TY - THES A1 - Selig-Parthey, Ulrike T1 - Methods of Nonlinear Femtosecond Spectroscopy in the Visible and Ultraviolet Regime and their Application to Coupled Multichromophore Systems T1 - Methoden der nichtlinearen Femtosekundenspektroskopie im sichtbaren und ultravioletten Spektralbereich und ihre Anwendung auf gekoppelte Multichromophor-Systeme N2 - Time-resolved spectroscopic studies of energy transfer between molecules in solution form a basis for both, our understanding of fundamental natural processes like photosynthesis as well as directed synthetic approaches to optimize organic opto-electronic devices. Here, coherent two-dimensional (2D) spectroscopy opens up new possibilities, as it reveals the correlation between absorption and emission frequency and hence the full cause-and-effect chain. In this thesis two optical setups were developed and implemented, permitting the recording of electronic 2D spectra in the visible and in the hitherto unexplored ultraviolet spectral range. Both designs rely on the exclusive manipulation of beam pairs, which reduces the signal modulation to the difference between the transition frequency of the system and the laser frequency. Thus - as has been shown experimentally and theoretically - the timing precision as well as mechanical stability requirements are greatly reduced, from fractions of the oscillation period of the exciting light wave to fractions of the pulse duration. Two-dimensional spectroscopy and femtosecond transient absorption (TA) as well as different theoretical approaches and simulation models were then applied to coupled multichromophore systems of increasing complexity. Perylene bisimide-perylene monoimide dyads were investigated in cooperation with Prof. Dr. Frank Würthner and Prof. Dr. Bernd Engels at the University of Würzburg. In these simplest systems studied, global analysis of six different TA experiments unequivocally revealed an ultrafast interchromophoric energy transfer in the 100 fs range. Comparison between the obtained transfer rates and the predictions of Förster theory suggest a breakdown of this point-transition-dipole-based picture at the donor-acceptor distances realized in our compounds. Furthermore, a model including conformational changes and an interchromophoric charge transfer has been derived to consistently describe the observed pico- to nanosecond dynamics and fluorescence quantum yields. A second collaboration with Prof. Dr. Gregory Scholes (University of Toronto, Canada) and Prof. Dr. Paul Burn (University of Queensland, Australia) addressed the photophysics of a series of uorene-carbazole dendrimers. Here, a combination of 2D-UV spectroscopy and femtosecond ansiotropy decay experiments revealed the initial delocalization of the excited state wave function that saturates with the second generation. In room temperature solution, disorder-induced localization takes place on the time scales comparable to our instrument response, i.e. 100 fs, followed by energy transfer via incoherent hopping processes. Lastly, in tubular zinc chlorin aggregates, semi-synthetic analogues of natural lightharvesting antennae that had again been synthesized in the group of Prof. Dr. Frank Würthner, the interchromophoric coupling is so strong that coherently coupled domains prevail even at room temperature. From an analysis of intensity-dependent TA measurements the dimensions of these domains, the exciton delocalization length, could be determined to span 5-20 monomers. In addition, 2D spectra uncovered efficient energy transfer between neighboring domains, i.e. ultrafast exciton diffusion. N2 - Zeitaufgelöste spektroskopische Untersuchungen zu Energietransferprozessen zwischen Molekülen in Lösung bilden die Grundlage nicht nur für unser Verständnis elementarer natürlicher Vorgänge wie der Photosynthese, sondern auch für gerichtete Synthesen zur Optimierung organischer opto-elektronischer Bauteile. Die kohärente zweidimensionale (2D) Spektroskopie eröffnet hier neue Möglichkeiten, da sie - durch Aufdeckung der Korrelation zwischen Absorptions- und Emissionsfrequenz - die konventionelle transiente Absorption (TA) um die Offenbarung der Ursache erweitert. Im Rahmen dieser Arbeit wurden zwei optische Aufbauten entworfen und umgesetzt, die die Aufnahme von elektronischen 2D Spektren im sichtbaren und im bis dahin unerschlossenen ultravioletten Spektralbereich ermöglichen. Beide Designs beruhen auf dem Prinzip der ausschließlich paarweisen Strahlführung, wodurch die Modulation des Signals auf die Differenz zwischen Übergangsfrequenz des Systems und Laserfrequenz reduziert wird. Damit verringern sich - wie theoretisch und experimentell gezeigt - die Anforderungen sowohl an die mechanische Stabilität der Laborumgebung als auch an die Genauigkeit der verwendeten Verzögerungsbühnen erheblich, von Bruchteilen der Oszillationsperiode des anregenden Lichts auf Bruchteile der Laserpulsdauer. Sowohl die 2D Spektroskopie als auch die transiente Absorption sowie unterschiedliche theoretische Ansätze und Simulationsmodelle wurden in den weiteren Teilen dieser Arbeit auf gekoppelte Multichromophor-Systeme unterschiedlicher Komplexität angewandt. Im einfachsten dieser Systeme, einem Perylen-basierten Heterodimer, einer Kooperation mit Prof. Dr. Frank Würthner und Prof. Dr. Bernd Engels an der Universität Würzburg, konnte durch globale Analyse von sechs verschiedenen TA-Messungen ein ultraschneller Energietransfer im 100 fs Bereich zweifelsfrei identifiziert werden. Ein Vergleich mit Vorhersagen aus der Förster-Theorie legt einen Zusammenbruch dieser auf punktförmigen Übergangsdipolen beruhenden Theorie bei den vorliegenden Interchromophor- Abständen nahe. Darüber hinaus wurde für die Piko- bis Nanosekunden-Zeitskalen ein Schema vorgestellt, das Konformationsänderungen sowie einen Ladungstransfer beinhaltet und das die beobachtete Dynamik wie auch die gemessenen Fluoreszenz-Quantenausbeuten konsistent beschreibt. In einer weiteren Kooperation wurden in Zusammenarbeit mit der Gruppe von Prof. Dr. Gregory Scholes (University of Toronto, Kanada) Fluoren-Carbazol-Makromoleküle untersucht, die in der Gruppe von Prof. Dr. Paul Burn (University of Queensland, Australien) synthetisiert worden waren. In diesen sogenannten Dendrimeren konnte durch die Kombination von 2D Spektroskopie und Femtosekunden-Anisotropie-Zerfalls-Experimenten eine anfängliche Delokalisierung der Wellenfunktion des angeregten Zustands abgeleitet werden, die mit der zweiten Generation saturiert. Die Umgebungsunordnung in Raumtemperatur-Lösung führt hier zu einer ultraschnellen Lokalisierung innerhalb der Zeitauflösung des Experiments, gefolgt von inkohärenten Energietransfer-Prozessen. In tubularen Zink Chlorin Aggregaten schließlich, semisynthetischen Analoga zu den Lichtsammelantennen natürlicher Chlorosome, die ebenfalls von Prof. Dr. Frank Würthner's Gruppe bereitgestellt wurden, ist die Kopplung zwischen den einzelnen Molekülen so stark, dass kohärent gekoppelte Segmente selbst bei Raumtemperatur Bestand haben. Die Ausdehnung dieser kohärenten Domänen, die Exzitonen-Delokalisierungslänge, konnte aus der Intensitätsabhängigkeit des transienten Absorptionssignals auf 5-20 Monomere bestimmt werden. 2D Spektren zeigten dabei den effizienten Energietransfer zwischen benachbarten Domänen im Aggregat, also einen ultraschnellen Exzitonen-Diffusionsprozess. KW - Femtosekundenspektroskopie KW - UV-VIS-Spektroskopie KW - Polychromophores System KW - Spektroskopie KW - femtosecond spectroscopy Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74356 ER - TY - THES A1 - Schöppler, Friedrich Eugen T1 - Photolumineszenzmikroskopie und-spektroskopie halbleitender Kohlenstoffnanoröhren T1 - Photoluminescence microscopy and spectroscopy of semiconducting nanotubes N2 - Im Rahmen dieser Dissertation wurden optische Eigenschaften von halbleitenden, einwandigen Kohlenstoffnanoröhren (SWNTs) der (6,5)-Chiralität untersucht. Dies gelang durch Ensemblemessungen aber vor allem durch den Aufbau eines Mikroskops zur Messung an einzelnen SWNTs. Dieses Einzel- SWNT-Mikroskop ermöglichte nebst „normaler“ Bildgebung durch Sammlung und Abbildung der nahinfraroten Photolumineszenz (PL) der (6,5)-SWNTs auch die spektral- und zeitaufgelöste Untersuchung der PL. Durch Verwendung von Dichtegradientenultrazentrifugation (DGU) zur chiralen Aufreinigung des SWNT-Rohmaterials konnten alle Messungen unter Minimierung des störenden Einflusses von Aggregaten oder SWNTs anderer Chiralität durchgeführt werden. Untersucht und bestimmt wurde der Absorptionsquerschnitt und die Exzitonengröße, die PL-Eigenschaften aggregierter SWNTs und der Einfluß der Permittivität auf die PL einzelner SWNTs. N2 - Within the course of this work fundamental optical properties of semiconducting single-walled carbon nanotubes (SWNTs) of the (6,5)-chirality were examined by utilizing ensemble measurements and in particular a home-built microscope setup for measurements of individual SWNTs. This single-SWNTmicroscope allowed for „standard“ imaging of the near infrared photoluminescence (PL) signal of the (6,5)-SWNTs as well as for spectrally and timeresolved PL measurements. Facilitating density gradient ultracentrifugation (DGU) for chiral enrichment of the SWNT soot, all measurements were carried out with minimum influence of aggregates or minority species of other SWNT chiralities. The absorption cross section, the exciton size, PL-features of aggregated SWNTs and the influence of permittivity on SWNT-PL have been investigated. KW - Mikroskopie KW - Photolumineszenz KW - Photolumineszenzspektroskopie KW - Kohlenstoff-Nanoröhre KW - Halbleiter KW - Spektroskopie KW - NIR-Spektroskopie KW - Lebensdauer KW - Laserinduzierte Fluoreszenz KW - Aggregation KW - Exziton KW - Dielektrizitätszahl KW - microscopy KW - spectroscopy KW - carbon nanotubes KW - fluorescence Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73329 ER - TY - THES A1 - Siebert, Torsten Uwe T1 - Four-Wave Mixing Techniques Applied to the Investigation of Non-Adiabatic Dynamics in Polyatomic Molecules T1 - Vierwellenmisch-Spektroskopie zur Untersuchung nicht-adiabatischer Dynamik in polyatomaren Molekülen N2 - In the experiments presented in this work, third-order, time-resolved spectroscopy was applied to the disentanglement of nuclear and electronic degrees of freedom in polyatomic molecules. The motivation for approaching this problem was given by the decisive role that the coupling of nuclear and electronic dynamics plays in the mechanism of photochemical reactions and photobiological processes. In order to approach this complex problem, different strategies within the framework of time-resolved, four-wave mixing spectroscopy were developed that allowed for the dynamic as well as the energetic aspects of vibronic coupling in non-radiative transitions of polyatomic molecules to be addressed. This was achieved by utilizing the influence of optical as well as Raman resonances on four-wave mixing processes. These resonance effects on third-order, optical processes allow for a high selectivity to be attained with respect to the interrogation of specific aspects of molecular dynamics. The development of different strategies within the framework of time-resolved, four-wave mixing spectroscopy for addressing the problem of vibronic coupling began with the experiments on gaseous iodine. This simple, well investigated molecular system was chosen in order to unambiguously characterize the effect of Raman resonances on four-wave mixing processes. A time-resolved degenerative four-wave mixing (DFWM) experiment was carried out on gaseous iodine that allowed for the dynamics of coherent Stokes Raman scattering (CSRS) as well as a coherent anti-Stokes Raman scattering (CARS) to be observed parallel to the dynamics of a DFWM process at different spectral positions of the FWM signal. Here, the state-selectivity of these different FWM processes manifests itself in the vibrational wave packet dynamics on different electronic potentials of iodine. It could be shown that Raman resonances determine the selectivity with which these FWM processes prepare and interrogate nuclear dynamics in different electronic states. With the insight gained into the relevance of Raman resonant processes in FWM spectroscopy, an experimental scheme was devised that utilizes this effect to selectively interrogate the dynamics of a specific vibrational mode within a polyatomic molecule during a radiationless electronic transition. Here, a CARS process was employed to selectively probe specific vibrational modes of a molecular system by variably tuning the energy difference between the lasers involved in the CARS process to be in Raman resonance with the vibrational energy spacing of a particular vibrational mode. Using this aspect of a tunable resonance enhancement within a CARS scheme, this optical process was incorporated in a time-resolved pump-probe experiment as a mode-selective probe mechanism. This type of experimental configuration, that employs four pulsed laser fields, was classified as a pump-CARS scheme. Here, a laser pulse independent of the CARS process initiates the molecular dynamics that are interrogated selectively with respect to the vibrational mode of the system through the simultaneous interaction of the three pulsed fields involved in the CARS process. Time-resolution on a femtosecond timescale is achieved by introducing a time delay between the independent pump laser and the laser pulses of the CARS process. The experimental configuration of a pump-CARS scheme was applied to the study of the nuclear dynamics involved in the radiationless electronic transition between the first excited singlet state (S1) and the electronic ground state (S0) of all-trans-b-carotene. The mode-selective CARS probe allowed for the characteristic timescale with which specific vibrational modes are repopulated in the S0 state to be determined. From the varying repopulation times of specific vibrational modes, a mechanism with which the full set of vibrational states of the S0 potential are repopulated subsequent to the internal conversion process could be postulated. Most importantly, the form of nuclear motion that primarily funnels the population between the two electronic states could be identified as the C=C symmetric symmetric stretch mode in the polyene backbone of b-carotene. With this, the reaction coordinate of this radiationless electronic transition could be identified. The experiment shows, that the CARS probe is capable of determining the nuclear motion coupled to a radiationless electronic transition in complex polyatomic systems. The S1/S0 internal conversion process in b-carotene was further investigated with time-resolved transient gratings. Here, the energetic aspects of a non-adiabatic transition was addressed by determining the influence of the vibrational energy on the rate of this internal conversion. In order to compare the rate of internal conversion taking place out of vibrational ground state modes versus this transition initiating out of vibrationally hot modes, the strategy of shifting the probe mechanism in the transient grating scheme to spectral positions within and out of the red flank of the S1 absorption profile was pursued. The interrogation of different vibrational states was verified by determining the degree of vibrational cooling, taking place parallel to the internal conversion process. With this strategy, it could be shown that vibrationally hot states contribute to the internal conversion with a higher rate than vibrational ground state modes. In summary, different third-order, optical processes in the framework of time-resolved FWM were applied to the study of non-adiabatic dynamics in polyatomic molecules. By utilizing the effect of optical as well as Raman resonances on different FWM processes, it could be shown that third-order, time-resolved spectroscopy is a powerful tool for gaining insight into complex molecular dynamics such as vibronic coupling. The experiments presented in this work showed that the CARS process, as a mode-selective probe in time-resolved experiments, is capable of disentangling nuclear and electronic dynamics. N2 - In der vorliegenden Arbeit wurden verschiedene zeitaufgelöste, optische Prozesse dritter Ordnung zur Untersuchung nicht-adiabatischer Dynamiken in polyatomaren Molekülen vorgestellt. Derartige Dynamiken haben ihre Ursache in Kopplungen zwischen der Kern- und Elektronenbewegung im jeweiligen molekularen System und spielen eine entscheidende Rolle in vielen photochemischen und photobiologischen Prozessen. Es wurden unterschiedliche Strategien im Rahmen der zeitaufgelösten Vierwellenmisch-Spektroskopie entwickelt, die die Untersuchung sowohl dynamischer als auch energetischer Aspekte der vibronischen Kopplung bei strahlungslosen elektronischen Übergängen in polyatomaren Systemen ermöglichen. Dabei wurden sowohl elektronische als auch Raman-Resonanzen ausgenutzt, um eine hohe Selektivität in der Abfrage der molekularen Dynamik zu erzielen. Um den Einfluss von Raman-Resonanzen auf Vierwellenmisch-Prozesse (FWM = four-wave mixing) eindeutig zu bestimmen, wurde zuerst das einfache und gut charakterisierte molekulare System Jod untersucht. Femtosekunden-zeitaufgelöste entartete Vierwellenmischung (DFWM = degenerate four-wave mixing) an gasförmigem Jod ermöglichte eine simultane Beobachtung der Dynamik kohärenter Stokesscher Raman-Streuung (CSRS = coherent Stokes Raman scattering) und kohärenter anti-Stokesscher Raman-Streuung (CARS = coherent anti-Stokes Raman scattering) zusammen mit der Dynamik des eigentlichen DFWM-Prozesses durch Detektion an unterschiedlichen spektralen Positionen des FWM-Signals. Die Zustandsselektivität dieser drei FWM-Prozesse, die sich in der Generierung und Abfrage von Schwingungswellenpaketen auf verschiedenen elektronischen Potentialen von Jod manifestiert, konnte innerhalb eines einzigen Messvorgangs charakterisiert werden. Es zeigte sich, dass die Selektivität der unterschiedlichen FWM-Prozesse maßgeblich durch den Einfluss von Raman-Resonanzen bestimmt wird. Basierend auf den so gewonnenen Erkenntnissen über den Einfluss von Raman-Resonanzen bei FWM-Prozessen, wurde ein experimentelles Schema entwickelt, das es ermöglicht, selektiv bestimmte Schwingungsmoden eines polyatomaren Moleküls während eines strahlungslosen elektronischen Übergangs abzufragen. Hierzu wurde ein CARS-Prozess, der auf eine Raman-Resonanz in einem molekularen System abgestimmt wurde, als Abfrageschritt in einem pump-probe-Schema eingesetzt. Dieses experimentelle Schema, bei dem vier gepulste Laser zum Einsatz kommen, wird in Analogie zu einem herkömmlichen pump-probe-Experiment als pump-CARS-Messung bezeichnet. Hierbei regt ein vom CARS-Prozess unabhängiger pump-Laser einen elektronischen Zustand an, dessen Besetzung durch die simultane Wechselwirkung mit den drei Laserpulsen des CARS-Prozesses modenselektiv abgefragt wird. Durch Einführung einer variablen Verzögerungszeit zwischen dem initiierenden pump-Laser und dem CARS-Prozess lässt sich die Relaxationsdynamik auf einer Femtosekunden-Zeitskala auflösen. Diese experimentelle Konfiguration wurde zur Untersuchung der Kerndynamik des strahlungslosen elektronischen Übergangs zwischen dem ersten elektronisch angeregten Zustand (S1) und dem elektronischen Grundzustand (S0) des b-Carotin eingesetzt. Die zustandsselektive Beobachtung der internen Konversion liefert die Zeitkonstanten, mit denen ausgewählte Schwingungsmoden im S0-Zustand von b-Carotin wiederbevölkert werden. Aufgrund der Tatsache, dass unterschiedlichen Moden unterschiedliche Zeitkonstanten zugeordnet werden konnten, wurde ein Modell aufgestellt, welches die Konversion in den elektronischen Grundzustand in Abhängigkeit von den Schwingungszuständen beschreibt. So konnte festgestellt werden, dass der Populationstransfer beim strahlungslosen Übergang von der S1- auf die S0-Potentialfläche vornehmlich über die symmetrische C=C-Streckschwingung verläuft.Mit diesem Experiment konnte gezeigt werden, dass ein CARS-Prozess als Abfrageschritt in einem zeitaufgelösten pump-probe Experiment, in der Lage ist, die Kerndynamik zu bestimmen, die mit einem strahlungslosen elektronischen Übergang in einem komplexen polyatomaren Molekül verbunden ist. Der energetische Aspekt des nicht-adiabatischen Übergangs zwischen dem S1- und S0-Zustand in b-Carotin wurde mittels zeitaufgelöster transienter Gitter untersucht (TG = transient grating). Hierbei wurde der Einfluss der Schwingungsenergie auf die Geschwindigkeit der internen Konversion bestimmt. Um die Reaktionsgeschwindigkeit der internen Konversion aus schwingungsangeregten Zuständen und Moden im Schwingungsgrundzustand des S1-Potentials zu vergleichen, wurde das Signal spektral aufgelöst detektiert. Hierbei beinhaltete die rote Flanke des Absorptionsprofils des S1-Zustandes die Dynamik der angeregten Schwingungsmoden. Die Abfrage der Dynamik an einer spektralen Position, die sich im Zentrum des Absorptionsprofils befindet, ermöglichte hingegen die Beobachtung der internen Konversion aus dem Grundzustand der Schwingungszustände. Mit der gewählten experimentellen Methode konnte gezeigt werden, dass schwingungsangeregte Zustände mit einer höheren Reaktionsgeschwindigkeit an der internen Konversion teilnehmen als Moden im Schwingungsgrundzustand. Zusammenfassend wurden in dieser Arbeit unterschiedliche optische Prozesse dritter Ordnung zur Untersuchung nicht-adiabatischer Dynamiken in polyatomaren Molekülen angewandt. Durch Ausnutzung von sowohl elektronischen als auch Raman-Resonanzen auf unterschiedliche FWM-Prozesse konnte gezeigt werden, dass optische Prozesse dritter Ordnung ein geeignetes Werkzeug zur Untersuchung komplexer Moleküldynamiken darstellen. Die Experimente in dieser Arbeit verdeutlichten, dass der CARS-Prozess als modenselektiver Abfrageschritt die spezifische Beobachtung von Kerndynamik während eines elektronischen Übergangs erlaubt. KW - Provitamin A KW - Vierwellenmischung KW - Polyatomare Verbindungen KW - Spektroskopie KW - Spektroskopie KW - Vierwellenmischung KW - CARS KW - Transiente Gitter KW - Femtosekunden KW - Nicht-adiabatische Dynamik KW - beta-Carotin KW - Iod KW - Spectroscopy KW - Four-Wave Mixing KW - CARS KW - Transient Grating KW - Femtosecond KW - Non-adiabatic Dynamics KW - beta-Carotene KW - Iodine Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-2456 ER - TY - THES A1 - Moigno, Damien T1 - Study of the ligand effects on the metal-ligand bond in some new organometallic complexes using FT-Raman and -IR spectroscopy, isotopic substitution and density functional theory techniques T1 - Untersuchung der Wirkung von Liganden auf die Metall-Ligand Bindungen einiger neuer organometallischer Komplexe mit Hilfe der FT-Raman und -IR Spektroskopie, isotopischen Substitution und DFT Techniken N2 - The present studies which have been performed in the work-group C-2 (Prof. W. Kiefer) within the program of the Sonderforschungsbereichs 347, deal with the FT-Raman and –IR spectroscopy on new organometallic complexes, synthesized in the work-groups B-2 (Prof. W. Malisch), B-3 (Prof. W. A. Schenk), D-1 (Prof. H. Werner) and D-4 (Prof. D. Stalke). The FT-Raman spectra recorded at 1064 nm led to very useful and interesting information. Furthermore, the DFT calculations which are known to offer promise of obtaining accurate vibrational wavenumbers, were successfully used for the assignment of the vibrational spectra. For the first time it has been possible to ascribe exactly the n(RhC) stretching mode in the vinylidene rhodium(I) complex trans-[RhF(=C=CH2)(PiPr3)2] by using isotopic substitution, in conjunction with theoretical calculations. This is also true for the complexes trans-[RhF(CO)(PiPr3)2], trans-[RhF(C2H4)(PiPr3)2], trans-[RhX(=C=CHPh)(PiPr3)2] (X = F, Cl, Br, I, Me, PhCºC) and trans-[RhX(CN-2,6-xylyl)(PiPr3)2] (X = F, Cl, Br, I, CºCPh). In addition, the comparison between the n(RhC) wavenumbers of the complexes trans-[RhF(=13C=13CH2)(PiPr3)2] and trans-[RhF(CO)(PiPr3)2], containing the isoelectronic ligands 13C=13CH2 and CO, which have the same reduced mass, indicated that the Rh-C bond is stronger in the carbonyl than in the vinylidene complex. Besides, the n(RhF) stretching mode, which has been observed at higher wavenumbers in the FT-Raman and -IR spectra of trans-[RhF(CO)(PiPr3)2], showed that the carbonyl ligand is a better p-acceptor and a less effective s-donor than the vinylidene one. Moreover, the comparison of the n(CºC) and n(Rh-C) modes from the FT-Raman spectrum of the complexes trans-[Rh(CºCPh)(L)(PiPr3)2] (L = C=CHPh, CO, CN-2,6-xylyl) point out that the p-acceptor ability of the ligand trans to CºCPh should rise in the order C=CH2 < CO < CN-2,6-xylyl £ C=CHPh. The investigated sensitivity of the n(RhC), n(CC), n(CO) and n(CN) vibrational modes to the electronic modifications occuring in the vinylidene, carbonyl, ethylene and isonitrile complexes, should allow in the future the examination of the p-acceptor or p-donor properties of further ligands. Likewise, we were able to characterize the influence of various X ligands on the RhC bond by using the n(RhC) stretching mode as a probe for the weakening of this. The calculated wavenumbers of the n(RhC) for the vinylidene complexes trans-[RhX(=C=CHR)(PiPr3)2], where R = H or Ph, suggested that the strength of the Rh=C bond increases along the sequence X = CºCPh < CH3 < I < Br < Cl < F. For the series of carbonyl compounds trans-[RhX(CO)(PiPr3)2], where X = F, Cl, Br and I, analogous results have been obtained and confirmed from the model compounds trans-[RhX(CO)(PMe3)2]. Since, the calculated vibrational modes for the ethylene complex trans-[RhF(C2H4)(PiPr3)2] were in good agreement with the experimental results and supported the description of this complex as a metallacyclopropane, we were interested in getting more information upon this class of compounds. In this context, we have recorded the FT-Raman and -IR spectra of the thioaldehyde complexes mer-[W(CO)3(dmpe)(h2-S=CH2)] and mer-[W(CO)3(dmpe)(h2-S=CD2)] which have been synthezised by B-3. The positions of the different WL vibrational modes anticipated by the DFT calculations, were consistent with the experimental results. Indeed, the analysis of the band shifts in the FT-Raman and –IR spectra of the isotopomer mer-[W(CO)3(dmpe)(h2-S=CD2)] confirmed our assignment. The different stereoisomers of complex mer-[W(CO)3(dmpe)(h2-S=CH2)] were investigated too, since RMN and IR-data have shown that complex mer-[W(CO)3(dmpe)(h2-S=CH2)] lead in solution to an equilibrium. Since the information on the vibrational spectra of the molybdenum and tungsten complexes Cp(CO)2M-PR2-X (M = Mo, W; R = Me, tBu, Ph; X = S, Se) is very scarce, we extended our research work to this class of compounds. We have tried to elucidate the bonding properties in these chalcogenoheterocycle complexes by taking advantage of the mass effect on the different metal atoms (W vs. Mo). Thus, the observed band shifts allowed to assign most of the ML fundamental modes of these complexes. This project and the following one were a cooperation within the work-group B-2. The Raman and IR spectra of the matrix isolated photoproducts expected by the UV irradiation of the iron silyl complex Cp(CO)2FeSiH2CH3 have been already reported by Claudia Fickert and Volker Nagel in their PhD-thesis. Since no exact assignment was feasible for these spectra, we were interested in the study of the reaction products created by irradiation of the carbonyl iron silyl complex Cp(CO)2FeCH2SiH3. Although the calculated characteristic vibrational modes of the metal ligand unit for the various photoproducts are significantly different in constitution, they are very similar in wavenumbers, which did not simplify their identification. However, the theoretical results have been found to be consistent with the earlier experimental results. Finally, the last part of this thesis has been devoted to the (2-Py)2E- anions which exhibit a high selectivity toward metal-coordination. All di(2-pyridyl) amides and -phosphides which were synthesized by D-4, coordinate the R2Al+ fragment via both ring nitrogen atoms. This already suggests that the charge density in the anions is coupled into the rings and accumulated at the ring nitrogen atoms, but the Lewis basicity of the central nitrogen atom in Et2Al(2-Py)2N is still high enough to coordinate a second equivalent AlEt3 to form the Lewis acid base adduct Et2Al(2-Py)2NAlEt3. Due to the higher electronegativity of the central nitrogen atom in Me2Al(2-Py)2N, Et2Al(2-Py)2N and Et2Al(2-Py)2NAlEt3, compared to the bridging two coordinated phosphorus atom in Me2Al(2-Py)2P and Et2Al(2-Py)2P, the di(2-pyridyl)amide is the hardest Lewis base. In the phosphides merely all charge density couples into the rings leaving the central phosphorus atom only attractive for soft metals. These results were confirmed by using DFT and MP2 calculations. Moreover, a similar behaviour has been observed and described for the benzothiazolyl complex [Me2Al{Py(Bth)P}], where complementary investigations are to be continued. The DFT calculations carried out on the model compounds analysed in these studies supply very accurate wavenumbers and molecular geometries, these being in excellent agreement with the experimental results obtained from the corresponding isolated complexes. N2 - Die vorliegende Arbeit wurde im Rahmen des Sonderforschungsbereichs 347 „Selektive Reaktionen Metall-aktivierter Moleküle“ im Teilprojekt C-2 (Prof. W. Kiefer) „Laserspektroskopie zur Charakterisierung der Struktur und Dynamik Metall-gebundener Moleküle“ durchgeführt. Diese befaßt sich mit den Infrarot- und Raman-spektroskopischen Untersuchungen an Übergangsmetallverbindungen, die in den Teilprojekten B-2 (Prof. W. Malisch), B-3 (Prof. W. A. Schenk), D-1 (Prof. H. Werner), D-4 (Prof. D. Stalke) synthetisiert wurden. Durch den Einsatz der FT-Raman-Spektroskopie mit langwelliger Laseranregung im NIR-Bereich und zum Teil von isotopenmarkierten Molekülen konnten aussagekräftige Spektren erhalten werden. Die Dichtefunktionnaltheorie stellte sich als geeignetes Mittel zur Vorhersage und Interpretation der Schwingungsspektren heraus. Abhängig von der Größe der betrachteten Komplexe waren jeweils Rechnungen nötig, die auf sehr unterschiedlichen theoretischen Niveaus basierten. Zum ersten Mal wurde mit Hilfe der Isotopenmarkierung und der Dichtefunktionaltheorie die Valenzschwingung n(Rh=C) in trans-[RhF(L)(PiPr3)2] (L = C=CH2, 13C=13CH2) charakterisiert. Diese zeigte sich als eine starke Raman-Bande und konnte ebenfalls im trans-[RhF(CO)(PiPr3)2] identifiziert werden. Darüber hinhaus erkannte man beim Vergleich von trans-[RhF(13C=13CH2)(PiPr3)2] und trans-[RhF(CO)(PiPr3)2] eine Verschiebung nach höheren Wellenzahlen der Valenzschwingung n(RhC) für den Carbonyl-Komplex. Einerseits haben beide Liganden 13C=13CH2 und CO die gleiche reduzierte Masse, was die elektronische Natur der n(RhC)-Verschiebung zeigt, welche eine Verstärkung der RhC-Valenzkraftkonstanten im Fall des Carbonyls belegt. Anderseits weist die Verschiebung der n(RhF)-Streckschwingung nach höheren Wellenzahlen im Carbonyl-Komplex für deren Ligand bessere p-Akzeptor- und schlechtere s-Donor-Eigenschaften gegenüber dem Vinyliden auf. Durch die aus solchen Untersuchungen gewonnenen n(RhC)- und n(CºC)-Verschiebungen in den verschiedenen untersuchten Komplexen ergibt sich die folgende Reihe abnehmender p-Akzeptorstärke: C=CHPh ³ CN-2,6-xylyl > CO > C=CH2. Die Empfindlichkeit der Valenzschwingungen n(RhC), n(CC), n(CO) und n(CN) gegenüber Veränderungen der elektronischen Verhältnisse in Vinylidene-, Carbonyl-, Ethylene- und Isonitrile-Komplexen läßt sich ihrerseits als „Sonde“ zur Untersuchung der p-Akzeptor-bzw. p-Donor-Eigenschaften anderer Liganden nutzen. Die Beeinflussung, vor allem die Schwächung der RhC-Bindung durch einen trans-ständigen Liganden konnte dadurch an den Komplexen trans-[RhX(13C=13CH2)(PiPr3)2] (X = F, Cl, Br, I), trans-[RhX(C=CHPh)(PiPr3)2] (X = F, Cl, Br, I, Me, PhCºC), trans-[RhX(CO)(PiPr3)2] (X = F, Cl, Br, I, PhCºC) und trans-[RhX(CN-2,6-xylyl)(PiPr3)2] (X = F, Cl, Br, I, PhCºC) untersucht werden. Die FT-Raman Spektroskopie zeigte sich als eine nützliche Methode zur Untersuchung des Trans-Einflusses. MO- und NBO-Berechnungen waren dabei sehr hilfreich, um diesen Effekt zu charakterisieren. Eine weitere Substanzklasse der hier untersuchten Übergangsmetallverbindungen stellen die verschiedenen Molybden- und Wolframkomplexe dar, die in den Teilprojekten B-3 und B-2 synthetisiert wurden. In diesem Zusammenhang wurden die FT-Raman- und –IR-Spektren von den polykristallinen Thioaldehyd-Komplexen mer-[W(CO)3(dmpe)(h2-S=CR2)] (R = H, D) aufgenommen und mit Dichtefunktionalrechnungen verglichen. Die Isotopenmarkierung lieferte eine klare Zuordnung der n(WC) und n(CS) Valenzstreckschwingungen, welche den partialen CS-Doppelbindungscharakter in diesen Verbindungen zeigte. Zudem konnte eine vollständige Analyse dieser Komplexe mit Hilfe der DFT-Rechnungen erlangt werden. NMR- und IR-Daten zeigten, daß bei einer Lösung von mer-[W(CO)3(dmpe)(h2-S=CH2)] ein Gleichgewicht stattfindet. Infolgedessen wurden die Energien der unterschiedlichen Stereo-Isomere von mer-[W(CO)3(dmpe)(h2-S=CH2)] untersucht, welche in sehr guter Übereinstimmung mit dem experimentellen Befund standen. Die Umsetzung der Phosphenium-Komplexe Cp(CO)2M=PR2 (M = W, Mo; R = tBu, Ph) mit Schwefel oder Selen lieferte entsprechende stabile [2+1]-Cycloaddukte in guten bis sehr guten Ausbeuten. FT-Ramanspektren von solchen Verbindungen wurden auf der Basis von Dichtefunktionalrechnungen aufgenommen und diskutiert. Diese Untersuchungen fanden in Zusammenarbeit mit Teilprojekt B-2 statt und hatten die Aufklärung der Bindungseigenschaften des Dreirings in diesen Komplexen zum Ziel. Die wichtigsten n(M-L) Valenzschwingungen konnten ebenso charakterisiert werden. Bei der UV-Bestrahlung von Cp(CO)2FeSiH2Me und Cp(CO)2FeCH2SiH3 sind verschiedene Photoprodukte bzw. Intermediate zu erwarten. In den Dissertationen von Claudia Fickert und Volker Nagel sind Veränderungen an den Raman- bzw. IR-Spektren der UV-Bestrahlungexperimente der matrixisolierten Substanzen vorgestellt und diskutiert worden. Dabei wurde die a-H-Umlagerung nach photochemischer Decarbonylierung als stabilstes Intermediat postuliert. Jedoch konnten keine eindeutigen Aussagen getroffen werden. Aufgrund dessen wurde die theoretische photochemisch induzierte Decarbonylierung und anschließenden Umlagerungen von Cp(CO)2FeSiH2Me und Cp(CO)2FeCH2SiH3 mit Hilfe der Dichtefunktionaltheorie behandelt und in einem Kapitel der vorliegenden Dissertation dargestellt. Im letzten Teil dieser Arbeit wurden Raman-Spektren und quantenchemische Rechnungen an Di(2-Pyridyl)systemen durchgeführt, die im Teilprojekt D-4 synthetisiert wurden. Die Py2E--Anionen weisen eine außergewöhnliche Selektivität bezüglich der Metallkoordination auf. Um geeignete Vorläufermoleküle zur Darstellung dünner III/V-Schichten mittels MOCVD-Experimente darzustellen, wurde Py2NH und Py2PH mit Et3Al bzw. Me3Al umgesetzt. Ein deutlicher Unterschied zwischen Amid und Phosphid ist in der Reaktivität gegenüber einem weiteren Lewis-säuren Äquivalent Et3Al bzw. Me3Al zu erkennen. Das bivalente amidische Stickstoffatom ist im Gegensatz zum Phosphoratom zu einer weiteren Koordination befähigt, was mittels DFT- und MP2-Rechnungen belegt wurde. Der Py(Bth)P--Ligand in [Me2Al{Py(Bth)P}] kann als doppelter Hart/Weich-Chelatligand bezeichnet werden. Das Me2Al+-Fragment koordiniert über die „harte Seite“ des Liganden (den Pyridylstickstoffatomen), während die „weiche Seite“ als P-S-Chelatligand weiterhin in der Lage sein sollte, weiche Übergangsmetallkomplexfragmente [M] zu stabilisieren. Diese Verbindung wurde zum Teil mit den obengenannten Methoden charakterisiert und sollte in weiter untersucht werden. Die durchgeführten DFT-Rechnungen lieferten nicht nur eine Möglichkeit der Interpretation von Schwingungsspektren, sondern erlaubten auch den Vergleich berechneter Molekülgeometrien mit Daten von Kristallstrukturanalysen und lieferten wichtige Antworten zu verschiedenen Problemstellungen. KW - Übergangsmetallkomplexe KW - Ligand KW - Fourier-Spektroskopie KW - Isotopieeffekt KW - Dichtefunktionalformalismus KW - FT-Raman KW - Infrarot KW - Spektroskopie KW - DFT KW - Vinyliden- KW - Ethylen- KW - Isonitril- KW - Carbonyl- KW - Thioaldehyd- KW - Silyl-Komplexen KW - Rhodium KW - Wolfram KW - Eisen KW - FT-Raman KW - infrared KW - spectroscopy KW - DFT calculations KW - vinylidene complexes KW - carbonyl complexes KW - ethylene complexes KW - isonitrile complexes Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-3101 ER - TY - THES A1 - Wehner, Johannes T1 - Wellenfunktionsbasierte Analyse zweidimensionaler Spektren: Wellenpaketbewegung in Dimeren und Quantendiffusionsdynamik T1 - Wavefunction based analysis of two-dimensional spectra: vibronic wave-packet motion in dimers and quantum-state-diffusion dynamics N2 - Diese Arbeit befasst sich mit der störungstheoretischen Berechnung von zweidimensionalen Photonen-Echo-Spektren für das elektronische und vibronische Modell eines Homo- und Hetero-Dimers sowie für ein vibronisches Modell eines Monomers unter dem Einfluss einer System-Bad-Wechselwirkung. Bei der Analyse der Dimerspektren steht neben der Orientierungsmittelung der Polarisation dritter Ordnung der Unterschied zwischen elektronischen und vibronischen Spektren sowie der Vergleich der Spektren von Homo- und Hetero-Dimeren im Zentrum des Interesses. Bei der Analyse der Monomer-Spektren steht die Behandlung einer dissipativen Dynamik bzw. des vibrational-coolings innerhalb eines stochastischen Ansatzes im Vordergrund. Der erste Teil dieser Arbeit konzentriert sich auf die störungstheoretische Berechnung der Polarisation dritter Ordnung in Dimeren. Dabei werden alle Aspekte und Ergebnisse für verschiedene Geometrien der Übergangsdipolmomente analysiert und diskutiert. Die Berechnungen berücksichtigen dabei auch die zufällige Anordnung der Moleküle in der Probe. Die Zusammenhänge zwischen den 2D-Spektren und den Eigenschaften der Monomereinheiten, die Abhängigkeit der Intensitäten mancher Peaks von der zeitlichen Abfolge der Pulse sowie der Einfluss der elektronischen Kopplung und verschiedener Übergangsdipolmomente ermöglichen ein grundlegendes Verständnis der elektronischen Photonen-Echo-Spektren. Im elektronischen Dimer wird der Hetero-Dimer-Charakter durch verschiedene Monomeranregungsenergien sowie unterschiedliche Übergangsdipolmomente der Monomereinheiten bestimmt. Der Einfluss dieser Größen auf die Photonen-Echo-Spektren kann durch die Kombination einer detaillierten analytischen Betrachtung und numerischen Rechnungen anschaulich nachvollzogen werden. In der vibronischen Betrachtungsweise zeigt sich, dass die Spektren deutlich an Komplexität gewinnen. Durch die Vibrationsfreiheitsgrade vervielfachen sich die möglichen Übergänge im System und damit die möglichen Peakpositionen im Spektrum. Jeder Peak spaltet in eine Vibrationssubstruktur auf, die je nach ihrer energetischen Position mit anderen überlagern kann. Der Vergleich zwischen Homo- und Hetero-Dimer-Spektren wird durch die Wahl verschiedener Vibrationsfrequenzen und unterschiedlicher Gleichgewichtsabstände entlang der Vibrationskoordinaten erweitert. Die Berechnung des Orientierungsmittels erfolgt mit zwei verschiedenen Ansätzen. Zum einen wird das Mittel durch den numerischen sampling-Ansatz berechnet. Dabei werden Azimutal- und Polarwinkel in kleinen Winkelinkrementen abgetastet und für jede Kombination ein 2D-Spektrum berechnet. Die Einzelspektren werden anschließend gemittelt. Diese Methode erweist sich im Dimer als sehr effektiv. Zum anderen erlaubt die analytische Auswertung der Polarisation dritter Ordnung, das gemittelte Spektrum direkt in einer einzelnen Rechnung durch winkelgemittelte Gewichtungsfaktoren zu bestimmen. Bei der Berechnung der elektronischen 2D-Spektren ist diese Methode sehr leistungsfähig, da alle Ausdrücke analytisch bekannt sind. Für vibronische Systeme ist dieser Ansatz ebenfalls sehr leistungsstark, benötigt aber eine einmalige aufwendige Analyse vor der Berechnung. Trotz der deutlich erhöhten Anzahl an Zustandsvektoren, die propagiert werden müssen, ist diese Methode circa zweimal schneller als die direkte Mittelung mit der sampling-Methode. Im zweiten Teil konzentriert sich die Arbeit auf die Beschreibung eines Monomers, das sich in einer dissipativen Umgebung befindet. Dabei wird auf die Lösung einer stochastischen Schrödingergleichung zurückgegriffen. Speziell wird die sogenannte quantum-state-diffusion-Methode benutzt. Dabei werden nicht nur die Erwartungswerte für die Energie und den Ort, sondern auch die Polarisation dritter Ordnung – eine phasensensitive Größe – bestimmt. In der theoretischen Fragestellung wird dabei, ausgehend von der von-Neumann Gleichung, die Zeitentwicklung der reduzierten Dichtematrix durch die Integration einer stochastischen zeitabhängigen Schrödingergleichung reproduziert. In Rechnungen koppelt die Stochastik über die Erwartungswerte von Ort und Impuls die verschiedenen störungstheoretischen Korrekturen der Wellenfunktion miteinander. Die Spektren, die aus den numerischen Simulationen erhalten werden, spiegeln das dissipative Verhalten des Systems detailliert wider. Eine Analyse der Erwartungswerte von Ort und Energie zeigt, dass sich die einzelnen elektronischen Zustände wie gedämpfte harmonische Oszillatoren verhalten und jeweils einen exponentiellen Zerfall abhängig von der Dissipationskonstante zeigen. Dieser Teil der Arbeit erweitert vorausgehende Untersuchungen, bei denen ein vereinfachter Ansatz zu Einsatz kam, der die korrelierte Stochastik nicht berücksichtigte. N2 - This PhD-thesis is centered around the calculation of two-dimensional photon-echo spectra for different model systems. Two systems are investigated in detail, the electronic and vibronic homo- and hetero-dimer as well as a vibronic monomer unit treated as an open-quantum system. Dimer-spectra are obtained within an perturbative approach, which takes the random orientation of the molecules in a sample into account. The orientationally averaged spectra of electronic homodimers are influenced by the coupling strength between the monomer units and different dipole orientations. By analysing these spectra analytically, a fundamental understandig of the photon-echo spectra is obtained. The prediction of energetic positions and relative intensities of the spectral peaks is possible. Furthermore, it is possible to extract the dipole geometry of the dimer system by comparing different peak-intensities. For an even deeper insight, the oscillatory behaviour of some peaks as a function of the time ordering of laser pulses is analysed. Switching to the electronic heterodimer increases complexity. The different excitation energies of the monomer units and the different transition-dipole strengths influence the two-dimensional spectra. The energetics of the heterodimer can be understood similarly to the homodimer. Peak intensities are difficult to analyse due to the more complex system. In a next step one vibrational degree of freedom per monomer unit is included. This vibronic dimer shows a very dense set of eigenenergies leading to a manifold of peaks in the spectra. The underlying transitions contributing to one peak are in many cases hard to identify: Different vibrational signatures appear at the same position in the spectrum and the underlying vibronic transitions cannot be determined easily. In addition, in a heterodimer different frequencies and equilibrium distances are encountered, which have a huge impact on the spectra. All presented aspects are based on analytical treatment of the third-order polarisation or the numerical calculations of 2d photon-echo spectra. To perform the orientational average two different methods are introduced: a brute-force method (sampling method) and a method using analytically derived specific weighting factors. Within the analytical approach electronic spectra can be calculated very efficiently, though this method becomes more complex if vibrational degrees of freedoms are taken into account. To analytically average the spectra a huge number of statevectors needs to be propagated. Here the brute-force method comes into play. Sampling the orientation of the polarisation vector of the incoming fields over a set of discrete angles yields spectra for fixed orientations. The desired spectrum is obtained by taking the average over spectra for fixed orientations. This method is very effective, because averaging over a small set of spectra with fixed orientations (in the presented example five) is sufficient to yield a reliable result. Because the sampling-method is easy to implement and transferable to other systems, the minor time advantage gained in the analytical approach doesn’t compensate the demanding system-specific analytical treatment. The second main topic, which is addressed in this thesis, is a vibronic monomer coupled to its environment. The system-bath coupling leads to vibrational cooling within the electronic states. The influence of this dissipative dynamics on two-dimensional photon-echo spectra is analysed. Therfore a stochastic wave-function approach based on the von-Neuman equation and the quantum-state-diffusion method is used. Within this ansatz it is shown, that the spectra can be calculated perturbatively. In addition to our formerly published propagation scheme we take statistically correlated dynamics in the electronic states into account. Otherwise the spectra may show peaks at unphysical positions. The dissipative dynamics can be monitored by the expectation values of the spatial coordinate space and energy. It is shown, that the expectation values are not dependent on the propagation scheme employed. This is different for the calculation of the phase-sensitive third-oder polarisation, where the correlated approach leads to far better results. KW - Molekulardynamik KW - Vierwellenmischen KW - Quantenmechanik KW - Wellenpaket KW - Spektroskopie KW - stochastische Schrödingergleichung KW - System-Bad-Ansatz Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-163555 ER - TY - THES A1 - Süß, Jasmin T1 - Theoretische Untersuchungen an molekularen Aggregaten: 2D-Spektroskopie und Exzitonendynamik T1 - Theoretical studies on molecular aggregates: 2D spectroscopy and exciton dynamics N2 - Diese Dissertation beschäftigt sich mit der Exzitonendynamik molekularer Aggregate, die nach Mehrphotonen-Anregung auf ultrakurzer Zeitskala stattfindet. Hierbei liegt der Fokus auf der Charakterisierung der Exziton-Exziton-Annihilierung (EEA) mithilfe von zweidimensionaler optischer Spektroskopie fünfter Ordnung. Dazu werden zwei verschiedene Modellsysteme implementiert: Das elektronische Homodimer und das elektronische Homotrimer-Modell, wobei Letzteres eine Erweiterung des Dimer-Modells darstellt. Die Kopplung des quantenmechanischen Systems an die Umgebung wird mithilfe des Quantum-Jump-Ansatzes umgesetzt. Besonderes Interesse kommt der Analyse des Signals fünfter Ordnung in Abhängigkeit der Populationszeit T zu. Anhand des Dimer-Modells als kleinstmögliches Aggregat lassen sich bereits gute Vorhersagen auch über das Verhalten größerer molekularer Aggregate treffen. Der Zerfall des oszillierenden Signals für lange Populationszeiten korreliert mit der EEA. Dies zeigt, dass die zweidimensionale optische Spektroskopie genutzt werden kann, um den Annihilierungsprozess zu charakterisieren. Innerhalb des Modells des Dimers wird weiterhin der Einfluss der Intraband-Relaxation untersucht. Zunehmende Intraband-Relaxation verhindert den Austausch zwischen den lokalen Zuständen, der essentiell für den Annihilierungsprozess ist, und die EEA wird blockiert. Das elektronische Trimer-Modell erweitert das Dimer-Modell um eine Monomereinheit. Somit befinden sich die Exzitonen im Anschluss an die Anregung nicht mehr unvermeidlich nebeneinander. Es gibt somit eine Konfiguration, bei der sich die Exzitonen zunächst zueinander bewegen müssen, bevor die Startbedingung des Annihilierungsprozesses gegeben ist. Dieser zusätzliche Schritt wird auch Exzitonendiffusion genannt. Die Ergebnisse dieser Arbeit legen nahe, dass das erwartete Verhalten nur zu sehr kurzen Zeiten im Femtosekundenbereich auftritt und somit die Zeitskala der Exzitonendiffusion im Falle des Trimers nicht sichtbar wird. Es bedarf demnach eines größeren Modellsystems, bei dem sich der Effekt der zeitverzögert eintretenden EEA deutlich in der Zerfallsdynamik manifestieren kann. N2 - This work addresses the exciton dynamics of molecular aggregates which occur after femtosecond multi-photon laser excitation. Thereby, the focus is on the characterization of exciton-exciton annihilation (EEA) via fifth order two dimensional optical spectroscopy. Two model systems are employed: the electronic homodimer model and the electronic homotrimer model, where the latter one is an extension of the dimer system. The systems are coupled to the surrounding. In the numerical calculation, the system-bath interaction is realized via the quantum jump approach. Particular attention is payed to energy-integrated spectra as a function of the population time T. The dimer is the smallest molecular aggregate, but it is a good reference system if larger aggregates are supposed to be understood. The decay of the oscillating fifth-order signal corresponds to the EEA. This indicates that two dimensional optical spectroscopy can be used to monitor the annihilation process. Furthermore, the effect of intraband relaxation is studied within the dimer model. The results display that increasing the intraband relaxation inhibits the population transfer between the localized states of the system. This blocks the EEA. In extending the dimer model system by one monomer unit, one obtains the electronic trimer model system. Within this model, the situation after excitation differs from the one in the dimer model. The excitons do not exclusively reside next to each other so that EEA is immediately possible. In that case, the excitons have to diffuse to each other before they eventually meet and the annihilation process starts. The results suggest that the expected properties are merely correct at very short times around a few femtoseconds. Within the trimer model, the additional time scale for the exciton diffusion doesn't show in the results. In particular, it requires a larger model system for the effect of the delayed EEA to be seen in the regarded signal. KW - Molekulardynamik KW - Quantenmechanik KW - Spektroskopie KW - Exziton KW - Exziton-Exziton-Annihilierung KW - Quantum-Jump-Ansatz KW - Wellenpaketdynamik Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-247136 ER - TY - THES A1 - Wirsing, Sara T1 - Computational Spectroscopic Studies with Focus on Organic Semiconductor Systems T1 - Theoretisch-spektroskopische Untersuchungen mit Fokus auf organische Halbleitersysteme N2 - This work presents excited state investigations on several systems with respect to experimental spectroscopic work. The majority of projects covers the temporal evolution of excitations in thin films of organic semiconductor materials. In the first chapters, thinfilm and interface systems are build from diindeno[1,2,3-cd:1’,2’,3’-lm]perylene (DIP) and N,N’-bis-(2-ethylhexyl)-dicyanoperylene-3,4:9,10-bis(dicarboximide) (PDIR-CN2) layers, in the third chapter bulk systems consist of 4,4’,4”-tris[(3-methylphenyl)phenylamino] triphenylamine (m-MTDATA), 4,7-diphenyl-1,10-phenanthroline (BPhen) and tris-(2,4,6-trimethyl-3-(pyridin-3-yl)phenyl)borane (3TPYMB). These were investigated by aggregate-based calculations. Careful selection of methods and incorporation of geometrical relaxation and environmental effects allows for a precise energetical assignment of excitations. The biggest issue was a proper description of charge-transfer excitations, which was resolved by the application of ionization potential tuning on aggregates. Subsequent characterization of excitations and their interplay condenses the picture. Therefore, we could assign important features of the experimental spectroscopic data and explain differences between systems. The last chapter in this work covers the analysis of single molecule spectroscopy on methylbismut. This poses different challenges for computations, such as multi-reference character of low-lying excitations and an intrinsic need for a relativistic description. We resolved this by combining complete active space self-consistent field based methods with scalarrelativistic density-functional theory. Thus we were able to confidently assign the spectroscopic features and explain underlying processes. N2 - Im ersten Teil dieser Arbeit (Referenz [4]) wurden Anregungen in DIP und PDIR-CN2 Aggregaten berechnet und charakterisiert, um Signale experimenteller TR-SHG Spek- tren zuzuweisen und zugrundeliegende Prozesse aufzuklären. Der Fokus des ersten Ka- pitels liegt auf der zeitlichen Entwicklung der Populationen der angeregten Zusände in den individuellen Materialien. Diese Anregungen haben Frenkel Charakter und konn- ten deswegen mit standard RS-Funktionalen beschrieben werden. Die Umgebung wur- de durch atomare Punktladungen modelliert. Absoptionsspektren konnten zugewiesen werden, allerdings mit einer systematischen Abweichung in den Anregungsenergien. Diese Zuweisung wurde diskutiert mit Blick auf Größe der untersuchten Aggregate, Relaxationseffekte und den Funktional-inherenten Fehler. Die Signale in den TR-SHG Spektren wurden hauptächlich auf Aggregateffekte zurückgeführt. Dazu gehören (De- )Lokalisierungsprozesse, Population von tiefliegenden Fallenzuständen und Relaxation zum Grundzustand. Zusätzlich konnten wir Vibrationsprogressionen durch Schwingun- gen der Monomere erklären ... KW - Theoretische Chemie KW - Organischer Halbleiter KW - Ab-initio-Rechnung KW - Dichtefunktionalformalismus KW - DFT KW - Spektroskopie Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286552 ER -