TY - THES A1 - Daubinger, Philip T1 - Electrochemical and Mechanical Interplay of State-of-the-Art and Next-Generation Lithium-Ion Batteries T1 - Elektrochemisches und mechanisches Wechselspiel von heutigen und zukünftigen Lithium-Ionen Batterien N2 - The demand for LIB with enhanced energy densities leads to increased utilization of the space within the confinements of the battery housing or to the use of electrode material with increased intrinsic specific energy densities. Both requirements result in more stress on the battery electrodes and separator during cycling or aging. However, the effect of mechanical strain on the cell’s electrochemistry and thus the performance of batteries is rather unexplored compared to the impact of current or temperature, for example. The objective of this thesis was to give a better understanding of the electrochemical and mechanical interplay in current- and next-generation lithium based battery cells. Therefore, the thesis was structured into the investigations on SoA and next-generation LIBs. For SoA LIBs, the investigations of the interplay started at laboratory scale. Here, the expansion of various electrodes and also the impact of mechanical pressure and its distribution on the performance of the cells were studied. The investigations at laboratory scale was followed by an examination of the electrochemical and mechanical interactions on large format commercial LIBs which are used in BEVs. Accordingly, the effect of bracing and its effect on the performance was studied in an aging and post-mortem study. To gain a deeper understanding of the mechanical changes in LIBs, an ultrasonic study was performed for pouch cells. Here, the mechanical changes were further investigated in dependence of SoC and SoH. The effects of the mechanical stress on the performance for next-generation batteries were studied at laboratory scale. In the beginning, the expansion of next-generation anode materials such as silicon and lithium was compared with today’s anode materials. Furthermore, the effect of mechanical pressure and electrolyte on the irreversible dilation and performance was investigated for lithium metal cells. Overall, it was shown that pressure has a significant effect on the performance of today’s and also future LIBs. The interplay of the electrochemical and mechanical effects inside a LIB has a considerable impact on the lifetime, capacity fading and impedance increase of the batteries. N2 - Mit der steigenden Nachfrage nach Lithium-Ionen-Batterien (LIB) mit hoher Energiedichte geht eine effizientere Nutzung des Raumes innerhalb des Batteriegehäuses oder die Verwendung von Elektrodenmaterial mit erhöhter intrinsischer Energiedichte einher. Durch beide Maßnahmen steigt die mechanische Belastung auf die Batterieelektroden und den Separator während eines Zyklus oder im Zuge der Alterung. Deren Auswirkungen auf die elektrochemischen Reaktionen der Elektroden und damit auf die Leistung der Batterien ist jedoch im Vergleich zu den Auswirkungen von Strom oder Temperatur eher unerforscht. Das Ziel dieser Doktorarbeit ist es, ein besseres Verständnis für das elektrochemische und mechanische Zusammenspiel in heutigen und zukünftigen Lithium-Batteriezellen zu entwickeln. Daher wurde die Arbeit in die Untersuchungen von heutigen und zukünftigen LIBs gegliedert. Für heutige LIBs begannen die Untersuchungen des elektrochemisch-mechanischen Zusammenspiels im Labormaßstab. Hier wurde die Ausdehnung unterschiedlicher Elektroden sowie der Einfluss des mechanischen Drucks und seiner Verteilung auf die Leistung der Batteriezellen untersucht. Aufbauend auf den Untersuchungen im Labormaßstab folgte eine Untersuchung der elektrochemischen und mechanischen Wechselwirkungen an großformatigen kommerziellen LIBs, die in BEVs verwendet werden. Dafür wurde der Einfluss von mechanischer Verspannung auf die Leistung der Batterien in einer Alterungs- und Post-Mortem-Studie untersucht. Um ein vertieftes Verständnis der mechanischen Veränderungen innerhalb der LIBs zu entwickeln, wurden kommerzielle Pouch-Zellen mittels Ultraschalluntersuchungen analysiert. Hierbei wurden die mechanischen Veränderungen in Abhängigkeit des Ladezustands und der Alterung weiter untersucht. Die Auswirkungen der mechanischen Belastung auf die Leistung von zukünftigen Batteriesystemen wurde im Labormaßstab untersucht. Zunächst wurde die Ausdehnung von Anodenmaterialien der nächsten Generation wie Silicium und Lithium mit heutigen Anodenmaterialien verglichen. Außerdem wurde der Einfluss von mechanischem Druck und des Elektrolyten auf die irreversible Dilatation und die Performance von Lithium-Metall Zellen untersucht. Insgesamt zeigt diese Arbeit, dass der Druck einen erheblichen Einfluss auf die Leistung heutiger und auch zukünftiger LIBs hat. Das Zusammenspiel der elektrochemischen und mechanischen Effekte in einer LIB hat einen erheblichen Einfluss auf die Lebensdauer, den Kapazitätsabfall und die Impedanzerhöhung der Batterien. KW - Lithium-Ionen-Akkumulator KW - Lithium-Ion Battery KW - Electrochemical and Mechanical Interplay KW - Dilation Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-351253 ER - TY - THES A1 - Bittner, Andreas T1 - Innovative Materialkonzepte für elektrochemische Energiespeicher T1 - Innovative Material Concepts for Electrochemical Energy Storage N2 - Im Rahmen der vorliegenden Arbeit wurde ein neuer Beschichtungstyp für die Elektrodenmaterialien von Lithium-Ionen-Akkumulatoren entwickelt und charakterisiert. Dieser besteht aus einem speziellen anorganisch-organischen Hybridpolymer, das sich bezüglich seiner Zusammensetzung und Funktion gegenüber bestehenden Beschichtungsmaterialien abhebt. Das anorganisch-organische Netzwerk des Hybridpolymers konnte mittels Feststoff-NMR-Messungen vollständig aufgeklärt werden. Dabei zeigte sich ein stabiles anorganisches Gerüst aus hoch vernetzten Polysiloxan-Einheiten. Zusätzliche organische Modifizierungen liegen als lange bewegliche Ketten mit funktionellen Polyethylenoxid-Einheiten vor oder sind in Form von Polyethern und Diolen vernetzt. Mit dieser speziellen Netzwerkstruktur ist es möglich, Materialeigenschaften zu erzeugen, die über solche von rein anorganischen und rein organischen Beschichtungen hinausgehen. Zu den mit verschiedenen Methoden nachgewiesenen Eigenschaften zählen eine hohe ionische Leitfähigkeit von 10\(^{-4}\) S/cm, eine hohe Elastizität mit E = 63 kPa, eine hohe elektrochemische Stabilität bis 5,0 V vs. Li/Li\(^+\) und eine hohe thermische Stabilität. Eine weitere Besonderheit des neuen Beschichtungsmaterials ist die mehrstufige Vernetzung der anfänglichen Prekursoren zu einem Hybridpolymer-Sol und dem abschließenden Hybridpolymer-Gel. Die im Beschichtungssol vorliegende Teilvernetzung der Vorstufen konnte detailliert mittels Flüssig-NMR-Messungen untersucht und beschrieben werden. Aus den Messungen ließ sich folgern, dass die organisch und anorganisch vernetzbaren Gruppen im Sol teilweise vernetzt vorliegen. Die sterisch erreichbaren Si-OR-Gruppen der so entstandenen Oligomere sind vorwiegend nicht hydrolysiert, wodurch deren anorganische Anbindung an die OH-Gruppen der Partikeloberflächen kinetisch bevorzugt ist. Damit lassen sich besonders homogene und vollständig bedeckende Beschichtungen der Elektrodenmaterialien erzeugen. Dies konnte mit verschiedenen physikalischen und chemischen Methoden nachgewiesen werden: simulationsgestützte Rückstreuanalysen mittels REM, hochaufgelöste TEM-Aufnahmen sowie Elementanalysen durch EDX und XPS. Nach der Optimierung des nasschemischen Beschichtungsprozesses über Rotationsverdampfen ergaben sich für die verschiedenen Elektrodenmaterialien Li\(_4\)Ti\(_5\)O\(_{12}\), Li(Ni,Co,Mn)O\(_2\) und Li(Mn,Ni)\(_2\)O\(_4\) jeweils etwa 20 nm dicke Beschichtungen mit Hybridpolymer. Die Frage nach deren Lösungsmittelbeständigkeit konnte durch die Analyse von behandelten Proben mit TG, REM, XPS und ICP-OES aufgeklärt werden. Dabei zeigte sich sowohl für die Behandlung mit NMP, dem klassischen Lösungsmittel bei der Elektrodenfertigung mit PVDF-Binder, als auch für die Behandlung mit dessen umweltschonenderem Ersatzstoff Aceton eine gute Beständigkeit der Beschichtung. Die Beschichtung löste sich in den Lösungsmitteln an, blieb allerdings als geschlossene nanoskalige Beschichtung erhalten. Lediglich gegenüber dem Lösungsmittel H\(_2\)O, das in Kombination mit dem neuen Binder CMC eingesetzt wird, wurde eine mangelnde Schichtstabilität deutlich. Das dafür verantwortliche Quellverhalten der Beschichtung konnte mittels Dünnschicht-Modellsystem und daran durchgeführten REM-, IR- und EPA-Untersuchungen aufgeklärt werden. Die Optimierung des Hybridpolymer-Materials bezüglich einer besseren H\(_2\)O-Beständigkeit übersteigt den Rahmen dieser Arbeit und liefert die Grundlage für weitere künftige Forschungsarbeiten. Aufgrund der vollständigen Bedeckung der neuen Beschichtung, ihrer besonderen Eigenschaften und ihrer Beständigkeit bei der klassischen Elektrodenfertigung ist es möglich, die Elektrodenmaterialien grundlegend hinsichtlich ihrer wichtigsten Eigenschaften zu verbessern. Hierfür wurden sowohl über die NMP- als auch über die Aceton-Route Elektroden gefertigt und zu Halbzellen und Vollzellen verarbeitet. Die REM-Analyse der Elektroden zeigte, dass die Partikelbeschichtungen keinen negativen Einfluss auf die Homogenität und Morphologie der Elektroden ausüben. Damit war es möglich, jeweils einen direkten Vergleich von beschichteten und unbeschichteten Materialien hinsichtlich ihrer elektrochemischen Performance anzustellen. Für die Kathodenmaterialien Li(Ni,Co,Mn)O\(_2\) und Li(Mn,Ni)\(_2\)O\(_4\) ergaben die Zyklenfestigkeits- und Impedanzmessungen klare Verbesserungen durch die Beschichtung. Verbunden mit einer Verbesserung der Energiedichte erhöhte sich bei beiden Materialien die Zyklenfestigkeit um mehr als 60 %. Bei Li(Mn,Ni)\(_2\)O\(_4\) zeigt sich die Verbesserung in einer erhöhten Zellspannung durch das vergleichsweise hohe Redoxpotential des Materials von etwa 4,7 V vs. Li/Li\(^+\), während sich bei Li(Ni,Co,Mn)O\(_2\) die Hochvoltfähigkeit des Materials verbessert, was mit einer vergrößerten Speicherkapazität verbunden ist. Dabei ist herauszustellen, dass für keines der Materialien ein negativer Einfluss der dünnen Beschichtung auf die Leistungsdichte festgestellt werden konnte. Der erwartete Mechanismus für die verbesserte Elektrodenfunktion durch das Hybridpolymer ist die Bildung einer physikalischen Schutzschicht in Form einer Li\(^+\)-leitfähigen Membran. Diese umgibt das Elektrodenmaterial vollständig, ermöglicht die Ladungsträgerinterkalation und schützt die Elektrode gleichzeitig vor irreversiblen Reaktionen mit dem Elektrolyten. Damit verbunden ist eine verminderte Mn-Auslösung und eine verminderte Entwicklung von isolierenden Deckschichten aus Reaktionsprodukten wie LiF, Li\(_2\)O, Li\(_2\)CO\(_3\), was sich positiv auf die Alterung der Batteriezellen auswirkt. Die Funktion der Beschichtung wurde primär auf den Kathodenmaterialien demonstriert. Doch auch auf der Anodenseite wurde ihre Anwendungstauglichkeit aufgezeigt, was das große Potential der Beschichtung für eine breite Anwendung in Lithium-Ionen-Batterien verdeutlicht. N2 - Concerning its application on the electrode materials of lithium-ion batteries, in this thesis a new type of coating was developed and investigated. The new coating consists of an inorganic-organic hybrid polymer, which significantly differs from existing coating materials regarding composition and function. Its specific inorganic-organic network was characterized by solid-state NMR, which revealed stable inorganic domains consisting of highly cross-linked polysiloxane units with organic modifications. These modifications are long and flexible chains with functional polyethylene oxide units as well as networks cross-linked via polyethers and diols. With its special structure, the hybrid polymer shows material properties which surpass those of pure inorganic and pure organic materials. The properties were validated by different methods and include a high ionic conductivity of 10\(^{-4}\) S/cm, a high elasticity of E = 63 kPa, a high electrochemical stability of 5.0 V vs. Li/Li\(^+\), and a high thermal stability. Another distinctive feature of the new coating is its gradual network formation, starting with the initial precursors, leading to a hybrid polymer sol and ending with the final hybrid polymer gel. The partial cross-linkage of the precursors in the sol was investigated with liquid-state NMR. Based on the measurements it could be concluded that the organically and inorganically cross-linkable groups are partly interconnected in the sol. The sterically accessible Si-OR groups are predominantly not hydrolyzed. So an inorganic linkage of the hybrid polymer sol’s oligomers to the OH groups of the particles’ surfaces is kinetically favored, which enables the creation of particularly homogeneous and entire particle coatings. This was shown by several physical and chemical methods of measurement: simulation-based backscattered electron analysis via SEM, high-resoluted images via TEM and elemental analysis by means of EDS and XPS. After optimization of the wet chemical coating processes via rotary evaporation, hybrid polymer coatings of approximately 20 nm were realized on Li\(_4\)Ti\(_5\)O\(_{12}\), Li(Ni,Co,Mn)O\(_2\) and Li(Mn,Ni)\(_2\)O\(_4\). The solvent resistance of the coatings was investigated by TG, SEM, XPS and ICP-OES. These measurements revealed a good resistance against NMP, the classical solvent for the electrode production with PVDF binder. Similar results were obtained for the environmentally friendly solvent acetone. However, a partial dissolution was observed in both solvents. Nevertheless, a closed nanocoating remained on the particles’ surfaces after solvent treatment. Only for the solvent H\(_2\)O, which is used in combination with the binder CMC, an insufficient resistance became evident, caused by a swelling of the coating that was detected by means of a thin film model system and measurements with SEM, IR, and EPA. An optimization of the hybrid polymer material considering the H\(_2\)O resistance would exceed the scope of this work and provides the basis for future scientific research. Based on the flawless new coating, its specific properties and its resistance during the classical electrode production, it is possible to fundamentally improve electrode materials regarding their most important characteristics. For that reason electrodes were fabricated with NMP and with acetone as solvent and processed to half and full cells. Analysis with SEM revealed that the hybrid polymer coating had no impact on the homogeneity and morphology of the composite electrodes, enabling a direct comparison of the coated and uncoated materials with regard to their electrochemical performance. For the cathode materials, Li(Ni,Co,Mn)O\(_2\) and Li(Mn,Ni)\(_2\)O\(_4\), cycling and impedance measurements showed that by the coating both materials have a considerably improved cycling stability of more than 60 %, going along with an increased energy density. Regarding Li(Mn,Ni)\(_2\)O\(_4\) the improvement is expressed in an increased cell voltage compared to typical materials because of its high redox potential of about 4.7 V vs. Li/Li\(^+\). In the case of Li(Ni,Co,Mn)O\(_2\) an improved high voltage stability enables higher operating voltages and consequently higher capacities. It has to be pointed out that no negative influence of the thin coating on the power density could be detected. The formation of a physical protection layer in the form of a Li\(^+\) conducting membrane is the expected mechanism for the improved electrode function by the hybrid polymer, hence, protecting the electrode against undesired reactions with the electrolyte. As a consequence the Mn leaching and the evolution of insulating surface layers consisting of reaction products like LiF, Li\(_2\)O and Li\(_2\)CO\(_3\) is suppressed, leading to a reduced aging of the electrode materials. The coating function was primarily demonstrated for the cathode materials, but its suitability was also shown on the anode side, revealing the large potential of the coating for a broad application in lithium-ion batteries. KW - Lithium-Ionen-Akkumulator KW - Beschichtung KW - Polymere KW - Lithium-Ionen-Batterie KW - beschichtetes Elektrodenmaterial KW - anorganisch-organisches Hybridpolymer KW - lithium-ion battery KW - coated electrode material KW - inorganic-organic hybrid polymer KW - core-shell particles KW - improved cyle life KW - Kern-Schale-Partikel KW - verbesserte Zyklenfestigkeit Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-152300 ER - TY - THES A1 - Hofmann, Michael T1 - Overcoming Obstacles in the Aqueous Processing of Nickel-rich Layered Oxide Cathode Materials T1 - Überwindung von Hindernissen bei der wässrigen Verarbeitung von nickelreichen Schichtoxid-Kathodenmaterialien N2 - The implementation of a water-based cathode manufacturing process is attractive, given the prospect of improved sustainability of future lithium-ion batteries. However, the sensitivity of many cathode materials to water poses a huge challenge. Within the scope of this work, a correlation between the water sensitivity of cathode materials from the class of layered oxides and their elemental composition was identified. In particular for the cathode material LiNi0.8Co0.15Al0.05O2 (NCA), the processes taking place in aqueous medium were clarified in detail. Based on this knowledge, the surface of NCA particles could be specifically modified, which led to a reduced water sensitivity. As a result, the electrochemical performance of cells with water-based NCA cathodes was significantly improved and a remarkable long-term cycling performance was achieved. The present work contributes to a deeper understanding of the water sensitivity of cathode materials and at the same time presents a promising approach to overcome this obstacle. Consequently, this work advances the successful widespread realization of water-based cathode manufacturing. N2 - Die Nachhaltigkeit zukünftiger Lithium-Ionen-Batterien kann durch die Implementierung eines wasserbasierten Herstellungsverfahrens für Kathoden verbessert werden. Die Wasserempfindlichkeit vieler Kathodenmaterialien stellt hierbei jedoch eine große Herausforderung dar. Im Rahmen dieser Arbeit wurde ein Zusammenhang zwischen der Wasserempfindlichkeit von Kathodenmaterialien der Klasse der Schichtoxide und deren Elementzusammensetzung hergestellt. Insbesondere für das extrem wasserempfindliche Kathodenmaterial LiNi0.8Co0.15Al0.05O2 (NCA) wurden die im wässrigen Medium ablaufenden Prozesse detailliert aufgeklärt. Auf Basis dieser Erkenntnisse konnte die Oberfläche von NCA-Partikeln gezielt modifiziert und damit die Wasserempfindlichkeit reduziert werden. Infolgedessen konnte die elektrochemische Performance von Zellen mit wasserbasierten NCA-Kathoden signifikant verbessert und eine bemerkenswerte Langzeitperformance erzielt werden. Die vorliegende Arbeit trägt somit zu einem tieferen Verständnis der Wasserempfindlichkeit von Kathodenmaterialien bei und liefert zugleich einen vielversprechenden Ansatz, um diese zu minimieren. So wird die erfolgreiche Realisierung der wässrigen Kathodenherstellung vorangetrieben. KW - Elektrochemie KW - Kathode KW - Lithium-Ionen-Akkumulator KW - cathode material KW - aqueous processing KW - lithium-ion battery KW - layered oxides Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-273787 ER -