TY - THES A1 - Walter, Christof T1 - Excitonic States and Optoelectronic Properties of Organic Semiconductors - A Quantum-Chemical Study Focusing on Merocyanines and Perylene-Based Dyes Including the Influence of the Environment T1 - Exzitonische Zustände und optoelektronische Eigenschaften organischer Halbleiter – Eine quantenchemische Untersuchung mit Fokus auf Merocyaninen und perylenbasierten Farbstoffen unter Berücksichtigung der Umgebung N2 - The scope of computational chemistry can be broadened by developing new methods and more efficient algorithms. However, the evaluation of the applicability of the methods for the different fields of chemistry is equally important. In this thesis systems with an unusual and complex electronic structure, such as excitonic states in organic semiconductors, a boron-containing bipolaron and the excited states of pyracene were studied and the applicability of the toolkit of computational chemistry was investigated. Concerning the organic semiconductors the focus was laid on organic solar cells, which are one of the most promising technologies with regard to satisfying the world's need for cheap and environmentally sustainable energy. This is due to the low production and material costs and the possibility of using flexible and transparent devices. However, their efficiency does still not live up to the expectations. Especially the exciton diffusion lengths seem to be significantly too short. In order to arrive at improved modules, a fundamental understanding of the elementary processes occurring in the cell on the molecular and supramolecular level is needed. Computational chemistry can provide insight by separating the different effects and providing models for predictions and prescreenings. In this thesis, the focus was laid on the description of excitonic states in merocyanines and perylene-based dyes taking the influence of the environment into account. At first, the photochemical isomerization between two configurations of 6-nitro BIPS observed experimentally was studied by first benchmarking several functionals against SCS-ADC(2) in the gas phase and subsequently calculating the excited-state potential energy surface. The geometries obtained from a relaxed scan in the ground state as well as from a scan in the excited state were used. The environment was included using different polarizable continuum models. It was shown that the choice of the model and especially the question of the state specificity of the approach is of vital importance. Using the results of the calculations, a two-dimensional potential energy surface could be constructed that could be used to explain the experimental findings. Furthermore, the importance of the excited-state isomerization as a potential deactivation channel in the exciton transport was pointed out. Then the assessment of the suitability of different merocyanines for optoelectronic applications with quantum-chemical methods was discussed. At first, the effect of the environment on the geometry, especially on the bond length alternation pattern, was investigated. It was shown that the environment changes the character of the ground-state wave function of several merocyanines qualitatively, which means that the results of gas-phase calculations are meaningless - at least when a comparison with solution or device data is desired. It was demonstrated that using a polarizable continuum model with an effective epsilon, a qualitative agreement between the calculated geometry and the geometry in the crystal structure can be obtained. Therefore, by comparing the bond length alternation in solution and in the crystal, a rough estimate of the effect of the crystal environment can be made. It was further shown that the connection between the HOMO energy and the open-circuit voltage is not as simple as it is often implied in the literature. It was discussed that it is not clear whether the HOMO of a single molecule or a $\pi$-stack containing several monomers should be used and if the environmental charges of the bulk phase or the interface should be included. Investigating the dependence of the HOMO energy on the stack size yielded no definitive trend. Furthermore, it was discussed that the effect due the optimization of the modules (solvent, bulk heterojunction) during the production masks any potential correlation between the HOMO energy and measured open-circuit values. Therefore, a trend can only be expected for unoptimized bilayer cells. It was concluded that ultimately, the importance of the HOMO energy should not be overestimated. The correlation between the exciton reorganization energy and the so-called cyanine limit, which is predicted by a simple two-state model, was also discussed. By referring to the results of VB calculations, it was discussed that the correlation indeed exists and is non-negligible, although the effect is not as strong as one might have expected. In this context, a potential application of a VB/MM approach was covered briefly. The importance of the molecular reorganization energy and the device morphology was also discussed. It was concluded that the optimization of merocyanines for organic optoelectronic devices is inherently a multiparameter problem and one cannot expect to find one particular parameter, which solely controls the efficiency. The perylene-based dyes were studied with a focus on the description of a potential trapping mechanism involving an intermolecular motion in a dimer. The aim was to find methods which can be applied to larger model systems than a dimer and take the effect of the environment into account. As a test coordinate the longitudinal shift of two monomers against each other was used. At first, it was demonstrated how the character of an excited state in a dimer can be defined and how it can be extracted from a standard quantum-chemical calculation. Then several functionals were benchmarked and their applicability or failure was rationalized using the character analysis. Two recipes could be proposed, which were applied to a constraint optimization (only intermolecular degrees of freedom) in the excited states of the PBI dimer and to the description of the potential energy surfaces of ground and excited states along a longitudinal displacement in the perylene tetramer, respectively. It was further demonstrated that the semi-empirical OMx methods fail to give an accurate description of the excited-state potential energy surfaces as well as the ground-state surface along the test coordinate. This failure could be attributed to an underestimation of overlap-dependent terms. Consequently, it could be shown that the methods are applicable to large intermolecular distances, where the overlap is negligible. The results of DFT calculations with differently composed basis sets suggested that adding an additional single p-function for each atom should significantly improve the performance. QM/MM methods are ideally suited to take the effect of the environment on a a dimer model system into account. However, it was shown that standard force fields also give an incorrect description of the interaction between the monomers along the intermolecular coordinate. This failure was attributed to the isotropic atom-atom interaction in the repulsion term of the Lennard-Jones potential. This was corroborated using two simple proof-of-principle anisotropy models. Therefore, a novel force field called OPLS-AA_O was presented that is based on OPLS-AA, but uses an anisotropic model for the repulsion. The model involves the overlap integral between the molecular densities, which are modeled as a sum of atom-centered p-type Gaussian functions. It was shown that using this force field an excellent agreement with the DFT results can be obtained when the correct parameters are used. These parameters, however, are not very generalizable, which was attributed to the simplicity of the model in its current state (using the same exponential parameter for all atoms). As a short excursion, the applicability of an MO-based overlap model was discussed. It was demonstrated that the repulsion term based on the density overlap can be used to correct the failure of the OMx methods for the ground states. This is in accord with the assumption that an underestimation of the overlap terms is responsible for the failure. It was shown that OPLS-AA_O also gives an excellent description of the longitudinal shift in a PBI tetramer. Using the tetramer as a test system and applying the recipe obtained in the TDDFT benchmark for the QM-part and OPLS-AA_O for the MM-part in conjunction with an electrostatic embedding scheme, a QM/MM description of the excited states of the PBI dimer including the effect of the environment could be obtained. In the last chapter the theoretical description of the Bis(borolyl)thiophene dianion and the excited states of pyracene were discussed. The electronic structure of the Bis(borolyl)thiophene dianion - a negative bipolaron - was elucidated using DFT and CASPT2 methods. Furthermore, an estimation of the extent of triplet admixture to the ground state due to spin-orbit coupling was given. In the second project the S1 and S2 states of pyracene were computed using SCS-CC2 and SCS-ADC(2) and an estimation for the balance between aromaticity and ring strain was given. This also involved computing the vibrational frequencies in the excited states. In both studies the results of the computations were able to rationalize and complete experimental results. N2 - Die Anwendungsmöglichkeiten der Methoden der theoretischen Chemie können erweitert werden, indem neue Methoden und effizientere Algorithmen entwickelt werden. Es ist jedoch ebenso wichtig die Anwendbarkeit der Methoden für die verschiedenen Felder der Chemie zu evaluieren. In dieser Arbeit wurden Systeme mit einer komplexen und ungewöhnlichen Struktur, wie exzitonische Zustände in organischen Halbleitern, ein bor-basiertes Bipolaron und die angeregten Zustände von Pyracen untersucht und die Anwendbarkeit der verschiedenen Methoden evaluiert. Im Bezug auf die organischen Halbleiter wurde der Fokus auf organische Solarzellen gelegt, welche zu den vielversprechendsten Technologien gehören, um dem weltweiten Bedarf an billiger und ökologisch nachhaltiger Energie zu begegnen. Dies liegt an den niedrigen Produktionskosten und der Möglichkeit flexible und transparente Module zu verwenden. Ihre Wirkungsgrade werden den Erwartungen jedoch noch nicht gerecht. Vor allem die Exzitonendiffusionslängen scheinen deutlich zu gering zu sein. Um verbesserte Module zu erhalten ist ein fundamentales Verständnis der Elementarprozesse in der Zelle auf molekularem und supramolekularem Level vonnöten. Die theoretische Chemie kann dabei helfen dies zu erreichen, indem sie die verschiedenen Effekte separiert und Modelle für Vorhersagen und zur Vorauswahl geeigneter Verbindungen bereitstellt. In dieser Arbeit wurde der Fokus auf die Beschreibung von exzitonischen Zuständen in Merocyaninen und perylenbasierten Farbstoffen unter Berücksichtigung von Umgebungseinflüssen gelegt. Zunächst wurde die experimentell beobachtete photochemische Isomerisierung zwischen zwei Konfigurationen von 6-nitro BIPS untersucht, indem zuerst die Anwendbarkeit verschiedener Funktionale im Vergleich zu SCS-ADC(2) in der Gasphase überprüft wurde und anschließend die Potentialfläche des angeregten Zustands berechnet wurde. Es wurden sowohl die Geometrien aus einem relaxed scan im Grundzustand als auch von einem scan im angeregten Zustand verwendet. Umgebungseffekte wurden unter Verwendung verschiedener Kontinuumsansätze (polarizable continuum models) berücksichtigt. Es konnte gezeigt werden, dass die Wahl des Ansatzes und vor allem die Frage nach der Zustandsspezifizität des Kontinuumsansätze sehr entscheidend ist. Mit den Ergebnissen der Berechnungen konnte eine zweidimensionale Potenzialfläche konstruiert werden, mittels welcher die experimentellen Beobachtungen erklärt werden konnten. Außerdem wurde auf die Bedeutung der Isomerisierung im angeregten Zustand als einem potenziellen Deaktivierungskanal für den Exzitonentransport hingewiesen. Anschließend wurde die Möglichkeit einer Bewertung der Eignung verschiedener Merocyanine für optoelektonische Fragestellungen mit quantenchemischen Methoden diskutiert. Zunächst wurde der Einfluss der Umgebung auf die Geometrie und insbesondere auf die Bindungslängenalternanz untersucht. Es wurde gezeigt, dass die Umgebung die Wellenfunktion mehrerer Merocyanine qualitativ verändert, was bedeutet, dass Berechnungen in der Gasphase keinen Sinn machen - zumindest nicht, wenn die Ergebnisse mit Daten, die in Lösung oder in der Zelle erhalten wurden, verglichen werden sollen. Es konnte gezeigt werden, dass unter Verwendung eines Kontinuumsansatzes mit einer effektiven Dielektrizitätskonstante epsilon eine qualitative Übereinstimmung zwischen der berechneten Geometrie und der Geometrie in der Kristallstruktur erzielt werden kann. Dies ermöglicht es, durch einen Vergleich der Bindungslängenalternanz in Lösung und im Kristall eine grobe Abschätzung für den Einfluss der Kristallumgebung zu erhalten. Es wurde außerdem dargelegt, dass der Zusammenhang zwischen der Energie des HOMOs und der Leerlaufspannung nicht so eindeutig ist, wie es oft in der Literatur suggeriert wird. Es stellte sich die Frage, ob die HOMO-Energie eines einzelnen Moleküls oder eines Stapels bestehend aus mehreren Monomeren verwendet werden sollte und ob der Umgebungseffekt der Ladungen der Bulkphase oder der Grenzfläche berücksichtigt werden sollte. Die Untersuchung der Abhängigkeit der HOMO-Energie von der Anzahl der Monomere ergab keinen klaren Trend. Die Tatsache, dass die Optimierung des Moduls während des Produktionsprozesses (Solvent, Bulk-Hereojunction-Konzept) eine potenzielle Korrelation zwischen der HOMO-Energie und der Leerlaufspannung maskiert, wurde ebenfalls diskutiert. Deshalb kann eine Korrelation nur für nicht optimierte Zweischichtzellen erwartet werden. Es wurde der Schluss gezogen, dass die Bedeutung der HOMO-Energie letztendlich nicht überbewertet werden sollte. Der Zusammenhang zwischen der Exzitonenreorganisationsenergie und dem sogenannten Cyaninlimit, welcher von einem einfachen Zwei-Zustands-Model vorhergesagt wird wurde diskutiert. Unter Verweis auf die Ergebnisse von VB-Berechnungen konnte diskutiert werden, dass der Zusammenhang in der Tat existiert und nicht vernachlässigbar, aber auch nicht so groß ist, wie man vermutet haben könnte. In diesem Kontext wurde die potenzielle Anwendbarkeit eines VB/MM-Ansatzes kurz besprochen. Die Bedeutung der molekularen Reorganisationsenergie und der Morphologie der Zelle wurden ebenfalls diskutiert. Es wurde das Fazit gezogen, dass die Optimierung der Merocyanine für die Anwendung in organischen Halbleitern inhärent ein Multiparameterproblem ist und man nicht erwarten kann, einen einzelnen Parameter zu finden, der allein die Effizienz kontrolliert. Die perylenbasierten Farbstoffe wurden mit dem Fokus auf der Beschreibung eines potenziellen Exzitoneneinfangmechanismus, untersucht, welcher auf der intermolekularen Bewegung in einem Dimer basiert. Das Ziel war es Methoden zu finden, die auf größere Systeme anwendbar sind und den Umgebungseinfluss berücksichtigen können. Als Testkoordinate wurde die longitudinale Verschiebung der Monomere gegeneinander verwendet. Zunächst wurde gezeigt, wie der Charakter eines angeregten Zustandes in einem Dimer definiert werden kann und wie ein Maß für den Charakter ausgehend von einer normalen quantenchemischen Berechnung erhalten werden kann. Anschließend wurden verschiedene Funktionale evaluiert und ihre Anwendbarkeit beziehungsweise ihr Versagen mittels der Charakteranalyse rationalisiert. Zwei Ansätze konnten vorgeschlagen werden, welche auf eine Optimierung in den angeregten Zustände des Dimers mit Nebenbedingung (nur intermolekulare Freiheitsgrade) beziehungsweise auf eine Beschreibung der Potenzialflächen des Grundzustandes und der angeregten Zustände für die longitudinale Verschiebung in einem Perylentetramer angewendet wurden. Es wurde außerdem gezeigt, dass die semiempirischen OMx Methoden keine akkurate Beschreibung der Potenzialflächen der angeregten Zustände sowie des Grundzustandes für die Testkoordinate liefern. Dies konnte mit der Unterschätzung der intermolekularen Überlappterme begründet werden. Folglich war es möglich zu zeigen, dass die Methoden für intermolekulare Abstände, bei denen der Überlapp vernachlässigbar ist, anwendbar sind. Die Ergebnisse von DFT-Rechnungen mit unterschiedlich zusammengesetzten Basissätzen ließen ferner den Schluss zu, dass das Hinzufügen einer einzelnen p-Funktion an jedem Atom eine deutliche Verbesserung bringen sollte. QM/MM-Methoden sind ideal geeignet, um den Einfluss der Umgebung auf ein Dimer-Modellsystem zu berücksichtigen. Es wurde jedoch gezeigt, dass gängige Kraftfelder ebenfalls eine inkorrekte Beschreibung der Wechselwirkung zwischen den Monomeren entlang der intermolekularen Koordinate liefern. Dies wurde mit der isotropen Beschreibung der Atom-Atom-Wechselwirkung im Repulsionsterm des Lennard-Jones-Potenzials begründet. Diese Annahme wurde durch die Anwendung zweier Proof-of-Principle-Ansätze untermauert. Folglich wurde ein neues Kraftfeld, genannt OPLS-AA_O, eingeführt, welches auf OPLS-AA basiert, aber eine anisotrope Modellierung der Repulsion verwendet. Diese anisotrope Repulsion basiert auf dem Überlappintegral der molekularen Elektronendichten, welche als Summe aus atomzentrierten p-artigen Gaußfunktionen modelliert wird. Es wurde gezeigt, dass mit diesem Kraftfeld eine hervorragende Übereinstimmung mit den DFT-Ergebnissen erhalten werden kann, wenn die richtigen Parameter verwendet werden. Diese Parameter sind jedoch nicht sehr generalisierbar, was mit der Einfachheit des Models zu seinem momentanen Stand begründet wurde (Verwendung desselben Parameters im Exponenten bei allen Atomen). Als kurzer Exkurs wurde die Anwendbarkeit eines MO-basierten Überlappmodells diskutiert. Es konnte nachgewiesen werden, dass der Repulsionsterm, der auf der Dichteüberlappung basiert, auch als Korrekturterm für die Anwendbarkeit der OMx-Methoden bezüglich des Grundzustandes verwendet werden kann. Dies deckt sich mit der Annahme, dass eine Unterschätzung von Überlapptermen für das Versagen der semiempirischen Methoden verantwortlich ist. Es wurde gezeigt, dass OPLS-AA_O die Potenzialfläche für die longitudinale Verschiebung in einem PBI Tetramer exzellent beschriebt. Unter Verwendung des Tetramers als Testsytem und unter Anwendung eines der vorgeschlagenen TDDFT-Ansätze für den QM-Teil und OPLS-AA_O für den MM-Teil in Verbindung mit einem electrostatic embedding-Ansatz konnte eine QM/MM-Beschreibung der angeregten Zustände des PBI Dimers unter Berücksichtigung des Umgebungseinfluss erhalten werden. Im letzten Kapitel wurde die theoretische Beschreibung des Bis(borolyl)thiophendianions und von Pyracen diskutiert. Die elektronische Struktur des Bis(borolyl)thiophendianions wurde beschrieben unter Verwendung von DFT- und CASPT2-Methoden. Außerdem wurde eine Abschätzung des Ausmaßes der Triplettbeimischung zum Grundzustand durch die Spin-Bahn-Kopplung gegeben. Im zweiten Projekt wurden der S1- und S2- Zustand des Pyracens unter Verwendung von SCS-CC2 und SCS-ADC(2) berechnet und eine Abschätzung des Verhältnisses von Aromatizität und Ringspannung gegeben. Dies beinhaltete auch die Berechnung der Schwingungsfrequenzen im angeregten Zustand. In beiden Studien konnten die Ergebnisse der Berechnungen die experimentellen Daten vervollständigen und rationalisieren. KW - Exziton KW - Angeregter Zustand KW - Quantenchemie KW - organic semiconductors KW - organische Halbleiter Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123494 ER - TY - THES A1 - Stehr, Vera T1 - Prediction of charge and energy transport in organic crystals with quantum chemical protocols employing the hopping model T1 - Vorhersage des Ladungs- und Energietransports in organischen Kristallen mit quantenchemischen Methoden unter Verwendung des Sprungmodells N2 - As organic semiconductors gain more importance for application, research into their properties has become necessary. This work investigated the exciton and charge transport properties of organic semiconducting crystals. Based on a hopping approach, protocols have been developed for the calculation of Charge mobilities and singlet exciton diffusion coefficients. The protocols do not require any input from experimental data except for the x-ray crystal structure, since all needed quantities can be taken from high-level quantum chemical calculations. Hence, they allow to predict the transport properties of yet unknown compounds for given packings, which is important for a rational design of new materials. Different thermally activated hopping models based on time-dependent perturbation theory were studied for the charge and exciton transport; i. e. the spectral overlap approach, the Marcus theory, and the Levich-Jortner theory. Their derivations were presented coherently in order to emphasize the different levels of approximations and their respective prerequisites. A short reference was made to the empirical Miller-Abrahams hopping rate. Rate equation approaches to calculate the stationary charge carrier mobilities and exciton diffusion coefficients have been developed, which are based on the master equation. The rate equation approach is faster and more efficient than the frequently used Monte Carlo method and, therefore, provides the possibility to study the anisotropy of the transport parameters and their three-dimensional representation in the crystal. The Marcus theory, originally derived for outer sphere electron transfer in solvents, had already been well established for charge transport in organic solids. It was shown that this theory fits even better for excitons than for charges compared with the experiment. The Levich-Jortner theory strongly overestimates the charge carrier mobilities and the results deviate even stronger from the experiment than those obtained with the Marcus theory. The latter contains larger approximations by treating all vibrational modes classically. The spectral overlap approach in combination with the developed rate equations leads to even quantitatively very good results for exciton diffusion lengths compared to experiment. This approach and the appendant rate equations have also been adapted to charge transport. The Einstein relation, which relates the diffusion coefficient with the mobility, is important for the rate equations, which have been developed here for transport in organic crystals. It has been argued that this relation does not hold in disordered organic materials. This was analyzed within the Framework of the Gaussian disorder model and the Miller-Abrahams hopping rate. N2 - Organische Halbleiter gewinnen immer größere Bedeutung für Anwendungen in der Elektronik. In dieser Arbeit wurden deren Eigenschaften bezüglich des Exzitonen- und Ladungstransports untersucht. Diese beiden Prozesse sind wesentlich für viele Bauteile der organischen Elektronik, wie zum Beispiel Solarzellen. Ausgehend von einem Sprungmodell wurden Verfahren zur Berechnung von Ladungsträgerbeweglichkeiten und Diffusionskoeffizienten von Singulettanregungen entwickelt, wofür bis auf die Röntgenstruktur des Kristalls keine weiteren experimentellen Daten benötigt werden, da alle notwendigen Größen durch quantenchemische Rechnungen auf hohem Niveau bestimmt werden können. Dies ermöglicht die Vorhersage der Transporteigenschaften von noch unbekannten Materialien mit bekannter Struktur, was eine Voraussetzung für das Maßschneidern neuer Materialien darstellt. Verschiedene, auf der zeitabhängigen Störungstheorie basierende thermisch aktivierte Sprungmodelle - der spektrale Überlappungsansatz, die Marcus- und die Levich-Jortner-Theorie - wurden für die Anwendung auf den Ladungs- und Energietransport hin untersucht. Ausgehend von Fermis Goldener Regel wurden die Sprunggleichungen konsistent hergeleitet, um die verschiedenen Abstufungen der jeweils vorgenommenen Näherungen und deren Voraussetzungen deutlich zu machen. Zusätzlich dazu wurde ein kurzer Exkurs zur empirischen Miller-Abrahams-Sprungrate und deren Anwendung in amorphen Systemen gemacht. Unter Verwendung der Mastergleichung wurden Ratengleichungsansätze zur Berechnung der stationären Ladungsträgerbeweglichkeiten und Exzitonendiffusionskoeffizienten entwickelt. Die Berechnung der Transportgrößen über Ratengleichungen ist wesentlich schneller und effizienter als die häufig angewendete Monte-Carlo-Simulation. Dies ermöglicht die Analyse der Anisotropie des Transports im Kristall und ihre dreidimensionale Darstellung. Die Marcustheorie, die ursprünglich für Elektronentransfer in Lösungen entwickelt wurde, hat sich auch für Ladungstransport in organischen Festkörpern bewährt. Hier wurde diese Theorie auch auf Exzitonentransport übertragen und gezeigt, daß sie im Vergleich zum Experiment für Exzitonen sogar bessere Ergebnisse liefert als für Ladungsträger. Die Levich-Jortner-Theorie überschätzt die Ladungsträgerbeweglichkeiten im Falle der Acene sehr stark. Ihre Ergebnisse weichen sogar stärker vom Experiment ab als die der Marcustheorie. Letztere enthält deutlich stärkere Näherungen, weil alle Molekülschwingungen klassisch behandelt werden. Der spektrale Überlappungsansatz führt zusammen mit den hier entwickelten Ratengleichungen sogar zu quantitativ guten Ergebnissen für die Exzitonendiffusion. Dieser Ansatz und die Ratengleichungen wurden auch für die Berechnung der Ladungsträgerbeweglichkeiten angepaßt. Für die in dieser Arbeit entwickelten Ratengleichungen ist die Einsteinrelation, welche die Diffusion mit der Drift in Beziehung setzt, von zentraler Bedeutung. Es ist umstritten, ob diese Beziehung auch in amorphen, ungeordneten Materialien gültig ist. Dieser Frage wurde im Rahmen des Gaußschen Unordnungsmodells und der Miller-Abrahams-Sprungrate nachgegangen. KW - Exziton KW - exciton KW - Ladungstransfer KW - charge transfer KW - organische Halbleiter KW - organic semiconductors KW - Sprungmodell KW - hopping model Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114940 ER - TY - THES A1 - Schmidt, Thomas Christian T1 - Theoretical Investigations on the Interactions of Small Compounds with their Molecular Environments T1 - Theoretische Untersuchungen der Wechselwirkungen Kleiner Moleküle mit deren Molekularen Umgebungen N2 - Im ersten Teil dieser Arbeit wird eine Kombination theoretischer Methoden für die strukturbasierte Entwicklung neuer Wirkstoffe präsentiert. Ausgehend von der Kristallstruktur eines kovalenten Komplexes einer Modellverbindung mit dem Zielprotein wurde mit Hilfe von quantenmechanischen und QM/MM Rechnungen die genaue Geometrie des vorausgehenden nicht-kovalenten Komplexes betimmt. Letztere ist der bestimmende Faktor für die Reaktivität des Inhibitors gegenüber der katalytisch aktiven Aminosäure und damit für die Ausbildung einer kovalenten Bindung. Aus diesem Grund wurde diese Geometrie auch für die Optimierung der Substitutionsmusters des Ihnibitors verwendet, um dessen Affinität zum Zielenzyme zu verbessern ohne dass dieser seine Fähigkeit kovalent an das aktive Zentrum zu binden verliert. Die Optimierung des Substitutionsmuster wurde doch Methode des Molekularen Dockings unterstützt, das diese optimal dazu geeignet sind, Bindungsaffinitäten vorherzusagen, die durch eine Modifikation der chemischen Struktur entstehen. Eine Auswahl der besten Strukturen wurde anschließend verwendet, um zu überprüfen, ob die veränderten Moleküle noch genügen Reaktivität gegenüber dem Zielprotein aufweisen. Moleküldynamik Simulationen der neuen Verbindungen haben jedoch gezeigt, dass die veränderten Verbindungen nur so and das Protein binden, dass die Bilung eine kovalenten Bindung zum Enzym nicht mehr möglich ist. Daher wurden in einem weiteren Schritt die Modellverbindungen weiter modifiziert. Neben Änderungen im Substitutionsmuster wurde auch die chemische Struktur im Kern verändert. Die Bindungsaffinitäten wurde wieder mittels Docking überprüft. Für die besten Bindungsposen wurden wieder Simulationen zur Moleküldynamik durchgeführt, wobei diesmal die Ausbildung einer kovalenten Bindung zum Enzyme möglich erscheint. In einer abschließenden Serie von QM/MM Rechnungen unter Berücksichtigung verschiedener Protonierungszustände des Inhibitors und des Proteins konnten Reaktionspfade und zugehörige Reaktionsenergien bestimmt werden. Die Ergebnisse lassen darauf schließen, dass eines der neu entwickelten Moleküle sowohl eine stark verbesserte Bindungsaffinität wie auch die Möglichkeit der kovalenten Bindung an Enzyme aufweist. Der zweite Teil der Arbeit konzentriert sich auf die Umgebungseinflüsse auf die Elektronenverteilung eines Inhibitormodells. Als Grundlage dient ein vinylsulfon-basiertes Moekül, für das eine experimentell bestimmte Kristallstruktur sowie ein theoretisch berechneter Protein Komplex verfügbar sind. Ein Referendatensatz für diese Systeme wurde erstellt, indem der Konformationsraum des Inhibitors nach möglichen Minimumsstrukturen abgesucht wurde, welche später mit den Geometrien des Moleküls im Kristall und im Protein verglichen werden konnten. The Geometrie in der Kristallumgebung konnte direkt aus den experimentellen Daten übernommen werden. Rechnungen zum nicht-kovalenten Protein Komplex hingegen haben gezeigt, dass für das Modellsystem mehrere Geometrien des Inhibiors sowie zwei Protonierungszustände für die katalytisch aktiven Aminosäuren möglich sind. Für die Analyse wurden daher alle möglichen Proteinkomplexe mit der Kristallstruktur verglichen. Ebenso wurden Vergleiche mit der Geometrie des isolierten Moleküls im Vakuum sowie der Geometrie in wässriger Lösung angestellt. Für die Geometrie des Moleküls an sich ergab sich eine gute Übereinstimmung für alle Modellsysteme, für die Wechselwirkungen mit der Umgebung jedoch nicht. Die Ausbildung von Dimeren in der Kristallumgebung hat einen stark stablisierenden Effekt und ist einer der Gründe, warum dieser Kristall so gut wie keine Fehlordungen aufweist. In den Proteinkomplexen hingegen ergibt sich eine Abstoßung zwischen dem Inhibitor und einer der katalytisch aktiven Aminosäuren. Als Ursache für diese Abstoßung konnte die Einführung der Methylaminfunktion ausgemacht werden. Vermutlicherweise führt diese strukturelle Änderung auch dazu, dass der Modellinhibitor nicht in der Lage ist, so wie die Leitstruktur K11777 an das aktive Zentrum des Enzyms zu binden. N2 - In the first part of this work, a combination of theoretical methods for the rational design of covalent inhibitor is presented. Starting from the crystal structure of the covalent complex of a lead compound, quantum mechanical and QM/MM calculations were used to derive the exact geometry of the preceeding non-covalent enzyme inhibitor complex. The geometry of the latter mainly determines the reactivity of the inhibitor against its target enzyme concerning the formation of the covalent bond towards an active site residue. Therefore, this geometry was used as starting point for the optimization of the substitution pattern of the inhibitor such as to increase its binding affinity without loosing its ability to covalently bind to the target protein. The optimization of the chemical structure was supported by using docking procedures, which are best suited to estimate binding affinities that arise from the introduced changes. A screening of the novel substitution patterns resulted in a first generation of model compounds which were further tested for their reactivity against the target. Dynamic simulations on the novel compounds revealed that the orientation that compounds adopt within the active site are such that a covalent interaction with the enzyme is no longer possible. Hence, the chemical structure was further modified, including not only changes in the substituents but also within the core of the molecule. Docking experiments have been conducted to assure sufficiently high binding affinities and to obtain the most favored binding poses. Those have then again been used for dynamic simulations which resulted in structures, for which the bond formation process appeared feasible. A final series of QM/MM calculations considering various protonation states was computed to estimate the reaction energies for the covalent attachment of the inhibitor to the enzyme. The theoretical results indicate a reasonable high inhibition potency of the novel compounds. The second part concentrates on the environmental influences on the electron density of an inhibitor molecule. Therefore, a vinylsulfone-based model compound was selected for which an experimental crystal structure for the pure compound as well as a theoretically determined enzyme-inhibitor complex have been available. To provide reference data for the larger systems, the conformational space of the isolated molecule was screened for favorable geometries which were later compared to those within the crystal and protein surrounding. The geometry of the crystal structure could readily be taken from the experimental data whereas calculations on the protein complex revealed four potential non-covalent complexes exhibiting different arrangements of the molecule within the active site of the protein as well as two possible protonation states of the catalytic dyad. Hence, all four protein complexes have been compared to the crystal structure of the molecule as well as against the more favorable geometries of the isolated molecule being determined within vacuum or aqueous surrounding. Whereas the molecule itself was found to adopt comparable geometries within all investigated environments, the interactions pattern between the crystal surrounding and the protein differed largely from each other. The favorable formation of dimers within the crystal has a strong stabilizing effect and explains the extraordinarily good quality of the crystal. Within the protein however, repulsive forces have been found between the protein and the inhibitor. The origin of the repulsion could be traced back to effect of on of the substituents to the vinyl scaffold. The difference in the chemical structure in comparison to a well known inhibitor might also explain the experimentally found loss of activity for the model compound in comparison to K11777. KW - Theoretische Chemie KW - theoretical chemistry KW - electron density KW - inhibition KW - Elektronendichte KW - Inhibitor Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127860 ER - TY - THES A1 - Lang, Melanie T1 - Valence Shell Photoionization of Soot Precursors with Synchrotron Radiation T1 - Valenzschalen-Photoionisation von Rußvorläufern mit Synchrotron-Strahlung N2 - A series of combustion relevant species like radicals, carbenes and polycyclic aromatic hydrocarbons were characterized in the gas phase by vacuum UV synchrotron radiation and their ionization energies (IE) and further spectroscopic details of the respective cations were retrieved from threshold photoelectron spectra. The reactive intermediates were generated by flash vacuum pyrolysis from stable precursor molecules. Furthermore three polycyclic aromatic hydrocarbons were investigated by threshold photoelectron spectroscopy, too. The experiment was performed at the VUV beamline of the Swiss Light Source in Villigen/Switzerland and the iPEPICO (imaging photoelectron photoion coincidence) setup was applied to correlate ions and electrons from the same ionization event. From the threshold photoelectron spectra and from quantum chemical computations the vibrational structure of the molecule cations and the geometry changes upon ionization were assigned. The ionization energies of the two C4H5 isomers 2-butyn-1-yl and 1-butyn-3-yl were assigned to 7.94±0.02 eV and 7.97±0.02 eV, respectively. The isomerization between the two isomers was computed to have a barrier of 2.20 eV, so a rearrangement between the two radicals cannot be excluded. From the threshold photoelectron spectra of the two constitutional C4H7 isomers 1-methylallyl and 2-methylallyl the ionization energies were assigned to 7.48±0.02 eV and to 7.59±0.02 eV for 1-E-methylallyl and 1-Z-methylallyl, as well as to 7.88±0.01 eV for 2-methylallyl. The two radicals 9-fluorenyl, C13H9, and benzhydryl, C13H11, were observed to ionize at 7.01±0.02 eV and 6.7 eV. The threshold photoelectron spectrum of benzhydryl also incorporated the signal of the diphenylmethyl carbene, C13H10, which has an IE at 6.8 eV. In addition, the head-to-head dimers of 9-fluorenyl and benzhydryl were observed as products in the pyrolysis. C26H18 has an IE at 7.69±0.04 eV and C26H22 has an IE at 8.13±0.04 eV. The three polycyclic aromatic hydrocarbon DHP (C14H16) 1-PEN (C18H22) and THCT (C22H16) were investigated in an effusive beam. The ionization energies were determined to IE(DHP)= 7.38±0.02 eV, IE(1-PEN)=7.58±0.05 eV and IE(THCT)=6.40±0.02 eV. Furthermore the thermal decomposition and the dissociative photoionization of diazomeldrum’s acid was investigated. The pyrolysis products yielded beside several other products the two not yet (by photoelectron spectroscopy) characterized molecules E-formylketene, C3O2H2 and 2-diazoethenone, N2C2O. The dissociative photoionization showed the Wolff rearrangement to occur at higher internal energies. N2 - Die vorliegende Arbeit befasst sich mit VUV Valenz-Photoionisations-Experimenten, welche in der Gasphase an verschiedenen Kohlenwasserstoffradikalen und drei polyzyklischen aromatischen Kohlen- wasserstoffen (PAH) durchgeführt wurde. Des Weiteren wurden die Pyrolyseprodukte der Dia- zomeldrumsäure mit dem genannten Experiment untersucht. Die reaktiven Intermediate wurden im Vakuum mittels Flash-Pyrolyse aus stabilen Vorläufermolekülen erzeugt. Die meisten dieser waren kommerziell erhältlich, wobei auch einige Moleküle selbst im Würzburger Chemielabor synthetisiert wurden. Die erzeugten Radikale und Carbene wurden in einem kontinuierlichen Molekularstrahl ex- pandiert. Um den Vorläufer in die Gasphase zu überführen, wurden verschiedene Molekular-Quellen eingesetzt. Die Auswahl erfolgte dabei in Abhängigkeit des Dampfdrucks des Vorläufermoleküls. Die Polyzyklischen Aromaten (PAH) wurden in der Arbeitsgruppe von Prof. Dr. Anke Krüger im Insti- tut für Organische Chemie der Universität Würzburg synthetisiert. Die PAH wurden in einer Fest- stoffmolekularquelle geheizt und in einem effusiven Molekularstrahl expandiert. Die Ionisation aller Spezies erfolgte mit monochromatischem VUV-Synchrotronlicht, das an der Bending-Magnet Beam- line an der Swiss Light Source in Villigen/Schweiz erzeugt wird. Das Schwellenphotoelektronen- Photoionen-Koinzidenz (TPEPICO) Experiment wurde zur Detektion und Analyse der Ionisation- sprozesse angewendet. Dieses Experiment ermöglicht es massenselektierte Ionen und Schwellen- photoelektronen des selben Ionisationsereignisses zu korrelieren. Die Ionen wurden in einem Time- of-Flight Massenspektrometer detektiert. Durch Integration des Massensignals und anschließende Auswertung des zugeordneten Schwellenphotoelektronen-Signals erhält man das Schwellenphotoelek- tronen-Spektrum (TPES) des Moleküls bzw. Fragments. Aus den TPE-Spektren konnten Ion- isierungsenergien bestimmt werden und mit Hilfe von Franck-Condon-Simulationen sowohl die Schwin- gungsstruktur im Kation, als auch die Geometrieänderung, hervorgerufen durch die Ionisation, analysiert werden. Berechnete Ionisierungsenergien wurden zusätzlich mit den experimentellen Daten verglichen. Im Folgenden werden die einzelnen Ergebnisse aufgelistet. ... KW - Ultraviolett-Photoelektronenspektroskopie KW - photoelectron-photoion coincidence KW - Photoelektronen-Photoionen-Koinzidenz KW - reactive intermediates KW - pyrolysis KW - reaktive Intermediate KW - Pyrolyse KW - Fotoionisation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117038 ER - TY - THES A1 - Holzmeier, Fabian T1 - Photoionization of Nitrogen-Containing Reactive Molecules with Synchrotron Radiation T1 - Photoionisation von stickstoffhaltigen reaktiven Molekülen mit Synchrotronstrahlung N2 - The photoionization of several nitrogen-containing reactive intermediates relevant in combustion processes was investigated in the gas phase employing VUV synchrotron radiation. The intermediates were either freshly prepared and stored under cryogenic temperatures during the experiment or generated in situ by vacuum flash pyrolysis of suitable precursor molecules. The iPEPICO (imaging photoelectron photoion coincidence) setups of the VUV beamlines at the Swiss Light Source and Synchrotron SOLEIL were then used to record mass-selected threshold photoelectron (TPE) spectra. TPE spectra reveal the ionization energy and vibrational structure in the cationic states can often be resolved, which enables to distinguish different isomers. Accurate ionization energies for the radicals carbonyl amidogen, pyrrolyl, and 3-picolyl, and for the closed shell molecules isocyanic acid and cyanovinylacetylene were obtained. The analysis of the dissociative photoionization of the pyrolysis precursors enables in some cases to retrieve thermochemical data. Beyond, the absolute photoionization cross section of the cyclic carbene cyclopropenylidene was determined, NEXAFS and normal Auger spectra of isocyanic acid were recorded and analyzed at the O1s, N1s, and C1s edges, and the dissociative photoionization and pyrolysis of 1,4-di-tert-butyl-1,4-azaborinine was studied. N2 - Die Photoionisiation von stickstoffhaltigen reaktiven Intermediaten, die in Verbrennungsprozessen vorkommen, wurde in der Gasphase mit VUV Synchrotronstrahlung untersucht. Die Intermediate wurden entweder unmittelbar vor dem Experiment hergestellt und während des Experiments bei sehr niedrigen Temperaturen gehalten oder in situ durch Vakuum Flash Pyrolyse eines geeigneten Vorläufermoleküls erzeugt. Massenselektive Schwellenphotoelektronen(TPE)-Spektren wurden an den iPEPICO (imaging photoion photoelectron coincidence) Setups der VUV Strahllinien der Swiss Light Source und des Synchrotrons SOLEIL aufgenommen. Die Ionisierungsenergie kann in TPE-Spektren bestimmt werden und eine Auflösung von Schwingungsstruktur im Kation ist in vielen Fällen möglich, wodurch verschiedene Isomere unterschieden werden können. Verlässliche Ionisierungsenergien konnten für die Radikale Carbonylamidogen, Pyrrolyl und 3-Picolyl sowie für die geschlossenschaligen Moleküle Isocyansäure und Cyanovinylacetylen erhalten werden. Die Analyse der dissoziativen Photoionisation der Pyrolysevorläufer eröffnet in manchen Fällen Zugang zu thermochemischen Daten. Darüber hinaus wurde der absolute Photoionisationsquerschnitt des cyclischen Carbens Cyclopropenyliden bestimmt, wurden die NEXAFS und nicht-resonanten Auger Spektren von Isocyansäure an der O1s, N1s und C1s Kante aufgenommen und analysiert und die dissoziative Photoionisation und Pyrolyse von 1,4-di-tert-butyl-1,4-azaborinin untersucht. KW - Dissoziative Photoionisation KW - Synchrotronstrahlung KW - Ultraviolett-Photoelektronenspektroskopie KW - Pyrolyse KW - Photoelektron-Photoion-Koinzidenz KW - Fotoionisation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127763 ER - TY - THES A1 - Brunecker, Frank T1 - Kohlenstoffnanorohr-Komplexe - Adsorption und Desorption von (Bio-)Polymeren T1 - Carbon Nanotube Complexes - Adsorption and Desorption of (Bio-)Polymers N2 - Zur Charakterisierung der Wechselwirkungen zwischen organischen Dispergiermitteln und nanoskaligen Oberflächen stellen Komplexe aus Kohlenstoffnanoröhren und (Bio-)Polymeren aufgrund der großen Oberfläche der Nanoröhren und der kommerziellen Verfügbarkeit fluoreszenzmarkierter DNA-Oligomere unterschiedlicher Länge sowie intrinsisch fluoreszierender Polymere ein vielversprechendes Modellsystem dar. Im Rahmen der vorliegenden Dissertation wurden verschiedene Methoden evaluiert, um die Stabilität derartiger Komplexe zu untersuchen und dadurch Rückschlüsse auf das Adsorptionsverhalten der (Bio-)Polymere zu ziehen. Dabei konnte gezeigt werden, dass das publizierte helikale Adsorptionsmodell der DNA auf Kohlenstoffnanoröhren die Resultate der durchgeführten Experimente nur unzureichend beschreiben kann und stattdessen andere Adsorptionskonformationen in Erwägung gezogen werden müssen. N2 - Interactions between organic dispersants and nanoscopic surfaces are of crucial interest in the field of nanotechnology. For characterization of such interactions, complexes of single-wall carbon nanotubes and (bio-)polymers are considered to be a promising model system due to the large specific surface of the nanotubes as well as the commercial availability of fluorescently labeled, length-scaled DNA oligomers and intrinsic fluorescent synthetic polymers. The present dissertation focused on probing suitable methods for the investigation of the stability of these complexes in order to determine the adsorption behavior of the examined (bio-)polymers. The findings of the performed experiments are inconsistent with the previously published helical adsorption of DNA to carbon nanotubes but give rise to additional adsorption conformations. KW - Kohlenstoff-Nanoröhre KW - Adsorption KW - Desorption KW - Reaktionskinetik KW - Kinetik KW - Konzentrationssprungmethode KW - Numerische Verfahren KW - Einzelstrang-DNA Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-113485 ER - TY - THES A1 - Becker, Johannes T1 - Development and implementation of new simulation possibilities in the CAST program package T1 - Entwicklung und Implementierung neuer Simulationsmöglichkeiten in das CAST Programmpaket N2 - The aim of the present work is the development and implementation of new simulation possibilities for the CAST program package. Development included, among other things, the partial parallelization of the already existing force fields, extension of the treatment of electrostatic interactions and implementation of molecular dynamics and free energy algorithms. The most time consuming part of force field calculations is the evaluation of the nonbonded interactions. The calculation of these interactions has been parallelized and it could be shown to yield a significant speed up for multi-core calculations compared to the serial execution on only one CPU. For both, simple energy/gradient as well as molecular dynamics simulations the computational time could be significantly reduced. To further increase the performance of calculations employing a cutoff radius, a linkedcell algorithm was implemented which is able to build up the non-bonded interaction list up to 7 times faster than the original algorithm. To provide access to dynamic properties based on the natural time evolution of a system, a molecular dynamics code has been implemented. The MD implementation features two integration schemes for the equations of motion which are able to generate stable trajectories. The basic MD algorithm as described in Section 1.2 leads to the sampling in the microcanonical (NVE) ensemble. The practical use of NVE simulations is limited though because it does not correspond to any experimentally realistic situation. More realistic simulation conditions are found in the isothermal (NVT) and isothermalisobaric (NPT) ensembles. To generate those ensembles, temperature and pressure control has been implemented. The temperature can be controlled in two ways: by direct velocity scaling and by a Nose-Hoover thermostat which produces a real canonical ensemble. The pressure coupling is realized by implementation of a Berendsen barostat. The pressure coupling can be used for isotropic or anisotropic box dimensions with the restriction that the angles of the box need to be 90� . A crucial simulation parameter in MD simulations is the length of the timestep. The timestep is usually in the rang of 1fs. Increasing the timestep beyond 1fs can lead to unstable trajectories since the fastest motion in the system, usually the H-X stretch vibration can not be sampled anymore. A way to allow for bigger timesteps is the use of a constraint algorithm which constrains the H-X bonds to the equilibrium distance. For this the RATTLE algorithm has been implemented in the CAST program. The velocity Verlet algorithm in combination with the RATTLE algorithm has been shown to yield stable trajectories for an arbitrary length of simulation time. In a first application the MD implementation is used in conjunction with the MOPAC interface for the investigation of PBI sidechains and their rigidity. The theoretical investigations show a nice agreement with experimentally obtained results. Based on the MD techniques two algorithms for the determination of free energy differences have been implemented. The umbrella sampling algorithm can be used to determine the free energy change along a reaction coordinate based on distances or dihedral angles. The implementation was tested on the stretching of a deca-L-alanine and the rotation barrier of butane in vacuum. The results are in nearly perfect agreement with literature values. For the FEP implementation calculations were performed for a zero-sum transformation of ethane in explicit solvent, the charging of a sodium ion in explicit solvent and the transformations of a tripeptide in explicit solvent. All results are in agreement with benchmark calculations of the NAMD program as well as literature values. The FEP formalism was then applied to determine the relative binding free energies between two inhibitors in an inhibitor-protein complex. Next to force fields, ab-initio methods can be used for simulations and global optimizations. Since the performance of such methods is usually significantly poorer than force field applications, the use for global optimizations is limited. Nevertheless significant progress has been made by porting these codes to GPUs. In order to make use of these developments a MPI interface has been implemented into CAST for communication with the DFT code TeraChem. The CAST/TeraChem combination has been tested on the $H_2 O_{10}$ cluster as well as the polypeptide met-Enkephalin. The pure ab-initio calculations showed a superior behavior compared to the standard procedure where the force field results are usually refined using quantum chemical methods. N2 - Das Ziel der hier vorliegenden Arbeit ist die Entwicklung und Implementierung neu- er Simulationsalgorithmen in das CAST Programmpaket. Neben der teilweisen Para- llelisierung der bereits impelentierten Kraftfelder wurde das Programm um einen Mole- kulardynamikcode erweitert. Aufbauend auf diesem Code wurden Algorithmen zur Be- rechnung der freien Energie entlang einer Reaktionskooridnate, sowie eine Erweiter-ung der Behandlung elektrostatischer Wechselwirkungen auf Basis einer Ewald Summation implementiert. Der zeitaufwändigste Teil einer Kraftfeldrechnung stellt die Evaluierung der nichtbin- denden Wechselwirkungen dar. Die Berechnung dieser Wechselwirkungen wurde für die Nutzung von Mehrkernprozessoren optimiert und parallelisiert. Die Parallelisie- rung zeigte eine signifikante Reduktion der benötigten Rechenzeit auf mehreren Re- chenkernen im Vergleich zur seriellen Berechnung auf nur einem Rechenkern für einfa- che Energie- bzw. Gradientenrechnungen sowie für Molekulardynamikrechnungen. Um Rechnungen, die einen cutoff Radius benutzen, weiter zu beschleunigen, wurde der Auf- bau der Verlet-Liste modifiziert. Statt des Standardalgorithmus, der eine Doppelschleife über alle Atome verwendet, wurde ein linked-cell Algorithmus implementiert. Der Auf- bau der Verlet-Liste konnte damit um den Faktor 7 beschleunigt werden. Der Molekulardynamikcode enthält mehrere Algorithmen zur Berechnung von Syste- men in verschiedenen Ensembles. Zur numerischen Integration der Bewegungsgleichun- gen wurden der Velocity-Verlet sowie eine modifizierte Version von Beemans Algorith- mus implementiert. Da der minimale Code, wie er in Kapitel 1.2 beschrieben wird, ein mikrokanonisches Ensemble produziert, und dieses keiner realistischen experimentel- len Situation entspricht, wurden Methoden zur Berechnung und Aufrechterhaltung von Temperatur und Druck implementiert. Die Temperatur kann mittels zweier verschiede- ner Möglichkeiten kontrolliert werden. Die erste Möglichkeit ist die direkte Skalierung der Geschwindigkeiten der Partikel, die zweite Möglichkeit besteht in der Nutzung ei- nes Nòse-Hoover Thermostaten, der ein echtes kanonisches Ensemble generiert. Für die Kontrolle des Drucks wurde ein Berendsen Barostat implementiert. Da die Kontrolle des Drucks die Nutzung von periodischen Randbedingungen voraussetzt, ist die Form der Simulationszelle wichtig. CAST unterstützt aktuell isotrope und anisotrope Simulationszellen, mit der Einschränkung, dass alle Winkel 90◦betragen. Ein kritischer Punkt bei einer MD Simulation ist die Länge des Zeitschritts, der in der Regel bei 1fs liegt. Sollen größere Zeitschritte verwendet werden, müssen die schnell- sten Bewegungnen im System eingeschränkt werden. Dies sind im Normalfall die H-X Streckschwingungen. Zur Einschränkung dieser wurde der RATTLE Algorithmus imple- mentiert der die H-X Bindung mit Hilfe von Lagrange-Multiplikatoren auf den Gleich- gewichtsabstand fixiert. Als erste Anwendung des MD Codes wurde in Kombination mit dem MOPAC Programm die Rigidität und Flexibilität von PBI Seitenketten erfolgreich untersucht. Basierend auf dem MD Code wurden zwei Möglichkeiten zur Bestimmung der freien Energie eingebaut, Umbrella Sampling und Free Energy Perturbation. Umbrella Samp- ling erlaubt die Bestimmung der freien Energie entlang einer Reaktionskoordinate, hier Abstände oder Diederwinkel. Der Algorithmus wurde erfolgreich an zwei Literatur- beispielen, der Streckung von Deca-L-Alanin sowie der Rotation von Butan um den zentralen Diederwinkel getetstet. Die FEP Implementierung wurde an drei Beispielen getestet, einer Nullsummen-Transformation von Ethan in Ethan in explizitem Solvent, dem Lösen eines Natriumions in Wasser und der Transformation von Tyrosin in Alanin in einem Tripeptid. Die Ergebnisse dieser Testrechnungen stimmen hervorragend mit Vergleichsrechnungen mit NAMD sowie Literaturwerten überein. Die FEP Methode wurde schließlich benutzt um die relative freie Bindungsenergie zweier Inhibitoren in einem Inhibitor-Protein-Komplex zu bestimmen. Neben Kraftfeldern können auch ab-initio Methoden für Simulationen benutzt werden. Da die Rechenzeit dieser Methoden um ein vielfaches höher ausfällt als die für Kraftfel- der, ist die Benutzung für die globale Optimierung jedoch limitiert. In den letzten Jah- ren wurde im Bereich der Leistungsfähigkeit dieser Methoden jedoch große Fortschritte erzielt, indem diese Methoden auf Grafikkarten portiert wurden. Um diese Entwick- lung nutzbar zu machen wurde eine MPI-Schnittstelle in CAST implementiert, die mit dem DFT Programm TeraChem kommuniziert. Die Kombination aus beiden Program- men, sowie die Funktionsfähigkeit der Schnittstelle, wurde an H2O10 Clustern sowie dem Polypeptid Met-Enkephalin getestet. Die reinen ab-initio Rechnungen zeigten ein besseres Verhalten gegenüber dem Normalen Protokoll, welches Kraftfeldrechungen mit nachfolgender Optimierung mit qunatenchemischen Methoden vorsieht. KW - Molekulardynamik KW - Molecular dynamics KW - Molecular mechanics KW - Molecular Simulation KW - Free Energy Perturbation (1987 : Princeton, NJ) Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132032 ER -