TY - INPR A1 - Wohlgemuth, Matthias A1 - Mitric, Roland T1 - Excitation energy transport in DNA modelled by multi-chromophoric field-induced surface hopping T2 - Physical Chemistry Chemical Physics N2 - Absorption of ultraviolet light is known as a major source of carcinogenic mutations of DNA. The underlying processes of excitation energy dissipation are yet not fully understood. In this work we provide a new and generally applicable route for studying the excitation energy transport in multi-chromophoric complexes at an atomistic level. The surface-hopping approach in the frame of the extended Frenkel exciton model combined with QM/MM techniques allowed us to simulate the photodynamics of the alternating (dAdT)10 : (dAdT)10 double-stranded DNA. In accordance with recent experiments, we find that the excited state decay is multiexponential, involving a long and a short component which are due to two distinct mechanisms: formation of long-lived delocalized excitonic and charge transfer states vs. ultrafast decaying localized states resembling those of the bare nucleobases. Our simulations explain all stages of the ultrafast photodynamics including initial photoexcitation, dynamical evolution out of the Franck-Condon region, excimer formation and nonradiative relaxation to the ground state. KW - Photodynamics KW - DNA Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-209467 ET - submitted version ER - TY - THES A1 - Kramer, Christian T1 - Investigation of Nanostructure-Induced Localized Light Phenomena Using Ultrafast Laser Spectroscopy T1 - Untersuchung von nanostruktur-induzierten Lichtphänomenen mit Hilfe von Ultrakurzzeit-Laserspektroskopie N2 - In recent years, the interaction of light with subwavelength structures, i.e., structures that are smaller than the optical wavelength, became more and more interesting to scientific research, since it provides the opportunity to manipulate light-induced dynamics below the optical diffraction limit. Specifically designed nanomaterials can be utilized to tailor the temporal evolution of electromagnetic fields at the nanoscale. For the investigation of strongly localized processes, it is essential to resolve both their spatial and their temporal behavior. The aim of this thesis was to study and/or control the temporal evolution of three nanostructure-induced localized light phenomena by using ultrafast laser spectroscopy with high spatial resolution. In Chapter 4, the absorption of near-infrared light in thin-film a-Si:H solar cells was investigated. Using nanotextured instead of smooth interfaces for such devices leads to an increase of absorption from < 20% to more than 50% in the near-infrared regime. Time-resolved experiments with femtosecond laser pulses were performed to clarify the reason for this enhancement. The coherent backscattered radiation from nanotextured solar cell devices was measured as a function of the sample position and evaluated via spectral interferometry. Spatially varying resonance peaks in the recorded spectra indicated the formation of localized photonic modes within the nanotextured absorber layers. In order to identify the modes separately from each other, coherent two-dimensional (2D) nanoscopy was utilized, providing a high spatial resolution < 40 nm. In a nanoscopy measurement on a modified device with an exposed nanotextured a-Si:H absorber layer, hot-spot electron emission was observed and confirmed the presence of localized modes. Fitting the local 2D nanospectra at the hot-spot positions enabled the determination of the resonance frequencies and coherence lifetimes of the modes. The obtained lifetime values varied between 50 fs and 130 fs. Using a thermionic emission model allowed the calculation of the locally absorbed energy density and, with this, an estimation of the localization length of the photonic modes (≈1 μm). The localization could be classified by means of the estimated localization length and additional data evaluation of the backscattered spectra as strong localization ─ the so-called Anderson localization. Based on the experimental results, it was concluded that the enhanced absorption of near-infrared light in thin-film silicon solar cells with nanotextured interfaces is caused by the formation of strongly localized photonic modes within the disordered absorber layers. The incoming near-infrared light is trapped in these long-living modes until absorption occurs. In Chapter 5, a novel hybridized plasmonic device was introduced and investigated in both theory and experiment. It consists of two widely separated whispering gallery mode (WGM) nanoantennas located in an elliptical plasmonic cavity. The goal was to realize a periodic long-range energy transfer between the nanoantennas. In finite-difference time-domain (FDTD) simulations, the device was first optimized with respect to strong coupling between the localized antenna modes and the spatially-extended cavity mode. The geometrical parameters of the antennas and the cavity were adjusted separately so that the m="0" antenna mode and the cavity mode were resonant at λ="800 nm" . A high spatial overlap of the modes was achieved by positioning the two antennas in the focal spots of the cavity, leading to a distance between the antenna centers of more than twice the resonant wavelength of the modes. The spectral response of the optimized device revealed an energy splitting of the antenna and the cavity mode into three separated hybridized eigenmodes within an energy range of about 90 meV due to strong coupling. It could be well reproduced by a simple model of three coupled Lorentzian oscillators. In the time domain, an oscillatory energy transfer between both antennas with a period of 86 fs and an energy transfer efficiency of about 7% was observed for single-pulse excitation. For the experiments, devices with cavities and antennas of varying size were fabricated by means of focused-ion-beam (FIB) milling. Time-resolved correlation measurements were performed with high spatial and temporal resolution by using sequences of two femtosecond laser pulses for excitation and photoemission electron microscopy (PEEM) for detection. Local correlation traces at antennas in resonant devices, i.e., devices with enhanced electron emission at both antenna positions, were investigated and reconstructed by means of the coupled-oscillator model. The corresponding spectral response revealed separated peaks, confirming the formation of hybridized eigenmodes due to strong coupling. In a subsequent simulation for single-pulse excitation, one back-and-forth energy transfer between both antennas with an energy transfer efficiency of about 10% was observed. Based on the theoretical and experimental results, it was demonstrated that in the presented plasmonic device a periodic long-range energy transfer between the two nanoantennas is possible. Furthermore, the coupled-oscillator model enables one to study in depth how specific device properties impact the temporal electric-field dynamics within the device. This can be exploited to further optimize energy transfer efficiency of the device. Future applications are envisioned in ultrafast plasmonic nanocircuitry. Moreover, the presented device can be employed to realize efficient SPP-mediated strong coupling between widely separated quantum emitters. In Chapter 6, it was investigated in theory how the local optical chirality enhancement in the near field of plasmonic nanostructures can be optimized by tuning the far-field polarization of the incident light. An analytic expression was derived that enables the calculation of the optimal far-field polarizations, i.e., the two far-field polarizations which lead to the highest positive and negative local optical chirality, for any given nanostructure geometry. The two optimal far-field polarizations depend on the local optical response of the respective nanostructure and thus are functions of both the frequency ω and the position r. Their ellipticities differ only in their sign, i.e., in their direction of rotation in the time domain, and the angle between their orientations, i.e., the angle between the principal axes of their ellipses, is ±π/"2" . The handedness of optimal local optical chirality can be switched by switching between the optimal far-field polarizations. In numerical simulations, it was exemplarily shown for two specific nanostructure assemblies that the optimal local optical chirality can significantly exceed the optical chirality values of circularly polarized light in free space ─ the highest possible values in free space. The corresponding optimal far-field polarizations were different from linear and circular and varied with frequency. Using femtosecond polarization pulse shaping provides the opportunity to coherently control local optical chirality over a continuous frequency range. Furthermore, symmetry properties of nanostructures can be exploited to determine which far-field polarization is optimal. The theoretical findings can have impact on future experimental studies about local optical chirality enhancement. Tuning the far-field polarization of the incident light offers a promising tool to enhance chirally specific interactions of local electromagnetic fields with molecular and other quantum systems in the vicinity of plasmonic nanostructures. The presented approach can be utilized for applications in chiral sensing of adsorbed molecules, time-resolved chirality-sensitive spectroscopy, and chiral quantum control. In conclusion, each of the localized light phenomena that were investigated in this thesis ─ the enhanced local absorption of near-infrared light due to the formation of localized photonic modes, the periodic long-range energy transfer between two nanoantennas within an elliptical plasmonic cavity, and the optimization of local optical chirality enhancement by tuning the far-field polarization of the incident light ─ can open up new perspectives for a variety of future applications. . N2 - In den vergangenen Jahren rückte die Wechselwirkung von Licht mit Strukturen, deren Größe kleiner als die optische Wellenlänge ist, immer mehr in den Fokus der wissenschaftlichen Forschung, da sie die Möglichkeit bietet, lichtinduzierte Dynamiken unterhalb des optischen Beugungslimits zu manipulieren. Speziell hergestellte Nanomaterialien können verwendet werden, um die zeitliche Entwicklung von elektromagnetischen Feldern auf der Nanoskala zu steuern. Für die Untersuchung von stark lokalisierten Prozessen ist es essentiell, sowohl ihr räumliches als auch ihr zeitliches Verhalten aufzulösen. Das Ziel dieser Dissertation war es, die zeitliche Entwicklung von drei lokalisierten Lichtphänomenen, hervorgerufen durch drei unterschiedliche nanostrukturierte Materialien, mit Hilfe von Ultrakurzzeit-spektroskopie unter hoher räumlicher Auflösung zu untersuchen und/oder zu kontrollieren. In Kapitel 4 dieser Arbeit wurde die Absorption von Nahinfrarotlicht in a-Si:H Dünnschicht-Solarzellen untersucht. Durch die Verwendung von nanotexturierten statt glatten Grenzschichten erreicht man bei solchen Solarzellen einen Anstieg der Absorption von < 20% auf über 50% im Nahinfrarotbereich. Um der Ursache dieser Verstärkung auf den Grund zu gehen, wurden zeitaufgelöste Experimente mit Femtosekundenlaserpulsen durchgeführt. Zunächst wurde die kohärente zurückgestreute Strahlung von nanotexturierten Solarzellen in Abhängigkeit der Probenposition gemessen und mit Hilfe von spektraler Interferometrie ausgewertet. Räumlich variierende Resonanzpeaks in den aufgenommenen Spektren deuteten auf die Bildung von lokalisierten photonischen Moden innerhalb der nanotexturierten Absorberschichten hin. Um die Moden räumlich getrennt voneinander identifizieren zu können, wurde anschließend die Methode der kohärenten zweidimensionalen (2D) Nanoskopie angewandt, die eine hohe räumliche Auflösung < 40 nm ermöglichte. In einer Nanoskopie-Messung an einer modifizierten Solarzellen-Probe mit einer freiliegenden nanotexturierten a-Si:H Absorberschicht wurde eine Elektronenemission beobachtet, die von räumlich begrenzten Hot Spots dominiert war und das Vorhandensein von lokalisierten Moden bestätigte. Über das Fitten der lokalen 2D Nanospektren an den Positionen der Hot Spots wurden die Resonanzfrequenzen und die Kohärenzlebenszeiten der Moden bestimmt. Die ermittelten Werte für die Lebenszeiten lagen zwischen 50 fs und 130 fs. Mit Hilfe eines Modells für thermionische Elektronenemission konnte die lokal absorbierte Energiedichte bestimmt und damit die Lokalisierungslänge der photonischen Moden auf etwa 1 μm abgeschätzt werden. Zudem konnte die Lokalisierung über die abgeschätzte Lokalisierungslänge und eine zusätzliche Datenauswertung der zurückgestreuten Spektren als starke Lokalisierung, die sogenannte Anderson-Lokalisierung, klassifiziert werden. Auf der Basis der experimentellen Ergebnisse wurde daher geschlussfolgert, dass die verstärkte Absorption von Nahinfrarotlicht in Silizium-Dünnschicht-Solarzellen mit nanotexturierten Grenzschichten durch die Bildung von stark lokalisierten photonischen Moden innerhalb der ungeordneten Absorberschichten verursacht wird. Das einfallende Nahinfrarotlicht wird in diesen langlebigen Moden gefangen, bis es schließlich irgendwann absorbiert wird. In Kaptiel 5 wurde eine neuartige plasmonische Struktur vorgestellt und sowohl in der Theorie als auch experimentell untersucht. Die Struktur besteht aus einer elliptischen Kavität, in der sich zwei räumlich getrennte whispering gallery mode (WGM) Nanoantennen befinden. Das Ziel war es nun, einen periodischen langreichweitigen Energietransfer zwischen beiden Nanoantennen zu realisieren. Zuerst wurde die Struktur mit Hilfe von finite-difference time-domain (FDTD) Simulationen darauf optimiert, eine starke Kopplung zwischen den lokalisierten Antennenmoden und der räumlich ausgedehnten Kavitätsmode zu erreichen. Die geometrischen Parameter der Antennen und der Kavität wurden getrennt voneinander so eingestellt, dass sowohl die m="0" Antennenmode als auch die Kavitätsmode bei λ="800 nm" resonant waren. Ein hoher räumlicher Modenüberlapp wurde dadurch erzielt, dass die beiden Antennen jeweils in die Brennpunkte der elliptischen Kavität positioniert wurden. Die daraus resultierende Distanz zwischen den Antennenzentren war dadurch mehr als doppelt so hoch wie die Resonanzwellenlänge der Moden. Aufgrund starker Kopplung war in der spektralen Antwort der optimierten Struktur eine Energieaufspaltung der Antennen- und der Kavitätsmode in drei getrennte hybridisierte Eigenmoden innerhalb eines Energiebereichs von ca. 90 meV zu sehen. Die Antwortfunktionen konnten sehr gut mit Hilfe eines einfachen Modells aus drei gekoppelten Lorentz-Oszillatoren reproduziert werden. Im Zeitraum wurde für eine Einfach-Puls-Anregung der Struktur ein ozillatorischer Antennen-Energietransfer mit einer Periode von 86 fs und einer Energietransfer-Effizienz von ungefähr 7% beobachtet. Für die Experimente wurden Strukturen mit Kavitäten und Antennen unterschiedlicher Größe über focused-ion-beam (FIB) milling hergestellt. Es wurden zeitaufgelöste Korrelationsmessungen durchgeführt, wobei zwei Femtosekundenlaserpulse zur Anregung und Photoemissionselektronen-Mikroskopie (PEEM) für die Detektion verwendet wurden. Dies ermöglichte sowohl eine hohe zeitliche als auch eine hohe räumliche Auflösung. In den Messungen wurden lokale Korrelationssignale an Antennen in resonanten Strukturen, sprich, Strukturen mit deutlich erhöhter Photoemission an beiden Antennenpositionen, untersucht und mit Hilfe des gekoppelten Lorentz-Oszillatormodells rekonstruiert. Die daraus ermittelte spektrale Antwort zeigte getrennte Peaks und bestätigte damit die Bildung hybridisierter Eigenmoden aufgrund starker Kopplung. In einer nachfolgenden Simulation für Einfach-Puls-Anregung wurde ein einmaliger Hin-und-Her-Energietransfer zwischen den Antennen mit einer Energietransfereffizienz von ca. 10% beobachtet. Ausgehend von den theoretischen und experimentellen Ergebnissen wurde gezeigt, dass in der hier vorgestellten Struktur ein periodischer langreichweitiger Energietransfer zwischen den zwei Nanoantennen möglich ist. Zudem ermöglicht es das gekoppelte Oszillatoren-Modell, im Detail zu untersuchen, wie spezifische Eigenschaften der Struktur die Dynamik des zeitlichen elektrischen Feldes bzw. der Energieumverteilung innerhalb der Struktur beeinflussen. Dies kann dazu genutzt werden, die Energietransfer-Effizienz der Struktur noch weiter zu optimieren. Zukünftige Anwendungsmöglichkeiten finden sich im Bereich der ultraschnellen plasmonischen Nanoschaltkreise. Darüberhinaus kann die Struktur genutzt werden, um eine effiziente SPP-vermittelte starke Kopplung zwischen weit voneinder entfernten Quantenemittern zu erreichen. In Kapitel 6 wurde untersucht, wie die lokale Verstärkung der optischen Chiralität im Nahfeld plasmonischer Nanostrukturen durch das Einstellen der Fernfeld-Polarisation des einfallenden Lichts optimiert werden kann. Zu diesem Zweck wurde ein analytischer Ausdruck hergeleitet, welcher die Berechnung der optimalen Fernfeld-Polarisationen für jede beliebige Nanostruktur-Geometrie ermöglicht. Dabei versteht man unter den optimalen Fernfeld-Polarisationen diejenigen zwei, welche zur höchsten positiven und negativen lokalen optischen Chiralität führen. Da diese von der lokalen optischen Antwort der jeweiligen Nanostruktur abhängig sind, lassen sie sich sowohl als Funktion der Frequenz ω als auch als Funktion der Position r beschreiben. Die Elliptizitäten der beiden optimalen Fernfeld-Polarisationen unterscheiden sich nur in ihrem Vorzeichen, also ihrer Rotationsrichtung im Zeitraum, und der Winkel zwischen ihren Orientierungen (entspricht dem Winkel zwischen den Hauptachsen ihrer Ellipsen) beträgt ±π/"2" . Die Händigkeit der optimalen lokalen optischen Chiralität kann über das Schalten zwischen den optimalen Fernfeld-Polarisationen hin und her gewechselt werden. Mit Hilfe von numerischen Simulationen wurde für zwei konkrete Nanostrukturen beispielhaft demonstriert, dass für die lokale optische Chiralität Werte erreicht werden können, die deutlich höher sind als die optischen Chiralitätswerte von zirkular polarisiertem Licht im freien Raum ─ die höchstmöglichen Werte für optische Chiralität im freien Raum. Die entsprechenden optimalen Fernfeld-Polarisationen haben sich dabei von linearer und zirkularer Polarisation unterschieden und variierten mit der Frequenz. Die Anwendung von Femtosekunden-Polarisationspulsformung bietet die Möglichkeit, die lokale optische Chiralität kohärent über einen kontinuierlichen Frequenzbereich zu kontrollieren. Außerdem können Symmetrieeigenschaften der Nanostrukturen genutzt werden, um zu bestimmen, welche Fernfeld-Polarisation optimal ist. Die theoretischen Erkenntnisse können zukünftige experimentelle Studien über die lokale Verstärkung der optischen Chiralität beeinflussen. Das Einstellen der Fernfeld-Polarisation des einfallenden Lichts stellt ein vielversprechendes Hilfsmittel dar, um chiral-spezifische Wechselwirkungen von lokalen elektromagnetischen Feldern mit molekularen und anderen Quantensystemen in der Nähe plasmonischer Nanostrukturen zu verstärken. Die hier gezeigte Methode kann Anwendung finden in der chiralen Erkennung adsorbierter Moleküle, in der zeitaufgelösten chiral-sensitiven Spektroskopie und in der chiralen Quantenkontrolle. Abschließend lässt sich festhalten, dass jedes der lokalisierten Lichtphänomene, die in dieser Arbeit untersucht wurden ─ die verstärkte lokale Absorption von Nahinfrarotlicht aufgrund der Bildung von lokalisierten photonischen Moden, der periodische langreichweitige Energietransfer zwischen zwei Nanoantennen in einer plasmonischen elliptischen Kavität und die Optimierung der lokalen Verstärkung der optischen Chiralität über das Einstellen der Fernfeld-Polarisation des einfallenden Lichts ─ neue Perspektiven eröffnen kann für eine Vielzahl von zukünftigen Anwendungsmöglichkeiten. KW - Ultrakurzzeitspektroskopie KW - Kohärente Optik KW - Chiralität KW - Nahfeldoptik KW - Ultrakurzzeitspektroskopie KW - Nahfeldoptik KW - Kohärente 2D Spektroskopie KW - Oberflächenplasmonresonanz KW - Zirkulardichroismus Spektroskopie KW - Ultrafast spectroscopy KW - Nano-optics KW - Coherent 2D spectroscopy KW - Surface plasmons KW - Circular dichroism spectroscopy Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-150681 ER - TY - THES A1 - Hader, Kilian T1 - Lokalisierungsdynamik unter Berücksichtigung von Molekül-Feld-Wechselwirkung, Kern-Elektron-Kopplung und Exziton-Exziton-Annihilierung T1 - Localization dynamics considering molecule-field interaction, nuclear-electron coupling and exciton-exciton annihilation N2 - Diese Arbeit befasst sich mit verschiedenen Aspekten der Dynamik von Kernen, Elektronen und gekoppelten Kern-Elektron-Systemen, wobei je nach System unterschiedliche Herangehensweisen gewählt wurden. Zentrale Punkte sind bei allen drei Kapiteln einerseits die Lokalisierung von Teilchen und Energie und andererseits eine hohe Sensitivität in Bezug auf die Wahl der Anfangsbedingungen. Im ersten Teil wurden von der Carrier-Envelope-Phase (CEP) abhängende, laser-induzierte Lokalisierungen betrachtet. Das zentrale Element ist dabei das entwickelte Doppelpulsschema, mit welchem eine CEP-Abhängigkeit in beobachtbaren Größen erzeugt wird. Als Beispielsysteme wurden die Fragmentation im D₂⁺-Modellsystem und eine Isomerisierung im Doppelminimumpotential (DMP) untersucht. Als Observable wird die Asymmetrie betrachtet Im DMP kann die Asymmetrie mit dem Entantiomeren/Isomerenüberschuss gleich gesetzt werden kann und im D₂⁺-Modellsystem mit der Lokalisierung des Elektrons auf einem der beiden dissoziierenden Kerne. Eine Phasenabhängigkeit der Asymmetrien besteht nur für die CEP des zweiten Pulses φ₂, für welchen keine Begrenzungen für die Anzahl an Laserzyklen auftreten. Im DMP wurde die CEP-Abhängigkeit der Asymmetrien auch bei unterschiedlichen Startkonfigurationen untersucht. Für alle untersuchten Startkonfigurationen konnte ein Laserparametersatz gefunden werden, der für zumindest eine der beiden Asymmetrien eine CEP-Abhängigkeit liefert. Aufgrund der aufgehobenen energetischen Entartung der Paare gerader und ungerader Symmetrie ist die resultierende Lokalisierung zeitabhängig. Zur Messung der vorhergesagten Dynamiken ist z.B. die Aufnahme eines Photoelektronen-Spektrums denkbar. In nächsten Kapitel wurden unterschiedliche Dynamiken innerhalb eines 4d Kern-Elektron-Modells in der Nähe einer konischen Durchschneidung (CI) zweier Potentiale betrachtet. Hierbei ist hervorzuheben, dass eine solche gleichzeitige Untersuchung von Kern- und Elektron-Dynamik in Systemen mit CIs in der Literatur, nach Wissen des Autors, bisher nicht veröffentlicht ist. Das 4d-Potential wurde mit Hilfe des sogenannten Potfit-Algorithmus gefittet. Dieser Fit wurde anschließend verwendet, um die Dynamik des gekoppelten Systems mit Hilfe der ”Multi-Configuration Time-Dependent Hartree”(MCTDH)-Methode zu berechnen. Aus der Analyse der gekoppelten Kern-Elektron-Wellenfunktion ergaben sich zwei grundlegend unterschiedliche Klassen von Dynamiken: • Diabatisch: Kern- und Elektrondynamik sind nahezu entkoppelt. Der Kern bewegt sich und das Elektron bleibt statisch. • Adiabatisch: Kern- und Elektrondynamik sind stark gekoppelt. Die Kerndynamik findet auf Kreisbahnen statt. Mit der Rotation der Kerndichte um den Winkel φ geht eine Rotation der Elektron-Dichte einher. Die diabatische Bewegung entspricht der Dynamik durch die konische Durchschneidung und die adiabatische Bewegung der Dynamik auf der unteren Potentialfläche. Welche der beiden Dynamiken stattfindet, wird durch die Wahl der Anfangsbedingung bestimmt. Der wesentliche Unterschied zwischen den beiden Startzuständen ist dabei die Lage des Knotens im elektronischen Anteil der Wellenfunktion. In den diabatischen Bewegungen bleibt z.B. der pₓ -artige Charakter der elektronischen Wellenfunktion konstant, wohingegen sich bei der adiabatischen Dynamik der Charakter mit der Kernbewegung ändert. Die Zeitersparnis durch die Verwendung des MCTDH-Ansatzes im Vergleich zur Split-Operator-Methode liegt etwa bei einem Faktor 5. Das letzte Kapitel widmet sich der mikroskopischen Beschreibung von Exziton-Exziton- Annihilierung (EEA). Dabei werden numerische Lösungen der aus einem mikro- skopischen Modell hergeleiteten Ratengleichungen mit Messungen ( transienter Absorption) verglichen. Es wurden zwei Systeme untersucht: ein Squarain-basiertes Heteropolymer (SQA-SQB)ₙ und ein [2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenvinylen]-Polymer, auch bekannt als MEH-PPV. In beiden Fällen gelang die systematische Parameterbestimmung mit Hilfe einer Aufteilung in lokalisierte Subsysteme. Diese Subsysteme werden einzeln gewichtet und anschließend aufsummiert, wobei die Gewichte optimiert werden können. Aus den so erhaltenen Parametern ergibt sich für beide Systeme ein ähnliches Bild: • Durch ultraschnelle Lokalisierung der Anregung im fs-Bereich auf kleinere Aggregateinheiten bilden sich voneinander getrennte Subsysteme. • Die in den Subsystemen lokalisierten Exzitonen können sich nur innerhalb dieser Bereiche frei bewegen. Es ist ausreichend, direkt benachbarte Mono-, Bi-, Tri- und Tetra-Exzitonen in bis zu zwei Dimensionen zu berücksichtigen. • Auf einer fs-Zeitskala annihilieren direkt benachbarte Exzitonen. • Im MEH-PPV ergibt sich der Signalzerfall im fs-Bereich als Mittelwert aus einer schnellen (zwischen Ketten) und einer langsamen (innerhalb von Ketten) Annihilierung. • Im ps- bis ns-Bereich wird sowohl durch Diffusion vermittelte Annihilierung, also auch der Zerfall der ersten angeregten Zustände bedeutsam. N2 - In the present work the dynamics of nuclei, electrons, and coupled nuclei-electron systems are examined in different ways. Items that are central in all three chapters are, on the one hand localization of particles and energy and, on the other, a high sensitivity to the choice of initial condition. In the first chapter carrier-envelope-phase (CEP) dependent, laser induced localization is examined. The main element of the considerations is a double pulse scheme, which creates a CEP-dependence in the monitored observables. As example systems the fragmentation of a D₂⁺-model and the isomerization in a double well potential (DWP) are investigated. As an observable the asymmetry is chosen. In the DWP this entity can be related to enantiomeric or isomeric excess and in the D₂⁺-model it describes the localization of the electron on a fragment. The phase dependent part of the asymmetries only relies on the CEP φ₂ of the second pulse which does not have any restrictions on the amount of laser cycles. In the DWP a CEP-dependence of the asymmetries could be examined starting from different initial configurations. For all different initial conditions a set of laser parameters could be found which produces at least one CEP-dependent asymmetry. Due to the removed degeneracy between states of even and odd parity, the resulting localization in the left or right potential well is time-dependent. - fied such that the first pulse does not populate all states equally. A possible way to test the predicted behavior experimentally is the measurement of photo-electron spectra. In the next chapter coupled nucleus-electron-dynamics in the vicinity of a conical intersections (CI) of two potentials are investigated in a 4-d model system.Such examinations of coupled nucleus-electron-dynamics on equal footing in systems containing CIs is, to the author’s knowledge, not published in literature. The 4-d potential has been fitted by use of the so-called Potfit-algorithm which subsequently could be used to calculate the dynamics of the coupled system in the ”Multi-Configuration Time-Dependent Hartree”(MCTDH)-framework. The analysis of the coupled nucleus-electron-wavefunction yielded two fundamentally different classes of dynamics: • Diabatic: Nucleus- and electron dynamics are nearly uncoupled. The nucleus moves while the electron remains static. • Adiabatic: Nucleus- and electron dynamics are strongly coupled. The dynamic of the nucleus takes place on orbits. The rotation of the nuclear density by the angle φ is accompanied by a rotation of the electron-density at the same angle. The diabatic dynamics are present if the wave packet is passing through the conical intersection and the adiabatic dynamics can be attributed to a wave packet moving on the lower potential surface. Which of the two classes of dynamics takes place can be controlled by choice of the initial wavefunction. The most significant difference between the two initial wavefunctions is the plane in which the node of the electronic wavefunction is located. In case of a diabatic motion the pₓ -like character of the wavefunctions remains constant, while in case of a adiabatic motion the character changes with the motion of the nucleus.The time saving by usage of the MCTDH-method in comparison to the Split-Operator-method is about a factor of 5. The last chapter is dedicated to the microscopic description of exciton-exciton-annihilation (EEA). The numerical solution of the rate equations which are derived starting from a microscopic Hamiltonian, are compared with measurements. The experimental data are time-dependent traces of transient absorption measurements at different laser fluences which were available for two different systems:a squaraine-based copolymer (SQA-SQB)ₙ and a [2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] polymer also know as MEH-PPV. In both cases a systematic parameter determination could be achieved by introduction of localized subsystems. These subsystems are weighted independently and are summed up whereby the weighs can be optimized. The resulting interpretation of the obtained parameters is similar for both systems: • Ultrafast localization of the excitation energy takes place in the fs-regime which leads to excitons residing on smaller subsystems. • Excitons in these subsystems can only move inside of these domains. A re- construction of experimental data is feasible by inclusion of mono-, bi-, tri- and tetra-excitons in up to two dimensions. • In the fs-regime neighbouring excitons annihilate • In the MEH-PPV polymer the signal decay in the fs-regime can be described as the average of a fast annihilation (between chains) and a slow annihilation (inside chains). •On a longer time-scale (ps to ns) diffusion-meditated annihilation and decay of the first excited states take place KW - Quantenmechanik KW - Quantenchemie KW - Laserstrahlung KW - Nichtadiabatischer Prozess KW - Exziton KW - multicycle CEP control KW - exciton exciton annihilation KW - exact conical intersection dynamics KW - coupled nuclear-electron MCTDH KW - quantum dynamics KW - Quantentheoretische Chemie Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146735 ER - TY - THES A1 - Brückner, Charlotte T1 - The Electronic Structure and Optoelectronic Processes at the Interfaces in Organic Solar Cells Composed of Small Organic Molecules - A Computational Analysis of Molecular, Intermolecular, and Aggregate Aspects T1 - Die elektronische Struktur und die optoelektronischen Prozesse an den Grenzflächen in organischen Solarzellen aus kleinen organischen Molekülen - eine theoretische Analyse auf molekularer, intermolekularer und Aggregatebene N2 - Describing the light-to-energy conversion in OSCs requires a multiscale understanding of the involved optoelectronic processes, i.e., an understanding from the molecular, intermolecular, and aggregate perspective. This thesis presents such a multiscale description to provide insight into the processes in the vicinity of the organic::organic interface, which are crucial for the overall performance of OSCs. Light absorption, exciton diffusion, photoinduced charge transfer at the donor-acceptor interface, and charge separation are included. In order to establish structure-property relationships, a variety of different molecular p-type semiconductors are combined at the organic donor-acceptor heterojunction with fullerene C60, one of the most common acceptors in OSCs. Starting with a comprehensive analysis of the accuracy of diverse ab initio, DFT, and semiempiric methods for the properties of the individual molecules, the intermolecular, and aggregate/device stage are subsequently addressed. At all stages, both methodological concepts and physical aspects in OSCs are discussed to extend the microscopic understanding of the charge generation processes. N2 - Um die Umwandlung von Licht zu Strom in organischen Solarzellen zu verstehen, müssen die beteiligten optoelektronischen Prozesse sowohl auf molekularem als auch auf intermolekularem und auf dem Aggregatniveau beschrieben werden. Diese Arbeit stellt eine solche mehrstufige Beschreibung dar, um zum grundlegenden Verständnis derjenigen Prozesse am organisch::organischen Interface beizutragen, die für die finale Gesamtleistung der Zelle ausschlaggebend sind. Dabei werden die wesentlichen Schritte von der Lichtabsorption und Exzitonendiffusion über den photoinduzierte Charge-Transfer-Schritt am Donor-Akzeptor-Interface bis hin zur endgültigen Ladungstrennung berücksichtigt. Um auf Struktur-Eigenschafts-Beziehungen rückschließen zu können, wurden verschiedene molekulare p-Halbleiter in der heterojunction mit Fulleren C60 kombiniert, einem der gängigsten Akzeptoren in organischen Solarzellen. Nach einer umfangreichen Bewertung der Eignung verschiedener ab initio und semiempirischer Methoden sowie diverser DFT-Funktionale für die Beschreibung der molekularen Eigenschaften wurden intermolekulare und Aggregataspekte diskutiert. Auf allen Ebenen, d.h. auf der molekularen, intermolekularen und auf der Aggregatebene, stehen sowohl methodische Ansätze als auch grundlegendende photophysikalische Überlegungen im Mittelpunkt, um das mikroskopische Verständnis der Ladungsträgererzeugung in organischen Solarzellen zu erweitern. KW - Benchmark KW - Solarzelle KW - organic interfaces KW - benchmark KW - charge carrier generation KW - organische Grenzflächen KW - Benchmark KW - Ladungsträgererzeugung KW - solar cell Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-141652 ER - TY - THES A1 - Heilos, Anna T1 - Mechanistic Insights into the Inhibition of Cathepsin B and Rhodesain with Low-Molecular Inhibitors T1 - Mechanistische Untersuchungen zur Inhibition von Cathepsin B und Rhodesain mit niedermolekularen Inhibitoren N2 - Cysteine proteases play a crucial role in medical chemistry concerning various fields reaching from more common ailments like cancer and hepatitis to less noted tropical diseases, namely the so-called African Sleeping Sickness (Human Arfican Trypanosomiasis). Detailed knowledge about the catalytic function of these systems is highly desirable for drug research in the respective areas. In this work, the inhibition mechanisms of the two cysteine proteases cathepsin B and rhodesain with respectively one low-molecular inhibitor class were investigated in detail, using computational methods. In order to sufficiently describe macromolecular systems, molecular mechanics based methods (MM) and quantum mechanical based method (QM), as well as hybrid methods (QM/MM) combining those two approaches, were applied. For Cathespin B, carbamate-based molecules were investigated as potential inhibitors for the cysteine protease. The results indicate, that water-bridged proton-transfer reactions play a crucial role for the inhibition. The energetically most favoured pathway (according to the calculations) includes an elimination reaction following an E1cB mechanism with a subsequent carbamylation of the active site amino acid cysteine. Nitroalkene derivatives were investigated as inhibitors for rhodesain. The investigation of structurally similar inhibitors showed, that even small steric differences can crucially influence the inhibition potential of the components. Furthermore, the impact of a fluorination of the nitroalkene inhibitors on the inhibition mechanism was investigated. According to experimental data measured from the working group of professor Schirmeister in Mainz, fluorinated nitroalkenes show – in contrast to the unfluorinated compounds – a time dependent inhibition efficiency. The calculations of the systems indicate, that the fluorination impacts the non-covalent interactions of the inhibitors with the enzymatic environment of the enzyme which results in a different inhibition behaviour. N2 - Cysteinproteasen spielen eine wichtige Rolle in der medizinischen Chemie. Nicht nur im Bereich bekannterer Krankheiten wie Krebs oder Hepatitis, sondern auch bezüglich weniger verbreiteter, tropischer Krankheiten wie der sogenannten afrikanischen Schlafkrankheit (Afrikanische Trypanosomiasis) haben diese Enzyme eine große Bedeutung. Im Bereich der Wirkstofffindung ist ein detailliertes Wissen über die katalytische Funktion der an einer Krankheit beteiligten Enzyme unabdingbar .In der vorliegenden Arbeit wurden die Inhibitionsmechanismen der beiden Cysteinproteasen Cathepsin B und Rhodesain in Verbindung mit zwei niedermolekularen Inhibitorklassen anhand theoretischer Berechnungen untersucht. Um die makromolekularen Systeme ausreichend genau beschreiben zu können, wurden neben molekularmechanischen (MM) und quantenmechanischen (QM) Ansätzen auch Hybridmethoden verwendet, welche beide Ansätze (QM/MM) verbinden. Für Cathepsin B wurden Carbamat-basierte Moleküle als potenzielle Inhibitoren der Cysteinprotease untersucht. Die Ergebnisse weisen darauf hin, dass wasser-verbrückte Protonentransferreaktionen eine entscheidende Rolle für die Inhibition spielen. Der laut den Rechnungen energetisch günstigste Mechanismus beinhaltet eine Eliminierungsreaktion nach einem E1cB Mechanismus gefolgt von der Carbamylierung der Aminosäure Cystein in der aktiven Tasche des Enzyms. Nitroalken-Derivate wurden als potenzielle Rhodesain Inhibitoren untersucht. Der Vergleich strukturell ähnlicher Verbindungen weist darauf hin, dass schon kleine sterische Veränderungen einen großen Einfluss auf das Inhibitionspotenzial der Nitroalkene haben können. Außerdem wurde der Einfluss einer Fluorierung der Inhibitoren anhand von Berechnungen untersucht. Messungen der Arbeitsgruppe von Prof. Schirmeister in Mainz zu fluorierten und unfluorierten Nitroalkenen zeigen, dass die fluorierten Verbindungen ein zeitabhängiges Inhibitionspotenzial in Rhodesain aufweisen. Die Berechnungen der Systeme deuten darauf hin, dass die Fluorierung die nicht-kovalenten Wechselwirkungen der Inhibitoren mit der enzymatischen Umgebung des Systems beeinflussen, was zu einem unterschiedlichen Inhibitionsverhalten führt. KW - Cysteinproteasen KW - Inhibitor KW - Mechanismus KW - Berechnung KW - Inhibition Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178228 ER - TY - THES A1 - Constantinidis, Philipp T1 - Schwingungsspektroskopische Untersuchung reaktiver Moleküle und ihrer Hochtemperatur-Reaktionsprodukte T1 - Vibrational spectroscopy of reactive molecules and their high-temperature reaction products N2 - Schwingungsspektroskopie ist eine vielseitige spektroskopische Methode, mit der Molekülstrukturen und inter-/intramolekulare Wechselwirkungen untersucht werden können. Sie ist deshalb ein hervorragendes Mittel für die Identifikation von Molekülen. Die vorliegende Arbeit umfasst drei Projekte, in denen Schwingungsspektroskopie angewandt wurde, um reaktive Moleküle und ihre Hochtemperatur-Reaktionsprodukte zu untersuchen: 1. Die Aufklärung der Entstehungsmechanismen von polycyclischen aromatischen Kohlenwasserstoffen (PAKs) in Verbrennungsprozessen ist eines der Hauptanliegen der Verbrennungschemie. In der vorliegenden Arbeit wurde IR/UV-Ion-Dip-Spektroskopie in Verbindung mit DFT-Frequenzrechnungen und FTIR-Messungen angewandt, um Produkte von Radikal-Radikal-Reaktionen in einem Mikroreaktor bei hohen Temperaturen zu identifizieren. Als IR-Laserquelle für die IR/UV-Ion-Dip-Experimente diente der Freie-Elektronen-Laser FELIX (Free-Electron Laser for Infrared eXperiments) in Nijmegen (Niederlande). In einem Teilprojekt wurde der A 1A´ (S1) <- X 1A´ (S0) Übergang in 1-(Phenylethinyl)naphthalin (1-PEN), einem mutmaßlich verbrennungsrelevanten Molekül, mit [1+1]-REMPI-Spektroskopie untersucht. 2. Die Identifikation von gasförmigen Reaktionsprodukten bei der thermischen Analyse (EGA: Emissionsgasanalyse) kann als komplementäre Methode zur DTA/TG zusätzliche Informationen für die Aufklärung von Reaktionsmechanismen liefern. Der Aufbau eines elementaren EGA/FTIR-Experiments, basierend auf einer heizbaren IR-Gaszelle, ermöglichte in der vorliegenden Arbeit die Durchführung dynamischer IR-Messungen, mit denen thermische Umsetzungen von Übergangsmetall-Precursorkomplexen zu Koordinationspolymeren untersucht wurden. 3. Die Synthese des ersten bei Raumtemperatur stabilen Diborins, einer Verbindung mit einer Bor-Bor-Dreifachbindung, stellte einen Meilenstein in der elementorganischen Chemie dar. Dies implizierte eine umfassende Untersuchung der Eigenschaften der BB-Bindung und hatte die Synthese einer Reihe ähnlicher Bor-Bor-Mehrfachbindungssysteme mit variierenden Bindungseigenschaften zur Folge. In der vorliegenden Arbeit wurde Raman-Spektroskopie in Verbindung mit DFT-Frequenzrechnungen angewandt, um für diese Bor-Bor-Systeme die strukturellen/elektronischen Eigenschaften der zentralen CBBC-Einheit zu untersuchen. N2 - Vibrational spectroscopy is a versatile spectroscopic technique for the investigation of the molecular structure and inter-/intramolecular interactions. Therefore it is an excellent means for their identification. The present work comprises three projects, in which vibrational spectroscopy was applied to study reactive molecules and their high-temperature reaction products: 1. The elucidation of the mechanisms of polycyclic aromatic hydrocarbon (PAH) formation in combustion processes is one of the main topics of combustion chemistry. In the present work IR/UV ion dip spectroscopy in combination with DFT frequency computations and FTIR measurements was applied to identify the products of radical-radical reactions in a heated micro-reactor. The free-electron laser FELIX (Free-Electron Laser for Infrared eXperiments) in Nijmegen (the Netherlands) served as the IR laser source for the IR/UV ion dip experiments. As part of the project the A 1A´ (S1) <- X 1A´ (S0) transition in 1-(phenylethynyl)naphthalene (1-PEN), a presumably combustion relevant molecule, was investigated by [1+1]-REMPI spectroscopy. 2. As complementary method to DTA/TG the identification of gaseous reaction products in thermal analysis (EGA: evolved gas analysis) can provide auxiliary information for the elucidation of reaction mechanisms. The setup of a plain EGA/FTIR experiment based on a heatable IR gas cell in the present work allowed for the conduction of dynamic IR measurements. By this means thermal conversions of transition metal precursor complexes to coordination polymers were investigated. 3. The synthesis of the first ambient-temperature stable diboryne, a compound with a boron-boron triple bond, constituted a milestone in element organic chemistry. This implied a comprehensive investigation on the properties of the BB bond and was followed by the synthesis of a series of similar boron boron multiple bond systems with varying bond properties. In the present work Raman spectroscopy in combination with DFT frequency computations was conducted on these boron boron systems to investigate the structural/electronic properties of their central CBBC unit. KW - Schwingungsspektroskopie KW - Freie-Elektronen-Laser KW - Fotoionisation KW - Bimolekulare Reaktion KW - Polycyclische Aromaten KW - Raman-Spektroskopie KW - Thermoanalyse KW - EGA-FTIR KW - Radikal Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-179178 ER - TY - THES A1 - Bellinger, Daniel T1 - Implementation of new reaction pathway determining methods and study of solvent effects on the excited state nature of perylene based dyes T1 - Implementierung neuer Reaktionspfad bestimmender Methoden und Untersuchung von Lösungsmitteleinflüssen auf die Natur der angeregten Zustände perylen-basierter Farbstoffe N2 - Two thematic complexes were addressed within this work. One part is related to improvements and new implementations into the CAST program package. Thereby the main focus laid on the delivery of a tool which can be used to characterize complex reactions and their mechanisms. But also within the new force field (FF) method (SAPT-FF) within the CAST program, several improvements were made. The second topic is related to the description of dye molecules and their spectral properties. The main focus within these studies was set on the influence of the environment on these properties. In the first topic improvements of the local acting NEB (nudged elastic band) methods were included and the number of available methods was extended. The initial pathway generation was improved by implementing the IDPP (image dependent pair potential) method and a new method was implemented for describing temperature dependent pathways. Additionally, improvements have been made to the optimization routines (global NEB). As a second part the Pathopt (PO) method was considerably improved. In the beginning of the work the original PO idea was used. In this approach one starts with a global optimization on one n-1 dimensional hyperplane which divides the reaction into two sub-areas for obtaining guesses of TSs (transition states). These found TS guesses were used to optimize to the ”true” TS. Starting from the optimized ones a relaxation to the next connected minima is done. This idea has been automatically implemented and extended to several number of hyperplanes. In this manner a group of pathsegments is obtained which needs to be connected, but within this work it was realized that such a procedure might be not very efficient. Therefore, a new strategy was implemented which is founded on the same constrained global optimization scheme (MCM) for which the user defines the number of hyperplanes generated. The number of such generated hyperplanes should be large enough 134 to describe the space between the concerning reactants in a sufficient way. The found minima are directly used to built up the reaction pathway. For this purpose a RMSD (root mean square deviation) criterion is used to walk along ways of minimal change from one to another hyperplane. To prove the implementations various test calculations were carried out and extensions included to prove the capabilities of the new strategy. Related to these tests a new strategy for applying the move steps in MCM (Monte Carlo with minimization) was realized which is also related to the question of the coordinates representation. We were able to show that the hopping steps in MCM can be improved by applying Cartesian steps in combination of random dihedral moves with respect to the constraint. In this way it was possible to show that a large variety of systems can be treated. An additional chapter shows the improvements of the SAPT-FF implementation and related test cases. It was possible to treat benzene dimer and cluster systems of different sizes consistently also in accordance with high level ab initio based approaches. Furthermore, we showed that the SAPT-FF with the right parameters outperforms the standard AMOEBA implementation which is the basis of the SAPT-FF implementation. In the last three chapters deal with the description of perlyene-based dyes. In the first smaller chapter ground state chemistry description of macro cycles of PBI (perylene bisimide) derivatives were investigated. Therefore, AFM (atomic force microscopy) based pictures were explained within our study. The methods to explain aggregation behavior in dependency of the ring size were MD simulations and configuration studies. The last two chapters deal with opto-electronic or photo-physical properties of PBI and PTCDA (perylene-3,4,9,10-tetracarboxylic dianhydride). In detail, we investigated the role of the environment and the aggregate or crystal surrounding by applying different models. In that way implicit and explicit solvation models, the size of aggregates and vibration motions were used. In the case of PBI the recent work is found on preliminary studies related to my bachelor thesis and extends it. It was shown that the direct influence of a polarizable surrounding, as well as explicit inclusion of solvent molecules on the overall description of the excitations and nature of the excited states is weaker as one might expect. However the inclusion of intra-molecular degrees of freedom showed a stronger influence on the state characteristics and can induce a change of the order of states within the dimer picture. For the PTCDA molecule the main focus was set on the description of the absorption spectrum of crystalline thin films. Related to this older works exist which already gave a description and assignment of the absorption band, but are based on different approaches compared to the one used in this work. We used the supermolecule ansatz, whereas the environment and different aggregate sizes were investigated. Within the dimer based approach we were able to show that using continuum solvation (IEFPCM/COSMO) based description for the environment the relative order of states remains unchanged. Similar to the PBI calculations the influence of the vibrational motions /distortions is larger. The simulation of the crystal environment by using QM/MM (quantum mechanics/molecular mechanics) approaches delivered that an asymmetric charge distribution might induce a localization of the excitation and a stronger mixing of states. For obtaining further insights we go beyond the dimer picture and aggregates of different sizes were used, whereas the simulations up to the octadecamer mono- and even dual-layer stack were carried out. Within these calculations it was shown that the H-coupling is dominating over a weaker J-coupling between different stacks. Additionally the calculations based on DFT (density functional theory) and semi-empirics showed that the lowest state in terms of energy are mostly of Frenkel type, whereas the higher lying states are CT ones which mix with embedded Frenkel type states. The first band of the absorption spectrum was explained by inclusion of vibrational motions within the stacks which induce an intensity gain of the first excited state. This intensity was not explainable by using the undistorted stacks. Also relaxations at the crystal surface might play a role, but are experimentally not explainable. N2 - In der Arbeit wurden zwei große Themenkomplexe bearbeitet. Zum einen wurden Verbesserungen und neue Methoden in CAST, unserem Entwicklungstool, implementiert. Hierbei geht es vor allem darum ein Werkzeug bereit zu stellen, mit dem es möglich ist Reaktionen genauer zu charakterisieren. Aber auch neue Beschreibungen innerhalb der Kraftfeldmethoden (SAPT-FF) wurden bereitgestellt bzw. erweitert. Der zweite Themenkomplex behandelt die Beschreibung von Farbstoffmolekülen und ihrer spektralen Eigenschaften. Insbesondere liegt in dieser Studie der Fokus auf Umgebungseinflüsse. Im ersten Abschnitt wurden Erweiterungen in den lokalen Methoden, die auf NEB (nudged elastic band) basieren, implementiert. Hier wurde zum einen das Spektrum an Methoden erweitert. So wurde der initiale Vorschlag für den Startpfad durch Implementierung der IDPP (image dependent pair potential) Methode verbessert. Des Weiteren wurde eine Methode zur temperaturabhängigen NEB Beschreibung integriert, die auf Maximierung des Fluxes beruht. Auch wurden Verbesserungen hinsichtlich der Optimierungsroutinen durchgeführt. Der wesentliche Teil im ersten Themenbereich beschäftigt sich mit der Verbesserung und Automatisierung von Pathopt (PO). Zu Beginn der Arbeit wurde die ursprüngliche Idee aufgegriffen. Hierbei ermittelt man Vorschläge für Übergangszustände (¨UZ) durch eine globale Optimierung mit Nebendbedingungen auf einer n-1 dimensionalen Hyperfläche, die den Reaktionsraum teilt. Diese ¨UZ bilden den Startpunkt, um mittels einer ”uphill” Optimierung hin zum ”wirklichen ÜZ” zu gelangen. Ausgehend von diesen wurde in die nächst verknüpften Minima relaxiert. Diese Idee wurde automatisiert und auf mehrere Hyperflächen ausgeweitet. So erhält man eine Schar an Pfadsegmenten, die verknüpft werden müssen. Im Laufe der Arbeit, stellte sich jedoch heraus, dass diese Vorgehensweise nicht sehr effizient ist und daher wurde eine neue Idee verwirklicht. Diese beruht wiederum auf der globalen Optimierung mittels Monte Carlo mit Minimierung und Nebenbedingungen auf einer vom Nutzer bestimmten Anzahl an n-1 dimensionalen Hyperflächen. Nun wählt man diese Anzahl entsprechend groß genug aus, um den Raum zwischen den Reaktanden zu beschreiben. Die so gefundenen Mininima auf den n-1 Hyperflächen werden für die direkte Pfaderzeugung genutzt. Dies geschieht mittels eines RMSD (root mean square deviation) Kriteriums, um so den Weg der geringsten Änderungen anhand der Hyperflächen zu wählen. Im Zuge der Implementierung der Methode wurden zahlreiche Testrechnungen und Methodenerweiterungen durchgeführt, um die Funktionalität zu überpüfen und zu verbessern. Diese Verbesserungen liegen zum Bsp. in den Sprungstrategien bzw. der Wahl des Koordinatensystems. Hier konnte gezeigt werden, dass eine Verbindung unterschiedlicher Strategien für die Durchführung des ”Hüpfens” in Monte Carlo zu entscheidenden Verbesserungen führt. Diese Verbesserung besteht in der Verknüpfung von Kartesischen Schritten und zufälliger Veränderungen der Diederwinkel im Rahmen der Nebenbedingungen. Mit Hilfe dieser Verbesserungen konnte eine Vielzahl von Systemen behandelt werden. Ein weiteres Kapitel beschreibt Verbesserungen zum SAPT-FF (FF=Kraftfeld). Testrechnungen zu strukturellen Eigenschaften von Benzol Clustern belegen die Genauigkeit der Ansätze. Auch wurde aufgezeigt, dass das SAPT-verbesserte AMOEBA Kraftfeld der Standard Parametrisierung überlegen ist. Die letzten drei Abschnitte dieser Arbeit behandeln Perylen-basierte Farbstoffe. In einem ersten kleinen Kapitel geht es um die Grundzustandseigenschaften von PBI (Perylenbisimide) Makrozyklen und Erklärung von AFM (Atomic Force Mycroscopy) Messungen. Hier konnten wir mittels MD-Simluation (Molekular Dynamik) und deren Analyse, sowie Beschreibungen unterschiedlicher Konfigurationen, das Aggregationsverhalten in Abhängigkeit der Ringgröße genauer beleuchten. In den beiden letzten Kapiteln geht es um die optoelektronischen Eigenschaften bzw. die photophysikalische Beschreibung von PBI und PTCDA (Perylen-3,4,9,10-Tetracarboxyl Dianhydrid). Im Genaueren wurde die Rolle der Umgebung in Aggregat und Kristall durch unterschiedliche methodische Ansätze untersucht. So wurden implizite Solvensmodelle und explizite Solvatation, Aggregatgröße und vibronische Freiheitsgrade untersucht. In den Arbeiten zum PBI konnte gezeigt werden, dass ein direkter Einfluss durch die Beschreibung mittels impliziter Solvatation, als auch expliziter Solvensmoleküle, auf die Lage der Zustände auch in Hinsicht auf deren Charakterisik nicht auftritt. Berücksichtigt man intra-molekulare Freiheitsgrade, so wird die Lage der Zustände deutlich stärker beeinflusst und sogar ein Wechsel der Zustände wird induziert. Im Fall von PTCDA lag vor allem die Beschreibung und Erklärung der Absorptionsspektren von kristallinem PTCDA im Fokus. Hierzu gibt es ¨altere Arbeiten, die bestimmte Zuordnungen der Banden und ihrer Übergänge postuliert haben. In dieser Arbeit sollte diese Beschreibung im Rahmen eines Supermolekül Ansatzes geklärt und weiter beschrieben werden, wobei Umgebungseinflüsse und auch Eigenschaften verschiedener Aggregate untersucht wurden. Im Dimer Bild konnten wir zeigen, dass die Umgebung, beschrieben durch Continuums Ansätze (IEFPCM/COSMO) die Lage der Zustände nicht beeinflusst und im Wesentlichen nur Zustände mit großer Oszillatorstärke stabilisiert werden. Ähnlich wie im Falle des PBIs hat die Berücksichtigung vibronischer Freiheitsgrade einen wesentlich größeren Einguss. Die Simulation der Kristallumgebung durch QM/MM-Ansätze (Quantenmechanik/Molekularmechanik) ergab, dass eine asymmetrische Ladungsverteilung zu einer Lokalisierung der Anregung und einem stärkeren Durchmischen der Zustände fuhrt. Für eine noch weitergehende Beschreibung wurde das Dimer Bild verlassen und unterschiedliche Aggregate, bis hin zum Oktadekamer im mono- bzw. zweifach-Lagen-Aggregat untersucht. Hier konnte gezeigt werden, dass die Kopplung im H-Aggregat die dominierende Rolle einnimmt und die J-Aggregat Kopplung vernachlässigt werden kann. Zudem zeigen die Rechnungen, die mittels DFT (Dichtefunktionaltheorie) und semi-empirischen Ansätzen durchgeführt wurden, dass die energetisch niedriger liegenden Zustände im wesentlichen Frenkel Charakter aufweisen während die energetisch höher liegenden Zustände CT (Charge Transfer) Charakter haben. Das Auftreten der ersten Bande im Absorptionsspektrum wurde zudem auf das Vorhandensein von möglichen Schwingungsanregungen (mehrere Moden) zurückgeführt, da diese zu einer Zunahme an Intensität des ersten angeregten Zustandes führen, die ohne Berücksichtigung nicht in diesem Maße erhalten wird. Auch könnten Oberflächenrelaxationen eine Rolle spielen, wobei diese experimentell nicht beobachtbar sind. KW - Globale Optimierung KW - Reaktionsmechanismus KW - Exziton KW - Reaktionspfadsuche KW - QM/MM KW - organische Halbleiter KW - Exzitonen Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144435 ER - TY - THES A1 - Kröker, Kristin T1 - DNA-Kohlenstoffnanorohr-Konjugate - Biokompatibilität, ex vivo-Verhalten, Funktionalisierung T1 - DNA-carbon nanotube conjugates - biocompatibility, ex vivo behavior, funtionalization N2 - Einzelstrang-DNA-dispergierte und individualisierte (6,5)-chirale Kohlenstoffnanoröhren bilden als Konjugatsystem den Ausgangspunkt dieser Dissertation. Im Vordergrund stehen dabei Untersuchungen zur Biokompatibilität dieser ssDNA-SWNT-Konjugate sowie deren Verhalten nach Zellpenetration und eine Funktionalisierbarkeit zum Wirkstofftransportsystem. Das erste Projekt widmet sich in Kapitel 4 dem Studium der Konjugatstabilität unter physiologischen Bedingungen und einer Verträglichkeit gegenüber zellulären Systemen. Experimente zur Biokompatibilität werden erstmals an Nanorohrkonjugaten durchgeführt, welche nach Ultrazentrifugation im Dichtegradienten sorgfältig individualisiert vorliegen. Die umgebungssensitiven photophysikalischen Charakteristika vereinzelter (6,5)-SWNTs können zu einer Beurteilung der Konjugatintegrität in physiologischem Milieu genutzt werden. Die Stabilität von ssDNA-SWNT-Strukturen wird in Anwesenheit des Restriktionsenzyms DNase I und dem in Zellnährmedien enthaltenen protein- und nukleasereichem Serum FBS auf die Probe gestellt. In beiden Fällen kann eine ausreichende ssDNA-SWNT-Integrität attestiert werden, die eine Verwendung unter Zellkultivierungsbedingungen erlaubt. Unter Berücksichtigung verschiedener in Zellen vorliegender pH-Umgebungen werden die Konjugate ebenfalls dieser Variation ausgesetzt. Bei Vorliegen stark saurer und basischer pH-Werte kann die Integrität von ssDNA-SWNT-Konjugaten nicht gewährleistet werden, was sich durch Aggregation bemerkbar macht. Innerhalb des breiten pH-Bereichs zwischen den Werten 3 und 11 hingegen kann eine gute Stabilität bestätigt werden. Für zelluläre Anwendungen bedeutet dieser Befund keine Einschränkung, da in Kulturen lediglich neutrale bis schwach saure pH-Werte oberhalb von 4.5 zu finden sind. Nachdem die Biostabilität der ssDNA-SWNT-Konjugate gewährleistet ist, kann in Zytotoxizitätsstudien eine ex vivo-Verträglichkeit des Nanomaterials getestet werden. Erste Untersuchungen mit der Mausmakrophagenlinie J774.1 weisen wie auch ausführliche Studien gegenüber menschlichen Epithelzellen HeLa auf eine uneingeschränkte Kompatibilität in den eingesetzten Konzentrationen hin. HeLa-Zellen, die mit DGU-gereinigten Nanorohrproben behandelt werden, zeigen eine geringfügig höhere Vitalität als nach Inkubation mit einer Rohdispersion undefinierter SWNT-Bündel. Im Gesamtbild ergibt sich somit eine zufriedenstellende Biokompatibilität individualisierter ssDNA-SWNT-Konjugate, womit das in dieser Arbeit zentrale Kohlenstoffnanorohrsystem den Anforderungen für dessen biomedizinische Verwendbarkeit gerecht wird. Der Schwerpunkt weiterer Untersuchungen liegt im zweiten Projekt aus Kapitel 5 auf dem Verhalten von ssDNA-SWNT-Konjugaten nach deren Aufnahme in HeLa-Zellen. Auch hier kann die starke Sensitivität der optischen Eigenschaften individualisierter (6,5)-Kohlenstoffnanoröhren gegenüber Umgebungseinflüssen genutzt werden, um Veränderungen im Emissionsverhalten von SWNTs nach deren zellulärer Aufnahme gegenüber dem Ausgangszustand zu beobachten. Nach ausführlicher Weißlicht-, Fluoreszenz- und SWNT-Photolumineszenzmikroskopie, aus deren Resultaten eine erfolgreiche Internalisierung von ssDNA-SWNTs in HeLa-Zellen eindeutig hervorgeht, stehen PL-spektroskopische Untersuchungen der Kohlenstoffnanoröhren im Vordergrund. Durch einen Vergleich des Emissionsverhaltens der ssDNA-SWNT-Konjugate in und außerhalb von Zellen können spektrale Verschiebungen, Linienverbreiterungen und verkürzte Fluoreszenzlebensdauern nach zellulärer Aufnahme festgestellt werden. Sowohl eine Aggregation von SWNTs als auch eine Beeinflussung durch die pH-Umgebung reichen nicht für eine vollständige Erklärung des Befunds aus. Vielmehr kann die in endosomalen Kompartimenten durch das Größenverhältnis von Endosomen zu SWNTs entstehende räumliche Nähe einer großen Nanorohrmenge untereinander als Ursache für eine Veränderung der dielektrischen Umgebung und folglich des Emissionsverhaltens betrachtet werden. Durch Verwendung der Kohlenstoffnanoröhren als Marker und Sensor können ssDNA-SWNT-Konjugate in Zellen somit nicht nur lokalisiert, sondern darüber hinaus hinsichtlich einer möglichen Aggregation untersucht werden. Aus den in dieser Arbeit vorgestellten Daten kann zwar eine vollständige Aggregation der SWNTs durch deren Aufnahme in Zellen ausgeschlossen werden, sie muss jedoch in geringfügigem Ausmaß neben einer Beeinflussung durch die pH-Umgebung und die große räumliche Nähe durchaus in Betracht gezogen werden. Individualisierte ssDNA-SWNT-Konjugate können damit erstmals zeitaufgelöst PL-mikrospektroskopisch in HeLa-Zellen charakterisiert werden. Für das letzte Projekt werden in Kapitel 6 neuartige Funktionalisierungsmöglichkeiten von ssDNA-SWNT-Konjugaten zu zellulären Transportsystemen unter Erhalt der photophysikalischen Eigenschaften erforscht. Dazu soll das Dispergiermittel DNA als Kupplungsstelle für eine kovalente Anbindung eines Agenz genutzt werden. Anstelle eines Wirkstoffes werden die Untersuchungen mit einem Fluorophor als Modellverbindung durchgeführt, welcher den Vorteil einer einfachen Detektierbarkeit liefert. Prinzipiell besteht die Möglichkeit, das Oligomer mit dem Fluorophor vorzufunktionalisieren und anschließend auf die Oberfläche der SWNTs zu bringen. Als effektiver erweist sich die Methode der direkten Kupplung des Farbstoffs an bereits DNA-dispergierte SWNTs. Der Erfolg in der Präparation von FluorophorssDNA- SWNT-Konjugaten wird über die Emission des Fluorophors mit entsprechenden Referenzexperimenten gemessen. Der Versuch einer Quantifizierung liefert jedoch sehr hohe Werte, die lediglich als eine obere Grenze für die gefundene Anzahl gebundener Fluorophore pro Nanoröhre angesehen werden können. Im Verlauf des Projekts kann eine Funktionalisierbarkeit der Nanoröhren über das Dispergieradditiv DNA als neue Strategie aufgezeigt werden. Im Gegensatz zu bekannten Wirkstofftransportsystemen bietet dieser Funktionalisierungsansatz den Vorteil, dass die optischen Eigenschaften der individualisierten ssDNA-SWNT-Konjugate erhalten bleiben, welche wieder um einen gleichzeitigen Einsatz der Nanoröhren als Transporter und Marker bzw. Sensor erlauben. Die vorliegende Dissertation liefert neben dieser bisher unbekannten Funktionalisierungsstrategie neue Erkenntnisse über die Biokompatibilität speziell von individualisierten ssDNA-SWNT-Konjugaten und deren Verhalten in HeLa-Zellen. Mit diesem Wissen kann der gezielte Wirkstofftransport durch Kohlenstoffnanoröhren als biokompatibles und zellgängiges Trägersystem anvisiert werden. N2 - The key element of this thesis is a conjugate system of single-stranded DNA and individualized (6,5) single-wall carbon nanotubes. The investigations are mainly focused on the biocompatibility of ssDNA-SWNT conjugates, as well as their behavior after cell penetration and general ability to be functionalized for drug delivery. Within the first project, chapter 4 contributes to the study the conjugate stability under physiological conditions and compatibility towards cellular structures. For the first time, such biocompatibility experiments are carried out with nanotube conjugates, which are thoroughly individualized by ultracentrifugation assisted density gradient. The photophysical characteristics of isolated (6,5) SWNTs are highly sensitive towards their environment and can thus be used to evaluate the state of conjugate integrity in a physiological milieu. The stability of ssDNA-SWNT structures is tested in the presence of restriction enzyme DNase I and FBS serum, an important nutrient medium ingredient rich in proteins and nucleases. In either case, the integrity of ssDNA-SWNT conjugates is not affected. With respect to the pH variety occuring in cell structures, the conjugate stability is also investigated in acid and base milieu. Both strong acid and alkaline pH environments influence the integrity of ssDNA-SWNT, leading to aggregation of nanotubes. Conversely, good conjugate stability can be evaluated in a wide pH range between 3 and 11, revealing unlimited applicability towards cells, where the pH environment is known to vary between neutral and weakly acid pH values above 4.5. After evaluation of the biostability of ssDNA-SWNT conjugates, they have to be tested in ex vivo cytotoxicity assays. Studies are primarily carried out with murine macrophage-like cells J774.1 and in more detail with the human cervix carcinoma cell line HeLa. Both indicate no cytotoxic effects with applied SWNT concentrations. Within the HeLa cell studies, the impact of DGU preparation on SWNT cytotoxicity is a further point of interest. As a result, slightly enhanced cell viability can be observed with DGU purified samples as compared to raw dispersion consisting of non-defined SWNT bundles. Overall, ssDNA-SWNT conjugates can be assumed to be sufficiently biostable and thus suitable for biomedical applications. Further investigations in the second part of this work in chapter 5 are focused on the behavior of ssDNA-SWNT conjugates after cellular uptake. Again, the strong environmental sensitivity of optical properties of individualized (6,5) carbon nanotubes can be used to detect changes of the SWNT emission after internalization. Different techniques have been employed to visualize ssDNA-SWNT structures in HeLa cells using white light, fluorescence, and SWNT photoluminescence microscopy. By PL spectroscopy of ssDNA-SWNTs in cells spectral shifts, line-broadening and shortened lifetimes are observed when comparing SWNT emission inside and outside of cell culture. Neither nanotube aggregation nor the influence of the cell-specific pH environment are sufficient explanations for such spectral behavior. Indeed, the spatial proximity of SWNTs with each other in small sized endosomal cell compartiments is supposed to cause nanotube-nanotube interactions that change the dielectric environment and thus the emission behavior of SWNTs. Within the use of carbon nanotubes as marker and sensor, ssDNA-SWNT conjugates cannot only be localized, but also characterized, with regard to possible nanotube aggregation. The data presented in this work can, on the one hand, exclude a total aggregation of SWNTs within their cellular uptake. But, on the other hand, a small extent of aggregation, pH environmental effects, and the spatial proximity of a high amount of SWNTs in comparatively small endosomes have to be considered as factors that influence SWNT emission properties. In this study, individualized ssDNA-SWNT conjugates can be characterized via time-resolved PL microspectroscopy for the first time. The last project in chapter 6 addresses to new functionalization routes of ssDNA-SWNT conjugate with respect to drug delivery applications while retaining the photophysical characteristics. The SWNT dispersion additive DNA serves as binding site for covalent attachment of agents. For a convenient sample characterization, a fluorophor is used as model compound instead of a specific drug. In general, fluorophor-ssDNA-SWNT systems can be obtained by pre-functionalization of oligomers with dye, followed by attachment of the modified DNA on the nanotube surface. More promising, however, is the route via a direct coupling reaction of activated fluorophor molecules with specific ssDNA-SWNT conjugates. The successful sample functionalization can be evaluated from the fluorescence of the dye in comparision with corresponding control experiments. An attempt for quantification of functionalization is found to be problematic as the revealed values are too high and can thus only be regarded as upper limits for the number of fluorophors per nanotube. A new functionalization method for SWNTs can be established using noncovalently bound DNA as the coupling point. Compared to well-known drug delivery systems, the optical properties of SWNTs can be retained with this procedure, allowing the simultaneous use of nanotubes as cellular transporter and marker or sensor. In addition to the new functionalization strategy, further knowledge about biocompatibility of well-isolated ssDNA-SWNT conjugates and their behavior after cellular uptake can be obtained through this thesis. Thus, a targeted drug delivery with isolated carbon nanotubes as biocompatible and a cell penetrating carrier system could be aimed for future work. KW - Biokompatibilität KW - DNS KW - Nanopartikel KW - Funktionalisierung KW - HeLa-Zelle KW - NIR-Spektroskopie KW - Photolumineszenz KW - Kohlenstoffnanoröhre KW - Dichtegradientenultrazentrifugation KW - carbon nanotube KW - density gradient ultracentrifugation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74552 ER - TY - THES A1 - Selig-Parthey, Ulrike T1 - Methods of Nonlinear Femtosecond Spectroscopy in the Visible and Ultraviolet Regime and their Application to Coupled Multichromophore Systems T1 - Methoden der nichtlinearen Femtosekundenspektroskopie im sichtbaren und ultravioletten Spektralbereich und ihre Anwendung auf gekoppelte Multichromophor-Systeme N2 - Time-resolved spectroscopic studies of energy transfer between molecules in solution form a basis for both, our understanding of fundamental natural processes like photosynthesis as well as directed synthetic approaches to optimize organic opto-electronic devices. Here, coherent two-dimensional (2D) spectroscopy opens up new possibilities, as it reveals the correlation between absorption and emission frequency and hence the full cause-and-effect chain. In this thesis two optical setups were developed and implemented, permitting the recording of electronic 2D spectra in the visible and in the hitherto unexplored ultraviolet spectral range. Both designs rely on the exclusive manipulation of beam pairs, which reduces the signal modulation to the difference between the transition frequency of the system and the laser frequency. Thus - as has been shown experimentally and theoretically - the timing precision as well as mechanical stability requirements are greatly reduced, from fractions of the oscillation period of the exciting light wave to fractions of the pulse duration. Two-dimensional spectroscopy and femtosecond transient absorption (TA) as well as different theoretical approaches and simulation models were then applied to coupled multichromophore systems of increasing complexity. Perylene bisimide-perylene monoimide dyads were investigated in cooperation with Prof. Dr. Frank Würthner and Prof. Dr. Bernd Engels at the University of Würzburg. In these simplest systems studied, global analysis of six different TA experiments unequivocally revealed an ultrafast interchromophoric energy transfer in the 100 fs range. Comparison between the obtained transfer rates and the predictions of Förster theory suggest a breakdown of this point-transition-dipole-based picture at the donor-acceptor distances realized in our compounds. Furthermore, a model including conformational changes and an interchromophoric charge transfer has been derived to consistently describe the observed pico- to nanosecond dynamics and fluorescence quantum yields. A second collaboration with Prof. Dr. Gregory Scholes (University of Toronto, Canada) and Prof. Dr. Paul Burn (University of Queensland, Australia) addressed the photophysics of a series of uorene-carbazole dendrimers. Here, a combination of 2D-UV spectroscopy and femtosecond ansiotropy decay experiments revealed the initial delocalization of the excited state wave function that saturates with the second generation. In room temperature solution, disorder-induced localization takes place on the time scales comparable to our instrument response, i.e. 100 fs, followed by energy transfer via incoherent hopping processes. Lastly, in tubular zinc chlorin aggregates, semi-synthetic analogues of natural lightharvesting antennae that had again been synthesized in the group of Prof. Dr. Frank Würthner, the interchromophoric coupling is so strong that coherently coupled domains prevail even at room temperature. From an analysis of intensity-dependent TA measurements the dimensions of these domains, the exciton delocalization length, could be determined to span 5-20 monomers. In addition, 2D spectra uncovered efficient energy transfer between neighboring domains, i.e. ultrafast exciton diffusion. N2 - Zeitaufgelöste spektroskopische Untersuchungen zu Energietransferprozessen zwischen Molekülen in Lösung bilden die Grundlage nicht nur für unser Verständnis elementarer natürlicher Vorgänge wie der Photosynthese, sondern auch für gerichtete Synthesen zur Optimierung organischer opto-elektronischer Bauteile. Die kohärente zweidimensionale (2D) Spektroskopie eröffnet hier neue Möglichkeiten, da sie - durch Aufdeckung der Korrelation zwischen Absorptions- und Emissionsfrequenz - die konventionelle transiente Absorption (TA) um die Offenbarung der Ursache erweitert. Im Rahmen dieser Arbeit wurden zwei optische Aufbauten entworfen und umgesetzt, die die Aufnahme von elektronischen 2D Spektren im sichtbaren und im bis dahin unerschlossenen ultravioletten Spektralbereich ermöglichen. Beide Designs beruhen auf dem Prinzip der ausschließlich paarweisen Strahlführung, wodurch die Modulation des Signals auf die Differenz zwischen Übergangsfrequenz des Systems und Laserfrequenz reduziert wird. Damit verringern sich - wie theoretisch und experimentell gezeigt - die Anforderungen sowohl an die mechanische Stabilität der Laborumgebung als auch an die Genauigkeit der verwendeten Verzögerungsbühnen erheblich, von Bruchteilen der Oszillationsperiode des anregenden Lichts auf Bruchteile der Laserpulsdauer. Sowohl die 2D Spektroskopie als auch die transiente Absorption sowie unterschiedliche theoretische Ansätze und Simulationsmodelle wurden in den weiteren Teilen dieser Arbeit auf gekoppelte Multichromophor-Systeme unterschiedlicher Komplexität angewandt. Im einfachsten dieser Systeme, einem Perylen-basierten Heterodimer, einer Kooperation mit Prof. Dr. Frank Würthner und Prof. Dr. Bernd Engels an der Universität Würzburg, konnte durch globale Analyse von sechs verschiedenen TA-Messungen ein ultraschneller Energietransfer im 100 fs Bereich zweifelsfrei identifiziert werden. Ein Vergleich mit Vorhersagen aus der Förster-Theorie legt einen Zusammenbruch dieser auf punktförmigen Übergangsdipolen beruhenden Theorie bei den vorliegenden Interchromophor- Abständen nahe. Darüber hinaus wurde für die Piko- bis Nanosekunden-Zeitskalen ein Schema vorgestellt, das Konformationsänderungen sowie einen Ladungstransfer beinhaltet und das die beobachtete Dynamik wie auch die gemessenen Fluoreszenz-Quantenausbeuten konsistent beschreibt. In einer weiteren Kooperation wurden in Zusammenarbeit mit der Gruppe von Prof. Dr. Gregory Scholes (University of Toronto, Kanada) Fluoren-Carbazol-Makromoleküle untersucht, die in der Gruppe von Prof. Dr. Paul Burn (University of Queensland, Australien) synthetisiert worden waren. In diesen sogenannten Dendrimeren konnte durch die Kombination von 2D Spektroskopie und Femtosekunden-Anisotropie-Zerfalls-Experimenten eine anfängliche Delokalisierung der Wellenfunktion des angeregten Zustands abgeleitet werden, die mit der zweiten Generation saturiert. Die Umgebungsunordnung in Raumtemperatur-Lösung führt hier zu einer ultraschnellen Lokalisierung innerhalb der Zeitauflösung des Experiments, gefolgt von inkohärenten Energietransfer-Prozessen. In tubularen Zink Chlorin Aggregaten schließlich, semisynthetischen Analoga zu den Lichtsammelantennen natürlicher Chlorosome, die ebenfalls von Prof. Dr. Frank Würthner's Gruppe bereitgestellt wurden, ist die Kopplung zwischen den einzelnen Molekülen so stark, dass kohärent gekoppelte Segmente selbst bei Raumtemperatur Bestand haben. Die Ausdehnung dieser kohärenten Domänen, die Exzitonen-Delokalisierungslänge, konnte aus der Intensitätsabhängigkeit des transienten Absorptionssignals auf 5-20 Monomere bestimmt werden. 2D Spektren zeigten dabei den effizienten Energietransfer zwischen benachbarten Domänen im Aggregat, also einen ultraschnellen Exzitonen-Diffusionsprozess. KW - Femtosekundenspektroskopie KW - UV-VIS-Spektroskopie KW - Polychromophores System KW - Spektroskopie KW - femtosecond spectroscopy Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74356 ER - TY - THES A1 - Quast, Tatjana T1 - Spectroscopic investigation of charge-transfer processes and polarisation pulse shaping in the visible spectral range T1 - Spektroskopische Untersuchung von Ladungstransferprozessen und Polarisationspulsformung im sichtbaren Spektralbereich N2 - The first part deals with the spectroscopic investigation of ultrafast light-induced charge-transfer processes in different molecular compounds. In the second part, the question of the generation and characterisation of broadband visible polarisation-shaped laser pulses is treated. N2 - Der erste Teil der Arbeit behandelt die spektroskopische Untersuchung von ultraschnellen lichtinduzierten Ladungstransferprozessen in unterschiedlichen molekularen Verbindungen. Im zweiten Teil wird die Erzeugung und Charakterisierung von breitbandigen polarisationsgeformten Laserpulsen im sichtbaren Spektralbereich diskutiert. KW - Polarisiertes Licht KW - Ladungstransfer KW - Optische Spektroskopie KW - transiente Absorptionsspektroskopie KW - Polarisationspulsformung KW - transient absorption spectroscopy KW - polarisation pulse shaping Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74265 ER - TY - THES A1 - Falge, Mirjam T1 - Dynamik gekoppelter Elektronen-Kern-Systeme in Laserfeldern T1 - Dynamics of Coupled Electron-Nuclei-Systems in Laser Fields N2 - Die vorliegende Arbeit beschäftigt sich mit der theoretischen Untersuchung zweier Themenkomplexe: der Erzeugung Hoher Harmonischer in Molekülen und dem Einfluss von gekoppelter Elektronen-Kern-Dynamik auf Ultrakurzpuls-Ionisationsprozesse und Quantenkontrolle. Während bei der Untersuchung der Hohen Harmonischen die Auswirkungen der Kernbewegung auf die Spektren im Mittelpunkt des Interesses stehen, wird bei der Analyse der gekoppelter Elektronen-Kern-Dynamik das Hauptaugenmerk auf die nicht-adiabatischen Effekte gerichtet, die auftreten, wenn Kern- und Elektronenbewegung sich nicht, wie es im Rahmen der Born-Oppenheimer-Näherung in der Quantenchemie häufig angenommen wird, voneinander trennen lassen. N2 - This work aims at the theoretical analysis of high harmonic generation in molecules and the influence of coupled electron and nuclear dynamics on ultra-short pulse ionization processes. KW - Nichtadiabatischer Prozess KW - Laserstrahlung KW - Quantenmechanik KW - Molekulardynamik KW - Quantendynamik KW - nicht-adiabatische Effekte KW - Hohe Harmonische KW - Photoelektronenspektroskopie KW - quantum dynamics KW - nonadiabatic effects KW - high harmonic generation KW - photoelectron spectroscopy Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72889 ER - TY - THES A1 - Grebner, Christoph T1 - New Tabu-Search Algorithms for the Exploration of Energy Landscapes of Molecular Systems T1 - Neue Tabu-Search Algorithmen zur Untersuchung von Energielandschaften molekularer Systeme N2 - The visualization of energy functions is based on the possibility of separating different degrees of freedom. The most important one is the Born-Oppenheimer-approximation, which separates nucleus and electron movements. This allows the illustration of the potential energy as a function of the nuclei coordinates. Minima of the surface correspond to stable points like isomers or conformers. They are important for predicting the stability or thermodynamical of a system. Stationary points of first order correspond to transition points. They describe phase transitions, chemical reaction, or conformational changes. Furthermore, the partition function connects the potential hypersurface to the free energy of the system. The aim of the present work is the development and application of new approaches for the efficient exploration of multidimensional hypersurfaces. Initially, the Conformational Analysis and Search Tool (CAST) program was developed to create a basis for the new methods and algorithms. The development of CAST in object oriented C++ included, among other things, the implementation of a force field, different interfaces to external programs, analysis tools, and optimization libraries. Descriptions of an energy landscape require knowledge about the most stable minima. The Gradient Only Tabu Search (GOTS) has been shown to be very efficient in the optimization of mathematical test functions. Therefore, GOTS was taken as a starting point. Tabu-Search is based on the steepest descent - modest ascent strategy. The steepest descent is used for finding local minima, while the modest ascent is taken for leaving a minimum quickly. Furthermore, Tabu-Search is combined with an adaptive memory design to avoid cycling or returning. The highly accurate exploration of the phase space by Tabu-Search is often too expensive for complex optimization problems. Therefore, an algorithm for diversification of the search is required. After exploration of the proximity of the search space, the algorithm would guide the search to new and hopefully promising parts of the phase space. First application of GOTS to conformational search revealed weaknesses in the diversification search and the modest ascent part. On the one hand, the original methodology for diversification is insufficiently diverse. The algorithm is considerably improved by combining the more local GOTS with the wider searching Basin Hopping (BH) approach. The second weak point is a too inaccurate and inefficient modest ascent strategy. Analysis of common transition state search algorithms lead to the adaption of the Dimer-method to the Tabu-Search approach. The Dimer-method only requires the first derivatives for locating the closest transition state. For conformational search, dihedral angles are usually the most flexible degrees of freedom. Therefore, only those are used in the Dimer-method for leaving a local minimum. Furthermore, the exact localization of the reaction pathway and the transition state is not necessary as the local minimum position should only be departed as fast as possible. This allows for larger step sizes during the Dimer-search. In the following optimization step, all coordinates are relaxed to remove possible strains in the system. The new Tabu-Search method with Dimer-search delivers more and improved minima. Furthermore, the approach is faster for larger systems. For a system with approximately 1200 atoms, an acceleration of 40 was measured. The new approach was compared to Molecular Dynamics with optimization (MD), Simulated Annealing (SA), and BH with the help of conformational search problems of bio-organic systems. In all cases, a better performance was found. A comparison to the Monte Carlo Multiple Minima/Low Mode Sampling (MCMM/LM) method proved the outstanding performance of the new Tabu-Search approach. The solvation of the chignolin protein further revealed the possibility of uncovering discrepancies between the employed theoretical model and the experimental starting structure. Ligand optimization for improvement of x-ray structures was one further new application field. Besides the global optimization, the search for transition states and reaction pathways is also of paramount importance. These points describe different transitions of stable states. Therefore, a new approach for the exploration of such cases was developed. The new approach is based on a global minimization of a hyperplane being perpendicular to the reaction coordinate. Minima of this reduced phase space belong to traces of transition states between reactant and product states on the unchanged hypersurface. Optimization to the closest transition state using the Dimer-method delivers paths lying between the initial and the final state. An iterative approach finally yields complex reaction pathways with many intermediate local minima. The PathOpt algorithm was tested by means of rearrangements of argon clusters showing very promising results. N2 - Die visuelle Darstellung von Energiefunktionen basiert auf der Möglichkeit, verschiedene Freiheitsgrade zu separieren. Die wichtigste Näherung ist dabei die Born-Oppenheimer-Näherung. Sie erlaubt damit die Darstellung der potentiellen Energie als Funktion der Kernkoordinaten. Die daraus entstehende mehrdimensionale Hyperfläche entspricht der Summenformel eines beliebigen Systems. Minima der Fläche entsprechen stabilen Punkten wie Isomeren oder Konformeren. Diese sind wichtig für Aussagen über die Stabilität oder die Thermodynamik eines Systems. Stationäre Punkte erster Ordnung entsprechen Übergangsstrukturen und beschreiben Phasenübergänge, chemische Reaktionen aber auch Konformationsänderungen. Über die Zustandssumme ist die Hyperfläche zudem mit der freien Energie verknüpft. Das Ziel dieser Arbeit ist die Entwicklung und Anwendung neuer Methoden zur effizienten Untersuchung mehrdimensionaler Hyperflächen. Dabei wurde zunächst das Conformational Analysis and Search Tool (CAST)-Programm entwickelt. Die Entwicklung des CAST-Programms in objektorientiertem C++ beinhaltete unter anderem die Implementierung eines Kraftfeldes, verschiedene Schnittstellen zu externen Programmen, Analysealgorithmen und verschiedene Optimierungsmodule. Um Aussagen über eine Energielandschaft treffen zu können, müssen zuerst die stabilsten Minima gefunden werden. Der Gradient Only Tabu Search (GOTS) hat sich als sehr effizient in der Optimierung von mathematischen Funktionen erwiesen. Daher wurde GOTS als Startpunkt verwendet. Tabu-Search basiert auf dem steepest descent – modest ascent Prinzip. Zum Finden neuer Minima wird der steilste Abstieg (steepest descent) verwendet, ein Minimum wird auf dem Weg des geringsten Anstiegs (modest ascent) wieder verlassen. Tabu-Search ist zudem mit einem lernfähigen Speicherdesign kombiniert, wodurch ein Zurück- und im Kreis laufen vermieden wird. Der Phasenraum wird von Tabu-Search sehr genau untersucht, was für komplexere Probleme zu aufwendig wird. Daher bedarf es eines Diversifizierungsschritts, welcher nach Absuchen eines Teils des Phasenraums, die Suche in neue vielversprechende Bereiche bringt. Erste Anwendungen auf Konformationssuchen zeigten, dass GOTS Schwächen im Diversifizierungsschritt und der modest ascent Strategie besitzt. Zum einen ist die ursprünglich verwendete Methodik für die Diversifizierung zu wenig divers. Eine Kombination des mehr lokalen GOTS mit der weiträumiger suchenden Basin Hopping (BH) Methode brachte eine erhebliche Verbesserung. Der zweite Schwachpunkt besteht aus einer zu ungenauen und ineffizienten modest ascent Methode. Daher wurde die Dimer-Methode für Tabu-Search adaptiert. Diese benötigt lediglich die erste Ableitung, um zum Übergangszustand erster Ordnung zu konvergieren. Dabei werden in der Dimer-Methode nur Diederwinkel variiert. Zudem muss der Reaktionspfad und der Übergangszustand nicht exakt getroffen werden, da das Minimum nur möglichst schnell verlassen werden soll. Dies erlaubt größere Schrittweiten in der Dimer-Suche. Im nachfolgenden Optimierungsschritt werden alle Koordinaten relaxiert. Die neue Tabu-Search-Methode mit Dimer-Suche liefert mehr und deutlich verbesserte Minima. Zudem ist sie für größere Systeme deutlich schneller. Für ein System mit circa 1200 Atomen wurde eine Beschleunigung um den Faktor 40 erzielt. Die neue Methode wurde am Beispiel der Konformationssuche von bio-organischen Systemen mit Molekulardynamik mit Optimierung (MD), Simulated Annealing (SA) und BH verglichen, wobei sich in allen Fällen eine bessere Effizienz zeigte. Ein Vergleich zur Monte Carlo Multiple Minima/Low Mode Sampling Methode anhand der Optimierung von peptidischen Ligand-Rezeptor-Komplexen belegte ebenfalls die hervorragende Effizienz des neuen Ansatzes. Die Solvatisierung des Chignolin-Proteins mit Tabu-Search deckte die Möglichkeit auf, Differenzen zwischen der verwendeten theoretischen Methode und der experimentellen Startstruktur aufzudecken. Als weiterer neuer Anwendungsbereich wurde die Optimierung von Ligand-Enzym-Komplexen zur Verbesserung von Röntgenstrukturen untersucht. Neben der globalen Optimierung ist auch die Suche nach Übergangszuständen und Reaktionspfaden von größter Wichtigkeit. Diese beschreiben verschiedene Übergänge zwischen stabilen Zuständen. Daher wurde ein neuer Ansatz zur Untersuchung dieser Fragestellungen entwickelt. Dieser basiert auf einer globalen Minimierung einer Hyperfläche, welche senkrecht zum Reaktionspfad steht. Die Minima des reduzierten Phasenraums gehören zu Spuren zu Übergangszuständen zwischen dem Edukt und dem Produkt. Durch Optimierung dieser Punkte mittels der Dimer-Methode werden also Pfade gefunden, die zwischen Anfangs- und Endpunkt liegen. Ein iteratives Vorgehen liefert letztendlich komplexe Reaktionspfade. PathOpt wurde an Umlagerungen von Argon-Clustern evaluiert, welche sehr vielversprechende Ergebnisse lieferten. KW - Globale Optimierung KW - Kraftfeld-Rechnung KW - Übergangszustand KW - Computational chemistry KW - Tabu-Search KW - Methodenentwicklung KW - Dimermethode KW - Basin-Hopping KW - Energielandschaft KW - Theoretische Chemie KW - Tabu-Search KW - method development KW - dimer method KW - basin hopping KW - energy landscapes Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75591 ER - TY - THES A1 - Steinbauer, Michael Christoph T1 - Ionen- und Elektronenimaging reaktiver Moleküle: Ethyl, Propargylen und Fulvenallenyl T1 - Ion- and electron imaging of reactive molecules: Ethyl, propargylen and fulvenallenyl N2 - Bei Verbrennungsprozessen im Otto-Motor, beim Raffinationsprozess in Erdölraffinerien, im interstellaren Raum oder in der Chemie der Erdatmosphäre spielen Moleküle, wie sie in dieser Arbeit untersucht wurden, eine wichtige Rolle. Allerdings stellt es eine große Herausforderung dar, solch reaktive Substanzen zu erzeugen und zu handhaben. Um das Ethyl-Radikal, ein wichtiges Intermediat z.B. in der Erzeugung von Ethylen, zu untersuchen, wurde eine bestehende Apparatur modifiziert. Diese ermöglicht es, die Geschwindigkeitsverteilung der Fragmente (Ionen oder Elektronen) zweidimensional aufzuzeichnen, die nach der Anregung mittels Laserlicht durch Photodissoziation entstehen. Diese velocity-map imaging Apparatur wurde in einem ersten Schritt mittels der Photodissoziation von Pyrrol bei 240 nm kalibriert. Cycloheptatrien konnte erfolgreich auf seine Photodissoziation untersucht werden, was als Test des VMI-Experiment genutzt wurde. Die gewonnenen Ergebnisse stimmten mit Resultaten überein, welche durch Doppler-Fragmentspektroskopie in dieser und früheren Arbeiten gewonnen wurden. Zwischen 11 und 13 % der Überschussenergie gehen dabei in die Translation des H-Atoms. • Das Ethyl-Radikal zeigte, als das erste mit unserer VMI-Apparatur untersuchte Radikal, eine interessante Photodissoziation: Wird es bei 250 nm angeregt, ergeben sich zwei Dissoziationskanäle, wobei ein bekannter Kanal nach schneller interner Konversion in den Grundzustand Fragmente mit geringer Translationsenergie erzeugt. Der zweite Kanal zeigt anisotropes Verhalten und erzeugt Wasserstoffatome mit hoher Translationsenergie, die mehr als die Hälfte der Überschussenergie abführen. Die Erklärung dieses Prozesses erweist sich schwierig in Anbetracht von durchgeführten Isotopenmarkierungsexperimenten sowie der beobachteten Ratenkonstanten für die Photodissoziation. Eine Interaktion von Valenz- und Rydbergzuständen im Ethyl-Radikal könnte eine Erklärung darstellen. In Zukunft kann beim VMI-Experiment in Würzburg versucht werden, die Auflösung weiter zu verbessern. Dabei ergäben sich im Idealfall zwei scharfe Ringe der H-Atome durch die Spin-Bahn-Aufspaltung von Brom, welche eine sehr genaue Kalibrierung ermöglichen. Neben den Ergebnissen auf dem Gebiet der Photodissoziation, die mit der VMI-Apparatur erzielt wurden, konnten mittels Synchrotronstrahlung und Aufzeichnen der Photoelektronen mittels VMI und der TPEPICO-Technik die folgenden Ergebnisse erhalten werden: • Von Propargylen, einem von drei C3H2 Isomeren, konnte die adiabatische Ionisierungsenergie (IEad) mit 8.99 eV bestimmt werden. Der Vorläufer Diazopropin, eine sehr instabile Substanz, wurde dazu synthetisiert und mit Synchrotronlicht untersucht. Allerdings war es nicht möglich, die Schwingungen im Kation oder die dissoziative Photoionisation (DPI) des Carbens zu untersuchen, da Diazopropin seinerseits bereits bei Energien von 9 eV durch DPI zerfällt. Allerdings konnte ein Peak im TPES des zyklischen Isomers aus einer früheren Messung eindeutig dem Propargylen zugeordnet werden. Ein Ausweg die DPI zu umgehen stellt die Verwendung eines anderen Vorläufers dar. Beispielsweise wurde dazu Propargylchlorid getestet, welches aber nicht das Propargylen erzeugt, sondern das zyklische Isomer Cyclopropenyliden. Daneben können durch ein Doppel-Imaging Experiment, bei dem die Ionen genauso wie die Elektronen mit einem bildgebenden Detektor aufgezeichnet werden, Ionen mit kinetischer Energie aus DPI von Ionen aus der Ionisation ohne kinetischer Energie unterschieden werden. • Von den substituierten Methyl-Radikalen Brommethyl sowie Cyanomethyl konnte die IEad (8.62 bzw. 10.28 eV) und vom Brommethyl die DPI (AE0K = 13.95 eV) bestimmt werden. Daraus konnte der Einfluss der Substituenten auf die IEad im Vergleich zum Methyl-Radikal (IE = 9.84 eV) gezeigt werden. Das zeigt, dass der Brom-Substituent das Kation, der Cyano-Rest dagegen das Radikal stabilisiert. Ebenso konnten aus den Ergebnissen beim Brommethyl thermodynamische Daten wie die Standardbildungsenthalpie des Radikals (ΔH0f= 174.5 kJ/mol) oder Bindungsenergien gewonnen werden. Letztere betragen 334 kJ/mol für die C-Br Bindung im Brommethyl-Radikal sowie 505 kJ/mol im Kation. • Das Fulvenallen (C7H6) wurde aus Phthalid durch Pyrolyse erzeugt und dessen IEad mit 8.22 eV bestimmt. Schwingungen konnten im Kation aufgelöst und zugeordnet werden. Außerdem konnte erstmals die IEad des Fulvenallenyl-Radikals (C7H5) mit 8.19 eV festgelegt werden. Im Vergleich zu früheren Messungen zeigte sich, dass aus Toluol in der Pyrolyse ebenfalls die beiden C7H5/C7H6 Isomere entstehen. Um verschiedene C7H5/C7H6 Isomere in einem Verbrennungsprozess zu unterscheiden, wäre es vorteilhaft, experimentell bestimmte Ionisierungsenergien von anderen Isomeren zu kennen. N2 - In the present work several hydrocarbons have been studied for their intrinsic properties like photoionization, photodissociation or dissociative photoionization. These radicals and carbenes are important in several fields of research: combustion processes (Otto engine), refining processes in oil refineries, interstellar space or chemistry in the Earth’s atmosphere. Molecules like the ones presented in this work play an important role in all these fields of science. However, it poses a great challenge to produce and handle such reactive substances. An apparatus was modified to study the ethyl radical, an important intermediate e.g. in the production of ethylene, in more detail. This experiment allows to record the velocity distribution of the fragment ions, which are produced after excitation with laser light. In a first step this VMI machine was calibrated by the measurement of pyrrol’s photodissociation at an excitation wavelength of 240 nm. In a second step the setup was tested with the photodissociation of cycloheptatriene. Results obtained by Doppler fragment spectroscopy in this and older piece of work were confirmed. About 11 to 13 % of the excess energy are converted to translational energy of the H atom. • The ethyl radical’s photodissociation after excitation at 250 nm was quite interesting. This radical, being the first one studied with this VMI apparatus, showed two dissociation channels: One produces slow H-atoms with an isotropic distribution. This channel was known to the literature and explained by a redistribution of energy on the ground state potential energy surface after fast internal conversion. A second dissociation channel was also observed. Fast H atoms with an anisotropic distribution carry away the vast majority of excess energy. Considering some isotopic labeling experiments and rate constants of the dissoziation the explanation of the second channel is quite challenging. An interaction of Rydberg- and valence states could be a possible explanation. In the future, one can try to improve the resolution of the VMI-experiment in Würzburg further. Besides the results obtained with the VMI machine on the photodissociation some more results were obtained with the help of photoelectron VMI, synchrotron radiation and the TPEPICO imaging technique: The adiabatic ionization energy of propargylene - one of three C3H2 isomers - could be determined to be 8.99 eV. Its precursor diazopropyne could be synthesized, but it came out that this substance is very unstable. The experiments were carried out with synchrotron radiation. Because of the precursor’s DPI, the vibrations of the proparglyene cation could not be resolved. However, one peak could be explained in the threshold electron spectrum of cyclopropenylidene in an earlier experiment, which was assigned the propargylene. One way to circumvent the DPI is to use a different precursor. Therefore, propargyl chloride was tested. Unfortunately, it produced the cyclic isomer cyclopropenylidene. If a doubleimaging experiment would be used, in which ions and electrons are detected by VMI, one could distinguish ions with kinetic energy (by DPI) from those without kinetic energy. • The IEad of two substituted methyl radicals could be determined. The cyanomethyl (10.28 eV) and the bromomethyl radical (8.62 eV) showed differences in their photoionization compared to the methyl radical (9.84 eV). This shows the stabilization effect of the cyano substituent on the radical and of the bromine on the cation. The DPI of bromomethyl could be allocated to 13.95 eV. This allowed us to calculate thermodynamic data like the radical’s heat of formation (ΔH0f =174.5 kJ/mol) or dissociation energies of the C-Br bonding. The latter are 334 kJ/mol in the bromomethyl radical respectively 505 kJ/mol in the cation. • Fulvenallen (C7H6) was produced from phthalide by pyrolysis. The IEad of the stable species was determined to be 8.22 eV. A vibrational progression of the cation could be resolved and assigned. Furthermore, the IEad of the radical fulvenallenyl (C7H5) could be determined to be 8.19 eV. Compared to earlier results obtained on the pyrolysis products of toluene it showed that both C7H5/C7H6 isomers are produced. To distinguish different C7H5/C7H6 isomers in combustion processes, experimentally determined IEs of other isomers would be useful. Unfortunately, the precursors for these are connected to time-consuming synthesis. Although fulvenallenyl is of great interest for scientists, only little has been published in literature. Besides the photoionization, a VMI-experiment could allow a closer look on the photodissociation of this radical to verify and improve kinetic models and calculations in the near future. However, one has to know the properties of its excited states. KW - Radikal KW - Photodissoziation KW - Ionisationsenergie KW - REMPI KW - Synchrotron KW - Abstimmbarer Laser KW - Ultraviolettlaser KW - Laser KW - Pyrolyse KW - Velocity-Map-Imaging KW - dissoziative Photoionisation KW - Vakuum Jet-Flash Pyrolyse KW - Velocity-Map-Imaging KW - dissoziative Photoionisation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75649 ER - TY - THES A1 - Kritzer, Robert T1 - Quantum dynamics in dissipative environments T1 - Quantendynamik in dissipativer Umgebung N2 - In this thesis, the influence of an environment on molecules and, in particular, on the quantum control of such systems is investigated. Different approaches to describe system-bath dynamics are implemented and applied. The inclusion of a dissipation term in the system Hamiltonian leads to energy loss and relaxation to the ground state. As a first application, the isomerisation reaction in an aromatic complex is treated. It is shown that this simple model is able to reproduce results of time-resolved spectroscopic measurements. Next, the influence of noise is investigated. The incorporation of fluctuations reveals that energy is not conserved and coherences are destroyed. As an example, the quantum control of a population transfer in Na2 is examined. The efficiency of control processes is studied in dependence on the strength of the noise and different system-bath couplings. Starting with the unperturbed system, Local Control Theory is applied to construct a field which selectively transfers population into a single excited electronic state. The coupling to the bath is then switched on to monitor the dependence of the coupling strength on the transfer efficiency. The perturbation of the bath effects the Na2 molecule in such a way that potential energy curves and transition dipole moments are distorted. An important result is that already elastic collisions lead to a substantial loss of control efficiency. The most promising approach used in this thesis is the stochastic Schrödinger equation. It is equivalent to the commonly employed descriptions of system-bath dynamics within the reduced density matrix formalism. It includes decoherences and dissipation caused by elastic and inelastic collisions. Our contribution is the incorporation of laser excitation into the kinetic Monte-Carlo scheme. Thus we are able to apply this stochastic approach to the quantum control of population transfer in the sodium dimer. Because within our description it is possible to separate pure dephasing, inelastic transitions, and coherent time-evolution, we can identify the relative influence of these processes on the control efficiency. This leads to a far more physical picture of the basic processes underlying the perturbations of an environment then what a reduced density matrix description can provide. In utilising the stochastic wave function approach instead of the density matrix formalism, the computations are quite efficient. The stochastic Schrödinger equation is realised by N independent runs, where, in our case, an ensemble size of N = 1000 gives converged results. The efficiency of the laser control process is studied as a function of temperature and collision rates. A rise in temperature (or collision rate) reeffects a stronger fluctuation and thus results in a less efficient transfer by the control field. Though the Gaussian fluctuations used here do not strictly represent 'white'- noise, since a deterministic machine is not able to produce uncorrelated random numbers, an acceptable distribution is achieved by simple procedures. An improvement of the here applied algorithms would, for instance, include a more sophisticated sampling of the dephasing rates. Only one example of a control process is studied here and an application of the developed approach to other problems of quantum control is to be performed. This thesis established a systematic approach to understand quantum control in the presence of an environment. N2 - In der vorliegenden Arbeit wird der Einfluss der Umgebung auf Moleküle und insbesondere der Quantenkontrolle solcher Systeme untersucht. Unterschiedliche Herangehensweisen, System-Bad-Kopplungen zu beschreiben, werden implementiert und angewendet. Die Berücksichtigung eines Dissipationstermes im System-Hamiltonoperator führt zu Energieabgabe und Relaxation in den Grundzustand. Als eine erste Anwendung wird die Isomerisation eines aromatischen Komplexes behandelt. Anhand dieses einfachen Modells ist es möglich, Resultate zeitaufgelöster, spektroskopischer Messungen zu reproduzieren. Weiterhin wird der Einfluss des Rauschens untersucht. Die Einführung von Fluktuationen führt dazu, dass Energie nicht erhalten bleibt und Kohärenz verloren geht. Als ein Beispiel dient hier die Quantenkontrolle eines Populationstransferprozesses im Na2 Molekül. Die Effizienz eines Kontrollprozesses wird in Abhängigkeit der Rauschstärke und verschiedener System-Bad-Kopplungen untersucht. Ausgehend vom ungestörten System wird die Lokale Kontrolltheorie benutzt, um ein Feld, welches selektiv Population in einen einzigen, angeregten Zustand transferiert, zu konstruieren. Die Kopplung an das Bad wird daraufhin eingeschaltet, um die Abhängigkeit der Kopplungsstärke auf die Transfereffizienz zu charakterisieren. Die Störung des Bades beeinflusst das Na2-Molekül dahingehend, dass Potentialkurven und Übergangsdipolmomente verzerrt werden. Eine wichtige Erkenntnis ist, dass bereits elastische Stöße zu einem substantiellen Verlust der Kontrolleffizienz führen. Die am meisten versprechende Methode, welche in dieser Arbeit Verwendung findet, ist die der stochastischen Schrödingergleichung. Sie ist der weitläufig gebräuchlichen Beschreibung von System-Bad-Wechselwirkungen innerhalb des Formalismus der reduzierten Dichtematrix gleichwertig. Dekohärenzen und Dissipationseffekte ausgelöst durch elastische und inelastische Stöße werden innerhalb der stochastischen Gleichungen separat berücksichtigt. Unser Beitrag ist die Einbindung der Laseranregung in das kinetische Monte-Carlo-Schema. Dies ermöglicht die Anwendung des stochastischen Ansatzes auf die Quantenkontrolle des Populationstransfers eines Natriumdimers. Da es innerhalb unserer Beschreibung möglich ist, reine Dephasierungen, inelastische Übergänge und kohärente Entwicklung in der Zeit zu beschreiben, können wir den relativen Einfluss jener Prozesse auf die Kontrolleffizienz identifizieren. Dies führt zu einer physikalischeren Beschreibung der zugrunde liegenden Prozesse, welche die Störungen der Umgebung bewirken, als sich aus einer reduzierten Dichtematrizendarstellung ergibt. Durch Benutzung des stochastischen Wellenfunktionsansatzes anstelle des Dichtematrizenformalismus ergeben sich effiziente Berechnungen. Die stochastische Schrödingergleichung wird für N unabhängige Programmdurchläufe gelöst, wobei in unserem Fall eine Ensemblegröße von N = 1000 konvergente Resultate liefert. Die Wirksamkeit des Laserkontrollprozesses wird anhand von Temperatur und Stoßrate untersucht. Ein Anstieg der Temperatur (oder der Stoßrate) spiegelt höhere Fluktuationen wider und resultiert daher in einem weniger effizienten, von einem Kontrollfeld hervorgerufenen Transfer. Obwohl die gaußverteilten Fluktuationen, welche hier benutzt werden, strenggenommen kein 'Weisses Rauschen' repräsentieren, da eine deterministische Rechenmaschine keine unkorrellierten Zufallszahlen generieren kann, wird dennoch eine akzeptable Verteilung aus einfachen Prozeduren erhalten. Eine Verbesserung der hier angewendeten Algorithmen würde zum Beispiel aus einer verfeinerten Implementierung der Dephasierungsraten bestehen. Lediglich ein Beispiel eines Kontrollprozesses wird hier untersucht und die Anwendung der erarbeiteten Methodik auf andere Fragestellungen der Quantenkontrolle ist noch offen. Diese Dissertation stellt somit eine systematische Annäherung dar, um die Quantenkontrolle in Anwesenheit von Umgebungseinflüssen zu verstehen. KW - Quantenmechanisches System KW - Dissipatives System KW - Quantenkontrolle KW - dissipative Umgebung KW - Quantum dynamics KW - dissipative environments Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73456 ER - TY - THES A1 - Schöppler, Friedrich Eugen T1 - Photolumineszenzmikroskopie und-spektroskopie halbleitender Kohlenstoffnanoröhren T1 - Photoluminescence microscopy and spectroscopy of semiconducting nanotubes N2 - Im Rahmen dieser Dissertation wurden optische Eigenschaften von halbleitenden, einwandigen Kohlenstoffnanoröhren (SWNTs) der (6,5)-Chiralität untersucht. Dies gelang durch Ensemblemessungen aber vor allem durch den Aufbau eines Mikroskops zur Messung an einzelnen SWNTs. Dieses Einzel- SWNT-Mikroskop ermöglichte nebst „normaler“ Bildgebung durch Sammlung und Abbildung der nahinfraroten Photolumineszenz (PL) der (6,5)-SWNTs auch die spektral- und zeitaufgelöste Untersuchung der PL. Durch Verwendung von Dichtegradientenultrazentrifugation (DGU) zur chiralen Aufreinigung des SWNT-Rohmaterials konnten alle Messungen unter Minimierung des störenden Einflusses von Aggregaten oder SWNTs anderer Chiralität durchgeführt werden. Untersucht und bestimmt wurde der Absorptionsquerschnitt und die Exzitonengröße, die PL-Eigenschaften aggregierter SWNTs und der Einfluß der Permittivität auf die PL einzelner SWNTs. N2 - Within the course of this work fundamental optical properties of semiconducting single-walled carbon nanotubes (SWNTs) of the (6,5)-chirality were examined by utilizing ensemble measurements and in particular a home-built microscope setup for measurements of individual SWNTs. This single-SWNTmicroscope allowed for „standard“ imaging of the near infrared photoluminescence (PL) signal of the (6,5)-SWNTs as well as for spectrally and timeresolved PL measurements. Facilitating density gradient ultracentrifugation (DGU) for chiral enrichment of the SWNT soot, all measurements were carried out with minimum influence of aggregates or minority species of other SWNT chiralities. The absorption cross section, the exciton size, PL-features of aggregated SWNTs and the influence of permittivity on SWNT-PL have been investigated. KW - Mikroskopie KW - Photolumineszenz KW - Photolumineszenzspektroskopie KW - Kohlenstoff-Nanoröhre KW - Halbleiter KW - Spektroskopie KW - NIR-Spektroskopie KW - Lebensdauer KW - Laserinduzierte Fluoreszenz KW - Aggregation KW - Exziton KW - Dielektrizitätszahl KW - microscopy KW - spectroscopy KW - carbon nanotubes KW - fluorescence Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73329 ER - TY - THES A1 - Schon, Christof T1 - Spektroskopie an substituierten [2.2]Paracyclophanen T1 - Spectroscopy of substituted [2.2]paracyclophanes N2 - In dieser Arbeit wurde der elektronische Grundzustand und der erste angeregte Zustand sowie der Zustand des Ions von substituierten [2.2]Paracyclophanen untersucht. Um die Wechselwirkungen zwischen konjugierten pi-Systemen besser zu verstehen wurden die Moleküle mit Hilfe von Resonance Enhanced Multiphoton Ionization Spektroskopie (REMPI), VUV-Synchrotronstrahlung und quantenchemischen Rechnungen untersucht. Die Experimente wurden im Molekularstrahl durchgeführt. In den [1+1]-REMPI-Spektren von pseudo-para-Dibrom[2.2]paracyclophan, pseudo-para-Dicyano[2.2]paracyclophan, pseudo-ortho-Dicyano[2.2]paracyclophan, pseudo-para-Diphenyl[2.2]paracyclophan und pseudo-para-Di(trimethylsilyl)[2.2]paracyclophan wird ein kontinuierlicher Signalanstieg beobachtet. Individuelle Schwingungsbanden konnte nicht aufgelöst werden. Dies ist ein Hinweis darauf, dass die Schwingungszustände im S1-Zustand sehr eng beieinanderliegen. Der Schwerpunkt dieser Arbeit lag auf der Untersuchung der hydroxysubstituierten [2.2]Paracyclophane pseudo-ortho-Dihydroxy[2.2]paracyclophan (o-DHPC), pseudo-para-Dihydroxy[2.2]paracyclophan (p-DHPC) und racemisches-4-Hydroxy[2.2]paracyclophan (MHPC). Die adiabatischen Ionisierungsenergien der Moleküle wurden aus der Ionenstromkurve mit Hilfe eines Wannier-Fits bestimmt: 7.56eV (o-DHPC), 7.58eV (p-DHPC) und 7.63eV (MHPC). In den Schwellenphotoelektronenspektren (TPES) werden Signalmodulationen im Photonenenergiebereich von 7.8-11eV beobachtet. Hierbei handelt es sich um angeregte Zustände des Kations. Bei ca. 10.5eV wird in den Spektren von allen drei hydroxysubstituierten Molekülen dissoziative Photoionisation (DPI) beobachtet. Hierbei werden die Bindungen zwischen den aliphatischen Kohlenstoff-Atomen gebrochen. Im [1+1]-REMPI-Spektrum des o-DHPCs wird der S1<-S0-Übergang bei 31483cm^-1 (3.903eV) beobachtet. Die berechnete adiabatische Anregungsenergie liegt bei 3.87eV (SCS-CC2). Der elektronische Ursprung des o-DHPCs ist +722cm^-1 blauverschoben im Vergleich zum unsubstituierten [2.2]Paracyclophan (PC). Im REMPI-Spektrum werden viele Schwingungsbanden beobachtet. Cluster des o-DHPCs mit Wasser werden ebenfalls beobachtet. Die elektronischen Ursprünge der Cluster mit Wasser sind rotverschoben im Vergleich mit dem Monomer. Im o-DHPC(H2O)-Cluster ist das Wassermolekül zwischen den beiden OH-Gruppen des Cyclophans über Wasserstoffbrückenbindungen fixiert. In den REMPI-Spektren des o-DHPCs und o-DHPC(H2O)-Clusters wird die Atmungsmode mit hoher Intensität beobachtet. Außerdem tritt eine Twist- und Tilt-Mode in den Spektren auf. Viele Kombinationsbanden der Atmungs, Twist- und Tilt-Mode werden in den Spektren beobachtet. Im [1+1]-REMPI-Spektrum des p-DHPCs werden nur kleine Signalmodulationen mit niedrigen Intensitäten im roten Spektralbereich im Vergleich mit dem Ursprung des o-DHPCs beobachtet. Bei der Anregung des p-DHPCs kommt es zu einer großen Änderung der Struktur. Dies führt dazu, dass die Franck-Condon-Faktoren für den S1<-S0-Übergang des p-DHPCs deutlich kleiner sind im Vergleich mit dem o-DHPC (1:10^7). Daher treten die Signale des p-DHPCs im REMPI-Spektrum nur mit geringer Intensität auf. Der Ursprung des S1<-S0 Übergangs des MHPCs wird im [1+1]-REMPI-Spektrum bei 30772cm^-1 (3.815eV) beobachtet. Die berechnete Anregungsenergie liegt bei 3.79eV (SCS-CC2). Im Vergleich zum unsubstituierten PC wird keine wesentliche Energieverschiebung des S1<-S0-Übergangs beobachtet. Im REMPI-Spektrum des MHPCs wird die Twist-Mode beobachtet. Die Banden zeigen eine inverse Anharmonizität. Die ab-initio-Rechnungen beschreiben die Potentialkurve des S1-Zustands mit einem Doppelminimum. Die Höhe der Barriere zwischen den beiden Minima hängt vom Basissatz ab. Empirisch wurde entlang der Twist-Mode ein flaches Potential bestimmt. Die aus diesem Potenzial resultierenden Banden und Intensitäten der Twist-Mode stimmen mit den experimentellen Beobachtungen sehr gut überein. Die [1+1]-REMPI-Spektren des MHPCs mit einem und zwei Wassermolekülen zeigen einen kontinuierlichen Signalanstieg. Einzelne Schwingungsbanden konnten unter den experimentellen Bedingungen nicht aufgelöst werden. Der Ursprung des MHPC-Clusters mit einem Wassermolekül beginnt bei ca. -180cm^-1 und mit zwei Wassermolekülen bei ca. -290cm^-1 im Vergleich mit dem Ursprung des Monomers. N2 - This thesis examines the electronic ground state, first excited state and ion state of substituted [2.2]paracyclophanes. In order to unterstand the interactions between the two conjugated pi systems, the molecules were investigated by resonance-enhanced multiphoton ionization spectroscopy (REMPI), VUV-synchrotron radiation and quantum chemical calculations. The experiments were carried out in a supersonic jet. In the [1+1]REMPI spectra of pseudo-para-dibromo[2.2]paracyclophane, pseudo-para-dicyano[2.2]paracyclophane, pseudo-ortho-dicyano[2.2]paracyclophane, pseudo-para-diphenyl[2.2]paracyclophane and pseudo-para-di(trimethylsilyl)[2.2]paracyclophane, the signals are increasing almost continuously. Individual vibrational bands could not be resolved. This indicates that there are many closely spaced vibrational transitions. The main focus of this work was the examination of the hydroxysubstituted [2.2]paracyclophanes pseudo-ortho-dihydroxy[2.2]paracyclophane (o-DHPC), pseudo-para-dihydroxy[2.2]paracyclophane (p-DHPC) and racemic-4-hydroxy[2.2]paracyclophane (MHPC). The adiabatic ionization energies of the molecules were determined from a photoionization efficiency curve (PIE), using synchrotron radiation with a Wannier-type fitting procedure: 7.56eV (o-DHPC), 7.58eV (p-DHPC) and 7.63eV (MHPC). In the threshold photoelectron spectra (TPES), signal modulations were observed in the photon energy range of 7.8-11eV. These broad bands were assigned to excited states of the cation. At approximately 10.5eV, dissociative photoionization was observed in the spectra of all three hydroxysubstituted molecules and the bonds between the aliphatic carbon atoms were broken in [2.2]paracyclophanes. In the [1+1]REMPI spectrum of o-DHPC, the origin of the S1<-S0 transition lies at 31483cm^-1 (3.903eV). An adiabatic excitation energy of 3.87eV was computed on SCS-CC2 level. The electronic origin of o-DHPC is 722cm^-1 blue shifted in comparison with the unsubstituted [2.2]paracyclophane (PC). The REMPI spectra of o-DHPC-waterclusters were also recorded. The electronic origins of the clusters are red shifted in comparison with the monomer. In the o-DHPC(H2O)cluster, the water molecule is inserted between the two OH groups of the cyclophane via hydrogen bonds. The number of vibration bands is very high in the [1+1]REMPI spectra. Moreover, considerable activity in a breathing vibration is found in the S1 state of o-DHPC and o-DHPC(H2O). Further vibrations appear in the REMPI spectra of o-DHPC and o-DHPC(H2O) (twist mode and tilt mode). Many combination bands of the breathing, twist and tilt mode also occur in the spectra. In the [1+1]REMPI spectrum of p-DHPC, only small signal modulations with low intensities were observed in the red part, in comparison with the origin of o-DHPC. Drastic structural relaxation upon excitation was found in p-DHPC. Due to a strong structural change, the Franck-Condon factors of p-DHPC were found to be significantly smaller than those in o-DHPC (1:10^7). Therefore, only signals with low intensity were observed in the REMPI spectrum of p-DHPC. The origin of the S1<-S0 electronic transition was located at 30772cm^-1 (3.815eV) in the [1+1]REMPI spectrum of MHPC. The computed excitation energy on SCS-CC2 level is 3.79eV. In comparison with PC, no substantial energy shift of the S1<-S0 origin was observed. A significant geometry change upon electronic excitation indicated by the computations was confirmed by a twist and shift mode in the spectrum. The spacings of the twist bands show an inverse anharmonicity. The ab initio data predict a potential energy curve with a double minimum in the S1 state. The calculated barrier between the two minima depends on the basis set. A shallow potential along the twist coordinate was derived empirically. Good agreement of the resulting bands and intensities of the twist mode with experimental observations was achieved. The [1+1]REMPI spectra of MHPC with one and two water molecules show closely spaced transitions. Individual vibrational bands, however, could not be resolved under the experimental conditions. The signal onset in the cluster channel starts at approximately -180cm^-1 (one H2O) and -290cm^-1 (two H2O) to the red of the monomer origin. KW - Paracyclophane KW - REMPI KW - pi-pi-Wechselwirkung KW - Cyclophane KW - Photoionisation KW - Elektronische Anregung KW - Zwischenmolekulare Kraft KW - Gasphase KW - cyclophanes KW - photoionization KW - electronic excitation KW - pi-pi interaction KW - gas phase Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-65374 ER - TY - THES A1 - Stich, Dominik T1 - Zur Exziton- und Ladungsträgerdynamik in einwandigen Kohlenstoffnanoröhren T1 - Exciton and charge carrier dynamics in single-wall carbon nanotubes N2 - In dieser Dissertation wurde die Exziton- und Ladungsträgerdynamik in halbleitenden und metallischen einwandigen Kohlenstoffnanoröhren (SWNTs) mittels zeitkorreliertem Einzelphotonenzählen (TCSPC) und transienter Absorptionsspektroskopie untersucht. Die Experimente wurden an Tensid- oder DNA-stabilisierten SWNT-Proben in Suspension durchgeführt, in denen durch Dichtegradientenultrazentrifugation (DGU) halbleitende (6,5)-Röhren oder metallische (9,9)-Röhren angereichert wurden. Für die Herstellung der metallischen SWNT-Proben wurde das DGU-Verfahren optimiert. Metallische SWNT-Proben wiesen eine Verunreinigung von etwa 3% halbleitenden SWNTs auf. Von den angereicherten metallischen SWNTs war die (9,9)-Röhre mit einem relativen Anteil von 40% die vorherrschende Chiralität. Für transiente Absorptionsmessungen wurden die metallischen SWNT-Proben zudem durch Filtration aufkonzentriert. Halbleitende (6,5)-Proben wurden mit einem standardmäßig verwendeten Rezept hergestellt. Mit TCSPC-Messungen an (6,5)-Proben wurde erstmals gezeigt, dass halbleitende SWNTs neben der kurzlebigen Fluoreszenz des S1-Exzitons, die auf der ps-Zeitskala abläuft, auch eine langlebig Fluoreszenzkomponente aufweisen. Diese klingt mit t^−1 ab und stammt ebenfalls aus dem S1-Exzitonzustand. Das relative Gewicht der langlebigen Komponente an der Quantenausbeute beträgt (7 ± 2)%. Bei der langlebige Fluoreszenzkomponente handelt es sich um verzögerte Fluoreszenz. Diese entsteht durch die Wiederbesetzung des S1-Zustands aus einem tiefergelegenen Triplettzustand. Der vorherrschende Zerfall des Tripletts skaliert mit t^-0,5 und ist auf das nicht-Fick’sche Diffusionsverhalten der Tripletts zurückzuführen, die an Störstellen gefangen werden und abreagieren. Wird vor dem Übergang in den Grundzustand ein weiteres Triplett eingefangen, so kommt es zu einer Triplett-Triplett-Annihilation, die eine Wiederbesetzung des S1-Zustandes bewirkt. Für die transienten Absorptionsexperimente wurde ein Messaufbau verwirklicht, der Anregung und Abfrage im VIS und NIR Spektralbereich mit einer Zeitauflösung von bis zu 50 fs ermöglicht. Die Detektion des Abfragelichts erfolgt spektral aufgelöst mit einer CCD-Kamera. Der Aufbau ermöglicht Nachweisempfindlichkeiten von bis zu 0,2 mOD bei einer Integrationszeit von einer Sekunde. Durch unterschiedliche Modulation von Anregungs- und Abfragestrahl ist eine Detektion auf der Differenzfrequenz der Modulationen möglich, wodurch Einflüsse des Anregungslichts im Abfragespektrum effizient unterdrückt werden. In transienten Absorptionsexperimenten wurde die Exziton- und Ladungsträgerdynamik der (9,9)-Röhre untersucht. Die transienten Absorptionsdaten wurden mit einer globalen Fitroutine angepasst, der ein Vierniveausystem zugrunde lag. Aus dem globalen Fit sind die Photoanregungsspektren (PAS) - die Beiträge der drei angeregten Niveaus zu den transienten Absorptionsspektren - sowie die Zerfallszeiten zugänglich. Die PAS sind durch die Exzitonresonanz gekennzeichnet. Breite PB-Banden aufgrund der Besetzungsänderung der linearen E00-Bänder sind im Gegensatz zu transienten Absorptionsmessungen an Graphen oder Graphit nicht erkennbar. Die PAS des schnellen und mittleren Zerfalls sind ähnlich und weisen eine starkes PB-Signal bei der Energie des M1-Exzitons der (9,9)-Röhre auf, das von PA-Banden bei höheren undtieferen Energien begleitet wird. Der langsame Zerfall ist hingegen durch eine blauverschobene PB-Bande gekennzeichnet, die nur auf der niederenergetischen Seite mit einem PA-Signal einhergeht. Die Zerfallszeiten nehmen mit steigender Anregungsleistung zu und liegen im Bereich von 30 fs bis 120 fs, 500 fs bis 1000 fs und 40 ps. Die schnelle Zerfallskomponente wird mit der Dissoziation der Exzitonen sowie der Thermalisierung der freien Ladungsträgen in den linearen Leitungsbändern zu einer heißen Ladungsträgerverteilung assoziiert. Die mittlere Zerfallskomponente beschreibt die Abkühlung und Rekombination der freien Elektronen und Löcher. Entscheidender Mechanismus ist hierbei die Streuung an hochenergetischen optischen Phononmoden. Die langsame Zerfallskomponente kann durch langlebige, wahrscheinlich an Störstellen gefangene Ladungsträger erklärt werden, deren elektrische Felder durch den Stark-Effekt das ableitungsähnliche transiente Absorptionsspektrum erzeugen. Mittels transienter Absorptionsmessungen an (6,5)-Röhren wurde aus dem anregungsleistungsabhängigen maximalen PB-Signal des S1-Exzitons die Größe des S1-Exzitons zu (7,2 ± 2,5) nm bestimmt. Aus dem Vergleich der leistungsabhängigen maximalen PB-Signale bei Anregung in das S1- und das S2-Exziton ergibt sich, dass die Konversionseffizienz aus dem S2- in den S1-Zustand 1 ± 0,1 beträgt und innerhalb der experimentellen Zeitauflösung von 60 fs vollständig abläuft. Die Exzitongröße in metallischen (9,9)-Röhren wurde bei Exzitonlebensdauern von 15 fs bis 30 fs zu etwa 7 nm bis 12 nm abgeschätzt. N2 - Within the course of this work, the electron- and exciton-dynamics in metallic and semiconducting single-wall carbon nanotubes (SWNTs) were examined by timecorrelated single-photon counting (TCSPC) spectroscopy and transient absorption spectroscopy. In the experiments surfactant- or DNA-stabilized SWNT-suspensions were used in which the semiconducting (6,5)-chirality or the metallic (9,9)-chirality were enriched by means of density gradient ultracentrifugation. The preparation method for metallic samples was optimized. It yields samples that contain 40% of the predominant (9,9)-chirality and show a contamination with semiconducting SWNTs of only 3%. Metallic SWNT samples for transient absorption experiments were concentrated by filtration. Semiconducting (6,5)-samples were prepared following a standard recipe. TCSPC-measurements on (6,5)-samples revealed that semiconducting SWNTs also exhibit a long-lived fluorescence component besides the short-lived fluorescence of the S1-exciton which emits on the ps-timescale. The long-lived component shows a t^−1 powerlaw decay behavior. It also stems from the S1-exciton state and accounts for (7 ± 2) % of the total quantum yield. The long-lived component is due to delayed fluorescence which is caused by the repopulation of the S1-exciton state from a lower-lying triplet state. The decay of the triplet state scales with t^−0,5 and is due to non-Fickian diffusion of the triplets which eventually get trapped at defect sites and decay. In the case that a second triplet is captured at an already occupied defect site, triplet-triplet-annihilation occurs, which leads to the reoccupation of the S1-exciton state. A transient absorption experiment was set up which allows pumping and probing in the visible and near-infrared spectral range with a temporal resolution of up to 60 fs. The spectrally resolved probe light is detected by a CCD-camera. The experimental setup reaches a detection sensitivity of up to 0,2 mOD at an integration time of one second. The experimental setup also allows for the detection on the difference frequency of the modulated pump- and probe-beams. This strongly suppresses contributions of stray light from the pump beam in the transient absorption spectrum. The exciton and charge carrier dynamics in metallic (9,9)-SWNTs were investigated with transient absorption measurements. A global fit routine, based on a four level model, was applied to the data. The decay times as well as the photo excitation spectra – the contributions of each of the three excited levels to the transient absorption spectra - are directly accessible from the global fit. All photo excitation spectra are dominated by PA- and PB-contributions from the exciton resonance. Broad PB-features due to the population of the linear E00-bands, as evidenced in graphene or graphite, were not found. The photo excitation spectra of the fast and medium decay component are similar. Both exhibit a strong PB-signal at the energy of the M1-excitons of the (9,9)-tube, which is accompanied by PA-Bands on the high and the low energy sides. The slow decay component is characterized by a blue-shifted PB-peak with a PA-band on the low energy side only. The decay times increase with rising excitation power and are in the range of 30 fs to 120 fs, 500 fs to 1000 fs, and 40 ps, respectively. The fast decay is associated with rapid exciton dissociation and thermalization of the charge carriers in the linear bands. The medium decay is governed by cooling of the hot charge carrier distribution and recombination of electrons and holes. Both processes are mediated by high energy optical phonons. The slow decay originates from long-lived charge carriers, likely trapped at defect sites. The derivative-like photo excitation spectrum is a sign of the Stark-effect, caused by the electric field of the charge carriers. Using transient absorption measurements, the size of the S1-exciton in (6,5)-tubes was determined from the excitation dependent maximum of the S1-PB-signal to be (7,2 ± 2,5) nm. Comparing the excitation dependent maximum PB-signal after exciting the S1- or the S2-exciton-states shows that the conversion efficency from the S2- into the S1-exciton state is 1 ± 0,1 and is completed within the experimental temporal resolution of 60 fs. The exciton size in metallic (9,9)-tubes is in the range from 7 nm to 12 nm for excitonic lifetimes of 15 fs to 30 fs. KW - Kohlenstoff-Nanoröhre KW - Verzögerte Fluoreszenz KW - Exziton KW - Kohlenstoffnanoröhre KW - metallisch KW - Exziton KW - verzögerte Fluoreszenz KW - single-wall carbon nanotube KW - metallic KW - exciton KW - delayed fluorescence Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-70193 ER - TY - THES A1 - Buback, Verena Simone [geb. Schulz] T1 - Synthese neuer Cystein-Protease-Inhibitoren sowie deren theoretische und experimentelle Untersuchung hinsichtlich der Struktur-Wirkungs-Beziehung T1 - Synthesis of new Cystein protease inhibitors and their theoretical and experimental investigation regarding the structure activity relationship N2 - Derivate von Vinylsulfonen (VS), die zur Klasse der Michael-Akzeptoren gehören, haben sich in den letzten Jahren als potente irreversible Inhibitoren von Cystein-Proteasen etabliert. Durch einen nucleophilen Angriff des Cys-Restes im aktiven Zentrum der Protease auf das beta-Kohlenstoffatom der C-C-Doppelbindung wird die Protease irreversibel alkyliert. Ziel dieser Arbeit war es, einfache theoretische und experimentelle Methoden zu entwickeln, um erste Schlussfolgerungen hinsichtlich der Reaktivität unterschiedlicher Vinylsulfone ziehen zu können, die zur vollständigen Aufklärung der Struktur-Wirkungsbeziehung von Vinylsulfonen mit diversen Cystein-Proteasen dienen. Im ersten Teil der Arbeit wurden quantenmechanische Rechnungen an kleinen Vinylsulfon-Bausteinen angestellt, um den Einfluss unterschiedlicher Substitutionsmuster an der Sulfoneinheit auf die Reaktionskinetik von Vinylsulfonen zu untersuchen. Anhand der jeweiligen Potentialflächen ließen sich die charakteristischen Punkte der Reaktion, wie der Reaktionskomplex, der Übergangszustand (transition state, TS) sowie das Produkt mitsamt ihren Energien und Geometrien bestimmen. Die Höhe der Energiebarriere, die zum Erreichen des TS überwunden werden muss, die sogenannte Aktiverungsenergie, hängt über die Arrhenius-Gleichung mit den kinetischen Parametern der Reaktion zusammen. Es lässt sich also durch die Kenntnis der Aktivierungsenergien die Reaktivitätsreihenfolge unterschiedlich substituierter Vinylsulfone VS vorhersagen. Im zweiten Teil dieser Arbeit wurden Vinylsulfonbausteine synthetisiert und an separat hergestellte Peptide gekuppelt, sodass potentielle Inhibitoren erhalten wurden. So konnten u.a. die peptidischen Inhibitoren Mu-D-Phe-L-HomoPhe-VS-Me und MP-D-Phe-L-HomoPhe-VS-Me hergestellt werden. Ein zweites Syntheseprojekt beschäftigte sich mit der Kupplung von Peptiden an neue Derivate der trans-Aziridin-2,3-dicarbonsäure. Die synthetisierten Inhibitoren waren Z-Phe-Ala-Azi, Boc-Leu-Pro-Azi und Z-Pro-Leu-Azi. Hierfür wurden die Peptide des Vinylsulfonsprojekts in umgekehrter Aminosäure-Reihenfolge synthetisiert, um sie an die Aziridinbausteine kuppeln zu können. Der dritte Teil der Doktorarbeit befasste sich mit der experimentellen Untersuchung der synthetisierten Vinylsulfonbausteine sowie den erhaltenen peptidischen VS- und Aziridin-basierten Inhibitoren. Es wurden einerseits Enzym-Assays durchgeführt, um die prozentuale Hemmung verschiedener Cystein-Proteasen durch die synthetisierten Moleküle zu messen. Keine der Verbindungen wies jedoch eine signifikannte Hemmung der Proteasen Rhodesain, Falcipain 2 und Cathepsin B auf. Andererseits wurden Modellsysteme entwickelt, um die Kinetik der Reaktionen der Vinylsulfon- und Aziridinbausteine mit einem geeigneten Thiol als Enzym-Imitat zu verfolgen. Ein zielführendes Modell konnte mit Phenylethanthiol in deuteriertem Methanol realisiert werden. Durch Zusatz von NaOH, KOH oder KOtBu konnte zusätzlich die Reaktion mit dem Thiolat untersucht werden. Die Reaktionen wurden sowohl mit IR- als auch NMR-Spektroskopie verfolgt und es wurden die Geschwindigkeitskonstanten 2. Ordnung bestimmt. Auf den ersten Blick konnte mit dem theoretischen Modell der experimentell gefundene Trend nicht vorhergesagt werden. Die Reihenfolge der Sulfonderivate aber, die an der Sulfongruppe ein weiteres Heteroatom tragen, Sulfonester und Sulfonamid, wurde richtig abgeschätzt. Der Unterschied in der Aktivierungsenergie zwischen den Sulfonestern beläuft sich auf 0.7 kcal pro mol. Über die Arrheniusgleichung, ergibt sich bei Annahme desselben Arrhenius-Faktors bei einer Temperatur von 25°C, dass OPhVS um einen Faktor 3 schneller als OMeVS reagieren sollte. Tatsächlich wurde im Experiment ein Faktor von 2.6 gefunden. Aufgrund der unterschiedlichen Substituenten am Stickstoffatom, ist das Amid nicht vollständig mit seinem H-substituierten theoretischen Pendant vergleichbar. Dass das Sulfonamid langsamer als die Sulfonester reagieren, wurde vom theoretischen Modell ebenfalls richtig vorhergesagt. N2 - Derivatives of vinyl sulfones (VS), which belong to the class of Michael acceptors, have been established as potent, irreversible inhibitors of cysteine proteases during the past years. The protease is irreversibly alkylated by the nucleophilic attack of the Cys-residue of the protease's active site at the beta-carbon atom of the C-C-double bond. The objective of this work was the development of simple, theoretical and experimental methods to draw first conclusions concerning the reactivity of diverse vinyl sulfones, which are needed for further investigations to fully understand the complex structure-activity relationship of vinyl sulfones as inhibitors of various cysteine proteases. In the first part of this work, quantum mechanical calculations of small vinyl sulfone entities were conducted in order to investigate the impact of different substitution patterns at the sulfone moiety on the reaction kinetics of vinyl sulfones. By means of the PES characteristic reaction points, such as the reaction complex, the transition state (TS) or the product, including energies and structural parameters, could be determined. The height of the energy barrier to pass the TS, the so-called activation energy, is related to the kinetic parameters of a reaction through the Arrhenius equation. In the second part of this work, the discussed vinyl sulfone building blocks were synthesized and coupled to separately synthesized peptides, yielding potential inhibitors such as Mu-D-Phe-L-HomoPhe-VS-Me and MP-D-Phe-L-HomoPhe-VS-Me. A second synthesis project dealt with the coupling of peptides to new derivatives of trans-aziridine-2,3-dicarbonylic acid. The synthesized inhibitors are Z-Phe-Ala-Azi, Boc-Leu-Pro-Azi, and Z-Pro-Leu-Azi. Additionally, the stated peptides were synthesized with reverse amino acid sequence in order to couple them to the aziridine building blocks. The third part of this phD thesis dealt with the experimental investigation of the synthesized vinyl sulfone building blocks as well as the obtained peptidic VS- and aziridine-based inhibitors. On the one hand, enzymatic assays were carried out, to measure the percentage inhibition of various cysteine proteases caused by the synthesized molecules. Unfortunately, none of the compounds showed significant inhibition of the proteases rhodesaine, falcipain 2 or cathepsine B. On the other hand, model systems were developed to track the reaction kintics of the addition reactions of the vinyl sulfone and aziridine building blocks with a suitable thiol as the enzyme "dummy". A target-aimed model could be realized with phenyl ethane thiol in deuterated methanol. Moreover, by addition of NaOH, KOH or KOtBu, the raction with the respective thiolate could be studied. The reactions were followed by IR- and NMR-spectroscopy and the second order rate constants were determined. The series of the investigated vinyl sulfones with respect to the reactivity towards phenyl ethane thiolate was established. At first glance, the theoretical model was not able to predict the experimentally disclosed reactivity trend. Nevertheless, the order of the sulfone derivatives carrying a hetero atom at the sulfone moiety, sulfone esters and sulfone amide, was estimated correctly. The calculated difference in activation energy between the sulfone esters is 0.7 kcal per mol. Applying the Arrhenius equation under the assumption of identical Arrhenius factors at a temperature of 25°C, OPhVS should react faster than OMeVS by a factor of 3. Indeed, experiments showed a factor of 2.6. Because of the different substituents at the nitrogen atom, the amide is not thouroughly comparable to its H-substituted theoretical pendant. The even slower reaction of the sulfone amide compared to the sulfone esters was still correctly predicted with the theoretical model. KW - Cysteinproteasen KW - Enzyminhibitor KW - Struktur-Aktivitäts-Beziehung KW - cystein protease inhibitor QSAR Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72306 ER - TY - THES A1 - Hemberger, Patrick T1 - Photoionisationsstudien an Radikalen und Carbenen mit VUV-Synchrotronstrahlung T1 - Photoionization Studies on Radicals und Carbenes mit VUV Synchrotron Radiation N2 - Die vorliegende Dissertation untersucht reaktive Intermediaten, speziell Radikale und Carbene und deren Verhalten bei Photoionisation mit VUV-Synchrotronstrahlung. Diese instabilen Verbindungen wurden durch Pyrolyse von teils selbstsynthetisierter Vorläufern in einem kontinuierlichen Molekularstrahl erzeugt und mittels der TPEPICO-Spektroskopie untersucht. Die wichtigsten Ergebnisse dieser Arbeit werden im Anschluss hervorgehoben. Drei Radikale der Zusammensetzung C9H7, Indenyl, 1- und 3-Phenylpropargyl wurden aus ihren bromierten Vorläufern synthetisiert und ihre Ionisierungsenergien bestimmt. Die Frage ob es möglich ist alle drei Radikale hinsichtlich ihrer IE zu unterscheiden und dadurch eine Identifikation in einer Flamme möglich wird, konnte beantwortet werden. Indenyl und 3-Phenylpropargyl besitzen Ionisierungsenergien von 7.53 und 7.20 eV, was eine Erkennung in Flammen prinzipiell möglich macht. Für 1-Phenylpropargyl wurde eine IEad von 7.4 eV gemessen, was eine selektive Identifikation erschwert. Die Messwerte wurden durch quantenchemischen Rechnungen überprüft und sind mit diesen in guter Übereinstimmung. Die Photoionisation von Cyclopropenyliden (IEad = 9.17 ± 0.015 eV) wurde untersucht,wobei eine niederenergetische Bande dem Propargylen (IEad = 9.02 ± 0.02 eV), dem HCCCH Isomer der Zusammensetzung C3H2, zugeordnet werden konnte. Die Schwingungsstruktur des Spektrums konnte erfolgreich simuliert und dadurch die Geometrie des Kations ermittelt werden. Als Nebenprodukt im Molekularstrahl wurde Chlorcyclopropenyliden (IEad = 9.17 ± 0.02 eV) durch seine Schwingungsprogression identifiziert. Die Analyse der dissoziativen Photoionisation gestaltet sich als schwierig, da sowohl c-C3H2 als auch c-C3HCl im relevanten Energiebereich fragmentieren können und die Anwesenheit von HCl die Auswertung ebenfalls erschwert. Ein Lösungsvorschlag für dieses Problem wurde ebenfalls aufgezeigt. Der Einfluss von Substitutionen auf die IE wurde am Beispiel des Propargylradikals und seiner zwei bromierten Analoga erforscht. Dabei wurde eine Rotverschiebung (IEad(C3H3) = 8.71 ± 0.02 eV / IEad(BrCCCH2) = 8.16 ± 0.02 eV / IEad(BrHCCCH) = 8.34 ± 0.02 eV) gemessen. Diese ist auf den elektronenspendenden Charakter des Broms begründet. Beide Brompropargylradikale lassen sich anhand ihrer IE unterscheiden. Die Schwelle zur dissoziativen Photoionisation von C3H2Br zu C3H2 wurde mit 10.1 eV ermittelt, wobei verschiedene Kanäle für diese Reaktion in Frage kommen. Schwingungsaktivität konnte im TPE-Spektrum des Propargylradikals ebenfalls verzeichnet und die v3 +-Mode mit 1950 cm-1 ermittelt werden. Als letztes Projekt stand die Photoionisation des t-Butyl im Fokus, da teils widersprüchliche Messwerte für die IEad in der Literatur publiziert sind. Es konnte ein Wert von 6.75 eV ± 0.03 eV gemessen werden. Die Schwierigkeit bei diesem Experiment ist die Geometrieänderung während der Ionisierung, da das Radikal pyramidal und das Kation eine planare Struktur im C-Gerüst besitzt. Die Grenzen der angewendeten Methoden wurden an diesem Beispiel deutlich gemacht. Zur vollständigen Charakterisierung wurden auch die Vorläufer genau analysiert, da diese durch dissoziative Photoionisation (DPI) Fragmentionen bilden, welche die gleiche Masse besitzen wie die zu untersuchenden Radikale und Carbene. Aus diesen Ergebnissen konnten Bindungsenergien berechnet werden. Von allen untersuchten reaktiven Intermediaten konnten die Ionisierungsenergien mit einer Genauigkeit von ± 20 meV ermittelt werden. Es wurde gezeigt, dass sogar Isomere mit gleicher Molekülmasse unterscheidbar sind. Diese Daten lassen sich verwenden um reaktive Zwischenprodukte in Flammen zu identifizieren. Die Identifizierung ermöglicht es dann geeignete Modelle für Verbrennungsprozesse zu konstruieren oder vorhandene zu verbessern. Diese könnten wiederum helfen die Ruß- und PAK-Bildung besser zu verstehen. Die Ziele dieser Dissertation konnten somit erreicht werden. Massenspektren, welche in Flammen durch VUV-Synchrotronstrahlung aufgenommen wurden, beherbergen eine große Fülle an größeren reaktiven Intermediaten wie beispielsweise das Fluorenyl oder das Biphenylmethylradikal. Deren Ionisation ist bislang nur sehr vage erforscht und wäre deshalb ein interessantes Projekt um diese Arbeit fortzuführen. N2 - This thesis examines reactive intermediates, especially radicals and carbenes and their behavior at photoionization with VUV-synchrotron radiation. Those unstable compounds were produced by pyrolysis of self-synthesizes precursors in a continuous molecular beam and studied by the TPEPICO spectroscopy. The most important results of this work are highlighted below. Three radicals of the composition C9H7, Indenyl, 1- and 3-phenylpropargyl, were synthesized from brominated precursors and their ionization energies were determined. The question, whether these three radicals can be distinguished by their ionization energy and therefore identified in a combustion flame, was answered. Indenyl and 3-phenylpropargyl exhibit ionization energies of 7.53 and 7.20 eV, which make a distinction possible. For 1-phenylpropargyl an IEad of 7.4 eV was measured, which complicates an selective identification. The measurements were also verified by quantum chemical calculations and are in good agreement. The photoionization of cyclopropenylidene (IEad = 9.17 ± 0.015 eV) was reexamined and and a low-energy band was assigned to propargylene (IEad = 9.02 ± 0.02 eV), which is the HCCCH isomer of the composition C3H2. The vibrational structure of the spectrum of c-C3H2 was successfully simulated and the cationic geometry was also determined. As a by-product chlorocyclopropenylidene (IEad = 9.17 ± 0.015 eV) was found and assigned due to its vibrational progression. The analysis of the dissociative photoionization is difficult, because both c-C3H2 and c-C3HCl are able to fragment in the relevant energy range and the presence of HCl complicates the analysis too. A solution of this problem was also mentioned. The influence of substituents on the IE was studied, using the propargyl radical and its two brominated analogs as an example. A redshift (IEad(C3H3) = 8.71 ± 0.02 eV / IEad(BrCCCH2) = 8.16 ± 0.02 eV / IEad(BrHCCCH) = 8.34 ± 0.02 eV) was measured upon Br substitution. It originates from the electron-donating character of the bromine. Both bromopropargyl radicals can be distinguished by their IE. The threshold of dissociative photoionization of C3H2Br was determined to be 10.1 eV, but several channels can produce the C3H2+ fragment. Vibrational activity was found in the TPE spectrum of the propargyl radical and the v3 + mode was identified (1950 cm-1) as well. As a last project the photoionization of the t-butyl was brought into focus, because partly inconsistent measurements of the IEad are published in the literature. A value of 6.75 ± 0.03 eV was measured in this study. The challenge in experiments on this radical is the huge change in geometry, because the neutral is pyramidal while the cation has a planar carbon framework. The limits of the utilized methods were demonstrated using this example. For a complete characterization the precursors were examined too, because the fragment ions, produced by dissociative photoionization (DPI), could falsely be assigned to the radical or carbene. From these results binding energies were calculated additionally. The ionization energies of all examined reactive intermediates could be determined with an accuracy of ± 20 meV. It was shown that even isomers of the same molecular mass are distinguishable. This data can be used to identify reactive molecules in flames. The identification makes it possible to construct reasonable models for combustion processes or to improve available ones. These models could help to improve the understanding of soot and PAH formation. Therefore the aims of this thesis were achieved. Mass spectra recorded in flames by VUV-synchrotron radiation contain a variety of reactive intermediates for example fluorenyl and biphenylmethyl radicals. Their ionization is only vaguely investigated und therefore an interesting project to continue this work. KW - Photoionisation KW - Carbene KW - Synchrotronstrahlung KW - Radikal KW - TPES KW - PES KW - Reaktive Intermediate KW - reactive intermediates KW - photoionization KW - radicals KW - carbenes KW - threshold photoelectron photoion coincidence Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-56980 ER - TY - THES A1 - Liu, Wenlan T1 - Exciton Coupling in Valence and Core Excited Aggregates of pi-Conjugated Molecules T1 - Exzitonen-Kopplung in valenz- und rumpfangeregten Aggregaten pi-konjugierter Moleküle N2 - Im Rahmen dieser Arbeit werden theoretische Modelle zur Beschreibung von Valenz- und Rumpf-angeregten elektronischen Zuständen diskutiert. Im Fall der Valenz-Anregungen wurden time-dependend Hartree-Fock (TD-HF) und timedependent Dichtefunktionaltheorie (TD-DFT)Methoden mit verschiedenen Funktionalen für ein Perylenbisimid (PBI) System validiert. Eine einfache Analyse der Charaktäre der angeregten Zustände wurde vorgeschlagen, die auf den berechneten Übergangsdipolmomenten basiert. Dieser Ansatz ist allerdings auf Zustände beschränkt, die ein signifikantes Übergangsdipolmoment aufweisen. Deshalb wurde eine allgemeinere und fundiertere Methode entwickelt, die auf einer Analyse der berechneten CISWellenfunktion basiert. Darüberhinaus wurde ein literaturbekannter Model-Hamiltonoperator Ansatz von einem lokalisierten Molekülorbitalbild (MO) abgeleitet, das aus der generelleren Analyse-Methode resultiert. Auf diesem Weg ist ein Zugang zu diabatischen angeregten Zuständen und korrespondierenden Kopplungsparametern auf der Basis von ab initio Rechnungen gegeben. Für rumpfangeregte elektronische Zustände wurden drei Methoden für C 1s-angeregte und ionisierte Zustände verschiedener kleiner Moleküle validiert. Darüberhinaus wurde die Basissatzabhängigkeit dieser Zustände untersucht. Anhand der Resultate wurde die frozen core Näherung ausgewählt um rumpfangeregte Zustände von Naphthalintetracarbonsäuredianhydrid (NTCDA) zu berechnen. Um experimentelle Ergebnisse zu erklären, wurde ein Algorithmus entwicklet, der die Exzitonenkopplungsparameter im Fall von nicht-orthogonalen MOs berechnet. N2 - This work focuses on theoretical approaches for predicting the valence and core excited states of aggregate systems. For the valence excitations, TD-HF and TD-DFT with different functionals have been tested at the Perylene bisimide (PBI) system. A simple character analysis method based on the calculated transition dipole moments is proposed. However, this method does not work for excited states without any transition dipole moment. Thus, we proposed a more general and more valid method based on a calculated CIS type wavefunction for the character analysis. Furthermore, a model Hamiltonian method is derived from a localized picture. The energies of the diabatic states and the corresponding coupling parameters were also determined on the basis of ab initio calculations. For the core excitation, three different methods were validated for C 1s-excited and ionized states if several small molecules. Also we tested the basis sets dependence of these core excited states. Based on those results, we chose the frozen core approximation method to evaluate the core excited states of NTCDA molecules. In order to explain the findings in the experiments, we developed an algorithm to evaluate the exciton coupling parameter where non-orthogonal MOs are used. KW - Exziton KW - Dichtefunktionalformalismus KW - Hartree-Fock-Methode KW - Aggregat KW - Angeregter Zustand KW - Quantenchemie KW - Förster-Kopplung KW - zeitabhängige Dichtefunktionaltheorie KW - TD-DFT KW - angeregte Zustände in Aggregaten KW - Quamtum chemistry KW - Förster coupling KW - Exciton KW - time-dependent density functional theory KW - TD-DFT KW - excited states in aggregates Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-56169 ER - TY - THES A1 - Margraf, Markus Johann T1 - Spektroskopie an π-konjugierten Molekülen T1 - Spectroscopy of π-conjugated molecules N2 - Femtosekunden-zeitaufgelöste transiente Absorptionsspektroskopie einer neutralen organischen gemischtvalenten Verbindung In einem Femtosekunden-zeitaufgelösten Anrege-Abfrage-Experiment wurde die Dynamik des Elektronentransfers einer neutralen organischen gemischtvalenten Verbindung untersucht. Neben der Abhängigkeit des Rückelektronentransfers von der Solvenspolarität wurde auch die Rotationsdiffusion in n-Hexan, Toluol, Dibutylether, tert-Butylmethylether und Benzonitril studiert. Die transiente Dynamik lässt sich mit einer Lebensdauer beschreiben, verursacht durch einen Rückelektronentransfer. Während dieser in unpolaren Lösemitteln relativ langsam verläuft, beobachtet man deutlich schnellere ET-Raten mit steigender Polarität des Lösemittels. Die Lebensdauer variiert von 1.2 ps für Benzonitril bis 260 ps für n-Hexan. Rotationsdiffusion konnte nicht beobachtet werden. Die gemessenen Raten wurden mit theoretischen Raten verglichen. Für unpolare Lösemittel konnte eine gute Übereinstimmung gefunden werden. In polaren Lösemitteln bewirkt eine Korrektur, die die Solvensrelaxationszeit berücksichtigt, eine sehr gute Übereinstimmung von berechneten und gemessenen Rückelektronentransferraten. Zeit- und frequenzaufgelöste Photoionisation des C 2A2-Zustandes des Benzylradikals Die Lebensdauer des C 2A2-Zustandes des Benzylradikals wurde in Abhängigkeit der Überschussenergie bestimmt. Die zeitabhängigen Ionensignale konnten dabei mit einer biexponentiellen Dynamik beschrieben werden. Bei einer Anregung am Ursprung (305nm) betragen die Lebensdauern τ1= 400 fs und τ2 = 4.5 ps. Die kürzere Lebensdauer τ1 beschreibt die interne Konversion vom C-Zustand zu den stark koppelnden A/B-Zuständen, die längere Lebensdauer τ2 die interne Konversion von den A/B-Zuständen in den elektronischen Grundzustand. Mit steigender Anregungsenergie beobachtet man eine stete Abnahme beider Lebensdauern. Bei einer Anregung mit einem Puls der Wellenlänge von 301 nm beobachtet man deutlich kürzere Lebensdauern mit τ1 = 350 fs und τ2 = 2.8 ps. Erfolgt die Anregung mit einem Puls der Wellenlänge von 298 nm, betragen die Zeitkonstanten τ1 = 180 fs und τ2 = 2.1 ps. Desweiteren konnte ein zeitabhängiges Ionensignal für eine Spezies mit der Zusammensetzung C7H5 beobachtet werden. Der Träger des Signals ist das Fulvenallenylradikal. N2 - Femtosecond time-resolved transient absorption spectroscopy of a neutral organic mixed-valenced compound The dynamics of electron transfer of a neutral organic mixed-valence compound was investigated by femtosecond transient absorption spectroscopy. Both dependence of back-electron transfer on solvent polarity and rotational diffusion was studied in n-hexane, toluene, dibutylether, methyl-tert-butyl ether and benzonitrile. The transient kinetics is governed by one time constant which is assigned to back-electron transfer. It ranges from 1.2 ps in benzonitrile to 260 ps in n-hexane. While back electron transfer is slow in non-polar solvents increasing back-electron transfer rates with increasing solvent polarity are observed. No rotational diffusion was observed. The measured rates for back-electron transfer were compared to rates derived from a Golden rule-type expression. Good agreement was achieved with non-polar solvents. In polar solvents, a correction using the solvent relaxation times yielded an excellent agreement between computed and observed back-electron transfer rates. Time- and frequency-resolved photoionization of the C 2A2 state of the benzyl radical The excited state lifetime of the C 2A2 state of the benzyl radical was determined as a function of excess energy. Time-dependent ion traces were fitted using a biexponential decay. At the origin of the C-state, excited state lifetimes of 400 fs and 4.5 ps were assigned to sequential internal conversion processes from the C-state to the A/B states and to the ground state. With increasing excitation, the lifetimes shorten considerably. With excitation at 301 nm the time constants are 350 fs and 2.8 ps. At 298 nm the time constants are 180 fs and 2.1 ps. In addition we observed a decay trace for a species with the composition C7H5. The carrier of the signal is fulvenallenyl. KW - Valenzgemischte Verbindungen KW - Absorptionsspektroskopie KW - Benzylradikal KW - Photoionisation KW - zeitaufgelöste Spektroskopie KW - gemischtvalente Verbindung KW - time-resolved spectroscopy KW - mixed-valence compound KW - benzyl radical Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-54032 ER - TY - THES A1 - Pfister, Johannes T1 - On the correlation between the electronic structure and transport properties of [2.2]paracyclophanes and other aromatic systems T1 - Über die Korrelation zwischen der elektronischen Struktur und den Transporteigenschaften von [2.2]Paracyclophan und anderen aromatischen Systemen N2 - Die vorliegende Arbeit präsentiert theoretische Untersuchungen zu Energie- und Ladungs-Transporteigenschaften in organischen Kristallen. Kapitel 4 behandelt Exzitonentransport in Anthracen bei dem der Fall einer schwachen Kopplung zwischen den π-Systemen vorliegt. Die elektronische Kopplung wird mit dem „monomer transition density“ (MTD) Ansatz berechnet. Aus den Kopplungen und Reorganisationsenergien werden mit der Marcus-Theorie Hüpfraten berechnet. Mit Kenntnis der Kristallstrukturen werden daraus in die experimentell zugänglichen Exzitonendiffusionslängen berechnet, deren isotroper Anteil im Rahmen der Streuung der experimentell zugänglichen Daten reproduziert werden. Auch die Anisotropie der Exzitonendiffusionslängen wird qualitativ und quantitativ im Rahmen der zu erwartenden Messgenauigkeit richtig wiedergegeben. Weiterhin enthält Kapitel 4 Untersuchungen zum Elektronen- und Lochtransport in den zwei verschiedenen Modifikationen (α und β) von Perylen. Reorganisationsenergien sowie Diffusionskonstanten wurden für beide beide Kristallstrukturen und Typen des Ladungstransports berechnet. Den besten Transport stellt dabei Lochtransport in β-Perylen dar, jedoch ist dieser stark isotrop. Die bevorzugte Transportrichtung is entlang der b-Achse der Einheitszelle mit elektronischen Kopplungen von größer als 100 meV. Allerdings gibt es hier keinerlei Lochtransport in Richtung der c-Achse. Die Diffusionskonstante in Richtung der b-Achse ist um zwei Größenordnungen größer als die in c-Richtung (62.7•10-6 m2/s vs. 0.4•10-6 m2/s). Der Ladungstransport wird sowohl für Löcher, als auch für Elektronen in beiden Perylenmodifikationen immer stark anisotrop berechnet. Um diese Resultate zu verifizieren wurden experimentelle Elektronenmobilitäten in α-Perylen mit den Simulationen verglichen. Es stellte sich eine sehr gute Übereinstimmung heraus mit Fehlern von nur maximal 27%. Wie oben gezeigt, ist es möglich Transporteigenschaften in zwischen schwach wechselwirkenden Systemen zu berechnen und zu messen. Allerdings ist es hier schwierig, die Güte der zu Grunde liegenden Kopplungsparameter genau anzugeben. Aus diesem Gunde wurde eine Zusammenarbeit über stark wechselwirkede Systeme zwischen uns sowie den Arbeitskreis von Prof. Ingo Fischer begonnen. Dort wurden [2.2]Paracyclophane und dessen Derivate untersucht um zu zeigen, wie Substitution mit Hydroxylgruppen deren Absorptionseigenschaften beeinflusst. Eine Kombination der SCS-MP2 und SCS-CC2-Methoden liefert hierbei insgesamt die besten Ergebnisse um die geometrischen und elektronischen Strukturen für Grund- und angeregte Zustände dieser Modellsysteme sowie deren Stammmolekülen Benzol und Phenol zu beschreiben. Strukturell weist nur [2.2]Paracyclophan im Grundzustand ein Doppelminimumspotenzial bzgl. Verschiebung und Verdrillung der Benzol/Phenol-einheiten untereinander auf. Alle anderen Systeme sind aufgrund ihrer Substitution weniger flexibel. Fast alle untersuchten [2.2]Paracyclophane zeigen nur geringe Strukturänderungen bei der Anregung in den S1 Zustand: Der Abstand zwischen den Ringen wird kürzer, aber qualitativ behalten sie ihre Verdrillung und Verschiebung bei, wenn auch das Ausmaß dieser Verzerrungen reduziert wird. Die Ausnahme hierbei ist p-DHPC, welches von einer verschoben Struktur im Grundzustand in eine verdrillte Struktur im angeregten Zustand übergeht. Dies hat zur Konsequenz, dass die Intensität des 0-0-Übergangs aufgrund der Franck-Condon Faktoren für p-DHPC experimentell nicht mehr beobachtet werden kann und von Verunreinigungen durch o-DHPC überdeckt wird. Die Strukturen der Paracyclophane und deren Änderung durch elektronische Übergänge werden in dieser Arbeit durch elektrostatische Potenziale sowie den antibindenen (bindenden) HOMO (LUMO) Orbitalen erklärt. Adiabatische Anregungsenergien wurden mit Nullpunktsschwingungsenergien korrigiert und liefern Genauigkeiten deren Fehler weniger als 0,1 eV beträgt. Hierbei ist zu beachten, dass eine Korrektur auf B3LYP Niveau die Ergebnisse verschlechtert und man die Berechnung der Schwingungsfrequenzen auf SCS-CC2 durchführen muss um diese Genauigkeit zu erhalten. Aufgrund dieser Rechnungen wurde eine Interpretation der experimentellen [1+1]REMPI Spektren möglich. Bandenprogressionen für die Schwingungen der Verschiebung, der Verdrillung und einer Atmung im [2.2]Paracyclophanskelett wurden identifiziert und zeigen gute Übereinstimmung zum Experiment. Diese Arbeiten zeigen, dass das Substitutionsschema von [2.2]Paracyclophanen eine erhebliche Auswirkung auf die spektroskopischen Eigenschaften haben kann. Da diese Eigenschaften direkt mit den Transporteigenschaften dieser Materialien verbunden ist, kann das hier gewonnene Verständnis der spektroskopischen Eigenschaften genutzt werden, um Materialien mit maßgeschneiderten Transporteigenschaften zu designen. Es konnte gezeigt werden, dass die SCS-CC2-Methode sehr gut geeignet ist, die zu Grunde liegende Wechselwirkung zwischen den π-Systemen vorherzusagen. N2 - The present work presents investigations on energy and charge transport properties in organic crystals. Chapter 4 treats exciton transport in anthracene, which is an example for weakly coupled π-systems. The electronic coupling parameter is evaluated by the monomer transition density approach. With these and the reorganization energy hopping rates are calculated in the framework of the Marcus theory. Together with the knowledge of the crystal structure, these allow us to calculate the experimental accessible exciton diffusion lengths, whose isotropic part fits nicely within the scattering of experimental values found in the literature. Furthermore, the anisotropy of the exciton diffusion lengths is reproduced qualitatively and quantitatively correct. This chapter also contains studies about electron and hole transport in both polymorphs (α and β) of perylene. Reorganization energies as well as diffusion coefficients for both crystal structures and types of charge transport were calculated. The best transport is hole transport in β-perylene, but it is strongly isotropic. The preferred transport direction is along the b-axis of the unit cell with couplings of greater than 100 meV. However, there is no transport along the c-axis. The diffusion constant in b-direction is bigger by two orders of magnitude than in c-direction (62.7•10-6 m2/s vs. 0.4•10-6 m2/s). Charge transport is calculated to be strongly anisotropic for holes as well as electrons in both modifications. To verify these results experimental electron mobilities have been compared to the simulations. Good agreement was found with errors of less than 27%. As it was shown above, the calculation and measurement of transport properties between weakly coupled systems is possible. However, it is difficult to exactly determine the quality of the electronic coupling. For this reason a collaboration about strongly interacting π-systems was started between us and the research group of Prof. Ingo Fischer. There, [2.2]paracyclophanes and its derivates were investigated to show how hydroxyl substitution influences absorption properties. Overall, a combination of SCS-MP2 and SCS-CC2 performs best to address the description of geometric and electronic structures for both ground and excited states of these model systems as well as their parent compounds benzene and phenol. Only [2.2]paracyclophane shows a double minimum potential regarding a twist and shift motion between the benzene/phenol subunits towards each other. All other systems are less flexible due to their substitution pattern. Almost all [2.2]paracyclophanes display minor changes in their geometric structure upon excitation to the S1 state: The inter-ring distance shortens, but qualitatively they keep their shift and twist characteristics, although the extent of these deformations diminishes. The exception is p-DHPC, which turns from a shifted ground state structure into a twisted excited state structure. Consequently, the intensity of the 0-0 transition cannot be observed experimentally due to small Franck-Condon factors and impurities of o-DHPC. In the present thesis, the structures and their changes due to excitation are explained by electrostatic potentials as well as antibonding (bonding) HOMO (LUMO) orbitals. Adiabatic excitation energies have been corrected by ZPEs and result in accuracies with errors smaller than 0.1 eV. Note that corrections on the B3LYP level worsen the results and one has to apply SCS-CC2 to achieve this accuracy. These calculations allow an interpretation of the experimental [1+1]REMPI spectra. Band progressions of the twist, shift and breathing of the [2.2]paracyclophane skeleton vibrations have been identified and show good agreement to the experiment. This work shows that the substitution pattern in [2.2]paracyclophanes can have a significant impact on spectroscopic properties. Because these properties are directly linked to the transport properties of these materials, the hereby gained insight can be used to design materials with customized transport properties. It was shown that the SCS-CC2 method is very appropriate to predict the interaction between the π-systems KW - Ladungstransport KW - Exziton KW - Paracyclophane KW - Exzitonentransport KW - schwach gekoppelte Regime KW - Anthracen KW - Theoretische Chemie KW - REMPI KW - Coupled Cluster KW - MP-Störungstheorie KW - PI-System KW - exciton transport KW - weak coupling regime Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-65362 ER - TY - THES A1 - Buback, Johannes T1 - Femtochemistry of Pericyclic Reactions and Advances towards Chiral Control T1 - Femtochemie pericyclischer Reaktionen und Fortschritte in Richtung einer chiralen Kontrolle N2 - Pericyclic reactions possess changed reactivities in the excited state compared to the ground state which complement each other, as can be shown by simple frontier molecular orbital analysis. Hence, most molecules that undergo pericyclic reactions feature two different photochemical pathways. In this thesis an investigation of the first nanoseconds after excitation of Diazo Meldrum’s acid (DMA) is presented. The time-resolved absorption change in the mid-infrared spectral region revealed indeed two reaction pathways after excitation of DMA with at least one of them being a pericyclic reaction (a sigmatropic rearrangement). These two pathways most probably start from different electronic states and make the spectroscopy of DMA especially interesting. Femtochemistry also allows the spectroscopy of very short-lived intermediates, which is discussed in context of the sequential mechanism of the Wolff rearrangement of DMA. An interesting application of pericyclic reactions are also molecular photoswitches, i.e. molecules that can be switched by light between two stable states. This work presents a photoswitch on the basis of a 6-pi-electrocyclic reaction, whose reaction dynamics after excitation are unravelled with transient-absorption spectroscopy for both switching directions. The 6-pi-electrocyclic reaction is especially attractive, because of the huge electronic changes and subsequent absorption changes upon switching between the ring-open and ring-closed form. Fulgides, diarlyethenes, maleimides as well as spiropyrans belong to this class of switches. Despite the popularity of spiropyrans, the femtochemistry of the ring-open form (“merocyanine”) is still unknown to a great extent. The experiments in this thesis on this system combined with special modeling algorithms allowed to determine the quantum efficiencies of all reaction pathways of the system, including the ring-closure pathway. With the knowledge of the reaction dynamics, a multipulse control experiment showed that bidirectional full-cycle switching between the two stable states on an ultrafast time scale is possible. Such a controlled ultrafast switching is a process which is inaccessible with conventional light sources and may allow faster switching electronics in the future. Theoretical calculations suggest an enantioselective photochemistry, i.e. to influence the chirality of the emerging molecule with the chirality of the light, a field called “chiral control”. The challenges that need to be overcome to prove a successful chiral control are extremely hard, since enantiosensitive signals, such as circular dichroism, are inherently very small. Hence, chiral control calls for a very sensitive detection as well as an experiment that cancels all effects that may influence the enantiosensitive signal. The first challenge, the sensitive detection, is solved with a polarimeter, which is optimized to be combined with femtosecond spectroscopy. This polarimeter will be an attractive tool for future chiral-control experiments due to its extreme sensitivity. The second challenge, the design of an artefact-free experiment, gives rise to a variety of new questions. The polarization state of the light is the decisive property in such an experiment, because on the one hand the polarization carries the chiral information of the excitation and on the other hand the change of the polarization or the intensity change dependent on the polarization is used as the enantiosensitive probing signal. A new theoretical model presented in this thesis allows to calculate the anisotropic distribution of any given pump-probe experiment in which any pulse can have any polarization state. This allows the design of arbitrary experiments for example polarization shaped pump-probe experiments. Furthermore a setup is presented and simulated that allows the shot-to-shot switching between mirror-images of light polarization states. It can be used either for control experiments in which the sample is excited with mirror-images of the pump polarization or for spectroscopy purposes, such as transient circular dichroism or transient optical rotatory dispersion. The spectroscopic results of this thesis may serve as a basis for these experiments. The parallel and sequential photochemical pathways of DMA and the feasibility of the bidirectional switching of 6,8-dinitro BIPS in a pump–repump experiment on the one hand offer a playground to test the relation of the anisotropy with the polarization of the pump, repump and probe pulse. On the other hand control experiments with varying pump and repump polarization may be able to take influence on the dynamics after excitation. Especially interesting is the combination of the 6,8-dinitro BIPS with the polarization-mirroring setup, because the closed form (spiropyran) is chiral. Perhaps in the future it will be possible to prove a cumulative circular-dichroism effect or even a chiral control with this system. N2 - Pericyclische Reaktionen besitzen unterschiedliche Reaktivitäten im elektronischen Grund- und angeregten Zustand, wie anhand einfacher Grenzorbitalbetrachtungen gezeigt werden kann. Deswegen weisen Moleküle die eine pericyclische Reaktion eingehen meist mehrere photochemische Reaktionspfade auf. In dieser Arbeit wird die Femtochemie von Diazo-Meldrumssäure (DMA) utnersucht. Die zeitaufgelösten Absorptionsänderungen im mittleren Infrarotbereich zeigen tatsächlich zwei Reaktionspfade nach Anregung der DMA, von denen zumindest einer eine pericyclische Reaktion ist (eine sigmatrope Umlagerung). Diese zwei Pfade starten vermutlich von unterschiedlichen elektronischen Zuständen, was die Spektroskopie von DMA besonders interessant macht. Besonders kurzlebige Intermediate oder transiente Zustände können mit Hilfe der Femtochemie auch beobachtet werden, was in Zusammenhang mit der Wolff Umlagerung von DMA gezeigt wird. Eine weitere interessante Anwendung pericyclischer Reaktionen sind die molekularen Schalter, also Moleküle die mit Licht zwischen zwei stabilen Zuständen hin und hergeschaltet werden können. In dieser Arbeit wird ein Photoschalter, 6,8-dinitro BIPS, auf Basis einer 6-pi elektrocyclischen Reaktion vorgestellt, dessen Reaktionsdynamiken nach Anregung mit Hilfe transienter Absorption sichtbar gemacht werden. Die 6-pi elektrocyclische Reaktion ist besonders attraktiv, da mit ihr große elektronische Änderungen und somit auch starke Absorptionsänderungen einhergehen beim Schaltvorgang. Fulgide, Diarylethene, Maleimide und Spiropyrane gehören zu dieser Klasse von Schaltern. Trotz der großen Verbreitung der Spiropyrane ist jedoch bisher die Femtochemie der offenen Form ("Merocyanin") zum großen Teil unbekannt. Die Experimente und Modellierungen an diesem System in dieser Arbeit erlauben die Bestimmung der Quanteneffizienzen aller beteiligten Reaktionspfade beider Schaltrichtungen. Mit diesem Wissen ausgestattet konnte ein Multipulse-Kontroll Experiment durchgeführt werden in dem bidirektional zwischen den beiden Zuständen des Photoschalters auf Pikosekunden Zeitskala hin und hergeschaltet wurde. Dieser Prozess ist mit konventionellen Lichtquellen nicht möglich. Laut theoretischen Rechnungen ist eine enantionselektive Photochemie, also die Beeinflussung der Chiralität von gebildeten Produkten einer Photoreaktion, möglich. Dieses Feld wird "chirale Kontrolle" genannt. Die Herausforderungen eine erfolgreiche chirale Kontrolle zu beweisen sind extrem anspruchsvoll, da enantiosensitive Signale, wie zum Beispiel der Zirkulardichroismus, sehr klein sind. Deswegen ist einerseits eine sehr genaue Detektionsmethode notwendig sowie eine experimentelle Anordnung in der Artefakte direkt ausgeschlossen werden. Für die sehr genaue Detektion wurde in dieser Arbeit ein Polarimeter entwickelt, das zudem für die Kombination mit Femtosekundenlaserpulsen optimiert ist. Dieses Polarimeter wird in Zukunft eine attraktive Detektionsmethode für chirale-Kontrollexperimente sein auf Grund seiner extrem guten Sensitivität. Die zweite Herausforderung eine artefaktfreie experimentelle Anordnung zu finden, eröffnet eine Fülle neuer Fragen. Der Polarisationszustand in diesen Experimenten ist die entscheidende Eigenschaft, da einerseits die Polarisation die chirale Information der Anregung trägt und andererseits die Änderung des Polarisationszustands oder der Intensität benutzt wird als enantiosensitives Abfragesignal. Ein neues theoretisches Modell ist in dieser Arbeit präsentiert, das es ermöglicht die anisotropen Verteilungen beliebiger Anrege-Abfrage Experimente mit beliebigen Polarisationszuständen aller beteiligten Pulse zu berechnen. Das ermöglicht den Aufbau beliebiger Anrege-Abfrage Experimente, z.B. polarisationsgeformte Anrege-Abfrage Experimente. Außerdem wird ein Setup vorgestellt und simuliert, das es ermöglicht Schuss-zu-Schuss zwischen spiegelbildlichen Polarisationszuständen des Lichts hin und herzuschalten. Mit diesem Setup können zum Beispiel Kontrollexperimente durchgeführt werden in denen die Probe mit spiegelbildlichen Polarisationszuständen angeregt wird. Des weiteren können mit dem Setup auch Spektroskopieexperimente durchgeführt werden, wie z.B. transienter Zirkulardichroismus oder transiente optische Rotationsdisperision. Die spektroskopische Ergebnisse dieser Arbeit können als Basis dienen für solche Experimente. Die parallelen und sequentiellen photochemischen Pfade des DMA sowie das bidirektionale Schalten des 6,8-dinitro BIPS in einem Anrege-Wiederanrege Experiment bieten viele Möglichkeiten die neuen Zusammenhänge der Anisotropie mit den Polarisationszuständen des Anrege, Wiederanrege oder Abfragestrahls zu überprüfen. Andererseits könnte man mit Kontrollexperimenten mit variierender Anrege und Wiederanregepolarisation Einfluss nehmen auf die induzierten Dynamiken. Besonders interessant ist hier die Kombination des 6,8-dinitro BIPS mit der Polarisationsspiegelungssetups, weil die geschlossene Form (Spiropyran) chiral ist. Vielleicht ist es mit diesem System tatsächlich in der Zukunft möglich einen kumulativen Zirkulardichroismuseffekt oder sogar eine chirale Kontrolle zu zeigen. KW - Femtosekundenspektroskopie KW - Chiralität KW - Anisotropie KW - Pericyclische Reaktion KW - chirale Kontrolle KW - transiente Absorption KW - molekulare Schalter KW - femtosecond spectroscopy KW - chiral control KW - anisotropy KW - transient absorption KW - molecular switch Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-66484 ER - TY - THES A1 - Köhler, Juliane T1 - Dynamik der angeregten Zustände Bor-haltiger pi-Systeme und Donor-substituierter Truxenone T1 - Excited states dynamics of boron containing pi-systems and donor substituted truxenones N2 - Im ersten Teil wurde die Dynamik des ersten angeregten Zustandes von drei Truxenonen untersucht. Nach Anregung im sichtbaren Bereich findet ein Elektrontransfer zwischen den Triarylamin-Donor und dem Truxenon-Akzeptor statt. Um die Abhängigkeit der Rate für den Rücktransfer von der elektronischen Kopplung zu untersuchen, wurde diese zum einen über den Abstand zwischen Donor und Akzeptor und zum anderen über die Position der Verknüpfung eingestellt. In einer ersten Studie wurde Truxenon 1, bei dem der direkt über das Stickstoff-Atom an den Akzeptor gekuppelt ist, mit dem System 2 verglichen, bei den die Einheiten über einen Phenyl-Spacer verbunden sind. Der Rücktransfer sollte dabei für das System 1 schneller sein, da ein kurzer Abstand mit einer starken elektronischen Kopplung einhergeht und damit auch mit einem schnellen Elektronentransfer. Allerdings wird die große Rate für das System mit dem größeren Abstand beobachtet (2). Dieses Ergebnis kann mit der Geometrie der Moleküle und der größeren sterischen Hinderung in 1 erklärt werden, aus der eine geringere elektronische Kopplung resultiert. In einem weiteren Experiment wurde die Stärke der elektronischen Kopplung in Abhängigkeit von der Position der Verknüpfung in Bezug auf den Phenyl-Spacer untersucht. Zu diesem Zweck wurden die Systeme 2 und 3 miteinander verglichen. Während in 2 die Einheiten in para-Position verknüpft sind, sind Donor und Akzeptor in 3 in meta-Position an den Phenyl-Spacer gekuppelt. Letzteres System zeichnet sich dabei durch eine geringere Resonanzstabilisierung aus. Dies hat eine geringere elektronische Kopplung zur Folge, was sich auch in den UV/Vis-Spektren zeigt. Die langwelligste Absorption ist hier bei höheren Energien zu beobachten. Zudem deuten die transienten Spektren an, dass in erster Linie nicht der ladungsgetrennte Zustand abgeregt wird sondern vielmehr die Truxenon-Einheit selbst. Im zweiten Teil wurden die Resonanz-Raman-Spektren vier verschiedener Borole aufgenommen. Dabei wurden zwei signifikanten Moden beobachtet, die beim pi –pi∗ -Übergang in ihrer Intensität verstärkt werden. Eine Bande bei 1598 cm-1 wird der symmetrischen Ringatmung zugeordnet, die aus einer Expansion des Borol-Rings resultiert. Eine zweite Schwingung bei 1298 cm-1 resultiert aus einer B-R Streckschwingung. Für System 5 wird diese Schwingung mit einer hohen Intensität beobachtet, während die Bande bei den Systemen 6-8, die mit einem Aryl-Rest substituiert sind, mit sehr geringer Intensität auftritt und deshalb lediglich mit einem hochauflösendem Setup detektiert werden kann. Aufgrund der schwachen Resonanzverstärkung kann von einer schwachen Wechselwirkung zwischen dem Bor und dem Aryl-Rest ausgegangen werden. In Borol 5, in dem eine Ferrocen-Einheit an das Bor gebunden ist, ist die Situation eine andere: nach Anregung des pi-pi*-Übergangs wird die Population im BC_4-Ring verschoben. Dadurch kann vom Eisen keine Elektronendichte mehr in das p_z-Orbital des Bors verschoben werden, die Fe-B-Wechselwirkung wird geschwächt und der Fe-B-Abstand wird vergrößert. Zusammenfassend konnte gezeigt werden, dass die Eigenschaften des Substituenten großen Einfluss auf die elektronische Struktur eines dreifach-substituierten Bor-Atoms hat, das in einer p_z-pi-Konjugation beteiligt ist. N2 - In the first part the dynamics of the first excited states of the three truxenone systems were investigated. After excitation in the visible regime an electron is transferred from the triarylamine donor to the truxenone acceptor. To elucidate the dependence of the rate for the back electron transfer on the electronic coupling, the latter was adjusted via the distance between the donor and the acceptor and the position of substitution. In a first study the truxenone 1, where the donor is directly coupled to the acceptor via the nitrogen atom, was compared to 2, where the two units are connected via a phenylene spacer. The back electron transfer was expected to be faster for the smaller system 1, since a short distance is correlated with a strong coupling and therefore a fast electron transfer. However, the fast electron transfer is observed for the system with the larger distance, 2. This result is explained with the geometry of the molecules and therefore more steric hinderance for 1 which reduces the electronic coupling. Another experiment was focussed on the strength of the electronic coupling when the two units are connected in different positions regarding the phenylene spacer. Therefore the systems 2 and 3 are compared. In 2 the units are connected in para-position to the spacer whereas in 3 the connection is realized in meta-position. The latter is less stabilized due to its resonance structures. This destabilization results in a weak coupling which is also displayed in the steady state spectrum of compound 3. Here, the lowest wavelength absorption is shifted to higher energies. Furthermore, the transient spectra indicate that the charge separated state is not excited but the truxenone unit itself. This assumption was confirmed by TD-DFT calculations. In the second part the resonance Raman spectra of four boroles were recorded. Here, two significant modes that emerge with enhanced intensity upon pi –pi∗ excitation were observed in the RR spectra of the boroles. A band at 1598 cm−1 is assigned to a symmetrical ring-breathing mode, which is caused by the expansion of the borole ring. Second, the vibration at 1298 cm−1 corresponds to a stretching of the B–R bond. For compound 5 it appears with high intensity, but for compounds 6–8, which yield an aryl substituent, this band appears with low intensity and can only be detected with a high-resolution setup. Because of this small resonant enhancement, only a weak interaction between the boron and the aryl substituent is expected. In borole 5, where a ferrocene unit is connected to the boron, the situation is different: exciting the pi –pi∗ transition causes a change of the population in the BC_4 ring. This prevents the iron from donating electron density to the p_z orbital of the boron. Therefore the Fe–B interaction becomes weak and the Fe–B distance increases. In conclusion, it was shown that the nature of the substituent affects the electronic structure of a tri-substituted boron participating in a p_z-pi conjugation. KW - Borole KW - Angeregter Zustand KW - Resonanz-Raman-Effekt KW - Truxenon KW - Transiente Absorption KW - borole KW - truxenone KW - excited states KW - resonance Raman KW - transient absorption Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-65942 ER - TY - THES A1 - Walter, Christof T1 - Excitonic States and Optoelectronic Properties of Organic Semiconductors - A Quantum-Chemical Study Focusing on Merocyanines and Perylene-Based Dyes Including the Influence of the Environment T1 - Exzitonische Zustände und optoelektronische Eigenschaften organischer Halbleiter – Eine quantenchemische Untersuchung mit Fokus auf Merocyaninen und perylenbasierten Farbstoffen unter Berücksichtigung der Umgebung N2 - The scope of computational chemistry can be broadened by developing new methods and more efficient algorithms. However, the evaluation of the applicability of the methods for the different fields of chemistry is equally important. In this thesis systems with an unusual and complex electronic structure, such as excitonic states in organic semiconductors, a boron-containing bipolaron and the excited states of pyracene were studied and the applicability of the toolkit of computational chemistry was investigated. Concerning the organic semiconductors the focus was laid on organic solar cells, which are one of the most promising technologies with regard to satisfying the world's need for cheap and environmentally sustainable energy. This is due to the low production and material costs and the possibility of using flexible and transparent devices. However, their efficiency does still not live up to the expectations. Especially the exciton diffusion lengths seem to be significantly too short. In order to arrive at improved modules, a fundamental understanding of the elementary processes occurring in the cell on the molecular and supramolecular level is needed. Computational chemistry can provide insight by separating the different effects and providing models for predictions and prescreenings. In this thesis, the focus was laid on the description of excitonic states in merocyanines and perylene-based dyes taking the influence of the environment into account. At first, the photochemical isomerization between two configurations of 6-nitro BIPS observed experimentally was studied by first benchmarking several functionals against SCS-ADC(2) in the gas phase and subsequently calculating the excited-state potential energy surface. The geometries obtained from a relaxed scan in the ground state as well as from a scan in the excited state were used. The environment was included using different polarizable continuum models. It was shown that the choice of the model and especially the question of the state specificity of the approach is of vital importance. Using the results of the calculations, a two-dimensional potential energy surface could be constructed that could be used to explain the experimental findings. Furthermore, the importance of the excited-state isomerization as a potential deactivation channel in the exciton transport was pointed out. Then the assessment of the suitability of different merocyanines for optoelectronic applications with quantum-chemical methods was discussed. At first, the effect of the environment on the geometry, especially on the bond length alternation pattern, was investigated. It was shown that the environment changes the character of the ground-state wave function of several merocyanines qualitatively, which means that the results of gas-phase calculations are meaningless - at least when a comparison with solution or device data is desired. It was demonstrated that using a polarizable continuum model with an effective epsilon, a qualitative agreement between the calculated geometry and the geometry in the crystal structure can be obtained. Therefore, by comparing the bond length alternation in solution and in the crystal, a rough estimate of the effect of the crystal environment can be made. It was further shown that the connection between the HOMO energy and the open-circuit voltage is not as simple as it is often implied in the literature. It was discussed that it is not clear whether the HOMO of a single molecule or a $\pi$-stack containing several monomers should be used and if the environmental charges of the bulk phase or the interface should be included. Investigating the dependence of the HOMO energy on the stack size yielded no definitive trend. Furthermore, it was discussed that the effect due the optimization of the modules (solvent, bulk heterojunction) during the production masks any potential correlation between the HOMO energy and measured open-circuit values. Therefore, a trend can only be expected for unoptimized bilayer cells. It was concluded that ultimately, the importance of the HOMO energy should not be overestimated. The correlation between the exciton reorganization energy and the so-called cyanine limit, which is predicted by a simple two-state model, was also discussed. By referring to the results of VB calculations, it was discussed that the correlation indeed exists and is non-negligible, although the effect is not as strong as one might have expected. In this context, a potential application of a VB/MM approach was covered briefly. The importance of the molecular reorganization energy and the device morphology was also discussed. It was concluded that the optimization of merocyanines for organic optoelectronic devices is inherently a multiparameter problem and one cannot expect to find one particular parameter, which solely controls the efficiency. The perylene-based dyes were studied with a focus on the description of a potential trapping mechanism involving an intermolecular motion in a dimer. The aim was to find methods which can be applied to larger model systems than a dimer and take the effect of the environment into account. As a test coordinate the longitudinal shift of two monomers against each other was used. At first, it was demonstrated how the character of an excited state in a dimer can be defined and how it can be extracted from a standard quantum-chemical calculation. Then several functionals were benchmarked and their applicability or failure was rationalized using the character analysis. Two recipes could be proposed, which were applied to a constraint optimization (only intermolecular degrees of freedom) in the excited states of the PBI dimer and to the description of the potential energy surfaces of ground and excited states along a longitudinal displacement in the perylene tetramer, respectively. It was further demonstrated that the semi-empirical OMx methods fail to give an accurate description of the excited-state potential energy surfaces as well as the ground-state surface along the test coordinate. This failure could be attributed to an underestimation of overlap-dependent terms. Consequently, it could be shown that the methods are applicable to large intermolecular distances, where the overlap is negligible. The results of DFT calculations with differently composed basis sets suggested that adding an additional single p-function for each atom should significantly improve the performance. QM/MM methods are ideally suited to take the effect of the environment on a a dimer model system into account. However, it was shown that standard force fields also give an incorrect description of the interaction between the monomers along the intermolecular coordinate. This failure was attributed to the isotropic atom-atom interaction in the repulsion term of the Lennard-Jones potential. This was corroborated using two simple proof-of-principle anisotropy models. Therefore, a novel force field called OPLS-AA_O was presented that is based on OPLS-AA, but uses an anisotropic model for the repulsion. The model involves the overlap integral between the molecular densities, which are modeled as a sum of atom-centered p-type Gaussian functions. It was shown that using this force field an excellent agreement with the DFT results can be obtained when the correct parameters are used. These parameters, however, are not very generalizable, which was attributed to the simplicity of the model in its current state (using the same exponential parameter for all atoms). As a short excursion, the applicability of an MO-based overlap model was discussed. It was demonstrated that the repulsion term based on the density overlap can be used to correct the failure of the OMx methods for the ground states. This is in accord with the assumption that an underestimation of the overlap terms is responsible for the failure. It was shown that OPLS-AA_O also gives an excellent description of the longitudinal shift in a PBI tetramer. Using the tetramer as a test system and applying the recipe obtained in the TDDFT benchmark for the QM-part and OPLS-AA_O for the MM-part in conjunction with an electrostatic embedding scheme, a QM/MM description of the excited states of the PBI dimer including the effect of the environment could be obtained. In the last chapter the theoretical description of the Bis(borolyl)thiophene dianion and the excited states of pyracene were discussed. The electronic structure of the Bis(borolyl)thiophene dianion - a negative bipolaron - was elucidated using DFT and CASPT2 methods. Furthermore, an estimation of the extent of triplet admixture to the ground state due to spin-orbit coupling was given. In the second project the S1 and S2 states of pyracene were computed using SCS-CC2 and SCS-ADC(2) and an estimation for the balance between aromaticity and ring strain was given. This also involved computing the vibrational frequencies in the excited states. In both studies the results of the computations were able to rationalize and complete experimental results. N2 - Die Anwendungsmöglichkeiten der Methoden der theoretischen Chemie können erweitert werden, indem neue Methoden und effizientere Algorithmen entwickelt werden. Es ist jedoch ebenso wichtig die Anwendbarkeit der Methoden für die verschiedenen Felder der Chemie zu evaluieren. In dieser Arbeit wurden Systeme mit einer komplexen und ungewöhnlichen Struktur, wie exzitonische Zustände in organischen Halbleitern, ein bor-basiertes Bipolaron und die angeregten Zustände von Pyracen untersucht und die Anwendbarkeit der verschiedenen Methoden evaluiert. Im Bezug auf die organischen Halbleiter wurde der Fokus auf organische Solarzellen gelegt, welche zu den vielversprechendsten Technologien gehören, um dem weltweiten Bedarf an billiger und ökologisch nachhaltiger Energie zu begegnen. Dies liegt an den niedrigen Produktionskosten und der Möglichkeit flexible und transparente Module zu verwenden. Ihre Wirkungsgrade werden den Erwartungen jedoch noch nicht gerecht. Vor allem die Exzitonendiffusionslängen scheinen deutlich zu gering zu sein. Um verbesserte Module zu erhalten ist ein fundamentales Verständnis der Elementarprozesse in der Zelle auf molekularem und supramolekularem Level vonnöten. Die theoretische Chemie kann dabei helfen dies zu erreichen, indem sie die verschiedenen Effekte separiert und Modelle für Vorhersagen und zur Vorauswahl geeigneter Verbindungen bereitstellt. In dieser Arbeit wurde der Fokus auf die Beschreibung von exzitonischen Zuständen in Merocyaninen und perylenbasierten Farbstoffen unter Berücksichtigung von Umgebungseinflüssen gelegt. Zunächst wurde die experimentell beobachtete photochemische Isomerisierung zwischen zwei Konfigurationen von 6-nitro BIPS untersucht, indem zuerst die Anwendbarkeit verschiedener Funktionale im Vergleich zu SCS-ADC(2) in der Gasphase überprüft wurde und anschließend die Potentialfläche des angeregten Zustands berechnet wurde. Es wurden sowohl die Geometrien aus einem relaxed scan im Grundzustand als auch von einem scan im angeregten Zustand verwendet. Umgebungseffekte wurden unter Verwendung verschiedener Kontinuumsansätze (polarizable continuum models) berücksichtigt. Es konnte gezeigt werden, dass die Wahl des Ansatzes und vor allem die Frage nach der Zustandsspezifizität des Kontinuumsansätze sehr entscheidend ist. Mit den Ergebnissen der Berechnungen konnte eine zweidimensionale Potenzialfläche konstruiert werden, mittels welcher die experimentellen Beobachtungen erklärt werden konnten. Außerdem wurde auf die Bedeutung der Isomerisierung im angeregten Zustand als einem potenziellen Deaktivierungskanal für den Exzitonentransport hingewiesen. Anschließend wurde die Möglichkeit einer Bewertung der Eignung verschiedener Merocyanine für optoelektonische Fragestellungen mit quantenchemischen Methoden diskutiert. Zunächst wurde der Einfluss der Umgebung auf die Geometrie und insbesondere auf die Bindungslängenalternanz untersucht. Es wurde gezeigt, dass die Umgebung die Wellenfunktion mehrerer Merocyanine qualitativ verändert, was bedeutet, dass Berechnungen in der Gasphase keinen Sinn machen - zumindest nicht, wenn die Ergebnisse mit Daten, die in Lösung oder in der Zelle erhalten wurden, verglichen werden sollen. Es konnte gezeigt werden, dass unter Verwendung eines Kontinuumsansatzes mit einer effektiven Dielektrizitätskonstante epsilon eine qualitative Übereinstimmung zwischen der berechneten Geometrie und der Geometrie in der Kristallstruktur erzielt werden kann. Dies ermöglicht es, durch einen Vergleich der Bindungslängenalternanz in Lösung und im Kristall eine grobe Abschätzung für den Einfluss der Kristallumgebung zu erhalten. Es wurde außerdem dargelegt, dass der Zusammenhang zwischen der Energie des HOMOs und der Leerlaufspannung nicht so eindeutig ist, wie es oft in der Literatur suggeriert wird. Es stellte sich die Frage, ob die HOMO-Energie eines einzelnen Moleküls oder eines Stapels bestehend aus mehreren Monomeren verwendet werden sollte und ob der Umgebungseffekt der Ladungen der Bulkphase oder der Grenzfläche berücksichtigt werden sollte. Die Untersuchung der Abhängigkeit der HOMO-Energie von der Anzahl der Monomere ergab keinen klaren Trend. Die Tatsache, dass die Optimierung des Moduls während des Produktionsprozesses (Solvent, Bulk-Hereojunction-Konzept) eine potenzielle Korrelation zwischen der HOMO-Energie und der Leerlaufspannung maskiert, wurde ebenfalls diskutiert. Deshalb kann eine Korrelation nur für nicht optimierte Zweischichtzellen erwartet werden. Es wurde der Schluss gezogen, dass die Bedeutung der HOMO-Energie letztendlich nicht überbewertet werden sollte. Der Zusammenhang zwischen der Exzitonenreorganisationsenergie und dem sogenannten Cyaninlimit, welcher von einem einfachen Zwei-Zustands-Model vorhergesagt wird wurde diskutiert. Unter Verweis auf die Ergebnisse von VB-Berechnungen konnte diskutiert werden, dass der Zusammenhang in der Tat existiert und nicht vernachlässigbar, aber auch nicht so groß ist, wie man vermutet haben könnte. In diesem Kontext wurde die potenzielle Anwendbarkeit eines VB/MM-Ansatzes kurz besprochen. Die Bedeutung der molekularen Reorganisationsenergie und der Morphologie der Zelle wurden ebenfalls diskutiert. Es wurde das Fazit gezogen, dass die Optimierung der Merocyanine für die Anwendung in organischen Halbleitern inhärent ein Multiparameterproblem ist und man nicht erwarten kann, einen einzelnen Parameter zu finden, der allein die Effizienz kontrolliert. Die perylenbasierten Farbstoffe wurden mit dem Fokus auf der Beschreibung eines potenziellen Exzitoneneinfangmechanismus, untersucht, welcher auf der intermolekularen Bewegung in einem Dimer basiert. Das Ziel war es Methoden zu finden, die auf größere Systeme anwendbar sind und den Umgebungseinfluss berücksichtigen können. Als Testkoordinate wurde die longitudinale Verschiebung der Monomere gegeneinander verwendet. Zunächst wurde gezeigt, wie der Charakter eines angeregten Zustandes in einem Dimer definiert werden kann und wie ein Maß für den Charakter ausgehend von einer normalen quantenchemischen Berechnung erhalten werden kann. Anschließend wurden verschiedene Funktionale evaluiert und ihre Anwendbarkeit beziehungsweise ihr Versagen mittels der Charakteranalyse rationalisiert. Zwei Ansätze konnten vorgeschlagen werden, welche auf eine Optimierung in den angeregten Zustände des Dimers mit Nebenbedingung (nur intermolekulare Freiheitsgrade) beziehungsweise auf eine Beschreibung der Potenzialflächen des Grundzustandes und der angeregten Zustände für die longitudinale Verschiebung in einem Perylentetramer angewendet wurden. Es wurde außerdem gezeigt, dass die semiempirischen OMx Methoden keine akkurate Beschreibung der Potenzialflächen der angeregten Zustände sowie des Grundzustandes für die Testkoordinate liefern. Dies konnte mit der Unterschätzung der intermolekularen Überlappterme begründet werden. Folglich war es möglich zu zeigen, dass die Methoden für intermolekulare Abstände, bei denen der Überlapp vernachlässigbar ist, anwendbar sind. Die Ergebnisse von DFT-Rechnungen mit unterschiedlich zusammengesetzten Basissätzen ließen ferner den Schluss zu, dass das Hinzufügen einer einzelnen p-Funktion an jedem Atom eine deutliche Verbesserung bringen sollte. QM/MM-Methoden sind ideal geeignet, um den Einfluss der Umgebung auf ein Dimer-Modellsystem zu berücksichtigen. Es wurde jedoch gezeigt, dass gängige Kraftfelder ebenfalls eine inkorrekte Beschreibung der Wechselwirkung zwischen den Monomeren entlang der intermolekularen Koordinate liefern. Dies wurde mit der isotropen Beschreibung der Atom-Atom-Wechselwirkung im Repulsionsterm des Lennard-Jones-Potenzials begründet. Diese Annahme wurde durch die Anwendung zweier Proof-of-Principle-Ansätze untermauert. Folglich wurde ein neues Kraftfeld, genannt OPLS-AA_O, eingeführt, welches auf OPLS-AA basiert, aber eine anisotrope Modellierung der Repulsion verwendet. Diese anisotrope Repulsion basiert auf dem Überlappintegral der molekularen Elektronendichten, welche als Summe aus atomzentrierten p-artigen Gaußfunktionen modelliert wird. Es wurde gezeigt, dass mit diesem Kraftfeld eine hervorragende Übereinstimmung mit den DFT-Ergebnissen erhalten werden kann, wenn die richtigen Parameter verwendet werden. Diese Parameter sind jedoch nicht sehr generalisierbar, was mit der Einfachheit des Models zu seinem momentanen Stand begründet wurde (Verwendung desselben Parameters im Exponenten bei allen Atomen). Als kurzer Exkurs wurde die Anwendbarkeit eines MO-basierten Überlappmodells diskutiert. Es konnte nachgewiesen werden, dass der Repulsionsterm, der auf der Dichteüberlappung basiert, auch als Korrekturterm für die Anwendbarkeit der OMx-Methoden bezüglich des Grundzustandes verwendet werden kann. Dies deckt sich mit der Annahme, dass eine Unterschätzung von Überlapptermen für das Versagen der semiempirischen Methoden verantwortlich ist. Es wurde gezeigt, dass OPLS-AA_O die Potenzialfläche für die longitudinale Verschiebung in einem PBI Tetramer exzellent beschriebt. Unter Verwendung des Tetramers als Testsytem und unter Anwendung eines der vorgeschlagenen TDDFT-Ansätze für den QM-Teil und OPLS-AA_O für den MM-Teil in Verbindung mit einem electrostatic embedding-Ansatz konnte eine QM/MM-Beschreibung der angeregten Zustände des PBI Dimers unter Berücksichtigung des Umgebungseinfluss erhalten werden. Im letzten Kapitel wurde die theoretische Beschreibung des Bis(borolyl)thiophendianions und von Pyracen diskutiert. Die elektronische Struktur des Bis(borolyl)thiophendianions wurde beschrieben unter Verwendung von DFT- und CASPT2-Methoden. Außerdem wurde eine Abschätzung des Ausmaßes der Triplettbeimischung zum Grundzustand durch die Spin-Bahn-Kopplung gegeben. Im zweiten Projekt wurden der S1- und S2- Zustand des Pyracens unter Verwendung von SCS-CC2 und SCS-ADC(2) berechnet und eine Abschätzung des Verhältnisses von Aromatizität und Ringspannung gegeben. Dies beinhaltete auch die Berechnung der Schwingungsfrequenzen im angeregten Zustand. In beiden Studien konnten die Ergebnisse der Berechnungen die experimentellen Daten vervollständigen und rationalisieren. KW - Exziton KW - Angeregter Zustand KW - Quantenchemie KW - organic semiconductors KW - organische Halbleiter Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123494 ER - TY - THES A1 - Rühl, Nicolas T1 - Spektroelektrochemie an einzelnen (6,5)-Kohlenstoffnanoröhren T1 - Spectroelectrochemistry of single (6,5)-carbon nanotubes N2 - Im Rahmen der vorliegenden Arbeit wurde durch einzelmolekülspektroskopischer bzw. -mikroskopischer Methoden in Kombination mit einer mikrofluischen Zel- le unter Potenzialkontrolle die Elektrochemie von einzelnen einwandigen (6,5)- Kohlenstoffnanoröhren untersucht. Hierfür wurde ein Nahinfrarot-Photolumineszenz- Mikroskop aufgebaut und eine speziell an die experimentellen Vorgaben angepasste elektrochemische Zelle entwickelt, insofern als drei Elektroden (Arbeits-, Gegen- und Referenzelektrode) in einen mikrofluidischen Chip integriert wurden. Darüber hinaus war für die Durchführung der Experimente unter Wasser- und Sauerstoffaus- schluss die Konstruktion eines Handschuhkastens notwendig, sowie eine allgemeine Vorbehandlung der Elektrolytlösungen zur Entfernung gelöster Gase und Wasserreste. Ein weiteres Projekt umfasste den Aufbau einer chemischen Gasphasenabschei- dungsapparatur zur Synthese von Kohlenstoffnanoröhren. Die hierbei durchgeführten Experimente erbrachten Klarheit über den Einfluss der Prozessparameter Druck, Temperatur und Durchflussrate an Edukten. Aus den PL-Intensitätsänderungen bei Potenzialvariation konnten Reduktions- und Oxidationspotenziale (ERed = 0.15 V; EOx = 1.34 V) einzelner (6,5)-SWNTs gegen- über einer Platin Referenzelektrode und einem daraus resultierenden Redoxpotenzial von ∆ERedOx = 1.19 V ermittelt werden. Durch diese einzelmolekülspektroskopische Methode konnte zum einen gewährleistet werden, dass nur dieser spezielle Chira- litätstyp untersucht wurde und zum anderen eine Verfälschung der Resultate durch einen Potenzialabfall wie er typischerweise in CNT-Filmen auftritt aussgeschlossen werden. Eine Kombination der PL-Daten mit der Ramanintensitätsabhängigkeit des (6,5)-SWNT-S2-Übergangs bei Potenzialvariation erlaubte eine genauere Analyse des Löschmechanismus der PL von Kohlenstoffnanoröhren. Mithilfe eines von Her- tel et al. entwickelten diffusionslimitierten Stoßdesaktivierungsmodells konnte eine invers-quadratische Proportionalität zwischen der (6,5)-SWNT-Emission und den spannungsinduzierten Ladungsträgern ausgemacht werden. Auf Grundlage dieses Ergebnisses folgt, dass die über Photolumineszenzänderungen ermittelten Reduktions-und Oxidationswerte nicht mit den Bandkanten der CNTs übereinstimmen müssen, und dass für deren Bestimmung vielmehr auf Raman- bzw. Absorptionsspektroskopi- sche Techniken zurückgegriffen werden muss. Die einzelmolekülspektroskopische Herangehensweise ermöglichte ferner eine statis- tische Analyse der Verteilung der Reduktions- und Oxidationspotenziale im Vergleich zu den jeweiligen Erwartungswerten. Hierdurch konnte eine Einteilung der Modifika- tionseinflüsse auf das SWNT-Redoxverhalten in zwei Grenzfälle erfolgen. Es wurde angenommen, dass diese als “Dispergiermitteleffekte” und “CNT-Strukturdefekte” be- zeichneten Auswirkungen entweder das Resultat einer heterodispersen Verteilung an DOC auf der CNT-Oberfläche oder eine Folge von Defekten in der CNT-Gitterstruktur waren. In diesem Zusammenhang ergab sich aus der interpartikulären Analyse der Reduktions- und Oxidationswerte eine Korrelation, die einem dominierenden Einfluss der “CNT-Strukturdefekte” zugeordnet werden konnte. Dieser Beobachtung entgegen- gesetzt konnten aber auch über Untersuchungen der Redoxpotenziale innerhalb einer (6,5)-SWNT lokale Bereiche ausgemacht werden, die eine signifikante Abhängigkeit von “Dispergiermitteleffekte” aufwiesen. Abgesehen von diesen Einflüssen auf den Emissionsverlauf wurde auch eine Be- trachtung der Breite des spannungsgesteuerten Emissionsabfall durchgeführt. Da- raus konnte ermittelt werden, dass diese Ausdehnung eine Konsequenz aus der PL- Löschungseffizienz der Ladungsträger ist und, dass bei einer Verteilung von 0.32 Löschzentren pro Nanometer eine vollständige Abnahme der Photolumineszenzinten- sität induziert wird. Darüber hinaus wurde im Rahmen dieser Arbeit das redoxchemische Verhalten in- dividueller (6,5)-SWNTs in Wechselwirkung mit Ferrocenmolekülen untersucht. Die erhaltenen Ergebnisse ließen annehmen, dass die sich ausbildende Verbindung nicht-kovalenter Natur ist. Zwei verschiedene Gründe führten zu dieser Erkennt- nis: einerseits ließen sich die Ferrocenmoleküle von der CNT-Oberfläche durch ein Durchspülen des mikrofluidischen Kanals mit einer reinen DMF-Lösung entfernen und andererseits war keine dauerhafte Emissionsminderung durch die Ausbildung kovalenter Bindungen zu beobachten. Aus der potenzialabhängigen PL wurde zudem ein Elektronentransfer der Ferrocenmoleküle in die optisch generierten Löcher des CNT-Valenzbandes festgestellt und über eine anregungsintensitätsabhängige Messung die Zunahme dieses Ladungstransfers bei steigendem Photonenfluss nachgewiesen. Hinsichtlich der Anwendung von Kohlenstoffnanoröhren zur Elektrolyse bzw. Photo- lyse von Wasser wurde auch die Redoxchemie von (6,5)-SWNTs in diesem Solvens untersucht. Bezüglich der Emissionsintensität konnte gezeigt werden, dass diese im Vergleich zu organischen Lösungsmitteln reduziert vorliegt. Außerdem wurde eine irreversible Reaktion nach anodischer Polarisation über eine dauerhafte Löschung der PL beobachtet. Die Bestimmung der hierfür notwendigen Reaktionsumstände erbrachte, dass Wasser, Exzitonen (erzeugt durch optische Anregung) und spannungs- induzierte Löcher im Valenzband zur Bildung einer [SWNT(Q)]-Spezies führen, welche die irreversible Minderung der CNT-Emission verursacht. Darüber hinaus konnte die Reaktionsgeschwindigkeit über eine Kinetik pseudo-nullter-Ordnung be- schrieben werden, unter der Voraussetzung, dass die soeben genannten Parameter konstant verblieben. Desweiteren zeigte sich in einer ferrocenhaltigen Lösung, dass der Löscheffekt der [SWNT(Q)]-Spezies im anodischen Potenzialbereich teilweise reduziert wird. Es wurde angenommen, dass diese Beobachtung auf eine Oxidation der Löschzentren durch die Fc+-Kationen gründet. Mit Hilfe der CVD-Apparatur gelang es Kohlenstoffnanoröhren zu synthetisieren, wobei Ethanol als Kohlenstoffquelle und ein Eisen-Kobalt-Zeolith-Gemenge als Ka- talysator diente. Die Analyse der verschiedenen Prozessparameter zeigte, dass bei T = 750 °C das beste Verteilungsverhältnis zwischen den gewünschten (6,5)-SWNTs und anderen CNT-Chiralitäten bzw. dem amorphen Kohlenstoff vorliegt. Hierfür war, dass bei T < 750 °C die Verbrennung unerwünschter amorpher Kohlenstoffreste nur geringfügig stattfindet, und dass bei T > 750 °C die Bildung anderer Chiralitäten mit größerem Durchmesser als die (6,5)-SWNT bevorzugt wurde. Die Variation der Durchflussrate hingegen wirkte sich nur in einer absoluten Zunahme aller Chirali- täten aus. Die Steigerung des (6,5)-SWNT-Anteils für höhere Durchflüsse gelang trotzdem durch die geschickte Auswahl geeigneter Druck- und Temperaturwerte. Die Experimente zur Untersuchung der Druckabhängigkeit wiesen auf eine Relation mit dem Gesetz von Le Chatelier hin, insofern als bei einer Druckverringerung eine Verschiebung der Ethanol-Crackreaktion auf Produktseite stattfand. In diesem Zusam- menhang wurde angenommen, dass die damit verstärkt gebildeten Moleküle Ethan, Ethen und Methan den CNT-Anteil zwar erhöhen, jedoch auch eine Steigerung der amorphen Kohlenstoffkonzentration verursachen. Dementsprechend ergab ein Druck von p = 9 mbar das beste (6,5)-SWNT zu dem amorphen Kohlenstoffverhältnis. Anhand der Arbeiten in dieser Dissertation sind neue Erkenntnisse zwischen der PL-Sensitivität von (6,5)-SWNTs und deren Ladungszustand erhalten worden. Insbe- sondere die genaue Bestimmung der Korrelation zwischen der Photolumineszenz und den induzierten Ladungsträgern ermöglicht einen gezielteren Einsatz von Kohlenstoff- nanoröhren – so zum Beispiel im Bereich der Sensorik. In diesem Zusammenhang zeigen auch die interpartikulären Analysen der Redoxpotenzialverteilung die genau- en Auswirkungen vom Lösungsmittel und der Defektdichte auf die elektronische Struktur der CNTs auf. Darüber hinaus kann aus der Ursachenbestimmung für die Varianz der literaturbekannten Reduktions- bzw. Oxidationspotenziale fortan die ge- eignete spektroskopische Methode zur Evaluierung der Position von Leitungs- und Valenzband in Kohlenstoffnanoröhren besser eingegrenzt werden. Die spektroelektro- chemischen Analysen von (6,5)-SWNTs im Lösungsmittel Wasser und speziell die Bestimmung der Kinetik für die auftretende Reaktion liefern einen tieferen Einblick in die Wechselwirkung (6,5)-SWNT-H2O. Diese Ergebnisse sind insbesondere bei der Verwendung von Kohlenstoffnanoröhren als Elektrodenmaterial für die photolytische bzw. elektrolytische Spaltung von Wasser in Wasserstoff und Sauerstoff von Bedeu- tung. Neben der Untersuchung der SWNT-Wasser Interaktion unter andoischer und optischer Anregung, die zu einer kovalenten Bindung führte, wurde mit Hilfe der (6,5)- SWNT-Ferrocen Wechselwirkung ein Beispiel für eine nichtkovalente Redoxreaktion dargestellt, womit ein Vergleich dieser beiden Spezies und ihrer unterschiedlichen Auswirkungen auf die elektronische Struktur aufgezeigt werden konnte. N2 - In the present study the electrochemistry of individual (6,5)-single wall carbon nano- tubes was investigated using a combination of electrochemical methods and single molecule fluorescence spectroscopy and microscopy. For this purpose a near infrared photoluminescence microscope was built and an electrochemical cell incorporated into a microfluidic chip was designed. To exclude oxygen and water during the ex- periments a glove box was constructed and for the electrolyte solutions a general preparation routine was executed, which included a degassing and drying of the solvent. A further project of this thesis was the design of a chemical vapor deposition apparatus to synthesize carbon nanotubes. The experiments provided clarity on the influence of process parameters such as pressure, temperature and flow rate of the reactants. The emission changes due to potential variation allowed for the determination of the reduction ERed = 0.15 V and oxidation potential EOx = 1.34 V of individual (6,5)- SWNTs with reference to a platinum electrode. Accordingly a total redoxpotential of ∆ERedOx = 1.19 V was obtained. The single molecule spectroscopic approach ensured further that only one specific CNT-chirality was investigated and that no potential drop like in CNT-films occured. The combination of the PL data and Raman intensity dependencies of the (6,5)-SWNT-S2-transition at potential changes allowed to define the quenching mechanism of the CNT emission. With the use of a difusion limited contact quenching model from Hertel et al. an inverse square proportionality between the (6,5)-SWNT emission and the charge carrier density was shown. Therefore it was concluded that the reduction and oxidation values obtained by emission changes do not correspond to the bandedges of the CNTs and that a determination of the bandgap should be done through absorption or Raman spectroscopy. The interparticle analysis of the (6,5)-SWNT reduction and oxidation potential sho- wed an absolute potential variation with respect to the reference values. The influences for this changes were classified into two cases: the so called “dispersing agent effects” and the “CNT structure defects”. It was assumed that these were a result of unequal distributed dispersing agents on the CNT surface or defects in the CNT lattice structure. Further, the interparticle determined correlation between reduction and oxidation values was attributed to the “CNT structure defects” and was therefore assumed to exercise the most dominant influence. Conversely, after the investigations of the intraparticle redox potentials, local areas were identified with a dependence to “dispersing agent effects”. In addition the width of the emission decrease as a result of the oxidation or reduction process of the (6,5)-SWNT was analysed. This investigation led to the conclusion that the charge carriers quenching efficiency mainly contributes to the overall width. Beyond that the data indicated that a distribution of 0.32 quenching centers per nanometer is needed for the total quenching of the photoluminescence. In addition to the redox chemistry analysis of pristine (6.5)-SWNTs, the investigation of the dependency in presence of ferrocene molecules showed that the interaction of the herein forming complex is of non-covalent type. This conclusion was based on two facts: on the one hand, the ferrocene molecules desorbed from the CNT surface when the solvent in the microfluidic channel was exchanged with a pure dimethylformamide solution and on the other hand, no permanent decrease in emission intensity due to covalent bond forming was observed. The potential-dependent PL behavior allowed for the assumption of a charge transfer from the adsorbed ferrocene molecules into the optically generated holes in the CNT. Furthermore the experimental data allowed to assume that this charge transfer increases with higher photon flux. With regard to applications with carbon nanotubes for electrolysis and photolysis of water, the redox chemistry of (6,5)-SWNTs was investigated in this solvent. With re- spect to the emission intensity in the organic electrolyte, two effects could be identified which were firstly the overall decrease of the PL, and secondly an irreversible reaction during anodic polarization, which manifested itself by a permanent quenching of the photoluminescence. The reaction conditions were determined with the result that water, optical generated electron-hole pairs and potential induced holes in the valence band formed a [SWNT(Q)] species, which caused the irreversible reduction of the CNT emission. Moreover, the evaluated reaction rate followed pseudo-zero-order kinetics, provided that the just mentioned parameters were constant. The investigation of this [SWNT(Q)] species in a ferrocene solution showed that the quenching effect of these defects was reduced for anodic polarisation by assuming an oxidation of the [SWNT(Q)] species by the Fc+ cations. The CVD apparatus enabled to synthesize carbon nanotubes. Ethanol was used as the carbon source and a mixture of iron and cobalt mixed with a zeolite worked as catalyst. The analysis of the various process parameters showed that the best distribution ratio between the desired (6,5)-SWNTs and other CNT chiralities or amorphous carbon were obtained for T = 750 °C . It was assumed that this behavior is due to the fact that at T < 750 °C burning processes of unwanted amorphous carbon residues only slightly occurred, and that at T > 750 °C the growth mechanism favoured chiralties with larger diameter. By varying the flow rate, only an absolute increase of all chiralities was observed. In this context it should be noted that nevertheless the chirality distribution can be improved to higher yields of (6,5)-SWNTs, by an adaptation of the pressure and temperature during synthesis. The experiments which investigated the impact of reaction pressure changes, indicated a relation in accordance to Le Chatelier law. Therefore lower pressure moved the equilibrium towards product formation of the ethanol-cracking reaction, which increased the molecule concentration of ethane, ethylene and methane and the overall CNT yield. However, this caused also an increment of the absolute amorphous carbon concentration. According to that, it was found that a pressure of p = 9 mbar yielded the best (6.5)-SWNT to amorphous carbon ratio. The experiments performed in this thesis allowed to gain new insights about the sensitivity of the emission of (6,5)-SWNTs due to charging. Especially the deter- mination of the correlation between the photoluminescence and charging level of the CNTs will allow for a more selective use of carbon nanotubes – for example in sensors. In this context the analysis of the interparticle redoxpotential distribution showed precisely the effects of solvent and defect densities on the electronic structure of CNTs. Further the reasons for different values of the reduction and oxidation potential, which are found in literature were explained. For the future this information will allow a better selection of the spectroscopic method to determine the band edges of carbon nanotubes. The spectroelectrochemical analysis of the (6,5)-SWNTs in the solvent water and especially the determination of the kinetics for the observed irreversible reaction gave insight in the interaction between water molecules and carbon nanotubes. These results are particularly important, when carbon nanotubes are used as electrode material. For example in the electrochemical and photolytic generation of hydrogen and oxygen of water. Besides the covalent bond forming reaction of (6,5)-SWNTs in water under anodic potential and optical excitation, the non-covalent bonding reaction between ferrocene molecules and SWNTs was shown and analysed. The different impact of these two interaction on the electronic structure could then be demonstrated and explained. KW - Spektroelektrochemie KW - Kohlenstoff-Nanoröhre KW - Redoxpotential KW - Photolumineszenz KW - Einzelmolekülspektroskopie KW - (6,5)-SWNT KW - Spektroelektrochemie KW - Potentialinduzierte Löschung KW - CVD Synthese KW - Raman-Spektroskopie KW - electrochemistry KW - photoluminescence KW - single particle microscopy KW - Raman spectroscopy Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112162 ER - TY - THES A1 - Schmidt, Thomas Christian T1 - Theoretical Investigations on the Interactions of Small Compounds with their Molecular Environments T1 - Theoretische Untersuchungen der Wechselwirkungen Kleiner Moleküle mit deren Molekularen Umgebungen N2 - Im ersten Teil dieser Arbeit wird eine Kombination theoretischer Methoden für die strukturbasierte Entwicklung neuer Wirkstoffe präsentiert. Ausgehend von der Kristallstruktur eines kovalenten Komplexes einer Modellverbindung mit dem Zielprotein wurde mit Hilfe von quantenmechanischen und QM/MM Rechnungen die genaue Geometrie des vorausgehenden nicht-kovalenten Komplexes betimmt. Letztere ist der bestimmende Faktor für die Reaktivität des Inhibitors gegenüber der katalytisch aktiven Aminosäure und damit für die Ausbildung einer kovalenten Bindung. Aus diesem Grund wurde diese Geometrie auch für die Optimierung der Substitutionsmusters des Ihnibitors verwendet, um dessen Affinität zum Zielenzyme zu verbessern ohne dass dieser seine Fähigkeit kovalent an das aktive Zentrum zu binden verliert. Die Optimierung des Substitutionsmuster wurde doch Methode des Molekularen Dockings unterstützt, das diese optimal dazu geeignet sind, Bindungsaffinitäten vorherzusagen, die durch eine Modifikation der chemischen Struktur entstehen. Eine Auswahl der besten Strukturen wurde anschließend verwendet, um zu überprüfen, ob die veränderten Moleküle noch genügen Reaktivität gegenüber dem Zielprotein aufweisen. Moleküldynamik Simulationen der neuen Verbindungen haben jedoch gezeigt, dass die veränderten Verbindungen nur so and das Protein binden, dass die Bilung eine kovalenten Bindung zum Enzym nicht mehr möglich ist. Daher wurden in einem weiteren Schritt die Modellverbindungen weiter modifiziert. Neben Änderungen im Substitutionsmuster wurde auch die chemische Struktur im Kern verändert. Die Bindungsaffinitäten wurde wieder mittels Docking überprüft. Für die besten Bindungsposen wurden wieder Simulationen zur Moleküldynamik durchgeführt, wobei diesmal die Ausbildung einer kovalenten Bindung zum Enzyme möglich erscheint. In einer abschließenden Serie von QM/MM Rechnungen unter Berücksichtigung verschiedener Protonierungszustände des Inhibitors und des Proteins konnten Reaktionspfade und zugehörige Reaktionsenergien bestimmt werden. Die Ergebnisse lassen darauf schließen, dass eines der neu entwickelten Moleküle sowohl eine stark verbesserte Bindungsaffinität wie auch die Möglichkeit der kovalenten Bindung an Enzyme aufweist. Der zweite Teil der Arbeit konzentriert sich auf die Umgebungseinflüsse auf die Elektronenverteilung eines Inhibitormodells. Als Grundlage dient ein vinylsulfon-basiertes Moekül, für das eine experimentell bestimmte Kristallstruktur sowie ein theoretisch berechneter Protein Komplex verfügbar sind. Ein Referendatensatz für diese Systeme wurde erstellt, indem der Konformationsraum des Inhibitors nach möglichen Minimumsstrukturen abgesucht wurde, welche später mit den Geometrien des Moleküls im Kristall und im Protein verglichen werden konnten. The Geometrie in der Kristallumgebung konnte direkt aus den experimentellen Daten übernommen werden. Rechnungen zum nicht-kovalenten Protein Komplex hingegen haben gezeigt, dass für das Modellsystem mehrere Geometrien des Inhibiors sowie zwei Protonierungszustände für die katalytisch aktiven Aminosäuren möglich sind. Für die Analyse wurden daher alle möglichen Proteinkomplexe mit der Kristallstruktur verglichen. Ebenso wurden Vergleiche mit der Geometrie des isolierten Moleküls im Vakuum sowie der Geometrie in wässriger Lösung angestellt. Für die Geometrie des Moleküls an sich ergab sich eine gute Übereinstimmung für alle Modellsysteme, für die Wechselwirkungen mit der Umgebung jedoch nicht. Die Ausbildung von Dimeren in der Kristallumgebung hat einen stark stablisierenden Effekt und ist einer der Gründe, warum dieser Kristall so gut wie keine Fehlordungen aufweist. In den Proteinkomplexen hingegen ergibt sich eine Abstoßung zwischen dem Inhibitor und einer der katalytisch aktiven Aminosäuren. Als Ursache für diese Abstoßung konnte die Einführung der Methylaminfunktion ausgemacht werden. Vermutlicherweise führt diese strukturelle Änderung auch dazu, dass der Modellinhibitor nicht in der Lage ist, so wie die Leitstruktur K11777 an das aktive Zentrum des Enzyms zu binden. N2 - In the first part of this work, a combination of theoretical methods for the rational design of covalent inhibitor is presented. Starting from the crystal structure of the covalent complex of a lead compound, quantum mechanical and QM/MM calculations were used to derive the exact geometry of the preceeding non-covalent enzyme inhibitor complex. The geometry of the latter mainly determines the reactivity of the inhibitor against its target enzyme concerning the formation of the covalent bond towards an active site residue. Therefore, this geometry was used as starting point for the optimization of the substitution pattern of the inhibitor such as to increase its binding affinity without loosing its ability to covalently bind to the target protein. The optimization of the chemical structure was supported by using docking procedures, which are best suited to estimate binding affinities that arise from the introduced changes. A screening of the novel substitution patterns resulted in a first generation of model compounds which were further tested for their reactivity against the target. Dynamic simulations on the novel compounds revealed that the orientation that compounds adopt within the active site are such that a covalent interaction with the enzyme is no longer possible. Hence, the chemical structure was further modified, including not only changes in the substituents but also within the core of the molecule. Docking experiments have been conducted to assure sufficiently high binding affinities and to obtain the most favored binding poses. Those have then again been used for dynamic simulations which resulted in structures, for which the bond formation process appeared feasible. A final series of QM/MM calculations considering various protonation states was computed to estimate the reaction energies for the covalent attachment of the inhibitor to the enzyme. The theoretical results indicate a reasonable high inhibition potency of the novel compounds. The second part concentrates on the environmental influences on the electron density of an inhibitor molecule. Therefore, a vinylsulfone-based model compound was selected for which an experimental crystal structure for the pure compound as well as a theoretically determined enzyme-inhibitor complex have been available. To provide reference data for the larger systems, the conformational space of the isolated molecule was screened for favorable geometries which were later compared to those within the crystal and protein surrounding. The geometry of the crystal structure could readily be taken from the experimental data whereas calculations on the protein complex revealed four potential non-covalent complexes exhibiting different arrangements of the molecule within the active site of the protein as well as two possible protonation states of the catalytic dyad. Hence, all four protein complexes have been compared to the crystal structure of the molecule as well as against the more favorable geometries of the isolated molecule being determined within vacuum or aqueous surrounding. Whereas the molecule itself was found to adopt comparable geometries within all investigated environments, the interactions pattern between the crystal surrounding and the protein differed largely from each other. The favorable formation of dimers within the crystal has a strong stabilizing effect and explains the extraordinarily good quality of the crystal. Within the protein however, repulsive forces have been found between the protein and the inhibitor. The origin of the repulsion could be traced back to effect of on of the substituents to the vinyl scaffold. The difference in the chemical structure in comparison to a well known inhibitor might also explain the experimentally found loss of activity for the model compound in comparison to K11777. KW - Theoretische Chemie KW - theoretical chemistry KW - electron density KW - inhibition KW - Elektronendichte KW - Inhibitor Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127860 ER - TY - THES A1 - Holzmeier, Fabian T1 - Photoionization of Nitrogen-Containing Reactive Molecules with Synchrotron Radiation T1 - Photoionisation von stickstoffhaltigen reaktiven Molekülen mit Synchrotronstrahlung N2 - The photoionization of several nitrogen-containing reactive intermediates relevant in combustion processes was investigated in the gas phase employing VUV synchrotron radiation. The intermediates were either freshly prepared and stored under cryogenic temperatures during the experiment or generated in situ by vacuum flash pyrolysis of suitable precursor molecules. The iPEPICO (imaging photoelectron photoion coincidence) setups of the VUV beamlines at the Swiss Light Source and Synchrotron SOLEIL were then used to record mass-selected threshold photoelectron (TPE) spectra. TPE spectra reveal the ionization energy and vibrational structure in the cationic states can often be resolved, which enables to distinguish different isomers. Accurate ionization energies for the radicals carbonyl amidogen, pyrrolyl, and 3-picolyl, and for the closed shell molecules isocyanic acid and cyanovinylacetylene were obtained. The analysis of the dissociative photoionization of the pyrolysis precursors enables in some cases to retrieve thermochemical data. Beyond, the absolute photoionization cross section of the cyclic carbene cyclopropenylidene was determined, NEXAFS and normal Auger spectra of isocyanic acid were recorded and analyzed at the O1s, N1s, and C1s edges, and the dissociative photoionization and pyrolysis of 1,4-di-tert-butyl-1,4-azaborinine was studied. N2 - Die Photoionisiation von stickstoffhaltigen reaktiven Intermediaten, die in Verbrennungsprozessen vorkommen, wurde in der Gasphase mit VUV Synchrotronstrahlung untersucht. Die Intermediate wurden entweder unmittelbar vor dem Experiment hergestellt und während des Experiments bei sehr niedrigen Temperaturen gehalten oder in situ durch Vakuum Flash Pyrolyse eines geeigneten Vorläufermoleküls erzeugt. Massenselektive Schwellenphotoelektronen(TPE)-Spektren wurden an den iPEPICO (imaging photoion photoelectron coincidence) Setups der VUV Strahllinien der Swiss Light Source und des Synchrotrons SOLEIL aufgenommen. Die Ionisierungsenergie kann in TPE-Spektren bestimmt werden und eine Auflösung von Schwingungsstruktur im Kation ist in vielen Fällen möglich, wodurch verschiedene Isomere unterschieden werden können. Verlässliche Ionisierungsenergien konnten für die Radikale Carbonylamidogen, Pyrrolyl und 3-Picolyl sowie für die geschlossenschaligen Moleküle Isocyansäure und Cyanovinylacetylen erhalten werden. Die Analyse der dissoziativen Photoionisation der Pyrolysevorläufer eröffnet in manchen Fällen Zugang zu thermochemischen Daten. Darüber hinaus wurde der absolute Photoionisationsquerschnitt des cyclischen Carbens Cyclopropenyliden bestimmt, wurden die NEXAFS und nicht-resonanten Auger Spektren von Isocyansäure an der O1s, N1s und C1s Kante aufgenommen und analysiert und die dissoziative Photoionisation und Pyrolyse von 1,4-di-tert-butyl-1,4-azaborinin untersucht. KW - Dissoziative Photoionisation KW - Synchrotronstrahlung KW - Ultraviolett-Photoelektronenspektroskopie KW - Pyrolyse KW - Photoelektron-Photoion-Koinzidenz KW - Fotoionisation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127763 ER - TY - THES A1 - Seibt, Joachim T1 - Theoretical investigations on the spectroscopy of molecular aggregates T1 - Theoretische Untersuchungen zur Spektroskopie von Molekülaggregaten N2 - Die spektroskopischen Eigenschaften von Molekülaggregaten wurden mittels quantendynamischer Berechnungen untersucht. Hierbei wurden sowohl lineare als auch nichtlineare Spektroskopietechniken einbezogen. Zur Simulation von Absorptions- und CD-Spektroskopie wurden Kopplungseffekte sowie die relative Orientierung der Monomer-Einheiten in den Modellen berücksichtigt, um gemessene Spektren reproduzieren und so die entsprechenden Parameter zu bestimmen. Zur genaueren Beschreibung wurden auch Ergebnisse quantenchemischer Rechnungen verwendet. Darüber hinaus wurden Untersuchungen zur nichtlinearen optischen Spektroskopie an Dimeren durchgeführt. N2 - The spectroscopic properties of molecular aggregates have been investigated by means of quantum dynamical calculations. Thereby both linear and nonlinear spectroscopic techniques have been taken into account. For the simulation of absorption and CD-spectra, coupling effects were regarded as well as the relative orientation of the monomer units in order to determine the parameters by reproducing measured spectra. For a more detailled description, results from quantum chemical calculations have also been included. Furthermore, investigations on nonlinear spectroscopy of molecular dimers have been performed. KW - Theoretische Chemie KW - Aggregat KW - Nichtlineare Spektroskopie KW - CD-Spektroskopie KW - Quantenchemie KW - Quantendynamik KW - quantum dynamics Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-37218 ER - TY - THES A1 - Tebbe, David T1 - Funktionalisierung von Titan(dioxid)oberflächen mit kovalent gebundenem und in Depots eingebrachtem Wirkstoff für den Blutkontakt T1 - Functionalization of titanium surfaces with covalently attached and embedded drug for blood contact N2 - Ziel der vorliegenden Arbeit war die Funktionalisierung von Titanoberflächen mit dem Glycosaminoglycan Heparin, um bei Kontakt des Werkstoffs mit Blut die Gerinnungskaskade nicht auszulösen und das Material für Stents (Gefäßstützen) im arteriellen System einsetzbar zu machen. Für die Modifizierungen wurden als Modell der oxidierten Titanoberfläche sowohl oxidierte cp-Titanplättchen als auch TiO2-Pulver verwendet. Heparin kam zum Einsatz, da es sowohl die Hämostase (Blutgerinnung) als auch die Proliferation (Überwucherung) mit glatten Muskelzellen unterdrückt und somit eine Restenose (Wiederverengung) des in die verengte Arterie eingebrachten Stents verhindert. Die kovalente Immobilisierung des Wirkstoffs erfolgte über bifunktionale Spacer (Haftvermittlermoleküle). Spacer waren 3-(Trimethoxysilyl)-propylamin (APMS), N-(2-Aminoethyl)-3-aminopropyltrimethoxysilan (Diamino-APMS) und N1-[3-(Trimethoxysilyl)-propyl]diethylen¬triamin (Triamino-APMS). Der qualitative und quantitative Nachweis der Funktionalisierung von TiO2 mit Haftvermittler bzw. Heparin erfolgte durch schwingungsspektroskopische Methoden, komplexometrische Farbreaktionen sowie der Bestimmung des Zetapotentials im Elektrolytkontakt. Durch die Anbindung von APMS, Di- und Triamino-APMS stieg das Zetapotential von ca. -26 mV auf positive Werte zwischen +41 und +45 mV. Ein Absinken des Zetapotentials belegte die erfolgreiche Anbindung von Heparin (Werte zwischen -39 und -37 mV) an die verschiedenen Haftvermittler, ebenso wie das Vorhandensein der symmetrischen SO3-Valenzschwingung bei 1040 cm-1. Der quantitative Nachweis der immobilisierten Aminogruppen über die Ninhydrinreaktion ergab für die TiO2-Pulver Werte zwischen 17-20 NH2/nm2, wobei die dichteste Funktionalisierung mit APMS und die niedrigste mit Triamino-APMS erzielt werden konnte. Alle Werte lagen im Bereich von Multilayern, da ein Monolayer aus ca. 2 3 NH2/nm2 besteht. Die immobilisierte Menge an Heparin war bei Verwendung von APMS am größten (53.3±3.6 ng/cm2) und bei Triamino-APMS am geringsten (32.1±5.7 ng/cm2). Die biologische Wirksamkeit des gebundenen Heparins wurde über das chromogene Substrat ChromozymTH® bestimmt und verblieb bei Anbindung an den Spacer mit der größten Moleküllänge (Triamino-APMS) mit ca. 70% am wirksamsten. Neben der kovalenten Anbindung des Wirkstoffs an Spacer zielte diese Arbeit auf die Entwicklung von organisch modifizierten, porösen SiO2-Wirkstoffdepots (P-MA-PS; Poly-methacryl¬oxy¬propylpolysilsesquioxane) für Heparin ab, die sowohl als Volumenwerkstoffe als auch zur Modifikation von Titan(dioxid)oberflächen anwendbar wären. Die Matrices wurden ausgehend von MAS (Methacryl¬oxypropyl¬trimethoxysilan) über den Sol-Gel Prozeß anorganisch und anschließend über photochemische Polymerisation zusätzlich organisch vernetzt. Die Quantifizierung des Polymerisationsgrads erfolgte über die Signalintensität der methacrylischen C=C-Doppelbindung bei 1635 cm-1 durch Integration einer Gauß-Funktion. Über den Polymerisationsgrad der organischen Matrix zwischen 0-71% konnte die Freisetzungskinetik von Heparin je nach therapeutischer Anforderung eingestellt werden. Es konnte gezeigt werden, daß hohe Wirkstoff-Beladungen und niedrige Polymerisationsgrade mit einer schnelleren Freisetzung des Heparins korrelierten, die aufgrund der Endlichkeit des Wirkstoffs im Depot einer Kinetik 1. Ordnung unterlag. Die kumulativ freigesetzten Wirkstoffmengen verhielten sich hierbei proportional zur Wurzel aus der Freisetzungszeit, was dem Higuchi-Modell zur Wirkstofffreisetzung aus porösen Matrices mit einem rein Diffusions-kontrollierten Mechanismus entsprach. Die durch Hydrolyse bedingte Degradation der anorganischen Matrix, die UV-VIS-spektroskopisch bei λ = 220 nm gemessen wurde, folgte einer Kinetik pseudo-0. Ordnung. Da das freigesetzte Heparin seine biologische Wirksamkeit beibehielt, sind P-MA-PS Matrices interessant für klinische Anwendungen, wie z.B. für die Beschichtung von Gefäßstützen, die im Blutkontakt stehen. N2 - Aim of this work was the functionalization of titanium surfaces with the glycosaminoglycane heparin to improve the surface hemocompatibility for an application in the field of coronary stenting. Surface modification was performed using both TiO2 powder and titanium sheets as substrates imitating the (oxidized) surface of titanium implants. The substrates were modified with heparin to prevent side effects like blood coagulation and neointimal proliferation after implantation, which can both lead to restenosis of the acute artery closure. Surfaces can be modified either by covalent bonding of the drug to the metal by a silane spacer or by embedding the active agent into a polymer matrix for the controlled release over a certain period of time. Covalent attachment of heparin to titanium metal and TiO2 powder was carried out using the coupling agents 3-(Trimethoxysilyl)-propylamine (APMS), N-[3-(Trimethoxysilyl)-propyl]-ethylenediamine (Diamino-APMS) and N1-[3-(Trimethoxysilyl)-propyl]-diethylenetriamine (Triamino-APMS). Additionally, the influence of primary accomplished TiO2 films on the density of surface bound spacer was determined. Therefore, polished titanium substrates were covered with thin (< 2 µm) TiO2 layers by means of thermal/anodic oxidation, physical vapor deposition (PVD) or the sol-gel process and were then modified with the different spacer molecules, respectively. Aim was a correlation between the composition/topography of the TiO2 layers and the amount of bound spacer molecules. At this, two tendencies could be observed. Firstly, the density of surface bound spacer was generally highest for APMS (115-212 nmol/cm2) and lowest for Triamino-APMS (102-176 nmol/cm2), which was due to that smaller molecules underlie less intermolecular sterical hindrance onto surfaces. And secondly, on TiO2 surfaces with a higher roughness and therewith a higher specific surface area more spacer molecules could be immobilized (in the sequence: PVD > heat treated > anodized > sol-gel). The amount of surface bound coupling agent and heparin was quantified photometrically by the ninhydrin reaction and the toluidine-blue test. The biological potency of heparin was determined photometrically by the chromogenic substrate Chromozym TH and fibrinogen adsorption on the modified surfaces was investigated using the QCM-D (Quartz Crystal Microbalance with Dissipation Monitoring) technique. Zeta-potential measurements confirmed the successful coupling reaction; the zeta-potential of the unmodified anatase surface (approx. -26 mV) shifted into the positive range (> +40 mV) after silanisation. Binding of heparin resulted in a strongly negatively charged surface with zeta-potentials of approx. 39 mV. The successful heparinization could also be followed using RAMAN-spectroscopy by the occurrence of the peak at 1040 cm-1 (S=O vibration) caused by the drug. The amount of covalently attached primary amino groups on TiO2 powder was the highest for APMS (20 NH2/nm2) and decreased for Di- and Triamino-APMS (19 & 17 NH2/nm2). The hereby accomplished aminosilane layers were all in the range of multilayers since a monolayer is approx. 2 3 NH2/nm2. On the APMS spacer, the greatest amount of 53.3±3.6 ng/cm2 heparin was immobilized compared to Di- and Triamino-APMS (41.2±6.9 & 32.1±5.7 ng/cm2). The retaining biological activity of heparin was found to be the highest (70%) for the covalent attachment with Triamino-APMS as coupling agent due to the long chain of this spacer molecule and therefore the highest mobility of the drug. Moreover, this work aimed to investigate the use of an organically modified porous silica matrix (Poly(methacryloxypropyl)-poly(silsesquioxane); P-MA-PS) as a release system for heparin. The matrices were obtained from the precursor methacryloxypropyltrimethoxysilane (MAS) via the sol-gel process under acidic conditions following photochemical polymerization and cross-linking of the organic matrix. Modulation of the polymerization degree of the organic matrix in the range 0-71% allowed to adjust the release kinetics of heparin according to therapeutic needs. It was demonstrated that higher drug loads and a decreasing polymerization degree resulted in a faster release profile of heparin, which followed a square root of time kinetic according to the Higuchi model. The hydrolytic degradation of the xerogel was found to follow a zero-order kinetic whereas the heparin concentration did not show an influence on the degradation rate of the anorganic matrix. Since the released heparin retained its biological activity, P-MA-PS matrices may be interesting for clinical application, for instance as coating on drug eluting coronary stents. KW - Heparin KW - Titan KW - Oberfläche KW - Blutkontakt KW - Stent KW - Heparin KW - Titan KW - Oberfläche KW - Blutkontakt KW - Stent KW - heparin KW - titanium KW - surface KW - blood-contact KW - stent Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-26579 ER - TY - THES A1 - Marquetand, Philipp T1 - Vectorial properties and laser control of molecular dynamics T1 - Vektorielle Eigenschaften und Laser-Kontrolle molekularer Dynamik N2 - In this work, the laser control of molecules was investigated theoretically. In doing so, emphasis was layed on entering vectorial properties and in particular the orientation in the laboratory frame. Therefore, the rotational degree of freedom had to be included in the quantum mechanical description. The coupled vibrational and rotational dynamics was examined, which is usually not done in coherent control theory. Local control theory was applied, where the field is determined from the dynamics of a system, which reacts with an instantaneous response to the perturbation and, in turn, determines the field again. Thus, the field is entangled with the quantum mechanical motion and the presented examples document, that this leads to an intuitive interpretation of the fields in terms of the underlying molecular dynamics. The limiting case of a classical treatment was shown to give similar results and hence, eases to understand the complicated structure of the control fields. In a different approach, the phase- and amplitude shaping of laser fields was systematically studied in the context of controlling population transfer in molecules. N2 - Das Ziel dieser Arbeit war die theoretische Analyse der Laserkontrolle von Molekülen. Ein Schwerpunkt lag dabei auf vektoriellen Eigenschaften und im Besonderen auf der Orientierung eines Moleküls im Laboratorium. Hierfür wurde der Rotationsfreiheitsgrad in die quantenmechanische Beschreibung einbezogen. Die Kopplung zwischen Vibrations- und Rotationsdynamik wurde explizit berücksichtigt, während dieser Vorgang normalerweise bei theoretischen Untersuchungen zur kohärenten Kontrolle vernachlässigt wird. Als Kontrollschema wurde die lokale Kontrolltheorie (LCT) verwendet, in der das Feld aus der Dynamik eines Systems bestimmt wird, welche sofort auf diese äußere Störung antwortet und damit wiederum das Feld bestimmt. Somit ist das Feld mit der quantenmechanischen Bewegung verknüpft. Die vorgestellten Beispiele dokumentieren, dass dies zu einer intuitiven Interpretation der Felder bzgl. der zu Grunde liegenden molekularen Dynamik führt. In der vereinfachten, klassischen Darstellung der Probleme findet man vergleichbare Resultate. Die klassische Sichtweise ermöglicht ein anschauliches Verständnis der komplizierten Strukturen der Kontrollfelder. Zusätzlich wurde mit einem anderen Ansatz die Phasen- und Amplitudenformung von Laserfeldern systematisch untersucht, wobei der Populationstransfer in Molekülen kontrolliert werden sollte. KW - Laserchemie KW - Molekularbewegung KW - Vektor KW - Orientierung KW - Orientiertes Molekül KW - Photochemie KW - Zweiatomiges Molekül KW - Nichtstarres Molekül KW - Molekülzu KW - Kohärente Kontrolle KW - Femtochemie KW - Pulsformung KW - Laser-Kontrolle KW - Femtosekunden-Spektroskopie KW - Coherent control KW - Femto-chemistry KW - pulse shaping KW - laser control KW - femtosecond spectroscopy Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-24697 ER - TY - THES A1 - Schneider, Michael T1 - Elektronische Spektroskopie und Photodissoziationsverhalten von heterocyclischen Biomolekülen T1 - Electronic spectroscopy and photodissociation behaviour of herocyclic biomolecules N2 - Das Photodissoziationsverhalten der Pyrimidinbasen Thymin, Uracil und 5-Methylcytosin wurde mittels Photofragment-Dopplerspektroskopie und Photofragment-Imaging untersucht. Die Photodissoziation erfolgt in allen Fällen in einem statistischen Prozess nach Mehrphotonenabsorption. Von Purin wurde ebenfalls die Photodissoziation untersucht sowie das elektronische Spektrum des niedrigsten n-pi*-Zustands mittels Photofragment-Anregungsspektroskopie und [1+1']-REMPI-Spektroskopie gemessen. Purin zeigt bei den untersuchten Wellenlängen dasselbe Verhalten wie die Pyrimidinbasen. Das Elektronische Spektrum von Purin zeigt über einen Bereich von über 2000 cm^-1 vom Bandenursprung gut strukturierte Banden, von denen die meisten oberhalb 850 cm^-1 als Kombinationsbanden identifiziert wurden. N2 - The photodissociation behaviour of the pyrimidine bases thymine, uracil and 5-methyl cytosine has been studied by photofragment doppler spectroscopy and photofragment imaging. In all cases, the photodissociation follows a statistical process after multiphoton absorption. The photodissociation of purine has also been studied and the spectrum of its lowest excited n-pi* state has been measured by photofragment excitation spectroscopy and [1+1']-REMPI spectroscopy. At the used wavelengths, purine shows the same photodissociation behaviour as the pyrimidine bases. The electronic spectrum of purine shows well structured peaks in a range of 2000 cm^-1 from the band origin. Most bands above 850 cm^-1 can be identified as combination bands. KW - Photodissoziation KW - Mehrphotonen-Spektroskopie KW - Doppler-Verbreiterung KW - Pyrimidinderivate KW - Purin KW - Photofragmentspektroskopie KW - photodissociation KW - multiphoton spectroscopy KW - doppler broadening KW - pyrimidines KW - purine Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-42190 ER - TY - THES A1 - Schleier, Domenik T1 - Using Photoionization to Investigate Reactive Boron Species and the Kinetics of Hydrocarbon Radicals T1 - Die Untersuchung von Reaktiven Borspezies und die Kinetik von Kohlenwassterstoffradikalen mittels Photoionization N2 - This thesis highlights the importance of isomer-selective approaches for the complete analysis of chemical processes. The method of choice is photoelectron/photoion coincidence spectroscopy, which allows simultaneous detection of electrons and ions coming from a single ionization event. Ionization techniques are sensitive and can record multiple species simultaneously, rendering them ideal tools to probe molecular transformations. Coupling these setups to synchrotron radiation allows one to analyze complex mixtures with isomer selectivity, based on ionization energies and vibrational structure in the cation, without any prior separation steps. Only few setups exist that can be used to gather these data, although their impact and applicability is growing steadily in various fields. For closed-shell species an easier and more widely used method is gas-chromatography, but most open shell species would not survive the separation process. Due to the reactivity of radicals they have to be created by selectively converting stable precursor molecules. Depending on the radical generation method different properties can be investigated ranging from thermodynamic data, over concentrations in high temperature environments, to chemical kinetics. The first part of this thesis deals with the determination of bimolecular rate constants. Isomeric hydrocarbon radicals were generated by a high intense UV light pulses and their kinetics with oxygen was measured. The pressure dependence of different isomers in the falloff region was compared to theoretical models, and their reactivity could be explained. The second part deals with boron containing compounds in various electronic situations. The corresponding precursors were successfully synthesized or could be bought. They were subjected to fluorine atoms in chemical reactors or destroyed pyrolytically at high temperatures. Most investigated species exhibited vibronic effects that could be elucidated using high level computations. N2 - Die vorliegende Arbeit lässt sich in zwei Unterkategorien gliedern. Sie befasst sich zum einen mit der isomerenselektiven Identifikation von hochreaktiven anorganischen Verbindungen. Zum anderen werden Ratenkonstanten für die Reaktionen verschiedener Kohlenwasserstoffradikale mit Sauerstoff ermittelt. Beide Bereiche sind durch die Frage der Energiespeicherung und -gewinnung in der Zukunft unmittelbar miteinander verbunden. Die Herausforderung reaktive Moleküle zu untersuchen, liegt oft darin sie in einer inerten Atmosphäre erzeugen zu müssen. Nur unter diesen Bedingungen hat ihre Reaktivität kaum Möglichkeiten sich zu entfalten. Hierzu wurden stabile Vorläufermoleküle in die Gasphase überführt und in einer verdünnten Umgebung möglichst selektiv in die gewünschte Radikalspezies überführt. Sowohl deren isomereselektive Identifikation als auch die Bestimmung der Ratenkonstanten wurde mittels Schwellenphotoelektronenspektroskopie durchgeführt. Mit Hilfe eines Photoelektron/Photoion Koinzidenz (PEPICO) Aufbaus konnten massenselektive Signale detektiert werden. Diese Methode benötigt eine Lichtquelle, die eine hohe Repetitionsrate aufweist und im VUV-Bereich komplett spektral durchstimmbar ist. Diese Voraussetzungen sind an Synchrotron-Strahlungsquellen verfügbar, weshalb die Experimente in dieser Arbeit an den entsprechenden Strahllinien an der SwissLightSource oder am Synchrotron SOLEIL durchgeführt wurden. Zur Unterstützung der experimentellen Daten wurden durch quantenchemische Rechnungen und Simulationen durchgeführt, aus denen eine klare isomerenselektive Zuordnung des jeweiligen Signals erfolgt. Die gesuchten Ratenkonstanten konnten mittels geeigneter Programme aus den Kinetikdaten extrahiert werden, wobei auch die Ratenkonstanten der Seitenreaktionen berücksichtigt wurden. KW - Biradikal KW - Kinetics KW - Spectroscopy KW - Photolysis KW - Radicals KW - Biradicals KW - Fotoionisation KW - Fotolyse KW - Synchrotronstrahlung KW - Synchrotron Radiation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-242137 ER - TY - THES A1 - Flock, Marco T1 - Velocity Map Imaging-Untersuchung nichtstrahlender Prozesse in polyzyklischen Aromaten und deren van-der-Waals-Clustern T1 - A Velocity Map Imaging study on nonradiative processes in polycyclic aromatics and their van der Waals clusters N2 - Das erste Ziel der vorliegenden Dissertation bestand darin, ein bereits bestehendes TOF-MS-Setup dahingehend zu erweitern, um damit Velocity Map Imaging-Experimente durchführen zu können. Dies erforderte zunächst die Konzipierung und Programmierung einiger für die Datenaufnahme, -verarbeitung und -analyse benötigter LabView-Anwendungen. Anschließend konnten erste Kalibrierexperimente an Methyliodid, in denen wichtige experimentelle Parameter identifiziert und optimiert wurden, durchgeführt werden. Außerdem gelang es dadurch, die Messgenauigkeit des Setups auf 0.7 % und dessen Auflösungsvermögen auf 4.4 % zu bestimmen, was im Bereich für VMI-Apparaturen typischer Werte liegt. Zur weiteren Überprüfung der Funktionstüchtigkeit des Setups wurde in ersten zeitaufgelösten Experimenten im Folgenden die Desaktivierung des S1-Zustands von Pyridin untersucht. Neben der Reproduktion einiger bereits literaturbekannter Resultate konnten dabei zusätzlich die im Multiphotonen-Ionisationsschritt populierten Rydberg-Zustände identifiziert werden. Anschließend wurde mit Experimenten an bisher weniger gut untersuchten organischen Aromaten und Heteroaromaten fortgefahren. Das Ziel dieser Studien lag in der Aufklärung der photoinduzierten Dynamiken der Verbindungen, wobei das zur Verfügung stehende ps-Lasersystem die Möglichkeit bot, die Desaktivierung elektronisch angeregter Zustände gezielt in Abhängigkeit von deren Schwingungsenergie zu untersuchen. Der darin bestehende Vorteil zeigte sich vor allem in Studien an Tolan und Phenanthridin, deren erste angeregte, optisch aktive Zustände am Origin Lebensdauern im ns-Bereich aufweisen, die sich mit zunehmender vibronischer Anregung jedoch auf bis zu 10 ps verringern. Als Grund dafür konnten nichtstrahlende Desaktivierungsprozesse, für deren Eintreten eine energetische Barriere überwunden werden muss, identifiziert werden. Während in Tolan nach Photoanregung ein Übergang in einen (πσ∗)-Zustand, der zur Ausbildung einer trans-bent-Struktur führt, erfolgt, ist im Falle von Phenanthridin vermutlich ein El-Sayed-erlaubter ISC-Übergang in einen 3(nπ∗)-Zustand für die drastische Verkürzung der S1-Lebensdauer verantwortlich. Ein solcher konnte weder im zu Phenanthridin isomerischen Benzo[h]quinolin, noch in dessen PAH-Muttermolekül Phenanthren beobachtet werden, was auf die höhere energetische Lage bzw. die Abwesenheit des mittels ISC populierten 3(nπ∗)-Zustands in diesen Molekülen zurückgeführt werden kann. In weiteren im Rahmen der vorliegenden Arbeit durchgeführten Experimente wurden zudem die aromatischen Moleküle Acenaphthylen und 4-(Dimethylamino)benzethin (DMABE) untersucht. Zeitaufgelöste Studien zeigten dabei, dass die Desaktivierung der S2-Zustände beider Moleküle auf der sub-ps-Zeitskala stattfindet und mit dem vorhandenen Lasersystem daher nicht aufgelöst werden kann. In Acenaphthylen erfolgt die S2-Relaxation größtenteils über einen sequentiellen IC-Mechanismus, innerhalb dem der S1-Zustand des Moleküls intermediär besetzt wird. Dessen Lebensdauer konnte am Origin auf 380 ps bestimmt werden, fällt mit steigender Schwingungsanregung jedoch auf bis zu 55 ps ab. Für die Desaktivierung des S2-Zustands von DMABE konnte hingegen ein paralleles Relaxationsmodell, in dem neben dem S1-Zustand ein weiterer elektronisch angeregter Zustand populiert wird, nachgewiesen werden. Bei diesem könnte es sich möglicherweise um einen (πσ∗)-Zustand, dessen Besetzung die Ausbildung einer trans-bent-Geometrie innerhalb der Acetylen-Einheit des Moleküls zur Folge hat, handeln. Einen weiteren großen Teil der vorliegenden Dissertation nahmen Experimente an van-der-Waals-gebundenen Clustersystemen ein. Im Fokus der Studien standen dabei Moleküle mit ausgedehnten aromatischen π-Systemen, da solche eine hohe Relevanz für verschiedene materialwissenschaftliche Forschungsgebiete besitzen. Ein Beispiel hierfür ist Tetracen, welches als Modellsystem für die Untersuchung von Singlet Fission-Prozessen angesehen wird. In Kombination mit nichtadiabatischen Surface-Hopping-Simulationen zeigten Experimente an Tetracen-Dimeren, dass nach deren S2-Anregung zunächst ein schneller S1←S2-Übergang (τ < 1 ps), gefolgt von der Ausbildung einer Excimerstruktur, stattfindet. Letztere erfolgt mit einer Zeitkonstante von 62 ps und führt zu einem Anstieg des transienten Ionensignals, wohingegen die Desaktivierung des Excimer-Zustands von einem abklingenden Signalbeitrag mit τ = 123 ps repräsentiert wird. Wenngleich über die weitere Relaxation der Excimerspezies zum gegenwärtigen Zeitpunkt keine Aussage getroffen werden kann, besteht damit die Möglichkeit, dass Excimer-Zustände als Zwischenstufe im SF-Mechanismus isolierter Tetracen-Dimere auftreten. In zeitaufgelösten Experimenten an Phenanthren-Dimeren konnte ebenfalls ein Anstieg des transienten Signals mit einer vergleichbaren Zeitkonstante von τ = 86 ps, der jedoch auf einem konstanten Signaloffset endet, gefunden werden. Dies deutet darauf hin, dass auch Phenanthren-Dimere in der Lage sind, Excimerstrukturen, die im Gegensatz zu denen des Tetracens jedoch deutlich langlebiger sind, auszubilden. Studien an den Dimerspezies der Azaphenanthrene Benzo[h]quinolin und Phenanthridin offenbarten hingegen etwas schnellere Relaxationen mit Zeitkonstanten von 15 bzw. 40 ps. Zudem zeigten beide Spezies eine stark ausgeprägte Fragmentation, sodass für deren Untersuchung auf die VMI-Detektionsmethode zurückgegriffen werden musste. Dadurch wurde deutlich, dass sich Photoionen-Imaging-Experimente hervorragend für Studien an schwach gebundenen Clustersystemen eignen, da diese die Separation verschiedener Signalbeiträge innerhalb eines betrachteten Massenkanals ermöglichen. N2 - In the first part of this thesis an already existing TOF-MS setup was modified in order to enable Velocity Map Imaging experiments. Therefore, LabView programs for the aquisition, processing and evaluation of the experimental data had to be written. Afterwards, calibration experiments on methyl iodide were carried out to characterize and to optimize important experimental parameters. The experiments yielded values of 4.4 % and 0.7 % for the spectral resolution and the accuracy of the setup, respectively, in good agreement with reported values for typical VMI setups. In the next step, time-resolved experiments on the S1 state deactivation in pyridine were performed in order to further verify the functionality of the setup. In these experiments, several results from literature could be reproduced and additional information on the Rydberg states being populated during the multiphoton ionization of the molecules were obtained. Thus, the experiments proved the suitability of the setup and experiments on less well studied systems were carried out in the following. The goal of these studies was to elucidate the light-induced relaxation mechanisms of selected organic aromatics and heteroaromatics. Due to the spectral bandwidth of the available ps laser setup, dynamics of electronically excited states could be studied as a function of their vibronic energy. This advantage became obvious especially in studies on tolane and phenanthridine: In both molecules, the lifetime of the first excited bright state is in the ns range at its origin, but drops to around 10 ps at higher excitation energies. The reason therefore are nonradiative relaxation processes which can only take place when an energetic barrier is surmounted. In case of tolane, a transition to a (πσ∗) state, leading to the formation of a trans-bent structure, was found to occur at higher excitations. In contrast, an El-Sayed allowed ISC process to a (nπ∗) triplet state seems to be responsible for the drop of the S1 state lifetime in phenanthridine. Interestingly, neither in the isomeric azaphenanthrene benzo[h]quinoline, nor in the PAH parent molecule phenanthrene itself, such a behavior was observed. This is attributed to the higher energy of the first excited (nπ∗) triplet state in benzo[h]quinoline and its absence in phenanthrene, respectively. Further experiments presented in this thesis aimed to elucidate the excited-state dynamics of acenaphthylene and 4-(dimethylamino)benzethyne (DMABE). Time-resolved studies on both molecules revealed S2 state deactivations on the sub-picosecond timescale which thus can not be resolved with the available ps laser setup. In acenaphthylene, a subsequent IC relaxation back to the electronic ground state was found to occur upon S2 excitation and the lifetime of the intermediately populated S1 state was determined to 380 ps at its origin and to 55 ps at higher excitation energies. The S2 state of DMABE relaxes to the S1 state as well, but in addition, the population of another electronic state, which might possibly be a trans-bent (πσ∗) state, was observed. Another large part of the experimental work within this thesis was covered from studies on van der Waals clusters of different aromatic and heteroaromatic compounds. The investigations focused on molecules with extended π -systems, since those possess photophysical properties with high relevance for various applications in material science. As an example, tetracene dimers can be seen as a prototype for the singlet fission process and thus were studied in the scope of this work. In time-resolved experiments, a sequential relaxation with time constants of 62 and 123 ps was observed upon excitation of their S2 state. Based on non-adiabatic surface hopping simulations the time constants could be assigned to the formation and the following decay of an excimer species. Thus, the excimer state could act as an intermediate in the SF mechanism of isolated tetracene dimers, although no information on its further deactivation are available so far. Interestingly, the formation of the excimer state leads to a rise in the transient ion signal, whereas its deactivation correlates with a decaying contribution. A similar behavior was found in experiments on phenanthrene dimers, which relax to a long-lived electronic state with a rising time constant of 86 ps. This indicates that excimer structures are formed upon photoexcitation in phenanthrene dimers as well. However, since their deactivation was not observed on the timescale of the experiment, the phenanthrene excimers seem to possess a much longer lifetime than their tetracene analogues. Studies on the dimeric species of the phenanthrene aza-derivatives benzo[h]quinoline and phenanthridine revealed slightly faster deactivation processes with time constants of 15 and 40 ps, respectively. Furthermore, the multimers of both compounds showed strong fragmentations and thus had to be studied via VMI detection. Thereby it became obvious that photoion imaging experiments are an excellent tool for investigations on weakly bound van der Waals clusters, since they allow to distinguish between different signal contributions in a given mass channel. KW - Strahlungslose Desaktivierung KW - Photoelektronenspektroskopie KW - Molekularstrahl KW - REMPI KW - Pump-Probe-Technik KW - Velocity Map Imaging KW - Zeitaufgelöste Spektroskopie KW - Polycyclische Aromaten KW - Photophysik KW - Physikalische Chemie Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-240786 ER - TY - THES A1 - Becker, Johannes T1 - Development and implementation of new simulation possibilities in the CAST program package T1 - Entwicklung und Implementierung neuer Simulationsmöglichkeiten in das CAST Programmpaket N2 - The aim of the present work is the development and implementation of new simulation possibilities for the CAST program package. Development included, among other things, the partial parallelization of the already existing force fields, extension of the treatment of electrostatic interactions and implementation of molecular dynamics and free energy algorithms. The most time consuming part of force field calculations is the evaluation of the nonbonded interactions. The calculation of these interactions has been parallelized and it could be shown to yield a significant speed up for multi-core calculations compared to the serial execution on only one CPU. For both, simple energy/gradient as well as molecular dynamics simulations the computational time could be significantly reduced. To further increase the performance of calculations employing a cutoff radius, a linkedcell algorithm was implemented which is able to build up the non-bonded interaction list up to 7 times faster than the original algorithm. To provide access to dynamic properties based on the natural time evolution of a system, a molecular dynamics code has been implemented. The MD implementation features two integration schemes for the equations of motion which are able to generate stable trajectories. The basic MD algorithm as described in Section 1.2 leads to the sampling in the microcanonical (NVE) ensemble. The practical use of NVE simulations is limited though because it does not correspond to any experimentally realistic situation. More realistic simulation conditions are found in the isothermal (NVT) and isothermalisobaric (NPT) ensembles. To generate those ensembles, temperature and pressure control has been implemented. The temperature can be controlled in two ways: by direct velocity scaling and by a Nose-Hoover thermostat which produces a real canonical ensemble. The pressure coupling is realized by implementation of a Berendsen barostat. The pressure coupling can be used for isotropic or anisotropic box dimensions with the restriction that the angles of the box need to be 90� . A crucial simulation parameter in MD simulations is the length of the timestep. The timestep is usually in the rang of 1fs. Increasing the timestep beyond 1fs can lead to unstable trajectories since the fastest motion in the system, usually the H-X stretch vibration can not be sampled anymore. A way to allow for bigger timesteps is the use of a constraint algorithm which constrains the H-X bonds to the equilibrium distance. For this the RATTLE algorithm has been implemented in the CAST program. The velocity Verlet algorithm in combination with the RATTLE algorithm has been shown to yield stable trajectories for an arbitrary length of simulation time. In a first application the MD implementation is used in conjunction with the MOPAC interface for the investigation of PBI sidechains and their rigidity. The theoretical investigations show a nice agreement with experimentally obtained results. Based on the MD techniques two algorithms for the determination of free energy differences have been implemented. The umbrella sampling algorithm can be used to determine the free energy change along a reaction coordinate based on distances or dihedral angles. The implementation was tested on the stretching of a deca-L-alanine and the rotation barrier of butane in vacuum. The results are in nearly perfect agreement with literature values. For the FEP implementation calculations were performed for a zero-sum transformation of ethane in explicit solvent, the charging of a sodium ion in explicit solvent and the transformations of a tripeptide in explicit solvent. All results are in agreement with benchmark calculations of the NAMD program as well as literature values. The FEP formalism was then applied to determine the relative binding free energies between two inhibitors in an inhibitor-protein complex. Next to force fields, ab-initio methods can be used for simulations and global optimizations. Since the performance of such methods is usually significantly poorer than force field applications, the use for global optimizations is limited. Nevertheless significant progress has been made by porting these codes to GPUs. In order to make use of these developments a MPI interface has been implemented into CAST for communication with the DFT code TeraChem. The CAST/TeraChem combination has been tested on the $H_2 O_{10}$ cluster as well as the polypeptide met-Enkephalin. The pure ab-initio calculations showed a superior behavior compared to the standard procedure where the force field results are usually refined using quantum chemical methods. N2 - Das Ziel der hier vorliegenden Arbeit ist die Entwicklung und Implementierung neu- er Simulationsalgorithmen in das CAST Programmpaket. Neben der teilweisen Para- llelisierung der bereits impelentierten Kraftfelder wurde das Programm um einen Mole- kulardynamikcode erweitert. Aufbauend auf diesem Code wurden Algorithmen zur Be- rechnung der freien Energie entlang einer Reaktionskooridnate, sowie eine Erweiter-ung der Behandlung elektrostatischer Wechselwirkungen auf Basis einer Ewald Summation implementiert. Der zeitaufwändigste Teil einer Kraftfeldrechnung stellt die Evaluierung der nichtbin- denden Wechselwirkungen dar. Die Berechnung dieser Wechselwirkungen wurde für die Nutzung von Mehrkernprozessoren optimiert und parallelisiert. Die Parallelisie- rung zeigte eine signifikante Reduktion der benötigten Rechenzeit auf mehreren Re- chenkernen im Vergleich zur seriellen Berechnung auf nur einem Rechenkern für einfa- che Energie- bzw. Gradientenrechnungen sowie für Molekulardynamikrechnungen. Um Rechnungen, die einen cutoff Radius benutzen, weiter zu beschleunigen, wurde der Auf- bau der Verlet-Liste modifiziert. Statt des Standardalgorithmus, der eine Doppelschleife über alle Atome verwendet, wurde ein linked-cell Algorithmus implementiert. Der Auf- bau der Verlet-Liste konnte damit um den Faktor 7 beschleunigt werden. Der Molekulardynamikcode enthält mehrere Algorithmen zur Berechnung von Syste- men in verschiedenen Ensembles. Zur numerischen Integration der Bewegungsgleichun- gen wurden der Velocity-Verlet sowie eine modifizierte Version von Beemans Algorith- mus implementiert. Da der minimale Code, wie er in Kapitel 1.2 beschrieben wird, ein mikrokanonisches Ensemble produziert, und dieses keiner realistischen experimentel- len Situation entspricht, wurden Methoden zur Berechnung und Aufrechterhaltung von Temperatur und Druck implementiert. Die Temperatur kann mittels zweier verschiede- ner Möglichkeiten kontrolliert werden. Die erste Möglichkeit ist die direkte Skalierung der Geschwindigkeiten der Partikel, die zweite Möglichkeit besteht in der Nutzung ei- nes Nòse-Hoover Thermostaten, der ein echtes kanonisches Ensemble generiert. Für die Kontrolle des Drucks wurde ein Berendsen Barostat implementiert. Da die Kontrolle des Drucks die Nutzung von periodischen Randbedingungen voraussetzt, ist die Form der Simulationszelle wichtig. CAST unterstützt aktuell isotrope und anisotrope Simulationszellen, mit der Einschränkung, dass alle Winkel 90◦betragen. Ein kritischer Punkt bei einer MD Simulation ist die Länge des Zeitschritts, der in der Regel bei 1fs liegt. Sollen größere Zeitschritte verwendet werden, müssen die schnell- sten Bewegungnen im System eingeschränkt werden. Dies sind im Normalfall die H-X Streckschwingungen. Zur Einschränkung dieser wurde der RATTLE Algorithmus imple- mentiert der die H-X Bindung mit Hilfe von Lagrange-Multiplikatoren auf den Gleich- gewichtsabstand fixiert. Als erste Anwendung des MD Codes wurde in Kombination mit dem MOPAC Programm die Rigidität und Flexibilität von PBI Seitenketten erfolgreich untersucht. Basierend auf dem MD Code wurden zwei Möglichkeiten zur Bestimmung der freien Energie eingebaut, Umbrella Sampling und Free Energy Perturbation. Umbrella Samp- ling erlaubt die Bestimmung der freien Energie entlang einer Reaktionskoordinate, hier Abstände oder Diederwinkel. Der Algorithmus wurde erfolgreich an zwei Literatur- beispielen, der Streckung von Deca-L-Alanin sowie der Rotation von Butan um den zentralen Diederwinkel getetstet. Die FEP Implementierung wurde an drei Beispielen getestet, einer Nullsummen-Transformation von Ethan in Ethan in explizitem Solvent, dem Lösen eines Natriumions in Wasser und der Transformation von Tyrosin in Alanin in einem Tripeptid. Die Ergebnisse dieser Testrechnungen stimmen hervorragend mit Vergleichsrechnungen mit NAMD sowie Literaturwerten überein. Die FEP Methode wurde schließlich benutzt um die relative freie Bindungsenergie zweier Inhibitoren in einem Inhibitor-Protein-Komplex zu bestimmen. Neben Kraftfeldern können auch ab-initio Methoden für Simulationen benutzt werden. Da die Rechenzeit dieser Methoden um ein vielfaches höher ausfällt als die für Kraftfel- der, ist die Benutzung für die globale Optimierung jedoch limitiert. In den letzten Jah- ren wurde im Bereich der Leistungsfähigkeit dieser Methoden jedoch große Fortschritte erzielt, indem diese Methoden auf Grafikkarten portiert wurden. Um diese Entwick- lung nutzbar zu machen wurde eine MPI-Schnittstelle in CAST implementiert, die mit dem DFT Programm TeraChem kommuniziert. Die Kombination aus beiden Program- men, sowie die Funktionsfähigkeit der Schnittstelle, wurde an H2O10 Clustern sowie dem Polypeptid Met-Enkephalin getestet. Die reinen ab-initio Rechnungen zeigten ein besseres Verhalten gegenüber dem Normalen Protokoll, welches Kraftfeldrechungen mit nachfolgender Optimierung mit qunatenchemischen Methoden vorsieht. KW - Molekulardynamik KW - Molecular dynamics KW - Molecular mechanics KW - Molecular Simulation KW - Free Energy Perturbation (1987 : Princeton, NJ) Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132032 ER - TY - JOUR A1 - Ojha, Animesh K. A1 - Forster, Stefan A1 - Kumar, Sumeet A1 - Vats, Siddharth A1 - Negi, Sangeeta A1 - Fischer, Ingo T1 - Synthesis of well–dispersed silver nanorods of different aspect ratios and their antimicrobial properties against gram positive and negative bacterial strains JF - Journal of Nanobiotechnology N2 - In the present contribution, we describe the synthesis of highly dispersed silver nanorods (NRs) of different aspect ratios using a chemical route. The shape and size of the synthesized NRs were characterized by Transmission Electron Microscopy (TEM) and UV-visible spectroscopy. Longitudinal and transverse absorptions bands confirm the rod type structure. The experimentally recorded UV-visible spectra of NRs solutions were fitted by using an expression of the extinction coefficient for rod like nano structures under the dipole approximation. Simulated and experimentally observed UV-visible spectra were compared to determine the aspect ratios (R) of NRs. The average values of R for NR1, NR2 and NR3 solutions are estimated to be 3.0 ± 0.1, 1.8 ± 0.1 and 1.2 ± 0.1, respectively. These values are in good agreement with those obtained by TEM micrographs. The silver NRs of known aspect ratios are used to study antimicrobial activities against B. subtilis (gram positive) and E. coli (gram negative) microbes. We observed that the NRs of intermediate aspect ratio (R = 1.8) have greater antimicrobial effect against both, B. subtilis (gram positive) and E. coli (gram negative). The NRs of aspect ratio, R = 3.0 has better antimicrobial activities against gram positive than on the gram negative. KW - antimicrobial activities KW - silver KW - nano rods KW - TEM Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132222 VL - 11 IS - 42 ER - TY - THES A1 - Lang, Melanie T1 - Valence Shell Photoionization of Soot Precursors with Synchrotron Radiation T1 - Valenzschalen-Photoionisation von Rußvorläufern mit Synchrotron-Strahlung N2 - A series of combustion relevant species like radicals, carbenes and polycyclic aromatic hydrocarbons were characterized in the gas phase by vacuum UV synchrotron radiation and their ionization energies (IE) and further spectroscopic details of the respective cations were retrieved from threshold photoelectron spectra. The reactive intermediates were generated by flash vacuum pyrolysis from stable precursor molecules. Furthermore three polycyclic aromatic hydrocarbons were investigated by threshold photoelectron spectroscopy, too. The experiment was performed at the VUV beamline of the Swiss Light Source in Villigen/Switzerland and the iPEPICO (imaging photoelectron photoion coincidence) setup was applied to correlate ions and electrons from the same ionization event. From the threshold photoelectron spectra and from quantum chemical computations the vibrational structure of the molecule cations and the geometry changes upon ionization were assigned. The ionization energies of the two C4H5 isomers 2-butyn-1-yl and 1-butyn-3-yl were assigned to 7.94±0.02 eV and 7.97±0.02 eV, respectively. The isomerization between the two isomers was computed to have a barrier of 2.20 eV, so a rearrangement between the two radicals cannot be excluded. From the threshold photoelectron spectra of the two constitutional C4H7 isomers 1-methylallyl and 2-methylallyl the ionization energies were assigned to 7.48±0.02 eV and to 7.59±0.02 eV for 1-E-methylallyl and 1-Z-methylallyl, as well as to 7.88±0.01 eV for 2-methylallyl. The two radicals 9-fluorenyl, C13H9, and benzhydryl, C13H11, were observed to ionize at 7.01±0.02 eV and 6.7 eV. The threshold photoelectron spectrum of benzhydryl also incorporated the signal of the diphenylmethyl carbene, C13H10, which has an IE at 6.8 eV. In addition, the head-to-head dimers of 9-fluorenyl and benzhydryl were observed as products in the pyrolysis. C26H18 has an IE at 7.69±0.04 eV and C26H22 has an IE at 8.13±0.04 eV. The three polycyclic aromatic hydrocarbon DHP (C14H16) 1-PEN (C18H22) and THCT (C22H16) were investigated in an effusive beam. The ionization energies were determined to IE(DHP)= 7.38±0.02 eV, IE(1-PEN)=7.58±0.05 eV and IE(THCT)=6.40±0.02 eV. Furthermore the thermal decomposition and the dissociative photoionization of diazomeldrum’s acid was investigated. The pyrolysis products yielded beside several other products the two not yet (by photoelectron spectroscopy) characterized molecules E-formylketene, C3O2H2 and 2-diazoethenone, N2C2O. The dissociative photoionization showed the Wolff rearrangement to occur at higher internal energies. N2 - Die vorliegende Arbeit befasst sich mit VUV Valenz-Photoionisations-Experimenten, welche in der Gasphase an verschiedenen Kohlenwasserstoffradikalen und drei polyzyklischen aromatischen Kohlen- wasserstoffen (PAH) durchgeführt wurde. Des Weiteren wurden die Pyrolyseprodukte der Dia- zomeldrumsäure mit dem genannten Experiment untersucht. Die reaktiven Intermediate wurden im Vakuum mittels Flash-Pyrolyse aus stabilen Vorläufermolekülen erzeugt. Die meisten dieser waren kommerziell erhältlich, wobei auch einige Moleküle selbst im Würzburger Chemielabor synthetisiert wurden. Die erzeugten Radikale und Carbene wurden in einem kontinuierlichen Molekularstrahl ex- pandiert. Um den Vorläufer in die Gasphase zu überführen, wurden verschiedene Molekular-Quellen eingesetzt. Die Auswahl erfolgte dabei in Abhängigkeit des Dampfdrucks des Vorläufermoleküls. Die Polyzyklischen Aromaten (PAH) wurden in der Arbeitsgruppe von Prof. Dr. Anke Krüger im Insti- tut für Organische Chemie der Universität Würzburg synthetisiert. Die PAH wurden in einer Fest- stoffmolekularquelle geheizt und in einem effusiven Molekularstrahl expandiert. Die Ionisation aller Spezies erfolgte mit monochromatischem VUV-Synchrotronlicht, das an der Bending-Magnet Beam- line an der Swiss Light Source in Villigen/Schweiz erzeugt wird. Das Schwellenphotoelektronen- Photoionen-Koinzidenz (TPEPICO) Experiment wurde zur Detektion und Analyse der Ionisation- sprozesse angewendet. Dieses Experiment ermöglicht es massenselektierte Ionen und Schwellen- photoelektronen des selben Ionisationsereignisses zu korrelieren. Die Ionen wurden in einem Time- of-Flight Massenspektrometer detektiert. Durch Integration des Massensignals und anschließende Auswertung des zugeordneten Schwellenphotoelektronen-Signals erhält man das Schwellenphotoelek- tronen-Spektrum (TPES) des Moleküls bzw. Fragments. Aus den TPE-Spektren konnten Ion- isierungsenergien bestimmt werden und mit Hilfe von Franck-Condon-Simulationen sowohl die Schwin- gungsstruktur im Kation, als auch die Geometrieänderung, hervorgerufen durch die Ionisation, analysiert werden. Berechnete Ionisierungsenergien wurden zusätzlich mit den experimentellen Daten verglichen. Im Folgenden werden die einzelnen Ergebnisse aufgelistet. ... KW - Ultraviolett-Photoelektronenspektroskopie KW - photoelectron-photoion coincidence KW - Photoelektronen-Photoionen-Koinzidenz KW - reactive intermediates KW - pyrolysis KW - reaktive Intermediate KW - Pyrolyse KW - Fotoionisation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117038 ER - TY - THES A1 - Stehr, Vera T1 - Prediction of charge and energy transport in organic crystals with quantum chemical protocols employing the hopping model T1 - Vorhersage des Ladungs- und Energietransports in organischen Kristallen mit quantenchemischen Methoden unter Verwendung des Sprungmodells N2 - As organic semiconductors gain more importance for application, research into their properties has become necessary. This work investigated the exciton and charge transport properties of organic semiconducting crystals. Based on a hopping approach, protocols have been developed for the calculation of Charge mobilities and singlet exciton diffusion coefficients. The protocols do not require any input from experimental data except for the x-ray crystal structure, since all needed quantities can be taken from high-level quantum chemical calculations. Hence, they allow to predict the transport properties of yet unknown compounds for given packings, which is important for a rational design of new materials. Different thermally activated hopping models based on time-dependent perturbation theory were studied for the charge and exciton transport; i. e. the spectral overlap approach, the Marcus theory, and the Levich-Jortner theory. Their derivations were presented coherently in order to emphasize the different levels of approximations and their respective prerequisites. A short reference was made to the empirical Miller-Abrahams hopping rate. Rate equation approaches to calculate the stationary charge carrier mobilities and exciton diffusion coefficients have been developed, which are based on the master equation. The rate equation approach is faster and more efficient than the frequently used Monte Carlo method and, therefore, provides the possibility to study the anisotropy of the transport parameters and their three-dimensional representation in the crystal. The Marcus theory, originally derived for outer sphere electron transfer in solvents, had already been well established for charge transport in organic solids. It was shown that this theory fits even better for excitons than for charges compared with the experiment. The Levich-Jortner theory strongly overestimates the charge carrier mobilities and the results deviate even stronger from the experiment than those obtained with the Marcus theory. The latter contains larger approximations by treating all vibrational modes classically. The spectral overlap approach in combination with the developed rate equations leads to even quantitatively very good results for exciton diffusion lengths compared to experiment. This approach and the appendant rate equations have also been adapted to charge transport. The Einstein relation, which relates the diffusion coefficient with the mobility, is important for the rate equations, which have been developed here for transport in organic crystals. It has been argued that this relation does not hold in disordered organic materials. This was analyzed within the Framework of the Gaussian disorder model and the Miller-Abrahams hopping rate. N2 - Organische Halbleiter gewinnen immer größere Bedeutung für Anwendungen in der Elektronik. In dieser Arbeit wurden deren Eigenschaften bezüglich des Exzitonen- und Ladungstransports untersucht. Diese beiden Prozesse sind wesentlich für viele Bauteile der organischen Elektronik, wie zum Beispiel Solarzellen. Ausgehend von einem Sprungmodell wurden Verfahren zur Berechnung von Ladungsträgerbeweglichkeiten und Diffusionskoeffizienten von Singulettanregungen entwickelt, wofür bis auf die Röntgenstruktur des Kristalls keine weiteren experimentellen Daten benötigt werden, da alle notwendigen Größen durch quantenchemische Rechnungen auf hohem Niveau bestimmt werden können. Dies ermöglicht die Vorhersage der Transporteigenschaften von noch unbekannten Materialien mit bekannter Struktur, was eine Voraussetzung für das Maßschneidern neuer Materialien darstellt. Verschiedene, auf der zeitabhängigen Störungstheorie basierende thermisch aktivierte Sprungmodelle - der spektrale Überlappungsansatz, die Marcus- und die Levich-Jortner-Theorie - wurden für die Anwendung auf den Ladungs- und Energietransport hin untersucht. Ausgehend von Fermis Goldener Regel wurden die Sprunggleichungen konsistent hergeleitet, um die verschiedenen Abstufungen der jeweils vorgenommenen Näherungen und deren Voraussetzungen deutlich zu machen. Zusätzlich dazu wurde ein kurzer Exkurs zur empirischen Miller-Abrahams-Sprungrate und deren Anwendung in amorphen Systemen gemacht. Unter Verwendung der Mastergleichung wurden Ratengleichungsansätze zur Berechnung der stationären Ladungsträgerbeweglichkeiten und Exzitonendiffusionskoeffizienten entwickelt. Die Berechnung der Transportgrößen über Ratengleichungen ist wesentlich schneller und effizienter als die häufig angewendete Monte-Carlo-Simulation. Dies ermöglicht die Analyse der Anisotropie des Transports im Kristall und ihre dreidimensionale Darstellung. Die Marcustheorie, die ursprünglich für Elektronentransfer in Lösungen entwickelt wurde, hat sich auch für Ladungstransport in organischen Festkörpern bewährt. Hier wurde diese Theorie auch auf Exzitonentransport übertragen und gezeigt, daß sie im Vergleich zum Experiment für Exzitonen sogar bessere Ergebnisse liefert als für Ladungsträger. Die Levich-Jortner-Theorie überschätzt die Ladungsträgerbeweglichkeiten im Falle der Acene sehr stark. Ihre Ergebnisse weichen sogar stärker vom Experiment ab als die der Marcustheorie. Letztere enthält deutlich stärkere Näherungen, weil alle Molekülschwingungen klassisch behandelt werden. Der spektrale Überlappungsansatz führt zusammen mit den hier entwickelten Ratengleichungen sogar zu quantitativ guten Ergebnissen für die Exzitonendiffusion. Dieser Ansatz und die Ratengleichungen wurden auch für die Berechnung der Ladungsträgerbeweglichkeiten angepaßt. Für die in dieser Arbeit entwickelten Ratengleichungen ist die Einsteinrelation, welche die Diffusion mit der Drift in Beziehung setzt, von zentraler Bedeutung. Es ist umstritten, ob diese Beziehung auch in amorphen, ungeordneten Materialien gültig ist. Dieser Frage wurde im Rahmen des Gaußschen Unordnungsmodells und der Miller-Abrahams-Sprungrate nachgegangen. KW - Exziton KW - exciton KW - Ladungstransfer KW - charge transfer KW - organische Halbleiter KW - organic semiconductors KW - Sprungmodell KW - hopping model Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114940 ER - TY - THES A1 - Brunecker, Frank T1 - Kohlenstoffnanorohr-Komplexe - Adsorption und Desorption von (Bio-)Polymeren T1 - Carbon Nanotube Complexes - Adsorption and Desorption of (Bio-)Polymers N2 - Zur Charakterisierung der Wechselwirkungen zwischen organischen Dispergiermitteln und nanoskaligen Oberflächen stellen Komplexe aus Kohlenstoffnanoröhren und (Bio-)Polymeren aufgrund der großen Oberfläche der Nanoröhren und der kommerziellen Verfügbarkeit fluoreszenzmarkierter DNA-Oligomere unterschiedlicher Länge sowie intrinsisch fluoreszierender Polymere ein vielversprechendes Modellsystem dar. Im Rahmen der vorliegenden Dissertation wurden verschiedene Methoden evaluiert, um die Stabilität derartiger Komplexe zu untersuchen und dadurch Rückschlüsse auf das Adsorptionsverhalten der (Bio-)Polymere zu ziehen. Dabei konnte gezeigt werden, dass das publizierte helikale Adsorptionsmodell der DNA auf Kohlenstoffnanoröhren die Resultate der durchgeführten Experimente nur unzureichend beschreiben kann und stattdessen andere Adsorptionskonformationen in Erwägung gezogen werden müssen. N2 - Interactions between organic dispersants and nanoscopic surfaces are of crucial interest in the field of nanotechnology. For characterization of such interactions, complexes of single-wall carbon nanotubes and (bio-)polymers are considered to be a promising model system due to the large specific surface of the nanotubes as well as the commercial availability of fluorescently labeled, length-scaled DNA oligomers and intrinsic fluorescent synthetic polymers. The present dissertation focused on probing suitable methods for the investigation of the stability of these complexes in order to determine the adsorption behavior of the examined (bio-)polymers. The findings of the performed experiments are inconsistent with the previously published helical adsorption of DNA to carbon nanotubes but give rise to additional adsorption conformations. KW - Kohlenstoff-Nanoröhre KW - Adsorption KW - Desorption KW - Reaktionskinetik KW - Kinetik KW - Konzentrationssprungmethode KW - Numerische Verfahren KW - Einzelstrang-DNA Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-113485 ER - TY - THES A1 - Herterich, Jörg T1 - Pikosekunden-zeitaufgelöste Photoionisation: 2-Methylallyl-Radikal und Pyracen T1 - Pikosecond-time-resolved photoionisation: 2-Methylallyl-radical and Pyracene N2 - Die vorliegende Dissertation untersucht fünf unterschiedliche Moleküle hinsichtlich ihrer Geometrien im Grund- und angeregten Zustand sowie deren Dynamik nach elektronischer Anregung. Der Fokus liegt dabei unter anderem auf Pi-konjugierten Systemen, die über eine zusätzliche aliphatische Einheit verbrückt (Paracyclophan- Derivate) oder erweitert (Pyracen) sind. Die Paracyclophan-Derivate sind ein ideales Modellsystem um Einsicht in Pi-Pi-Wechselwirkungen zu erlangen. Ein weiterer Schwerpunkt dieser Arbeit beschreibt die Dynamik des resonanzstabilisierten 2-Methylallyl-Radikals. Die Forschung an solchen kleinen Kohlenwasserstoff-Radikalen ist wichtig, da auf deren Grundlage Modelle entwickelt werden können, die zum Beispiel helfen, den Verbrennungsprozess aufzuklären. Aufgrund ihrer Instabilität sind solche kleinen Kohlenwasserstoff-Radikale nicht einfach zu handhaben und das spektroskopische Vermessen stellt immer eine Herausforderung dar. N2 - This dissertation examines five different molecules with respect to their geometries in the ground and excited states and their dynamics after electronic excitation. The focus is on pi-conjugated systems, bridged (paracyclophane derivatives) or Extended (pyracen) by an additional aliphatic moiety. Paracyclophanes are suitable models to study the interaction between pi-systems, in particular the through space coupling. Moreover, this work focuses on the excited-state dynamics of the B-state of 2-methylallyl (2MA) by time-resolved photoionization with a ps-laser. Research on resonantly stabilized small radicals such as allyl or methylallyl is not only conducted because of a fundamental interest in reaction dynamics, but also because such radicals can accumulate in a reactive environment and are observed in combustion. Studies on isolated radicals yield information on their reactions, which are important in kinetic modeling of combustion processes. For example, biodiesel often contains molecules with C=C double bonds (e.g. fatty acid esters). Abstraction of H-atoms leads to alkylated allyl radicals, because the C-H bonds at the allylic sites are particularly weak. Due to their instability, such small hydrocarbon radicals are not easy to handle and their spectroscopic measurement is always a challenge. An innovation in my research was the development of a high-temperature gas cell to transfer the molecules into the gas phase and to record IR-spectra (compatible with an FT-IR spectrometer), obtaining experimental information on the most stable conformer in the electronic ground state. KW - Photoionisation KW - Pyracen KW - photoionisation KW - 2-Methylallyl KW - Pump-Probe-Spektroskopie KW - pyracene KW - 2-methylallyl KW - pump-probe-spectroscopy Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-105829 ER - TY - THES A1 - Settels, Volker T1 - Quantum chemical description of ultrafast exciton self-trapping in perylene based materials T1 - Quanten-chemische Beschreibung von ultraschnellem Self-trapping von Exzitonen in Perylen-basierten Materialien N2 - Im Rahmen dieser Dissertation wurden sehr lange Exzitonen-Diffusionslängen (LD) unter idealen Bedingungen für Perylen-basierte Materialien simuliert. Dies ist ein Indiz dafür, dass die sehr kurzen LD in realen Materialien aus einer extrinsischen sowie einer intrinsischen Immobilisierung resultieren. Letztere basiert auf einer Relaxation in sogenannten „Self-Trapping“-Zustände. Ein tieferes Verständnis der dem Self-Trapping zugrunde liegenden atomistischen Prozesse ist notwendig, um zukünftig Materialien mit langen LD entwickeln zu können, bei denen eine intrinsische Exzitonen-Immobilisierung verhindert wird. Für die Entwicklung eines solchen mechanistischen Verständnisses ist das Vorliegen einer eindeutigen Korrelation zwischen der molekularen Anordnung und der LD unabdingbar. Diese weisen Einkristalle von Diindenoperylen (DIP) und α-Perylen-tetracarboxyl-anhydrid (α-PTCDA) auf. Bei ersteren wurde eine außergewöhnlich lange LD von 90 nm und bei letzteren nur 22 nm gemessen. Teil dieser Arbeit war es, Gründe für diesen Unterschied in der LD zu finden. Nur Self-Trapping kommt als Ursache in Frage. Aus diesem Grund eignen sich diese Materialien, um ein atomistisches Verständnis des Self-Trappings exemplarisch an ihnen zu erarbeiten. Mutmaßlich könnten Differenzen in der elektronischen Struktur in DIP und α-PTCDA für das unterschiedliche Self-Trapping verantwortlich sein. Allerdings konnte gezeigt werden, dass es für viele Perylen-basierte Materialien keine signifikanten Unterschiede in der elektronischen Struktur gibt, wodurch diese für die Aufklärung von Immobilisierungsmechanismen zu vernachlässigen sind. Eine weitere mögliche Begründung wäre in Polarisationseffekten im Kristall zu suchen, welche die elektronische Struktur in Perylen-basierten Materialien unterschiedlich beeinflussen. Vor allem ihr Einfluss auf Ladungstrennungs-Zustände (CT), die oberhalb des optisch hellen Frenkel-Zustandes liegen, war fraglich, weil sie energetisch abgesenkt werden könnten. Ein signifikanter Einfluss von Polarisationseffekten konnte aber für alle Zustände mittels eines polarisierbaren Kontinuum-Modells ausgeschlossen werden. Die geringe LD im α-PTCDA ist folglich ein Indiz für ein Self-Trapping, das durch die Kristallstruktur aus π-Stapeln evoziert wird, welche in DIP fischgrätenartig ist. Da Polarisationseffekte auszuschließen sind, übt der Kristall lediglich durch sterische Restriktionen einen Einfluss auf das Dimer aus. Daher muss die Methode für die Beschreibung von Self-Trapping nur diese Effekte berücksichtigen, so dass sich für den Einsatz des mechanical embedding QM/MM-Ansatzes entschieden wurde. Nun konnten Potentialflächen berechnet werden, auf denen anschließend eine Wellenpaketdynamik durchgeführt wurde. Diese Methode erlaubt es erstmals, Mechanismen der Exzitonen-Immobilisierung in organischen Materialien auf einer atomistischen Ebene zu beschreiben. Als Erklärung für Self-Trapping in α-PTCDA dienten Potentialflächen, die eine intermolekulare Verschiebung des Dimers im Kristall abbilden. So wurde eine Exzitonen-Immobilisierung innerhalb von 500 fs gefunden, die aus einem irreversiblem Energieverlust und einer lokalen Verzerrung der Kristallstruktur resultiert und auf diese Weise den weiteren Transport des Exzitons verhindert. Im Fall von DIP kann diese Immobilisierung aufgrund hoher Energiebarrieren nicht stattfinden. Diese Barrieren resultieren aus der fischgrätenartigen Kristallstruktur des DIP. Diese Diskrepanzen in der Dynamik erklären die unterschiedlichen LD-Werte für DIP und α-PTCDA. In einem weiteren Fall wurde eine Exzitonen-Immobilisierung in helikalen π Aggregaten von Perylen-tetracarboxyl-bisimid (PBI) Molekülen festgestellt. Hier wird Self-Trapping durch einen Relaxationsmechanismus verursacht, in dem das Exziton durch geringe asymmetrische Schwingungen des Aggregats innerhalb von 200 fs von dem hellen Frenkel- in den dunklen Frenkel-Zustand transferiert wird, wobei dieser Übergang von einem CT-Zustand vermittelt wird. Der gesamte Vorgang ist nur bei helikalen Aggregaten möglich, weil nur hier CT-Zustände sehr dicht bei dem hellen Frenkel-Zustand vorhanden sind. Im finalen Frenkel-Zustand tritt eine Torsionsbewegung um die π-Stapelachse ein, so dass ein Energieverlust und eine lokale Änderung der Aggregatstruktur erfolgt – also ein Self-Trapping des Exzitons. Dieser modellierte Mechanismus steht im Einklang zu allen vorliegenden experimentellen Daten. Diese Erkenntnisse lassen die Schlussfolgerung zu, dass in künftigen Materialen für organische Solarzellen eine irreversible und ultraschnelle Deformation des Aggregats nach der Photoanregung vermieden werden muss - will man lange LD erreichen. Nur so kann Self-Trapping von Exzitonen verhindert werden. N2 - In the context of this dissertation very long ranged exciton diffusion lengths (LD) were simulated for perylene-based materials under ideal conditions. This leads to the conclusion that the short LD values in existing materials result from an extrinsic and intrinsic immobilization. The latter, which is a specific material property, is based on a relaxation of the exciton into self-trapping states. An in-depth understanding of the atomistic processes defining self-trapping is essential to developing materials with long LD in the future, in which intrinsic immobilization is prevented. For the development of such a mechanistic understanding it is crucial that a clear relationship between molecular structure and LD is available. This is given by single crystals of diindeno perylene (DIP) and α-perylene tetracarboxylic anhydride (α-PTCDA). An extraordinary large LD of 90 nm was measured for the first one, while the latter possesses only 22 nm. Part of this thesis was to deliver reasons for this discrepancy. Only self-trapping comes into question to explain the different LD values. One reason for the different self-trapping in DIP and α-PTCDA could lie in the electronic structure. However, it was possible to demonstrate that a wide range of perylene-based materials possess no significant differences in their electronic structures. Consequently, such differences can be neglected for the explanation of immobilization mechanisms for the exciton. A further possible explanation could be polarization effects in the crystal, which influences the electronic structure of perylene based materials differently. Especially their influence on charge transfer (CT) states, which are located above the optically bright Frenkel state, was in question because such states could be stabilized by a polarizable surrounding. A significant influence of polarization effects on all considered states were excluded by using a polarizable continuum model. Hence, the small LD values in α-PTCDA are an evidence for self-trapping, which produces a crystal structure built up by π-stacks, while the one of DIP is of herringbone type. Since polarization effects can be neglected, is the dimer only via steric restrictions influenced by the crystal. Hence, a method describing self-trapping has to consider such effects, so that a mechanical embedding QM/MM approach is sufficient. Now, potential energy surfaces were calculated, on which wave packet dynamics were subsequently performed. In this way, atomistic mechanisms for the immobilization of excitons were described for the first time in organic materials. Self-trapping was studied in crystals of α-PTCDA by potential energy surfaces, which map an intermolecular shift motion of the dimer in the crystal. An immobilization of excitons occurs within 500 fs, which results from an irreversible energy loss together with a local deformation of the crystal lattice. This prevents a further transport of the exciton. In the case of DIP, this immobilization does not proceed due to high barriers. These barriers result from the herringbone type packing motif in the DIP crystal. This discrepancy in the dynamics explains the different LD values in DIP and α-PTCDA. In a further example, an exciton immobilization was found in helical π-aggregates of perylene tetracarboxylic bisimide (PBI) molecules. Self-trapping is caused by a relaxation mechanism, in which the exciton is transferred by asymmetric vibrations of the aggregate from the bright to a dark Frenkel state within 200 fs, whereby the transition is mediated by a CT state. However, the CT state is almost non-populated during the whole mechanism so that its participation could not yet be proven experimentally. This entire procedure is solely possible in helical aggregates, because only for such structures is there a CT state located next to the bright Frenkel state. At the final Frenkel state a torsional motion around the π-stacking axis is possible so that the loss in energy and the local rearrangement of the aggregate structure occurs, which means a self-trapping of the exciton. This mechanism is in perfect agreement with all available experimental data. These insights allow the conclusion that in future materials for organic solar cells an irreversible and ultrafast deformation of aggregates after photo-absorption must be avoided. Only in this way long LD values can be achieved and exciton self-trapping can be prevented. However, small LD values are always predicted in helical aggregates of perylene-based materials, because exciton immobilization occurs already due to small molecular motions. For this reason such aggregates are inappropriate for the use in organic solar cells. Long LD values are expected for aggregate structures with long intermolecular shifts or molecules with bulky substituents. KW - Exziton KW - Quantenchemie KW - Angeregter Zustand KW - Self-Trapping KW - CC2 KW - exciton KW - self-trapping KW - quantum chemistry KW - excited state KW - Perylenderivate Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69861 ER - TY - THES A1 - Paasche, Alexander T1 - Mechanistic Insights into SARS Coronavirus Main Protease by Computational Chemistry Methods T1 - Mechanistische Einblicke in die SARS Coronavirus Hauptprotease mit computerchemischen Methoden N2 - The SARS virus is the etiological agent of the severe acute respiratory syndrome, a deadly disease that caused more than 700 causalities in 2003. One of its viral proteins, the SARS coronavirus main protease, is considered as a potential drug target and represents an important model system for other coronaviruses. Despite extensive knowledge about this enzyme, it still lacks an effective anti-viral drug. Furthermore, it possesses some unusual features related to its active-site region. This work gives atomistic insights into the SARS coronavirus main protease and tries to reveal mechanistic aspects that control catalysis and inhibition. Thereby, it applies state-of-the-art computational methods to develop models for this enzyme that are capable to reproduce and interpreting the experimental observations. The theoretical investigations are elaborated over four main fields that assess the accuracy of the used methods, and employ them to understand the function of the active-site region, the inhibition mechanism, and the ligand binding. The testing of different quantum chemical methods reveals that their performance depends partly on the employed model. This can be a gas phase description, a continuum solvent model, or a hybrid QM/MM approach. The latter represents the preferred method for the atomistic modeling of biochemical reactions. A benchmarking uncovers some serious problems for semi-empirical methods when applied in proton transfer reactions. To understand substrate cleavage and inhibition of SARS coronavirus main protease, proton transfer reactions between the Cys/His catalytic dyad are calculated. Results show that the switching between neutral and zwitterionic state plays a central role for both mechanisms. It is demonstrated that this electrostatic trigger is remarkably influenced by substrate binding. Whereas the occupation of the active-site by the substrate leads to a fostered zwitterion formation, the inhibitor binding does not mimic this effect for the employed example. The underlying reason is related to the coverage of the active-site by the ligand, which gives new implications for rational improvements of inhibitors. More detailed insights into reversible and irreversible inhibition are derived from in silico screenings for the class of Michael acceptors that follow a conjugated addition reaction. From the comparison of several substitution patterns it becomes obvious that different inhibitor warheads follow different mechanisms. Nevertheless, the initial formation of a zwitterionic catalytic dyad is found as a common precondition for all inhibition reactions. Finally, non-covalent inhibitor binding is investigated for the case of SARS coranavirus main protease in complex with the inhibitor TS174. A novel workflow is developed that includes an interplay between theory and experiment in terms of molecular dynamic simulation, tabu search, and X-ray structure refinement. The results show that inhibitor binding is possible for multiple poses and stereoisomers of TS174. N2 - Das Schwere Akute Respiratorische Syndrom (SARS) wird durch eine Infektion mit dem SARS Virus ausgelöst, dessen weltweite Verbreitung 2003 zu über 700 Todesfällen führte. Die SARS Coronavirus Hauptprotease stellt ein mögliches Wirkstoffziel zur Behandlung dar und hat Modellcharakter für andere Coronaviren. Trotz intensiver Forschung sind bis heute keine effektiven Wirkstoffe gegen SARS verfügbar. Die vorliegende Arbeit gibt Einblicke in die mechanistischen Aspekte der Enzymkatalyse und Inhibierung der SARS Coronavirus Hauptprotease. Hierzu werden moderne computerchemische Methoden angewandt, die mittels atomistischer Modelle experimentelle Ergebnisse qualitativ reproduzieren und interpretieren können. Im Zuge der durchgeführten theoretischen Arbeiten wird zunächst eine Fehlereinschätzung der Methoden durchgeführt und diese nachfolgend auf Fragestellungen zur aktiven Tasche, dem Inhibierungsmechanismus und der Ligandenbindung angewandt. Die Einschätzung der quantenchemischen Methoden zeigt, dass deren Genauigkeit teilweise von der Umgebungsbeschreibung abhängt, welche als Gasphasen, Kontinuum, oder QM/MM Modell dargestellt werden kann. Letzteres gilt als Methode der Wahl für die atomistische Modellierung biochemischer Reaktionen. Die Vergleiche zeigen für semi-empirische Methoden gravierende Probleme bei der Beschreibung von Proton-Transfer Reaktionen auf. Diese wurden für die katalytische Cys/His Dyade betrachtet, um Einblicke in Substratspaltung und Inhibierung zu erhalten. Dem Wechsel zwischen neutralem und zwitterionischem Zustand konnte hierbei eine zentrale Bedeutung für beide Prozesse zugeordnet werden. Es zeigt sich, dass dieser „electrostatic trigger“ von der Substratbindung, nicht aber von der Inhibitorbindung beeinflusst wird. Folglich beschleunigt ausschließlich die Substratbindung die Zwitterionbildung, was im Zusammenhang mit der Abschirmung der aktiven Tasche durch den Liganden steht. Dies gibt Ansatzpunkte für die Verbesserung von Inhibitoren. Aus in silico screenings werden genauere Einblicke in die reversible und irreversible Inhibierung durch Michael-Akzeptor Verbindungen gewonnen. Es wird gezeigt, dass unterschiedlichen Substitutionsmustern unterschiedliche Reaktionsmechanismen in der konjugierten Additionsreaktion zugrunde liegen. Die vorangehende Bildung eines Cys-/His+ Zwitterions ist allerdings für alle Inhibierungsmechanismen eine notwendige Voraussetzung. Letztendlich wurde die nicht-kovalente Bindung eines Inhibitors am Beispiel des TS174-SARS Coronavirus Hauptprotease Komplexes untersucht. Im Zusammenspiel von Theorie und Experiment wurde ein Prozess, bestehend aus Molekulardynamik Simulation, Tabu Search und Röntgenstruktur Verfeinerung ausgearbeitet, der eine Interpretation der Bindungssituation von TS174 ermöglicht. Im Ergebnis zeigt sich, dass der Inhibitor gleichzeitig in mehreren Orientierungen, als auch in beiden stereoisomeren Formen im Komplex vorliegt. KW - SARS KW - Inhibitor KW - Enzym KW - Computational chemistry KW - Coronaviren KW - SARS KW - Protease KW - Mechanismus KW - Inhibitor KW - Computerchemie KW - SARS KW - protease KW - mechanism KW - inhibitor KW - computational chemistry Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-79029 ER - TY - THES A1 - Fischer, Kathrin Helena T1 - Analyse der chemischen Reaktionen ungesättigter Verbindungen mit FEL- und Synchrotronstrahlung T1 - Analysis of chemical reactions of unsaturated compounds with FEL and synchrotron radiation N2 - Brilliante Strahlungsquellen werden heute vielfach in der Forschung eingesetzt um Kristallstrukturen, Oberflächeneigenschaften oder Reaktionen zu untersuchen. Als Strahlungsquellen werden dafür bevorzugt Freie Elektronenlaser (FEL) oder Synchrotrons eingesetzt, da sie über weite Bereiche durchstimmbar sind und einen hohen Photonenfluss bereitstellen. Im Rahmen der vorliegenden Dissertation werden beide Lichtquellen verwendet um einerseits Isomere von Kohlenwasserstoffradikalen zu identifizieren und andererseits das Verhalten von Borylen und ungesättigten Verbindungen bei Photoionisation zu dokumentieren. Als erstes Experiment am FEL wurde ein IR-Spektrum von gasförmigen Allylradikalen aufgenommen. Das Allyl war ein Testlauf, da es als Kohlenwasserstoffradikal mit einer kleinen Dipolmomentänderung ein gutes Beispiel für ähnliche Verbindungen ist. Trotz der kleinen Änderung des Dipolmoments und der geringen Teilchendichte der Radikale in der Gasphase konnte ein gutes IR-Spektrum mit der IR-UV-Doppelresonanzmethode aufgenommen werden und die beobachteten Banden mit der Literatur zugeordnet werden. Das 3-Trifluoromethyl-3-Phenyl-carben (TFPC) wurde pyrolytisch aus 3-Trifluoromethyl-3-Phenyl-diazirin erzeugt. Dabei kam es beim Großteil der Carbene zu einer Umlagerung zu Trifluorstyrol. Neben dem Hauptprodukt Trifluorstyrol wurde das Triplett TFPC als Nebenprodukt identifiziert. Zusätzlich wurden die Isomerisierungsbarrieren für den Triplett- und Singulett-Übergangszustand berechnet. Die Radikale 1-Phenylpropargyl und 3-Phenylpropargyl sind anhand ihrer IR-Spektren unterscheidbar und lagern sich nicht ineinander oder in Indenyl um. Ausgehend von beiden Radikalen bilden sich die identischen Dimerisierungsprodukte im Massenkanal m/z = 230 (p-Terphenyl) und 228 (1-Phenylethinylnaphthalin (1PEN)). Außergewöhnlich war die Exklusivität dieser Produkte. Somit müssen deren Reaktionsmechanismen kinetisch viel schneller sein. Die Massen m/z = 230 und 228 waren bereits aus einer massenspektrometrischen Studie ausgehend von Benzol und Ethin bekannt, in der ihre Struktur jedoch nicht geklärt wurde. Somit müssen die gefundenen Dimerisierungsprodukte p-Terphenyl und 1PEN wichtige Intermediate bei der Entstehung von polyzyklischen aromatischen Kohlenwasserstoffen (PAK) und Ruß sein. Von gasförmigen NTCDA wurde mittels der TPEPICO-Methode am Synchrotron Schwellenphotoelektronenspektren aufgenommen. Dabei konnte die adiabatische Ionisierungsenergie (IE(ad)) zu 9.66 eV bestimmt werden. Weiterhin wurden noch fünf angeregte Zustände beobachtet, die mittels quantenmechanischer Berechnungen zugeordnet wurden. Es wurde die Photoionisation des Cycloheptatrienradikals (Tropyl) untersucht. Dabei wurde die erste Bande bei 6.23 eV der IE(ad) zugeordnet. Mit einer Franck-Condon Simulation wurden die beiden Schwingungsprogressionen einer CC-Streckschwingung (ν16+) und einer Kombination aus einer Ringatmung (ν2+) und ν16+ zugeordnet. Der erste Triplett- und Singulettzustand des angeregten Tropylkations konnte in Übereinstimmung mit der Literatur zugeordnet werden. Eine Schulter bei 9.85 eV und die intensivste Bande bei 11.6 eV konnten nicht eindeutig interpretiert werden. Neben dem Tropyl erscheint bei etwa 10.55 eV sein dissoziatives Zersetzungsprodukt, das Cyclopentadienylkation. Die IE(ad) des Borylenkomplex [(CO)5CrBN(SiMe3)2] wurde zu 7.1 eV bestimmt. Mit steigender Photonenenergie wurden alle CO-Liganden sequenziell abgespalten, während der Borligand auch bei 15 eV noch nicht dissoziierte. Von den fünf abgespaltenen CO-Liganden konnte die Auftrittsenergie bei 0 K unter Berücksichtigung der kinetischen Verschiebung gefittet werden. Durch einen einfachen thermodynamischen Zyklus wurden aus den Auftrittsenergien der Kationen die Bindungsenergien berechnet. Dabei zeigte sich, dass die zweite Bindungsenergie im Kation erheblich stärker ist als die erste. Dies deutet einen starken trans-Effekt des Borliganden an. In der Dissertation wurden die adiabatische Ionisierungsenergie der Moleküle sowie die Auftrittsenergien der Fragmente und die Bindungsenergien bestimmt. Zudem konnten Isomere anhand ihrer IR-Spektren unterschieden und ihre Dimerisierungsprodukte identifiziert werden. Damit wurden mit p-Terphenyl und 1PEN zwei weitere bedeutende Intermediate im Bildungsmechanismus von Ruß strukturell aufgeklärt. Die Beteiligung dieser Dimerisierungsprodukte am Bildungsmechanismus der PAK initiiert zukünftige Fragen. Was geschieht z.B. mit p-Terphenyl und 1PEN nach ihrer Bildung? Reagieren sie chemisch zu größeren Molekülen oder setzt bei ihnen bereits die Akkumulation zu Partikeln ein? Zusätzlich ist die Frage, ob Phenylpropargyl aus der Reaktion von Phenyl- und Propargylradikalen entsteht noch offen. Die erzielten Resultate haben einen wichtigen Schritt im Bildungsmechanismus der PAK identifiziert und damit die Grundlage für zukünftige Experimente gelegt. N2 - Brilliant light sources like free electron lasers (FEL) and synchrotrons can be used to investigate crystal structures, reactions, or surface properties. These light sources are applied due to their high photon flux and broad wavelength tunability. A free electron laser was employed in the presented work to identify isomers of hydrocarbon radicals and carbenes. By contrary, the photoionization properties of borylene and unsaturated radicals were observed using synchrotron radiation. The important results will be summarized in the following. The first experiment performed at the FEL facility was a test with allyl radicals. Allyl was a good test candidate for other hydrocarbon radicals due to its small change in the dipole moment and low density in the gas phase. Despite of the small change in the dipole moment and particle density a satisfying IR spectrum could be obtained with the IR-UV double resonance method and the observed bands were assigned according to literature. The 3-trifluoromethyl-3-phenyl-carbene (TFPC) was pyrolytically generated from 3-trifluoromethyl-3-phenyl-diazirine. A high percentage of the formed carbene rearranged to trifluorostyrene in the pyrolysis. In addition to the main product trifluorostyrene triplet TFPC was found as a minor product and identified by a comparison with computed IR spectra. Furthermore the barriers for the triplet and singlet transition state were calculated. As a last project with the FEL it was shown that the radicals 1-phenylpropargyl and 3-phenylpropargyl are distinguishable by IR spectroscopy and do not isomerize into each other or indenyl. Additionally, identical dimerisation products are formed in the observed mass channels m/z = 230 and 228, p-terphenyl and 1-phenylethynylnaphthalene (1PEN). This exclusive appearance of just one isomer in each mass channel instead of a broad variety was a striking discovery. Thus, their formation mechanism must be kinetical favored. Since the masses m/z = 230 and 228 were also found in a mass spectrometric study of benzene and acethylene, where their structures were not identified experimentally. The dimerization products p-terphenyl and 1PEN must be important intermediates in the soot formation. The first compound examined with synchrotron radiation was NTCDA. Its threshold photoelectron spectrum was recorded and analyzed applying the TPEPICO technique. The adiabatic ionization energy (IE(ad)) of NTCDA was determined as 9.66 eV. Five additional excited states were observed and assigned by quantum mechanical computations. In a similar project the IE(ad) of the cycloheptatienyl radical (tropyl) was identified to be 6.23 eV. With the help of a Franck-Condon simulation the two observed progressions were assigned to ν16+, a CC stretching and a combination of ν2+, an ringbreathing, and ν16+. Furthermore, the first excited triplet and singlet states were assigned according to literature. A shoulder at 9.85 eV might be the second triplet state or an excited vibration, while the most intense peak appears at 11.6 eV. A distinct assignment of the latter band was not possible employing computations. At approximately 10.55 eV the tropyl ion begins to photoionize dissociatively to form the cyclopentadienyl ion. This value is in good agreement with the appearance energy calculated using a thermochemical cycle. The IE(ad) of the borylene complex [(CO)5CrBN(SiMe3)2] was determined as 7.2 eV. With rising photon energy all five CO-ligands dissociate sequentially, while the boron ligand stays in place. Even at the highest measured energy value of 15 eV the boron ligand did not dissociate. The 0 K appearance energies of the fragments of this sequential CO loss were identified with a fitting procedure including the kinetic shift. Using a simple thermodynamic cycle the binding energies of the cationic complex were obtained. The higher second bond dissociation energy in comparison with the first one indicates a strong trans effect of the borylene ligand. Thermodynamic properties like the adiabatic ionization energy, the appearance energy of the fragments and binding energies were determined. Additionally, different isomers and their dimerization products were identified by their measured IR spectrum. With these experiments the structure of the dimerization products p-terphenyl and 1PEN, two important intermediates in soot formation, were resolved. These dimerization products initialize future questions: What will happen with p-terphenyl and 1PEN after their formation? Will they be involved in a subsequent chemical reaction or start to accumulate? These questions and whether the phenylpropargyl radicals are formed in a reaction of benzene with propargyl radicals should be answered in the future. The obtained results identified an important step in the mechanism of soot production and are the basis for further experiments. KW - Synchrotronstrahlung KW - Freie-Elektronen-Laser KW - Ungesättigte Verbindungen KW - Fotoionisation KW - synchrotron radiation KW - free electron laser KW - infrared KW - photoionization KW - gas phase KW - Fel KW - Infrarot KW - Photoionisation KW - Polycyclische Aromaten KW - Reaktive Zwischenstufe KW - Isomer KW - Gasphase Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-79108 ER - TY - JOUR A1 - Rewitz, Christian A1 - Keitzl, Thomas A1 - Tuchscherer, Philip A1 - Goetz, Sebastian A1 - Geisler, Peter A1 - Razinskas, Gary A1 - Hecht, Bert A1 - Brixner, Tobias T1 - Spectral-interference microscopy for characterization of functional plasmonic elements JF - Optics Express N2 - Plasmonic modes supported by noble-metal nanostructures offer strong subwavelength electric-field confinement and promise the realization of nanometer-scale integrated optical circuits with well-defined functionality. In order to measure the spectral and spatial response functions of such plasmonic elements, we combine a confocal microscope setup with spectral interferometry detection. The setup, data acquisition, and data evaluation are discussed in detail by means of exemplary experiments involving propagating plasmons transmitted through silver nanowires. By considering and experimentally calibrating any setup-inherent signal delay with an accuracy of 1 fs, we are able to extract correct timing information of propagating plasmons. The method can be applied, e.g., to determine the dispersion and group velocity of propagating plasmons in nanostructures, and can be extended towards the investigation of nonlinear phenomena. Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85922 UR - http://www.opticsinfobase.org/oe/fulltext.cfm?uri=oe-20-13-14632&id=238393 ER - TY - JOUR A1 - Steinbacher, Andreas A1 - Buback, Johannes A1 - Nürnberger, Patrick A1 - Brixner, Tobias T1 - Precise and rapid detection of optical activity for accumulative femtosecond spectroscopy JF - Optics Express N2 - We present polarimetry, i.e. the detection of optical rotation of light polarization, in a configuration suitable for femtosecond spectroscopy. The polarimeter is based on common-path optical heterodyne interferometry and provides fast and highly sensitive detection of rotatory power. Femtosecond pump and polarimeter probe beams are integrated into a recently developed accumulative technique that further enhances sensitivity with respect to single-pulse methods. The high speed of the polarimeter affords optical rotation detection during the pump-pulse illumination period of a few seconds. We illustrate the concept on the photodissociation of the enantiomers of methyl p-tolyl sulfoxide. The sensitivity of rotatory detection, i.e. the minimum rotation angle that can be measured, is determined experimentally including all noise sources to be 0.10 milli-degrees for a measurement time of only one second and an interaction length of 250 μm. The suitability of the presented setup for femtosecond studies is demonstrated in a non-resonant two-photon photodissociation experiment. Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85913 UR - http://www.opticsinfobase.org/oe/fulltext.cfm?uri=oe-20-11-11838&id=233249 ER - TY - THES A1 - Siebert, Torsten Uwe T1 - Four-Wave Mixing Techniques Applied to the Investigation of Non-Adiabatic Dynamics in Polyatomic Molecules T1 - Vierwellenmisch-Spektroskopie zur Untersuchung nicht-adiabatischer Dynamik in polyatomaren Molekülen N2 - In the experiments presented in this work, third-order, time-resolved spectroscopy was applied to the disentanglement of nuclear and electronic degrees of freedom in polyatomic molecules. The motivation for approaching this problem was given by the decisive role that the coupling of nuclear and electronic dynamics plays in the mechanism of photochemical reactions and photobiological processes. In order to approach this complex problem, different strategies within the framework of time-resolved, four-wave mixing spectroscopy were developed that allowed for the dynamic as well as the energetic aspects of vibronic coupling in non-radiative transitions of polyatomic molecules to be addressed. This was achieved by utilizing the influence of optical as well as Raman resonances on four-wave mixing processes. These resonance effects on third-order, optical processes allow for a high selectivity to be attained with respect to the interrogation of specific aspects of molecular dynamics. The development of different strategies within the framework of time-resolved, four-wave mixing spectroscopy for addressing the problem of vibronic coupling began with the experiments on gaseous iodine. This simple, well investigated molecular system was chosen in order to unambiguously characterize the effect of Raman resonances on four-wave mixing processes. A time-resolved degenerative four-wave mixing (DFWM) experiment was carried out on gaseous iodine that allowed for the dynamics of coherent Stokes Raman scattering (CSRS) as well as a coherent anti-Stokes Raman scattering (CARS) to be observed parallel to the dynamics of a DFWM process at different spectral positions of the FWM signal. Here, the state-selectivity of these different FWM processes manifests itself in the vibrational wave packet dynamics on different electronic potentials of iodine. It could be shown that Raman resonances determine the selectivity with which these FWM processes prepare and interrogate nuclear dynamics in different electronic states. With the insight gained into the relevance of Raman resonant processes in FWM spectroscopy, an experimental scheme was devised that utilizes this effect to selectively interrogate the dynamics of a specific vibrational mode within a polyatomic molecule during a radiationless electronic transition. Here, a CARS process was employed to selectively probe specific vibrational modes of a molecular system by variably tuning the energy difference between the lasers involved in the CARS process to be in Raman resonance with the vibrational energy spacing of a particular vibrational mode. Using this aspect of a tunable resonance enhancement within a CARS scheme, this optical process was incorporated in a time-resolved pump-probe experiment as a mode-selective probe mechanism. This type of experimental configuration, that employs four pulsed laser fields, was classified as a pump-CARS scheme. Here, a laser pulse independent of the CARS process initiates the molecular dynamics that are interrogated selectively with respect to the vibrational mode of the system through the simultaneous interaction of the three pulsed fields involved in the CARS process. Time-resolution on a femtosecond timescale is achieved by introducing a time delay between the independent pump laser and the laser pulses of the CARS process. The experimental configuration of a pump-CARS scheme was applied to the study of the nuclear dynamics involved in the radiationless electronic transition between the first excited singlet state (S1) and the electronic ground state (S0) of all-trans-b-carotene. The mode-selective CARS probe allowed for the characteristic timescale with which specific vibrational modes are repopulated in the S0 state to be determined. From the varying repopulation times of specific vibrational modes, a mechanism with which the full set of vibrational states of the S0 potential are repopulated subsequent to the internal conversion process could be postulated. Most importantly, the form of nuclear motion that primarily funnels the population between the two electronic states could be identified as the C=C symmetric symmetric stretch mode in the polyene backbone of b-carotene. With this, the reaction coordinate of this radiationless electronic transition could be identified. The experiment shows, that the CARS probe is capable of determining the nuclear motion coupled to a radiationless electronic transition in complex polyatomic systems. The S1/S0 internal conversion process in b-carotene was further investigated with time-resolved transient gratings. Here, the energetic aspects of a non-adiabatic transition was addressed by determining the influence of the vibrational energy on the rate of this internal conversion. In order to compare the rate of internal conversion taking place out of vibrational ground state modes versus this transition initiating out of vibrationally hot modes, the strategy of shifting the probe mechanism in the transient grating scheme to spectral positions within and out of the red flank of the S1 absorption profile was pursued. The interrogation of different vibrational states was verified by determining the degree of vibrational cooling, taking place parallel to the internal conversion process. With this strategy, it could be shown that vibrationally hot states contribute to the internal conversion with a higher rate than vibrational ground state modes. In summary, different third-order, optical processes in the framework of time-resolved FWM were applied to the study of non-adiabatic dynamics in polyatomic molecules. By utilizing the effect of optical as well as Raman resonances on different FWM processes, it could be shown that third-order, time-resolved spectroscopy is a powerful tool for gaining insight into complex molecular dynamics such as vibronic coupling. The experiments presented in this work showed that the CARS process, as a mode-selective probe in time-resolved experiments, is capable of disentangling nuclear and electronic dynamics. N2 - In der vorliegenden Arbeit wurden verschiedene zeitaufgelöste, optische Prozesse dritter Ordnung zur Untersuchung nicht-adiabatischer Dynamiken in polyatomaren Molekülen vorgestellt. Derartige Dynamiken haben ihre Ursache in Kopplungen zwischen der Kern- und Elektronenbewegung im jeweiligen molekularen System und spielen eine entscheidende Rolle in vielen photochemischen und photobiologischen Prozessen. Es wurden unterschiedliche Strategien im Rahmen der zeitaufgelösten Vierwellenmisch-Spektroskopie entwickelt, die die Untersuchung sowohl dynamischer als auch energetischer Aspekte der vibronischen Kopplung bei strahlungslosen elektronischen Übergängen in polyatomaren Systemen ermöglichen. Dabei wurden sowohl elektronische als auch Raman-Resonanzen ausgenutzt, um eine hohe Selektivität in der Abfrage der molekularen Dynamik zu erzielen. Um den Einfluss von Raman-Resonanzen auf Vierwellenmisch-Prozesse (FWM = four-wave mixing) eindeutig zu bestimmen, wurde zuerst das einfache und gut charakterisierte molekulare System Jod untersucht. Femtosekunden-zeitaufgelöste entartete Vierwellenmischung (DFWM = degenerate four-wave mixing) an gasförmigem Jod ermöglichte eine simultane Beobachtung der Dynamik kohärenter Stokesscher Raman-Streuung (CSRS = coherent Stokes Raman scattering) und kohärenter anti-Stokesscher Raman-Streuung (CARS = coherent anti-Stokes Raman scattering) zusammen mit der Dynamik des eigentlichen DFWM-Prozesses durch Detektion an unterschiedlichen spektralen Positionen des FWM-Signals. Die Zustandsselektivität dieser drei FWM-Prozesse, die sich in der Generierung und Abfrage von Schwingungswellenpaketen auf verschiedenen elektronischen Potentialen von Jod manifestiert, konnte innerhalb eines einzigen Messvorgangs charakterisiert werden. Es zeigte sich, dass die Selektivität der unterschiedlichen FWM-Prozesse maßgeblich durch den Einfluss von Raman-Resonanzen bestimmt wird. Basierend auf den so gewonnenen Erkenntnissen über den Einfluss von Raman-Resonanzen bei FWM-Prozessen, wurde ein experimentelles Schema entwickelt, das es ermöglicht, selektiv bestimmte Schwingungsmoden eines polyatomaren Moleküls während eines strahlungslosen elektronischen Übergangs abzufragen. Hierzu wurde ein CARS-Prozess, der auf eine Raman-Resonanz in einem molekularen System abgestimmt wurde, als Abfrageschritt in einem pump-probe-Schema eingesetzt. Dieses experimentelle Schema, bei dem vier gepulste Laser zum Einsatz kommen, wird in Analogie zu einem herkömmlichen pump-probe-Experiment als pump-CARS-Messung bezeichnet. Hierbei regt ein vom CARS-Prozess unabhängiger pump-Laser einen elektronischen Zustand an, dessen Besetzung durch die simultane Wechselwirkung mit den drei Laserpulsen des CARS-Prozesses modenselektiv abgefragt wird. Durch Einführung einer variablen Verzögerungszeit zwischen dem initiierenden pump-Laser und dem CARS-Prozess lässt sich die Relaxationsdynamik auf einer Femtosekunden-Zeitskala auflösen. Diese experimentelle Konfiguration wurde zur Untersuchung der Kerndynamik des strahlungslosen elektronischen Übergangs zwischen dem ersten elektronisch angeregten Zustand (S1) und dem elektronischen Grundzustand (S0) des b-Carotin eingesetzt. Die zustandsselektive Beobachtung der internen Konversion liefert die Zeitkonstanten, mit denen ausgewählte Schwingungsmoden im S0-Zustand von b-Carotin wiederbevölkert werden. Aufgrund der Tatsache, dass unterschiedlichen Moden unterschiedliche Zeitkonstanten zugeordnet werden konnten, wurde ein Modell aufgestellt, welches die Konversion in den elektronischen Grundzustand in Abhängigkeit von den Schwingungszuständen beschreibt. So konnte festgestellt werden, dass der Populationstransfer beim strahlungslosen Übergang von der S1- auf die S0-Potentialfläche vornehmlich über die symmetrische C=C-Streckschwingung verläuft.Mit diesem Experiment konnte gezeigt werden, dass ein CARS-Prozess als Abfrageschritt in einem zeitaufgelösten pump-probe Experiment, in der Lage ist, die Kerndynamik zu bestimmen, die mit einem strahlungslosen elektronischen Übergang in einem komplexen polyatomaren Molekül verbunden ist. Der energetische Aspekt des nicht-adiabatischen Übergangs zwischen dem S1- und S0-Zustand in b-Carotin wurde mittels zeitaufgelöster transienter Gitter untersucht (TG = transient grating). Hierbei wurde der Einfluss der Schwingungsenergie auf die Geschwindigkeit der internen Konversion bestimmt. Um die Reaktionsgeschwindigkeit der internen Konversion aus schwingungsangeregten Zuständen und Moden im Schwingungsgrundzustand des S1-Potentials zu vergleichen, wurde das Signal spektral aufgelöst detektiert. Hierbei beinhaltete die rote Flanke des Absorptionsprofils des S1-Zustandes die Dynamik der angeregten Schwingungsmoden. Die Abfrage der Dynamik an einer spektralen Position, die sich im Zentrum des Absorptionsprofils befindet, ermöglichte hingegen die Beobachtung der internen Konversion aus dem Grundzustand der Schwingungszustände. Mit der gewählten experimentellen Methode konnte gezeigt werden, dass schwingungsangeregte Zustände mit einer höheren Reaktionsgeschwindigkeit an der internen Konversion teilnehmen als Moden im Schwingungsgrundzustand. Zusammenfassend wurden in dieser Arbeit unterschiedliche optische Prozesse dritter Ordnung zur Untersuchung nicht-adiabatischer Dynamiken in polyatomaren Molekülen angewandt. Durch Ausnutzung von sowohl elektronischen als auch Raman-Resonanzen auf unterschiedliche FWM-Prozesse konnte gezeigt werden, dass optische Prozesse dritter Ordnung ein geeignetes Werkzeug zur Untersuchung komplexer Moleküldynamiken darstellen. Die Experimente in dieser Arbeit verdeutlichten, dass der CARS-Prozess als modenselektiver Abfrageschritt die spezifische Beobachtung von Kerndynamik während eines elektronischen Übergangs erlaubt. KW - Provitamin A KW - Vierwellenmischung KW - Polyatomare Verbindungen KW - Spektroskopie KW - Spektroskopie KW - Vierwellenmischung KW - CARS KW - Transiente Gitter KW - Femtosekunden KW - Nicht-adiabatische Dynamik KW - beta-Carotin KW - Iod KW - Spectroscopy KW - Four-Wave Mixing KW - CARS KW - Transient Grating KW - Femtosecond KW - Non-adiabatic Dynamics KW - beta-Carotene KW - Iodine Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-2456 ER - TY - THES A1 - Schlücker, Sebastian T1 - Lineare und nichtlineare Raman-Spektroskopie an biologisch relevanten Modellystemen T1 - Linear and nonlinear Raman spectroscopy on biological relevant model systems N2 - Im Rahmen dieser Dissertation wurden insgesamt drei verschiedene Fragestellungen an biologisch relevanten Modellsystemen mit Hilfe von diversen linearen und nichtlinearen Raman-spektroskopischen Techniken bearbeitet. Neben der Untersuchung von Wasserstoffbrücken-gebundenen Komplexen und ihrer Dynamik auf der fs-Zeitskala (Kapitel 4) bildeten Untersuchungen zur Struktur von Porphyrinen (Kapitel 5) und beta-Carotin (Kapitel 6) als Vertreter wichtiger Klassen von Biomolekülen den Schwerpunkt dieser Arbeit. Die spektroskopischen Ergebnisse wurden durchweg über Strukturen und Schwingungsspektren, welche mit Hilfe der Dichtefunktionaltheorie (DFT) berechnet wurden, unterstützt. Die dritte bearbeitete Thematik zum Nachweis anthropogener und ökologisch relevanter Aerosole war bioanalytisch motiviert und wurde anhand von Pestizid-Modellsubstanzen bearbeitet (Kapitel 7). N2 - Three different problems on biological relevant model systems were investigated within the framework of this thesis by means of various linear and nonlinear Raman techniques. Besides the studies on hydrogen-bonded complexes and their dynamics on a fs-timescale (chapter 4), structural investigations on porphyrins (chapter 5) and beta-carotene (chapter 6) as representatives of important classes of biomolecules were the central subject of this dissertation. The experimental data were confirmed throughout by structures and vibrational spectra obtained from calculations based on density functional theory (DFT). The last topic, the detection of anthropogenic aerosols with ecological relevance, was motivated from bioanalytical chemistry. The corresponding investigations were carried out on pesticide model compounds (chapter 7). KW - Biomolekül KW - CARS-Spektroskopie KW - Infrarot- und Raman-Spektroskopie KW - Resonanz-Raman-Spektroskopie KW - kohärente anti-Stokessche Raman-Spektroskopie (CARS) KW - Infrared and Raman spectroscopy KW - resonance Raman scattering KW - coherent anti-Stokes Raman scattering (CARS) Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-1181438 ER - TY - THES A1 - Fecher, Frank Erich T1 - Nichtlineare Dynamik von chemischen Sauerstoff-Oszillatoren T1 - Nonlinear Dynamics of chemical Oxygen Oscillators N2 - Die vorliegende Arbeit hat zum Ziel, das Antwortverhalten nichtlinearer Reaktionen auf zielgerichtete Störungen zu untersuchen. Dabei beschäftigt sie sich mit zwei nichtlinearen chemischen Sauerstoff-Oszillatoren. Bei den beiden nichtlinearen chemischen Reaktionen handelt es sich um den Polyacrylamid-Methylenblau-Sauerstoff- (PA-MBO) Oszillator und um die Kupfer(II)ionen katalysierte Oxidation von Ascorbinsäure durch Luftsauerstoff. Im ersten Fall wird durch selektive Belichtung des Reaktionsmediums die gebildete Geloberfläche durch ein computergenerirtes Muster kodiert. Die Systemantwort wird mit Hilfe einer CCD-Kamera aufgenommen und danach einer Analyse unterzogen. Die erhaltenen Ergebnisse werden anschließend durch eine Computersimulation verifiziert. Die zweite untersuchte Möglichkeit, das PA-MBO-System einer Störung zu unterwerfen, ist das Anlegen eines externen elektrischen Feldes. In einer speziell dafür entworfenen Anordnung bildet sich ein quasi-eindimensionales Turing-Muster. In dieser quasi-eindimensionalen Anordnung kann die Reaktion leicht elektrischen Strömen von bis zu 200 mA/cm2 ausgesetzt werden. Die experimentellen Daten werden anschließend der Karhunen-Loeve Zerlegung unterworfen, um die komplexe Dynamik der Systemantwort zu studieren. Die Oxidation von Ascorbinsäure durch Luftsauerstoff in Gegenwart von Kupfer(II)ionen, wird im CSTR durchgeführt. Dabei läßt sich das Phänomen der stochastischen Resonanz beobachten, wenn man die Flußrate sinusförmig moduliert und dieser Frequenz zusätzlich weißes Rauschen überlagert. N2 - In this work two nonlinear chemical oxygen-oscillators are presented. The two chemical reactions are: the methylene blue-sulfide-oxygen chemical oscillator (MBO) and the oxidation of ascorbic acid by air oxygen catalyzed by copper(II) ions. The effect of various perturbations on these systems is investigated. In the PA-MBO system the gel components acrylamide, N,N'-methylene-bisacrylamide, triethanolamine and the initiator peroxodisulfate are mixed with the components of the methyleneblue-sulfide-oxygen oscillating reaction. The latter are sodiumsulfide, methyleneblue and molecular oxygen from the air. In the MBO reaction sulfide is oxidized by molecular oxygen where methyleneblue acts as redox-catalyst. During the gelation process of acrylamide, chemical reactions between the gel components and the reactants of the MBO are considered to be crucial for the formation of the observed hexagonal and striped patterns. The nonlinearity results from a competitive autocatalysis of polymer species with high molecular weight and low diffusivity. KW - Sauerstoff KW - Oszillator KW - Nichtlineare Dynamik KW - Stochastischer Prozess KW - Nichtlineare Dynamik KW - Sauerstoff-Oszillatoren KW - PA-MBO-System KW - Stochastische Resonanz KW - Nonlinear Dynamics KW - Oxygen-Oscillator KW - PA-MBO-System KW - stochastic resonance Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-185 ER - TY - THES A1 - Petry, Renate T1 - Spektroskopische Strukturanalytik synthetischer Polypeptide T1 - Structural Analysis of Synthetic Polypeptides by Optical Spectroscopy Methods N2 - In der vorliegenden Arbeit wurden zwei spektroskopische Methoden (Raman- und Circulardichroismus-Spektroskopie) und die Kernspinresonanz zur Untersuchung der Sekundärstruktur von synthetischen Polypeptiden eingesetzt. Dabei wurden die Struktur-Funktions-Beziehungen der dritten extrazellulären Schleife des Gonadotropin-freisetzenden Rezeptors (GnRH-R) untersucht. Die spektroskopischen Ergebnisse belegten, dass die zuvor getroffene Aussage über eine vorhandene helikale Struktur revidiert werden musste. Die Strukturanalysen mit Hilfe der CD-, Raman- und 2D NMR-Experimente an zwei Serien von Polypeptiden lieferten Aussagen über die Sekundärstruktur. Insbesondere die Raman-Untersuchungen in Verbindung mit einer statistischen Datenanalyse lieferten detaillierte Information über subtile Konformationsänderungen, die einerseits durch die Addition und andererseits durch die Substitution einzelner Aminosäuren in den synthetischen Polypeptiden ausgelöst wurden. Anhand der ausgewählten Raman-Linien konnte nachgewiesen werden, dass sowohl die Änderungen der Polypeptidkettenlänge als auch die Änderung der Polypeptidsequenzen mit den beobachteten Intensitäten der Raman-Linien korreliert sind. KW - Synthetische Polypeptide KW - Strukturaufklärung KW - Raman-Spektroskopie KW - Synthetische Polypeptide KW - Sekundärstruktur KW - Proteindesign KW - Raman-Spektroskopie KW - Prolin KW - G-Protein-gekoppelter Rezeptor KW - synthetic polypeptides KW - secondary structure KW - protein design KW - Raman spectroscopy KW - proline KW - G protein-coupled receptor Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-664 ER - TY - THES A1 - Szeghalmi, Adriana Viorica T1 - The ground and excited state molecular structure of model systems undergoing photochemical processes and the characterization of active agents by means of vibrational spectroscopy and theoretical calculations T1 - Die Molekularstruktur des Grund- und angeregten Zustandes von Modelsystemen bei Photochemischen Prozessen und die Charakterisierung von Wirkstoffen mittels Schwingungsspektroskopie und Theoretische Rechnungen N2 - The present thesis reports about vibrational and quantum chemical investigations on model systems undergoing photochemical processes and pharmaceutically active compounds, respectively. Infrared (IR) and Raman spectroscopy were applied for the characterization of the ground state molecular structure. Moreover, resonance Raman (RR) spectra contain additional information about the resonantly enhanced excited state molecular structure. A quantitative resonance Raman intensity analysis in conjunction with the simultaneous simulation of the absorption spectra by means of time-dependent propagation methods was accomplished in order to extract valuable information about the excited state molecular structures of the investigated systems. Surface enhanced Raman scattering (SERS) allows one to determine the interaction and adsorption site of active agents on a metal substrate. Furthermore, density functional theory (DFT) and potential energy distribution (PED) calculations were carried out for an exact assignment of the vibrational spectra. Complete active space self consistent field (CASSCF) and configuration interaction (CI) calculations for some model systems were also performed to assess the experimental results on the excited state potential surfaces. The fundamentals of resonance Raman spectroscopy are treated in detail, describing the physical processes and emphasizing the theoretical methodologies which allow one to obtain the information about the resonantly excited state via an RR intensity analysis. The Brownian oscillator model to determine the solvent reorganization energy is briefly presented. Furthermore, the SERS enhancement mechanisms and selection rules to determine the orientation of the molecules adsorbed on the metal substrate are discussed. The Hartree-Fock approach to calculate the ground state geometry is expatiated, and the basic characteristics of the CI and CASSCF calculations are specified. The chapter ends with a short description of the DFT calculations. Chapter 4 deals with the investigation of the excited state intramolecular proton transfer of the model system, 1-hydroxy-2-acetonaphthone (HAN). The vibrations showing the highest displacement parameters correspond to stretching and in-plane deformation modes of the naphthalene ring and the conjugated carbonyl group, while the OH stretching mode exhibits no observable enhancement. The cooperative effect of the skeletal vibrations reduces the distance between the carbonyl and hydroxyl oxygen atoms in accordance with a general electron density redistribution. Hence, the leading force in the proton transfer process is the increase in electron density on the carbonyl group and the decrease of the negative charge on the hydroxyl oxygen. In chapter 5 the structural and vibrational characteristics of the organic mixed valence system N,N,N’,N’-tetraphenylphenylenediamine radical cation (1+) are discussed. The resonance Raman measurements showed that at least eight vibrational modes are strongly coupled to the optical charge transfer process in (1+). These Franck-Condon active modes were assigned to symmetric vibrations. The most enhanced band corresponds to the symmetric stretching mode along the N-phenylene-N unit and exhibits the largest vibrational reorganization energy. Nevertheless, symmetric stretching modes of the phenylene and phenyl units as well as deformation modes are also coupled to the electronic process. The total vibrational reorganization energy of these symmetrical modes is dominant, while the solvent induced broadening and reorganization energy are found to be small. Hence, (1+) adopts a symmetrical delocalized Robin-Day Class III structure in the ground state. Chapter 6 reports about a vibrational spectroscopic investigation of a model organic photorefractive thiophene derivative, 2-(N,N-diethylamino)-5-(2’,2’-dicyanovinyl)-thiophene. The geometry of the first excited state were optimized and the FC parameters were calculated using the configuration interaction with single excitations method. These calculations show that the contribution of the zwitterionic structure to the excited state is significantly higher than in the ground state. The resonance Raman spectra indicate that several stretching modes along the bonds connecting the donor and acceptor moieties as well as the S-C stretching vibrations are enhanced. Chapter 7 presents the vibrational analysis of an aziridinyl tripeptide, a cysteine protease inhibitor active drug. The vibrational analysis reveals stronger H-bonding of the aziridine NH unit in the solid state of the aziridinyl tripeptide than in the liquid electrophilic building block, indicating medium strong intermolecular H-bond interactions in the crystal unit. The amide hydrogen atoms of the aziridinyl tripeptide are involved in weaker H-bonds than in an epoxide analogon. Furthermore, the characteristic vibrational modes of the peptide backbone were discussed. Chapter 8 reports on the adsorption mechanism of two related anti-leukemia active agents, 6-mercaptopurine (6MP) and 6-mercaptopurine-ribose (6MPR) on a silver colloid. Both molecules adsorb through the N1 and possibly S atom on the metal surface under basic conditions. The SERS spectra recorded for acidic pH values showed that the ribose derivative exhibits a different adsorption behavior compared to the free base. 6MP probably adsorbs on the silver sol through the N9 and N3 atoms, while 6MPR interacts with the surface via the N7 and probably S atoms. Around critical biological concentrations and pH values i.e. at low concentrations and almost neutral condition (pH 7-9), 6MPR interacts with the substrate through both N7 and N1 atoms, possibly forming two differently adsorbed species, while for 6MP only the species adsorbed via N1 was evidenced. N2 - In der vorliegenden Arbeit wurden schwingungsspektroskopische und quanten-chemische Untersuchungen an unterschiedlichen Modellsystemen, die an photochemischen Prozessen beteiligt sind, und an verschiedenen Pharmazeutika durchgeführt. Die Methoden der Infrarot- (IR) und Raman-Spektroskopie wurden für die Charakterisierung der Grund-zustandsgeometrie verwendet. Darüber hinaus konnten aus Resonanz-Raman- (RR) Spektren zusätzliche Informationen über den elektronisch angeregten Zustand erhalten werden. Diese aufschlussreichen Aussagen über die elektronisch angeregten Zustände der untersuchten Systeme wurden durch die simultane quantitative Analyse der Resonanz-Raman-Spektren und des Absorptionsspektrums gewonnen. Die Anregungsprofile für die Resonanz-Raman-Streuung und die Absorptionsquerschnitte wurden mittels zeitabhängiger Propagationsmethoden berechnet. Oberflächen-verstärkte Raman-Streu- (SERS) Experimente ermöglichten die Charakterisierung der Wechselwirkungen und Adsorptionsbindungsstellen von Wirkstoffen an Metalloberflächen. Des Weiteren wurden Dichtefunktionaltheorie- (DFT) und PED-Rechnungen durchgeführt, um eine genaue Zuordnung der Schwingungsspektren zu gestatten. CASSCF- und CI-Rechnungen wurden in einzelnen Fällen durchgeführt, um sie mit den experimentellen Ergebnissen für die Potenzialhyperfläche des angeregten Zustands vergleichen zu können. Die Grundlagen der Resonanz-Raman-Spekroskopie wurden ausführlich diskutiert. Dabei wurden die physikalischen Prozesse beschrieben und die mathematischen Techniken, die die Bestimmung der Parameter des angeregten Zustands durch die RR-Intensitätsanalyse ermöglichen, hervorgehoben. Das Modell des Brownian-Oszillators für die Ermittlung der Lösungsmittel-Reorganisations-energie wurde kurz beschrieben. Weiterhin wurden die SERS Verstärkungsmechanismen und Auswahlregeln diskutiert. Der Hartree-Fock-Ansatz zur Berechnung des Grundzustandes sowie die CI- und CASSCF-Methoden wurde erläutert. Das Kapitel endete mit einer kurzen Beschreibung der Grundlagen von DFT-Rechnungen. Im vierten Kapitel wurden die Untersuchungen an einem Modell-Systems (1-hydroxy-2-acetonaphthone HAN), das einen Protonentransferprozess im angeregten Zustand zeigt, dargestellt. Die Streck- und Deformationsmoden des Naphthalinrings und der konjugierten Carbonylgruppe weisen die größten Displacement-Parameter auf, während die O-H-Streckschwingung keine Resonanz-Verstärkung erfährt. Diese Gerüst-schwingungsmoden verringern den Abstand zwischen den Carbonyl- und Hydroxyl-Sauerstoffatomen, was mit einer generellen Umverteilung der Elektronendichte einhergeht. Daher wird der Protonentransferprozess durch die Zunahme der Elektronendichte auf dem Carbonylsauerstoffatom und der gleichzeitigen Abnahme der negativen Ladung auf dem Hydroxylsauerstoffatom gesteuert. Im fünften Kapitel wurden die strukturellen und vibronischen Eigenschaften eines organischen gemischtvalenten Systems, des N,N,N’,N’-tetraphenylphenylenediamine Radikalkations (1+), untersucht. Die Resonanz-Raman-Experimente zeigten, dass mindestens acht Schwingungsmoden stark an den optischen Ladungstransferprozess gekoppelt sind. Diese Franck-Condon aktiven Moden wurden vornehmlich symmetrischen Moden zugeordnet. Die am meisten verstärkte Mode entspricht der symmetrischen Streckschwingung entlang der N-Ar-N-Achse. Jedoch sind auch symmetrische Streckschwingungsmoden der Phenyl- und Phyenylen-Gruppen und Deformationsmoden an dem elektronischen Prozess beteiligt. Der Beitrag dieser symmetrischen Moden zur Reorganisationsenergie dominiert, während die Lösungsmittelreorganisationsenergie nur sehr gering ist. Die erhaltenen Ergebnisse beweisen, dass es sich hier um ein symmetrisches delokalisiertes Robin-Day-Class-III-System handelt. Das sechste Kapitel beschäftigt sich mit einer schwingungsspektroskopischen Analyse eines photorefraktiven Thiophen-Derivat-Modellsystems, 2-(N,N-diethylamino)-5(2’,2’-dicyanovinyl)-thiophen. Die Geometrien des Grund- und ersten angeregten Zustands wurden optimiert und die FC Parameter unter Anwendung der CIS Methode berechnet. Diese Rechnungen ergaben, dass der Anteil der zwitterionischen Struktur im angeregten Zustand dominiert. Die Resonanz-Raman-Spektren zeigten, dass mehrere Streckschwingungsmoden entlang der Bindungen, die die Donor- und Akzeptor-Einheiten verknüpfen, und die S-C Streckschwingungsmoden verstärkt wurden. Das siebte Kapitel behandelt die Analyse eines Aziridinyl-Tripeptids, ein Wirkstoff gegen Cystein-Proteasen. Die Schwingungsanalyse ergab eine stärkere Wasserstoffbrückenbindung der Aziridin NH-Gruppe des Aziridinyl-Tripeptids im festen Zustand als in der flüssigen Baueinheit. Die Wasserstoffatome der Amidgruppen des Tripeptids sind an schwächeren Wasserstoffbrückenbindungen als die des Epoxid-Analogons beteiligt. Darüber hinaus wurden die charakteristischen Gerüstschwingungsmoden des Tripeptids diskutiert. Im vorletzten Kapitel wurde der Adsorptionsmechanismus von zwei Anti-Leukämie-Wirkstoffen, 6-Mercaptopurin (6MP) und 6-Mercaptopurin-ribose (6MPR) diskutiert. Unter basischen Bedingungen adsorbieren beide Moleküle über die N1- und S-Atome an der Metalloberfläche. Für biologisch kritischen Konzentrationen und pH-Werten, d.h. für nahezu neutrale Bedingungen (pH-Wert 7-9) und eine geringe Konzentration, wurde festgestellt, dass das 6MPR-Molekül mit dem Substrat sowohl über das N7- als auch N1-Atom wechselwirkt, wobei wahrscheinlich zwei unterschiedlich adsorbierte Spezies vorhanden sind. Im Gegensatz dazu weist das 6MP-Molekül nur eine über das N1-Atom adsorbierte Spezies auf. KW - Photochemie KW - Molekülstruktur KW - Grundzustand KW - Raman-Spektroskopie KW - Angeregter Zustand KW - Resonanz-Raman-Effekt KW - Oberflächenverstärkter Raman-Effekt KW - Dichtefunktionalformalismus KW - Ab-initio-Rechnung KW - Resonanz-Raman KW - Oberflächen-verstärkte Raman Streuung (SERS) KW - DFT- und ab-initio-Rechnungen KW - photochemische Prozesse KW - Wirkstoffe KW - Resonance Raman KW - Surface enhance Raman scattering (SERS) KW - DFT and ab-initio calculations KW - photochemical processes KW - active agents Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-11961 ER -