TY - THES A1 - Brüne, Christoph T1 - HgTe based topological insulators T1 - HgTe basierte topologische Isolatoren N2 - Recently a new state of matter was discovered in which the bulk insulating state in a material is accompanied by conducting surface or edge states. This new state of matter can be distinguished from a conventional insulator phase by the topological properties of its band structure which led to the name "topological insulators". Experimentally, topological insulator states are mostly found in systems characterized by a band inversion compared to conventional systems. In most topological insulator systems, this is caused by a combination of energetically close bands and spin orbit coupling. Such properties are found in systems with heavy elements like Hg and Bi. And indeed, the first experimental discovery of a topological insulator succeeded in HgTe quantum wells and later also in BiSb bulk systems. Topological insulators are of large interest due to their unique properties: In 2-dimensional topological insulators one dimensional edge states form without the need of an external magnetic field (in contrast to the quantum Hall effect). These edge states feature a linear band dispersion, a so called Dirac dispersion. The quantum spin Hall states are helical edge states, which means they consist of counterpropagating oppositely spin polarized edge channels. They are therefore of great potential for spintronic applications as well as building blocks for new more exotic states like Majorana Fermions. 3-dimensional topological insulators feature 2-dimensional surface states with only one Dirac band (also called Dirac cone) on each surface and an interesting spin texture where spin and momentum are locked perpendicular to each other in the surface plane. This unique surface band structure is predicted to be able to host several exotic states like e.g. Majorana Fermions (in combination with superconductors) and magnetic monopole like excitations. This PhD thesis will summarize the discovery of topological insulators and highlights the developments on their experimental observations. The work focuses on HgTe which is up to now the only topological insulator material where the expected properties are unambiguously demonstrated in transport experiments. In HgTe, the topological insulator properties arise from the inversion of the Gamma_6 and Gamma_8 bands. The band inversion in HgTe is due to a combination of a high spin orbit splitting in Te and large energy corrections (due to the mass-velocity term) to the energy levels in Hg. Bulk HgTe, however, is a semimetal, which means for the conversion into a topological insulator a band gap has to be opened. In two dimensions (HgTe quantum well structures) this is achieved via quantum confinement, which opens a band gap between the quantum well subbands. In three dimensions, strain is used to lift the degeneracy of the semimetallic Gamma_8 bands opening up a band gap. The thesis is structured as follows: - The first chapter of this thesis will give a brief overview on discoveries in the field of topological insulators. It focuses on works relevant to experimental results presented in the following chapters. This includes a short outline of the early predictions and a summary of important results concerning 2-dimensional topological insulators while the final section discusses observations concerning 3-dimensional topological insulators. - The discovery of the quantum spin Hall effect in HgTe marked the first experimental observation of a topological insulator. Chapter 2 will focus on HgTe quantum wells and the quantum spin Hall effect. Above a critical thickness, HgTe quantum wells are predicted to host the quantum spin Hall state, the signature of a 2-dimensional topological insulator. HgTe quantum wells exhibiting low carrier concentrations and at the same time high carrier mobilities are required to be able to measure the quantum spin Hall effect. The growth of such high quality HgTe quantum wells was one of the major goals for this work. Continuous optimization of the substrate preparation and growth conditions resulted in controlled carrier densities down to a few 10^10 cm^-2. At the same time, carrier mobilities exceeding 1 x 10^6 cm^2/Vs have been achieved, which provides mean free paths of several micrometers in the material. Thus the first experimental evidence for the existence of the quantum spin Hall edge states succeeded in transport experiments on microstructures: When the Fermi energy was located in the bulk band gap a residual quantized resistance of 2e^2/h was found. Further experiments focused on investigating the nature of transport in this regime. By non-local measurements the edge state character could be established. The measured non-local resistances corresponded well with predictions from the Landauer-Büttiker theory applied to transport in helical edge channels. In a final set of experiments the spin polarization of the edge channels was investigated. Here, we could make use of the advantage that HgTe quantum well structures exhibit a large Rashba spin orbit splitting. In systems with a large Rashba spin orbit splitting a spin accumulation is expected to occur at the edge of the sample perpendicular to a current flow. This so-called spin Hall effect was then used as a spin injector and detector. Using split gate devices it was possible to bring spin Hall and quantum spin Hall state into direct contact, which enabled an all electrical detection of the spin polarization of the quantum spin Hall edge channels. - HgTe as a 3-dimensional topological insulator will be presented in chapter 3. Straining the HgTe layer enables the observation of topological insulator behavior. It was found that strain can be easily implemented during growth by using CdTe substrates. CdTe has a slightly larger lattice constant than HgTe and therefore leads to tensile strain in the HgTe layer as long as the growth is pseudomorphic. Magnetotransport studies showed the emergence of quantum Hall transport with characteristic signatures of a Dirac type bandstructure. Thus, this result marks the first observation of the quantum Hall effect in the surface states of a 3-dimensional topological insulator. Transport experiments on samples fitted with a top gate enabled the identification of contributions from individual surfaces. Furthermore, the surface state quantum Hall effect was found to be surprisingly stable, perturbations due to additional bulk transport could not be found, even at high carrier densities of the system. - Chapters 4 - 6 serve as in depth overviews of selected works: Chapter 4 presents a detailed overview on the all electrical detection of the spin Hall effect in HgTe quantum wells. The detection of the spin polarization of the quantum spin Hall effect is shown in chapter 5 and chapter 6 gives a detailed overview on the quantum Hall effect originating from the topological surface state in strained bulk HgTe. The investigations discussed in this thesis pioneered the experimental work on the transport properties of topological insulator systems. The understanding of the fundamental properties of topological insulators enables new experiments in which e.g. the inclusion of magnetic dopants or the interplay between topological insulator and superconductors can be investigated in detail. N2 - Vor kurzem wurde entdeckt, dass Festkörper einen bisher unbekannten Zustand einnehmen können in welchem das Innere des Körpers isolierend ist während Oberflächen bzw. Ränder leitend bleiben. Materialien, die diese Eigenschaften aufweisen, werden "topologische Isolatoren" genannt, da ihre besonderen Eigenschaften auf eine gegenüber von konventionellen Materialien veränderten Topologie zurückgeführt werden kann. Die große Mehrheit an Materialien, in denen topologische Isolatorzustände gefunden wurden, zeichnen sich durch eine veränderte Abfolge der Energiebänder, im Vergleich mit gewöhnlichen Isolatoren, aus. Diese veränderte Anordnung der Bänder resultiert in den meisten Fällen aus einem Zusammenwirken von energetisch nahe zusammenliegenden Bändern und Spin-Bahn Wechselwirkung. Aus diesem Grund wurden Topologische Isolatoren bisher vor allem in Materialien gefunden, die schwere Elementen wie Hg und Bi enthalten: Erstmals experimentell nachgewiesen wurde die Existenz von topologischen Isolatoren an HgTe Quantentrögen und später auch in BiSb Volumensystemen. Topologische Isolatoren sind aufgrund ihrer besonderen Eigenschaften von großem Interesse: 2-dimensionale topologische Isolatoren sind durch das Auftreten eindimensionaler Randzustände gekennzeichnet, ohne dass hierfür ein Magnetfeld nötig wäre (im Gegensatz zum Quanten-Hall-Effekt). Diese sogenannten helikalen Randzustände sind gegenläufige und entgegengesetzt spin-polarisierte Randzustände, wodurch sie besonders für spintronische Anwendungen interessant sind. Des Weiteren sind sie auch potenzielle Bausteine zur Verwirklichung weiterer exotischer Zustände wie zum Beispiel Majorana Fermionen. 3-dimensionale topologische Isolatoren zeichnen sich durch das Auftreten von 2-dimensionalen Oberflächenzuständen aus. Diese Oberflächenzustände haben eine Dirac-Bandstruktur mit einer besonderen Spin-Textur in der Spin und Impuls rechtwinklig zueinander stehen (beide in der Oberfächenebene). Diese besondere Bandstruktur sollte es ermöglichen in diesen Materialen exotische Zustände zu entdecken wie zum Beispiel Majorana Fermionen (im Zusammenspiel mit Supraleitern) oder Anregungen, die magnetischen Monopolen gleichen. Diese Doktorarbeit wird die Entdeckung topologischer Isolatoren sowie Entwicklungen die im Bereich der experimentellen Untersuchung stattfanden vorstellen. Im Besonderen wird sich diese Arbeit auf das Materialsystem HgTe konzentrieren, dem einzigen Materialsystem in dem es bisher gelungen ist topologische Isolatoreigenschaften eindeutig in Transportstudien nachzuweisen. Die topologischen Isolatoreigenschaften von HgTe entstehen durch die Inversion der Gamma_6 und Gamma_8 Bänder. Diese Inversion wird durch die starke Spin-Bahn-Wechselwirkung in Te und durch die großen relativistischen Korrekturen der Energiepositionen der Bänder in Hg erzeugt. Da HgTe im Volumenmaterial allerdings semimetallisch ist, muss zur Beobachtung von topologischen Isolatoreigenschaften eine Bandlücke geöffnet werden. Im 2-dimensionalen Zustand (HgTe Quantentröge) geschieht dies durch das quantenmechanische Confinement, wodurch eine Bandlücke zwischen den Subbändern des Quantentrogs geöffnet wird. In 3-dimensionalen topologischen Isolatoren kann eine Bandlücke durch das Verspannen der HgTe Schicht gebildet werden, da in diesem Fall die Entartung der Gamma_8 Bänder aufgehoben wird. Diese Doktorarbeit ist wie folgt gegliedert: - Im ersten Kapitel wird eine kurze Übersicht über Entdeckungen und Entwicklungen im Bereich topologischer Isolatoren gegeben mit besonderem Fokus auf Arbeiten mit Relevanz zu den in den weiteren Kapiteln vorgestellten Ergebnissen. Die Übersicht beginnt mit einem kurzen Überblick über die ersten Voraussagen, die zur Entdeckung von topologischen Isolatoren und zum Verständnis dieses neuen Zustandes geführt haben. Im Weiteren wird eine kurze Übersicht über wichtige Ergebnisse im Bereich der 2- und 3-dimensionalen topologischen Isolatoren gegeben. - Die Entdeckung des Quanten-Spin-Hall-Effekts in HgTe markiert auch gleichzeitig den ersten experimentellen Nachweis der Existenz topologischer Isolatoren. Kapitel 2 wird daher Eigenschaften von HgTe Quantentrögen und den Quanten-Spin-Hall-Effekt behandeln. Die Existenz des Quanten-Spin-Hall-Effekts, das charakteristische Merkmal 2-dimensionaler topologischer Isolatoren, wurde für HgTe Quantentröge oberhalb einer kritischen Dicke vorausgesagt. Der experimentelle Nachweis dieses Effekts setzt voraus, dass die zu vermessenden Quantentröge über eine möglichst geringe Ladungsträgerdichte und gleichzeitig hohe Ladungsträgerbeweglichkeit verfügen. Das Wachstum von Quantentrögen mit diesen Eigenschaften war eine der Hauptaufgaben, die im Rahmen dieser Arbeit durchgeführt wurden. Durch diese Anstrengungen ist es mittlerweile möglich Quantentröge mit intrinsischen Ladungsträgerdichten weit unterhalb von 1x 10^11 cm^-2 bis in den mittleren 10^12 cm^-2 Bereich herzustellen, während die Ladungsträgerbeweglichkeiten 1x 10^6 cm^2/Vs überschreiten können. Dies ermöglicht ballistischen Transport über mehrere Mikrometer in solchen Proben. Es wurden Transportexperimente an solch hoch qualitativen Quantentrögen durchgeführt um den Quanten-Spin-Hall-Effekt experimentell nachweisen zu können. Dies führte zur Entdeckung erster experimenteller Beweise für die Existenz des Effekts bei Transportuntersuchungen an Mikrostrukturen. Befand sich das Fermi-Level in diesen Strukturen innerhalb der Energielücke zwischen Leitungs- und Valenzband wurde eine endliche Leitfähigkeit von circa 2e^2/h gemessen. Dies entspricht dem erwarteten Wert für elektrischen Transport in einem System mit zwei Randkanälen. In einer nachfolgenden Serie von Experimenten wurde nachgewiesen, dass der elektrische Transport in der Tat durch Randkanäle stattfindet. Zu diesem Zweck wurden nicht-lokale Transportmessungen durchgeführt, in denen erfolgreich untersucht wurde, ob die Resultate für Transport in verschiedenen nicht-lokalen Probengeometrien mit den Ergebnissen übereinstimmen, die im Rahmen des Landauer-Büttiker Formalismus, angewandt auf helikale Randzustände, erwartet werden. Im Weiteren wurde auch die Spinpolarisierung der Randzustände untersucht. Ermöglicht wurde dies durch die Nutzung des Spin-Hall-Effekts, mit dessen Hilfe Spininjektion und Spindetektion in die Randkanäle möglich ist. Der Spin-Hall-Effekt beschreibt das Auftreten von Spinströmen in Systemen mit starker Spin-Bahn-Kopplung, die sich senkrecht zum elektrischen Strom ausbreiten. In HgTe Quantentrögen konnte dieser Effekt durch ein rein elektrisches Experiment für Transport im metallischen Bereich nachgewiesen werden. Im Weiteren wurde dieser Effekt dann in weiteren nicht-lokalen Experimenten genutzt um die Spinpolarisierung der Randkanäle nachzuweisen. - Kapitel 3 stellt die 3-dimensionalen topologischen Isolatoreigenschaften von HgTe vor. Wie bereits erwähnt ermöglicht die Nutzung von verspannten HgTe Schichten die Beobachtung von 3-dimensionalen topologischen Isolatorverhalten in HgTe Volumenmaterial. Wie sich im Rahmen dieser Arbeit herausstellte, kann Verspannung in diesen Schichten sehr einfach durch das pseudomorphe Wachstum auf gitter-fehlangepassten CdTe Substraten realisiert werden. CdTe hat eine größere Gitterkonstante als HgTe und erzeugt daher tensile Verspannung in den gewachsenen HgTe Schichten. In den so erhaltenen Schichten wurde bei Magnetotransportmessungen der Quanten-Hall-Effekt beobachtet. Des Weiteren zeigte sich, dass der Quanten-Hall-Effekt in diesen Schichten charakteristische Merkmale für Dirac-Bandstrukturen aufweist. Dies bedeutet, dass auf diese Weise zum ersten Mal der Quanten-Hall-Effekt in den Oberflächenzuständen eines 3-dimensionalen topologischen Isolators detektiert werden konnte. In weiteren Transportexperimenten wurde der Einfluss einer über der Struktur angebrachten Gateelektrode untersucht. Hierdurch wurde die Identifizierung von Beiträgen der einzelnen Oberflächen zum Transport möglich. Zudem stellte sich heraus, dass der Oberflächen-Quanten-Hall-Effekt sehr stabil ist und keine Anzeichen von einsetzendem Volumentransport sichtbar sind, selbst bei sehr hohen Gesamtladungsträgerdichten der Proben. - In den Kapiteln 4 - 6 werden einige ausgewählte Arbeiten detailiert dargestellt: Kapitel 4 behandelt die rein-elektronische Detektion des Spin-Hall-Effekts in HgTe Quantentrögen genauer, während Kapitel 5 die Messung der Spinpolarization der Quanten-Spin-Hall-Kanäle detailiert vorstellt. In Kapitel 6 wird der Quanten-Hall-Effekt in den topologischen Oberflächenzuständen von verspanntem bulk HgTe beleuchtet. Die in dieser Arbeit vorgestellten Untersuchungen waren Wegbereiter im Bereich der experimentellen Arbeiten, die sich mit den Transporteigenschaften topologischer Isolatoren beschäftigen. Das hierdurch gewonnene Verständnis für die fundamentalen Eigenschaften von topologischen Isolatoren ermöglicht viele weiterführende Experimente, zum Beispiel durch die Untersuchung des Einflusses von magnetischer Dotierung in topologischen Isolatoren oder deren Zusammenspiel mit Supraleitern. KW - Topologischer Isolator KW - topological insulator KW - quantum transport KW - HgTe KW - quantum spin Hall effect KW - molecular beam epitaxy KW - Quecksilbertellurid Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-105127 ER - TY - THES A1 - Kraus, Hannes T1 - Optically Detected Magnetic Resonance on Organic and Inorganic Carbon-Based Semiconductors T1 - Optisch detektierte Magnetresonanz an organischen und anorganischen kohlenstoffbasierten Halbleitern N2 - In dieser Arbeit werden drei verschiedene kohlenstoffbasierte Materialsysteme behandelt: (i) Organische Halbleiter und kleine Moleküle, in Kombination mit Fullerenen für Anwendungen in der organischen Photovoltaik (OPV), (ii) Halbleitende Einzelwand-Kohlenstoffnanoröhren und (iii) Siliziumkarbid (SiC), dessen Defekte erst seit kurzem als Kandidaten für Quantenapplikationen gehandelt werden. Alle Systeme wurden mit optisch detektierter Magnetresonanzspektroskopie (ODMR) untersucht. Im OPV-Kapitel, die intrinsischen Parameter und Orientierungen von Exzitonen mit hohem Spin wurden für die Materialsysteme P3HT, PTB7 und DIP untersucht. Speziell der Einfluss von Ordnung diesen organischen Systemen wurde diskutiert. Der zweite Teil des Kapitels beschäftigt sich mit Triplettgeneration mittels Elektronenrücktransfer im leistungsfähigen Materialsystem PTB7:PC71BM. Das Kohlenstoffnanoröhren-Kapitel zeigt zuert den ersten zweifelsfreien Nachweis von Triplettexzitonen in halbleitenden (6,5) Einzelwandkohlenstoffnanoröhren (SWNT), mittels ODMR-Spektroskopie. Ein Modell für die Anregungskinetik, die intrinsischen Parameter des Exzitons und Abhängigkeit von der Orientierung der Röhren wurden diskutiert. Der letzte Teil der Arbeit gilt Spinzentren in Siliziumkarbid. Nach einer kurzen Einführung in das Materialsystem wird die Spinmultiplizität für die V2 und V3 Siliziumfehlstellen, sowie eines Frenkelpaars und eines noch nicht zugeordneten Defekts (UD) in 6H SiC, weiterhin für die V2 Fehlstelle und das Frenkelpaar in 4H SiC, durchgängig zu S=3/2 festgestellt. Das spinpolarisierte Befüllen der 3/2-Zustände des Grundzustands der Siliziumfehlstellen erlaubt stimulierte Mikrowellenemission. Ausserdem wurde für UD und Frenkelpaar in 6H SiC eine große Temperaturabhängigkeit der Nullfeldparameter festgestellt, während die Siliziumfehlstellen temperaturunabhängig sind. Anwendung des UD und Frenkelpaars als Temperatursensor, und der Vakanzen als Vektormagnetometer wurden diskutiert. N2 - In this work, three different material systems comprising carbon were researched: (i) Organic polymers and small molecules, in conjunction with fullerene molecules for applications in organic photovoltaics (OPV), (ii) single walled semiconducting carbon nanotubes and (iii) silicon carbide (SiC), whose defect color centers are recently in the limelight as candidates for quantum applications. All systems were analyzed using the optically detected magnetic resonance (ODMR) spectroscopy. In the OPV chapter, first the intrinsic parameters and orientations of high spin excitons were analyzed in the materials P3HT, PTB7 and DIP. Specifically the influence of ordering in these organic systems was adressed. The second part of the OPV chapter is concerned with triplet generation by electron back transfer in the high-efficiency OPV material combination PTB7:PC71BM. The carbon nanotube chapter first shows the way to the first unambiguous proof of the existence of triplet excitons in semiconducting (6,5) single-walled carbon nanotubes (SWNT) by ODMR spectroscopy. A model for exciton kinetics, and also orientation and intrinsic parameters were propoesed. The last part of this work is devoted to spin centers in silicon carbide (SiC). After a brief introduction, the spin multiplicity of the V2 and V3 silicon vacancies, and also of a Frenkel pair and an unassigned defect UD in 6H SiC, and of the V2 vacancy and the Frenkel pair in 4H SiC, was shown to be S=3/2. The spin polarized pumping of the 3/2 manifold of the quartet ground state of the silicon vacancies allows stimulated microwave emission. Furthermore, in 6H SiC, the UD and Frenkel pair were shown to have a large dependence of their intrinsic zero field interaction parameters on the temperature, while the vacancies are temperature independent. The application of the UD and Frenkel pair as temperature sensor, and of the vacancies as a vector magnetic field sensor is discussed. KW - ODMR-Spektroskopie KW - Organischer Halbleiter KW - quantum center KW - Siliciumcarbid KW - Nanoröhre Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-106308 ER - TY - THES A1 - Gogolin, Christian T1 - Pure State Quantum Statistical Mechanics T1 - Statistische Quantenmechanik mit reinen Zuständen N2 - The capabilities of a new approach towards the foundations of Statistical Mechanics are explored. The approach is genuine quantum in the sense that statistical behavior is a consequence of objective quantum uncertainties due to entanglement and uncertainty relations. No additional randomness is added by hand and no assumptions about a priori probabilities are made, instead measure concentration results are used to justify the methods of Statistical Physics. The approach explains the applicability of the microcanonical and canonical ensemble and the tendency to equilibrate in a natural way. This work contains a pedagogical review of the existing literature and some new results. The most important of which are: i) A measure theoretic justification for the microcanonical ensemble. ii) Bounds on the subsystem equilibration time. iii) A proof that a generic weak interaction causes decoherence in the energy eigenbasis. iv) A proof of a quantum H-Theorem. v) New estimates of the average effective dimension for initial product states and states from the mean energy ensemble. vi) A proof that time and ensemble averages of observables are typically close to each other. vii) A bound on the fluctuations of the purity of a system coupled to a bath. N2 - Es wird ein neuer Ansatz die Methoden der Statistischen Physik aus der Quan- tenmechanik heraus zu rechtfertigen untersucht. Der gewählte Zugang ist echt quantenmechanisch. Statistisches Verhalten wird allein durch objektive quanten- mechanische Zufälligkeit auf Grund von Verschränkung und Unbestimmtheitsre- lationen erklärt. Es werden keine Annahmen über subjective Unwissenheit oder a priori Wahrscheinlichkeiten gemacht. Der Ansatz ist in der Lage eine maß- theoretische Rechtfertigung für die Anwendbarkeit des mikrokanonischen und des kanonischen Ensembles zu geben und erklärt auf natürliche Weise das Streben ins Gleichgewicht. Diese Arbeit enthält einen Überblick über die vorhandene Literatur und eine Reihe von neuen Resultaten. Die wichtigsten neuen Ergebnisse sind: i) Eine maßtheoretische Begründung für die Anwendbarkeit des mikrokanonischen En- sembles. ii) Schranken für die Zeit bis ins Gleichgewicht. iii) Aufzeigen eines generischen Dekohärenz-Mechanismus in der lokalen Energie-Eigenbasis bei schwa- cher Kopplung. iv) Beweis eines quantenmechanischen H-Theorems. v) Neue Abschätzungen der mittleren effektiven Dimension für Produktzustände und im “mittlere Energie”-Ensemble. vi) Ein Beweis, dass Zeit und Ensemblemittel typ- ischerweise nahezu zusammenfallen. vii) Eine Schranke für die Fluktuationen der Reinheit eines an ein Bad gekoppelten Systems. KW - Quantum Mechanics KW - Statistical Physics KW - Quantenstatistik Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-106065 ER - TY - THES A1 - Dengel, Radu-Gabriel T1 - Fabrication of magnetic artificial atoms T1 - Herstellung künstlicher Atome mit magnetischen Eigenschaften N2 - This thesis presents the detailed development of the fabrication process and the first observations of artificial magnetic atoms from the II-VI diluted magnetic semiconductor alloy (Zn,Cd,Be,Mn)Se. In order to manufacture the vertical quantum dot device which exhibits artificial atom behavior a number of development steps are conducted. First, the II-VI heterostructure is adjusted for the linear transport regime. Second, state of the art vertical quantum dot fabrication techniques in the III-V material system are investigated regarding their portability to the II-VI heterostructure. And third, new approaches to the fabrication process are developed, taking into account the complexity of the heterostructure and its physical properties. Finally a multi-step fabrication process is presented, which is built up from electron beam and optical lithography, dry and wet etching and insulator deposition. This process allows for the processing of pillars with diameters down to 200 nm with an insulating dielectric and gate. Preliminary transport data on the fabricated vertical quantum dots are presendted confirming the magnetic nature of the resulting artificial atoms. N2 - Die Fabrikation und Erforschung künstlicher Atome ist hinsichtlich ihres physikalischen Verständnisses und ihrer Herstellungstechnologie weit fortgeschritten. Diese werden vorwiegend in lateralen oder vertikalen Quantenpunkten (QDots) aus dem III-V Materialsystem erzeugt. Allerdings ist es derzeit nicht möglich, künstliche Atome mit ausgeprägten magnetischen Eigenschaften herzustellen, um diese zu untersuchen. Diese Arbeit präsentiert die Punkt-für-Punkt-Entwicklung der Herstellungstechnologie sowie erste experimentelle Beobachtungen von künstlichen magnetischen Atomen aus dem II-VI verdünnt magnetischen Halbleitermaterialsystem (Zn,Cd,Be,Mn)Se. Das der Entwicklung zugrunde liegende elektronische Bauelement ist eine resonante Tunneldiode (RTD) aus dem II-VI Halbleitermaterialsystem, die früher bereits entwickelt wurde. ... KW - Zwei-Sechs-Halbleiter KW - Quantenpunkt KW - Magnetische Eigenschaft KW - quantum dot KW - Giant Zeeman splitting KW - electron beam lithography KW - dry etching KW - diluted magnetic semiconductor KW - II-VI KW - RTD KW - heterostructure KW - insulator KW - artificial atom KW - fabrication KW - transport data Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-103162 ER - TY - THES A1 - Boariu, Florin Loredan T1 - The "Hidden-Order" Phase Transition of URu2Si2 : Investigated by Angle-Resolved Photoelectron Spectroscopy T1 - Der "Hidden-Order" Phasenübergang des URu2Si2 untersucht mittels winkelaufgelöster Photoelektronspektroskopie N2 - In 1985, an enigmatic second order phase transition was discovered in the actinide compound URu2Si2. Evading a microscopic description for nearly three decades in spite of numerous experimental and theoretical attempts, the name "hidden order Transition" was adopted for the effect. (...) N2 - Der "Hidden-Order" Phasenübergang des URu2Si2 untersucht mittels winkelaufgelöster Photoelektronspektroskopie KW - Actinoide KW - Phasenumwandlung KW - ARPES KW - Hidden-Order of URu2Si2 KW - heavy fermions KW - hidden-order KW - photoelectron spectroscopy KW - quantum criticality Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-98259 ER - TY - THES A1 - Naydenova, Tsvetelina T1 - A Study of Seebeck and Nernst effects in (Ga,Mn)As/normal semiconductor junctions T1 - Eine Studie von Seebeck und Nernst Effekten in (Ga,Mn)As/Halbleiter-Übergängen N2 - The discovery of the Giant Magneto Resistance (GMR) effect in 1988 by Albert Fert [Baib 88] and Peter Grünberg [Bina 89] led to a rapid development of the field of spintronics and progress in the information technology. Semiconductor based spintronics, which appeared later, offered a possibility to combine storage and processing in a single monolithic device. A direct result is reduced heat dissipation. The observation of the spin Seebeck effect by Ushida [Uchi 08] in 2008 launched an increased interest and encouraged research in the field of spin caloritronics. Spintronics is about the coupling of charge and spin transport. Spin caloritronics studies the interaction between heat and spin currents. In contrast to spintronics and its variety of applications, a particular spin-caloritronic device has not yet been demonstrated. However, many of the novel phenomena in spin caloritronics can be detected in most spintronic devices. Moreover, thermoelectric effects might have a significant influence on spintronic device operation. This will be of particular interest for this work. Additional knowledge on the principle of coupling between heat and spin currents uncovers an alternative way to control heat dissipation and promises new device functionalities. This thesis aims to further extend the knowledge on thermoelectrics in materials with strong spin-orbit coupling, in this case the prototypical ferromagnetic semiconductor (Ga,Mn)As. The study is focused on the thermoelectric / thermomagnetic effects at the interface between a normal metal and the ferromagnetic (Ga,Mn)As. In such systems, the different interfaces provide a condition for minimal phonon drag contribution to the thermal effects. This suggests that only band contributions (a diffusion transport regime) to these effects will be measured. Chapter 2 begins with an introduction on the properties of the studied material system, and basics on thermoelectrics and spin caloritronics. The characteristic anisotropies of the (Ga,Mn)As density of states (DOS) and the corresponding magnetic properties are described. The DOS and magnetic anisotropies have an impact on the transport prop- erties of the material and that results in effects like tunneling anisotropic magnetores- istance (TAMR) [Goul 04]. Some of these effects will be used later as a reference to the results from thermoelectric / thermomagnetic measurements. The Fingerprint tech- nique [Papp 07a] is also described. The method gives an opportunity to easily study the anisotropies of materials in different device geometries. Chapter 3 continues with the experimental observation of the diffusion thermopower of (Ga,Mn)As / Si-doped GaAs tunnel junction. A device geometry for measuring the diffusion thermopower is proposed. It consists of a Si - doped GaAs heating channel with a Low Temperature (LT) GaAs / (Ga,Mn)As contact (junction) in the middle of the channel. A single Ti / Au contact is fabricated on the top of the junction. For transport characterization, the device is immersed in liquid He. A heating current technique is used to create a temperature difference by local heating of the electron system on the Si:GaAs side. An AC current at low frequency is sent through the channel and it heats the electron population in it, while the junction remains at liquid He temperature (experimentally con- firmed). A temperature difference arises between the heating channel and the (Ga,Mn)As contact. As a result, a thermal (Seebeck) voltage develops across the junction, which we call tunnelling anisotropic magneto thermopower (TAMT), similar to TAMR. TAMT is detected by means of a standard lock-in technique at double the heating current frequency (at 2f ). The Seebeck voltage is found to be linear with the temperature difference. That dependence suggests a diffusion transport regime. Lattice (phonon drag) contribution to the thermovoltage, which is usually highly nonlinear with temperature, is not observed. The value of the Seebeck coefficient of the junction at 4.2 K is estimated to be 0.5 µV/K. It is about three orders of magnitude smaller than the previously reported one [Pu 06]. Subsequently, the thermal voltage is studied in external magnetic fields. It is found that the thermopower is anisotropic with the magnetization direction. The anisotropy is explained with the anisotropies of the (Ga,Mn)As contact. Further, switching events are detected in the thermopower when the magnetic field is swept from negative to positive fields. The switchings remind of a spin valve signal and is similar to the results from previous experiments on spin injection using a (Ga,Mn)As contacts in a non-local detection scheme. That shows the importance of the thermoelectric effects and their possible contribution to the spin injection measurements. A polar plot of the collected switching fields for different magnetization angles reveals a biaxial anisotropy and resembles earlier TAMR measurements of (Ga,Mn)As tunnel junction. A simple cartoon model is introduced to describe and estimate the expected thermopower of the studied junction. The model yields a Fermi level inside of the (Ga,Mn)As valence band. Moreover, the model is found to be in good agreement with the experimental results. The Nernst effect of a (Ga,Mn)As / GaAs tunnel junction is studied in Chapter 4. A modified device geometry is introduced for this purpose. Instead of a single contact on the top of the square junction, four small contacts are fabricated to detect the Nernst signal. A temperature difference is maintained by means of a heating current technique described in Chapter 3. A magnetic field is applied parallel to the device plane. A voltage drop across two opposite contacts is detected at 2f. It appears that a simple cosine function with a parameter the angle between the magnetization and the [100] crystal direction in the (Ga,Mn)As layer manages to describe this signal which is attributed to the anomalous Nernst effect (ANE) of the ferromagnetic contact. Its symmetry is different than the Seebeck effect of the junction. For the temperature range of the thermopower measurements the ANE coefficient has a linear dependence on the temperature difference (∆T). For higher ∆T, a nonlinear dependence is observed for the coefficient. The ANE coefficient is found to be several orders of magnitude smaller than any Nernst coefficient in the literature. Both the temperature difference and the size of the ANE coefficient require further studies and analysis. Switching events are present in the measured Nernst signal when the magnetic field is swept from positive to negative values. These switchings are related to the switching fields in the ferromagnetic (Ga,Mn)As. Usually, there are two states which are present in TAMR or AMR measurements - low and high resistance. Instead of that, the Nernst signal appears to have three states - high, middle and low thermomagnetic voltage. That behaviour is governed not only by the magnetization, but also by the characteristic of the Nernst geometry. Chapter 5 summarizes the main observations of this thesis and contains ideas for future work and experiments. N2 - Die Entdeckung des Riesenmagnetowiderstands (GMR)-Effekts im Jahr 1988 von Albert Fert [Baib 88] und Peter Grünberg [Bina 89] führte zu einer raschen Entwicklung auf dem Gebiet der Spintronik und damit zu Fortschritten in der Informations-Technologie. Der darauf aufbauende Bereich der halbleiterbasierten Spintronik bietet darüber hinaus Möglichkeiten Speicherung und Datenverarbeitung in einem einzigen monolithischen Bauteil zu kombinieren. Eine direkte Folge davon ist eine reduzierte Wärmeableitung. Die Beobachtung des Spin-Seebeck-Effekts von Uchida [Uchi 08] im Jahr 2008 brachte ein erhöhtes Interesse hervor und führte zur Forschung im Bereich der Spin-Caloritronics. Während in der Spintronik die Kopplung von Ladungs-und Spintransport untersucht wird, liegt der Fokus der Spin-Caloritronics auf der Wechselwirkungen zwischen Wärme-und Spinstr¨omen. Im Unterschied zur Spintronik mit ihrer Vielzahl von Anwendungen wurde ein reines Spin-Caloritronics Bauteil noch nicht realiziert. Doch viele der neuen Phänomene in der Spin-Caloritronics können in den meisten Spintronik-Bauteilen auftreten. Darüber hinaus könnten thermoelektrische Effekte einen wesentlichen Einfluss auf den Betrieb der Spintronik-Bauteile haben. Dieser Punkt wird von besonderem Interesse für diese Arbeit sein. Tieferes Verständnis der Prinzipien der Kopplung zwischen Wärme- und Spinströmen kann einen alternativen Weg aufzeigen um die Wärmeableitung zu kontrollieren und verspricht neue Funktionalitäten. Diese Dissertation zielt darauf ab die Kenntnisse über die Thermoelektrik in Materialien mit starker Spin-Bahn-Wechselwirkung zu erweitern, in diesem Fall der prototypische ferromagnetische Halbleiter (Ga,Mn)As. Die Untersuchungen konzentrieren sich auf die thermoelektrischen und -magnetischen Effekte an der Grenzfläche zwischen einem normalen Metall und dem ferromagnetischen (Ga,Mn)As. In solchen Systemen führen die unterschiedlichen Grenzflächen zu einem minimalen Beitrag des Phonon-Drags zu den thermischen Effekten. Dies legt nahe, dass nur Bandbeiträge (ein Diffusionstransport- Regime) auf diese Effekte gemessen werden. Kapitel 2 beginnt mit einer Einführung über die Eigenschaften der untersuchten Materialsysteme, Grundlagen der Thermoelektrik und Spin-Caloritronics. Die charakteristischen Anisotropien der Zustandsdichte (DOS) von (Ga,Mn)As und die dadurch entstehenden magnetischen Eigenschaften werden beschrieben. Die DOS und die magnetische Anisotropie haben einen Einfluss auf die Transporteigenschaften des Materials und führen zu Effekten wie dem anisotropen Tunnelmagnetowiderstand (TAMR) [Goul 04]. Einige dieser Effekte werden im Weiteren als eine Referenz für die Ergebnisse der thermoelektrischen und magnetischen Messungen verwendet. Die Anisotropie- Fingerprintabduck-Technik [Papp 07a] wird ebenfalls beschrieben. Die Methode bietet die Möglichkeit, die Material-Anisotropien in verschiedenen Geometrien einfach zu unter- suchen. Kapitel 3 schließt sich mit der experimentellen Beobachtung der Diffusions - Thermospannung an einer (Ga,Mn)As / Si-dotierten GaAs-Tunnelübergang an. Eine Bauteilgeometrie zur Messung der Diffusions-Thermospannung wird vorgeschlagen. Sie besteht aus einem Si-dotierten GaAs-Heiz-Kanal mit einem GaAs/(Ga,Mn)As-Kontakt in der Mitte des Kanals. Ein einzelner Ti/Au-Kontakt wird an der Oberseite des Übergangs aufgebracht. Die Charakterisierung der Probe erfolgt bei 4.2 K. Ein Wechselstrom mit niedriger Frequenz wird durch den Kanal gesendet und erhöht dadurch dessen Temperatur, während der (Ga,Mn)As-Kontakt bei konstanter Temperatur im Helium-Bad bleibt. Aufgrund der Temperaturdifferenz zwischen dem Heizungskanal und dem (Ga,Mn)As- Kontakt entsteht eine thermische (Seebeck-)Spannung, die wir als anisotrope Tunnelmagnetothermospannung bezeichnen (TAMT), ähnlich dem TAMR. TAMT wird mittels Lock-In-Technik bei der doppelten Frequenz des Heizstroms detektiert. Die Seebeck- Spannung wächst dabei linear mit der Temperaturdifferenz an, was auf das Vorliegen eines reinen Diffusionstransport-Regimes hinweist. Ein Beitrag des Gitters (Phonon-Drag) zur Thermospannung, der in der Regel stark nichtlinear von der Temperatur abhängt, wird nicht beobachtet. Der Wert des Seebeck-Koeffizienten des Übergangs bei 4.2 K wird auf 0.5 µV/K abgeschätzt. Das ist ein um drei Größenordnungen kleinerer Betrag als zuvor von [Pu 06] berichtet. Anschließend wird die thermische Spannung unter Einfluss eines äußeren Magnetfelds untersucht. Es zeigt sich, dass die Thermospannung eine Anisotropie mit der Magnetisierungsrichtung aufweist. Diese Anisotropie wird mit den bekannten Eigenschaften des (Ga,Mn)As-Kontakts erläutert. Ferner werden Schaltvorgänge in der Thermospannung detektiert, wenn das Magnetfeld von negativen zu positiven Werten geändert wird. Die Schaltvorgänge erinnern an die Signale eines Spin-Ventils. Dieses Verhalten ist vergleichbar mit den Ergebnissen aus früheren Experimenten an Spininjektion mithilfe eines (Ga,Mn)As-Kontakts in nicht-lokaler Messgeometrie. Dies betont die Bedeutung der thermoelektrischen Effekte und deren mögliche Auswirkungen auf die Spininjektions-Messungen. Ein Polardiagramm der gesammelten Schaltfelder für verschiedene Magnetisierungswinkel zeigt eine zweiachsige Anisotropie und ähnelt früheren TAMR-Messungen an (Ga,Mn)As-Tunnelbarrieren. Ein einfaches Modell wird zur Beschreibung und Abschätzung der erwarteten Thermospannung am untersuchten Übergang eingeführt. Eine gute Übereinstimmung des Modells mit den experimentellen Ergebnissen ist evident. Der Nernst-Effekt an einem (Ga,Mn)As/GaAs-Kontakt wird im vierten Kapitel untersucht. Hierfür wird eine Modifizierung der Proben-Geometrie vorgenommen. Anstelle des einzelnen Kontakts oberhalb der Übergangsregion werden vier kleine Kontakte hergestellt. Die Temperaturdifferenz wird wiederum mittels Heizkanal gewährleistet. Das Magnetfeld ist parallel zur Probenoberfläche orientiert. Zwischen sich gegenüberliegenden Kontakten wird eine Spannungsdifferenz bei 2f detektiert. Es stellt sich heraus, dass eine Kosinus- Funktion, mit dem Winkel zwischen der Magnetisierung und der [100]-Kristallrichtung der (Ga,Mn)As Schicht als Parameter, das gemessene Signal gut beschreibt. Dieses wird auf den anormalen Nernst-Effekt (ANE) des ferromagnetischen Kontakts zurückgeführt. Die Symmetrie des ANE unterscheidet sich von der des Seebeck- Effekts des Übergangs. Im Temperaturintervall, in dem die Thermo-Spannung untersucht wurde, zeigt auch der ANE-Koeffizient lineares Verhalten mit der Temperaturdifferenz (∆T). Für größere ∆T jedoch zeigt sich eine nichtlineare Abhängigkeit. Der ermittelte ANE Koeffizient ist um mehrere Größenordnungen kleiner als jeder andere veröffentlichte Wert. Sowohl die Temperaturabhängikeit als auch die Größe des ANE bedürfen weiterer Untersuchungen. Wird das Feld von positiven zu negativen Werten gefahren, zeigen sich Schaltvorgänge im Nernst Signal. Diese Schaltvorgänge stehen im Zusammenhang mit den Schaltfeldern des ferromagnetischen (Ga,Mn)As. Normalerweise existieren bei TAMR oder AMR Messungen zwei Zustände, einer mit geringem und einer mit hohem Widerstand. Das gemessene Nernst Signal dagegen zeigt drei Zustände - hohe, mittlere und geringe Thermomagnetische Spannung. Dieses Verhalten ist nicht nur von der Magnetisierung, sondern auch von der Charakteristik der Nernst-Geometrie beeinflusst. Kapitel 5 fasst die wichtigsten Erkenntnisse dieser Arbeit zusammen und gibt einen Ausblick auf zukünftige Arbeiten und Experimente. KW - Galliumarsenid KW - TAMT KW - Manganarsenide KW - Spintronik KW - Seebeck-Effekt KW - Nernst-Effekt KW - Seebeck effect KW - Nernst effect KW - (Ga,Mn)As Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-101981 ER - TY - THES A1 - Rauh, Daniel T1 - Impact of Charge Carrier Density and Trap States on the Open Circuit Voltage and the Polaron Recombination in Organic Solar Cells T1 - Einfluss der Ladungsträgerdichte und Störstellen auf die Leerlaufspannung und die Polaronenrekombination in organischen Solarzellen N2 - The focus of this work is studying recombination mechanisms occurring in organic solar cells, as well as their impact on one of their most important parameters — the open circuit voltage Voc. Firstly, the relationship between Voc and the respective charge carrier density n in the active layer under open circuit conditions is analyzed. Therefor, a model after Shockley for the open circuit voltage is used, whose validity is proven with the aid of fits to the measured data. Thereby, it is emphasized that the equation is only valid under special conditions. In the used reference system P3HT:PC61BM the fits are in agreement with the measurement data only in the range of high temperatures (150 - 300 K), where Voc increases linearly with decreasing temperature. At lower temperatures (50 – 150 K), the experiment shows a saturation of Voc. This saturation cannot be explained with the model by the measured falling charge carrier density with decreasing temperatures. In this temperature range Voc is not directly related to the intrinsic properties of the active layer. Voc saturation is due to injection energy barriers at the contacts, which is ascertained by macroscopic simulations. Furthermore, it is observed that Voc in the case of saturation is equivalent to the so-called built-in potential. The difference between the built-in potential and the energy gap corresponds thereby to the sum of the energy barriers at both contacts. With the knowledge of the Voc(n) dependency for not contact limited solar cells, it is possible to investigate the recombination mechanisms of charge carriers in the active layer. For Langevin recombination the recombination rate is Rn2 (recombination order RO = 2), for Shockley-Read-Hall (SRH) Rn1 (RO=1); in various publications RO higher than two is reported with two main explanations. 1: Trap states for charge carriers exist in the respective separated phases, i.e. electrons in the acceptor phase and holes in the donor phase, which leads to a delayed recombination of the charge carriers at the interface of both phases and finally to an apparent recombination order higher than 2. 2: The enhanced R(n) dependency is attributed to the so called recombination prefactor, which again is dependent from n dependent mobility µ. It is shown that for the system P3HT:PC61BM at room temperature the µ(n) dependency does nearly completely explain the higher RO but not at lower temperatures which in this case supports the first explanation. In the material system PTB7:PC71BM the increased RO cannot be explained by the µ(n) dependency even at room temperature. To support the importance of trap states in combination with a phase separation for the explanation of the enhanced RO, additional trap states were incorporated in the solar cells to investigate their influence on the recombination mechanisms. To achieve this, P3HT:PC61BM solar cells were exposed to synthetic air (in the dark and under illumination) or TCNQ was added in small concentrations to the active layer which act as electron traps. For the oxygen degraded solar cell the recombination order is determined by a combination of open Voc-transients and Voc(n) measurements. Thereby, a continuous increase of the recombination order from 2.4 to more than 5 is observed with higher degradation times. By the evaluation of the ideality factor it can be shown that the impact of SRH recombination is increasing with higher trap concentration in relation to Langevin recombination. A similar picture is revealed for solar cells with TCNQ as extrinsic trap states. Finally, a phenomenon called s-shaped IV-curves is investigated, which can sometimes occur for solar cells under illumination. As course of this a reduced surface recombination velocity can be found. Experimentally, the solar cells were fabricated using a special plasma treatment of the ITO contact. The measured IV-curves of such solar cells are reproduced by macroscopic simulations, where the surface recombination velocity is reduced. Hereby, it has to be distinguished between the surface recombination of majority and minority charge carriers at the respective contacts. The theory can be experimentally confirmed by illumination level dependent IV-curves as well as short circuit current density and open circuit voltage transients. N2 - Im Fokus der vorliegenden Arbeit liegen die Rekombinationsmechanismen welche in organischen Solarzellen vorkommen, sowie deren Einfluss auf eine der wichtigsten charakteristischen Kenngrößen dieser - der Leerlaufspannung Voc. Zuerst wird der Zusammenhang zwischen Voc und zugehöriger Ladungsträgerdichte n in der aktiven Schicht unter Leerlaufbedingungen untersucht. Dazu wird ein Modell nach Shockley für die Leerlaufspannung verwendet, dessen Gültigkeit mit Hilfe von Fits an die Messdaten überprüft wird. Dabei stellt sich heraus, dass dieses nur für bestimmte Rahmenbedingungen gültig ist. Im verwendeten Referenzsystem P3HT:PC61BM stimmen die Fits nur im Bereich höherer Temperaturen (150 - 300 K), in denen Voc linear mit sinkenden Temperaturen steigt, mit den Messwerten überein. Im Bereich tieferer Temperaturen (50 - 150 K) stellt sich experimentell eine Sättigung von Voc ein. Diese Sättigung kann mit der gemessenen fallenden Ladungsträgerdichten mit sinkender Temperatur laut Modell nicht erklärt werden. Voc steht in diesem Temperaturbereich deshalb in keinem direkten Zusammenhang zu den intrinsischen Eigenschaften der aktiven Schicht. Die Ursache der Sättigung sind Energiebarrieren an den Kontakten, was mit Hilfe von makroskopischen Simulationen nachgewiesen werden kann. Weiterhin wird festgestellt, dass Voc im Sättigungsfall genau dem sogenannten eingebauten Potential entspricht. Die Differenz zwischen dem eingebauten Potential und der Bandlücke entspricht dabei der Summe der Energiebarrieren an beiden Kontakten. Mit der Erkenntnis, dass für nicht kontaktlimitierte Solarzellen eine Voc(n) Abhängigkeit besteht, kann man sich den Rekombinationsmechanismen in der aktiven Schicht widmen. Für Langevin Rekombination ist die Rekombinstionsrate Rn2 (Rekombinationsordnung RO = 2), für Shockley-Read-Hall (SRH) Rn1 (RO=1); experimentell wird in der Literatur aber von RO größer 2 berichtet wofür zwei Erklärungen existieren. 1.: Es gibt Fallenzustände für Ladungsträger in den entsprechenden separaten Phasen, d.h. Elektronen in der Akzeptorphase und Löcher in der Donatorphase, was in einer verzögerten Rekombination der Ladungsträger an der Grenzfläche beider Phasen führt und damit zu einer höheren RO als 2. 2.: Die erhöhte R(n)-Abhängigkeit wird dem sogenannten Rekombinationsvorfaktor zugeschrieben, welcher wiederum von der n-abhängigen Mobilität µ abhängt. Es wird gezeigt, dass für das System P3HT:PC61BM bei Raumtemperatur der µ(n) Verlauf fast komplett die erhöhte RO erklären kann, allerding nicht bei tieferen Temperaturen welches dort die erste Erklärung stützt. Im Materialsystem PTB7:PC71BM ist schon für Raumtemperatur die erhöhte RO nicht durch den µ(n) Verlauf erklärbar. Um zu untermauern, dass Störstellen in Kombination mit einer Phasenseparation für die erhöhte RO verantwortlich sind, wurden Störstellen in Solarzellen eingebaut um deren Einfluss auf die Rekombinationsmechanismen zu untersuchen. Dazu wurden P3HT:PC61BM Solarzellen zum einen synthetischer Luft ausgesetzt (im Dunkeln und unter Beleuchtung) zum anderen der aktiven Schicht in geringen Konzentrationen TCNQ beigefügt, welches als Elektronenstörstelle fungiert. Für die O2 degradierte Solarzelle wird die RO aus einer Kombination von Voc-Transienten und Voc(n) Messungen bestimmt. Dabei kann mit erhöhter Degradation ein kontinuierlicher Anstieg der RO von 2.4 auf mehr als 5 beobachtet werden. Durch die Auswertung des Idealitätsfaktors kann gezeigt werden, dass der Einfluss der SRH Rekombination in Relation zur Langevin Rekombination mit erhöhter Störstellenkonzentration zunimmt. Ein ähnliches Bild ergibt sich für die Solarzellen mit TCNQ als extrinsische Störstellen. Zuletzt wird das Phänomen s-förmiger Strom-Spannungs-Kennlinien untersucht, welches manchmal für Solarzellen unter Beleuchtung auftritt. Als Ursache kann eine reduzierte Oberflächenrekombinationsgeschwindigkeit ausgemacht werden. Experimentell wurden die Solarzellen mit einer speziellen Plasmabehandlung des ITO Kontaktes hergestellt. Die gemessenen IV-Kennlinien solcher Solarzellen können anhand von makroskopischen Simulationen nachgebildet werden, indem darin die Oberflächenrekombinationsgeschwindigkeit reduziert wird, wobei man dabei die Oberflächenrekombination von Majoritäts- bzw. Minoritätsladungsträgern an den entsprechenden Kontakten unterscheiden muss. Experimentell untermauert werden kann die Theorie anhand von lichtleistungsabhängigen IV-Kurven bzw. Transienten der Kurzschlussstromdichte und der Leerlaufspannung. KW - Organische Solarzelle KW - organische Solarzellen KW - Leerlaufspannung KW - Störstellen KW - recombination KW - organic solar cells KW - open circuit voltage KW - trap states KW - Fotovoltaik KW - Organischer Halbleiter KW - Rekombination Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-90083 ER - TY - THES A1 - Summa, Alexander T1 - Modelling high-energy observables of supernova explosions T1 - Modellierung hochenergetischer Beobachtungsgrößen von Supernova-Explosionen N2 - In this work, high-energy observables arising during different phases of SN explosions are studied with respect to their potential for allowing conclusions on suggested explosion scenarios and physical mechanisms that are thought to influence the evolution of SNe in a major way. The focus on selected observables at keV and MeV energies is motivated by the appearance of large degeneracies that can even be found for disparate scenarios in many wavelength regimes. Since the discussed emission in the high-energy regime is directly linked to nuclear processes being usually very distinct for different suggested physical models, the signatures at keV and MeV energies allow for meaningful comparisons of simulations with observations. N2 - In der vorliegenden Arbeit werden Hochenergie-Beobachtungsgrößen, die während verschiedener Phasen von Supernova-Explosionen entstehen, hinsichtlich der Möglichkeit von Rückschlüssen auf vorgeschlagene Explosionsszenarien und physikalische Mechanismen, welche einen wichtigen Einfluss auf die Entwicklung dieser Explosionen ausüben, untersucht. Die Schwerpunktsetzung auf Beobachtungsgrößen im keV- und MeV-Energiebereich ist dabei durch die großen Ähnlichkeiten begründet, die grundverschiedene Szenarien in ihrer Emission in vielen Wellenlängenbereichen zeigen. Da die diskutierten Beobachtungsgrößen im Hochenergie-Bereich direkt mit nuklearen Prozessen verknüpft sind, die bei unterschiedlichen physikalischen Modellen sehr charakteristisch ausgeprägt sein können, eignen sich gerade die vorgestellten Signaturen im keV- und MeV-Bereich für aussagekräftige Vergleiche von Simulationen und Beobachtungen. KW - Supernova KW - Hochenergieastronomie KW - supernovae KW - nucleosynthesis KW - gamma rays KW - X-rays KW - cosmic rays KW - Nukleosynthese KW - Gammastrahlung KW - Röntgenstrahlung KW - Kosmische Strahlung Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-94608 ER - TY - JOUR T1 - Search for squarks and gluinos in final states with same-sign leptons and jets using 139 fb\(^{-1}\) of data collected with the ATLAS detector JF - Journal of High Energy Physics N2 - A search for supersymmetric partners of gluons and quarks is presented, involving signatures with jets and either two isolated leptons (electrons or muons) with the same electric charge, or at least three isolated leptons. A data sample of proton-proton collisions at root s = 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018, corresponding to a total integrated luminosity of 139 fb(-1), is used for the search. No significant excess over the Standard Model expectation is observed. The results are interpreted in simplified supersymmetric models featuring both R-parity conservation and R-parity violation, raising the exclusion limits beyond those of previous ATLAS searches to 1600 GeV for gluino masses and 750 GeV for bottom and top squark masses in these scenarios. KW - Hadron-Hadron scattering (experiments) KW - Supersymmetry Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-277538 IS - 6 ER - TY - RPRT A1 - Groß, Lennart T1 - Advices derived from troubleshooting a sensor-based adaptive optics direct stochastic optical reconstruction microscope T1 - Hinweise aus der Fehleranalyse eines Mikroskops mit direkter stochastischer optischer Rekonstruktion und sensorgestützter adaptiver Optik N2 - One rarely finds practical guidelines for the implementation of complex optical setups. Here, we aim to provide technical details on the decision making of building and revising a custom sensor-based adaptive optics (AO) direct stochastic optical reconstruction microscope (dSTORM) to provide practical assistance in setting up or troubleshooting similar devices. The foundation of this report is an instrument constructed as part of a master's thesis in 2021, which was built for deep tissue imaging. The setup is presented in the following way: (1) An optical and mechanical overview of the system at the beginning of this internship is given. (2) The optical components are described in detail in the order at which the light passes through, highlighting their working principle and implementation in the system. The optical component include (2A) a focus on even sample illumination, (2B) restoring telecentricity when working with commercial microscope bodies, (2C) the AO elements, namely the deformable mirror (DM) and the wavefront sensor, and their integration, and (2D) the separation of wavefront and image capture using fluorescent beads and a dichroic mirror. After addressing the limitations of the existing setup, modification options are derived. The modifications include the implementation of adjustment only light paths to improve system stability and revise the degrees of freedom of the components and changes in lens choices to meet the specifications of the AO components. Last, the capabilities of the modified setup are presented and discussed: (1) First, we enable epifluorescence imaging of bead samples through 180 µm unstained murine hippocampal tissue with wavefront error correction of ~ 90 %. Point spread function, wavefront shape and Zernike decomposition of bead samples are presented. (2) Second, we move from epifluorescent to dSTORM imaging of tubulin stained primary mouse hippocampal cells, which are imaged through up to 180 µm of unstained murine hippocampal tissue. We show that full width at half maximum (FWHM) of prominent features can be reduced in size by nearly a magnitude from uncorrected epiflourescence images to dSTORM images corrected by the adaptive optics. We present dSTORM localization count and FWHM of prominent features as as a function of imaging depth. N2 - Praktische Leitlinien für die Implementierung komplexer optischer Systeme sind selten zu finden. Hier wollen wir technische Details zur Entscheidungsfindung beim Bau und der Überarbeitung eines maßgefertigten Mikroskops mit sensorgestützter adaptiver Optik (AO) und direkter stochastischer optischer Rekonstruktion (dSTORM) bereitstellen, um praktische Hilfestellung bei der Einrichtung oder Fehlerbehebung ähnlicher Geräte zu geben. Grundlage dieses Berichts ist ein Instrument, das im Rahmen einer Masterarbeit im Jahr 2021 für die Abbildung von tiefem Gewebe gebaut wurde. Der Aufbau wird wie folgt dargestellt: (1) Es wird ein optischer und mechanischer Überblick über das System zu Beginn dieses Praktikums gegeben. (2) Die optischen Komponenten werden in der Reihenfolge, in der das Licht sie durchläuft, detailliert beschrieben und ihre Funktionsweise und Umsetzung im System hervorgehoben. Zu den optischen Komponenten gehören (2A) ein Fokus auf gleichmäßige Probenausleuchtung, (2B) die Wiederherstellung der Telezentrizität bei der Arbeit mit handelsüblichen Mikroskopkörpern, (2C) die AO-Elemente, nämlich der deformierbare Spiegel (DM) und der Wellenfrontsensor, und deren Integration, sowie (2D) die Trennung von Wellenfront- und Bilderfassung mittels fluoreszierender Beads und einem dichroitischen Spiegel. Nachdem die Einschränkungen des bestehenden Aufbaus angesprochen wurden, werden Modifikationsmöglichkeiten abgeleitet. Die Modifikationen umfassen die Implementierung von Justage-Lichtpfaden, um die Systemstabilität zu verbessern und die Freiheitsgrade der Komponenten zu überarbeiten, sowie Änderungen bei der Auswahl der Linsen, um die Spezifikationen der AO-Komponenten zu erfüllen. Abschließend werden die Ergebnisse des modifizierten Aufbaus vorgestellt und diskutiert: (1) Zunächst ermöglichen wir die Epifluoreszenz-Abbildung von Bead-Proben durch 180 µm ungefärbtes Hippocampus-Gewebe der Maus mit einer Wellenfront-Fehlerkorrektur von ~ 90 %. Es werden Punktspreizungsfunktion, Wellenfrontform und Zernike-Zerlegung von Bead-Proben vorgestellt. (2) Zweitens gehen wir von der Epifluoreszenz zur dSTORM-Bildgebung von Tubulin-gefärbten primären Hippocampuszellen der Maus über, die durch bis zu 180 µm ungefärbtes Hippocampusgewebe der Maus abgebildet werden. Wir zeigen, dass die Halbwertsbreite (Full Width at Half Maximum, FWHM) auffälliger Merkmale von unkorrigierten Epifloureszenz-Bildern zu dSTORM-Bildern, die durch die adaptive Optik korrigiert wurden, um fast eine Größenordnung reduziert werden kann. Wir präsentieren die Anzahl der dSTORM-Lokalisierungen und die FWHM auffälliger Merkmale als Funktion der Abbildungstiefe. KW - Einzelmolekülmikroskopie KW - Adaptive Optik KW - Adaptive Optics KW - Single Molecule Localization Microscopy KW - dSTORM Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-289951 ER -