TY - INPR A1 - Wohlgemuth, Matthias A1 - Mitric, Roland T1 - Excitation energy transport in DNA modelled by multi-chromophoric field-induced surface hopping T2 - Physical Chemistry Chemical Physics N2 - Absorption of ultraviolet light is known as a major source of carcinogenic mutations of DNA. The underlying processes of excitation energy dissipation are yet not fully understood. In this work we provide a new and generally applicable route for studying the excitation energy transport in multi-chromophoric complexes at an atomistic level. The surface-hopping approach in the frame of the extended Frenkel exciton model combined with QM/MM techniques allowed us to simulate the photodynamics of the alternating (dAdT)10 : (dAdT)10 double-stranded DNA. In accordance with recent experiments, we find that the excited state decay is multiexponential, involving a long and a short component which are due to two distinct mechanisms: formation of long-lived delocalized excitonic and charge transfer states vs. ultrafast decaying localized states resembling those of the bare nucleobases. Our simulations explain all stages of the ultrafast photodynamics including initial photoexcitation, dynamical evolution out of the Franck-Condon region, excimer formation and nonradiative relaxation to the ground state. KW - Photodynamics KW - DNA Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-209467 ET - submitted version ER - TY - THES A1 - Kramer, Christian T1 - Investigation of Nanostructure-Induced Localized Light Phenomena Using Ultrafast Laser Spectroscopy T1 - Untersuchung von nanostruktur-induzierten Lichtphänomenen mit Hilfe von Ultrakurzzeit-Laserspektroskopie N2 - In recent years, the interaction of light with subwavelength structures, i.e., structures that are smaller than the optical wavelength, became more and more interesting to scientific research, since it provides the opportunity to manipulate light-induced dynamics below the optical diffraction limit. Specifically designed nanomaterials can be utilized to tailor the temporal evolution of electromagnetic fields at the nanoscale. For the investigation of strongly localized processes, it is essential to resolve both their spatial and their temporal behavior. The aim of this thesis was to study and/or control the temporal evolution of three nanostructure-induced localized light phenomena by using ultrafast laser spectroscopy with high spatial resolution. In Chapter 4, the absorption of near-infrared light in thin-film a-Si:H solar cells was investigated. Using nanotextured instead of smooth interfaces for such devices leads to an increase of absorption from < 20% to more than 50% in the near-infrared regime. Time-resolved experiments with femtosecond laser pulses were performed to clarify the reason for this enhancement. The coherent backscattered radiation from nanotextured solar cell devices was measured as a function of the sample position and evaluated via spectral interferometry. Spatially varying resonance peaks in the recorded spectra indicated the formation of localized photonic modes within the nanotextured absorber layers. In order to identify the modes separately from each other, coherent two-dimensional (2D) nanoscopy was utilized, providing a high spatial resolution < 40 nm. In a nanoscopy measurement on a modified device with an exposed nanotextured a-Si:H absorber layer, hot-spot electron emission was observed and confirmed the presence of localized modes. Fitting the local 2D nanospectra at the hot-spot positions enabled the determination of the resonance frequencies and coherence lifetimes of the modes. The obtained lifetime values varied between 50 fs and 130 fs. Using a thermionic emission model allowed the calculation of the locally absorbed energy density and, with this, an estimation of the localization length of the photonic modes (≈1 μm). The localization could be classified by means of the estimated localization length and additional data evaluation of the backscattered spectra as strong localization ─ the so-called Anderson localization. Based on the experimental results, it was concluded that the enhanced absorption of near-infrared light in thin-film silicon solar cells with nanotextured interfaces is caused by the formation of strongly localized photonic modes within the disordered absorber layers. The incoming near-infrared light is trapped in these long-living modes until absorption occurs. In Chapter 5, a novel hybridized plasmonic device was introduced and investigated in both theory and experiment. It consists of two widely separated whispering gallery mode (WGM) nanoantennas located in an elliptical plasmonic cavity. The goal was to realize a periodic long-range energy transfer between the nanoantennas. In finite-difference time-domain (FDTD) simulations, the device was first optimized with respect to strong coupling between the localized antenna modes and the spatially-extended cavity mode. The geometrical parameters of the antennas and the cavity were adjusted separately so that the m="0" antenna mode and the cavity mode were resonant at λ="800 nm" . A high spatial overlap of the modes was achieved by positioning the two antennas in the focal spots of the cavity, leading to a distance between the antenna centers of more than twice the resonant wavelength of the modes. The spectral response of the optimized device revealed an energy splitting of the antenna and the cavity mode into three separated hybridized eigenmodes within an energy range of about 90 meV due to strong coupling. It could be well reproduced by a simple model of three coupled Lorentzian oscillators. In the time domain, an oscillatory energy transfer between both antennas with a period of 86 fs and an energy transfer efficiency of about 7% was observed for single-pulse excitation. For the experiments, devices with cavities and antennas of varying size were fabricated by means of focused-ion-beam (FIB) milling. Time-resolved correlation measurements were performed with high spatial and temporal resolution by using sequences of two femtosecond laser pulses for excitation and photoemission electron microscopy (PEEM) for detection. Local correlation traces at antennas in resonant devices, i.e., devices with enhanced electron emission at both antenna positions, were investigated and reconstructed by means of the coupled-oscillator model. The corresponding spectral response revealed separated peaks, confirming the formation of hybridized eigenmodes due to strong coupling. In a subsequent simulation for single-pulse excitation, one back-and-forth energy transfer between both antennas with an energy transfer efficiency of about 10% was observed. Based on the theoretical and experimental results, it was demonstrated that in the presented plasmonic device a periodic long-range energy transfer between the two nanoantennas is possible. Furthermore, the coupled-oscillator model enables one to study in depth how specific device properties impact the temporal electric-field dynamics within the device. This can be exploited to further optimize energy transfer efficiency of the device. Future applications are envisioned in ultrafast plasmonic nanocircuitry. Moreover, the presented device can be employed to realize efficient SPP-mediated strong coupling between widely separated quantum emitters. In Chapter 6, it was investigated in theory how the local optical chirality enhancement in the near field of plasmonic nanostructures can be optimized by tuning the far-field polarization of the incident light. An analytic expression was derived that enables the calculation of the optimal far-field polarizations, i.e., the two far-field polarizations which lead to the highest positive and negative local optical chirality, for any given nanostructure geometry. The two optimal far-field polarizations depend on the local optical response of the respective nanostructure and thus are functions of both the frequency ω and the position r. Their ellipticities differ only in their sign, i.e., in their direction of rotation in the time domain, and the angle between their orientations, i.e., the angle between the principal axes of their ellipses, is ±π/"2" . The handedness of optimal local optical chirality can be switched by switching between the optimal far-field polarizations. In numerical simulations, it was exemplarily shown for two specific nanostructure assemblies that the optimal local optical chirality can significantly exceed the optical chirality values of circularly polarized light in free space ─ the highest possible values in free space. The corresponding optimal far-field polarizations were different from linear and circular and varied with frequency. Using femtosecond polarization pulse shaping provides the opportunity to coherently control local optical chirality over a continuous frequency range. Furthermore, symmetry properties of nanostructures can be exploited to determine which far-field polarization is optimal. The theoretical findings can have impact on future experimental studies about local optical chirality enhancement. Tuning the far-field polarization of the incident light offers a promising tool to enhance chirally specific interactions of local electromagnetic fields with molecular and other quantum systems in the vicinity of plasmonic nanostructures. The presented approach can be utilized for applications in chiral sensing of adsorbed molecules, time-resolved chirality-sensitive spectroscopy, and chiral quantum control. In conclusion, each of the localized light phenomena that were investigated in this thesis ─ the enhanced local absorption of near-infrared light due to the formation of localized photonic modes, the periodic long-range energy transfer between two nanoantennas within an elliptical plasmonic cavity, and the optimization of local optical chirality enhancement by tuning the far-field polarization of the incident light ─ can open up new perspectives for a variety of future applications. . N2 - In den vergangenen Jahren rückte die Wechselwirkung von Licht mit Strukturen, deren Größe kleiner als die optische Wellenlänge ist, immer mehr in den Fokus der wissenschaftlichen Forschung, da sie die Möglichkeit bietet, lichtinduzierte Dynamiken unterhalb des optischen Beugungslimits zu manipulieren. Speziell hergestellte Nanomaterialien können verwendet werden, um die zeitliche Entwicklung von elektromagnetischen Feldern auf der Nanoskala zu steuern. Für die Untersuchung von stark lokalisierten Prozessen ist es essentiell, sowohl ihr räumliches als auch ihr zeitliches Verhalten aufzulösen. Das Ziel dieser Dissertation war es, die zeitliche Entwicklung von drei lokalisierten Lichtphänomenen, hervorgerufen durch drei unterschiedliche nanostrukturierte Materialien, mit Hilfe von Ultrakurzzeit-spektroskopie unter hoher räumlicher Auflösung zu untersuchen und/oder zu kontrollieren. In Kapitel 4 dieser Arbeit wurde die Absorption von Nahinfrarotlicht in a-Si:H Dünnschicht-Solarzellen untersucht. Durch die Verwendung von nanotexturierten statt glatten Grenzschichten erreicht man bei solchen Solarzellen einen Anstieg der Absorption von < 20% auf über 50% im Nahinfrarotbereich. Um der Ursache dieser Verstärkung auf den Grund zu gehen, wurden zeitaufgelöste Experimente mit Femtosekundenlaserpulsen durchgeführt. Zunächst wurde die kohärente zurückgestreute Strahlung von nanotexturierten Solarzellen in Abhängigkeit der Probenposition gemessen und mit Hilfe von spektraler Interferometrie ausgewertet. Räumlich variierende Resonanzpeaks in den aufgenommenen Spektren deuteten auf die Bildung von lokalisierten photonischen Moden innerhalb der nanotexturierten Absorberschichten hin. Um die Moden räumlich getrennt voneinander identifizieren zu können, wurde anschließend die Methode der kohärenten zweidimensionalen (2D) Nanoskopie angewandt, die eine hohe räumliche Auflösung < 40 nm ermöglichte. In einer Nanoskopie-Messung an einer modifizierten Solarzellen-Probe mit einer freiliegenden nanotexturierten a-Si:H Absorberschicht wurde eine Elektronenemission beobachtet, die von räumlich begrenzten Hot Spots dominiert war und das Vorhandensein von lokalisierten Moden bestätigte. Über das Fitten der lokalen 2D Nanospektren an den Positionen der Hot Spots wurden die Resonanzfrequenzen und die Kohärenzlebenszeiten der Moden bestimmt. Die ermittelten Werte für die Lebenszeiten lagen zwischen 50 fs und 130 fs. Mit Hilfe eines Modells für thermionische Elektronenemission konnte die lokal absorbierte Energiedichte bestimmt und damit die Lokalisierungslänge der photonischen Moden auf etwa 1 μm abgeschätzt werden. Zudem konnte die Lokalisierung über die abgeschätzte Lokalisierungslänge und eine zusätzliche Datenauswertung der zurückgestreuten Spektren als starke Lokalisierung, die sogenannte Anderson-Lokalisierung, klassifiziert werden. Auf der Basis der experimentellen Ergebnisse wurde daher geschlussfolgert, dass die verstärkte Absorption von Nahinfrarotlicht in Silizium-Dünnschicht-Solarzellen mit nanotexturierten Grenzschichten durch die Bildung von stark lokalisierten photonischen Moden innerhalb der ungeordneten Absorberschichten verursacht wird. Das einfallende Nahinfrarotlicht wird in diesen langlebigen Moden gefangen, bis es schließlich irgendwann absorbiert wird. In Kaptiel 5 wurde eine neuartige plasmonische Struktur vorgestellt und sowohl in der Theorie als auch experimentell untersucht. Die Struktur besteht aus einer elliptischen Kavität, in der sich zwei räumlich getrennte whispering gallery mode (WGM) Nanoantennen befinden. Das Ziel war es nun, einen periodischen langreichweitigen Energietransfer zwischen beiden Nanoantennen zu realisieren. Zuerst wurde die Struktur mit Hilfe von finite-difference time-domain (FDTD) Simulationen darauf optimiert, eine starke Kopplung zwischen den lokalisierten Antennenmoden und der räumlich ausgedehnten Kavitätsmode zu erreichen. Die geometrischen Parameter der Antennen und der Kavität wurden getrennt voneinander so eingestellt, dass sowohl die m="0" Antennenmode als auch die Kavitätsmode bei λ="800 nm" resonant waren. Ein hoher räumlicher Modenüberlapp wurde dadurch erzielt, dass die beiden Antennen jeweils in die Brennpunkte der elliptischen Kavität positioniert wurden. Die daraus resultierende Distanz zwischen den Antennenzentren war dadurch mehr als doppelt so hoch wie die Resonanzwellenlänge der Moden. Aufgrund starker Kopplung war in der spektralen Antwort der optimierten Struktur eine Energieaufspaltung der Antennen- und der Kavitätsmode in drei getrennte hybridisierte Eigenmoden innerhalb eines Energiebereichs von ca. 90 meV zu sehen. Die Antwortfunktionen konnten sehr gut mit Hilfe eines einfachen Modells aus drei gekoppelten Lorentz-Oszillatoren reproduziert werden. Im Zeitraum wurde für eine Einfach-Puls-Anregung der Struktur ein ozillatorischer Antennen-Energietransfer mit einer Periode von 86 fs und einer Energietransfer-Effizienz von ungefähr 7% beobachtet. Für die Experimente wurden Strukturen mit Kavitäten und Antennen unterschiedlicher Größe über focused-ion-beam (FIB) milling hergestellt. Es wurden zeitaufgelöste Korrelationsmessungen durchgeführt, wobei zwei Femtosekundenlaserpulse zur Anregung und Photoemissionselektronen-Mikroskopie (PEEM) für die Detektion verwendet wurden. Dies ermöglichte sowohl eine hohe zeitliche als auch eine hohe räumliche Auflösung. In den Messungen wurden lokale Korrelationssignale an Antennen in resonanten Strukturen, sprich, Strukturen mit deutlich erhöhter Photoemission an beiden Antennenpositionen, untersucht und mit Hilfe des gekoppelten Lorentz-Oszillatormodells rekonstruiert. Die daraus ermittelte spektrale Antwort zeigte getrennte Peaks und bestätigte damit die Bildung hybridisierter Eigenmoden aufgrund starker Kopplung. In einer nachfolgenden Simulation für Einfach-Puls-Anregung wurde ein einmaliger Hin-und-Her-Energietransfer zwischen den Antennen mit einer Energietransfereffizienz von ca. 10% beobachtet. Ausgehend von den theoretischen und experimentellen Ergebnissen wurde gezeigt, dass in der hier vorgestellten Struktur ein periodischer langreichweitiger Energietransfer zwischen den zwei Nanoantennen möglich ist. Zudem ermöglicht es das gekoppelte Oszillatoren-Modell, im Detail zu untersuchen, wie spezifische Eigenschaften der Struktur die Dynamik des zeitlichen elektrischen Feldes bzw. der Energieumverteilung innerhalb der Struktur beeinflussen. Dies kann dazu genutzt werden, die Energietransfer-Effizienz der Struktur noch weiter zu optimieren. Zukünftige Anwendungsmöglichkeiten finden sich im Bereich der ultraschnellen plasmonischen Nanoschaltkreise. Darüberhinaus kann die Struktur genutzt werden, um eine effiziente SPP-vermittelte starke Kopplung zwischen weit voneinder entfernten Quantenemittern zu erreichen. In Kapitel 6 wurde untersucht, wie die lokale Verstärkung der optischen Chiralität im Nahfeld plasmonischer Nanostrukturen durch das Einstellen der Fernfeld-Polarisation des einfallenden Lichts optimiert werden kann. Zu diesem Zweck wurde ein analytischer Ausdruck hergeleitet, welcher die Berechnung der optimalen Fernfeld-Polarisationen für jede beliebige Nanostruktur-Geometrie ermöglicht. Dabei versteht man unter den optimalen Fernfeld-Polarisationen diejenigen zwei, welche zur höchsten positiven und negativen lokalen optischen Chiralität führen. Da diese von der lokalen optischen Antwort der jeweiligen Nanostruktur abhängig sind, lassen sie sich sowohl als Funktion der Frequenz ω als auch als Funktion der Position r beschreiben. Die Elliptizitäten der beiden optimalen Fernfeld-Polarisationen unterscheiden sich nur in ihrem Vorzeichen, also ihrer Rotationsrichtung im Zeitraum, und der Winkel zwischen ihren Orientierungen (entspricht dem Winkel zwischen den Hauptachsen ihrer Ellipsen) beträgt ±π/"2" . Die Händigkeit der optimalen lokalen optischen Chiralität kann über das Schalten zwischen den optimalen Fernfeld-Polarisationen hin und her gewechselt werden. Mit Hilfe von numerischen Simulationen wurde für zwei konkrete Nanostrukturen beispielhaft demonstriert, dass für die lokale optische Chiralität Werte erreicht werden können, die deutlich höher sind als die optischen Chiralitätswerte von zirkular polarisiertem Licht im freien Raum ─ die höchstmöglichen Werte für optische Chiralität im freien Raum. Die entsprechenden optimalen Fernfeld-Polarisationen haben sich dabei von linearer und zirkularer Polarisation unterschieden und variierten mit der Frequenz. Die Anwendung von Femtosekunden-Polarisationspulsformung bietet die Möglichkeit, die lokale optische Chiralität kohärent über einen kontinuierlichen Frequenzbereich zu kontrollieren. Außerdem können Symmetrieeigenschaften der Nanostrukturen genutzt werden, um zu bestimmen, welche Fernfeld-Polarisation optimal ist. Die theoretischen Erkenntnisse können zukünftige experimentelle Studien über die lokale Verstärkung der optischen Chiralität beeinflussen. Das Einstellen der Fernfeld-Polarisation des einfallenden Lichts stellt ein vielversprechendes Hilfsmittel dar, um chiral-spezifische Wechselwirkungen von lokalen elektromagnetischen Feldern mit molekularen und anderen Quantensystemen in der Nähe plasmonischer Nanostrukturen zu verstärken. Die hier gezeigte Methode kann Anwendung finden in der chiralen Erkennung adsorbierter Moleküle, in der zeitaufgelösten chiral-sensitiven Spektroskopie und in der chiralen Quantenkontrolle. Abschließend lässt sich festhalten, dass jedes der lokalisierten Lichtphänomene, die in dieser Arbeit untersucht wurden ─ die verstärkte lokale Absorption von Nahinfrarotlicht aufgrund der Bildung von lokalisierten photonischen Moden, der periodische langreichweitige Energietransfer zwischen zwei Nanoantennen in einer plasmonischen elliptischen Kavität und die Optimierung der lokalen Verstärkung der optischen Chiralität über das Einstellen der Fernfeld-Polarisation des einfallenden Lichts ─ neue Perspektiven eröffnen kann für eine Vielzahl von zukünftigen Anwendungsmöglichkeiten. KW - Ultrakurzzeitspektroskopie KW - Kohärente Optik KW - Chiralität KW - Nahfeldoptik KW - Ultrakurzzeitspektroskopie KW - Nahfeldoptik KW - Kohärente 2D Spektroskopie KW - Oberflächenplasmonresonanz KW - Zirkulardichroismus Spektroskopie KW - Ultrafast spectroscopy KW - Nano-optics KW - Coherent 2D spectroscopy KW - Surface plasmons KW - Circular dichroism spectroscopy Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-150681 ER - TY - THES A1 - Hader, Kilian T1 - Lokalisierungsdynamik unter Berücksichtigung von Molekül-Feld-Wechselwirkung, Kern-Elektron-Kopplung und Exziton-Exziton-Annihilierung T1 - Localization dynamics considering molecule-field interaction, nuclear-electron coupling and exciton-exciton annihilation N2 - Diese Arbeit befasst sich mit verschiedenen Aspekten der Dynamik von Kernen, Elektronen und gekoppelten Kern-Elektron-Systemen, wobei je nach System unterschiedliche Herangehensweisen gewählt wurden. Zentrale Punkte sind bei allen drei Kapiteln einerseits die Lokalisierung von Teilchen und Energie und andererseits eine hohe Sensitivität in Bezug auf die Wahl der Anfangsbedingungen. Im ersten Teil wurden von der Carrier-Envelope-Phase (CEP) abhängende, laser-induzierte Lokalisierungen betrachtet. Das zentrale Element ist dabei das entwickelte Doppelpulsschema, mit welchem eine CEP-Abhängigkeit in beobachtbaren Größen erzeugt wird. Als Beispielsysteme wurden die Fragmentation im D₂⁺-Modellsystem und eine Isomerisierung im Doppelminimumpotential (DMP) untersucht. Als Observable wird die Asymmetrie betrachtet Im DMP kann die Asymmetrie mit dem Entantiomeren/Isomerenüberschuss gleich gesetzt werden kann und im D₂⁺-Modellsystem mit der Lokalisierung des Elektrons auf einem der beiden dissoziierenden Kerne. Eine Phasenabhängigkeit der Asymmetrien besteht nur für die CEP des zweiten Pulses φ₂, für welchen keine Begrenzungen für die Anzahl an Laserzyklen auftreten. Im DMP wurde die CEP-Abhängigkeit der Asymmetrien auch bei unterschiedlichen Startkonfigurationen untersucht. Für alle untersuchten Startkonfigurationen konnte ein Laserparametersatz gefunden werden, der für zumindest eine der beiden Asymmetrien eine CEP-Abhängigkeit liefert. Aufgrund der aufgehobenen energetischen Entartung der Paare gerader und ungerader Symmetrie ist die resultierende Lokalisierung zeitabhängig. Zur Messung der vorhergesagten Dynamiken ist z.B. die Aufnahme eines Photoelektronen-Spektrums denkbar. In nächsten Kapitel wurden unterschiedliche Dynamiken innerhalb eines 4d Kern-Elektron-Modells in der Nähe einer konischen Durchschneidung (CI) zweier Potentiale betrachtet. Hierbei ist hervorzuheben, dass eine solche gleichzeitige Untersuchung von Kern- und Elektron-Dynamik in Systemen mit CIs in der Literatur, nach Wissen des Autors, bisher nicht veröffentlicht ist. Das 4d-Potential wurde mit Hilfe des sogenannten Potfit-Algorithmus gefittet. Dieser Fit wurde anschließend verwendet, um die Dynamik des gekoppelten Systems mit Hilfe der ”Multi-Configuration Time-Dependent Hartree”(MCTDH)-Methode zu berechnen. Aus der Analyse der gekoppelten Kern-Elektron-Wellenfunktion ergaben sich zwei grundlegend unterschiedliche Klassen von Dynamiken: • Diabatisch: Kern- und Elektrondynamik sind nahezu entkoppelt. Der Kern bewegt sich und das Elektron bleibt statisch. • Adiabatisch: Kern- und Elektrondynamik sind stark gekoppelt. Die Kerndynamik findet auf Kreisbahnen statt. Mit der Rotation der Kerndichte um den Winkel φ geht eine Rotation der Elektron-Dichte einher. Die diabatische Bewegung entspricht der Dynamik durch die konische Durchschneidung und die adiabatische Bewegung der Dynamik auf der unteren Potentialfläche. Welche der beiden Dynamiken stattfindet, wird durch die Wahl der Anfangsbedingung bestimmt. Der wesentliche Unterschied zwischen den beiden Startzuständen ist dabei die Lage des Knotens im elektronischen Anteil der Wellenfunktion. In den diabatischen Bewegungen bleibt z.B. der pₓ -artige Charakter der elektronischen Wellenfunktion konstant, wohingegen sich bei der adiabatischen Dynamik der Charakter mit der Kernbewegung ändert. Die Zeitersparnis durch die Verwendung des MCTDH-Ansatzes im Vergleich zur Split-Operator-Methode liegt etwa bei einem Faktor 5. Das letzte Kapitel widmet sich der mikroskopischen Beschreibung von Exziton-Exziton- Annihilierung (EEA). Dabei werden numerische Lösungen der aus einem mikro- skopischen Modell hergeleiteten Ratengleichungen mit Messungen ( transienter Absorption) verglichen. Es wurden zwei Systeme untersucht: ein Squarain-basiertes Heteropolymer (SQA-SQB)ₙ und ein [2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenvinylen]-Polymer, auch bekannt als MEH-PPV. In beiden Fällen gelang die systematische Parameterbestimmung mit Hilfe einer Aufteilung in lokalisierte Subsysteme. Diese Subsysteme werden einzeln gewichtet und anschließend aufsummiert, wobei die Gewichte optimiert werden können. Aus den so erhaltenen Parametern ergibt sich für beide Systeme ein ähnliches Bild: • Durch ultraschnelle Lokalisierung der Anregung im fs-Bereich auf kleinere Aggregateinheiten bilden sich voneinander getrennte Subsysteme. • Die in den Subsystemen lokalisierten Exzitonen können sich nur innerhalb dieser Bereiche frei bewegen. Es ist ausreichend, direkt benachbarte Mono-, Bi-, Tri- und Tetra-Exzitonen in bis zu zwei Dimensionen zu berücksichtigen. • Auf einer fs-Zeitskala annihilieren direkt benachbarte Exzitonen. • Im MEH-PPV ergibt sich der Signalzerfall im fs-Bereich als Mittelwert aus einer schnellen (zwischen Ketten) und einer langsamen (innerhalb von Ketten) Annihilierung. • Im ps- bis ns-Bereich wird sowohl durch Diffusion vermittelte Annihilierung, also auch der Zerfall der ersten angeregten Zustände bedeutsam. N2 - In the present work the dynamics of nuclei, electrons, and coupled nuclei-electron systems are examined in different ways. Items that are central in all three chapters are, on the one hand localization of particles and energy and, on the other, a high sensitivity to the choice of initial condition. In the first chapter carrier-envelope-phase (CEP) dependent, laser induced localization is examined. The main element of the considerations is a double pulse scheme, which creates a CEP-dependence in the monitored observables. As example systems the fragmentation of a D₂⁺-model and the isomerization in a double well potential (DWP) are investigated. As an observable the asymmetry is chosen. In the DWP this entity can be related to enantiomeric or isomeric excess and in the D₂⁺-model it describes the localization of the electron on a fragment. The phase dependent part of the asymmetries only relies on the CEP φ₂ of the second pulse which does not have any restrictions on the amount of laser cycles. In the DWP a CEP-dependence of the asymmetries could be examined starting from different initial configurations. For all different initial conditions a set of laser parameters could be found which produces at least one CEP-dependent asymmetry. Due to the removed degeneracy between states of even and odd parity, the resulting localization in the left or right potential well is time-dependent. - fied such that the first pulse does not populate all states equally. A possible way to test the predicted behavior experimentally is the measurement of photo-electron spectra. In the next chapter coupled nucleus-electron-dynamics in the vicinity of a conical intersections (CI) of two potentials are investigated in a 4-d model system.Such examinations of coupled nucleus-electron-dynamics on equal footing in systems containing CIs is, to the author’s knowledge, not published in literature. The 4-d potential has been fitted by use of the so-called Potfit-algorithm which subsequently could be used to calculate the dynamics of the coupled system in the ”Multi-Configuration Time-Dependent Hartree”(MCTDH)-framework. The analysis of the coupled nucleus-electron-wavefunction yielded two fundamentally different classes of dynamics: • Diabatic: Nucleus- and electron dynamics are nearly uncoupled. The nucleus moves while the electron remains static. • Adiabatic: Nucleus- and electron dynamics are strongly coupled. The dynamic of the nucleus takes place on orbits. The rotation of the nuclear density by the angle φ is accompanied by a rotation of the electron-density at the same angle. The diabatic dynamics are present if the wave packet is passing through the conical intersection and the adiabatic dynamics can be attributed to a wave packet moving on the lower potential surface. Which of the two classes of dynamics takes place can be controlled by choice of the initial wavefunction. The most significant difference between the two initial wavefunctions is the plane in which the node of the electronic wavefunction is located. In case of a diabatic motion the pₓ -like character of the wavefunctions remains constant, while in case of a adiabatic motion the character changes with the motion of the nucleus.The time saving by usage of the MCTDH-method in comparison to the Split-Operator-method is about a factor of 5. The last chapter is dedicated to the microscopic description of exciton-exciton-annihilation (EEA). The numerical solution of the rate equations which are derived starting from a microscopic Hamiltonian, are compared with measurements. The experimental data are time-dependent traces of transient absorption measurements at different laser fluences which were available for two different systems:a squaraine-based copolymer (SQA-SQB)ₙ and a [2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] polymer also know as MEH-PPV. In both cases a systematic parameter determination could be achieved by introduction of localized subsystems. These subsystems are weighted independently and are summed up whereby the weighs can be optimized. The resulting interpretation of the obtained parameters is similar for both systems: • Ultrafast localization of the excitation energy takes place in the fs-regime which leads to excitons residing on smaller subsystems. • Excitons in these subsystems can only move inside of these domains. A re- construction of experimental data is feasible by inclusion of mono-, bi-, tri- and tetra-excitons in up to two dimensions. • In the fs-regime neighbouring excitons annihilate • In the MEH-PPV polymer the signal decay in the fs-regime can be described as the average of a fast annihilation (between chains) and a slow annihilation (inside chains). •On a longer time-scale (ps to ns) diffusion-meditated annihilation and decay of the first excited states take place KW - Quantenmechanik KW - Quantenchemie KW - Laserstrahlung KW - Nichtadiabatischer Prozess KW - Exziton KW - multicycle CEP control KW - exciton exciton annihilation KW - exact conical intersection dynamics KW - coupled nuclear-electron MCTDH KW - quantum dynamics KW - Quantentheoretische Chemie Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146735 ER - TY - THES A1 - Brückner, Charlotte T1 - The Electronic Structure and Optoelectronic Processes at the Interfaces in Organic Solar Cells Composed of Small Organic Molecules - A Computational Analysis of Molecular, Intermolecular, and Aggregate Aspects T1 - Die elektronische Struktur und die optoelektronischen Prozesse an den Grenzflächen in organischen Solarzellen aus kleinen organischen Molekülen - eine theoretische Analyse auf molekularer, intermolekularer und Aggregatebene N2 - Describing the light-to-energy conversion in OSCs requires a multiscale understanding of the involved optoelectronic processes, i.e., an understanding from the molecular, intermolecular, and aggregate perspective. This thesis presents such a multiscale description to provide insight into the processes in the vicinity of the organic::organic interface, which are crucial for the overall performance of OSCs. Light absorption, exciton diffusion, photoinduced charge transfer at the donor-acceptor interface, and charge separation are included. In order to establish structure-property relationships, a variety of different molecular p-type semiconductors are combined at the organic donor-acceptor heterojunction with fullerene C60, one of the most common acceptors in OSCs. Starting with a comprehensive analysis of the accuracy of diverse ab initio, DFT, and semiempiric methods for the properties of the individual molecules, the intermolecular, and aggregate/device stage are subsequently addressed. At all stages, both methodological concepts and physical aspects in OSCs are discussed to extend the microscopic understanding of the charge generation processes. N2 - Um die Umwandlung von Licht zu Strom in organischen Solarzellen zu verstehen, müssen die beteiligten optoelektronischen Prozesse sowohl auf molekularem als auch auf intermolekularem und auf dem Aggregatniveau beschrieben werden. Diese Arbeit stellt eine solche mehrstufige Beschreibung dar, um zum grundlegenden Verständnis derjenigen Prozesse am organisch::organischen Interface beizutragen, die für die finale Gesamtleistung der Zelle ausschlaggebend sind. Dabei werden die wesentlichen Schritte von der Lichtabsorption und Exzitonendiffusion über den photoinduzierte Charge-Transfer-Schritt am Donor-Akzeptor-Interface bis hin zur endgültigen Ladungstrennung berücksichtigt. Um auf Struktur-Eigenschafts-Beziehungen rückschließen zu können, wurden verschiedene molekulare p-Halbleiter in der heterojunction mit Fulleren C60 kombiniert, einem der gängigsten Akzeptoren in organischen Solarzellen. Nach einer umfangreichen Bewertung der Eignung verschiedener ab initio und semiempirischer Methoden sowie diverser DFT-Funktionale für die Beschreibung der molekularen Eigenschaften wurden intermolekulare und Aggregataspekte diskutiert. Auf allen Ebenen, d.h. auf der molekularen, intermolekularen und auf der Aggregatebene, stehen sowohl methodische Ansätze als auch grundlegendende photophysikalische Überlegungen im Mittelpunkt, um das mikroskopische Verständnis der Ladungsträgererzeugung in organischen Solarzellen zu erweitern. KW - Benchmark KW - Solarzelle KW - organic interfaces KW - benchmark KW - charge carrier generation KW - organische Grenzflächen KW - Benchmark KW - Ladungsträgererzeugung KW - solar cell Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-141652 ER - TY - THES A1 - Heilos, Anna T1 - Mechanistic Insights into the Inhibition of Cathepsin B and Rhodesain with Low-Molecular Inhibitors T1 - Mechanistische Untersuchungen zur Inhibition von Cathepsin B und Rhodesain mit niedermolekularen Inhibitoren N2 - Cysteine proteases play a crucial role in medical chemistry concerning various fields reaching from more common ailments like cancer and hepatitis to less noted tropical diseases, namely the so-called African Sleeping Sickness (Human Arfican Trypanosomiasis). Detailed knowledge about the catalytic function of these systems is highly desirable for drug research in the respective areas. In this work, the inhibition mechanisms of the two cysteine proteases cathepsin B and rhodesain with respectively one low-molecular inhibitor class were investigated in detail, using computational methods. In order to sufficiently describe macromolecular systems, molecular mechanics based methods (MM) and quantum mechanical based method (QM), as well as hybrid methods (QM/MM) combining those two approaches, were applied. For Cathespin B, carbamate-based molecules were investigated as potential inhibitors for the cysteine protease. The results indicate, that water-bridged proton-transfer reactions play a crucial role for the inhibition. The energetically most favoured pathway (according to the calculations) includes an elimination reaction following an E1cB mechanism with a subsequent carbamylation of the active site amino acid cysteine. Nitroalkene derivatives were investigated as inhibitors for rhodesain. The investigation of structurally similar inhibitors showed, that even small steric differences can crucially influence the inhibition potential of the components. Furthermore, the impact of a fluorination of the nitroalkene inhibitors on the inhibition mechanism was investigated. According to experimental data measured from the working group of professor Schirmeister in Mainz, fluorinated nitroalkenes show – in contrast to the unfluorinated compounds – a time dependent inhibition efficiency. The calculations of the systems indicate, that the fluorination impacts the non-covalent interactions of the inhibitors with the enzymatic environment of the enzyme which results in a different inhibition behaviour. N2 - Cysteinproteasen spielen eine wichtige Rolle in der medizinischen Chemie. Nicht nur im Bereich bekannterer Krankheiten wie Krebs oder Hepatitis, sondern auch bezüglich weniger verbreiteter, tropischer Krankheiten wie der sogenannten afrikanischen Schlafkrankheit (Afrikanische Trypanosomiasis) haben diese Enzyme eine große Bedeutung. Im Bereich der Wirkstofffindung ist ein detailliertes Wissen über die katalytische Funktion der an einer Krankheit beteiligten Enzyme unabdingbar .In der vorliegenden Arbeit wurden die Inhibitionsmechanismen der beiden Cysteinproteasen Cathepsin B und Rhodesain in Verbindung mit zwei niedermolekularen Inhibitorklassen anhand theoretischer Berechnungen untersucht. Um die makromolekularen Systeme ausreichend genau beschreiben zu können, wurden neben molekularmechanischen (MM) und quantenmechanischen (QM) Ansätzen auch Hybridmethoden verwendet, welche beide Ansätze (QM/MM) verbinden. Für Cathepsin B wurden Carbamat-basierte Moleküle als potenzielle Inhibitoren der Cysteinprotease untersucht. Die Ergebnisse weisen darauf hin, dass wasser-verbrückte Protonentransferreaktionen eine entscheidende Rolle für die Inhibition spielen. Der laut den Rechnungen energetisch günstigste Mechanismus beinhaltet eine Eliminierungsreaktion nach einem E1cB Mechanismus gefolgt von der Carbamylierung der Aminosäure Cystein in der aktiven Tasche des Enzyms. Nitroalken-Derivate wurden als potenzielle Rhodesain Inhibitoren untersucht. Der Vergleich strukturell ähnlicher Verbindungen weist darauf hin, dass schon kleine sterische Veränderungen einen großen Einfluss auf das Inhibitionspotenzial der Nitroalkene haben können. Außerdem wurde der Einfluss einer Fluorierung der Inhibitoren anhand von Berechnungen untersucht. Messungen der Arbeitsgruppe von Prof. Schirmeister in Mainz zu fluorierten und unfluorierten Nitroalkenen zeigen, dass die fluorierten Verbindungen ein zeitabhängiges Inhibitionspotenzial in Rhodesain aufweisen. Die Berechnungen der Systeme deuten darauf hin, dass die Fluorierung die nicht-kovalenten Wechselwirkungen der Inhibitoren mit der enzymatischen Umgebung des Systems beeinflussen, was zu einem unterschiedlichen Inhibitionsverhalten führt. KW - Cysteinproteasen KW - Inhibitor KW - Mechanismus KW - Berechnung KW - Inhibition Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178228 ER - TY - THES A1 - Constantinidis, Philipp T1 - Schwingungsspektroskopische Untersuchung reaktiver Moleküle und ihrer Hochtemperatur-Reaktionsprodukte T1 - Vibrational spectroscopy of reactive molecules and their high-temperature reaction products N2 - Schwingungsspektroskopie ist eine vielseitige spektroskopische Methode, mit der Molekülstrukturen und inter-/intramolekulare Wechselwirkungen untersucht werden können. Sie ist deshalb ein hervorragendes Mittel für die Identifikation von Molekülen. Die vorliegende Arbeit umfasst drei Projekte, in denen Schwingungsspektroskopie angewandt wurde, um reaktive Moleküle und ihre Hochtemperatur-Reaktionsprodukte zu untersuchen: 1. Die Aufklärung der Entstehungsmechanismen von polycyclischen aromatischen Kohlenwasserstoffen (PAKs) in Verbrennungsprozessen ist eines der Hauptanliegen der Verbrennungschemie. In der vorliegenden Arbeit wurde IR/UV-Ion-Dip-Spektroskopie in Verbindung mit DFT-Frequenzrechnungen und FTIR-Messungen angewandt, um Produkte von Radikal-Radikal-Reaktionen in einem Mikroreaktor bei hohen Temperaturen zu identifizieren. Als IR-Laserquelle für die IR/UV-Ion-Dip-Experimente diente der Freie-Elektronen-Laser FELIX (Free-Electron Laser for Infrared eXperiments) in Nijmegen (Niederlande). In einem Teilprojekt wurde der A 1A´ (S1) <- X 1A´ (S0) Übergang in 1-(Phenylethinyl)naphthalin (1-PEN), einem mutmaßlich verbrennungsrelevanten Molekül, mit [1+1]-REMPI-Spektroskopie untersucht. 2. Die Identifikation von gasförmigen Reaktionsprodukten bei der thermischen Analyse (EGA: Emissionsgasanalyse) kann als komplementäre Methode zur DTA/TG zusätzliche Informationen für die Aufklärung von Reaktionsmechanismen liefern. Der Aufbau eines elementaren EGA/FTIR-Experiments, basierend auf einer heizbaren IR-Gaszelle, ermöglichte in der vorliegenden Arbeit die Durchführung dynamischer IR-Messungen, mit denen thermische Umsetzungen von Übergangsmetall-Precursorkomplexen zu Koordinationspolymeren untersucht wurden. 3. Die Synthese des ersten bei Raumtemperatur stabilen Diborins, einer Verbindung mit einer Bor-Bor-Dreifachbindung, stellte einen Meilenstein in der elementorganischen Chemie dar. Dies implizierte eine umfassende Untersuchung der Eigenschaften der BB-Bindung und hatte die Synthese einer Reihe ähnlicher Bor-Bor-Mehrfachbindungssysteme mit variierenden Bindungseigenschaften zur Folge. In der vorliegenden Arbeit wurde Raman-Spektroskopie in Verbindung mit DFT-Frequenzrechnungen angewandt, um für diese Bor-Bor-Systeme die strukturellen/elektronischen Eigenschaften der zentralen CBBC-Einheit zu untersuchen. N2 - Vibrational spectroscopy is a versatile spectroscopic technique for the investigation of the molecular structure and inter-/intramolecular interactions. Therefore it is an excellent means for their identification. The present work comprises three projects, in which vibrational spectroscopy was applied to study reactive molecules and their high-temperature reaction products: 1. The elucidation of the mechanisms of polycyclic aromatic hydrocarbon (PAH) formation in combustion processes is one of the main topics of combustion chemistry. In the present work IR/UV ion dip spectroscopy in combination with DFT frequency computations and FTIR measurements was applied to identify the products of radical-radical reactions in a heated micro-reactor. The free-electron laser FELIX (Free-Electron Laser for Infrared eXperiments) in Nijmegen (the Netherlands) served as the IR laser source for the IR/UV ion dip experiments. As part of the project the A 1A´ (S1) <- X 1A´ (S0) transition in 1-(phenylethynyl)naphthalene (1-PEN), a presumably combustion relevant molecule, was investigated by [1+1]-REMPI spectroscopy. 2. As complementary method to DTA/TG the identification of gaseous reaction products in thermal analysis (EGA: evolved gas analysis) can provide auxiliary information for the elucidation of reaction mechanisms. The setup of a plain EGA/FTIR experiment based on a heatable IR gas cell in the present work allowed for the conduction of dynamic IR measurements. By this means thermal conversions of transition metal precursor complexes to coordination polymers were investigated. 3. The synthesis of the first ambient-temperature stable diboryne, a compound with a boron-boron triple bond, constituted a milestone in element organic chemistry. This implied a comprehensive investigation on the properties of the BB bond and was followed by the synthesis of a series of similar boron boron multiple bond systems with varying bond properties. In the present work Raman spectroscopy in combination with DFT frequency computations was conducted on these boron boron systems to investigate the structural/electronic properties of their central CBBC unit. KW - Schwingungsspektroskopie KW - Freie-Elektronen-Laser KW - Fotoionisation KW - Bimolekulare Reaktion KW - Polycyclische Aromaten KW - Raman-Spektroskopie KW - Thermoanalyse KW - EGA-FTIR KW - Radikal Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-179178 ER - TY - THES A1 - Bellinger, Daniel T1 - Implementation of new reaction pathway determining methods and study of solvent effects on the excited state nature of perylene based dyes T1 - Implementierung neuer Reaktionspfad bestimmender Methoden und Untersuchung von Lösungsmitteleinflüssen auf die Natur der angeregten Zustände perylen-basierter Farbstoffe N2 - Two thematic complexes were addressed within this work. One part is related to improvements and new implementations into the CAST program package. Thereby the main focus laid on the delivery of a tool which can be used to characterize complex reactions and their mechanisms. But also within the new force field (FF) method (SAPT-FF) within the CAST program, several improvements were made. The second topic is related to the description of dye molecules and their spectral properties. The main focus within these studies was set on the influence of the environment on these properties. In the first topic improvements of the local acting NEB (nudged elastic band) methods were included and the number of available methods was extended. The initial pathway generation was improved by implementing the IDPP (image dependent pair potential) method and a new method was implemented for describing temperature dependent pathways. Additionally, improvements have been made to the optimization routines (global NEB). As a second part the Pathopt (PO) method was considerably improved. In the beginning of the work the original PO idea was used. In this approach one starts with a global optimization on one n-1 dimensional hyperplane which divides the reaction into two sub-areas for obtaining guesses of TSs (transition states). These found TS guesses were used to optimize to the ”true” TS. Starting from the optimized ones a relaxation to the next connected minima is done. This idea has been automatically implemented and extended to several number of hyperplanes. In this manner a group of pathsegments is obtained which needs to be connected, but within this work it was realized that such a procedure might be not very efficient. Therefore, a new strategy was implemented which is founded on the same constrained global optimization scheme (MCM) for which the user defines the number of hyperplanes generated. The number of such generated hyperplanes should be large enough 134 to describe the space between the concerning reactants in a sufficient way. The found minima are directly used to built up the reaction pathway. For this purpose a RMSD (root mean square deviation) criterion is used to walk along ways of minimal change from one to another hyperplane. To prove the implementations various test calculations were carried out and extensions included to prove the capabilities of the new strategy. Related to these tests a new strategy for applying the move steps in MCM (Monte Carlo with minimization) was realized which is also related to the question of the coordinates representation. We were able to show that the hopping steps in MCM can be improved by applying Cartesian steps in combination of random dihedral moves with respect to the constraint. In this way it was possible to show that a large variety of systems can be treated. An additional chapter shows the improvements of the SAPT-FF implementation and related test cases. It was possible to treat benzene dimer and cluster systems of different sizes consistently also in accordance with high level ab initio based approaches. Furthermore, we showed that the SAPT-FF with the right parameters outperforms the standard AMOEBA implementation which is the basis of the SAPT-FF implementation. In the last three chapters deal with the description of perlyene-based dyes. In the first smaller chapter ground state chemistry description of macro cycles of PBI (perylene bisimide) derivatives were investigated. Therefore, AFM (atomic force microscopy) based pictures were explained within our study. The methods to explain aggregation behavior in dependency of the ring size were MD simulations and configuration studies. The last two chapters deal with opto-electronic or photo-physical properties of PBI and PTCDA (perylene-3,4,9,10-tetracarboxylic dianhydride). In detail, we investigated the role of the environment and the aggregate or crystal surrounding by applying different models. In that way implicit and explicit solvation models, the size of aggregates and vibration motions were used. In the case of PBI the recent work is found on preliminary studies related to my bachelor thesis and extends it. It was shown that the direct influence of a polarizable surrounding, as well as explicit inclusion of solvent molecules on the overall description of the excitations and nature of the excited states is weaker as one might expect. However the inclusion of intra-molecular degrees of freedom showed a stronger influence on the state characteristics and can induce a change of the order of states within the dimer picture. For the PTCDA molecule the main focus was set on the description of the absorption spectrum of crystalline thin films. Related to this older works exist which already gave a description and assignment of the absorption band, but are based on different approaches compared to the one used in this work. We used the supermolecule ansatz, whereas the environment and different aggregate sizes were investigated. Within the dimer based approach we were able to show that using continuum solvation (IEFPCM/COSMO) based description for the environment the relative order of states remains unchanged. Similar to the PBI calculations the influence of the vibrational motions /distortions is larger. The simulation of the crystal environment by using QM/MM (quantum mechanics/molecular mechanics) approaches delivered that an asymmetric charge distribution might induce a localization of the excitation and a stronger mixing of states. For obtaining further insights we go beyond the dimer picture and aggregates of different sizes were used, whereas the simulations up to the octadecamer mono- and even dual-layer stack were carried out. Within these calculations it was shown that the H-coupling is dominating over a weaker J-coupling between different stacks. Additionally the calculations based on DFT (density functional theory) and semi-empirics showed that the lowest state in terms of energy are mostly of Frenkel type, whereas the higher lying states are CT ones which mix with embedded Frenkel type states. The first band of the absorption spectrum was explained by inclusion of vibrational motions within the stacks which induce an intensity gain of the first excited state. This intensity was not explainable by using the undistorted stacks. Also relaxations at the crystal surface might play a role, but are experimentally not explainable. N2 - In der Arbeit wurden zwei große Themenkomplexe bearbeitet. Zum einen wurden Verbesserungen und neue Methoden in CAST, unserem Entwicklungstool, implementiert. Hierbei geht es vor allem darum ein Werkzeug bereit zu stellen, mit dem es möglich ist Reaktionen genauer zu charakterisieren. Aber auch neue Beschreibungen innerhalb der Kraftfeldmethoden (SAPT-FF) wurden bereitgestellt bzw. erweitert. Der zweite Themenkomplex behandelt die Beschreibung von Farbstoffmolekülen und ihrer spektralen Eigenschaften. Insbesondere liegt in dieser Studie der Fokus auf Umgebungseinflüsse. Im ersten Abschnitt wurden Erweiterungen in den lokalen Methoden, die auf NEB (nudged elastic band) basieren, implementiert. Hier wurde zum einen das Spektrum an Methoden erweitert. So wurde der initiale Vorschlag für den Startpfad durch Implementierung der IDPP (image dependent pair potential) Methode verbessert. Des Weiteren wurde eine Methode zur temperaturabhängigen NEB Beschreibung integriert, die auf Maximierung des Fluxes beruht. Auch wurden Verbesserungen hinsichtlich der Optimierungsroutinen durchgeführt. Der wesentliche Teil im ersten Themenbereich beschäftigt sich mit der Verbesserung und Automatisierung von Pathopt (PO). Zu Beginn der Arbeit wurde die ursprüngliche Idee aufgegriffen. Hierbei ermittelt man Vorschläge für Übergangszustände (¨UZ) durch eine globale Optimierung mit Nebendbedingungen auf einer n-1 dimensionalen Hyperfläche, die den Reaktionsraum teilt. Diese ¨UZ bilden den Startpunkt, um mittels einer ”uphill” Optimierung hin zum ”wirklichen ÜZ” zu gelangen. Ausgehend von diesen wurde in die nächst verknüpften Minima relaxiert. Diese Idee wurde automatisiert und auf mehrere Hyperflächen ausgeweitet. So erhält man eine Schar an Pfadsegmenten, die verknüpft werden müssen. Im Laufe der Arbeit, stellte sich jedoch heraus, dass diese Vorgehensweise nicht sehr effizient ist und daher wurde eine neue Idee verwirklicht. Diese beruht wiederum auf der globalen Optimierung mittels Monte Carlo mit Minimierung und Nebenbedingungen auf einer vom Nutzer bestimmten Anzahl an n-1 dimensionalen Hyperflächen. Nun wählt man diese Anzahl entsprechend groß genug aus, um den Raum zwischen den Reaktanden zu beschreiben. Die so gefundenen Mininima auf den n-1 Hyperflächen werden für die direkte Pfaderzeugung genutzt. Dies geschieht mittels eines RMSD (root mean square deviation) Kriteriums, um so den Weg der geringsten Änderungen anhand der Hyperflächen zu wählen. Im Zuge der Implementierung der Methode wurden zahlreiche Testrechnungen und Methodenerweiterungen durchgeführt, um die Funktionalität zu überpüfen und zu verbessern. Diese Verbesserungen liegen zum Bsp. in den Sprungstrategien bzw. der Wahl des Koordinatensystems. Hier konnte gezeigt werden, dass eine Verbindung unterschiedlicher Strategien für die Durchführung des ”Hüpfens” in Monte Carlo zu entscheidenden Verbesserungen führt. Diese Verbesserung besteht in der Verknüpfung von Kartesischen Schritten und zufälliger Veränderungen der Diederwinkel im Rahmen der Nebenbedingungen. Mit Hilfe dieser Verbesserungen konnte eine Vielzahl von Systemen behandelt werden. Ein weiteres Kapitel beschreibt Verbesserungen zum SAPT-FF (FF=Kraftfeld). Testrechnungen zu strukturellen Eigenschaften von Benzol Clustern belegen die Genauigkeit der Ansätze. Auch wurde aufgezeigt, dass das SAPT-verbesserte AMOEBA Kraftfeld der Standard Parametrisierung überlegen ist. Die letzten drei Abschnitte dieser Arbeit behandeln Perylen-basierte Farbstoffe. In einem ersten kleinen Kapitel geht es um die Grundzustandseigenschaften von PBI (Perylenbisimide) Makrozyklen und Erklärung von AFM (Atomic Force Mycroscopy) Messungen. Hier konnten wir mittels MD-Simluation (Molekular Dynamik) und deren Analyse, sowie Beschreibungen unterschiedlicher Konfigurationen, das Aggregationsverhalten in Abhängigkeit der Ringgröße genauer beleuchten. In den beiden letzten Kapiteln geht es um die optoelektronischen Eigenschaften bzw. die photophysikalische Beschreibung von PBI und PTCDA (Perylen-3,4,9,10-Tetracarboxyl Dianhydrid). Im Genaueren wurde die Rolle der Umgebung in Aggregat und Kristall durch unterschiedliche methodische Ansätze untersucht. So wurden implizite Solvensmodelle und explizite Solvatation, Aggregatgröße und vibronische Freiheitsgrade untersucht. In den Arbeiten zum PBI konnte gezeigt werden, dass ein direkter Einfluss durch die Beschreibung mittels impliziter Solvatation, als auch expliziter Solvensmoleküle, auf die Lage der Zustände auch in Hinsicht auf deren Charakterisik nicht auftritt. Berücksichtigt man intra-molekulare Freiheitsgrade, so wird die Lage der Zustände deutlich stärker beeinflusst und sogar ein Wechsel der Zustände wird induziert. Im Fall von PTCDA lag vor allem die Beschreibung und Erklärung der Absorptionsspektren von kristallinem PTCDA im Fokus. Hierzu gibt es ¨altere Arbeiten, die bestimmte Zuordnungen der Banden und ihrer Übergänge postuliert haben. In dieser Arbeit sollte diese Beschreibung im Rahmen eines Supermolekül Ansatzes geklärt und weiter beschrieben werden, wobei Umgebungseinflüsse und auch Eigenschaften verschiedener Aggregate untersucht wurden. Im Dimer Bild konnten wir zeigen, dass die Umgebung, beschrieben durch Continuums Ansätze (IEFPCM/COSMO) die Lage der Zustände nicht beeinflusst und im Wesentlichen nur Zustände mit großer Oszillatorstärke stabilisiert werden. Ähnlich wie im Falle des PBIs hat die Berücksichtigung vibronischer Freiheitsgrade einen wesentlich größeren Einguss. Die Simulation der Kristallumgebung durch QM/MM-Ansätze (Quantenmechanik/Molekularmechanik) ergab, dass eine asymmetrische Ladungsverteilung zu einer Lokalisierung der Anregung und einem stärkeren Durchmischen der Zustände fuhrt. Für eine noch weitergehende Beschreibung wurde das Dimer Bild verlassen und unterschiedliche Aggregate, bis hin zum Oktadekamer im mono- bzw. zweifach-Lagen-Aggregat untersucht. Hier konnte gezeigt werden, dass die Kopplung im H-Aggregat die dominierende Rolle einnimmt und die J-Aggregat Kopplung vernachlässigt werden kann. Zudem zeigen die Rechnungen, die mittels DFT (Dichtefunktionaltheorie) und semi-empirischen Ansätzen durchgeführt wurden, dass die energetisch niedriger liegenden Zustände im wesentlichen Frenkel Charakter aufweisen während die energetisch höher liegenden Zustände CT (Charge Transfer) Charakter haben. Das Auftreten der ersten Bande im Absorptionsspektrum wurde zudem auf das Vorhandensein von möglichen Schwingungsanregungen (mehrere Moden) zurückgeführt, da diese zu einer Zunahme an Intensität des ersten angeregten Zustandes führen, die ohne Berücksichtigung nicht in diesem Maße erhalten wird. Auch könnten Oberflächenrelaxationen eine Rolle spielen, wobei diese experimentell nicht beobachtbar sind. KW - Globale Optimierung KW - Reaktionsmechanismus KW - Exziton KW - Reaktionspfadsuche KW - QM/MM KW - organische Halbleiter KW - Exzitonen Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144435 ER - TY - THES A1 - Kröker, Kristin T1 - DNA-Kohlenstoffnanorohr-Konjugate - Biokompatibilität, ex vivo-Verhalten, Funktionalisierung T1 - DNA-carbon nanotube conjugates - biocompatibility, ex vivo behavior, funtionalization N2 - Einzelstrang-DNA-dispergierte und individualisierte (6,5)-chirale Kohlenstoffnanoröhren bilden als Konjugatsystem den Ausgangspunkt dieser Dissertation. Im Vordergrund stehen dabei Untersuchungen zur Biokompatibilität dieser ssDNA-SWNT-Konjugate sowie deren Verhalten nach Zellpenetration und eine Funktionalisierbarkeit zum Wirkstofftransportsystem. Das erste Projekt widmet sich in Kapitel 4 dem Studium der Konjugatstabilität unter physiologischen Bedingungen und einer Verträglichkeit gegenüber zellulären Systemen. Experimente zur Biokompatibilität werden erstmals an Nanorohrkonjugaten durchgeführt, welche nach Ultrazentrifugation im Dichtegradienten sorgfältig individualisiert vorliegen. Die umgebungssensitiven photophysikalischen Charakteristika vereinzelter (6,5)-SWNTs können zu einer Beurteilung der Konjugatintegrität in physiologischem Milieu genutzt werden. Die Stabilität von ssDNA-SWNT-Strukturen wird in Anwesenheit des Restriktionsenzyms DNase I und dem in Zellnährmedien enthaltenen protein- und nukleasereichem Serum FBS auf die Probe gestellt. In beiden Fällen kann eine ausreichende ssDNA-SWNT-Integrität attestiert werden, die eine Verwendung unter Zellkultivierungsbedingungen erlaubt. Unter Berücksichtigung verschiedener in Zellen vorliegender pH-Umgebungen werden die Konjugate ebenfalls dieser Variation ausgesetzt. Bei Vorliegen stark saurer und basischer pH-Werte kann die Integrität von ssDNA-SWNT-Konjugaten nicht gewährleistet werden, was sich durch Aggregation bemerkbar macht. Innerhalb des breiten pH-Bereichs zwischen den Werten 3 und 11 hingegen kann eine gute Stabilität bestätigt werden. Für zelluläre Anwendungen bedeutet dieser Befund keine Einschränkung, da in Kulturen lediglich neutrale bis schwach saure pH-Werte oberhalb von 4.5 zu finden sind. Nachdem die Biostabilität der ssDNA-SWNT-Konjugate gewährleistet ist, kann in Zytotoxizitätsstudien eine ex vivo-Verträglichkeit des Nanomaterials getestet werden. Erste Untersuchungen mit der Mausmakrophagenlinie J774.1 weisen wie auch ausführliche Studien gegenüber menschlichen Epithelzellen HeLa auf eine uneingeschränkte Kompatibilität in den eingesetzten Konzentrationen hin. HeLa-Zellen, die mit DGU-gereinigten Nanorohrproben behandelt werden, zeigen eine geringfügig höhere Vitalität als nach Inkubation mit einer Rohdispersion undefinierter SWNT-Bündel. Im Gesamtbild ergibt sich somit eine zufriedenstellende Biokompatibilität individualisierter ssDNA-SWNT-Konjugate, womit das in dieser Arbeit zentrale Kohlenstoffnanorohrsystem den Anforderungen für dessen biomedizinische Verwendbarkeit gerecht wird. Der Schwerpunkt weiterer Untersuchungen liegt im zweiten Projekt aus Kapitel 5 auf dem Verhalten von ssDNA-SWNT-Konjugaten nach deren Aufnahme in HeLa-Zellen. Auch hier kann die starke Sensitivität der optischen Eigenschaften individualisierter (6,5)-Kohlenstoffnanoröhren gegenüber Umgebungseinflüssen genutzt werden, um Veränderungen im Emissionsverhalten von SWNTs nach deren zellulärer Aufnahme gegenüber dem Ausgangszustand zu beobachten. Nach ausführlicher Weißlicht-, Fluoreszenz- und SWNT-Photolumineszenzmikroskopie, aus deren Resultaten eine erfolgreiche Internalisierung von ssDNA-SWNTs in HeLa-Zellen eindeutig hervorgeht, stehen PL-spektroskopische Untersuchungen der Kohlenstoffnanoröhren im Vordergrund. Durch einen Vergleich des Emissionsverhaltens der ssDNA-SWNT-Konjugate in und außerhalb von Zellen können spektrale Verschiebungen, Linienverbreiterungen und verkürzte Fluoreszenzlebensdauern nach zellulärer Aufnahme festgestellt werden. Sowohl eine Aggregation von SWNTs als auch eine Beeinflussung durch die pH-Umgebung reichen nicht für eine vollständige Erklärung des Befunds aus. Vielmehr kann die in endosomalen Kompartimenten durch das Größenverhältnis von Endosomen zu SWNTs entstehende räumliche Nähe einer großen Nanorohrmenge untereinander als Ursache für eine Veränderung der dielektrischen Umgebung und folglich des Emissionsverhaltens betrachtet werden. Durch Verwendung der Kohlenstoffnanoröhren als Marker und Sensor können ssDNA-SWNT-Konjugate in Zellen somit nicht nur lokalisiert, sondern darüber hinaus hinsichtlich einer möglichen Aggregation untersucht werden. Aus den in dieser Arbeit vorgestellten Daten kann zwar eine vollständige Aggregation der SWNTs durch deren Aufnahme in Zellen ausgeschlossen werden, sie muss jedoch in geringfügigem Ausmaß neben einer Beeinflussung durch die pH-Umgebung und die große räumliche Nähe durchaus in Betracht gezogen werden. Individualisierte ssDNA-SWNT-Konjugate können damit erstmals zeitaufgelöst PL-mikrospektroskopisch in HeLa-Zellen charakterisiert werden. Für das letzte Projekt werden in Kapitel 6 neuartige Funktionalisierungsmöglichkeiten von ssDNA-SWNT-Konjugaten zu zellulären Transportsystemen unter Erhalt der photophysikalischen Eigenschaften erforscht. Dazu soll das Dispergiermittel DNA als Kupplungsstelle für eine kovalente Anbindung eines Agenz genutzt werden. Anstelle eines Wirkstoffes werden die Untersuchungen mit einem Fluorophor als Modellverbindung durchgeführt, welcher den Vorteil einer einfachen Detektierbarkeit liefert. Prinzipiell besteht die Möglichkeit, das Oligomer mit dem Fluorophor vorzufunktionalisieren und anschließend auf die Oberfläche der SWNTs zu bringen. Als effektiver erweist sich die Methode der direkten Kupplung des Farbstoffs an bereits DNA-dispergierte SWNTs. Der Erfolg in der Präparation von FluorophorssDNA- SWNT-Konjugaten wird über die Emission des Fluorophors mit entsprechenden Referenzexperimenten gemessen. Der Versuch einer Quantifizierung liefert jedoch sehr hohe Werte, die lediglich als eine obere Grenze für die gefundene Anzahl gebundener Fluorophore pro Nanoröhre angesehen werden können. Im Verlauf des Projekts kann eine Funktionalisierbarkeit der Nanoröhren über das Dispergieradditiv DNA als neue Strategie aufgezeigt werden. Im Gegensatz zu bekannten Wirkstofftransportsystemen bietet dieser Funktionalisierungsansatz den Vorteil, dass die optischen Eigenschaften der individualisierten ssDNA-SWNT-Konjugate erhalten bleiben, welche wieder um einen gleichzeitigen Einsatz der Nanoröhren als Transporter und Marker bzw. Sensor erlauben. Die vorliegende Dissertation liefert neben dieser bisher unbekannten Funktionalisierungsstrategie neue Erkenntnisse über die Biokompatibilität speziell von individualisierten ssDNA-SWNT-Konjugaten und deren Verhalten in HeLa-Zellen. Mit diesem Wissen kann der gezielte Wirkstofftransport durch Kohlenstoffnanoröhren als biokompatibles und zellgängiges Trägersystem anvisiert werden. N2 - The key element of this thesis is a conjugate system of single-stranded DNA and individualized (6,5) single-wall carbon nanotubes. The investigations are mainly focused on the biocompatibility of ssDNA-SWNT conjugates, as well as their behavior after cell penetration and general ability to be functionalized for drug delivery. Within the first project, chapter 4 contributes to the study the conjugate stability under physiological conditions and compatibility towards cellular structures. For the first time, such biocompatibility experiments are carried out with nanotube conjugates, which are thoroughly individualized by ultracentrifugation assisted density gradient. The photophysical characteristics of isolated (6,5) SWNTs are highly sensitive towards their environment and can thus be used to evaluate the state of conjugate integrity in a physiological milieu. The stability of ssDNA-SWNT structures is tested in the presence of restriction enzyme DNase I and FBS serum, an important nutrient medium ingredient rich in proteins and nucleases. In either case, the integrity of ssDNA-SWNT conjugates is not affected. With respect to the pH variety occuring in cell structures, the conjugate stability is also investigated in acid and base milieu. Both strong acid and alkaline pH environments influence the integrity of ssDNA-SWNT, leading to aggregation of nanotubes. Conversely, good conjugate stability can be evaluated in a wide pH range between 3 and 11, revealing unlimited applicability towards cells, where the pH environment is known to vary between neutral and weakly acid pH values above 4.5. After evaluation of the biostability of ssDNA-SWNT conjugates, they have to be tested in ex vivo cytotoxicity assays. Studies are primarily carried out with murine macrophage-like cells J774.1 and in more detail with the human cervix carcinoma cell line HeLa. Both indicate no cytotoxic effects with applied SWNT concentrations. Within the HeLa cell studies, the impact of DGU preparation on SWNT cytotoxicity is a further point of interest. As a result, slightly enhanced cell viability can be observed with DGU purified samples as compared to raw dispersion consisting of non-defined SWNT bundles. Overall, ssDNA-SWNT conjugates can be assumed to be sufficiently biostable and thus suitable for biomedical applications. Further investigations in the second part of this work in chapter 5 are focused on the behavior of ssDNA-SWNT conjugates after cellular uptake. Again, the strong environmental sensitivity of optical properties of individualized (6,5) carbon nanotubes can be used to detect changes of the SWNT emission after internalization. Different techniques have been employed to visualize ssDNA-SWNT structures in HeLa cells using white light, fluorescence, and SWNT photoluminescence microscopy. By PL spectroscopy of ssDNA-SWNTs in cells spectral shifts, line-broadening and shortened lifetimes are observed when comparing SWNT emission inside and outside of cell culture. Neither nanotube aggregation nor the influence of the cell-specific pH environment are sufficient explanations for such spectral behavior. Indeed, the spatial proximity of SWNTs with each other in small sized endosomal cell compartiments is supposed to cause nanotube-nanotube interactions that change the dielectric environment and thus the emission behavior of SWNTs. Within the use of carbon nanotubes as marker and sensor, ssDNA-SWNT conjugates cannot only be localized, but also characterized, with regard to possible nanotube aggregation. The data presented in this work can, on the one hand, exclude a total aggregation of SWNTs within their cellular uptake. But, on the other hand, a small extent of aggregation, pH environmental effects, and the spatial proximity of a high amount of SWNTs in comparatively small endosomes have to be considered as factors that influence SWNT emission properties. In this study, individualized ssDNA-SWNT conjugates can be characterized via time-resolved PL microspectroscopy for the first time. The last project in chapter 6 addresses to new functionalization routes of ssDNA-SWNT conjugate with respect to drug delivery applications while retaining the photophysical characteristics. The SWNT dispersion additive DNA serves as binding site for covalent attachment of agents. For a convenient sample characterization, a fluorophor is used as model compound instead of a specific drug. In general, fluorophor-ssDNA-SWNT systems can be obtained by pre-functionalization of oligomers with dye, followed by attachment of the modified DNA on the nanotube surface. More promising, however, is the route via a direct coupling reaction of activated fluorophor molecules with specific ssDNA-SWNT conjugates. The successful sample functionalization can be evaluated from the fluorescence of the dye in comparision with corresponding control experiments. An attempt for quantification of functionalization is found to be problematic as the revealed values are too high and can thus only be regarded as upper limits for the number of fluorophors per nanotube. A new functionalization method for SWNTs can be established using noncovalently bound DNA as the coupling point. Compared to well-known drug delivery systems, the optical properties of SWNTs can be retained with this procedure, allowing the simultaneous use of nanotubes as cellular transporter and marker or sensor. In addition to the new functionalization strategy, further knowledge about biocompatibility of well-isolated ssDNA-SWNT conjugates and their behavior after cellular uptake can be obtained through this thesis. Thus, a targeted drug delivery with isolated carbon nanotubes as biocompatible and a cell penetrating carrier system could be aimed for future work. KW - Biokompatibilität KW - DNS KW - Nanopartikel KW - Funktionalisierung KW - HeLa-Zelle KW - NIR-Spektroskopie KW - Photolumineszenz KW - Kohlenstoffnanoröhre KW - Dichtegradientenultrazentrifugation KW - carbon nanotube KW - density gradient ultracentrifugation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74552 ER - TY - THES A1 - Selig-Parthey, Ulrike T1 - Methods of Nonlinear Femtosecond Spectroscopy in the Visible and Ultraviolet Regime and their Application to Coupled Multichromophore Systems T1 - Methoden der nichtlinearen Femtosekundenspektroskopie im sichtbaren und ultravioletten Spektralbereich und ihre Anwendung auf gekoppelte Multichromophor-Systeme N2 - Time-resolved spectroscopic studies of energy transfer between molecules in solution form a basis for both, our understanding of fundamental natural processes like photosynthesis as well as directed synthetic approaches to optimize organic opto-electronic devices. Here, coherent two-dimensional (2D) spectroscopy opens up new possibilities, as it reveals the correlation between absorption and emission frequency and hence the full cause-and-effect chain. In this thesis two optical setups were developed and implemented, permitting the recording of electronic 2D spectra in the visible and in the hitherto unexplored ultraviolet spectral range. Both designs rely on the exclusive manipulation of beam pairs, which reduces the signal modulation to the difference between the transition frequency of the system and the laser frequency. Thus - as has been shown experimentally and theoretically - the timing precision as well as mechanical stability requirements are greatly reduced, from fractions of the oscillation period of the exciting light wave to fractions of the pulse duration. Two-dimensional spectroscopy and femtosecond transient absorption (TA) as well as different theoretical approaches and simulation models were then applied to coupled multichromophore systems of increasing complexity. Perylene bisimide-perylene monoimide dyads were investigated in cooperation with Prof. Dr. Frank Würthner and Prof. Dr. Bernd Engels at the University of Würzburg. In these simplest systems studied, global analysis of six different TA experiments unequivocally revealed an ultrafast interchromophoric energy transfer in the 100 fs range. Comparison between the obtained transfer rates and the predictions of Förster theory suggest a breakdown of this point-transition-dipole-based picture at the donor-acceptor distances realized in our compounds. Furthermore, a model including conformational changes and an interchromophoric charge transfer has been derived to consistently describe the observed pico- to nanosecond dynamics and fluorescence quantum yields. A second collaboration with Prof. Dr. Gregory Scholes (University of Toronto, Canada) and Prof. Dr. Paul Burn (University of Queensland, Australia) addressed the photophysics of a series of uorene-carbazole dendrimers. Here, a combination of 2D-UV spectroscopy and femtosecond ansiotropy decay experiments revealed the initial delocalization of the excited state wave function that saturates with the second generation. In room temperature solution, disorder-induced localization takes place on the time scales comparable to our instrument response, i.e. 100 fs, followed by energy transfer via incoherent hopping processes. Lastly, in tubular zinc chlorin aggregates, semi-synthetic analogues of natural lightharvesting antennae that had again been synthesized in the group of Prof. Dr. Frank Würthner, the interchromophoric coupling is so strong that coherently coupled domains prevail even at room temperature. From an analysis of intensity-dependent TA measurements the dimensions of these domains, the exciton delocalization length, could be determined to span 5-20 monomers. In addition, 2D spectra uncovered efficient energy transfer between neighboring domains, i.e. ultrafast exciton diffusion. N2 - Zeitaufgelöste spektroskopische Untersuchungen zu Energietransferprozessen zwischen Molekülen in Lösung bilden die Grundlage nicht nur für unser Verständnis elementarer natürlicher Vorgänge wie der Photosynthese, sondern auch für gerichtete Synthesen zur Optimierung organischer opto-elektronischer Bauteile. Die kohärente zweidimensionale (2D) Spektroskopie eröffnet hier neue Möglichkeiten, da sie - durch Aufdeckung der Korrelation zwischen Absorptions- und Emissionsfrequenz - die konventionelle transiente Absorption (TA) um die Offenbarung der Ursache erweitert. Im Rahmen dieser Arbeit wurden zwei optische Aufbauten entworfen und umgesetzt, die die Aufnahme von elektronischen 2D Spektren im sichtbaren und im bis dahin unerschlossenen ultravioletten Spektralbereich ermöglichen. Beide Designs beruhen auf dem Prinzip der ausschließlich paarweisen Strahlführung, wodurch die Modulation des Signals auf die Differenz zwischen Übergangsfrequenz des Systems und Laserfrequenz reduziert wird. Damit verringern sich - wie theoretisch und experimentell gezeigt - die Anforderungen sowohl an die mechanische Stabilität der Laborumgebung als auch an die Genauigkeit der verwendeten Verzögerungsbühnen erheblich, von Bruchteilen der Oszillationsperiode des anregenden Lichts auf Bruchteile der Laserpulsdauer. Sowohl die 2D Spektroskopie als auch die transiente Absorption sowie unterschiedliche theoretische Ansätze und Simulationsmodelle wurden in den weiteren Teilen dieser Arbeit auf gekoppelte Multichromophor-Systeme unterschiedlicher Komplexität angewandt. Im einfachsten dieser Systeme, einem Perylen-basierten Heterodimer, einer Kooperation mit Prof. Dr. Frank Würthner und Prof. Dr. Bernd Engels an der Universität Würzburg, konnte durch globale Analyse von sechs verschiedenen TA-Messungen ein ultraschneller Energietransfer im 100 fs Bereich zweifelsfrei identifiziert werden. Ein Vergleich mit Vorhersagen aus der Förster-Theorie legt einen Zusammenbruch dieser auf punktförmigen Übergangsdipolen beruhenden Theorie bei den vorliegenden Interchromophor- Abständen nahe. Darüber hinaus wurde für die Piko- bis Nanosekunden-Zeitskalen ein Schema vorgestellt, das Konformationsänderungen sowie einen Ladungstransfer beinhaltet und das die beobachtete Dynamik wie auch die gemessenen Fluoreszenz-Quantenausbeuten konsistent beschreibt. In einer weiteren Kooperation wurden in Zusammenarbeit mit der Gruppe von Prof. Dr. Gregory Scholes (University of Toronto, Kanada) Fluoren-Carbazol-Makromoleküle untersucht, die in der Gruppe von Prof. Dr. Paul Burn (University of Queensland, Australien) synthetisiert worden waren. In diesen sogenannten Dendrimeren konnte durch die Kombination von 2D Spektroskopie und Femtosekunden-Anisotropie-Zerfalls-Experimenten eine anfängliche Delokalisierung der Wellenfunktion des angeregten Zustands abgeleitet werden, die mit der zweiten Generation saturiert. Die Umgebungsunordnung in Raumtemperatur-Lösung führt hier zu einer ultraschnellen Lokalisierung innerhalb der Zeitauflösung des Experiments, gefolgt von inkohärenten Energietransfer-Prozessen. In tubularen Zink Chlorin Aggregaten schließlich, semisynthetischen Analoga zu den Lichtsammelantennen natürlicher Chlorosome, die ebenfalls von Prof. Dr. Frank Würthner's Gruppe bereitgestellt wurden, ist die Kopplung zwischen den einzelnen Molekülen so stark, dass kohärent gekoppelte Segmente selbst bei Raumtemperatur Bestand haben. Die Ausdehnung dieser kohärenten Domänen, die Exzitonen-Delokalisierungslänge, konnte aus der Intensitätsabhängigkeit des transienten Absorptionssignals auf 5-20 Monomere bestimmt werden. 2D Spektren zeigten dabei den effizienten Energietransfer zwischen benachbarten Domänen im Aggregat, also einen ultraschnellen Exzitonen-Diffusionsprozess. KW - Femtosekundenspektroskopie KW - UV-VIS-Spektroskopie KW - Polychromophores System KW - Spektroskopie KW - femtosecond spectroscopy Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74356 ER - TY - THES A1 - Quast, Tatjana T1 - Spectroscopic investigation of charge-transfer processes and polarisation pulse shaping in the visible spectral range T1 - Spektroskopische Untersuchung von Ladungstransferprozessen und Polarisationspulsformung im sichtbaren Spektralbereich N2 - The first part deals with the spectroscopic investigation of ultrafast light-induced charge-transfer processes in different molecular compounds. In the second part, the question of the generation and characterisation of broadband visible polarisation-shaped laser pulses is treated. N2 - Der erste Teil der Arbeit behandelt die spektroskopische Untersuchung von ultraschnellen lichtinduzierten Ladungstransferprozessen in unterschiedlichen molekularen Verbindungen. Im zweiten Teil wird die Erzeugung und Charakterisierung von breitbandigen polarisationsgeformten Laserpulsen im sichtbaren Spektralbereich diskutiert. KW - Polarisiertes Licht KW - Ladungstransfer KW - Optische Spektroskopie KW - transiente Absorptionsspektroskopie KW - Polarisationspulsformung KW - transient absorption spectroscopy KW - polarisation pulse shaping Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74265 ER -