TY - THES A1 - Schlücker, Sebastian T1 - Lineare und nichtlineare Raman-Spektroskopie an biologisch relevanten Modellystemen T1 - Linear and nonlinear Raman spectroscopy on biological relevant model systems N2 - Im Rahmen dieser Dissertation wurden insgesamt drei verschiedene Fragestellungen an biologisch relevanten Modellsystemen mit Hilfe von diversen linearen und nichtlinearen Raman-spektroskopischen Techniken bearbeitet. Neben der Untersuchung von Wasserstoffbrücken-gebundenen Komplexen und ihrer Dynamik auf der fs-Zeitskala (Kapitel 4) bildeten Untersuchungen zur Struktur von Porphyrinen (Kapitel 5) und beta-Carotin (Kapitel 6) als Vertreter wichtiger Klassen von Biomolekülen den Schwerpunkt dieser Arbeit. Die spektroskopischen Ergebnisse wurden durchweg über Strukturen und Schwingungsspektren, welche mit Hilfe der Dichtefunktionaltheorie (DFT) berechnet wurden, unterstützt. Die dritte bearbeitete Thematik zum Nachweis anthropogener und ökologisch relevanter Aerosole war bioanalytisch motiviert und wurde anhand von Pestizid-Modellsubstanzen bearbeitet (Kapitel 7). N2 - Three different problems on biological relevant model systems were investigated within the framework of this thesis by means of various linear and nonlinear Raman techniques. Besides the studies on hydrogen-bonded complexes and their dynamics on a fs-timescale (chapter 4), structural investigations on porphyrins (chapter 5) and beta-carotene (chapter 6) as representatives of important classes of biomolecules were the central subject of this dissertation. The experimental data were confirmed throughout by structures and vibrational spectra obtained from calculations based on density functional theory (DFT). The last topic, the detection of anthropogenic aerosols with ecological relevance, was motivated from bioanalytical chemistry. The corresponding investigations were carried out on pesticide model compounds (chapter 7). KW - Biomolekül KW - CARS-Spektroskopie KW - Infrarot- und Raman-Spektroskopie KW - Resonanz-Raman-Spektroskopie KW - kohärente anti-Stokessche Raman-Spektroskopie (CARS) KW - Infrared and Raman spectroscopy KW - resonance Raman scattering KW - coherent anti-Stokes Raman scattering (CARS) Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-1181438 ER - TY - JOUR A1 - Schleier, Domenik A1 - Reusch, Engelbert A1 - Lummel, Lisa A1 - Hemberger, Patrick A1 - Fischer, Ingo T1 - Threshold photoelectron spectroscopy of IO and IOH JF - ChemPhysChem N2 - Iodine oxides appear as reactive intermediates in atmospheric chemistry. Here, we investigate IO and HOI by mass‐selective threshold photoelectron spectroscopy (ms‐TPES), using synchrotron radiation. IO and HOI are generated by photolyzing iodine in the presence of ozone. For both molecules, accurate ionization energies are determined, 9.71±0.02 eV for IO and 9.79±0.02 eV for HOI. The strong spin‐spin interaction in the 3Σ− ground state of IO+ leads to an energy splitting into the Ω=0 and Ω=±1 sublevels. Upon ionization, the I−O bond shortens significantly in both molecules; thus, a vibrational progression, assigned to the I−O stretch, is apparent in both spectra. KW - ionization potential KW - radicals KW - reactive intermediates KW - photolysis KW - synchrotron radiatoren Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204751 VL - 20 IS - 19 ER - TY - THES A1 - Schleier, Domenik T1 - Using Photoionization to Investigate Reactive Boron Species and the Kinetics of Hydrocarbon Radicals T1 - Die Untersuchung von Reaktiven Borspezies und die Kinetik von Kohlenwassterstoffradikalen mittels Photoionization N2 - This thesis highlights the importance of isomer-selective approaches for the complete analysis of chemical processes. The method of choice is photoelectron/photoion coincidence spectroscopy, which allows simultaneous detection of electrons and ions coming from a single ionization event. Ionization techniques are sensitive and can record multiple species simultaneously, rendering them ideal tools to probe molecular transformations. Coupling these setups to synchrotron radiation allows one to analyze complex mixtures with isomer selectivity, based on ionization energies and vibrational structure in the cation, without any prior separation steps. Only few setups exist that can be used to gather these data, although their impact and applicability is growing steadily in various fields. For closed-shell species an easier and more widely used method is gas-chromatography, but most open shell species would not survive the separation process. Due to the reactivity of radicals they have to be created by selectively converting stable precursor molecules. Depending on the radical generation method different properties can be investigated ranging from thermodynamic data, over concentrations in high temperature environments, to chemical kinetics. The first part of this thesis deals with the determination of bimolecular rate constants. Isomeric hydrocarbon radicals were generated by a high intense UV light pulses and their kinetics with oxygen was measured. The pressure dependence of different isomers in the falloff region was compared to theoretical models, and their reactivity could be explained. The second part deals with boron containing compounds in various electronic situations. The corresponding precursors were successfully synthesized or could be bought. They were subjected to fluorine atoms in chemical reactors or destroyed pyrolytically at high temperatures. Most investigated species exhibited vibronic effects that could be elucidated using high level computations. N2 - Die vorliegende Arbeit lässt sich in zwei Unterkategorien gliedern. Sie befasst sich zum einen mit der isomerenselektiven Identifikation von hochreaktiven anorganischen Verbindungen. Zum anderen werden Ratenkonstanten für die Reaktionen verschiedener Kohlenwasserstoffradikale mit Sauerstoff ermittelt. Beide Bereiche sind durch die Frage der Energiespeicherung und -gewinnung in der Zukunft unmittelbar miteinander verbunden. Die Herausforderung reaktive Moleküle zu untersuchen, liegt oft darin sie in einer inerten Atmosphäre erzeugen zu müssen. Nur unter diesen Bedingungen hat ihre Reaktivität kaum Möglichkeiten sich zu entfalten. Hierzu wurden stabile Vorläufermoleküle in die Gasphase überführt und in einer verdünnten Umgebung möglichst selektiv in die gewünschte Radikalspezies überführt. Sowohl deren isomereselektive Identifikation als auch die Bestimmung der Ratenkonstanten wurde mittels Schwellenphotoelektronenspektroskopie durchgeführt. Mit Hilfe eines Photoelektron/Photoion Koinzidenz (PEPICO) Aufbaus konnten massenselektive Signale detektiert werden. Diese Methode benötigt eine Lichtquelle, die eine hohe Repetitionsrate aufweist und im VUV-Bereich komplett spektral durchstimmbar ist. Diese Voraussetzungen sind an Synchrotron-Strahlungsquellen verfügbar, weshalb die Experimente in dieser Arbeit an den entsprechenden Strahllinien an der SwissLightSource oder am Synchrotron SOLEIL durchgeführt wurden. Zur Unterstützung der experimentellen Daten wurden durch quantenchemische Rechnungen und Simulationen durchgeführt, aus denen eine klare isomerenselektive Zuordnung des jeweiligen Signals erfolgt. Die gesuchten Ratenkonstanten konnten mittels geeigneter Programme aus den Kinetikdaten extrahiert werden, wobei auch die Ratenkonstanten der Seitenreaktionen berücksichtigt wurden. KW - Biradikal KW - Kinetics KW - Spectroscopy KW - Photolysis KW - Radicals KW - Biradicals KW - Fotoionisation KW - Fotolyse KW - Synchrotronstrahlung KW - Synchrotron Radiation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-242137 ER - TY - THES A1 - Sauer, Susanne T1 - Implementation and Application of QM/MM Hybrid Methods T1 - Implementierung und Anwendung von QM/MM-Hybridmethoden N2 - Within this work, an additive and a subtractive QM/MM interface were implemented into CAST. The interactions between QM and MM system are described via electrostatic embedding. Link atoms are used to saturate dangling bonds originating from the separation of QM and MM system. Available energy evaluation methods to be combined include force fields (OPLSAA and AMBER), semi-empirical programs (Mopac and DFTB+), and quantum-chemical methods (from Gaussian, Orca, and Psi4). Both the additive and the subtractive interface can deal with periodic boundary conditions. The subtractive scheme was extended to enable QM/QM, three-layer, and multi-center calculations. Another feature only available within the subtractive interface is the microiteration procedure for local optimizations. The novel QM/MM methods were applied to the investigation of the reaction path for the complex formation between rhodesain and K11777. Benchmark calculations show a very good agreement with results from Gaussian-ONIOM. When comparing the relative energies obtained with different options to a computation where the whole system was treated with the “QM method” DFTB3, the electrostatic embedding scheme with option “delM3” gives the best results. “delM3” means that atoms with up to three bonds distance to the QM region are ignored when creating the external charges. This is done in order to avoid a double counting of Coulomb interactions between QM and MM system. The embedding scheme for the inner system in a three-layer calculation, however, does not have a significant influence on the energies. The same is true for the choice of the coupling scheme: Whether the additive or the subtractive QM/MM interface is applied does not alter the results significantly. The choice of the QM region, though, proved to be an important factor. As can be seen from the comparison of two QM systems of different size, bigger is not always better here. Instead, one has to make sure not to separate important (polar) interactions by the QM/MM border. After this benchmark study with singlepoint calculations, the various possibilities of CAST were used to approximate the solution of a remaining problem: The predicted reaction energy for the formation of the rhodesain-K11777 complex differs significantly depending on the starting point of the reaction path. The reason for this is assumed to be an inadequate adjustment of the environment during the scans, which leads to a better stabilization of the starting structure in comparison to the final structure. The first approach to improve this adjustment was performing the relaxed scan with a bigger QM region instead of the minimal QM system used before. While the paths starting from the covalent complex do not change significantly, those starting from the non-covalent complex become more exothermic, leading to a higher similarity of the two paths. Nevertheless, the difference of the reaction energy is still around 15 kcal/mol, which is far from a perfect agreement. For this reason, Umbrella Samplings were run. Here, the adjustment of the environment is not done by local optimizations like in the scans, but by MD simulations. This has the advantage that the system can cross barriers and reach different local minima. The relative free energies obtained by Umbrella Samplings with suitable QM regions are nearly identical, independently of the starting point of the calculation. Thus, \(\Delta A\) evaluated by these computations can be assumed to reproduce the real energy change best. An MD simulation that was started from the transition state in order to mimic a “real-time” reaction indicates a very fast adjustment of the environment during the formation of the complex. This confirms that Umbrella Sampling is probably better suitable to describe the reaction path than a scan, where the environment can never move strong enough to leave the current local minimum. N2 - In dieser Arbeit wurden ein additives und ein subtraktives QM/MM-Interface in CAST implementiert. Die Wechselwirkungen zwischen QM- und MM-System werden durch elektrostatische Einbettung beschrieben. Link-Atome dienen dazu, lose Bindungen abzusättigen, die durch die Trennung von QM- und MM-System entstehen. Als Methoden zur Energieberechnung, die kombiniert werden können, stehen Kraftfelder (OPLSAA und AM- BER), semiempirische Programme (Mopac und DFTB+) und quantenchemische Verfahren (aus Gaussian, Orca und Psi4) zur Verfügung. Sowohl das additive als auch das subtraktive Interface können mit periodischen Randbedingungen verwendet werden. Erweiterungen des subtraktiven Schemas ermöglichen Berechnungen mit QM/QM, drei Schichten o der mehreren QM-Zentren. Ebenfalls nur im subtraktiven Interface verfügbar ist die lokale Optimierung mittels Mikroiterationsschema. ... KW - Quantenmechanik KW - Molekularmechanik KW - QM/MM KW - Umbrella Sampling KW - Computational Chemistry KW - Theoretical Chemistry Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-243213 ER - TY - JOUR A1 - Saalfrank, Christian A1 - Fantuzzi, Felipe A1 - Kupfer, Thomas A1 - Ritschel, Benedikt A1 - Hammond, Kai A1 - Krummenacher, Ivo A1 - Bertermann, Rüdiger A1 - Wirthensohn, Raphael A1 - Finze, Maik A1 - Schmid, Paul A1 - Engel, Volker A1 - Engels, Bernd A1 - Braunschweig, Holger T1 - cAAC‐Stabilized 9,10‐diboraanthracenes—Acenes with Open‐Shell Singlet Biradical Ground States JF - Angewandte Chemie International Edition N2 - Narrow HOMO–LUMO gaps and high charge‐carrier mobilities make larger acenes potentially high‐efficient materials for organic electronic applications. The performance of such molecules was shown to significantly increase with increasing number of fused benzene rings. Bulk quantities, however, can only be obtained reliably for acenes up to heptacene. Theoretically, (oligo)acenes and (poly)acenes are predicted to have open‐shell singlet biradical and polyradical ground states, respectively, for which experimental evidence is still scarce. We have now been able to dramatically lower the HOMO–LUMO gap of acenes without the necessity of unfavorable elongation of their conjugated π system, by incorporating two boron atoms into the anthracene skeleton. Stabilizing the boron centers with cyclic (alkyl)(amino)carbenes gives neutral 9,10‐diboraanthracenes, which are shown to feature disjointed, open‐shell singlet biradical ground states. KW - acenes KW - biradicals KW - bond Activation KW - boron KW - heterocycles Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-217795 VL - 59 IS - 43 SP - 19338 EP - 19343 ER - TY - THES A1 - Rühl, Nicolas T1 - Spektroelektrochemie an einzelnen (6,5)-Kohlenstoffnanoröhren T1 - Spectroelectrochemistry of single (6,5)-carbon nanotubes N2 - Im Rahmen der vorliegenden Arbeit wurde durch einzelmolekülspektroskopischer bzw. -mikroskopischer Methoden in Kombination mit einer mikrofluischen Zel- le unter Potenzialkontrolle die Elektrochemie von einzelnen einwandigen (6,5)- Kohlenstoffnanoröhren untersucht. Hierfür wurde ein Nahinfrarot-Photolumineszenz- Mikroskop aufgebaut und eine speziell an die experimentellen Vorgaben angepasste elektrochemische Zelle entwickelt, insofern als drei Elektroden (Arbeits-, Gegen- und Referenzelektrode) in einen mikrofluidischen Chip integriert wurden. Darüber hinaus war für die Durchführung der Experimente unter Wasser- und Sauerstoffaus- schluss die Konstruktion eines Handschuhkastens notwendig, sowie eine allgemeine Vorbehandlung der Elektrolytlösungen zur Entfernung gelöster Gase und Wasserreste. Ein weiteres Projekt umfasste den Aufbau einer chemischen Gasphasenabschei- dungsapparatur zur Synthese von Kohlenstoffnanoröhren. Die hierbei durchgeführten Experimente erbrachten Klarheit über den Einfluss der Prozessparameter Druck, Temperatur und Durchflussrate an Edukten. Aus den PL-Intensitätsänderungen bei Potenzialvariation konnten Reduktions- und Oxidationspotenziale (ERed = 0.15 V; EOx = 1.34 V) einzelner (6,5)-SWNTs gegen- über einer Platin Referenzelektrode und einem daraus resultierenden Redoxpotenzial von ∆ERedOx = 1.19 V ermittelt werden. Durch diese einzelmolekülspektroskopische Methode konnte zum einen gewährleistet werden, dass nur dieser spezielle Chira- litätstyp untersucht wurde und zum anderen eine Verfälschung der Resultate durch einen Potenzialabfall wie er typischerweise in CNT-Filmen auftritt aussgeschlossen werden. Eine Kombination der PL-Daten mit der Ramanintensitätsabhängigkeit des (6,5)-SWNT-S2-Übergangs bei Potenzialvariation erlaubte eine genauere Analyse des Löschmechanismus der PL von Kohlenstoffnanoröhren. Mithilfe eines von Her- tel et al. entwickelten diffusionslimitierten Stoßdesaktivierungsmodells konnte eine invers-quadratische Proportionalität zwischen der (6,5)-SWNT-Emission und den spannungsinduzierten Ladungsträgern ausgemacht werden. Auf Grundlage dieses Ergebnisses folgt, dass die über Photolumineszenzänderungen ermittelten Reduktions-und Oxidationswerte nicht mit den Bandkanten der CNTs übereinstimmen müssen, und dass für deren Bestimmung vielmehr auf Raman- bzw. Absorptionsspektroskopi- sche Techniken zurückgegriffen werden muss. Die einzelmolekülspektroskopische Herangehensweise ermöglichte ferner eine statis- tische Analyse der Verteilung der Reduktions- und Oxidationspotenziale im Vergleich zu den jeweiligen Erwartungswerten. Hierdurch konnte eine Einteilung der Modifika- tionseinflüsse auf das SWNT-Redoxverhalten in zwei Grenzfälle erfolgen. Es wurde angenommen, dass diese als “Dispergiermitteleffekte” und “CNT-Strukturdefekte” be- zeichneten Auswirkungen entweder das Resultat einer heterodispersen Verteilung an DOC auf der CNT-Oberfläche oder eine Folge von Defekten in der CNT-Gitterstruktur waren. In diesem Zusammenhang ergab sich aus der interpartikulären Analyse der Reduktions- und Oxidationswerte eine Korrelation, die einem dominierenden Einfluss der “CNT-Strukturdefekte” zugeordnet werden konnte. Dieser Beobachtung entgegen- gesetzt konnten aber auch über Untersuchungen der Redoxpotenziale innerhalb einer (6,5)-SWNT lokale Bereiche ausgemacht werden, die eine signifikante Abhängigkeit von “Dispergiermitteleffekte” aufwiesen. Abgesehen von diesen Einflüssen auf den Emissionsverlauf wurde auch eine Be- trachtung der Breite des spannungsgesteuerten Emissionsabfall durchgeführt. Da- raus konnte ermittelt werden, dass diese Ausdehnung eine Konsequenz aus der PL- Löschungseffizienz der Ladungsträger ist und, dass bei einer Verteilung von 0.32 Löschzentren pro Nanometer eine vollständige Abnahme der Photolumineszenzinten- sität induziert wird. Darüber hinaus wurde im Rahmen dieser Arbeit das redoxchemische Verhalten in- dividueller (6,5)-SWNTs in Wechselwirkung mit Ferrocenmolekülen untersucht. Die erhaltenen Ergebnisse ließen annehmen, dass die sich ausbildende Verbindung nicht-kovalenter Natur ist. Zwei verschiedene Gründe führten zu dieser Erkennt- nis: einerseits ließen sich die Ferrocenmoleküle von der CNT-Oberfläche durch ein Durchspülen des mikrofluidischen Kanals mit einer reinen DMF-Lösung entfernen und andererseits war keine dauerhafte Emissionsminderung durch die Ausbildung kovalenter Bindungen zu beobachten. Aus der potenzialabhängigen PL wurde zudem ein Elektronentransfer der Ferrocenmoleküle in die optisch generierten Löcher des CNT-Valenzbandes festgestellt und über eine anregungsintensitätsabhängige Messung die Zunahme dieses Ladungstransfers bei steigendem Photonenfluss nachgewiesen. Hinsichtlich der Anwendung von Kohlenstoffnanoröhren zur Elektrolyse bzw. Photo- lyse von Wasser wurde auch die Redoxchemie von (6,5)-SWNTs in diesem Solvens untersucht. Bezüglich der Emissionsintensität konnte gezeigt werden, dass diese im Vergleich zu organischen Lösungsmitteln reduziert vorliegt. Außerdem wurde eine irreversible Reaktion nach anodischer Polarisation über eine dauerhafte Löschung der PL beobachtet. Die Bestimmung der hierfür notwendigen Reaktionsumstände erbrachte, dass Wasser, Exzitonen (erzeugt durch optische Anregung) und spannungs- induzierte Löcher im Valenzband zur Bildung einer [SWNT(Q)]-Spezies führen, welche die irreversible Minderung der CNT-Emission verursacht. Darüber hinaus konnte die Reaktionsgeschwindigkeit über eine Kinetik pseudo-nullter-Ordnung be- schrieben werden, unter der Voraussetzung, dass die soeben genannten Parameter konstant verblieben. Desweiteren zeigte sich in einer ferrocenhaltigen Lösung, dass der Löscheffekt der [SWNT(Q)]-Spezies im anodischen Potenzialbereich teilweise reduziert wird. Es wurde angenommen, dass diese Beobachtung auf eine Oxidation der Löschzentren durch die Fc+-Kationen gründet. Mit Hilfe der CVD-Apparatur gelang es Kohlenstoffnanoröhren zu synthetisieren, wobei Ethanol als Kohlenstoffquelle und ein Eisen-Kobalt-Zeolith-Gemenge als Ka- talysator diente. Die Analyse der verschiedenen Prozessparameter zeigte, dass bei T = 750 °C das beste Verteilungsverhältnis zwischen den gewünschten (6,5)-SWNTs und anderen CNT-Chiralitäten bzw. dem amorphen Kohlenstoff vorliegt. Hierfür war, dass bei T < 750 °C die Verbrennung unerwünschter amorpher Kohlenstoffreste nur geringfügig stattfindet, und dass bei T > 750 °C die Bildung anderer Chiralitäten mit größerem Durchmesser als die (6,5)-SWNT bevorzugt wurde. Die Variation der Durchflussrate hingegen wirkte sich nur in einer absoluten Zunahme aller Chirali- täten aus. Die Steigerung des (6,5)-SWNT-Anteils für höhere Durchflüsse gelang trotzdem durch die geschickte Auswahl geeigneter Druck- und Temperaturwerte. Die Experimente zur Untersuchung der Druckabhängigkeit wiesen auf eine Relation mit dem Gesetz von Le Chatelier hin, insofern als bei einer Druckverringerung eine Verschiebung der Ethanol-Crackreaktion auf Produktseite stattfand. In diesem Zusam- menhang wurde angenommen, dass die damit verstärkt gebildeten Moleküle Ethan, Ethen und Methan den CNT-Anteil zwar erhöhen, jedoch auch eine Steigerung der amorphen Kohlenstoffkonzentration verursachen. Dementsprechend ergab ein Druck von p = 9 mbar das beste (6,5)-SWNT zu dem amorphen Kohlenstoffverhältnis. Anhand der Arbeiten in dieser Dissertation sind neue Erkenntnisse zwischen der PL-Sensitivität von (6,5)-SWNTs und deren Ladungszustand erhalten worden. Insbe- sondere die genaue Bestimmung der Korrelation zwischen der Photolumineszenz und den induzierten Ladungsträgern ermöglicht einen gezielteren Einsatz von Kohlenstoff- nanoröhren – so zum Beispiel im Bereich der Sensorik. In diesem Zusammenhang zeigen auch die interpartikulären Analysen der Redoxpotenzialverteilung die genau- en Auswirkungen vom Lösungsmittel und der Defektdichte auf die elektronische Struktur der CNTs auf. Darüber hinaus kann aus der Ursachenbestimmung für die Varianz der literaturbekannten Reduktions- bzw. Oxidationspotenziale fortan die ge- eignete spektroskopische Methode zur Evaluierung der Position von Leitungs- und Valenzband in Kohlenstoffnanoröhren besser eingegrenzt werden. Die spektroelektro- chemischen Analysen von (6,5)-SWNTs im Lösungsmittel Wasser und speziell die Bestimmung der Kinetik für die auftretende Reaktion liefern einen tieferen Einblick in die Wechselwirkung (6,5)-SWNT-H2O. Diese Ergebnisse sind insbesondere bei der Verwendung von Kohlenstoffnanoröhren als Elektrodenmaterial für die photolytische bzw. elektrolytische Spaltung von Wasser in Wasserstoff und Sauerstoff von Bedeu- tung. Neben der Untersuchung der SWNT-Wasser Interaktion unter andoischer und optischer Anregung, die zu einer kovalenten Bindung führte, wurde mit Hilfe der (6,5)- SWNT-Ferrocen Wechselwirkung ein Beispiel für eine nichtkovalente Redoxreaktion dargestellt, womit ein Vergleich dieser beiden Spezies und ihrer unterschiedlichen Auswirkungen auf die elektronische Struktur aufgezeigt werden konnte. N2 - In the present study the electrochemistry of individual (6,5)-single wall carbon nano- tubes was investigated using a combination of electrochemical methods and single molecule fluorescence spectroscopy and microscopy. For this purpose a near infrared photoluminescence microscope was built and an electrochemical cell incorporated into a microfluidic chip was designed. To exclude oxygen and water during the ex- periments a glove box was constructed and for the electrolyte solutions a general preparation routine was executed, which included a degassing and drying of the solvent. A further project of this thesis was the design of a chemical vapor deposition apparatus to synthesize carbon nanotubes. The experiments provided clarity on the influence of process parameters such as pressure, temperature and flow rate of the reactants. The emission changes due to potential variation allowed for the determination of the reduction ERed = 0.15 V and oxidation potential EOx = 1.34 V of individual (6,5)- SWNTs with reference to a platinum electrode. Accordingly a total redoxpotential of ∆ERedOx = 1.19 V was obtained. The single molecule spectroscopic approach ensured further that only one specific CNT-chirality was investigated and that no potential drop like in CNT-films occured. The combination of the PL data and Raman intensity dependencies of the (6,5)-SWNT-S2-transition at potential changes allowed to define the quenching mechanism of the CNT emission. With the use of a difusion limited contact quenching model from Hertel et al. an inverse square proportionality between the (6,5)-SWNT emission and the charge carrier density was shown. Therefore it was concluded that the reduction and oxidation values obtained by emission changes do not correspond to the bandedges of the CNTs and that a determination of the bandgap should be done through absorption or Raman spectroscopy. The interparticle analysis of the (6,5)-SWNT reduction and oxidation potential sho- wed an absolute potential variation with respect to the reference values. The influences for this changes were classified into two cases: the so called “dispersing agent effects” and the “CNT structure defects”. It was assumed that these were a result of unequal distributed dispersing agents on the CNT surface or defects in the CNT lattice structure. Further, the interparticle determined correlation between reduction and oxidation values was attributed to the “CNT structure defects” and was therefore assumed to exercise the most dominant influence. Conversely, after the investigations of the intraparticle redox potentials, local areas were identified with a dependence to “dispersing agent effects”. In addition the width of the emission decrease as a result of the oxidation or reduction process of the (6,5)-SWNT was analysed. This investigation led to the conclusion that the charge carriers quenching efficiency mainly contributes to the overall width. Beyond that the data indicated that a distribution of 0.32 quenching centers per nanometer is needed for the total quenching of the photoluminescence. In addition to the redox chemistry analysis of pristine (6.5)-SWNTs, the investigation of the dependency in presence of ferrocene molecules showed that the interaction of the herein forming complex is of non-covalent type. This conclusion was based on two facts: on the one hand, the ferrocene molecules desorbed from the CNT surface when the solvent in the microfluidic channel was exchanged with a pure dimethylformamide solution and on the other hand, no permanent decrease in emission intensity due to covalent bond forming was observed. The potential-dependent PL behavior allowed for the assumption of a charge transfer from the adsorbed ferrocene molecules into the optically generated holes in the CNT. Furthermore the experimental data allowed to assume that this charge transfer increases with higher photon flux. With regard to applications with carbon nanotubes for electrolysis and photolysis of water, the redox chemistry of (6,5)-SWNTs was investigated in this solvent. With re- spect to the emission intensity in the organic electrolyte, two effects could be identified which were firstly the overall decrease of the PL, and secondly an irreversible reaction during anodic polarization, which manifested itself by a permanent quenching of the photoluminescence. The reaction conditions were determined with the result that water, optical generated electron-hole pairs and potential induced holes in the valence band formed a [SWNT(Q)] species, which caused the irreversible reduction of the CNT emission. Moreover, the evaluated reaction rate followed pseudo-zero-order kinetics, provided that the just mentioned parameters were constant. The investigation of this [SWNT(Q)] species in a ferrocene solution showed that the quenching effect of these defects was reduced for anodic polarisation by assuming an oxidation of the [SWNT(Q)] species by the Fc+ cations. The CVD apparatus enabled to synthesize carbon nanotubes. Ethanol was used as the carbon source and a mixture of iron and cobalt mixed with a zeolite worked as catalyst. The analysis of the various process parameters showed that the best distribution ratio between the desired (6,5)-SWNTs and other CNT chiralities or amorphous carbon were obtained for T = 750 °C . It was assumed that this behavior is due to the fact that at T < 750 °C burning processes of unwanted amorphous carbon residues only slightly occurred, and that at T > 750 °C the growth mechanism favoured chiralties with larger diameter. By varying the flow rate, only an absolute increase of all chiralities was observed. In this context it should be noted that nevertheless the chirality distribution can be improved to higher yields of (6,5)-SWNTs, by an adaptation of the pressure and temperature during synthesis. The experiments which investigated the impact of reaction pressure changes, indicated a relation in accordance to Le Chatelier law. Therefore lower pressure moved the equilibrium towards product formation of the ethanol-cracking reaction, which increased the molecule concentration of ethane, ethylene and methane and the overall CNT yield. However, this caused also an increment of the absolute amorphous carbon concentration. According to that, it was found that a pressure of p = 9 mbar yielded the best (6.5)-SWNT to amorphous carbon ratio. The experiments performed in this thesis allowed to gain new insights about the sensitivity of the emission of (6,5)-SWNTs due to charging. Especially the deter- mination of the correlation between the photoluminescence and charging level of the CNTs will allow for a more selective use of carbon nanotubes – for example in sensors. In this context the analysis of the interparticle redoxpotential distribution showed precisely the effects of solvent and defect densities on the electronic structure of CNTs. Further the reasons for different values of the reduction and oxidation potential, which are found in literature were explained. For the future this information will allow a better selection of the spectroscopic method to determine the band edges of carbon nanotubes. The spectroelectrochemical analysis of the (6,5)-SWNTs in the solvent water and especially the determination of the kinetics for the observed irreversible reaction gave insight in the interaction between water molecules and carbon nanotubes. These results are particularly important, when carbon nanotubes are used as electrode material. For example in the electrochemical and photolytic generation of hydrogen and oxygen of water. Besides the covalent bond forming reaction of (6,5)-SWNTs in water under anodic potential and optical excitation, the non-covalent bonding reaction between ferrocene molecules and SWNTs was shown and analysed. The different impact of these two interaction on the electronic structure could then be demonstrated and explained. KW - Spektroelektrochemie KW - Kohlenstoff-Nanoröhre KW - Redoxpotential KW - Photolumineszenz KW - Einzelmolekülspektroskopie KW - (6,5)-SWNT KW - Spektroelektrochemie KW - Potentialinduzierte Löschung KW - CVD Synthese KW - Raman-Spektroskopie KW - electrochemistry KW - photoluminescence KW - single particle microscopy KW - Raman spectroscopy Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112162 ER - TY - THES A1 - Rösch, Petra T1 - Raman-spektroskopische Untersuchungen an Pflanzen und Mikroorganismen T1 - Raman spectroscopic investigations on plants and microorganisms N2 - In dieser Arbeit werden Pflanzen, Pflanzengewebe, Pflanzenzellen und Mikro-organismen spektroskopisch untersucht und ihre Inhaltsstoffe unter minimaler Probenpräparation im biologischen Gewebe direkt lokalisiert und identifiziert. Unter den verfügbaren Schwingungs-spektroskopischen Methoden ist die Mikro-Raman-Spektroskopie für diese Fragestellungen besonders gut geeignet, da Wasser Raman-Spektren nur wenig beeinflusst. Daher kann mit Raman-spektroskopischen Methoden auch in stark wasserhaltigem Gewebe gemessen werden. Weiterhin erhält man mit der Mikro-Raman-Spektroskopie eine gute räumliche Auflösung im sub-µm-Bereich, wodurch es möglich ist, heterogene Proben zu untersuchen. Darüber hinaus kann die Mikro-Raman-Spektroskopie mit anderen Methoden, wie z. B. der oberflächenverstärkten Raman-Spektroskopie (SERS), kombiniert werden. In pflanzlichen Zellen liegt eine Vielzahl von Substanzen in geringen Konzentrationen vor. Aufgrund der niedrigen Quantenausbeute des Raman-Effekts treten vor allem Substanzen, die eine Resonanz-Verstärkung erfahren, in den Spektren hervor. Diese Substanzen, wie z. B. b-Carotin, können deshalb in geringen Konzentrationen detektiert werden. Der Schwerpunkt dieser Arbeit liegt in der Untersuchung von Sekundär-Metaboliten wie Alkaloiden, Lipiden oder Terpenen, die in der Pflanze agglomerieren. Neben der Identifikation von Inhaltsstoffen, können die Raman-Spektren von Pflanzen für die chemotaxonomische Klassifizierung mit Hilfe der hierarchischen Clusteranalyse verwendet werden. Die Identifizierung von Mikroorganismen auch in sehr geringen Mengen (Monolage, einzelne Zellen) ist mit der Mikro-Raman-Spektroskopie nur unter bestimmten Voraussetzungen durchführbar. Für weitergehende Untersuchungen wird hier die SERS-Sonde oder ein TERS-Aufbau verwendet werden. N2 - This thesis concentrates on the spectroscopic investigation of plants, plant tissue, plant cells as well as microorganisms. The characteristic components of the biological cells have been localized and identified directly in the biological tissue with minimal sample preparation only. Among the different vibrational spectroscopic methods micro Raman spectroscopy appears to be the most suitable technique for such scientific investigations. For example, water which shows sharp absorptions in the infrared is only a weak Raman scatterer. Thus biological tissues containing a high amount of water can be easily studied with Raman spectroscopy. Due to the use of laser light for the excitation of Raman scattering sub-µm spatial resolution can be realized by micro Raman spectroscopy. This allows the investigation of very heterogeneous samples. Furthermore, micro Raman spectroscopy can be combined with other methods such as surface enhanced Raman spectroscopy (SERS). Plant cells consist of a great variety of substances at low concentrations. As the Raman effect has a poor quantum yield mostly resonance enhanced substances can be identified in the resulting spectra. These substances like e. g. b-carotene can be detected down to very low concentrations. The main focus lies on the investigation of secondary metabolites such as alkaloids, lipids or terpenes, which agglomerate in the plant. Besides the identification of plant components, Raman spectra allow the chemotaxonomic classification of plants when combined with a hierarchical cluster analysis. The identification of microorganisms in low amounts (monolayers, single cells) could only be achieved with Raman spectroscopy when certain conditions are met. Further investigations should focus on the SERS probe or the TERS setup. KW - Pflanzen KW - Raman-Spektroskopie KW - Mikroorganismus KW - Oberflächenverstärkter Raman-Effekt KW - Sekundärmetabolit KW - Mikro-Raman-Spektroskopie KW - SERS KW - Lipide KW - ätherische Öle KW - Clusteranalyse KW - Microorganismen KW - micro Raman spectroscopy KW - SERS KW - lipids KW - essential oils KW - cluster analysis KW - microorganisms Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-3539 ER - TY - THES A1 - Rudolf, Philipp Benjamin T1 - Uncovering photoinduced chemical reaction pathways in the liquid phase with ultrafast vibrational spectroscopy T1 - Untersuchungen von photoinduzierten chemischen Reaktionspfaden in flüssiger Phase mittels ultraschneller Schwingungsspektroskopie N2 - The experimental technique predominantly employed within the scope of this Thesis constitutes one subarea of femtochemistry: the time-resolved spectroscopy of photoin- duced chemical reactions in the liquid phase by means of molecular signatures in the mid-infrared (MIR) spectral range. Probing transient vibrational states, i.e., dynamic changes in the vibrational motion of speci� c molecular subunits or functional Groups allows for a distinct separation and assignment of measured signals to emerging molecular species. For this purpose, one key building block is indispensable, which most of the investigations carried out within the � eld of femtochemistry have in common: a coherent light source delivering ultrashort laser pulses with a temporal duration that matches the femtosecond time scale on which molecular motions typically occur. This instrumentation enables the observation of photoinduced chemical reactions from the starting point|the excitation event to the appearance of intermediates to the nal formation of stable photoproducts after several pico- or nanoseconds. This work comprises the acquisition and presentation of time-resolved spectroscopic data related to promising molecular systems upon photoexcitation as well as the im- plementation and testing of experimental optical techniques both for the presented experiments but as well for experiments conceivable in the future. In addition, linear spectroscopy measurements and quantum-chemical simulations on the emerging chemical species have been carried out. In so doing, the primary processes and subse- quently emerging reaction products of two compounds on a timescale of several nanoseconds after photoexcitation have been elucidated in great detail. Both compounds, the [Mn(CO)3(tpm)]+ (tpm = tris(2-pyrazolyl)methane) CO-releasing molecule (CORM) and the 5-diazo Meldrum's acid (DMA), are of academic interest but in addition belong to molecular classes that might be utilized in the near future as dark-stable prodrugs under physiological conditions or that are already utilized in industrial chemistry procedures, respectively. The � ndings of both studies gave rise to implement and examine two techniques for prospective transient absorption experiments, namely the shaping and characterization of ultraviolet (UV) laser pulses and the recording of two-photon excitation spectra. Beyond that, since each of the depicted experiments is based on the detection of weak transient absorption signals in the MIR spectral region, two dif- ferent detection schemes, via chirped-pulse upconversion (CPU) on the one hand and via direct multichannel MCT detection on the other hand, have been juxtaposed at the conclusion of this work. Since both techniques are suitable in femtosecond pump-probe measurements but thereby exhibit individual strengths and weaknesses, a comparative study provides clari� cation of the respective pros and cons. The � first study introduced within this work investigates the complex photochemistry of DMA, a photoactive compound used in lithography and industrial chemistry. By femtosecond MIR transient absorption spectroscopy covering several nanoseconds, the light-induced dynamics and ultrafast formation of several photoproducts from the manifold of reaction pathways have been disclosed to form a coherent picture of the overall reaction scheme. After UV excitation of DMA dissolved in methanol to the second excited state S2, 70% of excited molecules relax back to the S0 ground state. In compet- ing processes, they can either undergo an intramolecular Wolff rearrangement to form ketene, which reacts with a solvent molecule to an enol intermediate and further to carboxylate ester, or they � rst relax to the DMA S1 state, from where they can isomerize to a diazirine. The third competing reaction channel, having the lowest quantum efficiency with respect to the � rst two channels, is the formation of a singlet carbene out of the S1 state. From there an ylide can arise or, via an intersystem crossing, the triplet form of the carbene follows. Whereas the primary reaction steps occur on a picosecond timescale, the subsequently arising intermediates and stable photoproducts are formed within a few hundreds to thousands of picoseconds. For a reliable identi� cation of the involved compounds, density functional theory calculations on the normal modes and Fourier-transform infrared spectroscopy of the reactant and the photoproducts in the chemical equilibrium accompany the analysis of the transient spectra. Additional experiments in ethanol and isopropanol led to slight spectral shifts as well as elongated time constants due to steric hindrance in transient spectra connected with the ester Formation channel, further substantiating the assignment of the occurring reaction pathways and photoproducts. The study demonstrated that the combination of linear and time-resolved spectroscopic measurements in conjunction with quantum-chemical calculations constitutes a powerful tool to unravel even highly complex photoreactions exhibiting multiple consecutive intermediate states within parallel reaction pathways. Although some of the individual reaction steps, for example the ketene formation via Wolff rearrangement, have been observed on ultrashort time scales before, this work encompassed the Observation of the whole set of appearing photoproducts of DMA in different alcohol solutions within several nanoseconds. In this sense, the ultrafast photochemistry of DMA represents a prototype example for a multisequential reaction scheme, elucidated by the capabilities of femtosecond MIR spectroscopy. With a modi� fied instrumentation concerning amongst others the system delivering the fundamental laser pulses or the generation of the UV pump pulses, the next ob- jective within this work was to elucidate the primary processes upon UV Irradiation of a manganese tricarbonyl CORM in aqueous environment. The time-resolved experiment was performed with two different pump wavelengths and furthermore supported by linear spectroscopy methods and time-dependent density functional theory (TDDFT) calculations on the excited states as well as DFT calculations on the ground states. The measurements revealed that irradiating the compound with UV excitation pulses primarily leads to ultrafast photolysis of one CO ligand. Geminate recombination may occur within one picosecond but it remains a minor process as the photolyzed CO group is liberated and the unoccupied coordination site is predominantly fi� lled by an incoming solvent molecule. There was no evidence for hot CO bands, i.e., the remaining CO ligands|in the dicarbonyl photoproduct as well as in the intact CORM are not vibrationally excited through the UV excitation of the CORM. According to this, the excess energy merges into low-frequency vibrational modes associated with the molecule as a whole. Since studies on a macroscopic scale at irradiation times of several minutes prove that UV irradiation eventually leads to the release of two or even all three CO ligands, further loss of CO most likely necessitates manganese oxidation or another interaction with light. To clarify the latter, a consecutive UV pulse was employed in order to excite the photoproducts subsequent to the initial pump interaction. However, the data obtained was not instructive enough to de� nitely exclude the manganese oxidation being responsible for the loss of further CO groups. Besides the exchange of a CO Group by a solvent molecule or the geminate recombination, the employment of two different excitation wavelengths in combination with � ndings derived from the TDDFT calculations suggested another reaction process, namely the possibility that the excitation does not lead to any bond cleavage at all. As the CORM under investigation is tissue-selective and cytotoxic against cancer cells, knowledge of these � rst photoinduced reaction steps is essential for a full understanding of its biological activity. Inspired by these two studies, experimental techniques for prospective transient absorption measurements have been implemented and tested within preparative measure- ments. First, in the course of a UV-pump-MIR-probe experiment with speci� cally tailored excitation pulses, one could pursue the aim of coherently controlling the outcome of a photoreaction in the liquid phase. Out of the rich photochemistry of DMA the vibrational signature of a particular molecular species might thereby serve as a feedback signal, which is a central part of a learning loop that adaptively determines the pulse shape that steers the quantum mechanical system upon photoexcitation into a desired direction. This motivated the installation and testing of devices by means of which the shaping and characterization of ultrashort laser pulses in the UV could be performed. Second, motivated by the biological applications of CORMs, one can imagine a scenario where a certain amount of CORMs is deposited inside cancerous tissue. Since the activation of CO loss by means of UV pulses is not possible due to the absorption characteristics of biological tissue, the simultaneous excitation via two photons from the visible spectral regime seems appealing. However, success or failure of such an application depends on whether the deposited compound efficiently absorbs two photons simultaneously, i.e., whether the two-photon absorption cross section is large enough. Therefore, a setup to record two-photon excitation spectra under full consideration of the crucial laser pulse parameters like the pulse duration, energy and central wavelength was arranged and tested. The � rst results were obtained with a commercially available reference system (Mn2CO10) but the setup as well as the described measurement and data analysis procedure can easily be applied to record the two-photon absorption cross section of more promising molecular systems. Third, as the detection of probe pulses in the MIR spectral region is part of each time-resolved measurement throughout this thesis, a comparison between the newly established technique of CPU and direct multi- channel MCT detection is presented by means of pump{probe experiments on Mn2CO10 and Co4CO12 with a 1 kHz shot-to-shot data acquisition. It was shown that the CPU detection technique scores with its high spectral resolution and coverage of the easy-to-handle and more cost-effective CCD detectors. On the other hand, in the course of the additional nonlinear upconversion process intensity fluctuations of the chirped fundamental pulses are transferred to the probe spectrum in the visible regime. This entails a lower signal-to-noise ratio than the direct MCT detection, which can be compensated by an additional normalization procedure applied to the CPU probe pulses. As a consequence, the CPU detection scheme offers more flexibility for future investigations employing MIR probe pulses. This is of great importance for many applications within the presented � eld of femtochemistry as a huge variety of time-resolved investigations on a multitude of systems in the liquid phase is based on the detection of weak transient absorption signals in the MIR spectral region. N2 - Die vorrangig im Rahmen dieser Arbeit eingesetzte experimentelle Technik stellt ein Teilgebiet der Femtochemie dar: die zeitaufgelöste Spektroskopie photoinduzierter chemischer Reaktionen in flüssiger Phase durch molekulare Charakteristika im mittleren infraroten (MIR) Spektralbereich. Die Detektion transienter Vibrationszustände, das heißt sich zeitlich verändernder Kernbewegungen von bestimmten molekularen Untereinheiten oder funktionellen Gruppen, ermöglicht es, Messsignale zu differenzieren und auftretenden Molekülspezies genau zuzuordnen. Zu diesem Zweck ist ein zentrales Element unabdingbar, das die meisten Experimente im Forschungsgebiet der Femtochemie gemein haben: eine kohärente Lichtquelle, die ultrakurze Laserpulse generiert, welche eine zeitliche Dauer auf der Femtosekunden-Zeitskala besitzen auf welcher sich Kernbewegungen typischerweise abspielen. Dieses Instrument ermöglicht die Beobachtung von photoinduzierten chemischen Reaktionen von dem Startpunkt an -- der eigentlichen Anregung -- über das Auftreten von Zwischenprodukten bis hin zu der abschließenden Herausbildung von stabilen Photoprodukten nach mehreren Piko- oder Nanosekunden. Die vorliegende Arbeit umfasst die Beschreibung der Aufnahme und die Darstellung von zeitaufgelösten spektroskopischen Daten an molekularen Systemen, die vielversprechende Eigenschaften nach einer optischen Anregung zeigen. Darüber hinaus beschreibt sie den Aufbau und die Prüfung von experimentellen optischen Messmethoden, die sowohl für die hier präsentierten als auch für zukünftige, erweiterte Experimente der Anrege-Abfrage-Spektroskopie dienen. Zusätzlich wurden lineare Absorptionsmessungen und quantenchemische Simulationen mittels der Dichtefunktionaltheorie (DFT) durchgeführt, um auftretende chemische Spezies eindeutig identifizieren zu können. Auf diese Weise wurden sowohl die anfänglichen Reaktionsschritte als auch die darauffolgenden Reaktionsprodukte zweier Stoffe auf einer Zeitskala von mehreren Nanosekunden nach einer Photoanregung sehr detailliert dargestellt. Die untersuchten Substanzen sind zum einen [Mn(CO)3(tpm)]+ (tpm = tris(2-pyrazolyl)methan), das zur Gruppe der sogenannten CO-releasing molecules (CORM) gehört, und zum anderen 5-Diazo-Meldrumsäure (DMA). Beide sind von akademischem Interesse, gehören darüber hinaus aber zu anwendungsbezogenen Stoffgruppen, die im Falle der CORMs in naher Zukunft als Prodrug unter physiologischen Bedingungen eingesetzt werden könnten. Im Falle des DMA gibt es bereits Anwendungen in der chemischen Industrie. Die Erkenntnisse dieser beiden Untersuchungen führten hinsichtlich zukünftiger Anrege-Abfrage-Studien zu dem Aufbau und der Inbetriebnahme zweier weiterer experimenteller Techniken, die einerseits der Formung und Charakterisierung von Femtosekundenlaserpulsen im ultravioletten (UV) Spektralbereich und andererseits zur Aufnahme von Zwei-Photonen-Anregespektren dienen. Da jedes der dargestellten Experimente auf der Detektion von schwachen transienten Absorptionssignalen im MIR Spektralbereich beruht, wurden des Weiteren am Ende dieser Arbeit zwei verschiedene Aufnahmemethoden gegenübergestellt: die Detektion mittels der Aufkonversion durch gechirpte Laserpulse (chirped-pulse upconversion, CPU) und die direkte Detektion von MIR-Laserpulsen mittels eines Arrays von Quecksilber-Cadmium-Tellurid-Detektoren (mercury cadmium telluride, MCT). Da beide Detektionstechniken für die Anrege-Abfrage-Spektroskopie geeignet sind, dabei jedoch unterschiedliche Stärken und Schwächen zeigen, schaffte die vergleichende Untersuchung diesbezüglich Klarheit. In der ersten Studie wurde die komplexe Photochemie von DMA untersucht, das als photoaktive Substanz in lithographischen Prozessen verwendet wird. Mit transienter MIR-Absorptionsspektroskopie wurden die lichtinduzierte Bildung und ultraschnellen Dynamiken von zahlreichen Photoprodukten innerhalb eines Zeitfensters von einigen Nanosekunden enthüllt. Dies lieferte ein stimmiges Bild des gesamten Reaktionsschemas, welches aus mehreren Reaktionspfaden besteht. Durch einen UV-Laserpuls wird in Methanol gelöstes DMA in den zweiten elektronischen Zustand S2 angeregt. 70% dieser Moleküle relaxieren wieder in den Grundzustand S0, die restlichen 30% verteilen sich auf drei konkurrierende Reaktionspfade. Zum einen können die angeregten Moleküle über eine intramolekulare Wolff-Umlagerung zu Keten umgeformt werden. Dieses wiederum lagert ein Lösungsmittelmolekül an und bildet damit ein Enol als vorübergehenden Zwischenzustand. Schließlich tautomerisiert daraus Carbonsäureester. Zum anderen relaxiert ein Teil der angeregten Moleküle zunächst in den S1-Zustand des DMA, von wo aus eine Isomerisierung zu Diazirin stattfindet. Der dritte parallele Reaktionspfad weist im Vergleich zu den ersten beiden die geringste Quanteneffizienz auf und führt über den S1-Zustand zu einem Singulett-Carben. Dieses kann sich einerseits zu einem Ylid umwandeln, oder mittels eines Intersystem Crossing in ein Triplett-Carben übergehen. Während die primären Reaktionsschritte innerhalb einiger Pikosekunden ablaufen, werden die daraufhin erscheinenden Zwischenzustände und Endprodukte innerhalb einiger hundert bis tausend Pikosekunden gebildet. Für eine zuverlässige Identifizierung der involvierten Molekülspezies wurde die Analyse der zeitaufgelösten Daten sowohl durch DFT-Simulationen als auch durch lineare Absorptionsmessungen ergänzt. Beide Methoden lieferten wichtige Informationen über die Absorptionscharakteristika des Edukts sowie der auftretenden Zwischen- und Endprodukte. Wegen der sterischen Hinderung zeigten weitere zeitaufgelöste Absorptionsmessungen an in Ethanol oder Isopropanol gelöstem DMA geringe spektrale Verschiebungen und auch verlängerte Zeitkonstanten im Falle der Reaktionsprodukte, die mit der Bildung des Ester verbunden waren. Dies untermauerte um ein Weiteres die Zuordnung der jeweiligen Reaktionspfade und Photoprodukte. Die Studie an DMA zeigte, dass die Kombination aus linearer und zeitaufgelöster Spektroskopie in Verbindung mit quantenchemischen Berechnungen ein mächtiges Werkzeug darstellt, um sogar äußerst komplexe Photoreaktionen zu entschlüsseln, die mehrere aufeinanderfolgende Zwischenzustände innerhalb parallel verlaufender Reaktionspfade aufweisen. Obwohl einige der einzelnen Reaktionsschritte wie zum Beispiel die Bildung des Ketens nach der Wolff-Umlagerung bereits auf ultrakurzen Zeitskalen untersucht wurden, umfasst diese Arbeit die Beobachtung aller auftretenden Photoprodukte des DMA gelöst in verschiedenen Alkoholen innerhalb einiger Nanosekunden nach der Photoanregung. In diesem Sinne stellt die ultraschnelle Photochemie von DMA ein Musterbeispiel für ein multisequentielles Reaktionsschema dar, das dank der Stärken der zeitaufgelösten MIR-Absorptionsspektroskopie entschlüsselt werden konnte. Mit einer modifizierten experimentellen Ausstattung, unter anderem die Systeme betreffend, welche die Fundamentalstrahlung oder die UV-Anregungspulse generierten, war das nächste Ziel dieser Arbeit die primären photoinduzierten Prozesse eines Tricarbonylmangan-CORM in wässriger Lösung zu erforschen. Die zeitaufgelösten Experimente wurden mit zwei verschiedenen UV-Anregungswellenlängen durchgeführt und zusätzlich unterstützt durch lineare Absorptionsmessungen und zeitaufgelöste DFT-Berechnungen (TDDFT) der angeregten elektronischen Zustände sowie DFT-Berechnungen der Grundzustände. Die Messungen zeigten, dass die UV-Anregung der Substanz in erster Linie die ultraschnelle Photolyse einer einzelnen Carbonylgruppe zur Folge hat. Eine geminale Rekombination zum ursprünglichen Komplex kann innerhalb einer Pikosekunde auftreten. Jedoch ist dies ein untergeordneter Prozess, da die abgetrennte Carbonylgruppe freigesetzt wird und die unbesetzte Koordinationsstelle vorrangig von einem Lösungsmittelmolekül belegt wird. Sogenannte heiße Carbonyl-Absorptionsbanden wurden nicht detektiert. Das bedeutet, dass die verbleibenden CO-Liganden -- sowohl im Falle des Dicarbonyl-Photoprodukts als auch im Falle des intakten CORM -- durch die Anregungspulse nicht vibrationsangeregt werden. Demnach wird die Überschussenergie in Vibrationsmoden mit geringer Frequenz transferiert, was einer Schwingung des gesamten Moleküls entspricht. Da Untersuchungen auf makroskopischer Ebene mit Bestrahlungszeiten von mehreren Minuten zeigen, dass UV-Anregung letztlich zur Freisetzung von zwei oder sogar allen drei CO-Liganden führt, bedarf es zur weiteren Photolyse von CO höchstwahrscheinlich einer Oxidation des Mangan oder einer weiteren Wechselwirkung mit Licht. Um letzteres aufzuklären, wurde ein zweiter UV-Anregungspuls in Folge des ersten Anregungspulses eingesetzt. Dieser zweite Puls sollte die Photoprodukte des ersten Pulses noch einmal anregen. Jedoch waren die daraus erhaltenen Messdaten nicht aufschlussreich genug, um die Manganoxidation als Ursache für den Verlust von weiteren CO-Liganden ausschließen zu können. Neben dem Austauch einer CO-Gruppe mit einem Lösungsmittelmolekül sowie der geminalen Rekombination, wurde durch den Einsatz zwei verschiedener Anregungswellenlängen in Verbindung mit den Ergebnissen der TDDFT-Berechnungen die Möglichkeit eines weiteren Reaktionspfades entdeckt: es ist auch möglich, dass die Anregung des CORM zu überhaupt keinem Bindungsbruch führt und insofern ein Teil der angeregten Moleküle völlig intakt bleibt. Da bereits bekannt war, dass das untersuchte CORM gewebsselektiv ist und zytotoxisch gegenüber Krebszellen wirkt, sind die gesammelten Erkenntnisse bezüglich der primären photoinduzierten Reaktionsschritte essentiell, um die biologische Aktivität der Substanz vollständig zu verstehen. Angeregt durch diese beiden Studien wurden experimentelle Techniken für weiterführende transiente Absorptionsmessungen implementiert und in vorbereitenden Messungen getestet. Erstens, im Rahmen eines UV-Anrege-MIR-Abfrage-Experiments mit speziell geformten Anregungspulsen könnte man das Ziel verfolgen, mittels kohärenter Kontrolle den Ausgang einer Photoreaktion in flüssiger Phase zu steuern. Dazu benötigt man ein Rückkopplungssignal, das als ein zentrales Element einer Lernschleife darüber Aufschluss gibt, ob die iterativ angepassten Pulsformen den Reaktionsverlauf in die gewünschte Richtung lenken. Eines der zahlreichen Absorptionssignale der reichhaltigen Photochemie von DMA kann dabei als Rückkopplungssignal dienen. Dieser Ansatz motivierte den Aufbau und erste Tests von Instrumenten, mit denen die Formung und Charakterisierung von ultrakurzen UV-Laserpulsen durchführbar ist. Als zweites, wegen der biologischen Anwendungsmöglichkeiten von CORMs, kann man sich eine Situation vorstellen, in der eine gewisse Menge an CORMs in krebsartigem Gewebe deponiert wird. Da die Aktivierung der zytotoxischen CO-Abgabe durch UV-Laserpulse wegen des Absorptionsverhaltens von biologischem Gewebe nicht möglich ist, wäre es naheliegend die Anregung durch zwei gleichzeitig aufgenommene Photonen im sichtbaren Spektralbereich durchzuführen. Jedoch hängen Erfolg oder Misserfolg einer solchen Anwendung davon ab, ob die eingelagerten CORMs auch auf effiziente Weise zwei Photonen gleichzeitig absorbieren, das heißt ob der Zwei-Photonen-Absorptionsquerschnitt groß genug ist. Deshalb wurde ein Messaufbau konstruiert und getestet, mit welchem man unter vollständiger Berücksichtigung der entscheidenden Laserpulsparameter (Pulsdauer, Pulsenergie und zentrale Wellenlänge) Zwei-Photonen-Anregespektren aufzeichnen kann. Die ersten Resultate wurden anhand eines kommerziell erhältlichen Referenzmoleküls (Mn2CO10) aufgenommen. Der Messaufbau sowie die beschriebene Messroutine und Datenauswertung lassen sich aber ebenso bei anderen Molekülen anwenden, so dass der Zwei-Photonen-Absorptionsquerschnitt von aussichtsreicheren Substanzen bestimmt werden kann. An dritter Stelle, da die Detektion von Abfragelaserpulsen im MIR Spektralbereich teil eines jeden zeitaufgelösten Experiments im Rahmen dieser Arbeit ist, wurde eine Vergleichsstudie durchgeführt, welche die neu entwickelte Technik der CPU einer direkten Aufnahme mittels eines MCT-Arrays gegenüberstellt. Anhand von Anrege-Abfrage-Messungen an Mn2CO10 und Co4CO12 mit einer 1kHz Schuss-zu-Schuss Datenaufnahme wurde gezeigt, dass die CPU-Detektionsmethode mit einer hohen spektralen Auflösung sowie Abdeckung punkten kann und die dabei eingesetzten CCD-Detektoren zudem einfach in der Handhabung und vergleichsweise kostengünstig sind. Auf der anderen Seite übertragen sich in dem zusätzlichen nichtlinearen Aufkonversionsprozess Intensitätsschwankungen von den gechirpten Fundamentallaserpulsen auf die Abfragelaserpulse im sichtbaren Spektralbereich. Dies bringt zwar ein geringeres Signal-Rausch-Verhältnis mit sich als bei der direkten MCT-Detektion, jedoch lässt sich dieser Nachteil kompensieren indem man ein geeignetes Normierungsverfahren auf die CPU-Abfragepulse anwendet. Demnach bietet die CPU-Detektionsmethode mehr Flexibilität hinsichtlich zukünftiger Anwendungen, in denen MIR-Abfragepulse Verwendung finden. Das ist von großer Bedeutung für viele Anwendungen innerhalb des präsentierten Teilgebietes der Femtochemie, da nicht nur ein Großteil der Experimente die in dieser Arbeit vorgestellt wurden auf der Detektion von schwachen transienten Absorptionssignalen im MIR-Spektralbereich basieren, sondern darüber hinaus eine große Vielfalt an zeitaufgelösten Untersuchungen von vielen verschiedenen System in flüssiger Phase existiert. KW - Ultrakurzzeitspektroskopie KW - time-resolved optical spectroscopy KW - nonlinear spectroscopy KW - vibrational spectroscopy KW - femtochemistry KW - Nichtlineare Spektroskopie KW - Schwingungsspektroskopie KW - Zeitauflösung Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96200 ER - TY - JOUR A1 - Roy, Dipak Kumar A1 - Tröster, Tobias A1 - Fantuzzi, Felipe A1 - Dewhurst, Rian D. A1 - Lenczyk, Carsten A1 - Radacki, Krzysztof A1 - Pranckevicius, Conor A1 - Engels, Bernd A1 - Braunschweig, Holger T1 - Isolation and Reactivity of an Antiaromatic s‐Block Metal Compound JF - Angewandte Chemie International Edition N2 - The concepts of aromaticity and antiaromaticity have a long history, and countless demonstrations of these phenomena have been made with molecules based on elements from the p, d, and f blocks of the periodic table. In contrast, the limited oxidation‐state flexibility of the s‐block metals has long stood in the way of their participation in sophisticated π‐bonding arrangements, and truly antiaromatic systems containing s‐block metals are altogether absent or remain poorly defined. Using spectroscopic, structural, and computational techniques, we present herein the synthesis and authentication of a heterocyclic compound containing the alkaline earth metal beryllium that exhibits significant antiaromaticity, and detail its chemical reduction and Lewis‐base‐coordination chemistry. KW - antiaromaticity KW - aromaticity KW - beryllium KW - heterocycles KW - s-block metals Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224447 VL - 60 IS - 7 SP - 3812 EP - 3819 ER - TY - JOUR A1 - Roeding, Sebastian A1 - Brixner, Tobias T1 - Coherent two-dimensional electronic mass spectrometry JF - Nature Communications N2 - Coherent two-dimensional (2D) optical spectroscopy has revolutionized our ability to probe many types of couplings and ultrafast dynamics in complex quantum systems. The dynamics and function of any quantum system strongly depend on couplings to the environment. Thus, studying coherent interactions for different environments remains a topic of tremendous interest. Here we introduce coherent 2D electronic mass spectrometry that allows 2D measurements on effusive molecular beams and thus on quantum systems with minimum system-bath interaction and employ this to identify the major ionization pathway of 3d Rydberg states in NO2. Furthermore, we present 2D spectra of multiphoton ionization, disclosing distinct differences in the nonlinear response functions leading to the ionization products. We also realize the equivalent of spectrally resolved transient-absorption measurements without the necessity for acquiring weak absorption changes. Using time-of-flight detection introduces cations as an observable, enabling the 2D spectroscopic study on isolated systems of photophysical and photochemical reactions. KW - Atomic and molecular interactions with photons KW - Excited states KW - Reaction kinetics and dynamics KW - Optical spectroscopy Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-226458 VL - 9 IS - 2519 ER -