic Starburst Region NGC 3603 : exciting new insights on the formation of high mass stars T1 - Das Galaktische Sternentstehungsgebiet NGC 3603: Neue Einblicke in die Entstehung von massereichen Sternen N2 - One of the most fundamental, yet still unsolved problems in star formation research is addressed by the question "How do high mass stars form?". While most details related to the formation and early evolution of low mass stars are quite well understood today, the basic processes leading to the formation of high mass stars still remain a mystery. There is no doubt that low mass stars like our Sun form via accretion of gas and dust from their natal environment. With respect to the formation of high mass stars theorists currently discuss two possible scenarios controversely: First, similar to stars of lower masses, high mass stars form by continuous (time variable) accretion of large amounts of gas and dust through their circumstellar envelopes and/or disks. Second, high mass stars form by repeated collisions (coalescence) of protostars of lower masses. Both scenarios bear difficulties which impose strong constrains on the final mass of the young star. To find evidences for or against one of these two theoretical models is a challenging task for observers. First, sites of high mass star formation are much more distant than the nearby sites of low mass star formation. Second, high mass stars form and evolve much faster than low mass star. In particular, they contract to main sequence, hydrogen burning temperatures and densities on time scales which are much shorter than typical accretion time scales. Third, as a consequence of the previous point, young high mass stars are usually deeply embedded in their natal environment throughout their (short) pre-main sequence phase. Therefore, high mass protostars are rare, difficult to find and difficult to study. In my thesis I undertake a novel approach to search for and to characterize high mass protostars, by looking into a region where young high mass stars form in the violent neighbourhood of a cluster of early type main sequence stars. The presence of already evolved O type stars provides a wealth of energetic photons and powerful stellar winds which evaporate and disperse the surrounding interstellar medium, thus "lifting the courtains" around nearby young stars at a relatively early evolutionary stage. Such premises are given in the Galactic starburst region NGC 3603. Nevertheless, a large observational effort with different telescopes and instruments -- in particular, taking advantage of the high angular resolution and high sensitivity of near and mid IR instruments available at ESO -- was necessary to achieve the goals of my study. After a basic introduction on the topic of (high mass) star formation in Chapter 1, a short overview of the investigated region NGC 3603 and its importance for both galactic and extragalactic star formation studies is given in Chapter 2. Then, in Chapter 3, I report on a comprehensive investigation of the distribution and kinematics of the molecular gas and dust associated with the NGC 3603 region. In Chapter 4 I thoroughly address the radial extent of the NGC 3603 OB cluster and the spatial distribution of the cluster members. Together with deep Ks band imaging data, a detailed survey of NGC 3603 at mid IR wavelengths allows to search the neighbourhood of the cold molecular gas and dust for sources with intrinsic mid IR excess (Chapter 5). In Chapter 6 I characterize the most prominent sources of NGC 3603 IRS 9 and show that these sources are bona-fide candidates for high mass protostars. Finally, a concise summary as well as an outlook on future prospects in high mass star formation research is given in Chapter 7. N2 - Eines der wichtigsten, nach wie vor ungeloesten Probleme auf dem Forschungsgebiet der Sternentstehung kann durch die einfache Frage "Wie entstehen massereiche Sterne?" zum Ausdruck gebracht werden. Waehrend die Entstehung und fruehe Entwicklung massearmer Sternen bereits in vielen Details gut verstanden ist, sind die grundlegenden Prozesse waehrend der Entstehung massereicher Sterne noch ungeklaert. Es besteht kein Zweifel, dass massearme Sterne wie unsere Sonne durch Akkretion von Gas und Staub aus ihrer Geburtswolke hervorgehen. Seitens der theoretischen Astrophysik werden hinsichtlich der Entstehung massereicher Sterne zwei moegliche Szenarien kontrovers diskutiert. Folgt man dem ersten Modell, so entstehen massereiche Sterne aehnlich wie massearme Sterne, indem sie kontinuierlich (zeitlich variabel) grosse Mengen Gas und Staub ueber ihre zirkumstellaren Huellen und/oder Scheiben akkretieren. Demgegenueber erklaert das zweite Modell die Entstehung massereicher Sterne ueber wiederholt stattfindende Kollisionen von Protosternen geringerer Masse (Koaleszenz). In beide Szenarien begegnet man jedoch Schwierigkeiten physikalischer Natur, die der entgueltigen Masse eines jungen massereichen Sternes eine obere Grenze setzen. Argumente/Beweise fuer oder gegen eines dieser beiden konkurrierenden Modelle zu finden, stellt fuer die beobachtenden Astrophysiker eine grosse Herausforderung dar. Hierfuer gibt es mehrere Gruende: Erstens, die Entstehungsgebiete massereicher Sterne liegen in deutlich groesserer Entfernung als die relativ nahegelegenen Entstehungsgebiete massearmer Sterne. Zweitens, massereiche Sterne entstehen und entwickeln sich viel schneller als massearme Sterne. Insbesonders verlaeuft die Kontraktion zu Temperaturen und Dichten, die denen waehrend des Wasserstoffbrennens auf der Hauptreihe entsprechen, auf Zeitskalen, die deutlich kuerzer sind als typische Zeitskalen fuer die Akkretion von zirkumstellarer Materie. Drittens, und unmittelbare Konsequenz des vorherigen Punktes, junge massereiche Sterne sind gewoehnlich waehrend ihrer gesamten (relativ kurzen) Vorhauptreihenentwicklung tief eingebettet in jene Wolke aus molekularem Gas und Staub, aus der sie selbst entstanden sind. Massereiche Protosterne sind daher sehr selten, schwierig zu entdecken und schwierig zu studieren. In meiner Doktorarbeit unternehme ich einen neuartigen Versuch, massereiche Protosterne zu suchen und zu charakterisieren, indem ich die turbulente Umgebung ein Haufens von fruehen Hauptreihensternen untersuche. Die Praesenz von bereits entwickelten Sternen des Spektraltyps O fuehrt zur Produktion energiereicher Photonen und kraeftiger Sternwinde, welche die umgebende interstellare Materie verdampfen und zerstreuen. Dadurch kann der Blick auf benachbarte junge Sterne zu einem relativ fruehen Zeitpunkt ihrer Entstehung freigegeben werden. Derartige Voraussetzungen finden sich in der galaktischen Starburst-Region NGC 3603. Nichtsdestoweniger bedarf es jedoch eines gewaltigen beobachtungstechnischen Aufwandes mit mehreren Teleskopen und Instrumenten -- insbesondere sind die hohe raeumliche Aufloesung sowie die exzellente Sensitivitaet der fuer die Beobachtungen im nahen und mittleren Infrarot benutzten ESO-Instrumente von entscheidender Bedeutung --, um die gesteckten Ziele meiner Studie zu erreichen. Nach einer grundlegenden Einfuehrung in die Thematik der Entstehung von (massereichen) Sternen in Kapitel 1 wird ein kurzer Ueberblick gegeben ueber die untersuchte Region NGC 3603 sowie ueber ihre Bedeutung fuer Studien zur Sternentstehung sowohl innerhalb als auch ausserhalb unserer Galaxie (Kapitel 2). Anschliessend berichte ich in Kapitel 3 ueber die Ergebnisse einer umfangreichen Untersuchung zur Verteilung und Kinematik des mit der NGC 3603-Region assoziierten molekularen Gases und Staubes. In Kapitel 4 untersuche ich die radiale Ausdehnung des zentralen OB-Sternhaufens und die raeumliche Verteilung seiner Mitgliedssterne. Zusammen mit tiefen Aufnahmen im Ks-Band erlauben detaillierte Beobachtungen bei Wellenlaengen des mittleren Infrarot die Identifizierung von intrinsisch stark geroeteten Quellen in der Nachbarschaft von kaltem, molekularem Gas und Staub (Kapitel 5). In Kapitel 6 werden dann die hellsten dieser Objekte, die Quellen der NGC 3603 IRS 9- Region, genauestens charakterisiert. Es wird gezeigt, dass diese Quellen geeignete Kandidaten fuer massereiche Protosterne darstellen. Zum Schluss fasse ich die erzielten Ergebnisse in Kapitel 7 zusammen und gebe einen Ausblick auf Schwerpunkte zukuenftiger Studien zur Entstehung massereicher Sterne. KW - Starburst-Galaxie KW - Massereicher Stern KW - Sternentstehung KW - Sternentstehung KW - Massereiche Sterne KW - Starburst KW - NGC 3603 KW - Protosterne KW - Star Formation KW - High Mass Stars KW - Starburst KW - NGC 3603 KW - Protostars Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-10440 ER - TY - THES A1 - Höhne-Mönch, Daniel T1 - Steady-state emission of blazars at very high energies T1 - Der Stationäre Zustand von Blazaren bei sehr hohen Energien N2 - One key scientific program of the MAGIC telescope project is the discovery and detection of blazars. They constitute the most prominent extragalactic source class in the very high energy (VHE) Gamma-ray regime with 29 out of 34 known objects (as of April 2010). Therefore a major part of the available observation time was spent in the last years on high-frequency peaked blazars. The selection criteria were chosen to increase the detection probability. As the X-ray flux is believed to be correlated to the VHE Gamma-ray flux, only X-ray selected sources with a flux F(X) > 2 μJy at 1 keV were considered. To avoid strong attenuation of the Gamma-rays in the extragalactic infrared background, the redshift was restricted to values between z < 0.15 and z < 0.4, depending on the declination of the objects. The latter determines the zenith distance during culmination which should not exceed 30° (for z < 0.4) and 45° (for z < 0.15), respectively. Between August 2005 and April 2009, a sample of 24 X-ray selected high-frequency peaked blazars has been observed with the MAGIC telescope. Three of them were detected including 1ES 1218+304 being the first high-frequency peaked BL Lacertae object (HBL) to be discovered with MAGIC in VHE Gamma-rays. One previously detected object was not confirmed as VHE emitter in this campaign by MAGIC. A set of 20 blazars previously not detected will be treated more closely in this work. In this campaign, during almost four years ~ 450 hrs or ~ 22% of the available observation time for extragalactic objects were dedicated to investigate the baseline emission of blazars and their broadband spectral properties in this emission state. For the sample of 20 objects in a redshift range of 0.018 < z < 0.361 integral flux upper limits in the VHE range on the 99.7% confidence level (corresponding to 3 standard deviations) were calculated resulting in values between 2.9% and 14.7% of the integral flux of the Crab Nebula. As the distribution of significances of the individual objects shows a clear shift to positive values, a stacking method was applied to the sample. For the whole set of 20 objects, an excess of Gamma-rays was found with a significance of 4.5 standard deviations in 349.5 hours of effective exposure time. For the first time a signal stacking in the VHE regime turned out to be successful. The measured integral flux from the cumulative signal corresponds to 1.4% of the Crab Nebula flux above 150 GeV with a spectral index α = −3.15±0.57. None of the objects showed any significant variability during the observation time and therefore the detected signal can be interpreted as the baseline emission of these objects. For the individual objects lower limits on the broad-band spectral indices αX−Gamma between the X-ray range at 1 keV and the VHE Gamma-ray regime at 200 GeV were calculated. The majority of objects show a spectral behaviour as expected from the source class of HBLs: The energy output in the VHE regime is in general lower than in X-rays. For the stacked blazar sample the broad-band spectral index was calculated to αX−Gamma = 1.09, confirming the result found for the individual objects. Another evidence for the revelation of the baseline emission is the broad-band spectral energy distribution (SED) comprising archival as well as contemporaneous multi-wavelength data from the radio to the VHE band. The SEDs of known VHE Gamma-ray sources in low flux states matches well the SED of the stacked blazar sample. N2 - Eines der wissenschaftlichen Schlüsselprogramme des MAGIC Projektes ist die Entdeckung und Detektion von Blazaren. Diese stellen mit 29 von 34 bekannten Objekten die prominenteste extragalaktische Quellklasse im Bereich der sehr hochenergetischen (engl. very high energy, VHE) Gamma-Strahlung dar. Deshalb wurde in den letzten Jahren ein Großteil der verfügbaren Beobachtungszeit sogenannten Blazaren mit hochfrequenten Peaks (engl. high-frequency peaked) gewidmet. Die Auswahlkriterien dafür wurden entsprechend gewählt, um die Detektionswahrscheinlichkeit zu erhöhen. Da man glaubt, dass der Röntgenfluss mit dem VHE Gamma-Fluss korreliert, wurden nur röntgenselektierte Quellen mit einem Fluss F(X) > 2 μJy bei 1 keV betrachtet. Um eine starke Abschwächung der Gamma-Strahlung innerhalb des extragalaktischen Infrarot-Hintergrundes zu vermeiden, wurde die Rotverschiebung auf Werte zwischen z < 0,15 und z < 0,4 begrenzt, abhängig von der Deklination der Objekte. Diese bestimmt die Zenitdistanz während der Kulmination, der 30° (für z < 0,15) bzw. 45° (für z < 0,4) nicht übersteigen sollte. Zwischen August 2005 und April 2009 wurde ein Sample aus 24 röntgenselektierten high-frequency peaked Blazaren mit dem MAGIC Teleskop beobachtet. Drei davon wurden detektiert, einschließlich 1ES 1218+304, der erste HBL (engl. von high-frequency peaked BL Lacertae object), der mit MAGIC im VHE Gamma-Bereich entdeckt wurde. Ein früher entdecktes Objekt konnte in dieser Kampagne nicht von MAGIC als VHE Emitter bestätigt werden. Ein Set aus 20 im Vorfeld nicht detektierten Blazaren wird in dieser Arbeit genauer betrachtet. Während fast vier Jahren wurden in dieser Kampagne ~ 450 h oder ~ 22% der verfügbaren Beobachtungszeit für extragalaktische Objekte der Untersuchung der Grundzustandsemission von Blazaren und deren breitbandspektralen Eigenschaften in diesem Zustand gewidmet. Für das Sample aus 20 Objekten in einem Rotverschiebungsbereich 0.018 < z < 0.361 wurden integrale Flussobergrenzen im VHE Bereich auf Basis eines 99,7% Konfidenzlevels (entsprechend 3 Standardabweichungen) berechnet. Damit liegen die Obergrenzen zwischen 2,9% und 14,7% des integralen Flusses des Krebsnebels. Da die Verteilung der Signifikanzen der einzelnen Objekte eine klare positive Verschiebung aufweist, wurde eine Stacking-Methode auf das Sample angewandt. Für das gesamte Set aus 20 Objekten konnte ein Gamma-Strahlungsexzess mit einer Signifikanz von 4,5 Standardabweichungen bei einer effektiven Beobachtungszeit von 349,5 h gefunden werden. Zum ersten Mal war ein Signal-Stacking im VHE Bereich erfolgreich. Der gemessene integrale Fluss des kumulativen Signals entspricht 1,4% des Flusses des Krebsnebels oberhalb einer Energie von 150 GeV mit einem Spektralindex α = −3,15 ± 0,57. Keines der Objekte zeigte Anzeichen für Variabilität während der Beobachtungszeit und daher kann das detektierte Signal als die Grundzustandsemission dieser Objekte angesehen werden. Für die einzelnen Objekte wurden untere Grenzen für die Breitband-Spektralindizes X−Gamma zwischen dem Röntgenbereich bei 1 keV und dem VHE Gamma-Bereich bei 200GeV berechnet. Die Mehrheit der Objekte zeigt ein spektrales Verhalten, wie es für die Klasse der HBLs erwartet wird: Der Energieausstoß im VHE Gamma-Bereich is im allgemeinen niedriger als im Röntgenbereich. Für das mit dem Stacking betrachtete Blazar-Sample wurde der Breitband-Spektralindex zu αX−Gamma = 1,09 berechnet, was die Ergebnisse für die einzelnen Objekte bestätigt. Ein weiterer Hinweis für die Aufdeckung der Grundzustandsemission ist die breitband-spektrale Energieverteilung (engl. spectral energy distribution, SED), die Archiv- wie auch kontemporäre Multiwellenlängendaten vom Radio- bis in den VHE Gamma-Bereich enthält. Die SEDs bekannter VHE Gamma-Quellen in niedrigen Flusszuständen stimmt gut mit der SED aus dem Stacking des Blazar-Samples überein. KW - MAGIC-Teleskop KW - Blazar KW - Gammaastronomie KW - Astrophysik KW - astrophysics KW - MAGIC telescope KW - blazar Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-53700 ER - TY - JOUR A1 - Dashkovskiy, Sergey A1 - Slynko, Vitalii T1 - Stability conditions for impulsive dynamical systems JF - Mathematics of Control, Signals, and Systems N2 - In this work, we consider impulsive dynamical systems evolving on an infinite-dimensional space and subjected to external perturbations. We look for stability conditions that guarantee the input-to-state stability for such systems. Our new dwell-time conditions allow the situation, where both continuous and discrete dynamics can be unstable simultaneously. Lyapunov like methods are developed for this purpose. Illustrative finite and infinite dimensional examples are provided to demonstrate the application of the main results. These examples cannot be treated by any other published approach and demonstrate the effectiveness of our results. KW - lyapunov methods KW - stability KW - robustness KW - impulsive systems KW - infinite-dimensional systems KW - nonlinear systems KW - input-to-state stability Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-268390 SN - 1435-568X VL - 34 IS - 1 ER - TY - THES A1 - Wendel, Christoph T1 - Spectral Imprints from Electromagnetic Cascades in Blazar Jets T1 - Spektrale Merkmale elektromagnetischer Kaskaden in Jets von Blazaren N2 - The extragalactic gamma-ray sky is dominated by blazars, active galactic nuclei (AGN) with a relativistic jet that is closely aligned with the line of sight. Galaxies develop an active nucleus if the central supermassive black hole (BH) accretes large amounts of ambient matter and magnetic flux. The inflowing mass accumulates around the plane perpendicular to the accretion flow's angular momentum. The flow is heated through viscous friction and part of the released energy is radiated as blackbody or non-thermal radiation, with luminosities that can dominate the accumulated stellar luminosity of the host galaxy. A fraction of the accretion flow luminosity is reprocessed in a surrounding field of ionised gas clouds. These clouds, revolving around the central BH, emit Doppler-broadened atomic emission lines. The region where these broad-line-emitting clouds are located is called broad-line region (BLR). About one in ten AGN forms an outflow of radiation and relativistic particles, called a relativistic jet. According to the Blandford-Znajek mechanism, this is facilitated through electromagnetic processes in the magnetosphere of a spinning BH. The latter induces a magnetospheric poloidal current circuit, generating a decelerating torque on the BH and inducing a toroidal magnetic field. Consequently, rotational energy of the BH is converted to Poynting flux streaming away mainly along the rotational axis and starting the jet. One possibility for particle acceleration near the jet base is realised by magnetospheric vacuum gaps, regions temporarily devoid of plasma, such that an intermittent electric field arises parallel to the magnetic field lines, enabling particle acceleration and contributing to the mass loading of the jets. Magnetised structures, containing bunches of relativistic electrons, propagate away from the galactic nucleus along the jets. Assuming that these electrons emit synchrotron radiation and that they inverse-Compton (IC) up-scatter abundant target photons, which can either be the synchrotron photons themselves or photons from external emitters, the emitted spectrum can be theoretically determined. Additionally taking into account that these emission regions move relativistically themselves and that the emission is Doppler-boosted and beamed in forward direction, the typical two-hump spectral energy distribution (SED) of blazars is recovered. There are however findings that challenge this well-established model. Short-time variability, reaching down to minute scales at very high energy gamma rays, is today known to be a widespread phenomenon of blazars, calling for very compact emission regions. In most models of such optically thick emission regions, the gamma-ray flux is usually pair-absorbed exponentially, without considering the cascade evolving from the pair-produced electrons. From the observed flux, it is often concluded that emission emanates from larger distances where the region is optically thin, especially from outside of the BLR. Only in few blazars gamma-ray attenuation associated with pair absorption in the BLR was clearly reported. With the advent of sophisticated high-energy or very high energy gamma-ray detectors, like the Fermi Large Area Telescope or the Major Atmospheric Gamma-ray Imaging Cherenkov telescopes, besides the extraordinarily fast variability spectral features have been found that cannot be explained by conventional models reproducing the two-hump SED. Two such narrow spectral features are discussed in this work. For the nearby blazar Markarian 501, hints to a sharp peak around 3 TeV have been reported from a multi-wavelength campaign carried out in July 2014, while for 3C 279 a spectral dip was found in 2018 data, that can hardly be described with conventional fitting functions. In this work it is examined whether these spectral peculiarities of blazar jet emission can be explained, if the full radiation reprocessing through an IC pair cascade is accounted for. Such a cascade is the multiple concatenation of IC scattering events and pair production events. In the cascades generally considered in this work, relativistic electrons and high-energy photons are injected into a fixed soft target photon field. A mathematical description for linear IC pair cascades with escape terms is delivered on the basis of preliminary works. The steady-state kinetic equations for the electrons and for the photons are determined, whereby it is paid attention to an explicit formulation and to motivating the correct integration borders of all integrals from kinematic constraints. In determining the potentially observable gamma-ray flux, both the attenuated injected flux and the flux evolving as an effect of IC up-scattering, pair absorption and escape are incorporated, giving the emerging spectra very distinct imprints. Much effort is dedicated to the numerical solution of the electrons' kinetic equation via iterative schemes. It is explained why pointwise iteration from higher to lower Lorentz factors is more efficient than iterating the whole set of sampling points. The algorithm is parallelised at two positions. First, several workers can perform pointwise iterations simultaneously. Second, the most demanding integral is cut into a number of part integrals which can be determined by multiple workers. Through these measures, the Python code can be readily applied to simulate steady-state IC pair cascades with escape. In the case of Markarian 501 the developed framework is as follows. The AGN hosts an advection-dominated accretion flow with a normalised accretion rate of several \(10^{-4}\) and an electron temperature near \(10^{10}\) K. On the one hand, the accretion flow illuminates the few ambient gas clouds with approximate radius \(10^{11}\) m, which reprocess a fraction 0.01 of the luminosity into hydrogen and helium emission lines. On the other hand, the gamma rays from the accretion flow create electrons and positrons in a sporadically active vacuum gap in the BH magnetosphere. In the active gap, a power of roughly 0.001 of the Blandford-Znajek power is extracted from the rotating BH through a gap potential drop of several \(10^{18}\) V, generating ultra-relativistic electrons, which subsequently are multiplied by a factor of about \(10^6\) through interaction with the accretion flow photons. This electron beam propagates away from the central engine and encounters the photon field of one passing ionised cloud. The resulting IC pair cascade is simulated and the evolving gamma-ray spectrum is determined. Just above the absorption troughs due to the hydrogen lines, the spectrum exhibits a narrow bump around 3 TeV. When the cascaded emission is added to the emission generated at larger distances, the observed multi-wavelength SED including the sharp peak at 3 TeV is reproduced, underlining that radiation processes beyond conventional models are motivated by distinct spectral features. The dip in the spectrum of 3C 279 is addressed by a similar cascade model. Three types of injection are considered, varying in the ratio of the photon density to the electron density and varying in the spectral shape. The IC pair cascade is assumed to happen either in the dense BLR photon field with a luminosity of several \(10^{37}\) W and a radial size of few \(10^{14}\) m or in the diluted photon field outside of the BLR. The latter scenario is however rejected as the spectral slope around several 100 MeV and the dip at few 10 GeV cannot be reconciled within this model. The radiation cascaded in the BLR can explain the observational data, irrespective of the assumed injected rate. It is therefore concluded that for this period of gamma-ray emission, the radiation production happens at the edge of the BLR of 3C 279. Both investigations show that IC pair cascades can account for fine structure seen in blazar SEDs. It is insufficient to restrict the radiation transport to pure exponential absorption of an injection term. Pair production and IC up-scattering by all generations of photons and electrons in the optically thick regime critically shape the emerging spectra. As the advent of future improved detectors will provide more high-precision spectra, further observations of narrow spectral features can be expected. It seems therefore recommendable to incorporate cascading into conventional radiation production models or to extend the model developed in this work by synchrotron radiation. N2 - Beobachtet man das Firmament im Licht der Gammastrahlung, stellen Blasare die Mehrzahl extragalaktischer Objekte dar. Blasare sind aktive Galaxienkerne mit einem relativistischen Jet, der entlang der Sichtlinie ausgerichtet ist. Galaxien haben einen aktiven Kern, wenn das zentrale supermassereiche Schwarze Loch große Mengen an Umgebungsmaterie und magnetischem Fluss akkretiert. Die nach Innen strömende Masse sammelt sich nahe der Ebene an, die senkrecht zum Drehimpuls des Akkretionsflusses steht. Das akkretierte Material wird durch viskose Reibung aufgeheizt und ein Teil der freigesetzten Energie wird als Schwarzkörper- oder nicht-thermische Strahlung abgestrahlt, deren Leuchtkraft die gesamte stellare Leuchtkraft der Wirtsgalaxie übertreffen kann. Ein Teil der Leuchtkraft des Akkretionsflusses wird in einem umgebenden Feld von ionisierten Gaswolken reprozessiert. Diese Wolken, die um das zentrale Schwarze Loch kreisen, emittieren Doppler-verbreiterte Emissionslinien. Den Teil des aktiven Galaxienkerns, in dem sich diese Wolken befinden, bezeichnet man als BLR (englisch: broad-line region). Ihr Abstand zum zentralen Schwarzen Loch beträgt typischerweise etwa 0,1 pc. Etwa einer von zehn aktiven Galaxienkernen bildet einen Ausfluss von Strahlung und relativistischen Teilchen aus, einen sogenannten relativistischen Jet. Dies wird gemäß dem Blandford-Znajek-Mechanismus durch elektromagnetische Prozesse in den Magnetosphären rotierender Schwarzer Löcher bewerkstelligt. Letztere induzieren einen poloidalen magnetosphärischen Stromkreis, der ein abbremsendes Drehmoment auf das Schwarze Loch ausübt und ein toroidales Magnetfeld erzeugt. Folglich wird die Rotationsenergie des Schwarzen Lochs in Poynting-Fluss umgewandelt, der hauptsächlich entlang der Rotationsachse abfließt und den Jet entstehen lässt. Durch Prozesse, die noch nicht eindeutig identifiziert wurden, werden geladene Teilchen in der Nähe der Jetbasis beschleunigt. Eine Möglichkeit dafür ist Teilchenbeschleunigung in magnetosphärischen Vakuum-Lücken. Dies sind Regionen, die vorübergehend nahezu frei von Plasma sind, sodass zeitweise ein elektrisches Feld parallel zu den Magnetfeldlinien entsteht, das die Teilchenbeschleunigung ermöglicht und zur Aufladung der Jets mit massebehafteten Teilchen beiträgt. Magnetisierte Strukturen, die relativistische Elektronen enthalten, bewegen sich entlang der Jets vom Galaxienkern weg. Unter der Annahme, dass diese Elektronen Synchrotronstrahlung aussenden und dass sie vorhandenen weichen Photonen, die entweder die Synchrotronphotonen selbst oder Photonen von externen Emittern sein können, durch inverse Compton-Streuung höhere Energien verleihen, kann das emittierte Spektrum berechnet werden. Berücksichtigt man zusätzlich, dass sich diese Emissionsgebiete selbst relativistisch bewegen und dass die Emission Doppler-verstärkt ist und bevorzugt in Vorwärtsrichtung abgestrahlt wird, erhält man die typische zweihöckrige spektrale Energieverteilung von Blasaren. Es gibt jedoch Erkenntnisse, die dieses bewährte Modell in Frage stellen. Kurzzeit-Variabilität, die bei sehr hochenergetischer Gammastrahlung bis zu Minuten-Skalen hinunterreicht, ist ein weit verbreitetes Phänomen bei Blasaren und setzt sehr kompakte Emissionsregionen voraus. In den meisten Modellen für solche optisch dicken Emissionsregionen wird der Gammastrahlenfluss durch Paarbildung lediglich exponentiell absorbiert, ohne die Kaskade zu berücksichtigen, die sich durch die erzeugten Elektronen entwickelt. Aus den Beobachtungen wird oft gefolgert, dass die Emission aus optisch dünnen Regionen bei größeren Entfernungen stammt, insbesondere von außerhalb der BLR. Nur bei wenigen Blasaren wurde eine Abschwächung der Gammastrahlung durch Absorption in der BLR eindeutig nachgewiesen. Durch moderne Gammastrahlen-Detektoren, wie das Fermi Large Area Telescope oder den Major Atmospheric Gamma-ray Imaging Cherenkov Teleskopen, wurden neben der Kurzzeit-Variabilität auch spektrale Merkmale gefunden, die nicht durch konventionelle Modelle, die die zweihöckrigen spektralen Energieverteilungen wiedergeben können, erklärt werden können. Zwei solcher besonderen spektralen Merkmale werden in dieser Arbeit diskutiert. Für den Blasar Markarian 501 wurden bei einer im Juli 2014 durchgeführten Multiwellenlängenkampagne Hinweise auf einen schmalen Buckel bei 3 TeV gefunden, während für 3C 279 in Daten von 2018 eine Mulde im Spektrum gefunden wurde, die mit oft verwendeten Fit-Funktionen nur schlecht beschrieben werden kann. In dieser Arbeit wird untersucht, ob diese spektralen Besonderheiten der Blasar-Jet-Emission erklärt werden können, wenn die vollständige Reprozessierung der Strahlung durch eine inverse Compton-Paar-Kaskade berücksichtigt wird. Eine solche Kaskade ist die mehrfache Aneinanderreihung von inverser Compton-Streuung und Paarproduktion. Bei den in dieser Arbeit allgemein betrachteten Kaskaden werden relativistische Elektronen und hochenergetische Photonen in eine Region mit niederenergetischen Photonen konstanter Dichte injiziert. Auf der Grundlage von Vorarbeiten wird eine mathematische Beschreibung für lineare inverse Compton-Paar-Kaskaden mit Entweichtermen ausgearbeitet. Es werden die zeit-unabhängigen kinetischen Gleichungen für Elektronen und Photonen hergeleitet, wobei auf eine vollständige Formulierung und auf die Begründung der korrekten Integrationsgrenzen aller Integrale durch die kinematischen Vorgaben geachtet wird. Bei der Bestimmung des potentiell beobachtbaren Gammastrahlenflusses werden sowohl der teilweise absorbierte, injizierte Fluss als auch der Fluss, der sich als Effekt der inversen Compton-Streuung, der Paar-Absorption und des Entweichens ergibt, einbezogen, was den entstehenden Spektren charakteristische Formen aufprägt. Die kinetische Gleichung der Elektronen wird durch iterative Vorgehensweisen numerisch gelöst. Es wird erklärt, warum eine punktweise Iteration von höheren zu niedrigeren Lorentz-Faktoren effizienter ist als die Iteration des gesamten Satzes von Stützstellen. Der Algorithmus wird an zwei Stellen parallelisiert. Erstens können mehrere Prozessor-Kerne gleichzeitig punktweise Iterationen durchführen. Zweitens wird das rechenintensivste Integral in mehrere Teilintegrale zerlegt, die von mehreren Kernen berechnet werden können. Durch diese Maßnahmen kann der Python-Code zur Simulation von zeitunabhängigen inversen Compton-Paar-Kaskaden eingesetzt werden. Im Fall von Markarian 501 wird folgendes Modell bemüht. Der aktive Galaxienkern hat einen advektionsdominierten Akkretionsfluss mit einer normalisierten Akkretionsrate von mehreren \(10^{-4}\) und einer Elektronentemperatur um \(10^{10}\) K. Einerseits bestrahlt der Akkretionsfluss die wenigen umgebenden Gaswolken mit ungefährem Radius von \(10^{11}\) m, die einen Faktor 0,01 der Leuchtkraft in Form von Wasserstoff- und Helium-Emissionslinien wieder abstrahlen. Andererseits erzeugen die vom Akkretionsfluss stammenden Gammaphotonen in einer zeitweise aktiven Vakuum-Lücke in der Magnetosphäre des Schwarzen Lochs Elektronen und Positronen. In der geöffneten Lücke wird dem rotierenden Schwarzen Loch durch einen Potentialunterschied von mehreren \(10^{18}\) V eine Leistung von etwa 0,001 der Blandford-Znajek-Leistung entzogen, wodurch ultra-relativistische Elektronen erzeugt werden, die anschließend durch Wechselwirkung mit den Photonen des Akkretionsflusses um einen Faktor von etwa \(10^6\) multipliziert werden. Dieser Elektronenstrahl verlässt die Magnetosphäre und trifft auf das Photonenfeld einer vorbeiziehenden ionisierten Wolke. Die daraus resultierende inverse Compton-Paar-Kaskade wird simuliert und das sich ergebende Gammastrahlenspektrum wird berechnet. Unmittelbar oberhalb der durch die Wasserstofflinien verursachten Absorptionströge erscheint bei rund 3 TeV ein schmaler Höcker. Wenn die Strahlung der Kaskade der aus größerer Entfernung stammenden Strahlung überlagert wird, wird die gesamte spektrale Energieverteilung einschließlich des scharfen Buckels bei 3 TeV reproduziert. Das bedeutet, dass schmale spektrale Merkmale für die Relevanz von Strahlungsprozessen sprechen, die über konventionelle Modelle hinausgehen. Der Trog im Spektrum von 3C 279 wird mit einem ähnlichen Kaskadenmodell untersucht. Es werden drei Fälle der Injektion betrachtet, die sich im Verhältnis der Photonen-Anzahl zur Elektronen-Anzahl und im spektralen Verlauf unterscheiden. Es wird angenommen, dass die Kaskade entweder im dichten Photonenfeld der BLR mit einer Leuchtkraft von mehreren \(10^{37}\) W und einer radialen Ausdehnung von einigen \(10^{14}\) m oder im ausgedünnten Photonenfeld außerhalb der BLR stattfindet. Das letztgenannte Szenario muss jedoch verworfen werden, da die spektrale Steigung bei einigen 100 MeV und der Absorptionstrog bei einigen 10 GeV innerhalb dieses Modells nicht miteinander in Einklang gebracht werden können. Die innerhalb der BLR kaskadierte Strahlung kann die Beobachtungsdaten unabhängig von der angenommenen Injektionsrate erklären. Daraus folgt, dass die Gammastrahlung während dieses Emissionsereignisses am Rande der BLR von 3C 279 produziert wird. Beide Untersuchungen zeigen, dass inverse Compton-Paar-Kaskaden Feinstrukturen in der spektralen Energieverteilung von Blasaren erklären können. Es reicht nicht aus, den Strahlungstransport auf reine exponentielle Absorption eines Injektionsterms zu beschränken. Paarbildung und inverse Compton-Streuung im optisch dicken Bereich und über alle Generationen von Photonen und Elektronen hinweg prägen die entstehenden Spektren entscheidend. Da künftige, verbesserte Detektoren detailliertere Spektren liefern werden, darf man weitere Berichte über schmale spektrale Merkmale erwarten. Es erscheint daher empfehlenswert, die Kaskadierung in konventionelle Modelle der Strahlungsproduktion mit einzubeziehen oder das in dieser Arbeit entwickelte Modell um Synchrotronstrahlung zu erweitern. KW - Active galactic nucleus KW - Blazar KW - BL Lacertae objects KW - Compton-Streuung KW - Paarbildung KW - inverse-Compton pair cascades KW - radiative processes KW - Markarian 501 KW - 3C 279 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290076 ER - TY - THES A1 - Hupp, Markus T1 - Simulating Star Formation and Turbulence in Models of Isolated Disk Galaxies T1 - Simulation von Sternentstehung und Turbulenz in Modellen von isolierten Scheibengalaxien N2 - We model Milky Way like isolated disk galaxies in high resolution three-dimensional hydrodynamical simulations with the adaptive mesh refinement code Enzo. The model galaxies include a dark matter halo and a disk of gas and stars. We use a simple implementation of sink particles to measure and follow collapsing gas, and simulate star formation as well as stellar feedback in some cases. We investigate two largely different realizations of star formation. Firstly, we follow the classical approach to transform cold, dense gas into stars with an fixed efficiency. These kind of simulations are known to suffer from an overestimation of star formation and we observe this behavior as well. Secondly, we use our newly developed FEARLESS approach to combine hydrodynamical simulations with a semi-analytic modeling of unresolved turbulence and use this technique to dynamically determine the star formation rate. The subgrid-scale turbulence regulated star formation simulations point towards largely smaller star formation efficiencies and henceforth more realistic overall star formation rates. More work is necessary to extend this method to account for the observed highly supersonic turbulence in molecular clouds and ultimately use the turbulence regulated algorithm to simulate observed star formation relations. N2 - In dieser Arbeit beschäftigen wir uns mit der Modellierung und Durchführung von hoch aufgelösten dreidimensionalen Simulationen von isolierten Scheibengalaxien, vergleichbar unserer Milchstraße. Wir verwenden dazu den Simulations-Code Enzo, der die Methode der adaptiven Gitterverfeinerung benutzt um die örtliche und zeitliche Auflösung der Simulationen anzupassen. Unsere Galaxienmodelle beinhalten einen Dunkle Materie Halo sowie eine galaktische Scheibe aus Gas und Sternen. Regionen besonders hoher Gasdichte werden durch Teilchen ersetzt, die fortan die Eigenschaften des Gases beziehungsweise der darin entstehenden Sterne beschreiben. Wir untersuchen zwei grundlegend verschiedene Darstellungen von Sternentstehung. Die erste Methode beschreibt die Umwandlung dichten Gases einer Molekülwolke in Sterne mit konstanter Effektivität und führt wie in früheren Simulationen zu einer Überschätzung der Sternentstehungsrate. Die zweite Methode nutzt das von unserer Gruppe neu entwickelte FEARLESS Konzept, um hydrodynamische Simulationen mit analytischen-empirischen Modellen zu verbinden und bessere Aussagen über die in einer Simulation nicht explizit aufgelösten Bereiche treffen zu können. Besonderes Augenmerk gilt in dieser Arbeit dabei der in Molekülwolken beobachteten Turbulenz. Durch die Einbeziehung dieser nicht aufgelösten Effekte sind wir in der Lage eine realistischere Aussage über die Sternentstehungsrate zu treffen. Eine zukünftige Weiterentwicklung dieser von uns entwickelten und umgesetzten Technik kann in Zukunft dafür verwendet werden, die Qualität des durch Turbulenz regulierten Sternentstehungsmodells noch weiter zu steigern. KW - Astrophysik KW - Hydrodynamik KW - Turbulenz KW - Sternentstehung KW - Computersimulation KW - Interstellare Materie KW - Subgrid-Skalen Modell KW - Galaxienentstehung KW - Galaxienentwicklung KW - astrophysics KW - hydrodynamics KW - turbulence KW - star formation KW - subgrid-scale model Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-34510 ER - TY - INPR A1 - Dandekar, Thomas T1 - Qubit transition into defined Bits: A fresh perspective for cosmology and unifying theories N2 - In this view point we do not change cosmology after the hot fireball starts (hence agrees well with observation), but the changed start suggested and resulting later implications lead to an even better fit with current observations (voids, supercluster and galaxy formation; matter and no antimatter) than the standard model with big bang and inflation: In an eternal ocean of qubits, a cluster of qubits crystallizes to defined bits. The universe does not jump into existence (“big bang”) but rather you have an eternal ocean of qubits in free super-position of all their quantum states (of any dimension, force field and particle type) as permanent basis. The undefined, boiling vacuum is the real “outside”, once you leave our everyday universe. A set of n Qubits in the ocean are “liquid”, in very undefined state, they have all their m possibilities for quantum states in free superposition. However, under certain conditions the qubits interact, become defined, and freeze out, crystals form and give rise to a defined, real world with all possible time series and world lines. GR holds only within the crystal. In our universe all n**m quantum possibilities are nicely separated and crystallized out to defined bit states: A toy example with 6 qubits each having 2 states illustrates, this is completely sufficient to encode space using 3 bits for x,y and z, 1 bit for particle type and 2 bits for its state. Just by crystallization, space, particles and their properties emerge from the ocean of qubits, and following the arrow of entropy, time emerges, following an arrow of time and expansion from one corner of the toy universe to everywhere else. This perspective provides time as emergent feature considering entropy: crystallization of each world line leads to defined world lines over their whole existence, while entropy ensures direction of time and higher representation of high entropy states considering the whole crystal and all slices of world lines. The crystal perspective is also economic compared to the Everett-type multiverse, each qubit has its m quantum states and n qubits interacting forming a crystal and hence turning into defined bit states has only n**m states and not more states. There is no Everett-type world splitting with every decision but rather individual world trajectories reside in individual world layers of the crystal. Finally, bit-separated crystals come and go in the qubit ocean, selecting for the ability to lay seeds for new crystals. This self-organizing reproduction selects over generations also for life-friendliness. Mathematical treatment introduces quantum action theory as a framework for a general lattice field theory extending quantum chromo dynamics where scalar fields for color interaction and gravity have to be derived from the permeating qubit-interaction field. Vacuum energy should get appropriately low by the binding properties of the qubit crystal. Connections to loop quantum gravity, string theory and emergent gravity are discussed. Standard physics (quantum computing; crystallization, solid state physics) allow validation tests of this perspective and will extend current results. KW - qubit KW - cosmology KW - phase transition KW - unified theories KW - crystallization KW - emergent gravity Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-266418 ER - TY - INPR A1 - Dandekar, Thomas T1 - Our universe may have started by Qubit decoherence N2 - Our universe may have started by Qubit decoherence: In quantum computers, qubits have all their states undefined during calculation and become defined as output (“decoherence”). We study the transition from an uncontrolled, chaotic quantum vacuum (“before”) to a clearly interacting “real world”. In such a cosmology, the Big Bang singularity is replaced by a condensation event of interacting strings. This triggers a crystallization process. This avoids inflation, not fitting current observations: increasing long-range interactions limit growth and crystal symmetries ensure the same laws of nature and basic symmetries over the whole crystal. Tiny mis-arrangements provide nuclei of superclusters and galaxies and crystal structure allows arrangement of dark (halo regions) and normal matter (galaxy nuclei) for galaxy formation. Crystals come and go: an evolutionary cosmology is explored: entropic forces from the quantum soup “outside” of the crystal try to dissolve it. This corresponds to dark energy and leads to a “big rip” in 70 Gigayears. Selection for best growth and condensation events over generations of crystals favors multiple self-organizing processes within the crystal including life or even conscious observers in our universe. Philosophically this theory shows harmony with nature and replaces absurd perspectives of current cosmology. Independent of cosmology, we suggest that a “real world” (so our everyday macroscopic world) happens only inside a crystal. “Outside” there is wild quantum foam and superposition of all possibilities. In our crystallized world the vacuum no longer boils but is cooled down by the crystallization event, space-time exists and general relativity holds. Vacuum energy becomes 10**20 smaller, exactly as observed in our everyday world. We live in a “solid” state, within a crystal, the n quanta which build our world have all their different m states nicely separated. There are only nm states available for this local “multiverse”. The arrow of entropy for each edge of the crystal forms one fate, one world-line or clear development of our world, while layers of the crystal are different system states. Mathematical leads from loop quantum gravity (LQG) point to required interactions and potentials. Interaction potentials for strings or loop quanta of any dimension allow a solid, decoherent state of quanta challenging to calculate. However, if we introduce here the heuristic that any type of physical interaction of strings corresponds just to a type of calculation, there is already since 1898 the Hurwitz theorem showing that then only 1D, 2D, 4D and 8D (octonions) allow complex or hypercomplex number calculations. No other hypercomplex numbers and hence dimensions or symmetries are possible to allow calculations without yielding divisions by zero. However, the richest solution allowed by the Hurwitz theorem, octonions, is actually the observed symmetry of our universe, E8. Standard physics such as condensation, crystallization and magnetization but also solid-state physics and quantum computing allow us to show an initial mathematical treatment of our new theory by LQG to describe the cosmological state transformations by equations, and, most importantly, point out routes to parametrization of free parameters looking at testable phenomena, experiments and formulas that describe processes of crystallization, protein folding, magnetization, solid-state physics and quantum computing. This is presented here for LQG, for string theory it would be more elegant but was too demanding to be shown here. Note: While my previous Opus server preprint “A new cosmology of a crystallization process (decoherence) from the surrounding quantum soup provides heuristics to unify general relativity and quantum physics by solid state physics” (https://doi.org/10.25972/OPUS-23076) deals with the same topics and basic formulas, this new version is improved: clearer in title, better introduction, more stringent in its mathematics and improved discussion of the implications including quantum computing, hints for parametrization and connections to LQG and other current cosmological efforts. This 5th of June 2021 version is again an OPUS preprint, but this will next be edited for Archives https://arxiv.org. KW - cosmology KW - quantum computing KW - loop quantum gravity KW - qubit KW - decoherence KW - crystallization Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239181 ER - TY - JOUR A1 - Wang, Xiaoliang A1 - Liu, Xuan A1 - Xiao, Yun A1 - Mao, Yue A1 - Wang, Nan A1 - Wang, Wei A1 - Wu, Shufan A1 - Song, Xiaoyong A1 - Wang, Dengfeng A1 - Zhong, Xingwang A1 - Zhu, Zhu A1 - Schilling, Klaus A1 - Damaren, Christopher T1 - On-orbit verification of RL-based APC calibrations for micrometre level microwave ranging system JF - Mathematics N2 - Micrometre level ranging accuracy between satellites on-orbit relies on the high-precision calibration of the antenna phase center (APC), which is accomplished through properly designed calibration maneuvers batch estimation algorithms currently. However, the unmodeled perturbations of the space dynamic and sensor-induced uncertainty complicated the situation in reality; ranging accuracy especially deteriorated outside the antenna main-lobe when maneuvers performed. This paper proposes an on-orbit APC calibration method that uses a reinforcement learning (RL) process, aiming to provide the high accuracy ranging datum for onboard instruments with micrometre level. The RL process used here is an improved Temporal Difference advantage actor critic algorithm (TDAAC), which mainly focuses on two neural networks (NN) for critic and actor function. The output of the TDAAC algorithm will autonomously balance the APC calibration maneuvers amplitude and APC-observed sensitivity with an object of maximal APC estimation accuracy. The RL-based APC calibration method proposed here is fully tested in software and on-ground experiments, with an APC calibration accuracy of less than 2 mrad, and the on-orbit maneuver data from 11–12 April 2022, which achieved 1–1.5 mrad calibration accuracy after RL training. The proposed RL-based APC algorithm may extend to prove mass calibration scenes with actions feedback to attitude determination and control system (ADCS), showing flexibility of spacecraft payload applications in the future. KW - reinforcement learning KW - antenna phase center calibration KW - K band ranging (KBR) KW - micrometre level microwave ranging KW - MSC: 49M37 KW - MSC: 65K05 KW - MSC: 90C30 KW - MSC: 90C40 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-303970 SN - 2227-7390 VL - 11 IS - 4 ER - TY - THES A1 - Zenk, Markus T1 - On Numerical Methods for Astrophysical Applications T1 - Über numerische Methoden für astrophysikalische Anwendungen N2 - Diese Arbeit befasst sich mit der Approximation der Lösungen von Modellen zur Beschreibung des Strömungsverhaltens in Atmosphären. Im Speziellen umfassen die hier behandelten Modelle die kompressiblen Euler Gleichungen der Gasdynamik mit einem Quellterm bezüglich der Gravitation und die Flachwassergleichungen mit einem nicht konstanten Bodenprofil. Verschiedene Methoden wurden bereits entwickelt um die Lösungen dieser Gleichungen zu approximieren. Im Speziellen geht diese Arbeit auf die Approximation von Lösungen nahe des Gleichgewichts und, im Falle der Euler Gleichungen, bei kleinen Mach Zahlen ein. Die meisten numerischen Methoden haben die Eigenschaft, dass die Qualität der Approximation sich mit der Anzahl der Freiheitsgrade verbessert. In der Praxis werden deswegen diese numerischen Methoden auf großen Computern implementiert um eine möglichst hohe Approximationsgüte zu erreichen. Jedoch sind auch manchmal diese großen Maschinen nicht ausreichend, um die gewünschte Qualität zu erreichen. Das Hauptaugenmerk dieser Arbeit ist darauf gerichtet, die Qualität der Approximation bei gleicher Anzahl von Freiheitsgrade zu verbessern. Diese Arbeit ist im Zusammenhang einer Kollaboration zwischen Prof. Klingenberg des Mathemaitschen Instituts in Würzburg und Prof. Röpke des Astrophysikalischen Instituts in Würzburg entstanden. Das Ziel dieser Kollaboration ist es, Methoden zur Berechnung von stellarer Atmosphären zu entwickeln. In dieser Arbeit werden vor allem zwei Problemstellungen behandelt. Die erste Problemstellung bezieht sich auf die akkurate Approximation des Quellterms, was zu den so genannten well-balanced Schemata führt. Diese erlauben genaue Approximationen von Lösungen nahe des Gleichgewichts. Die zweite Problemstellung bezieht sich auf die Approximation von Strömungen bei kleinen Mach Zahlen. Es ist bekannt, dass Lösungen der kompressiblen Euler Gleichungen zu Lösungen der inkompressiblen Euler Gleichungen konvergieren, wenn die Mach Zahl gegen null geht. Klassische numerische Schemata zeigen ein stark diffusives Verhalten bei kleinen Mach Zahlen. Das hier entwickelte Schema fällt in die Kategorie der asymptotic preserving Schematas, d.h. das numerische Schema ist auf einem diskrete Level kompatibel mit dem auf dem Kontinuum gezeigten verhalten. Zusätzlich wird gezeigt, dass die Diffusion des hier entwickelten Schemas unabhängig von der Mach Zahl ist. In Kapitel 3 wird ein HLL approximativer Riemann Löser für die Approximation der Lösungen der Flachwassergleichungen mit einem nicht konstanten Bodenprofil angewendet und ein well-balanced Schema entwickelt. Die meisten well-balanced Schemata für die Flachwassergleichungen behandeln nur den Fall eines Fluids im Ruhezustand, die so genannten Lake at Rest Lösungen. Hier wird ein Schema entwickelt, welches sich mit allen Gleichgewichten befasst. Zudem wird eine zweiter Ordnung Methode entwickelt, welche im Gegensatz zu anderen in der Literatur nicht auf einem iterativen Verfahren basiert. Numerische Experimente werden durchgeführt um die Vorteile des neuen Verfahrens zu zeigen. In Kapitel 4 wird ein Suliciu Relaxations Löser angepasst um die hydrostatischen Gleichgewichte der Euler Gleichungen mit einem Gravitationspotential aufzulösen. Die Gleichungen der hydrostatischen Gleichgewichte sind unterbestimmt und lassen deshalb keine Eindeutigen Lösungen zu. Es wird jedoch gezeigt, dass das neue Schema für eine große Klasse dieser Lösungen die well-balanced Eigenschaft besitzt. Für bestimmte Klassen werden Quadraturformeln zur Approximation des Quellterms entwickelt. Es wird auch gezeigt, dass das Schema robust, d.h. es erhält die Positivität der Masse und Energie, und stabil bezüglich der Entropieungleichung ist. Die numerischen Experimente konzentrieren sich vor allem auf den Einfluss der Quadraturformeln auf die well-balanced Eigenschaften. In Kapitel 5 wird ein Suliciu Relaxations Schema angepasst für Simulationen im Bereich kleiner Mach Zahlen. Es wird gezeigt, dass das neue Schema asymptotic preserving und die Diffusion kontrolliert ist. Zudem wird gezeigt, dass das Schema für bestimmte Parameter robust ist. Eine Stabilität wird aus einer Chapman-Enskog Analyse abgeleitet. Resultate numerische Experimente werden gezeigt um die Vorteile des neuen Verfahrens zu zeigen. In Kapitel 6 werden die Schemata aus den Kapiteln 4 und 5 kombiniert um das Verhalten des numerischen Schemas bei Flüssen mit kleiner Mach Zahl in durch die Gravitation geschichteten Atmosphären zu untersuchen. Es wird gezeigt, dass das Schema well-balanced ist. Die Robustheit und die Stabilität werden analog zu Kapitel 5 behandelt. Auch hier werden numerische Tests durchgeführt. Es zeigt sich, dass das neu entwickelte Schema in der Lage ist, die Dynamiken besser Aufzulösen als vor der Anpassung. Das Kapitel 7 beschäftigt sich mit der Entwicklung eines multidimensionalen Schemas basierend auf der Suliciu Relaxation. Jedoch ist die Arbeit an diesem Ansatz noch nicht beendet und numerische Resultate können nicht präsentiert werden. Es wird aufgezeigt, wo sich die Schwächen dieses Ansatzes befinden und weiterer Entwicklungsbedarf besteht. N2 - This work is concerned with the numerical approximation of solutions to models that are used to describe atmospheric or oceanographic flows. In particular, this work concen- trates on the approximation of the Shallow Water equations with bottom topography and the compressible Euler equations with a gravitational potential. Numerous methods have been developed to approximate solutions of these models. Of specific interest here are the approximations of near equilibrium solutions and, in the case of the Euler equations, the low Mach number flow regime. It is inherent in most of the numerical methods that the quality of the approximation increases with the number of degrees of freedom that are used. Therefore, these schemes are often run in parallel on big computers to achieve the best pos- sible approximation. However, even on those big machines, the desired accuracy can not be achieved by the given maximal number of degrees of freedom that these machines allow. The main focus in this work therefore lies in the development of numerical schemes that give better resolution of the resulting dynamics on the same number of degrees of freedom, compared to classical schemes. This work is the result of a cooperation of Prof. Klingenberg of the Institute of Mathe- matics in Wu¨rzburg and Prof. R¨opke of the Astrophysical Institute in Wu¨rzburg. The aim of this collaboration is the development of methods to compute stellar atmospheres. Two main challenges are tackled in this work. First, the accurate treatment of source terms in the numerical scheme. This leads to the so called well-balanced schemes. They allow for an accurate approximation of near equilibrium dynamics. The second challenge is the approx- imation of flows in the low Mach number regime. It is known that the compressible Euler equations tend towards the incompressible Euler equations when the Mach number tends to zero. Classical schemes often show excessive diffusion in that flow regime. The here devel- oped scheme falls into the category of an asymptotic preserving scheme, i.e. the numerical scheme reflects the behavior that is computed on the continuous equations. Moreover, it is shown that the diffusion of the numerical scheme is independent of the Mach number. In chapter 3, an HLL-type approximate Riemann solver is adapted for simulations of the Shallow Water equations with bottom topography to develop a well-balanced scheme. In the literature, most schemes only tackle the equilibria when the fluid is at rest, the so called Lake at rest solutions. Here a scheme is developed to accurately capture all the equilibria of the Shallow Water equations. Moreover, in contrast to other works, a second order extension is proposed, that does not rely on an iterative scheme inside the reconstruction procedure, leading to a more efficient scheme. In chapter 4, a Suliciu relaxation scheme is adapted for the resolution of hydrostatic equilibria of the Euler equations with a gravitational potential. The hydrostatic relations are underdetermined and therefore the solutions to that equations are not unique. However, the scheme is shown to be well-balanced for a wide class of hydrostatic equilibria. For specific classes, some quadrature rules are computed to ensure the exact well-balanced property. Moreover, the scheme is shown to be robust, i.e. it preserves the positivity of mass and energy, and stable with respect to the entropy. Numerical results are presented in order to investigate the impact of the different quadrature rules on the well-balanced property. In chapter 5, a Suliciu relaxation scheme is adapted for the simulations of low Mach number flows. The scheme is shown to be asymptotic preserving and not suffering from excessive diffusion in the low Mach number regime. Moreover, it is shown to be robust under certain parameter combinations and to be stable from an Chapman-Enskog analysis. Numerical results are presented in order to show the advantages of the new approach. In chapter 6, the schemes developed in the chapters 4 and 5 are combined in order to investigate the performance of the numerical scheme in the low Mach number regime in a gravitational stratified atmosphere. The scheme is shown the be well-balanced, robust and stable with respect to a Chapman-Enskog analysis. Numerical tests are presented to show the advantage of the newly proposed method over the classical scheme. In chapter 7, some remarks on an alternative way to tackle multidimensional simulations are presented. However no numerical simulations are performed and it is shown why further research on the suggested approach is necessary. KW - Strömung KW - Numerical Methods KW - Hyperbolic Partial Differential Equations KW - Well-Balanced KW - Asymptotic Preserving KW - Atmosphäre KW - Mathematisches Modell KW - PDE Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162669 ER - TY - THES A1 - Dorner, Daniela T1 - Observations of PG 1553+113 with the MAGIC telescope T1 - Beobachtungen von PG 1553+113 mit dem MAGIC Teleskop N2 - Blazars are among the most luminous sources in the universe. Their extreme short-time variability indicates emission processes powered by a supermassive black hole. With the current generation of Imaging Air Cherenkov Telescopes, these sources are explored at very high energies. Lowering the threshold below 100 GeV and improving the sensitivity of the telescopes, more and more blazars are discovered in this energy regime. For the MAGIC telescope, a low energy analysis has been developed allowing to reach energies of 50 GeV for the first time. The method is presented in this thesis at the example of PG 1553+113 measuring a spectrum between 50 GeV and 900 GeV. In the energy regime observed by MAGIC, strong attenuation of the gamma-rays is expected from pair production due to interactions of gamma-rays with low-energy photons from the extragalactic background light. For PG 1553+113, this provides the possibility to constrain the redshift of the source, which is still unknown. Well studied from radio to x-ray energies, PG 1553+113 was discovered in 2005 in the very high energy regime. In total, it was observed with the MAGIC telescope for 80~hours between April 2005 and April 2007. From more than three years of data taking, the MAGIC telescope provides huge amounts of data and a large number of files from various sources. To handle this data volume and to provide monitoring of the data quality, an automatic procedure is essential. Therefore, a concept for automatic data processing and management has been developed. Thanks to its flexibility, the concept is easily applicable to future projects. The implementation of an automatic analysis is running stable since three years in the data center in Würzburg and provides consistent results of all MAGIC data, i.e. equal processing ensures comparability. In addition, this database controlled system allows for easy tests of new analysis methods and re-processing of all data with a new software version at the push of a button. At any stage, not only the availability of the data and its processing status is known, but also a large set of quality parameters and results can be queried from the database, facilitating quality checks, data selection and continuous monitoring of the telescope performance. By using the automatic analysis, the whole data sample can be analyzed in a reasonable amount of time, and the analyzers can concentrate on interpreting the results instead. For PG 1553+113, the tools and results of the automatic analysis were used. Compared to the previously published results, the software includes improvements as absolute pointing correction, absolute light calibration and improved quality and background-suppression cuts. In addition, newly developed analysis methods taking into account timing information were used. Based on the automatically produced results, the presented analysis was enhanced using a special low energy analysis. Part of the data were affected by absorption due to the Saharan Air Layer, i.e. sanddust in the atmosphere. Therefore, a new method has been developed, correcting for the effect of this meteorological phenomenon. Applying the method, the affected data could be corrected for apparent flux variations and effects of absorption on the spectrum, allowing to use the result for further studies. This is especially interesting, as these data were taken during a multi-wavelength campaign. For the whole data sample of 54 hours after quality checks, a signal from the position of PG 1553+113 was found with a significance of 15 standard deviations. Fitting a power law to the combined spectrum between 75 GeV and 900 GeV, yields a spectral slope of 4.1 +/- 0.2. Due to the low energy analysis, the spectrum could be extended to below 50 GeV. Fitting down to 48 GeV, the flux remains the same, but the slope changes to 3.7 +/- 0.1. The determined daily light curve shows that the integral flux above 150 GeV is consistent with a constant flux. Also for the spectral shape no significant variability was found in three years of observations. In July 2006, a multi-wavelength campaign was performed. Simultaneous data from the x-ray satellite Suzaku, the optical telescope KVA and the two Cherenkov experiments MAGIC and H.E.S.S. are available. Suzaku measured for the first time a spectrum up to 30 keV. The source was found to be at an intermediate flux level compared to previous x-ray measurements, and no short time variability was found in the continuous data sample of 41.1 ksec. Also in the gamma regime, no variability was found during the campaign. Assuming a maximum slope of 1.5 for the intrinsic spectrum, an upper limit of z < 0.74 was determined by deabsorbing the measured spectrum for the attenuation of photons by the extragalactic background light. For further studies, a redshift of z = 0.3 was assumed. Collecting various data from radio, infrared, optical, ultraviolet, x-ray and gama-ray energies, a spectral energy distribution was determined, including the simultaneous data of the multi-wavelength campaign. Fitting the simultaneous data with different synchrotron-self-compton models shows that the observed spectral shape can be explained with synchrotron-self-compton processes. The best result was obtained with a model assuming a log-parabolic electron distribution. N2 - Blazare gehören zu den leuchtstärksten Quellen im Universum. Ihre extreme Kurzzeitvariabilität deutet auf Strahlungsprozesse hin, die von einem supermassereichem schwarzen Loch mit Energie versorgt werden. Mit der aktuellen Generation von abbildenden Luft-Cherenkov Teleskopen werden diese Quellen bei sehr hohen Energien erforscht. Durch das Absenken der Schwellenenergie auf unter 100 GeV und aufgrund verbesserter Sensitivitäten werden immer mehr Blazare in diesem Energiebereich entdeckt. Für das MAGIC Teleskop wurde eine Analysemethode entwickelt, die es erlaubt zum ersten mal zu niedrigen Energien im Bereich von 50 GeV vorzudringen. Mit dieser Methode wurde am Beispiel von PG 1553+113 ein Spektrum zwischen 50 GeV und 900 GeV bestimmt. Im dem von MAGIC beobachteten Energiebereich wird eine starke Abschwächung des Gammalichts aufgrund von Paarproduktion in Wechselwirkungen mit niederenergetischen Photonen des extragalaktischen Hintergrundlichts erwartet. Für PG 1553+113 ergibt sich daraus eine Möglichkeit um die noch unbekannte Entfernung der Quelle einzuschränken. Während die Quelle PG 1553+113 im Radio- bis Röntgenbereich gut untersucht ist, wurde sie im Hochenergiebereich erst 2005 entdeckt. Zwischen April 2005 und April 2007 wurde sie mit dem MAGIC Teleskop insgesamt 80 Stunden lang beobachtet. Aus mehr als drei Jahren Datennahme liefert das MAGIC Telekop riesige Mengen an Daten und eine große Anzahl von Dateien. Um dieses Datenvolumen zu bewältigen und für die Überwachung der Datenqualität ist eine automatische Verarbeitung unverzichtbar. Darum wurde ein Konzept zur automatischen Datenverwaltung und -verarbeitung entwickelt. Aufgrund seiner Flexibilität kann dieses Konzept auch leicht auf zukünftige Projekte übertragen werden. Die Umsetzung für MAGIC läuft seit drei Jahren stabil im Datenzentrum in Würzburg und liefert konsistente Ergebnisse von allen Daten, d.h. die identische Verarbeitung sorgt für Vergleichbarkeit. Ausserdem ermöglicht das datenbankbasierte Konzept einfache Tests neuer Analysemethoden und die Neuanalyse aller Daten mit einer neuen Software auf Knopfdruck. Man kann nicht nur jederzeit die Verfügbarkeit und den Verarbeitungsstatus aller Daten aus der Datenbank abfragen, sondern auch Qualitätsparameter und Ergebnisse, was die Qualitätskontrolle und Auswahl von Daten sowie die Überwachung des Teleskopstatus erleichtert. Durch die Verwendung der automatischen Analyse kann die riesige Menge an Daten in einem vernünftigen Zeitrahmen analysiert werden und man kann sich stattdessen auf die Interpretation der Ergebnisse konzentrieren. Für PG 1553+113 wurden die Werkzeuge und Resultate der automatischen Analyse verwendet. Verglichen mit den zuvor veröffentlichten Ergebnissen wurde eine Software Version verwendet, die verschiedene Verbesserungen enthält, wie zum Beispiel eine absolute Pointing-Korrektur, eine absolute Lichtkalibration und verbesserte Schnitte zur Qualitätssicherung und Untergrundunterdrückung. Ausserdem wurde eine neu entwickelte Analysemethode, welche die Zeitinformation mit einzbezieht, benutzt. Basierend auf den Ergebnissen der automatischen Analyse wurde das Ergebnis mit einer speziell für niedrige Energien optimierten Analyse verbessert. Ein Teil der Daten wurde beinträchtigt durch Absorption aufgrund Sandstaub in der Atmosphäre, der sogenannten Calima. Eine neue Methode wurde entwickelt, um den Effekt dieses meteorologischen Phänomens zu korrigieren. Auf diese Weise konnten scheinbare Flussänderungen und Einflüsse auf das Spetrum ausgeglichen werden, wodurch die Daten für weiterführende Studien verwendet werden können. Dies ist hier von besonderer Bedeutung, da die betroffenen Daten simultan mit Daten aus anderen Wellenlängenbereichen genommen wurden. Für den kompletten Datensatz wurde ein Signal aus der Richtung von PG 1553+113 mit einer Signifikanz von 15 Standardabweichungen gemessen. Fittet man ein Potenzgesetz an das kombinierte Spektrum, so erhält man einen Spektralindex von 4.1 +/- 0.2. Mit Hilfe der Niederenergieanalyse konnte das Spektrum bis unter 50 GeV erweitert werden. Fittet man es bis 48 GeV, so bleibt die Flussnormierung gleich, aber der Index ändert sich auf 3.7 +/- 0.1. Die berechnete Lichtkurve auf Tagesbasis zeigt, dass der integrale Fluss oberhalb von 150 GeV mit konstanten Fluss konsistent ist. Auch für die Form des Spektrums wurde in den drei Jahren, in denen beobachtet wurde, keine Variabilität gefunden. Im Juli 2006 wurden simultane Beobachtungen des Röntgensatelliten Suzaku, des optischen Teleskops KVA und der Cherenkovexperimente MAGIC und H.E.S.S. koordiniert. Mit Suzaku wurde zum ersten Mal ein Röngtenspektrum bis 30 keV vermessen. Die Quelle befand sich, verglichen mit früheren Röngtenmessungen, in einem mittleren Flusszustand, und während der kontinuierlichen Datennahme von 41.1 ksec wurde keine Variabilität gemessen. Auch im Gammabereich wurden keinen Veränderungen während der Beobachtungen festgestellt. Nimmt man für das intrinsische Spektrum der Quelle einen maximalen Index von 1.5 an, so lässt sich für die Rotverschiebung eine obere Grenze von z < 0.74 bestimmen, indem man das gemessene Spektrum mit verschiedenen angenommenen Rotverschiebungen auf die Abschwächung durch das extragalaktische Hintergrundlicht korrigiert. Für weitere Studien wird eine Rotverschiebung von z = 0.3 angenommen. Aus einer Sammlung von Daten aus dem Radio-, Infrarot-, optischen, Ultraviolett-, Röntgen- und Gammabereich wurde eine spektrale Energieverteilung bestimmt, die auch die simultanen Daten aus der Multiwellenlängenkampagne enthält. Fittet man die simultanen Daten mit einem Synchrotron-Selbst-Compton Modell, so sieht man, dass die spektrale Form mit Synchrotron-Selbst-Compton Prozessen erklärt werden kann. Das beste Ergebnis konnte mit einem Modell erzielt werden, das eine Elektronenverteilung annimmt, die in doppelt logarithmischer Darstellung eine Parabelform hat. KW - Aktiver galaktischer Kern KW - MAGIC-Teleskop KW - Gammastrahlung KW - Blazar KW - BL-Lacertae-Objekt KW - PG 1553+113 KW - Gamma-Astronomie KW - PG 1553+113 KW - gamma astronomy KW - active galactic nucleus Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-28196 ER - TY - THES A1 - Meyer, Markus T1 - Observations of a systematically selected sample of high frequency peaked BL Lac objects with the MAGIC telescope T1 - Beobachtungen eines systematisch ausgewählten Samples von "high frequency peaked" BL Lac Objekten mit dem MAGIC Teleskop N2 - At the beginning of regular observations with the MAGIC telescope in December 2004, all but one extragalactic sources detected at very high energy (VHE) gamma-rays belonged to the class of high frequency peaked BL Lac (HBL) objects. This motivated a systematic scan of candidate sources to increase the number of known sources and to study systematically their spectral properties. As candidate sources for VHE emission, X-ray bright HBLs were selected from a compilation of active galactic nuclei. The MAGIC observations took place from December 2004 to March 2006. The declination of the objects was restricted to values between -1.2° and +58.8° corresponding to a maximum zenith distance lower than 30° at culmination. Since gamma-rays are absorbed by photo-pair production in low energy background radiation fields, the redshift of the investigated objects was limitetd to z < 0.3. Under the assumption that HBLs generally emit the same energy flux at 1keV as at 200GeV, only the brightest X-ray sources were observed, leading to a cut in the X-ray flux of F(1keV) > 2µJy}. Of the fourteen sources observed, four have been detected: 1ES 1218+304 (for the first time at very high energies), 1ES 2344+514 (strong detection in a state of low activity), Mrk 421 and Mrk 501. A hint of a signal on a 3-sigma-level from the direction of 1ES 1011+496 has been observed. In the meantime the object has been confirmed as a source of VHE gamma-rays by a second MAGIC observation campaign triggered by an optical outburst. For ten sources, upper limits on their integral fluxes above 200GeV have been calculated on a 99% confidence level. To cross calibrate the different data samples, collected during 14 months, bright muon ring images have been used, recorded as background events by the MAGIC telescope. Based on the development by Meyer (2003), the method has been improved and implemented into the automatic data analysis as a continuous monitor of the calibration and the point spread function of the optical system. While the ring images are generated by muons with small impact parameters, it could be shown that the image parameter distributions for muons with large impact parameters and gamma showers completely overlap, revealing these muons as the dominant background for gamma-ray observations below energies of 150GeV. The sample of HBLs (including all HBLs detected at VHE so far) has been investigated for correlations between broad-band spectral indices as determined from simultaneous optical, archival X-ray and radio luminosities, finding that the VHE emitting HBLs do not differ from the non-detected ones. In general the absorption corrected HBL gamma-ray luminosities at 200GeV are not higher than their X-ray luminosities at 1keV. Based on a complete X-ray BL Lac sample, the Hamburg/ROSAT X-ray BL Lac sample, the number of expected VHE sources has been estimated for the performed scan, finding a consistent number under the assumption of a 37% completeness of the investigated sample and a 1keV-to-200GeV luminosity ratio of 1.4. An upper limit on the omnidirectional flux at 200GeV has been calculated by interpolating the sum over the observed fluxes and upper limits. Within the uncertainties, the result is in agreement with the expectations derived from the X-ray luminosity function of BL Lacs. For 1ES 1218+304 and 1ES 2344+514 the lightcurves have been derived, showing evidence for flux variability on a time scale of 17 days and 24h, respectively. In the case of 1ES 1218+304 variability has been reported for the first time at VHEs. For both sources the energy spectra have been reconstructed and discussed in the context of their broad band spectral energy distribution (SED), using a single zone synchrotron self Compton model. The SEDs are well fitted by the simulation even though the very high peak frequencies at gamma-rays push the model to its limits. The parameters derived from the simulation are in good agreement with the parameters found for similar HBLs. N2 - Zu Beginn der regulären Beobachtungen des MAGIC-Teleskops im Dezember 2004 gehörten alle extragalaktischen Quellen, bis auf eine, von denen sehr hochenergetische (VHE von engl. very high energy) Gammastrahlung detektiert wurde, zur Klasse der sogenannten "high frequency peaked BL Lac"-Objekte (HBL). Dies motivierte eine systematische Durchmusterung von Quellkandidaten mit dem Ziel die Anzahl der bekannten Quellen zu erhöhen und ihre spektralen Eigenschaften systematisch zu untersuchen. Als Quellkandidaten für VHE-Emission wurden röntgen-helle HBLs aus einer Kompilation von aktiven galaktischen Kernen ausgewählt. Die MAGIC-Beobachtungen fanden von Dezember 2004 bis März 2006 statt. Die Deklination der Objekte war begrenzt auf Werte zwischen -1.2° und +58.8°, entsprechend einer Zenitdistanz von weniger als 30° an der Kulmination. Da Gammastrahlung durch Photo-Paar-Produktion in niederenergetischen Hintergrundstrahlungsfeldern absorbiert wird, wurde die Rotverschiebung der untersuchten Objekte auf z < 0.3 begrenzt. Unter der Annahme, dass HBLs generell den selben Energieflu{ss} bei 1keV wie bei 200GeV emittieren, wurden nur die hellsten Röntgenquellen beobachtet, was zu einem Schnitt im Röntgenfluß von F(1keV) > 2µJy führte. Von den vierzehn beobachteten Objekten konnten vier detektiert werden: 1ES 1218+304 (zum ersten Mal im VHE-Bereich), 1ES 2344+514 (klare Detektion in einem Zustand niedriger Aktivität), Mrk 421 und Mrk 501. Ein Hinweis auf ein Signal auf einem 3-sigma-Level wurde aus der Richtung von 1ES 1011+496 beobachtet. Inzwischen ist das Objekt als eine Quelle hochenergetischer Gammastrahlung in einer zweiten MAGIC-Beobachtungskampagne, die durch einen hohen optischen Flusszustand ausgelöst wurde, bestätigt worden. Für die übrigen zehn Quellen wurden Obergrenzen an den integralen Fluss oberhalb von 200GeV mit einer statistischen Sicherheit von 99% berechnet. Um eine Kreuzkalibrierung verschiedener Datensätze, genommen innerhalb von 14 Monaten, durchzuführen, wurden helle Bilder von Myonenringen verwendet, die als Hintergrundereignisse vom MAGIC Teleskop aufgenommen werden. Basierend auf der Entwicklung von Meyer (2003) wurde die Methode verbessert und als ein kontinuierlicher Monitor der Kalibrierung sowie der Punktbildfunktion des optischen Systems in die automatische Datenanalyse implementiert. Während die Ringbilder von Myonen mit kleinen Stoßparametern erzeugt werden, konnte gezeigt werden, dass die Verteilungen der Bildparameter von Myonen mit großen Stoßparametern und der von Gammaschauern sich vollständig überlappen, was diese Myonen zum dominierenden Hintergrund für die Beobachtung von Gammastrahlung unterhalb einer Enegie von 150GeV macht. Das HBL-Sample (inklusive aller HBLs, die bisher bei sehr hohen Energien detektiert wurden) wurde nach Korrelationen zwischen den Breitband-Spektralindices untersucht, die durch simultane optische sowie durch Röntgen- und Radio-Leuchtkräfte aus früheren Beobachtungen bestimmt wurden, mit dem Ergebnis, dass die VHE-emittierenden HBLs sich nicht von den nicht-detektierten unterscheiden. Generell sind die absorptionskorrigierten Gammaleuchtkräfte der HBLs bei 200GeV nicht höher als ihre Röntgenleuchtkräfte bei 1keV. Basierend auf einem vollständigen Röntgen-BL Lac-Sample, dem Hamburg-ROSAT-Röntgen-BL Lac-Sample, wurde die Anzahl der zu erwartenden VHE-Quellen für die durchgeführte Durchmusterung abgeschätzt, wobei eine konsistente Anzahl erreicht wird, unter der Annahme einer Vollständigkeit des untersuchten Samples von 37% sowie ein 1keV-zu-200GeV Leuchtkraftverhältnis von 1,4. Eine Obergrenze an den gesammten Fluss pro Raumwinkel bei 200GeV wurde durch eine Interpolation der Summe der beobachteten Flüsse und Fluss-Obergrenzen berechnet. Innerhalb der Ungenauigkeiten ist das Ergebnis in Übereinstimmung mit den Erwartungen die aus der Röntgen-Leuchtkraftfunktion der BL Lacs abgeleitet wurde. Für 1ES 1218+304 und 1ES 2344+514 wurden die Lichtkurven bestimmt, welche Anzeichen von Flussvariabilität auf einer Zeitskala von 17 Tagen beziehungsweise 24 Stunden aufweisen. Im Falle von 1ES 1218+304 wurde zum ersten Mal zeitliche Variabilität bei sehr hohen Energien gesehen. Für beide Quellen wurden die Energiespektren rekonstruiert und im Kontext ihrer spektralen Energieverteilung (SED) diskutiert, wobei ein ein-Zonen-Synchrotron-selbst-Compton-Modell verwendet wurde. Die SEDs wurden von der Simulation gut beschrieben, auch wenn die sehr hohen Energien der Maxima im Gammabereich das Modell an seine Grenzen bringen. Die von der Simulation abgeleiteten Parameter stimmen gut mit den Parametern, die für ähnliche HBLs gefunden wurden überein. KW - Aktiver galaktischer Kern KW - Gammastrahlung KW - active galactic nuclei KW - gamma radiation KW - cherenkov telescope Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-28115 ER - TY - THES A1 - Rügamer, Stefan T1 - Multi-Wavelength Observations of the high-peaked BL Lacertae objects 1ES 1011+496 and 1ES 2344+514 T1 - Multiwellenlängenbeobachtungen der hoch-peakenden BL Lacertae Objekte 1ES 1011+496 und 1ES 2344+514 N2 - BL Lacertae objects belong to the most luminous sources in the Universe. They represent a subclass of active galactic nuclei with a spectrum that is dominated by non-thermal emission, extending from radio wavelengths to tera electronvolt (TeV) energies. The emission is strongly variable on time scales of years down to minutes, and arises from relativistic jets pointing at small angles to the line of sight of the observer, which is the reason for naming them “blazars”. Blazars are the dominant extragalactic source class in the radio, microwave and gamma-ray regime, are prime candidates for the origin of the Cosmic Rays and excellent laboratories to study black hole and jet physics as well as relativistic effects. Despite more than 20 years of observational efforts, the physical mechanisms driving their emission are not yet fully understood. So far, studies of their broad-band continuum emission were mostly concentrated on bright, flaring states. However, for a better understanding of the central engine powering the jets, the bias from flux-limited observations of the past must be overcome and their long-term average continuum spectral energy distributions (SEDs) must be determined. This work presents the first simultaneous multi-wavelength campaigns from the radio to the TeV regime of two high-frequency peaked BL Lacertae objects known to emit at TeV energies. The first source, 1ES 1011+496, was observed between February and May 2008, the second one, 1ES 2344+514, between September 2008 and February 2009. The extensive observational campaigns were organised independently from an external trigger for the presence of a flaring state. Since the duty cycle of major flux outbursts is known to be rather low, the campaigns were expected to yield SEDs representative of the long-term average emission. Central for this thesis is the analysis of data obtained with the MAGIC Cherenkov telescope, measuring energy spectra and light curves from ~0.1 to ~10 TeV. For the remaining instruments, observation time was proposed and additional data was organised by collaboration with the instrument teams by the author of this work. Such data was obtained mostly in a fully reduced state. Individual light curves are investigated as well as combined in a search for inter-band correlations. The data of both sources reveal a notable lack of a correlation between the emission at radio and optical wavelengths, indicating that the radio and short-wavelength emission arise in different regions of the jet. Quasi-simultaneous SEDs of two different flux states are observationally determined and described by a one-zone as well as a self-consistent two-zone synchrotron self-Compton model. First approaches to model the SEDs by means of a Chi2 minimisation technique are briefly discussed. The SEDs and the resulting model parameters, characterising the physical conditions in the emission regions, are compared to archival data. Though the models can describe the data well, for 1ES 1011+496 the model parameters indicate that in addition to the synchrotron and inverse-Compton emission of relativistic electrons, emission due to accelerated protons seems to be required. The SEDs of 1ES 2344+514 reveal one of the lowest activity states ever detected from the source. Despite that, the model parameters are not indicative of a distinct quiescent state, which may be caused by the degeneracy of the different parameters in one-zone models. Moreover, indications accumulate that the radiation can not be attributed to a single emission region. The results disfavour some of the current blazar classification schemes and the so-called “blazar sequence”, emphasising the need for a more realistic explanation of the systematics of the blazar SEDs in terms of fundamental parameters. N2 - BL Lacertae-Objekte sind mit die leuchtkräftigsten Quellen im Universum. Sie stellen eine Unterklasse der Galaxien mit aktiven Kernen dar. Ihr Spektrum erstreckt sich von Radio-Wellenlängen bis in den Tera-Elektronvolt (TeV)-Bereich und ist dominiert durch nicht-thermische Strahlung. Ihre Emission is stark variabel, auf Zeitskalen von Jahren bis Minuten, und entsteht in relativistischen Jets, welche mit einem geringen Winkel zur Sichtlinie beobachtet werden. Daher werden diese Objekte “Blazare” genannt. Blazare sind die dominierende extragalaktische Quellpopulation im Radio-, Mikrowellen- und Gamma-Regime, gehören zu den favorisierten Quellen der Kosmischen Strahlung und bieten ausgezeichnete Bedingungen, um die Physik schwarzer Löcher, Jets sowie relativistische Effekte zu untersuchen. Trotz mehr als 20 Jahre andauernder Beobachtungen sind die physikalischen Mechanismen, welche für die Emission verantwortlich sind, noch nicht völlig verstanden. Bisher konzentrierten sich die Untersuchungen der Breitband-Kontinuumsstrahlung der Quellen hauptsächlich auf deren helle Ausbrüche. Um jedoch die zentrale Komponente der Jetenergetik zu verstehen, muss die in der Vergangenheit aufgebaute Tendenz zu flusslimitierten Beobachtungen überwunden werden, und die über lange Zeiträume gemittelten spektralen Energieverteilungen bestimmt werden. Die vorliegende Arbeit präsentiert die ersten simultanen Multiwellenlängenkampagnen vom Radio- bis in den TeV-Bereich für zwei BL Lacertaue Objekte, welche als TeV-Emitter bekannt sind. Die erste der beiden Quellen, 1ES 1011+496, wurde zwischen Februar und Mai 2008 beobachtet, 1ES 2344+514, die zweite Quelle, von September 2008 bis Februar 2009. Die umfangreichen Beobachtungskampagnen wurden unabhängig von externen Benachrichtigungen über hohe Flusszustände organisiert. Da starke Ausbrüche der Quellen relativ selten sind, wurde von den Kampagnen erwartet, dass eine spektrale Energieverteilung erbringen würden, welche repräsentativ für ein Langzeitmittel der Emission wäre. Die Analyse der Daten des MAGIC-Cherenkov-Teleskops, welches im Bereich von ~0.1 – 10 TeV beobachtet, nahm in dieser Arbeit ein zentrale Rolle ein. Daten der übrigen Instrumente wurde entweder über Anträge auf Beobachtungszeit oder Kooperationen mit den Instrumententeams vom Autor dieser Arbeit eingeworben. Entsprechende Daten wurden hauptsächlich in einer finalen Form übermittelt. In dieser Arbeit werden die individuellen Lichtkurven untersucht sowie für die Suche nach Korrelationen zwischen den verschiedenen Bändern verwendet. Für beide Quellen konnte keine Korrelation zwischen dem Radio- und optischen Bereich gefunden werden, was darauf hindeutet, dass deren Strahlung in unterschiedlichen Regionen des Jets produziert wird. Mit Hilfe der gewonnenen Daten wurden quasi-simultane spektrale Energieverteilungen in je zwei unterschiedlichen Flusszuständen ermittelt und mit Hilfe eines Ein-Zonen sowie eines selbst-konsistenten Zwei-Zonen-Synchrotron-Selbst-Compton-Modells beschrieben. Erste Versuche, die Energieverteilungen mit Hilfe einer Chi2-Minimisierungsstrategie zu untersuchen werden kurz erläutert. Die gewonnen Modellparameter, welche die physikalischen Eigenschaften der Emissionsregionen charakterisieren, werden mit Archivdaten verglichen. Obwohl die Modelle die spektralen Energieverteilungen gut beschreiben können, deuten die Modellparameter darauf hin, dass neben der Synchrotron- und invers-Compton-Strahlung relativistischer Elektronen auch Protonen zur Emission beitragen. Im Fall von 1ES 2344+514 konnte einer der niedrigsten jemals gemessenen Flusszustände beobachtet werden, welcher jedoch nicht durch Modellparameter gegeben ist, die auf einen Grundzustand der Quelle hindeuten würden. Eine Ursache hierfür könnte in der Entartung der Modellparameter der ein-Zonen-Modelle liegen. Zusätzlich zeichnet sich ab, dass mehrere Regionen für die beobachtete Emission verantwortlich sind. Die gewonnenen Ergebnisse sind schwer mit aktuellen Szenarien der Klassifikation der Blazare sowie der sogenannten “Blazar-Sequenz” vereinbar. Diese Erkenntnisse verdeutlichen, dass eine realistischere, auf grundlegenden Parametern basierende Interpretation der Systematiken der spektralen Energieverteilungen von Nöten ist. KW - Blazar KW - Gammaastronomie KW - BL-Lacertae-Objekt KW - MAGIC-Teleskop KW - 1ES 1011+496 KW - 1ES 2344+514 KW - Multiwellenlängen KW - BL Lacertae KW - HBL KW - 1ES 1011+496 KW - 1ES 2344+514 KW - multi-wavelength KW - BL Lacertae KW - HBL KW - Radioastronomie KW - Röntgenastronomie Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-77846 ER - TY - JOUR A1 - Renaut, Léo A1 - Frei, Heike A1 - Nüchter, Andreas T1 - Lidar pose tracking of a tumbling spacecraft using the smoothed normal distribution transform JF - Remote Sensing N2 - Lidar sensors enable precise pose estimation of an uncooperative spacecraft in close range. In this context, the iterative closest point (ICP) is usually employed as a tracking method. However, when the size of the point clouds increases, the required computation time of the ICP can become a limiting factor. The normal distribution transform (NDT) is an alternative algorithm which can be more efficient than the ICP, but suffers from robustness issues. In addition, lidar sensors are also subject to motion blur effects when tracking a spacecraft tumbling with a high angular velocity, leading to a loss of precision in the relative pose estimation. This work introduces a smoothed formulation of the NDT to improve the algorithm’s robustness while maintaining its efficiency. Additionally, two strategies are investigated to mitigate the effects of motion blur. The first consists in un-distorting the point cloud, while the second is a continuous-time formulation of the NDT. Hardware-in-the-loop tests at the European Proximity Operations Simulator demonstrate the capability of the proposed methods to precisely track an uncooperative spacecraft under realistic conditions within tens of milliseconds, even when the spacecraft tumbles with a significant angular rate. KW - pose tracking KW - uncooperative space rendezvous KW - lidar KW - normal distribution transform Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313738 SN - 2072-4292 VL - 15 IS - 9 ER - TY - JOUR A1 - Adrián-Martínez, S. A1 - Ageron, M. A1 - Aharonian, F. A1 - Aiello, S. A1 - Albert, A. A1 - Ameli, F. A1 - Annasontzis, E. A1 - Andre, M. A1 - Androulakis, G. A1 - Anghinolfi, M. A1 - Anton, G. A1 - Ardid, M. A1 - Avgitas, T. A1 - Barbarino, G. A1 - Baret, B. A1 - Barrios-Martí, J. A1 - Belhorma, B. A1 - Belias, A. A1 - Berbee, A. A1 - van den Berg, A. A1 - Bertin, V. A1 - Beurthey, S. A1 - van Beeveren, V. A1 - Beverini, N. A1 - Biagi, S. A1 - Biagioni, A. A1 - Billault, M. A1 - Bondì, M. A1 - Bormuth, R. A1 - Bouhadef, B. A1 - Bourlis, G. A1 - Bourret, S. A1 - Boutonnet, C. A1 - Bouwhuis, M. A1 - Bozza, C. A1 - Bruijn, R. A1 - Brunner, J. A1 - Buis, E. A1 - Busto, J. A1 - Cacopardo, G. A1 - Caillat, L. A1 - Calmai, M. A1 - Calvo, D. A1 - Capone, A. A1 - Caramete, L. A1 - Cecchini, S. A1 - Celli, S. A1 - Champion, C. A1 - Cherkaoui El Moursli, R. A1 - Cherubini, S. A1 - Chiarusi, T. A1 - Circella, M. A1 - Classen, L. A1 - Cocimano, R. A1 - Coelho, J. A. B. A1 - Coleiro, A. A1 - Colonges, S. A1 - Coniglione, R. A1 - Cordelli, M. A1 - Cosquer, A. A1 - Coyle, P. A1 - Creusot, A. A1 - Cuttone, G. A1 - D'Amico, A. A1 - De Bonis, G. A1 - De Rosa, G. A1 - De Sio, C. A1 - Di Capua, F. A1 - Di Palma, I. A1 - Díaz García, A. F. A1 - Distefano, C. A1 - Donzaud, C. A1 - Dornic, D. A1 - Dorosti-Hasankiadeh, Q. A1 - Drakopoulou, E. A1 - Drouhin, D. A1 - Drury, L. A1 - Durocher, M. A1 - Eberl, T. A1 - Eichie, S. A1 - van Eijk, D. A1 - El Bojaddaini, I. A1 - El Khayati, N. A1 - Elsaesser, D. A1 - Enzenhöfer, A. A1 - Fassi, F. A1 - Favali, P. A1 - Fermani, P. A1 - Ferrara, G. A1 - Filippidis, C. A1 - Frascadore, G. A1 - Fusco, L. A. A1 - Gal, T. A1 - Galatà, S. A1 - Garufi, F. A1 - Gay, P. A1 - Gebyehu, M. A1 - Giordano, V. A1 - Gizani, N. A1 - Gracia, R. A1 - Graf, K. A1 - Grégoire, T. A1 - Grella, G. A1 - Habel, R. A1 - Hallmann, S. A1 - van Haren, H. A1 - Harissopulos, S. A1 - Heid, T. A1 - Heijboer, A. A1 - Heine, E. A1 - Henry, S. A1 - Hernández-Rey, J. J. A1 - Hevinga, M. A1 - Hofestädt, J. A1 - Hugon, C. M. F. A1 - Illuminati, G. A1 - James, C. W. A1 - Jansweijer, P. A1 - Jongen, M. A1 - de Jong, M. A1 - Kadler, M. A1 - Kalekin, O. A1 - Kappes, A. A1 - Katz, U. F. A1 - Keller, P. A1 - Kieft, G. A1 - Kießling, D. A1 - Koffeman, E. N. A1 - Kooijman, P. A1 - Kouchner, A. A1 - Kulikovskiy, V. A1 - Lahmann, R. A1 - Lamare, P. A1 - Leisos, A. A1 - Leonora, E. A1 - Lindsey Clark, M. A1 - Liolios, A. A1 - Llorenz Alvarez, C. D. A1 - Lo Presti, D. A1 - Löhner, H. A1 - Lonardo, A. A1 - Lotze, M. A1 - Loucatos, S. A1 - Maccioni, E. A1 - Mannheim, K. A1 - Margiotta, A. A1 - Marinelli, A. A1 - Mariş, O. A1 - Markou, C. A1 - Martínez-Mora, J. A. A1 - Martini, A. A1 - Mele, R. A1 - Melis, K. W. A1 - Michael, T. A1 - Migliozzi, P. A1 - Migneco, E. A1 - Mijakowski, P. A1 - Miraglia, A. A1 - Mollo, C. M. A1 - Mongelli, M. A1 - Morganti, M. A1 - Moussa, A. A1 - Musico, P. A1 - Musumeci, M. A1 - Navas, S. A1 - Nicoleau, C. A. A1 - Olcina, I. A1 - Olivetto, C. A1 - Orlando, A. A1 - Papaikonomou, A. A1 - Papaleo, R. A1 - Păvălaş, G. E. A1 - Peek, H. A1 - Pellegrino, C. A1 - Perrina, C. A1 - Pfutzner, M. A1 - Piattelli, P. A1 - Pikounis, K. A1 - Poma, G. E. A1 - Popa, V. A1 - Pradier, T. A1 - Pratolongo, F. A1 - Pühlhofer, G. A1 - Pulvirenti, S. A1 - Quinn, L. A1 - Racca, C. A1 - Raffaelli, F. A1 - Randazzo, N. A1 - Rapidis, P. A1 - Razis, P. A1 - Real, D. A1 - Resvanis, L. A1 - Reubelt, J. A1 - Riccobene, G. A1 - Rossi, C. A1 - Rovelli, A. A1 - Saldaña, M. A1 - Salvadori, I. A1 - Samtleben, D. F. E. A1 - Sánchez García, A. A1 - Sánchez Losa, A. A1 - Sanguineti, M. A1 - Santangelo, A. A1 - Santonocito, D. A1 - Sapienza, P. A1 - Schimmel, F. A1 - Schmelling, J. A1 - Sciacca, V. A1 - Sedita, M. A1 - Seitz, T. A1 - Sgura, I. A1 - Simeone, F. A1 - Siotis, I. A1 - Sipala, V. A1 - Spisso, B. A1 - Spurio, M. A1 - Stavropoulos, G. A1 - Steijger, J. A1 - Stellacci, S. M. A1 - Stransky, D. A1 - Taiuti, M. A1 - Tayalati, Y. A1 - Tézier, D. A1 - Theraube, S. A1 - Thompson, L. A1 - Timmer, P. A1 - Tönnis, C. A1 - Trasatti, L. A1 - Trovato, A. A1 - Tsirigotis, A. A1 - Tzamarias, S. A1 - Tzamariudaki, E. A1 - Vallage, B. A1 - Van Elewyk, V. A1 - Vermeulen, J. A1 - Vicini, P. A1 - Viola, S. A1 - Vivolo, D. A1 - Volkert, M. A1 - Voulgaris, G. A1 - Wiggers, L. A1 - Wilms, J. A1 - de Wolf, E. A1 - Zachariadou, K. A1 - Zornoza, J. D. A1 - Zúñiga, J. T1 - Letter of intent for KM3NeT 2.0 JF - Journal of Physics G-Nuclear and Particle Physics N2 - The main objectives of the KM3NeT Collaboration are (i) the discovery and subsequent observation of high-energy neutrino sources in the Universe and (ii) the determination of the mass hierarchy of neutrinos. These objectives are strongly motivated by two recent important discoveries, namely: (1) the high-energy astrophysical neutrino signal reported by IceCube and (2) the sizable contribution of electron neutrinos to the third neutrino mass eigenstate as reported by Daya Bay, Reno and others. To meet these objectives, the KM3NeT Collaboration plans to build a new Research Infrastructure consisting of a network of deep-sea neutrino telescopes in the Mediterranean Sea. A phased and distributed implementation is pursued which maximises the access to regional funds, the availability of human resources and the synergistic opportunities for the Earth and sea sciences community. Three suitable deep-sea sites are selected, namely off-shore Toulon (France), Capo Passero (Sicily, Italy) and Pylos (Peloponnese, Greece). The infrastructure will consist of three so-called building blocks. A building block comprises 115 strings, each string comprises 18 optical modules and each optical module comprises 31 photo-multiplier tubes. Each building block thus constitutes a three-dimensional array of photo sensors that can be used to detect the Cherenkov light produced by relativistic particles emerging from neutrino interactions. Two building blocks will be sparsely configured to fully explore the IceCube signal with similar instrumented volume, different methodology, improved resolution and KW - neutrino astronomy KW - eutrino physics KW - deep sea neutrino telescope KW - neutrino mass hierarchy Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-188050 VL - 43 IS - 8 ER - TY - THES A1 - Ganse, Urs T1 - Kinetische Simulationen solarer Typ II Radiobursts T1 - Kinetic Simulations of Solar Type II Radio Bursts N2 - Die Emission solarer Typ II Radiobursts ist ein seit Jahrzehnten beobachtetes Phänomen der heliosphärischen Plasmaphysik. Diese Radiobursts, die im Zusammenhang mit der Propagation koronaler Schockfronten auftreten, zeigen ein charakteristisches, zweibandiges Emissionsspektrum. Mit expandierendem Schock driften sie zu niedrigeren Frequenzen. Analytische Theorien dieser Emission sagen nichtlineare Plasmawellenwechselwirkung als Ursache voraus, doch aufgrund des geringen Sonnenabstands der Emissionsregion ist die in-situ Datenlage durch Satellitenmessungen äusserst schlecht, so dass eine endgültige Verifikation der vorhergesagten Vorgänge bisher nicht möglich war. Mit Hilfe eines kinetischen Plasma-Simulationscodes nach dem Particle-in-Cell Prinzip wurde in dieser Dissertation die Plasmaumgebung in der Foreshock-Region einer koronalen Schockfront modelliert. Das Propagations- und Kopplungsverhalten elektrostatischer und elektromagnetischer Wellenmoden wurde untersucht. Die vollständige räumliche Information über die Wellenzusammensetzung in der Simulation erlaubt es, die Kinematik nichtlinearer Wellenkopplungen genauestens zu untersuchen. Es zeigte sich ein mit der analytischen Theorie der Drei-Wellen-Wechselwirkung konsistentes Bild der Erzeugung solarer Radiobursts: durch elektromagnetischen Zerfall elektrostatischer Moden kommt es zur Erzeugung fundamentaler, sowie durch Verschmelzung gegenpropagierender elektrostatischer Moden zur Anregung harmonischer Radioemission. Kopplungsstärken und Winkelabhängigkeit dieser Prozesse wurden untersucht. Mit dem somit zur Verfügung stehenden, numerischen Laborsystem wurde die Parameter-Abhängigkeit der Wellenkopplungen und entstehenden Radioemissionen bezüglich Stärke des Elektronenbeams und des solaren Abstandes untersucht. N2 - The emission of solar type II radiobursts is a phenomenon of heliospheric plasma physics which has been observed for several decades. These radio bursts, which appear in conjunction with propagating coronal shocks, show a characteristic two-banded emission spectrum, drifting towards lower frequencies as the shock expands. Analytic theories predict nonlinear plasma wave interaction as the cause of these emissions. However, due to its low solar distance, in-situ satellite measurements of the emission regions’ properties are extremely scarce. Hence, a conclusive verification of the predicted processes was hitherto not attainable. Using a kinetic plasma simulation code based on the particle-in-cell approach, the plasma environment in a coronal shock’s foreshock region was modelled in this thesis. The propagation and coupling behaviour of electrostatic and electromagnetic wavemodes was investigated. Complete spatial information of the wave composition as obtainable from the simulations allowed to finely analyze the kinematics of nonlinear wave interactions. The results showed excitation of solar radiobursts in agreement with analytics predictions of three wave interaction processes, based on the nonlinear processes: electromagnetic decay of electrostatic modes is responsible for the fundamental and coalcescense of counterpropagating electrostatic waves responsable for the harmonic radio emission. Coupling strengths and angular dependences of these processes were then studied. With the numerical laboratory system obtained through this modelling effort, the parameter dependence of wave copulings and resulting radio emissions were explored, based on variation of electron beam strength and solar distance of the emission region. KW - Heliosphäre KW - Burst KW - Mathematisches Modell KW - Heliosphere KW - Plasma Physics KW - Electromagnetic Waves KW - Electrostatic Waves KW - Nonlinear Interaction KW - Plasma KW - Elektromagnetische Welle KW - Elektrostatische Welle Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73676 ER - TY - JOUR A1 - Johnson, Michael D. A1 - Akiyama, Kazunori A1 - Blackburn, Lindy A1 - Bouman, Katherine L. A1 - Broderick, Avery E. A1 - Cardoso, Vitor A1 - Fender, Rob P. A1 - Fromm, Christian M. A1 - Galison, Peter A1 - Gómez, José L. A1 - Haggard, Daryl A1 - Lister, Matthew L. A1 - Lobanov, Andrei P. A1 - Markoff, Sera A1 - Narayan, Ramesh A1 - Natarajan, Priyamvada A1 - Nichols, Tiffany A1 - Pesce, Dominic W. A1 - Younsi, Ziri A1 - Chael, Andrew A1 - Chatterjee, Koushik A1 - Chaves, Ryan A1 - Doboszewski, Juliusz A1 - Dodson, Richard A1 - Doeleman, Sheperd S. A1 - Elder, Jamee A1 - Fitzpatrick, Garret A1 - Haworth, Kari A1 - Houston, Janice A1 - Issaoun, Sara A1 - Kovalev, Yuri Y. A1 - Levis, Aviad A1 - Lico, Rocco A1 - Marcoci, Alexandru A1 - Martens, Niels C. M. A1 - Nagar, Neil M. A1 - Oppenheimer, Aaron A1 - Palumbo, Daniel C. M. A1 - Ricarte, Angelo A1 - Rioja, María  J. A1 - Roelofs, Freek A1 - Thresher, Ann C. A1 - Tiede, Paul A1 - Weintroub, Jonathan A1 - Wielgus, Maciek T1 - Key science goals for the next-generation Event Horizon Telescope JF - Galaxies N2 - The Event Horizon Telescope (EHT) has led to the first images of a supermassive black hole, revealing the central compact objects in the elliptical galaxy M87 and the Milky Way. Proposed upgrades to this array through the next-generation EHT (ngEHT) program would sharply improve the angular resolution, dynamic range, and temporal coverage of the existing EHT observations. These improvements will uniquely enable a wealth of transformative new discoveries related to black hole science, extending from event-horizon-scale studies of strong gravity to studies of explosive transients to the cosmological growth and influence of supermassive black holes. Here, we present the key science goals for the ngEHT and their associated instrument requirements, both of which have been formulated through a multi-year international effort involving hundreds of scientists worldwide. KW - black holes KW - general relativity KW - interferometry KW - accretion KW - relativistic jets KW - very-long-baseline interferometry KW - EHT KW - ngEHT Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313525 SN - 2075-4434 VL - 11 IS - 3 ER -