TY - THES A1 - Glaab, Fabian T1 - Simulationen zur transienten Absorptionsspektroskopie an Energie- und Ladungstransfersystemen T1 - Simulations on transient absorption spectroscopy of energy and charge transfer systems N2 - Anregungsinduzierte Ladungstransferprozesse gemischtvalenter Verbindungen in einem, bzw. zwei Vibrationsfreiheitsgraden werden mithilfe vibronischer Modellsysteme untersucht. Anhand transienter und linearer Absorptionsspektren werden die berechneten mit experimentell bestimmten Daten verglichen. Eine detailliertere theoretische Analyse erfolgt unter den Gesichtspunkten der Populations- und Wellenpaketdynamik. Darüber hinaus wird der Prozess der Exziton-Exziton-Annihilierung mithilfe eines elektronischen Modellsystems untersucht. Zu diesem Zweck werden, zusätzlich zu den oben genannten Methoden, spektroskopische Signale unterschiedlicher Emissionsrichtungen zum Vergleich herangezogen. N2 - Optically induced charge transfer processes of mixed-valence compounds in one or two vibrational degrees of freedom respectively are studied using vibronic model systems. Calculated and experimentally determined data are compared based on transient as well as linear absorptions spectra. By means of population and wave-packet dynamics a more detailed theoretical analysis is performed. Furthermore, the process of exciton-exciton annihilation is studied using an electronic model system. Therefore, in addition to the methods mentioned above, spectroscopic signals in different directions of emission are compared. KW - Absorptionsspektroskopie KW - Monte-Carlo-Simulation KW - Ladungstransfer KW - Exziton KW - Transiente Absorptionsspektroskopie KW - Exziton-Exziton-Anihillierung KW - Nicht-Störungstheoretisch Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-253400 ER - TY - THES A1 - Grebner, Christoph T1 - New Tabu-Search Algorithms for the Exploration of Energy Landscapes of Molecular Systems T1 - Neue Tabu-Search Algorithmen zur Untersuchung von Energielandschaften molekularer Systeme N2 - The visualization of energy functions is based on the possibility of separating different degrees of freedom. The most important one is the Born-Oppenheimer-approximation, which separates nucleus and electron movements. This allows the illustration of the potential energy as a function of the nuclei coordinates. Minima of the surface correspond to stable points like isomers or conformers. They are important for predicting the stability or thermodynamical of a system. Stationary points of first order correspond to transition points. They describe phase transitions, chemical reaction, or conformational changes. Furthermore, the partition function connects the potential hypersurface to the free energy of the system. The aim of the present work is the development and application of new approaches for the efficient exploration of multidimensional hypersurfaces. Initially, the Conformational Analysis and Search Tool (CAST) program was developed to create a basis for the new methods and algorithms. The development of CAST in object oriented C++ included, among other things, the implementation of a force field, different interfaces to external programs, analysis tools, and optimization libraries. Descriptions of an energy landscape require knowledge about the most stable minima. The Gradient Only Tabu Search (GOTS) has been shown to be very efficient in the optimization of mathematical test functions. Therefore, GOTS was taken as a starting point. Tabu-Search is based on the steepest descent - modest ascent strategy. The steepest descent is used for finding local minima, while the modest ascent is taken for leaving a minimum quickly. Furthermore, Tabu-Search is combined with an adaptive memory design to avoid cycling or returning. The highly accurate exploration of the phase space by Tabu-Search is often too expensive for complex optimization problems. Therefore, an algorithm for diversification of the search is required. After exploration of the proximity of the search space, the algorithm would guide the search to new and hopefully promising parts of the phase space. First application of GOTS to conformational search revealed weaknesses in the diversification search and the modest ascent part. On the one hand, the original methodology for diversification is insufficiently diverse. The algorithm is considerably improved by combining the more local GOTS with the wider searching Basin Hopping (BH) approach. The second weak point is a too inaccurate and inefficient modest ascent strategy. Analysis of common transition state search algorithms lead to the adaption of the Dimer-method to the Tabu-Search approach. The Dimer-method only requires the first derivatives for locating the closest transition state. For conformational search, dihedral angles are usually the most flexible degrees of freedom. Therefore, only those are used in the Dimer-method for leaving a local minimum. Furthermore, the exact localization of the reaction pathway and the transition state is not necessary as the local minimum position should only be departed as fast as possible. This allows for larger step sizes during the Dimer-search. In the following optimization step, all coordinates are relaxed to remove possible strains in the system. The new Tabu-Search method with Dimer-search delivers more and improved minima. Furthermore, the approach is faster for larger systems. For a system with approximately 1200 atoms, an acceleration of 40 was measured. The new approach was compared to Molecular Dynamics with optimization (MD), Simulated Annealing (SA), and BH with the help of conformational search problems of bio-organic systems. In all cases, a better performance was found. A comparison to the Monte Carlo Multiple Minima/Low Mode Sampling (MCMM/LM) method proved the outstanding performance of the new Tabu-Search approach. The solvation of the chignolin protein further revealed the possibility of uncovering discrepancies between the employed theoretical model and the experimental starting structure. Ligand optimization for improvement of x-ray structures was one further new application field. Besides the global optimization, the search for transition states and reaction pathways is also of paramount importance. These points describe different transitions of stable states. Therefore, a new approach for the exploration of such cases was developed. The new approach is based on a global minimization of a hyperplane being perpendicular to the reaction coordinate. Minima of this reduced phase space belong to traces of transition states between reactant and product states on the unchanged hypersurface. Optimization to the closest transition state using the Dimer-method delivers paths lying between the initial and the final state. An iterative approach finally yields complex reaction pathways with many intermediate local minima. The PathOpt algorithm was tested by means of rearrangements of argon clusters showing very promising results. N2 - Die visuelle Darstellung von Energiefunktionen basiert auf der Möglichkeit, verschiedene Freiheitsgrade zu separieren. Die wichtigste Näherung ist dabei die Born-Oppenheimer-Näherung. Sie erlaubt damit die Darstellung der potentiellen Energie als Funktion der Kernkoordinaten. Die daraus entstehende mehrdimensionale Hyperfläche entspricht der Summenformel eines beliebigen Systems. Minima der Fläche entsprechen stabilen Punkten wie Isomeren oder Konformeren. Diese sind wichtig für Aussagen über die Stabilität oder die Thermodynamik eines Systems. Stationäre Punkte erster Ordnung entsprechen Übergangsstrukturen und beschreiben Phasenübergänge, chemische Reaktionen aber auch Konformationsänderungen. Über die Zustandssumme ist die Hyperfläche zudem mit der freien Energie verknüpft. Das Ziel dieser Arbeit ist die Entwicklung und Anwendung neuer Methoden zur effizienten Untersuchung mehrdimensionaler Hyperflächen. Dabei wurde zunächst das Conformational Analysis and Search Tool (CAST)-Programm entwickelt. Die Entwicklung des CAST-Programms in objektorientiertem C++ beinhaltete unter anderem die Implementierung eines Kraftfeldes, verschiedene Schnittstellen zu externen Programmen, Analysealgorithmen und verschiedene Optimierungsmodule. Um Aussagen über eine Energielandschaft treffen zu können, müssen zuerst die stabilsten Minima gefunden werden. Der Gradient Only Tabu Search (GOTS) hat sich als sehr effizient in der Optimierung von mathematischen Funktionen erwiesen. Daher wurde GOTS als Startpunkt verwendet. Tabu-Search basiert auf dem steepest descent – modest ascent Prinzip. Zum Finden neuer Minima wird der steilste Abstieg (steepest descent) verwendet, ein Minimum wird auf dem Weg des geringsten Anstiegs (modest ascent) wieder verlassen. Tabu-Search ist zudem mit einem lernfähigen Speicherdesign kombiniert, wodurch ein Zurück- und im Kreis laufen vermieden wird. Der Phasenraum wird von Tabu-Search sehr genau untersucht, was für komplexere Probleme zu aufwendig wird. Daher bedarf es eines Diversifizierungsschritts, welcher nach Absuchen eines Teils des Phasenraums, die Suche in neue vielversprechende Bereiche bringt. Erste Anwendungen auf Konformationssuchen zeigten, dass GOTS Schwächen im Diversifizierungsschritt und der modest ascent Strategie besitzt. Zum einen ist die ursprünglich verwendete Methodik für die Diversifizierung zu wenig divers. Eine Kombination des mehr lokalen GOTS mit der weiträumiger suchenden Basin Hopping (BH) Methode brachte eine erhebliche Verbesserung. Der zweite Schwachpunkt besteht aus einer zu ungenauen und ineffizienten modest ascent Methode. Daher wurde die Dimer-Methode für Tabu-Search adaptiert. Diese benötigt lediglich die erste Ableitung, um zum Übergangszustand erster Ordnung zu konvergieren. Dabei werden in der Dimer-Methode nur Diederwinkel variiert. Zudem muss der Reaktionspfad und der Übergangszustand nicht exakt getroffen werden, da das Minimum nur möglichst schnell verlassen werden soll. Dies erlaubt größere Schrittweiten in der Dimer-Suche. Im nachfolgenden Optimierungsschritt werden alle Koordinaten relaxiert. Die neue Tabu-Search-Methode mit Dimer-Suche liefert mehr und deutlich verbesserte Minima. Zudem ist sie für größere Systeme deutlich schneller. Für ein System mit circa 1200 Atomen wurde eine Beschleunigung um den Faktor 40 erzielt. Die neue Methode wurde am Beispiel der Konformationssuche von bio-organischen Systemen mit Molekulardynamik mit Optimierung (MD), Simulated Annealing (SA) und BH verglichen, wobei sich in allen Fällen eine bessere Effizienz zeigte. Ein Vergleich zur Monte Carlo Multiple Minima/Low Mode Sampling Methode anhand der Optimierung von peptidischen Ligand-Rezeptor-Komplexen belegte ebenfalls die hervorragende Effizienz des neuen Ansatzes. Die Solvatisierung des Chignolin-Proteins mit Tabu-Search deckte die Möglichkeit auf, Differenzen zwischen der verwendeten theoretischen Methode und der experimentellen Startstruktur aufzudecken. Als weiterer neuer Anwendungsbereich wurde die Optimierung von Ligand-Enzym-Komplexen zur Verbesserung von Röntgenstrukturen untersucht. Neben der globalen Optimierung ist auch die Suche nach Übergangszuständen und Reaktionspfaden von größter Wichtigkeit. Diese beschreiben verschiedene Übergänge zwischen stabilen Zuständen. Daher wurde ein neuer Ansatz zur Untersuchung dieser Fragestellungen entwickelt. Dieser basiert auf einer globalen Minimierung einer Hyperfläche, welche senkrecht zum Reaktionspfad steht. Die Minima des reduzierten Phasenraums gehören zu Spuren zu Übergangszuständen zwischen dem Edukt und dem Produkt. Durch Optimierung dieser Punkte mittels der Dimer-Methode werden also Pfade gefunden, die zwischen Anfangs- und Endpunkt liegen. Ein iteratives Vorgehen liefert letztendlich komplexe Reaktionspfade. PathOpt wurde an Umlagerungen von Argon-Clustern evaluiert, welche sehr vielversprechende Ergebnisse lieferten. KW - Globale Optimierung KW - Kraftfeld-Rechnung KW - Übergangszustand KW - Computational chemistry KW - Tabu-Search KW - Methodenentwicklung KW - Dimermethode KW - Basin-Hopping KW - Energielandschaft KW - Theoretische Chemie KW - Tabu-Search KW - method development KW - dimer method KW - basin hopping KW - energy landscapes Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75591 ER - TY - THES A1 - Grimm, Michael T1 - Aufladungsexperimente an gespeicherten Nanopartikeln mit Synchrotronstrahlung T1 - Charging experiments on trapped nano-particles using synchrotron radiation N2 - Gegenstand dieser Arbeit ist die Untersuchung von gespeicherten Nanopartikeln mit weicher Röntgenstrahlung. Dafür wurde eine neue Apparatur aufgebaut. In dieser befindet sich ein dreidimensionaler elektrodynamischer Quadrupolspeicher, mit dem die positiv geladenen Nanopartikel berührungsfrei und ortsfest gespeichert werden. Mit Hilfe eines Streulichtnachweises werden die Eigenbewegungen der Partikel gemessen und daraus das Ladungs- zu Masseverhältnis ermittelt. Durch gezielte Umladung können die absolute Ladung und die Masse der Partikel mit hoher Genauigkeit bestimmt werden. Die gespeicherten Partikel wurden mit Synchrotronstrahlung am Elektronenspeicherring BESSY II untersucht. Bei niedrig geladenen Partikeln wurden Aufladungsexperimente mit variabler Photonenenergie durchgeführt. Dabei kann die Emission von einzelnen Elektronen beobachtet werden. Die totale Sekundärelektronenausbeute wurde für verschiedene Photonenenergien ermittelt. Sie gleicht den Werten, die durch Messungen mit Elektronenbeschuss bekannt sind. Die Partikel wurden weiterhin bis zum maximal erreichbaren Ladungszustand aufgeladen. Dieser Gleichgewichtszustand liegt unterhalb der theoretischen Erwartungen. Bei den hochgeladenen Partikeln wurden nach Abschalten der Synchrotronstrahlung Entladevorgänge beobachtet, die für das verminderte Ladungsgleichgewicht verantwortlich sind. Die Entladung wird als Ionen-Feldemission interpretiert, möglicherweise hervorgerufen durch den elektrischen Durchschlag im Teilchenmaterial. Das Aufladungsverhalten der Partikel bei verschiedenen Ladungszuständen wurde mit Hilfe von Messungen an der O 1s-Kante untersucht. Bei niedrigen Ladungszuständen liefert der Ladestrom die bekannten Röntgenabsorbtionsstrukturen von Siliziumdioxid. Stark geladene Partikel werden dagegen vor allem im Bereich der resonanten O 1s-Anregung durch schnelle Augerelektronen aufgeladen, während Photoelektronen aus dem O 1s-Kontinuum nicht mehr zur Aufladung beitragen. Deren kinetische Energie ist zu gering, um dem Coulombfeld des Partikels zu entkommen. N2 - Subject of this thesis is the investigation of single trapped nanoparticles using soft X-rays. For this purpose a new apparatus has been developed and characterized. The heart of this apparatus is a three-dimensional electrodynamic quadrupole trap that allows us to store charged nanoparticles well located and without any contact to a substrate. The detection of scattered light, which is modulated by the secular motion frequencies of the stored particle, is used to derive the charge-to-mass ratio. The determination of changes in the charge state due to electron emission is used to determine the absolute charge and mass with high accuracy. The particles were studied using synchrotron radiation at the electron storage ring BESSY II. A set of charging experiments were performed, where particles at low charge state were irradiated with different photon energies in the soft X-ray regime. In these experiments the emission of single electrons is observed. The total secondary-electron emission yield is determined at several photon energies. The values are comparable to the secondary emission after electron impact. Other experiments were performed at highest achievable charge state of the particles. This equilibrium state was found to be far below theoretical predictions. For highly charged particles we found a discharge current after the illumination with synchrotron radiation is terminated. This current is responsible for the low equilibrium charge state. The discharge is assumed to result from ion field emission potentially due to the electric breakdown in the particle material. Charging curves at different charges states of the particle in the regime of the oxygen 1s-edge were recorded. At low charge states the characteristic X-ray absorption fine structure of silicon dioxide is observed. Highly charged particles are efficiently charged by resonant Auger processes in the regime of the resonant O 1s-excitation, whereas there is no charging in the regime of the O 1s-continuum. Evidently, the kinetic energy of these electrons is too small to escape from the attractive Coulomb field of the particle. KW - Nanopartikel KW - Aufladung KW - Synchrotronstrahlung KW - Aufladung KW - Entladung KW - Falle KW - Nanopartikel KW - Synchrotronstrahlung KW - charging KW - discharge KW - trap KW - nano-particle KW - synchrotron radiation Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-13188 ER - TY - THES A1 - Gräfe, Stefanie T1 - Laser-control of molecular dynamics T1 - Lasergesteuerte Kontrolle molekularer Dynamik N2 - In this work a new algorithm to determine quantum control fields from the instantaneous response of systems has been developed. The derived fields allow to establish a direct connection between the applied perturbation and the molecular dynamics. The principle is most easily illustrated in regarding a classical forced oscillator. A particle moving inside the respective potential is accelerated if an external field is applied acting in the same direction as its momentum (heating). In contrary, a deceleration is achieved by a field acting in the opposite direction as the momentum (cooling). Furthermore, when the particle reaches a classical turning point and then changes its direction, the sign of the field has to be changed to further drive the system in the desired way. The frequency of the field therefore is in resonance with the oscillator. This intuitively clear picture of a driven classical oscillator can be used for directing (or controlling) quantum mechanical wave packet motion. The efficiency of the instantaneous dynamics algorithm was demonstrated in treating various model problems, the population transfer in double well potentials, excitation and dissociation of selective modes, and the population transfer between electronic states. Although it was not tried to optimize the fields to gain higher yields, the control was found to be very efficient. Driving population transfer in a double well potential could be shown to take place with nearly 100% efficiency. It was shown that selective dissociation within the electronic ground state of HOD can be performed by either maximizing a selected coordinate's differential momentum change or the energy absorption. Concerning the population transfer into excited electronic states, a direct comparison with common control algorithms as optimal control theory and genetic algorithms was accomplished using a one-dimensional representation of methyl iodide. The fields derived from the various control theories were effective in transferring population into the chosen target state but the underlying physical background of the derived optimal fields was not obvious to explain. The instantaneous dynamics algorithm allowed to establish a direct relation between the derived fields and the underlying molecular dynamics. Bound-to-bound transitions could be handled more effectively. This was demonstrated on the sodium dimer in a representation of 3 electronic states being initially in its vibronic ground state. The objective was to transfer population into a predefined excited state. Choosing the first or the second state as a target, the control fields exhibited quite different features. The pulse-structure is related to the excited state wave packet, moving in, and out of the Franck-Condon region. Changing the control objective, the derived control field performed pure electronic transitions on a fast time-scale via a two-step transition. Futhermore, orientational effects have been investigated. The overall-efficiency of the population transfer for differently oriented molecules was about 70 % or more if applying a control field derived for a 45° orientation. Spectroscopic methods to gain information about the outcome of the control process have been investigated. It was shown that pump/probe femtosecond ionization spectroscopy is suited to monitor time-dependent molecular probability distributions. In particular, time-dependent photoelectron spectra are able to monitor the population in the various electronic states. In the last chapter a different possibility of controlling molecules was regarded by investigating molecular iodine with a setup similar to the STIRAP (“Stimulated Raman Adiabatic passage”) scenario. The possibility to extend this technique to a fs-time scale was examined in theory as well as in experiments, the latter being performed by Dr. Torsten Siebert in the Kiefer group, University of Würzburg. It was shown that off-resonant excitation with implementation of the pulses with a higher intensity of the Stokes pulse as compared to the pump pulse - describing a so-called f-STIRAP like configuration - was shown to effectively transfer population into excited ground-state vibrational levels. This was theoretically underlined by comparing the numerically exact coupling case with the adiabatic picture. The process was described to run in the vicinity of adibaticity. A new model explaining the process by the system's vector rotating around the dressed state vector will be adopted in future calculations. Altogether, a new promising algorithm to control dynamical processes based on the instantaneous response has been developed. Because the derived control fields have been shown to be very efficient in selectively influencing molecules, it is to be expected that farther reaching applications can be realized in future investigations. N2 - In dieser Arbeit wurde ein neuer Algorithmus zur Bestimmung von Kontrollfeldern aus der instantanen Respons von Systemen auf die Wirkung von Laserfeldern entwickelt. Die damit berechneten Felder ermöglichen es, eine Verbindung zwischen der Störung durch das Laserfeld und der molekularen Dynamik herzustellen. Das Prinzip lässt sich an einem klassischen Oszillator veranschaulichen: Ein sich innerhalb dieses Oszillatorpotenzials bewegendes Teilchen wird durch ein externes Feld beschleunigt, wenn dieses und der Impuls des Teilchens in die gleiche Richtung weisen. Ein Abbremsen des Teilchens wird durch ein Feld erzielt, welches dem Impuls des Teilchens entgegen gerichtet ist. Wenn das Teilchen in dem Oszillator einen Umkehrpunkt erreicht und dort seine Richtung ändert, wird das Vorzeichen des Feldes an die neue Richtung angepasst: Die Frequenz des Feldes befindet sich in Resonanz mit der Oszillatorfreuqenz. Dieses klassische Bild der erzwungenen Schwingung eines Oszillators kann für die Kontrolle quantenmechanischer Wellenpaketbewegungen angewendet werden. Die Effizienz des Algorithmus' wurde an verschiedenen Problemen, wie dem Populationstransfer (PT) in Doppelminimum-Potenzialen, Anregung und Dissoziation selektiver Moden und den PT in unterschiedliche el. Zuständen aufgezeigt. Obwohl keine Optimierung der Felder bezüglich höherer Ausbeuten durchgeführt wurde, konnte eine hohe Effizienz der Prozesse nachgewiesen werden. Ein PT in Doppelminimum-Potentialen wurde nahezu vollständig erreicht. Selektive Dissoziation innerhalb des el. Grundzustandes des HOD-Moleküls wurde unter Verwendung zweier unterschiedlicher Methoden, der Maximierung der zeitlichen Änderung des Impulses oder der Energieabsorption einer Koordinate, erzielt. Bezüglich des PT in el. angeregte Zustände wurden bekannte Kontrollalgorithmen wie die Theorie der optimalen Kontrolle und genetischer Algorithmen mit dem in dieser Arbeit entwickelten Prinzip der instantanen Respons anhand einer 1D Darstellung des Methyliodids verglichen. Die aus den verschiedenen Theorien konstruierten Felder erzielten einen effektiven PT in den zuvor definierten Zielzustand, jedoch ist der dem zu Grunde liegende, physikalische Hintergrund nicht einfach zu beschreiben. Mit Hilfe des Instantanen-Respons-Algorithmus' konnte eine direkte Relation zwischen den Feldern und der molekularen Dynamik hergestellt werden. Anhand des Na2 in einer Darstellung von 3 elektronischen Zuständen sollte nur ein Zustand selektiv angeregt werden. Je nach Wahl des Zielzustandes zeigten sich deutliche Unterschiede. Selektive Anregung des 1. Zustandes erzeugte ein Feld bestehend aus einer Pulsfolge, die durch ein Wellenpaket im angeregten Zustand, welches sich in und aus dem Franck-Condon Fenster heraus bewegt, erklärt werden konnte. Anregung des 2. Zustandes führte zu einem Feld, welches nicht auf Vibration, sondern rein elektronischer Anregung in einem 2-Stufen-Prozess beruht. Bei der Betrachtung von Orientierungseffekten konnte gezeigt werden, dass PT für alle Orientierungen mit einem Feld, welches aus einer mittleren Orientierung bestimmt wurde, effizient ist. Untersuchungen spektroskopischer Methoden, um Informationen über die Effizienz von Kontrollprozessen zu liefern, zeigten, dass Pump-Probe Ionisationsspektroskopie im Femtosekundenbereich (fs) dazu sehr gut dazu geeignet ist. Im Speziellen konnte mit zeitabh. Photoelektronenspektren die Populationen in den elektronischen Zuständen nach Anlegen des jeweiligen Feldes „beobachtet“ werden. Im letzten Kapitel wurde eine andere Methode der Kontrolle von Molekülen in Anlehnung an einen STIRAP ("Stimulated Raman Adiabatic Passage“) Prozess am Beispiel molekularen Iods vorgestellt. Dabei wurde die Möglichkeit, diese Technik auf die fs-Zeitskala auszudehnen,in Theorie und Experiment untersucht, wobei die Messungen von Dr. Torsten Siebert (Universität Würzburg, Arbeitskreis Prof. Kiefer) durchgeführt worden sind. Nicht-resonante Anregung, mit einer Abfolge der Pulse, in der der Stokes-Puls mit der höheren Intensität im Vergleich zum Pump-Puls in einer f-STIRAP-artigen Anordnung dem Pump-Puls vorausgeht, führte zu einem effizienten PT in einen schwingungsangeregten Zustand im el. Grundzustand. Dies konnte durch einen Vergleich des numerisch exakten Falls mit einer adiabatischen Behandlung theoretisch untermauert werden. Die zu Grunde liegenden Prozesse sind näherungsweise durch adiabatisches Verhalten charakterisiert. Dazu wird gerade ein neues Modell entwickelt, welches den Prozess mit einem um einen dressed-state rotierenden Vektor im Hilbertraum erklärt. Zusammenfassend wurde in dieser Arbeit ein Algorithmus zur Kontrolle von Moleküldynamik entwickelt, der auf der instantanen Antwort eines Systems bei Wechselwirkung mit einem elektrischen Feld beruht. Die daraus berechneten Kontrollfelder sind sehr effizient bezüglich einer selektiven Kontrolle von Molekülen und versprechen noch viele zukünftige Anwendungsmöglichkeiten. KW - Laserstrahlung KW - Molekulardynamik KW - Mehrphotonenprozess KW - Quantenmechanik KW - Quantendynamik KW - Kontrolltheorie KW - STIRAP KW - geformte Laserfelder KW - Multi-Photonen Prozesse KW - quantum dynamics KW - control theory KW - STIRAP KW - pulse shaping KW - multi-photon processes Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-13388 ER - TY - THES A1 - Hader, Kilian T1 - Lokalisierungsdynamik unter Berücksichtigung von Molekül-Feld-Wechselwirkung, Kern-Elektron-Kopplung und Exziton-Exziton-Annihilierung T1 - Localization dynamics considering molecule-field interaction, nuclear-electron coupling and exciton-exciton annihilation N2 - Diese Arbeit befasst sich mit verschiedenen Aspekten der Dynamik von Kernen, Elektronen und gekoppelten Kern-Elektron-Systemen, wobei je nach System unterschiedliche Herangehensweisen gewählt wurden. Zentrale Punkte sind bei allen drei Kapiteln einerseits die Lokalisierung von Teilchen und Energie und andererseits eine hohe Sensitivität in Bezug auf die Wahl der Anfangsbedingungen. Im ersten Teil wurden von der Carrier-Envelope-Phase (CEP) abhängende, laser-induzierte Lokalisierungen betrachtet. Das zentrale Element ist dabei das entwickelte Doppelpulsschema, mit welchem eine CEP-Abhängigkeit in beobachtbaren Größen erzeugt wird. Als Beispielsysteme wurden die Fragmentation im D₂⁺-Modellsystem und eine Isomerisierung im Doppelminimumpotential (DMP) untersucht. Als Observable wird die Asymmetrie betrachtet Im DMP kann die Asymmetrie mit dem Entantiomeren/Isomerenüberschuss gleich gesetzt werden kann und im D₂⁺-Modellsystem mit der Lokalisierung des Elektrons auf einem der beiden dissoziierenden Kerne. Eine Phasenabhängigkeit der Asymmetrien besteht nur für die CEP des zweiten Pulses φ₂, für welchen keine Begrenzungen für die Anzahl an Laserzyklen auftreten. Im DMP wurde die CEP-Abhängigkeit der Asymmetrien auch bei unterschiedlichen Startkonfigurationen untersucht. Für alle untersuchten Startkonfigurationen konnte ein Laserparametersatz gefunden werden, der für zumindest eine der beiden Asymmetrien eine CEP-Abhängigkeit liefert. Aufgrund der aufgehobenen energetischen Entartung der Paare gerader und ungerader Symmetrie ist die resultierende Lokalisierung zeitabhängig. Zur Messung der vorhergesagten Dynamiken ist z.B. die Aufnahme eines Photoelektronen-Spektrums denkbar. In nächsten Kapitel wurden unterschiedliche Dynamiken innerhalb eines 4d Kern-Elektron-Modells in der Nähe einer konischen Durchschneidung (CI) zweier Potentiale betrachtet. Hierbei ist hervorzuheben, dass eine solche gleichzeitige Untersuchung von Kern- und Elektron-Dynamik in Systemen mit CIs in der Literatur, nach Wissen des Autors, bisher nicht veröffentlicht ist. Das 4d-Potential wurde mit Hilfe des sogenannten Potfit-Algorithmus gefittet. Dieser Fit wurde anschließend verwendet, um die Dynamik des gekoppelten Systems mit Hilfe der ”Multi-Configuration Time-Dependent Hartree”(MCTDH)-Methode zu berechnen. Aus der Analyse der gekoppelten Kern-Elektron-Wellenfunktion ergaben sich zwei grundlegend unterschiedliche Klassen von Dynamiken: • Diabatisch: Kern- und Elektrondynamik sind nahezu entkoppelt. Der Kern bewegt sich und das Elektron bleibt statisch. • Adiabatisch: Kern- und Elektrondynamik sind stark gekoppelt. Die Kerndynamik findet auf Kreisbahnen statt. Mit der Rotation der Kerndichte um den Winkel φ geht eine Rotation der Elektron-Dichte einher. Die diabatische Bewegung entspricht der Dynamik durch die konische Durchschneidung und die adiabatische Bewegung der Dynamik auf der unteren Potentialfläche. Welche der beiden Dynamiken stattfindet, wird durch die Wahl der Anfangsbedingung bestimmt. Der wesentliche Unterschied zwischen den beiden Startzuständen ist dabei die Lage des Knotens im elektronischen Anteil der Wellenfunktion. In den diabatischen Bewegungen bleibt z.B. der pₓ -artige Charakter der elektronischen Wellenfunktion konstant, wohingegen sich bei der adiabatischen Dynamik der Charakter mit der Kernbewegung ändert. Die Zeitersparnis durch die Verwendung des MCTDH-Ansatzes im Vergleich zur Split-Operator-Methode liegt etwa bei einem Faktor 5. Das letzte Kapitel widmet sich der mikroskopischen Beschreibung von Exziton-Exziton- Annihilierung (EEA). Dabei werden numerische Lösungen der aus einem mikro- skopischen Modell hergeleiteten Ratengleichungen mit Messungen ( transienter Absorption) verglichen. Es wurden zwei Systeme untersucht: ein Squarain-basiertes Heteropolymer (SQA-SQB)ₙ und ein [2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenvinylen]-Polymer, auch bekannt als MEH-PPV. In beiden Fällen gelang die systematische Parameterbestimmung mit Hilfe einer Aufteilung in lokalisierte Subsysteme. Diese Subsysteme werden einzeln gewichtet und anschließend aufsummiert, wobei die Gewichte optimiert werden können. Aus den so erhaltenen Parametern ergibt sich für beide Systeme ein ähnliches Bild: • Durch ultraschnelle Lokalisierung der Anregung im fs-Bereich auf kleinere Aggregateinheiten bilden sich voneinander getrennte Subsysteme. • Die in den Subsystemen lokalisierten Exzitonen können sich nur innerhalb dieser Bereiche frei bewegen. Es ist ausreichend, direkt benachbarte Mono-, Bi-, Tri- und Tetra-Exzitonen in bis zu zwei Dimensionen zu berücksichtigen. • Auf einer fs-Zeitskala annihilieren direkt benachbarte Exzitonen. • Im MEH-PPV ergibt sich der Signalzerfall im fs-Bereich als Mittelwert aus einer schnellen (zwischen Ketten) und einer langsamen (innerhalb von Ketten) Annihilierung. • Im ps- bis ns-Bereich wird sowohl durch Diffusion vermittelte Annihilierung, also auch der Zerfall der ersten angeregten Zustände bedeutsam. N2 - In the present work the dynamics of nuclei, electrons, and coupled nuclei-electron systems are examined in different ways. Items that are central in all three chapters are, on the one hand localization of particles and energy and, on the other, a high sensitivity to the choice of initial condition. In the first chapter carrier-envelope-phase (CEP) dependent, laser induced localization is examined. The main element of the considerations is a double pulse scheme, which creates a CEP-dependence in the monitored observables. As example systems the fragmentation of a D₂⁺-model and the isomerization in a double well potential (DWP) are investigated. As an observable the asymmetry is chosen. In the DWP this entity can be related to enantiomeric or isomeric excess and in the D₂⁺-model it describes the localization of the electron on a fragment. The phase dependent part of the asymmetries only relies on the CEP φ₂ of the second pulse which does not have any restrictions on the amount of laser cycles. In the DWP a CEP-dependence of the asymmetries could be examined starting from different initial configurations. For all different initial conditions a set of laser parameters could be found which produces at least one CEP-dependent asymmetry. Due to the removed degeneracy between states of even and odd parity, the resulting localization in the left or right potential well is time-dependent. - fied such that the first pulse does not populate all states equally. A possible way to test the predicted behavior experimentally is the measurement of photo-electron spectra. In the next chapter coupled nucleus-electron-dynamics in the vicinity of a conical intersections (CI) of two potentials are investigated in a 4-d model system.Such examinations of coupled nucleus-electron-dynamics on equal footing in systems containing CIs is, to the author’s knowledge, not published in literature. The 4-d potential has been fitted by use of the so-called Potfit-algorithm which subsequently could be used to calculate the dynamics of the coupled system in the ”Multi-Configuration Time-Dependent Hartree”(MCTDH)-framework. The analysis of the coupled nucleus-electron-wavefunction yielded two fundamentally different classes of dynamics: • Diabatic: Nucleus- and electron dynamics are nearly uncoupled. The nucleus moves while the electron remains static. • Adiabatic: Nucleus- and electron dynamics are strongly coupled. The dynamic of the nucleus takes place on orbits. The rotation of the nuclear density by the angle φ is accompanied by a rotation of the electron-density at the same angle. The diabatic dynamics are present if the wave packet is passing through the conical intersection and the adiabatic dynamics can be attributed to a wave packet moving on the lower potential surface. Which of the two classes of dynamics takes place can be controlled by choice of the initial wavefunction. The most significant difference between the two initial wavefunctions is the plane in which the node of the electronic wavefunction is located. In case of a diabatic motion the pₓ -like character of the wavefunctions remains constant, while in case of a adiabatic motion the character changes with the motion of the nucleus.The time saving by usage of the MCTDH-method in comparison to the Split-Operator-method is about a factor of 5. The last chapter is dedicated to the microscopic description of exciton-exciton-annihilation (EEA). The numerical solution of the rate equations which are derived starting from a microscopic Hamiltonian, are compared with measurements. The experimental data are time-dependent traces of transient absorption measurements at different laser fluences which were available for two different systems:a squaraine-based copolymer (SQA-SQB)ₙ and a [2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] polymer also know as MEH-PPV. In both cases a systematic parameter determination could be achieved by introduction of localized subsystems. These subsystems are weighted independently and are summed up whereby the weighs can be optimized. The resulting interpretation of the obtained parameters is similar for both systems: • Ultrafast localization of the excitation energy takes place in the fs-regime which leads to excitons residing on smaller subsystems. • Excitons in these subsystems can only move inside of these domains. A re- construction of experimental data is feasible by inclusion of mono-, bi-, tri- and tetra-excitons in up to two dimensions. • In the fs-regime neighbouring excitons annihilate • In the MEH-PPV polymer the signal decay in the fs-regime can be described as the average of a fast annihilation (between chains) and a slow annihilation (inside chains). •On a longer time-scale (ps to ns) diffusion-meditated annihilation and decay of the first excited states take place KW - Quantenmechanik KW - Quantenchemie KW - Laserstrahlung KW - Nichtadiabatischer Prozess KW - Exziton KW - multicycle CEP control KW - exciton exciton annihilation KW - exact conical intersection dynamics KW - coupled nuclear-electron MCTDH KW - quantum dynamics KW - Quantentheoretische Chemie Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146735 ER - TY - JOUR A1 - Hagspiel, Stephan A1 - Fantuzzi, Felipe A1 - Dewhurst, Rian D. A1 - Gärtner, Annalena A1 - Lindl, Felix A1 - Lamprecht, Anna A1 - Braunschweig, Holger T1 - Addukte des Stammboraphosphaketens H\(_{2}\)BPCO und deren Insertionsreaktionen mittels Decarbonylierung JF - Angewandte Chemie N2 - Die ersten Beispiele für Lewis-Basen-Addukte des Stammboraphosphaketens H\(_{2}\)B-PCO und ihre cyclischen Dimere wurden hergestellt. Eines dieser Addukte zeigt unter milden Bedingungen eine Decarbonylierung und anschließende Insertion des Phosphinidens in die B-C-Bindung eines Borols, was in der Bildung sehr seltener Beispiele für 1,2-Phosphaborinine, B,P-Isostere von Benzol, resultiert. Die starken Donoreigenschaften dieser 1,2-Phosphaborinine wurden durch die Synthese ihrer π-Komplexe mit Metallen der Gruppe 6 bestätigt. KW - Bor KW - Decarbonylierung KW - Heterocyclen KW - Ketene KW - Phosphor Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-244803 VL - 133 IS - 24 SP - 13780 EP - 13784 ER - TY - THES A1 - Heilos, Anna T1 - Mechanistic Insights into the Inhibition of Cathepsin B and Rhodesain with Low-Molecular Inhibitors T1 - Mechanistische Untersuchungen zur Inhibition von Cathepsin B und Rhodesain mit niedermolekularen Inhibitoren N2 - Cysteine proteases play a crucial role in medical chemistry concerning various fields reaching from more common ailments like cancer and hepatitis to less noted tropical diseases, namely the so-called African Sleeping Sickness (Human Arfican Trypanosomiasis). Detailed knowledge about the catalytic function of these systems is highly desirable for drug research in the respective areas. In this work, the inhibition mechanisms of the two cysteine proteases cathepsin B and rhodesain with respectively one low-molecular inhibitor class were investigated in detail, using computational methods. In order to sufficiently describe macromolecular systems, molecular mechanics based methods (MM) and quantum mechanical based method (QM), as well as hybrid methods (QM/MM) combining those two approaches, were applied. For Cathespin B, carbamate-based molecules were investigated as potential inhibitors for the cysteine protease. The results indicate, that water-bridged proton-transfer reactions play a crucial role for the inhibition. The energetically most favoured pathway (according to the calculations) includes an elimination reaction following an E1cB mechanism with a subsequent carbamylation of the active site amino acid cysteine. Nitroalkene derivatives were investigated as inhibitors for rhodesain. The investigation of structurally similar inhibitors showed, that even small steric differences can crucially influence the inhibition potential of the components. Furthermore, the impact of a fluorination of the nitroalkene inhibitors on the inhibition mechanism was investigated. According to experimental data measured from the working group of professor Schirmeister in Mainz, fluorinated nitroalkenes show – in contrast to the unfluorinated compounds – a time dependent inhibition efficiency. The calculations of the systems indicate, that the fluorination impacts the non-covalent interactions of the inhibitors with the enzymatic environment of the enzyme which results in a different inhibition behaviour. N2 - Cysteinproteasen spielen eine wichtige Rolle in der medizinischen Chemie. Nicht nur im Bereich bekannterer Krankheiten wie Krebs oder Hepatitis, sondern auch bezüglich weniger verbreiteter, tropischer Krankheiten wie der sogenannten afrikanischen Schlafkrankheit (Afrikanische Trypanosomiasis) haben diese Enzyme eine große Bedeutung. Im Bereich der Wirkstofffindung ist ein detailliertes Wissen über die katalytische Funktion der an einer Krankheit beteiligten Enzyme unabdingbar .In der vorliegenden Arbeit wurden die Inhibitionsmechanismen der beiden Cysteinproteasen Cathepsin B und Rhodesain in Verbindung mit zwei niedermolekularen Inhibitorklassen anhand theoretischer Berechnungen untersucht. Um die makromolekularen Systeme ausreichend genau beschreiben zu können, wurden neben molekularmechanischen (MM) und quantenmechanischen (QM) Ansätzen auch Hybridmethoden verwendet, welche beide Ansätze (QM/MM) verbinden. Für Cathepsin B wurden Carbamat-basierte Moleküle als potenzielle Inhibitoren der Cysteinprotease untersucht. Die Ergebnisse weisen darauf hin, dass wasser-verbrückte Protonentransferreaktionen eine entscheidende Rolle für die Inhibition spielen. Der laut den Rechnungen energetisch günstigste Mechanismus beinhaltet eine Eliminierungsreaktion nach einem E1cB Mechanismus gefolgt von der Carbamylierung der Aminosäure Cystein in der aktiven Tasche des Enzyms. Nitroalken-Derivate wurden als potenzielle Rhodesain Inhibitoren untersucht. Der Vergleich strukturell ähnlicher Verbindungen weist darauf hin, dass schon kleine sterische Veränderungen einen großen Einfluss auf das Inhibitionspotenzial der Nitroalkene haben können. Außerdem wurde der Einfluss einer Fluorierung der Inhibitoren anhand von Berechnungen untersucht. Messungen der Arbeitsgruppe von Prof. Schirmeister in Mainz zu fluorierten und unfluorierten Nitroalkenen zeigen, dass die fluorierten Verbindungen ein zeitabhängiges Inhibitionspotenzial in Rhodesain aufweisen. Die Berechnungen der Systeme deuten darauf hin, dass die Fluorierung die nicht-kovalenten Wechselwirkungen der Inhibitoren mit der enzymatischen Umgebung des Systems beeinflussen, was zu einem unterschiedlichen Inhibitionsverhalten führt. KW - Cysteinproteasen KW - Inhibitor KW - Mechanismus KW - Berechnung KW - Inhibition Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178228 ER - TY - THES A1 - Hemberger, Patrick T1 - Photoionisationsstudien an Radikalen und Carbenen mit VUV-Synchrotronstrahlung T1 - Photoionization Studies on Radicals und Carbenes mit VUV Synchrotron Radiation N2 - Die vorliegende Dissertation untersucht reaktive Intermediaten, speziell Radikale und Carbene und deren Verhalten bei Photoionisation mit VUV-Synchrotronstrahlung. Diese instabilen Verbindungen wurden durch Pyrolyse von teils selbstsynthetisierter Vorläufern in einem kontinuierlichen Molekularstrahl erzeugt und mittels der TPEPICO-Spektroskopie untersucht. Die wichtigsten Ergebnisse dieser Arbeit werden im Anschluss hervorgehoben. Drei Radikale der Zusammensetzung C9H7, Indenyl, 1- und 3-Phenylpropargyl wurden aus ihren bromierten Vorläufern synthetisiert und ihre Ionisierungsenergien bestimmt. Die Frage ob es möglich ist alle drei Radikale hinsichtlich ihrer IE zu unterscheiden und dadurch eine Identifikation in einer Flamme möglich wird, konnte beantwortet werden. Indenyl und 3-Phenylpropargyl besitzen Ionisierungsenergien von 7.53 und 7.20 eV, was eine Erkennung in Flammen prinzipiell möglich macht. Für 1-Phenylpropargyl wurde eine IEad von 7.4 eV gemessen, was eine selektive Identifikation erschwert. Die Messwerte wurden durch quantenchemischen Rechnungen überprüft und sind mit diesen in guter Übereinstimmung. Die Photoionisation von Cyclopropenyliden (IEad = 9.17 ± 0.015 eV) wurde untersucht,wobei eine niederenergetische Bande dem Propargylen (IEad = 9.02 ± 0.02 eV), dem HCCCH Isomer der Zusammensetzung C3H2, zugeordnet werden konnte. Die Schwingungsstruktur des Spektrums konnte erfolgreich simuliert und dadurch die Geometrie des Kations ermittelt werden. Als Nebenprodukt im Molekularstrahl wurde Chlorcyclopropenyliden (IEad = 9.17 ± 0.02 eV) durch seine Schwingungsprogression identifiziert. Die Analyse der dissoziativen Photoionisation gestaltet sich als schwierig, da sowohl c-C3H2 als auch c-C3HCl im relevanten Energiebereich fragmentieren können und die Anwesenheit von HCl die Auswertung ebenfalls erschwert. Ein Lösungsvorschlag für dieses Problem wurde ebenfalls aufgezeigt. Der Einfluss von Substitutionen auf die IE wurde am Beispiel des Propargylradikals und seiner zwei bromierten Analoga erforscht. Dabei wurde eine Rotverschiebung (IEad(C3H3) = 8.71 ± 0.02 eV / IEad(BrCCCH2) = 8.16 ± 0.02 eV / IEad(BrHCCCH) = 8.34 ± 0.02 eV) gemessen. Diese ist auf den elektronenspendenden Charakter des Broms begründet. Beide Brompropargylradikale lassen sich anhand ihrer IE unterscheiden. Die Schwelle zur dissoziativen Photoionisation von C3H2Br zu C3H2 wurde mit 10.1 eV ermittelt, wobei verschiedene Kanäle für diese Reaktion in Frage kommen. Schwingungsaktivität konnte im TPE-Spektrum des Propargylradikals ebenfalls verzeichnet und die v3 +-Mode mit 1950 cm-1 ermittelt werden. Als letztes Projekt stand die Photoionisation des t-Butyl im Fokus, da teils widersprüchliche Messwerte für die IEad in der Literatur publiziert sind. Es konnte ein Wert von 6.75 eV ± 0.03 eV gemessen werden. Die Schwierigkeit bei diesem Experiment ist die Geometrieänderung während der Ionisierung, da das Radikal pyramidal und das Kation eine planare Struktur im C-Gerüst besitzt. Die Grenzen der angewendeten Methoden wurden an diesem Beispiel deutlich gemacht. Zur vollständigen Charakterisierung wurden auch die Vorläufer genau analysiert, da diese durch dissoziative Photoionisation (DPI) Fragmentionen bilden, welche die gleiche Masse besitzen wie die zu untersuchenden Radikale und Carbene. Aus diesen Ergebnissen konnten Bindungsenergien berechnet werden. Von allen untersuchten reaktiven Intermediaten konnten die Ionisierungsenergien mit einer Genauigkeit von ± 20 meV ermittelt werden. Es wurde gezeigt, dass sogar Isomere mit gleicher Molekülmasse unterscheidbar sind. Diese Daten lassen sich verwenden um reaktive Zwischenprodukte in Flammen zu identifizieren. Die Identifizierung ermöglicht es dann geeignete Modelle für Verbrennungsprozesse zu konstruieren oder vorhandene zu verbessern. Diese könnten wiederum helfen die Ruß- und PAK-Bildung besser zu verstehen. Die Ziele dieser Dissertation konnten somit erreicht werden. Massenspektren, welche in Flammen durch VUV-Synchrotronstrahlung aufgenommen wurden, beherbergen eine große Fülle an größeren reaktiven Intermediaten wie beispielsweise das Fluorenyl oder das Biphenylmethylradikal. Deren Ionisation ist bislang nur sehr vage erforscht und wäre deshalb ein interessantes Projekt um diese Arbeit fortzuführen. N2 - This thesis examines reactive intermediates, especially radicals and carbenes and their behavior at photoionization with VUV-synchrotron radiation. Those unstable compounds were produced by pyrolysis of self-synthesizes precursors in a continuous molecular beam and studied by the TPEPICO spectroscopy. The most important results of this work are highlighted below. Three radicals of the composition C9H7, Indenyl, 1- and 3-phenylpropargyl, were synthesized from brominated precursors and their ionization energies were determined. The question, whether these three radicals can be distinguished by their ionization energy and therefore identified in a combustion flame, was answered. Indenyl and 3-phenylpropargyl exhibit ionization energies of 7.53 and 7.20 eV, which make a distinction possible. For 1-phenylpropargyl an IEad of 7.4 eV was measured, which complicates an selective identification. The measurements were also verified by quantum chemical calculations and are in good agreement. The photoionization of cyclopropenylidene (IEad = 9.17 ± 0.015 eV) was reexamined and and a low-energy band was assigned to propargylene (IEad = 9.02 ± 0.02 eV), which is the HCCCH isomer of the composition C3H2. The vibrational structure of the spectrum of c-C3H2 was successfully simulated and the cationic geometry was also determined. As a by-product chlorocyclopropenylidene (IEad = 9.17 ± 0.015 eV) was found and assigned due to its vibrational progression. The analysis of the dissociative photoionization is difficult, because both c-C3H2 and c-C3HCl are able to fragment in the relevant energy range and the presence of HCl complicates the analysis too. A solution of this problem was also mentioned. The influence of substituents on the IE was studied, using the propargyl radical and its two brominated analogs as an example. A redshift (IEad(C3H3) = 8.71 ± 0.02 eV / IEad(BrCCCH2) = 8.16 ± 0.02 eV / IEad(BrHCCCH) = 8.34 ± 0.02 eV) was measured upon Br substitution. It originates from the electron-donating character of the bromine. Both bromopropargyl radicals can be distinguished by their IE. The threshold of dissociative photoionization of C3H2Br was determined to be 10.1 eV, but several channels can produce the C3H2+ fragment. Vibrational activity was found in the TPE spectrum of the propargyl radical and the v3 + mode was identified (1950 cm-1) as well. As a last project the photoionization of the t-butyl was brought into focus, because partly inconsistent measurements of the IEad are published in the literature. A value of 6.75 ± 0.03 eV was measured in this study. The challenge in experiments on this radical is the huge change in geometry, because the neutral is pyramidal while the cation has a planar carbon framework. The limits of the utilized methods were demonstrated using this example. For a complete characterization the precursors were examined too, because the fragment ions, produced by dissociative photoionization (DPI), could falsely be assigned to the radical or carbene. From these results binding energies were calculated additionally. The ionization energies of all examined reactive intermediates could be determined with an accuracy of ± 20 meV. It was shown that even isomers of the same molecular mass are distinguishable. This data can be used to identify reactive molecules in flames. The identification makes it possible to construct reasonable models for combustion processes or to improve available ones. These models could help to improve the understanding of soot and PAH formation. Therefore the aims of this thesis were achieved. Mass spectra recorded in flames by VUV-synchrotron radiation contain a variety of reactive intermediates for example fluorenyl and biphenylmethyl radicals. Their ionization is only vaguely investigated und therefore an interesting project to continue this work. KW - Photoionisation KW - Carbene KW - Synchrotronstrahlung KW - Radikal KW - TPES KW - PES KW - Reaktive Intermediate KW - reactive intermediates KW - photoionization KW - radicals KW - carbenes KW - threshold photoelectron photoion coincidence Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-56980 ER - TY - THES A1 - Herok, Christoph T1 - Quantum Chemical Exploration of Potential Energy Surfaces: Reaction Cycles and Luminescence Phenomena T1 - Quantenchemische Erforschung von Energiehyperflächen: Reaktionszyklen und Lumineszenzphänomene N2 - This work aims at elucidating chemical processes involving homogeneous catalysis and photo–physical relaxation of excited molecules in the solid state. Furthermore, compounds with supposedly small singlet–triplet gaps and therefore biradicaloid character are investigated with respect to their electro–chemical behavior. The work on hydroboration catalysis via a reduced 9,10–diboraanthracene (DBA) was preformed in collaboration with the Wagner group in Frankfurt, more specifically Dr. Sven Prey, who performed all laboratory experiments. The investigation of delayed luminescence properties in arylboronic esters in their solid state was conducted in collaboration with the Marder group in Würzburg. The author of this work took part in the synthesis of the investigated compounds while being supervised by Dr. Zhu Wu. The final project was a collaboration with the group of Anukul Jana from Hyderabad, India who provided the experimental data. N2 - Ziel dieser Arbeit ist die Aufklärung chemischer Prozesse, die homogene Katalyse und photophysikalische Relaxation angeregter Moleküle im Festkörper beinhalten. Darüber hinaus werden Verbindungen mit vermeintlich kleinen Singulett-Triplett-Lücken und damit biradikaloidem Charakter auf ihr elektrochemisches Verhalten hin untersucht. Die Arbeiten zur Hydroborierungskatalyse mit einem reduzierten 9,10-Diboraanthracen (DBA) wurden in Zusammenarbeit mit der Wagner-Gruppe in Frankfurt durchgeführt, genauer gesagt mit Dr. Sven Prey, der alle Laborexperimente durchführte. Die Untersuchung der verzögerten Lumineszenzeigenschaften von Arylborsäureestern im Festkörper wurde in Zusammenarbeit mit der Marder Gruppe in Würzburg durchgeführt. Der Autor dieser Arbeit war an der Synthese der untersuchten Verbindungen beteiligt und wurde dabei von Dr. Zhu Wu betreut. Das abschließende Projekt war eine Zusammenarbeit mit der Gruppe von Anukul Jana aus Hyderabad, Indien, die die experimentellen Daten zur Verfügung stellte. KW - Simulation KW - Quantum Chemistry KW - Reaction Mechanism KW - Fluorescence KW - Phosphoresence KW - Chemie KW - Katalyse KW - Lumineszenz KW - chemistry KW - simulation KW - catalysis KW - mechanism KW - luminescence KW - Energiehyperfläche Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-352185 ER - TY - THES A1 - Herterich, Jörg T1 - Pikosekunden-zeitaufgelöste Photoionisation: 2-Methylallyl-Radikal und Pyracen T1 - Pikosecond-time-resolved photoionisation: 2-Methylallyl-radical and Pyracene N2 - Die vorliegende Dissertation untersucht fünf unterschiedliche Moleküle hinsichtlich ihrer Geometrien im Grund- und angeregten Zustand sowie deren Dynamik nach elektronischer Anregung. Der Fokus liegt dabei unter anderem auf Pi-konjugierten Systemen, die über eine zusätzliche aliphatische Einheit verbrückt (Paracyclophan- Derivate) oder erweitert (Pyracen) sind. Die Paracyclophan-Derivate sind ein ideales Modellsystem um Einsicht in Pi-Pi-Wechselwirkungen zu erlangen. Ein weiterer Schwerpunkt dieser Arbeit beschreibt die Dynamik des resonanzstabilisierten 2-Methylallyl-Radikals. Die Forschung an solchen kleinen Kohlenwasserstoff-Radikalen ist wichtig, da auf deren Grundlage Modelle entwickelt werden können, die zum Beispiel helfen, den Verbrennungsprozess aufzuklären. Aufgrund ihrer Instabilität sind solche kleinen Kohlenwasserstoff-Radikale nicht einfach zu handhaben und das spektroskopische Vermessen stellt immer eine Herausforderung dar. N2 - This dissertation examines five different molecules with respect to their geometries in the ground and excited states and their dynamics after electronic excitation. The focus is on pi-conjugated systems, bridged (paracyclophane derivatives) or Extended (pyracen) by an additional aliphatic moiety. Paracyclophanes are suitable models to study the interaction between pi-systems, in particular the through space coupling. Moreover, this work focuses on the excited-state dynamics of the B-state of 2-methylallyl (2MA) by time-resolved photoionization with a ps-laser. Research on resonantly stabilized small radicals such as allyl or methylallyl is not only conducted because of a fundamental interest in reaction dynamics, but also because such radicals can accumulate in a reactive environment and are observed in combustion. Studies on isolated radicals yield information on their reactions, which are important in kinetic modeling of combustion processes. For example, biodiesel often contains molecules with C=C double bonds (e.g. fatty acid esters). Abstraction of H-atoms leads to alkylated allyl radicals, because the C-H bonds at the allylic sites are particularly weak. Due to their instability, such small hydrocarbon radicals are not easy to handle and their spectroscopic measurement is always a challenge. An innovation in my research was the development of a high-temperature gas cell to transfer the molecules into the gas phase and to record IR-spectra (compatible with an FT-IR spectrometer), obtaining experimental information on the most stable conformer in the electronic ground state. KW - Photoionisation KW - Pyracen KW - photoionisation KW - 2-Methylallyl KW - Pump-Probe-Spektroskopie KW - pyracene KW - 2-methylallyl KW - pump-probe-spectroscopy Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-105829 ER - TY - JOUR A1 - Hirsch, Florian A1 - Pachner, Kai A1 - Fischer, Ingo A1 - Issler, Kevin A1 - Petersen, Jens A1 - Mitric, Roland A1 - Bakels, Sjors A1 - Rijs, Anouk M. T1 - Do Xylylenes Isomerize in Pyrolysis? JF - ChemPhysChem N2 - We report infrared spectra of xylylene isomers in the gas phase, using free electron laser (FEL) radiation. All xylylenes were generated by flash pyrolysis. The IR spectra were obtained by monitoring the ion dip signal, using a IR/UV double resonance scheme. A gas phase IR spectrum of para‐xylylene  was recorded, whereas ortho‐ and meta‐xylylene were found to partially rearrange to benzocyclobutene and styrene. Computations of the UV oscillator strength  for all molecules were carried out and provde an explanation for the observation of the isomerization products. KW - biradicals KW - high-temperature chemistry KW - IR spectroscopy KW - pyrolysis KW - xylylene Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218316 VL - 21 IS - 14 SP - 1515 EP - 1518 ER - TY - THES A1 - Holzmeier, Fabian T1 - Photoionization of Nitrogen-Containing Reactive Molecules with Synchrotron Radiation T1 - Photoionisation von stickstoffhaltigen reaktiven Molekülen mit Synchrotronstrahlung N2 - The photoionization of several nitrogen-containing reactive intermediates relevant in combustion processes was investigated in the gas phase employing VUV synchrotron radiation. The intermediates were either freshly prepared and stored under cryogenic temperatures during the experiment or generated in situ by vacuum flash pyrolysis of suitable precursor molecules. The iPEPICO (imaging photoelectron photoion coincidence) setups of the VUV beamlines at the Swiss Light Source and Synchrotron SOLEIL were then used to record mass-selected threshold photoelectron (TPE) spectra. TPE spectra reveal the ionization energy and vibrational structure in the cationic states can often be resolved, which enables to distinguish different isomers. Accurate ionization energies for the radicals carbonyl amidogen, pyrrolyl, and 3-picolyl, and for the closed shell molecules isocyanic acid and cyanovinylacetylene were obtained. The analysis of the dissociative photoionization of the pyrolysis precursors enables in some cases to retrieve thermochemical data. Beyond, the absolute photoionization cross section of the cyclic carbene cyclopropenylidene was determined, NEXAFS and normal Auger spectra of isocyanic acid were recorded and analyzed at the O1s, N1s, and C1s edges, and the dissociative photoionization and pyrolysis of 1,4-di-tert-butyl-1,4-azaborinine was studied. N2 - Die Photoionisiation von stickstoffhaltigen reaktiven Intermediaten, die in Verbrennungsprozessen vorkommen, wurde in der Gasphase mit VUV Synchrotronstrahlung untersucht. Die Intermediate wurden entweder unmittelbar vor dem Experiment hergestellt und während des Experiments bei sehr niedrigen Temperaturen gehalten oder in situ durch Vakuum Flash Pyrolyse eines geeigneten Vorläufermoleküls erzeugt. Massenselektive Schwellenphotoelektronen(TPE)-Spektren wurden an den iPEPICO (imaging photoion photoelectron coincidence) Setups der VUV Strahllinien der Swiss Light Source und des Synchrotrons SOLEIL aufgenommen. Die Ionisierungsenergie kann in TPE-Spektren bestimmt werden und eine Auflösung von Schwingungsstruktur im Kation ist in vielen Fällen möglich, wodurch verschiedene Isomere unterschieden werden können. Verlässliche Ionisierungsenergien konnten für die Radikale Carbonylamidogen, Pyrrolyl und 3-Picolyl sowie für die geschlossenschaligen Moleküle Isocyansäure und Cyanovinylacetylen erhalten werden. Die Analyse der dissoziativen Photoionisation der Pyrolysevorläufer eröffnet in manchen Fällen Zugang zu thermochemischen Daten. Darüber hinaus wurde der absolute Photoionisationsquerschnitt des cyclischen Carbens Cyclopropenyliden bestimmt, wurden die NEXAFS und nicht-resonanten Auger Spektren von Isocyansäure an der O1s, N1s und C1s Kante aufgenommen und analysiert und die dissoziative Photoionisation und Pyrolyse von 1,4-di-tert-butyl-1,4-azaborinin untersucht. KW - Dissoziative Photoionisation KW - Synchrotronstrahlung KW - Ultraviolett-Photoelektronenspektroskopie KW - Pyrolyse KW - Photoelektron-Photoion-Koinzidenz KW - Fotoionisation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127763 ER - TY - THES A1 - Issler, Kevin T1 - Theory and simulation of ultrafast autodetachment dynamics and nonradiative relaxation in molecules T1 - Theorie und Simulation der ultraschnellen Autodetachment-Dynamik und nicht-radiativen Relaxation in Molekülen N2 - In this thesis, theoretical approaches for the simulation of electron detachment processes in molecules following vibrational or electronic excitation are developed and applied. These approaches are based on the quantum-classical surface-hopping methodology, in which nuclear motion is treated classically as an ensemble of trajectories in the potential of quantum-mechanically described electronic degrees of freedom. N2 - Im Rahmen dieser Arbeit werden theoretische Verfahren zur Simulation von molekularen Ionisierungsprozessen nach elektronischer oder Schwingungsanregung entwickelt und angewendet. Diese Verfahren basieren auf der quanten-klassischen Surface-Hopping-Methode, in welcher die Kernbewegung durch ein Ensemble klassischer Trajektorien im Potenzial quantenmechanisch beschriebener Elektronen behandelt wird. KW - Theoretische Chemie KW - Autodetachment KW - Nonadiabatic Dynamics KW - Theoretical Chemistry KW - Computational Chemistry KW - Relaxation KW - Molekül Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-352232 ER - TY - THES A1 - Kaiser, Dustin T1 - Non-standard computational approaches applied to molecular systems T1 - Unkonventionelle Berechnungsansätze für molekulare Systeme N2 - In this thesis, several contributions to the understanding and modeling of chemical phenomena using computational approaches are presented. These investigations are characterized by the usage of non-standard computational modeling techniques, which is necessitated by the complex nature of the electronic structure or atomic fluctuations of the target molecules. Multiple biradical-type molecules and their spectroscopic properties were modeled. In the course of the investigation, it is found that especially the impact of correct molecular geometries on the computationally predicted absorption properties may be critical. In order to find the correct minimum geometries, Multi-Reference methods may have to be invoked. The impact of geometry relaxation on the excitonic properties of Perylene Bisimide dimers were investigated. Oftentimes, these geometry factors are neglected in Organic Semiconductor modeling as an approximation. This present investigation suggests that this approximation is not always valid, as certain regimes are identified where geometrical parameters have critical impact on the localization and energetic properties of excitons. The mechanism of the Triazolinedione (TAD) tyrosine bioconjugation reaction is investigated using quantum-chemical methods. By comparison of different conceivable mechanisms and their energetic ordering, the TAD tyrosine bioconjugation is found to proceed by means of a base-mediated electrophilic aromatic substitution reaction. The kth nearest neighbor entropy estimation protocol is investigated. This estimator promises accurate entropy estimates even for flexible molecules with multiple structural minima. Our granular investigation of formal and practical properties of the estimator suggests that the uneven variance of a molecule’s vibrational modes is the cause of the observed slow convergence of the estimator. A rescaling procedure to reestablish fast convergence is suggested and benchmarks are performed. N2 - Im Rahmen dieser Arbeit wurden Berechnungsansätze für die Modellierung mit Standardverfahren näherungsweise berechenbarer molekularer und spektroskopischer Probleme diskutiert. Zunächst wurden die spektroskopischen Eigenschaften der biradikalischen Moleküle Methylbismut, Diphenylacetylen, Pentadiynylidin (sowie dessen methylsubstituierte Derivate) und Diphenylpropynyliden untersucht. Diese Forschungsvorhaben wurden in Zusammenarbeit mit experimentell arbeitenden physi kalischen und synthetischen Chemikern durchgeführt. Der Vergleich von sowohl spek troskopisch als auch durch theoretische Rechnungen erlagter Erkenntnisse erlaubt eine genaue Charakterisierung der physiko-chemischen Eigenschaften der Moleküle. Mit Hilfe von computergestützter Modellierung wurden die Ionisierungsenergien und die Absorptionsspektren der Ionisierung in der Franck-Condon-Approximation berechnet. Für Methylbismut wurden skalar-relativistische und Pseudopotenzial-basierte Ansätze zur Berechnung verwendet. Durch Analyse der angeregten elektronischen Zustände und ihrer geometrieabhängigen energetischen Eigenschaften, konnte das transiente Absorptionsspektrum von Diphenylpropynyliden genau charakterisiert und rational isiert werden. ... KW - Quantenchemie KW - Theoretische Chemie KW - Entropie KW - Computational Chemistry KW - Quantum Chemistry Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-276641 ER - TY - JOUR A1 - Klein, Philipp A1 - Barthels, Fabian A1 - Johe, Patrick A1 - Wagner, Annika A1 - Tenzer, Stefan A1 - Distler, Ute A1 - Le, Thien Anh A1 - Schmid, Paul A1 - Engel, Volker A1 - Engels, Bernd A1 - Hellmich, Ute A. A1 - Opatz, Till A1 - Schirmeister, Tanja T1 - Naphthoquinones as covalent reversible inhibitors of cysteine proteases — studies on inhibition mechanism and kinetics JF - Molecules N2 - The facile synthesis and detailed investigation of a class of highly potent protease inhibitors based on 1,4-naphthoquinones with a dipeptidic recognition motif (HN-l-Phe-l-Leu-OR) in the 2-position and an electron-withdrawing group (EWG) in the 3-position is presented. One of the compound representatives, namely the acid with EWG = CN and with R = H proved to be a highly potent rhodesain inhibitor with nanomolar affinity. The respective benzyl ester (R = Bn) was found to be hydrolyzed by the target enzyme itself yielding the free acid. Detailed kinetic and mass spectrometry studies revealed a reversible covalent binding mode. Theoretical calculations with different density functionals (DFT) as well as wavefunction-based approaches were performed to elucidate the mode of action. KW - protease KW - rhodesain KW - covalent reversible inhibition KW - 1,4-naphthoquinone KW - nucleophilic addition KW - prodrug Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203791 SN - 1420-3049 VL - 25 IS - 9 ER - TY - JOUR A1 - Klein, Philipp A1 - Johe, Patrick A1 - Wagner, Annika A1 - Jung, Sascha A1 - Kühlborn, Jonas A1 - Barthels, Fabian A1 - Tenzer, Stefan A1 - Distler, Ute A1 - Waigel, Waldemar A1 - Engels, Bernd A1 - Hellmich, Ute A. A1 - Opatz, Till A1 - Schirmeister, Tanja T1 - New cysteine protease inhibitors: electrophilic (het)arenes and unexpected prodrug identification for the Trypanosoma protease rhodesain JF - Molecules N2 - Electrophilic (het)arenes can undergo reactions with nucleophiles yielding π- or Meisenheimer (σ-) complexes or the products of the S\(_N\)Ar addition/elimination reactions. Such building blocks have only rarely been employed for the design of enzyme inhibitors. Herein, we demonstrate the combination of a peptidic recognition sequence with such electrophilic (het)arenes to generate highly active inhibitors of disease-relevant proteases. We further elucidate an unexpected mode of action for the trypanosomal protease rhodesain using NMR spectroscopy and mass spectrometry, enzyme kinetics and various types of simulations. After hydrolysis of an ester function in the recognition sequence of a weakly active prodrug inhibitor, the liberated carboxylic acid represents a highly potent inhibitor of rhodesain (K\(_i\) = 4.0 nM). The simulations indicate that, after the cleavage of the ester, the carboxylic acid leaves the active site and re-binds to the enzyme in an orientation that allows the formation of a very stable π-complex between the catalytic dyad (Cys-25/His-162) of rhodesain and the electrophilic aromatic moiety. The reversible inhibition mode results because the S\(_N\)Ar reaction, which is found in an alkaline solvent containing a low molecular weight thiol, is hindered within the enzyme due to the presence of the positively charged imidazolium ring of His-162. Comparisons between measured and calculated NMR shifts support this interpretation KW - cysteine protease KW - rhodesain KW - electrophilic (het)arene KW - nucleophilic aromatic substitution KW - Meisenheimer complex KW - π-complex KW - prodrug Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203380 SN - 1420-3049 VL - 25 IS - 6 ER - TY - THES A1 - Koster, Joachim T1 - Polarisations-sensitive Resonanz-CARS- und Resonanz-Raman-Spektroskopie an metallfreien Porphyrinen T1 - Polarization-sensitive resonance CARS and resonance Raman spectroscopy on free-base porphyrins N2 - Es werden in dieser Arbeit Raman-spektroskopische Untersuchungen an metallfreien Porphyrinen in verdünnter Lösung vorgestellt. Dabei werden Laseranregungswellenlängen eingesetzt, die mit elektronischen Resonanzen der Porphyrine zusammenfallen. Die Ausnutzung von Resonanz-Effekten hat zum einen den Vorteil, dass gewisse Raman-Banden, je nach der Symmetrie der zugrunde liegenden Molekülschwingung, eine deutliche Intensitätsverstärkung erfahren können, was den Nachweis auch geringer Probenkonzentrationen ermöglicht. Zum anderen sind anhand der Banden-Parameter Rückschlüsse auf die exakte Molekülsymmetrie möglich. Im Vergleich zu Metalloporphyrinen sind für metallfreie Porphyrine bisher nur wenige Daten aus resonanten Raman-Spektren bekannt. Ein Grund hierfür ist, dass letztere ein höheres Maß an Fluoreszenz zeigen, die die Raman-Signale überlagert. Während bei Laseranregungen im Bereich hochenergetischer elektronischer Absorptionen der Porphyrine (B-Banden-Region) die klassische spontane Raman-Spektroskopie noch angewendet werden kann, ist dies im Bereich niederenergetischer Absorptionen (Q-Banden-Region) meist nicht mehr möglich. Um auch Anregungen in der Q-Banden-Region zu verwirklichen, wird daher in dieser Arbeit von der kohärenten anti-Stokesschen Raman-Streuung (coherent anti-Stokes Raman scattering, CARS) Gebrauch gemacht. Die CARS-Spektroskopie ermöglicht es, das Fluoreszenzproblem zu umgehen, und bietet zudem noch weitere Vorteile, z. B. bezüglich der Unterscheidbarkeit spektral benachbarter Banden sowie bezüglich der Bestimmung symmetrierelevanter Parameter. Raman-Banden-Parameter aus Q-Banden-CARS-Spektren konnten hier für vier metallfreie Porphyrine, die sich im Substitutionsmuster an den beta-Kohlenstoffatomen des Tetrapyrrol-Makrozyklus unterscheiden, erhalten werden. Die CARS-Parameter, in Kombination mit Parametern aus spontanen B-Banden-Raman-Spektren sowie mit quantenchemisch berechneten Schwingungsvektoren, ließen den Schluss zu, dass Symmetrieunterschiede zwischen den Makrozyklen dieser Moleküle zwar gering, aber durchaus feststellbar sind. Desweiteren konnten durch die niederenergetische Anregung für die metallfreien Porphyrine spezifische Resonanzeffekte nachgewiesen werden, die z. T. von den für Metalloporphyrine bekannten Mustern abweichen. N2 - In this thesis, Raman spectroscopic investigations on free-base porphyrins in dilute solution are presented. For this, laser excitation wavelengths are employed, that coincide with electronic resonances of the porphyrins. Exploiting resonance effects provides, on one hand, the advantage, that certain Raman bands, depending on the symmetry of the corresponding molecular vibration, can experience a significant intensity enhancement, which facilitates the detection of even small sample concentrations. On the other hand, through the band parameters conclusions about the exact molecular symmetry are possible. Compared to metalloporphyrins, for free-base porphyrins only few data from resonant Raman spectra are known. One reason for that is, that the latter exhibit a higher amount of fluorescence which overlays the Raman signals. While with laser excitation in the high energy electronic absorption range of porphyrins (B band region) the classical spontaneous Raman spectroscopy is still applicable, it often fails in the low energy absorption range (Q band region). Therefore, to also perform excitations in the Q band region, in this work it is made use of coherent anti-Stokes Raman scattering (CARS). The CARS spectroscopy allows to circumvent the fluorescence problem and offers additional advantages, e. g. concerning the discrimination of spectrally closely spaced bands and concerning the determination of symmetry relevant parameters. Raman band parameters from Q band CARS spectra could be obtained here for four free-base porphyrins, which differ in the substitution pattern at the beta carbon atoms of the tetrapyrrole macrocycle. The CARS parameters, in combination with parameters from spontaneous B band Raman spectra as well as with quantum chemically calculated vibrational vectors, allowed the conclusion, that differences in symmetry between the macrocycles of these molecules are small, but nevertheless detectable. Further, the low energy excitation revealed specific resonance effects for free-base porphyrins, that in part differ from the patterns known for metallo porphyrins. KW - Porphyrine KW - CARS-Spektroskopie KW - Raman-Spektroskopie KW - metallfreie Porphyrine KW - beta-Substitution KW - kohärente anti-Stokessche Raman-Streuung KW - Resonanz-Raman KW - free-base porphyrins KW - beta substitution KW - coherent anti-Stokes Raman scattering KW - resonance Raman Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-20358 ER - TY - THES A1 - Kramer, Christian T1 - Investigation of Nanostructure-Induced Localized Light Phenomena Using Ultrafast Laser Spectroscopy T1 - Untersuchung von nanostruktur-induzierten Lichtphänomenen mit Hilfe von Ultrakurzzeit-Laserspektroskopie N2 - In recent years, the interaction of light with subwavelength structures, i.e., structures that are smaller than the optical wavelength, became more and more interesting to scientific research, since it provides the opportunity to manipulate light-induced dynamics below the optical diffraction limit. Specifically designed nanomaterials can be utilized to tailor the temporal evolution of electromagnetic fields at the nanoscale. For the investigation of strongly localized processes, it is essential to resolve both their spatial and their temporal behavior. The aim of this thesis was to study and/or control the temporal evolution of three nanostructure-induced localized light phenomena by using ultrafast laser spectroscopy with high spatial resolution. In Chapter 4, the absorption of near-infrared light in thin-film a-Si:H solar cells was investigated. Using nanotextured instead of smooth interfaces for such devices leads to an increase of absorption from < 20% to more than 50% in the near-infrared regime. Time-resolved experiments with femtosecond laser pulses were performed to clarify the reason for this enhancement. The coherent backscattered radiation from nanotextured solar cell devices was measured as a function of the sample position and evaluated via spectral interferometry. Spatially varying resonance peaks in the recorded spectra indicated the formation of localized photonic modes within the nanotextured absorber layers. In order to identify the modes separately from each other, coherent two-dimensional (2D) nanoscopy was utilized, providing a high spatial resolution < 40 nm. In a nanoscopy measurement on a modified device with an exposed nanotextured a-Si:H absorber layer, hot-spot electron emission was observed and confirmed the presence of localized modes. Fitting the local 2D nanospectra at the hot-spot positions enabled the determination of the resonance frequencies and coherence lifetimes of the modes. The obtained lifetime values varied between 50 fs and 130 fs. Using a thermionic emission model allowed the calculation of the locally absorbed energy density and, with this, an estimation of the localization length of the photonic modes (≈1 μm). The localization could be classified by means of the estimated localization length and additional data evaluation of the backscattered spectra as strong localization ─ the so-called Anderson localization. Based on the experimental results, it was concluded that the enhanced absorption of near-infrared light in thin-film silicon solar cells with nanotextured interfaces is caused by the formation of strongly localized photonic modes within the disordered absorber layers. The incoming near-infrared light is trapped in these long-living modes until absorption occurs. In Chapter 5, a novel hybridized plasmonic device was introduced and investigated in both theory and experiment. It consists of two widely separated whispering gallery mode (WGM) nanoantennas located in an elliptical plasmonic cavity. The goal was to realize a periodic long-range energy transfer between the nanoantennas. In finite-difference time-domain (FDTD) simulations, the device was first optimized with respect to strong coupling between the localized antenna modes and the spatially-extended cavity mode. The geometrical parameters of the antennas and the cavity were adjusted separately so that the m="0" antenna mode and the cavity mode were resonant at λ="800 nm" . A high spatial overlap of the modes was achieved by positioning the two antennas in the focal spots of the cavity, leading to a distance between the antenna centers of more than twice the resonant wavelength of the modes. The spectral response of the optimized device revealed an energy splitting of the antenna and the cavity mode into three separated hybridized eigenmodes within an energy range of about 90 meV due to strong coupling. It could be well reproduced by a simple model of three coupled Lorentzian oscillators. In the time domain, an oscillatory energy transfer between both antennas with a period of 86 fs and an energy transfer efficiency of about 7% was observed for single-pulse excitation. For the experiments, devices with cavities and antennas of varying size were fabricated by means of focused-ion-beam (FIB) milling. Time-resolved correlation measurements were performed with high spatial and temporal resolution by using sequences of two femtosecond laser pulses for excitation and photoemission electron microscopy (PEEM) for detection. Local correlation traces at antennas in resonant devices, i.e., devices with enhanced electron emission at both antenna positions, were investigated and reconstructed by means of the coupled-oscillator model. The corresponding spectral response revealed separated peaks, confirming the formation of hybridized eigenmodes due to strong coupling. In a subsequent simulation for single-pulse excitation, one back-and-forth energy transfer between both antennas with an energy transfer efficiency of about 10% was observed. Based on the theoretical and experimental results, it was demonstrated that in the presented plasmonic device a periodic long-range energy transfer between the two nanoantennas is possible. Furthermore, the coupled-oscillator model enables one to study in depth how specific device properties impact the temporal electric-field dynamics within the device. This can be exploited to further optimize energy transfer efficiency of the device. Future applications are envisioned in ultrafast plasmonic nanocircuitry. Moreover, the presented device can be employed to realize efficient SPP-mediated strong coupling between widely separated quantum emitters. In Chapter 6, it was investigated in theory how the local optical chirality enhancement in the near field of plasmonic nanostructures can be optimized by tuning the far-field polarization of the incident light. An analytic expression was derived that enables the calculation of the optimal far-field polarizations, i.e., the two far-field polarizations which lead to the highest positive and negative local optical chirality, for any given nanostructure geometry. The two optimal far-field polarizations depend on the local optical response of the respective nanostructure and thus are functions of both the frequency ω and the position r. Their ellipticities differ only in their sign, i.e., in their direction of rotation in the time domain, and the angle between their orientations, i.e., the angle between the principal axes of their ellipses, is ±π/"2" . The handedness of optimal local optical chirality can be switched by switching between the optimal far-field polarizations. In numerical simulations, it was exemplarily shown for two specific nanostructure assemblies that the optimal local optical chirality can significantly exceed the optical chirality values of circularly polarized light in free space ─ the highest possible values in free space. The corresponding optimal far-field polarizations were different from linear and circular and varied with frequency. Using femtosecond polarization pulse shaping provides the opportunity to coherently control local optical chirality over a continuous frequency range. Furthermore, symmetry properties of nanostructures can be exploited to determine which far-field polarization is optimal. The theoretical findings can have impact on future experimental studies about local optical chirality enhancement. Tuning the far-field polarization of the incident light offers a promising tool to enhance chirally specific interactions of local electromagnetic fields with molecular and other quantum systems in the vicinity of plasmonic nanostructures. The presented approach can be utilized for applications in chiral sensing of adsorbed molecules, time-resolved chirality-sensitive spectroscopy, and chiral quantum control. In conclusion, each of the localized light phenomena that were investigated in this thesis ─ the enhanced local absorption of near-infrared light due to the formation of localized photonic modes, the periodic long-range energy transfer between two nanoantennas within an elliptical plasmonic cavity, and the optimization of local optical chirality enhancement by tuning the far-field polarization of the incident light ─ can open up new perspectives for a variety of future applications. . N2 - In den vergangenen Jahren rückte die Wechselwirkung von Licht mit Strukturen, deren Größe kleiner als die optische Wellenlänge ist, immer mehr in den Fokus der wissenschaftlichen Forschung, da sie die Möglichkeit bietet, lichtinduzierte Dynamiken unterhalb des optischen Beugungslimits zu manipulieren. Speziell hergestellte Nanomaterialien können verwendet werden, um die zeitliche Entwicklung von elektromagnetischen Feldern auf der Nanoskala zu steuern. Für die Untersuchung von stark lokalisierten Prozessen ist es essentiell, sowohl ihr räumliches als auch ihr zeitliches Verhalten aufzulösen. Das Ziel dieser Dissertation war es, die zeitliche Entwicklung von drei lokalisierten Lichtphänomenen, hervorgerufen durch drei unterschiedliche nanostrukturierte Materialien, mit Hilfe von Ultrakurzzeit-spektroskopie unter hoher räumlicher Auflösung zu untersuchen und/oder zu kontrollieren. In Kapitel 4 dieser Arbeit wurde die Absorption von Nahinfrarotlicht in a-Si:H Dünnschicht-Solarzellen untersucht. Durch die Verwendung von nanotexturierten statt glatten Grenzschichten erreicht man bei solchen Solarzellen einen Anstieg der Absorption von < 20% auf über 50% im Nahinfrarotbereich. Um der Ursache dieser Verstärkung auf den Grund zu gehen, wurden zeitaufgelöste Experimente mit Femtosekundenlaserpulsen durchgeführt. Zunächst wurde die kohärente zurückgestreute Strahlung von nanotexturierten Solarzellen in Abhängigkeit der Probenposition gemessen und mit Hilfe von spektraler Interferometrie ausgewertet. Räumlich variierende Resonanzpeaks in den aufgenommenen Spektren deuteten auf die Bildung von lokalisierten photonischen Moden innerhalb der nanotexturierten Absorberschichten hin. Um die Moden räumlich getrennt voneinander identifizieren zu können, wurde anschließend die Methode der kohärenten zweidimensionalen (2D) Nanoskopie angewandt, die eine hohe räumliche Auflösung < 40 nm ermöglichte. In einer Nanoskopie-Messung an einer modifizierten Solarzellen-Probe mit einer freiliegenden nanotexturierten a-Si:H Absorberschicht wurde eine Elektronenemission beobachtet, die von räumlich begrenzten Hot Spots dominiert war und das Vorhandensein von lokalisierten Moden bestätigte. Über das Fitten der lokalen 2D Nanospektren an den Positionen der Hot Spots wurden die Resonanzfrequenzen und die Kohärenzlebenszeiten der Moden bestimmt. Die ermittelten Werte für die Lebenszeiten lagen zwischen 50 fs und 130 fs. Mit Hilfe eines Modells für thermionische Elektronenemission konnte die lokal absorbierte Energiedichte bestimmt und damit die Lokalisierungslänge der photonischen Moden auf etwa 1 μm abgeschätzt werden. Zudem konnte die Lokalisierung über die abgeschätzte Lokalisierungslänge und eine zusätzliche Datenauswertung der zurückgestreuten Spektren als starke Lokalisierung, die sogenannte Anderson-Lokalisierung, klassifiziert werden. Auf der Basis der experimentellen Ergebnisse wurde daher geschlussfolgert, dass die verstärkte Absorption von Nahinfrarotlicht in Silizium-Dünnschicht-Solarzellen mit nanotexturierten Grenzschichten durch die Bildung von stark lokalisierten photonischen Moden innerhalb der ungeordneten Absorberschichten verursacht wird. Das einfallende Nahinfrarotlicht wird in diesen langlebigen Moden gefangen, bis es schließlich irgendwann absorbiert wird. In Kaptiel 5 wurde eine neuartige plasmonische Struktur vorgestellt und sowohl in der Theorie als auch experimentell untersucht. Die Struktur besteht aus einer elliptischen Kavität, in der sich zwei räumlich getrennte whispering gallery mode (WGM) Nanoantennen befinden. Das Ziel war es nun, einen periodischen langreichweitigen Energietransfer zwischen beiden Nanoantennen zu realisieren. Zuerst wurde die Struktur mit Hilfe von finite-difference time-domain (FDTD) Simulationen darauf optimiert, eine starke Kopplung zwischen den lokalisierten Antennenmoden und der räumlich ausgedehnten Kavitätsmode zu erreichen. Die geometrischen Parameter der Antennen und der Kavität wurden getrennt voneinander so eingestellt, dass sowohl die m="0" Antennenmode als auch die Kavitätsmode bei λ="800 nm" resonant waren. Ein hoher räumlicher Modenüberlapp wurde dadurch erzielt, dass die beiden Antennen jeweils in die Brennpunkte der elliptischen Kavität positioniert wurden. Die daraus resultierende Distanz zwischen den Antennenzentren war dadurch mehr als doppelt so hoch wie die Resonanzwellenlänge der Moden. Aufgrund starker Kopplung war in der spektralen Antwort der optimierten Struktur eine Energieaufspaltung der Antennen- und der Kavitätsmode in drei getrennte hybridisierte Eigenmoden innerhalb eines Energiebereichs von ca. 90 meV zu sehen. Die Antwortfunktionen konnten sehr gut mit Hilfe eines einfachen Modells aus drei gekoppelten Lorentz-Oszillatoren reproduziert werden. Im Zeitraum wurde für eine Einfach-Puls-Anregung der Struktur ein ozillatorischer Antennen-Energietransfer mit einer Periode von 86 fs und einer Energietransfer-Effizienz von ungefähr 7% beobachtet. Für die Experimente wurden Strukturen mit Kavitäten und Antennen unterschiedlicher Größe über focused-ion-beam (FIB) milling hergestellt. Es wurden zeitaufgelöste Korrelationsmessungen durchgeführt, wobei zwei Femtosekundenlaserpulse zur Anregung und Photoemissionselektronen-Mikroskopie (PEEM) für die Detektion verwendet wurden. Dies ermöglichte sowohl eine hohe zeitliche als auch eine hohe räumliche Auflösung. In den Messungen wurden lokale Korrelationssignale an Antennen in resonanten Strukturen, sprich, Strukturen mit deutlich erhöhter Photoemission an beiden Antennenpositionen, untersucht und mit Hilfe des gekoppelten Lorentz-Oszillatormodells rekonstruiert. Die daraus ermittelte spektrale Antwort zeigte getrennte Peaks und bestätigte damit die Bildung hybridisierter Eigenmoden aufgrund starker Kopplung. In einer nachfolgenden Simulation für Einfach-Puls-Anregung wurde ein einmaliger Hin-und-Her-Energietransfer zwischen den Antennen mit einer Energietransfereffizienz von ca. 10% beobachtet. Ausgehend von den theoretischen und experimentellen Ergebnissen wurde gezeigt, dass in der hier vorgestellten Struktur ein periodischer langreichweitiger Energietransfer zwischen den zwei Nanoantennen möglich ist. Zudem ermöglicht es das gekoppelte Oszillatoren-Modell, im Detail zu untersuchen, wie spezifische Eigenschaften der Struktur die Dynamik des zeitlichen elektrischen Feldes bzw. der Energieumverteilung innerhalb der Struktur beeinflussen. Dies kann dazu genutzt werden, die Energietransfer-Effizienz der Struktur noch weiter zu optimieren. Zukünftige Anwendungsmöglichkeiten finden sich im Bereich der ultraschnellen plasmonischen Nanoschaltkreise. Darüberhinaus kann die Struktur genutzt werden, um eine effiziente SPP-vermittelte starke Kopplung zwischen weit voneinder entfernten Quantenemittern zu erreichen. In Kapitel 6 wurde untersucht, wie die lokale Verstärkung der optischen Chiralität im Nahfeld plasmonischer Nanostrukturen durch das Einstellen der Fernfeld-Polarisation des einfallenden Lichts optimiert werden kann. Zu diesem Zweck wurde ein analytischer Ausdruck hergeleitet, welcher die Berechnung der optimalen Fernfeld-Polarisationen für jede beliebige Nanostruktur-Geometrie ermöglicht. Dabei versteht man unter den optimalen Fernfeld-Polarisationen diejenigen zwei, welche zur höchsten positiven und negativen lokalen optischen Chiralität führen. Da diese von der lokalen optischen Antwort der jeweiligen Nanostruktur abhängig sind, lassen sie sich sowohl als Funktion der Frequenz ω als auch als Funktion der Position r beschreiben. Die Elliptizitäten der beiden optimalen Fernfeld-Polarisationen unterscheiden sich nur in ihrem Vorzeichen, also ihrer Rotationsrichtung im Zeitraum, und der Winkel zwischen ihren Orientierungen (entspricht dem Winkel zwischen den Hauptachsen ihrer Ellipsen) beträgt ±π/"2" . Die Händigkeit der optimalen lokalen optischen Chiralität kann über das Schalten zwischen den optimalen Fernfeld-Polarisationen hin und her gewechselt werden. Mit Hilfe von numerischen Simulationen wurde für zwei konkrete Nanostrukturen beispielhaft demonstriert, dass für die lokale optische Chiralität Werte erreicht werden können, die deutlich höher sind als die optischen Chiralitätswerte von zirkular polarisiertem Licht im freien Raum ─ die höchstmöglichen Werte für optische Chiralität im freien Raum. Die entsprechenden optimalen Fernfeld-Polarisationen haben sich dabei von linearer und zirkularer Polarisation unterschieden und variierten mit der Frequenz. Die Anwendung von Femtosekunden-Polarisationspulsformung bietet die Möglichkeit, die lokale optische Chiralität kohärent über einen kontinuierlichen Frequenzbereich zu kontrollieren. Außerdem können Symmetrieeigenschaften der Nanostrukturen genutzt werden, um zu bestimmen, welche Fernfeld-Polarisation optimal ist. Die theoretischen Erkenntnisse können zukünftige experimentelle Studien über die lokale Verstärkung der optischen Chiralität beeinflussen. Das Einstellen der Fernfeld-Polarisation des einfallenden Lichts stellt ein vielversprechendes Hilfsmittel dar, um chiral-spezifische Wechselwirkungen von lokalen elektromagnetischen Feldern mit molekularen und anderen Quantensystemen in der Nähe plasmonischer Nanostrukturen zu verstärken. Die hier gezeigte Methode kann Anwendung finden in der chiralen Erkennung adsorbierter Moleküle, in der zeitaufgelösten chiral-sensitiven Spektroskopie und in der chiralen Quantenkontrolle. Abschließend lässt sich festhalten, dass jedes der lokalisierten Lichtphänomene, die in dieser Arbeit untersucht wurden ─ die verstärkte lokale Absorption von Nahinfrarotlicht aufgrund der Bildung von lokalisierten photonischen Moden, der periodische langreichweitige Energietransfer zwischen zwei Nanoantennen in einer plasmonischen elliptischen Kavität und die Optimierung der lokalen Verstärkung der optischen Chiralität über das Einstellen der Fernfeld-Polarisation des einfallenden Lichts ─ neue Perspektiven eröffnen kann für eine Vielzahl von zukünftigen Anwendungsmöglichkeiten. KW - Ultrakurzzeitspektroskopie KW - Kohärente Optik KW - Chiralität KW - Nahfeldoptik KW - Ultrakurzzeitspektroskopie KW - Nahfeldoptik KW - Kohärente 2D Spektroskopie KW - Oberflächenplasmonresonanz KW - Zirkulardichroismus Spektroskopie KW - Ultrafast spectroscopy KW - Nano-optics KW - Coherent 2D spectroscopy KW - Surface plasmons KW - Circular dichroism spectroscopy Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-150681 ER - TY - THES A1 - Kritzer, Robert T1 - Quantum dynamics in dissipative environments T1 - Quantendynamik in dissipativer Umgebung N2 - In this thesis, the influence of an environment on molecules and, in particular, on the quantum control of such systems is investigated. Different approaches to describe system-bath dynamics are implemented and applied. The inclusion of a dissipation term in the system Hamiltonian leads to energy loss and relaxation to the ground state. As a first application, the isomerisation reaction in an aromatic complex is treated. It is shown that this simple model is able to reproduce results of time-resolved spectroscopic measurements. Next, the influence of noise is investigated. The incorporation of fluctuations reveals that energy is not conserved and coherences are destroyed. As an example, the quantum control of a population transfer in Na2 is examined. The efficiency of control processes is studied in dependence on the strength of the noise and different system-bath couplings. Starting with the unperturbed system, Local Control Theory is applied to construct a field which selectively transfers population into a single excited electronic state. The coupling to the bath is then switched on to monitor the dependence of the coupling strength on the transfer efficiency. The perturbation of the bath effects the Na2 molecule in such a way that potential energy curves and transition dipole moments are distorted. An important result is that already elastic collisions lead to a substantial loss of control efficiency. The most promising approach used in this thesis is the stochastic Schrödinger equation. It is equivalent to the commonly employed descriptions of system-bath dynamics within the reduced density matrix formalism. It includes decoherences and dissipation caused by elastic and inelastic collisions. Our contribution is the incorporation of laser excitation into the kinetic Monte-Carlo scheme. Thus we are able to apply this stochastic approach to the quantum control of population transfer in the sodium dimer. Because within our description it is possible to separate pure dephasing, inelastic transitions, and coherent time-evolution, we can identify the relative influence of these processes on the control efficiency. This leads to a far more physical picture of the basic processes underlying the perturbations of an environment then what a reduced density matrix description can provide. In utilising the stochastic wave function approach instead of the density matrix formalism, the computations are quite efficient. The stochastic Schrödinger equation is realised by N independent runs, where, in our case, an ensemble size of N = 1000 gives converged results. The efficiency of the laser control process is studied as a function of temperature and collision rates. A rise in temperature (or collision rate) reeffects a stronger fluctuation and thus results in a less efficient transfer by the control field. Though the Gaussian fluctuations used here do not strictly represent 'white'- noise, since a deterministic machine is not able to produce uncorrelated random numbers, an acceptable distribution is achieved by simple procedures. An improvement of the here applied algorithms would, for instance, include a more sophisticated sampling of the dephasing rates. Only one example of a control process is studied here and an application of the developed approach to other problems of quantum control is to be performed. This thesis established a systematic approach to understand quantum control in the presence of an environment. N2 - In der vorliegenden Arbeit wird der Einfluss der Umgebung auf Moleküle und insbesondere der Quantenkontrolle solcher Systeme untersucht. Unterschiedliche Herangehensweisen, System-Bad-Kopplungen zu beschreiben, werden implementiert und angewendet. Die Berücksichtigung eines Dissipationstermes im System-Hamiltonoperator führt zu Energieabgabe und Relaxation in den Grundzustand. Als eine erste Anwendung wird die Isomerisation eines aromatischen Komplexes behandelt. Anhand dieses einfachen Modells ist es möglich, Resultate zeitaufgelöster, spektroskopischer Messungen zu reproduzieren. Weiterhin wird der Einfluss des Rauschens untersucht. Die Einführung von Fluktuationen führt dazu, dass Energie nicht erhalten bleibt und Kohärenz verloren geht. Als ein Beispiel dient hier die Quantenkontrolle eines Populationstransferprozesses im Na2 Molekül. Die Effizienz eines Kontrollprozesses wird in Abhängigkeit der Rauschstärke und verschiedener System-Bad-Kopplungen untersucht. Ausgehend vom ungestörten System wird die Lokale Kontrolltheorie benutzt, um ein Feld, welches selektiv Population in einen einzigen, angeregten Zustand transferiert, zu konstruieren. Die Kopplung an das Bad wird daraufhin eingeschaltet, um die Abhängigkeit der Kopplungsstärke auf die Transfereffizienz zu charakterisieren. Die Störung des Bades beeinflusst das Na2-Molekül dahingehend, dass Potentialkurven und Übergangsdipolmomente verzerrt werden. Eine wichtige Erkenntnis ist, dass bereits elastische Stöße zu einem substantiellen Verlust der Kontrolleffizienz führen. Die am meisten versprechende Methode, welche in dieser Arbeit Verwendung findet, ist die der stochastischen Schrödingergleichung. Sie ist der weitläufig gebräuchlichen Beschreibung von System-Bad-Wechselwirkungen innerhalb des Formalismus der reduzierten Dichtematrix gleichwertig. Dekohärenzen und Dissipationseffekte ausgelöst durch elastische und inelastische Stöße werden innerhalb der stochastischen Gleichungen separat berücksichtigt. Unser Beitrag ist die Einbindung der Laseranregung in das kinetische Monte-Carlo-Schema. Dies ermöglicht die Anwendung des stochastischen Ansatzes auf die Quantenkontrolle des Populationstransfers eines Natriumdimers. Da es innerhalb unserer Beschreibung möglich ist, reine Dephasierungen, inelastische Übergänge und kohärente Entwicklung in der Zeit zu beschreiben, können wir den relativen Einfluss jener Prozesse auf die Kontrolleffizienz identifizieren. Dies führt zu einer physikalischeren Beschreibung der zugrunde liegenden Prozesse, welche die Störungen der Umgebung bewirken, als sich aus einer reduzierten Dichtematrizendarstellung ergibt. Durch Benutzung des stochastischen Wellenfunktionsansatzes anstelle des Dichtematrizenformalismus ergeben sich effiziente Berechnungen. Die stochastische Schrödingergleichung wird für N unabhängige Programmdurchläufe gelöst, wobei in unserem Fall eine Ensemblegröße von N = 1000 konvergente Resultate liefert. Die Wirksamkeit des Laserkontrollprozesses wird anhand von Temperatur und Stoßrate untersucht. Ein Anstieg der Temperatur (oder der Stoßrate) spiegelt höhere Fluktuationen wider und resultiert daher in einem weniger effizienten, von einem Kontrollfeld hervorgerufenen Transfer. Obwohl die gaußverteilten Fluktuationen, welche hier benutzt werden, strenggenommen kein 'Weisses Rauschen' repräsentieren, da eine deterministische Rechenmaschine keine unkorrellierten Zufallszahlen generieren kann, wird dennoch eine akzeptable Verteilung aus einfachen Prozeduren erhalten. Eine Verbesserung der hier angewendeten Algorithmen würde zum Beispiel aus einer verfeinerten Implementierung der Dephasierungsraten bestehen. Lediglich ein Beispiel eines Kontrollprozesses wird hier untersucht und die Anwendung der erarbeiteten Methodik auf andere Fragestellungen der Quantenkontrolle ist noch offen. Diese Dissertation stellt somit eine systematische Annäherung dar, um die Quantenkontrolle in Anwesenheit von Umgebungseinflüssen zu verstehen. KW - Quantenmechanisches System KW - Dissipatives System KW - Quantenkontrolle KW - dissipative Umgebung KW - Quantum dynamics KW - dissipative environments Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73456 ER - TY - THES A1 - Kröker, Kristin T1 - DNA-Kohlenstoffnanorohr-Konjugate - Biokompatibilität, ex vivo-Verhalten, Funktionalisierung T1 - DNA-carbon nanotube conjugates - biocompatibility, ex vivo behavior, funtionalization N2 - Einzelstrang-DNA-dispergierte und individualisierte (6,5)-chirale Kohlenstoffnanoröhren bilden als Konjugatsystem den Ausgangspunkt dieser Dissertation. Im Vordergrund stehen dabei Untersuchungen zur Biokompatibilität dieser ssDNA-SWNT-Konjugate sowie deren Verhalten nach Zellpenetration und eine Funktionalisierbarkeit zum Wirkstofftransportsystem. Das erste Projekt widmet sich in Kapitel 4 dem Studium der Konjugatstabilität unter physiologischen Bedingungen und einer Verträglichkeit gegenüber zellulären Systemen. Experimente zur Biokompatibilität werden erstmals an Nanorohrkonjugaten durchgeführt, welche nach Ultrazentrifugation im Dichtegradienten sorgfältig individualisiert vorliegen. Die umgebungssensitiven photophysikalischen Charakteristika vereinzelter (6,5)-SWNTs können zu einer Beurteilung der Konjugatintegrität in physiologischem Milieu genutzt werden. Die Stabilität von ssDNA-SWNT-Strukturen wird in Anwesenheit des Restriktionsenzyms DNase I und dem in Zellnährmedien enthaltenen protein- und nukleasereichem Serum FBS auf die Probe gestellt. In beiden Fällen kann eine ausreichende ssDNA-SWNT-Integrität attestiert werden, die eine Verwendung unter Zellkultivierungsbedingungen erlaubt. Unter Berücksichtigung verschiedener in Zellen vorliegender pH-Umgebungen werden die Konjugate ebenfalls dieser Variation ausgesetzt. Bei Vorliegen stark saurer und basischer pH-Werte kann die Integrität von ssDNA-SWNT-Konjugaten nicht gewährleistet werden, was sich durch Aggregation bemerkbar macht. Innerhalb des breiten pH-Bereichs zwischen den Werten 3 und 11 hingegen kann eine gute Stabilität bestätigt werden. Für zelluläre Anwendungen bedeutet dieser Befund keine Einschränkung, da in Kulturen lediglich neutrale bis schwach saure pH-Werte oberhalb von 4.5 zu finden sind. Nachdem die Biostabilität der ssDNA-SWNT-Konjugate gewährleistet ist, kann in Zytotoxizitätsstudien eine ex vivo-Verträglichkeit des Nanomaterials getestet werden. Erste Untersuchungen mit der Mausmakrophagenlinie J774.1 weisen wie auch ausführliche Studien gegenüber menschlichen Epithelzellen HeLa auf eine uneingeschränkte Kompatibilität in den eingesetzten Konzentrationen hin. HeLa-Zellen, die mit DGU-gereinigten Nanorohrproben behandelt werden, zeigen eine geringfügig höhere Vitalität als nach Inkubation mit einer Rohdispersion undefinierter SWNT-Bündel. Im Gesamtbild ergibt sich somit eine zufriedenstellende Biokompatibilität individualisierter ssDNA-SWNT-Konjugate, womit das in dieser Arbeit zentrale Kohlenstoffnanorohrsystem den Anforderungen für dessen biomedizinische Verwendbarkeit gerecht wird. Der Schwerpunkt weiterer Untersuchungen liegt im zweiten Projekt aus Kapitel 5 auf dem Verhalten von ssDNA-SWNT-Konjugaten nach deren Aufnahme in HeLa-Zellen. Auch hier kann die starke Sensitivität der optischen Eigenschaften individualisierter (6,5)-Kohlenstoffnanoröhren gegenüber Umgebungseinflüssen genutzt werden, um Veränderungen im Emissionsverhalten von SWNTs nach deren zellulärer Aufnahme gegenüber dem Ausgangszustand zu beobachten. Nach ausführlicher Weißlicht-, Fluoreszenz- und SWNT-Photolumineszenzmikroskopie, aus deren Resultaten eine erfolgreiche Internalisierung von ssDNA-SWNTs in HeLa-Zellen eindeutig hervorgeht, stehen PL-spektroskopische Untersuchungen der Kohlenstoffnanoröhren im Vordergrund. Durch einen Vergleich des Emissionsverhaltens der ssDNA-SWNT-Konjugate in und außerhalb von Zellen können spektrale Verschiebungen, Linienverbreiterungen und verkürzte Fluoreszenzlebensdauern nach zellulärer Aufnahme festgestellt werden. Sowohl eine Aggregation von SWNTs als auch eine Beeinflussung durch die pH-Umgebung reichen nicht für eine vollständige Erklärung des Befunds aus. Vielmehr kann die in endosomalen Kompartimenten durch das Größenverhältnis von Endosomen zu SWNTs entstehende räumliche Nähe einer großen Nanorohrmenge untereinander als Ursache für eine Veränderung der dielektrischen Umgebung und folglich des Emissionsverhaltens betrachtet werden. Durch Verwendung der Kohlenstoffnanoröhren als Marker und Sensor können ssDNA-SWNT-Konjugate in Zellen somit nicht nur lokalisiert, sondern darüber hinaus hinsichtlich einer möglichen Aggregation untersucht werden. Aus den in dieser Arbeit vorgestellten Daten kann zwar eine vollständige Aggregation der SWNTs durch deren Aufnahme in Zellen ausgeschlossen werden, sie muss jedoch in geringfügigem Ausmaß neben einer Beeinflussung durch die pH-Umgebung und die große räumliche Nähe durchaus in Betracht gezogen werden. Individualisierte ssDNA-SWNT-Konjugate können damit erstmals zeitaufgelöst PL-mikrospektroskopisch in HeLa-Zellen charakterisiert werden. Für das letzte Projekt werden in Kapitel 6 neuartige Funktionalisierungsmöglichkeiten von ssDNA-SWNT-Konjugaten zu zellulären Transportsystemen unter Erhalt der photophysikalischen Eigenschaften erforscht. Dazu soll das Dispergiermittel DNA als Kupplungsstelle für eine kovalente Anbindung eines Agenz genutzt werden. Anstelle eines Wirkstoffes werden die Untersuchungen mit einem Fluorophor als Modellverbindung durchgeführt, welcher den Vorteil einer einfachen Detektierbarkeit liefert. Prinzipiell besteht die Möglichkeit, das Oligomer mit dem Fluorophor vorzufunktionalisieren und anschließend auf die Oberfläche der SWNTs zu bringen. Als effektiver erweist sich die Methode der direkten Kupplung des Farbstoffs an bereits DNA-dispergierte SWNTs. Der Erfolg in der Präparation von FluorophorssDNA- SWNT-Konjugaten wird über die Emission des Fluorophors mit entsprechenden Referenzexperimenten gemessen. Der Versuch einer Quantifizierung liefert jedoch sehr hohe Werte, die lediglich als eine obere Grenze für die gefundene Anzahl gebundener Fluorophore pro Nanoröhre angesehen werden können. Im Verlauf des Projekts kann eine Funktionalisierbarkeit der Nanoröhren über das Dispergieradditiv DNA als neue Strategie aufgezeigt werden. Im Gegensatz zu bekannten Wirkstofftransportsystemen bietet dieser Funktionalisierungsansatz den Vorteil, dass die optischen Eigenschaften der individualisierten ssDNA-SWNT-Konjugate erhalten bleiben, welche wieder um einen gleichzeitigen Einsatz der Nanoröhren als Transporter und Marker bzw. Sensor erlauben. Die vorliegende Dissertation liefert neben dieser bisher unbekannten Funktionalisierungsstrategie neue Erkenntnisse über die Biokompatibilität speziell von individualisierten ssDNA-SWNT-Konjugaten und deren Verhalten in HeLa-Zellen. Mit diesem Wissen kann der gezielte Wirkstofftransport durch Kohlenstoffnanoröhren als biokompatibles und zellgängiges Trägersystem anvisiert werden. N2 - The key element of this thesis is a conjugate system of single-stranded DNA and individualized (6,5) single-wall carbon nanotubes. The investigations are mainly focused on the biocompatibility of ssDNA-SWNT conjugates, as well as their behavior after cell penetration and general ability to be functionalized for drug delivery. Within the first project, chapter 4 contributes to the study the conjugate stability under physiological conditions and compatibility towards cellular structures. For the first time, such biocompatibility experiments are carried out with nanotube conjugates, which are thoroughly individualized by ultracentrifugation assisted density gradient. The photophysical characteristics of isolated (6,5) SWNTs are highly sensitive towards their environment and can thus be used to evaluate the state of conjugate integrity in a physiological milieu. The stability of ssDNA-SWNT structures is tested in the presence of restriction enzyme DNase I and FBS serum, an important nutrient medium ingredient rich in proteins and nucleases. In either case, the integrity of ssDNA-SWNT conjugates is not affected. With respect to the pH variety occuring in cell structures, the conjugate stability is also investigated in acid and base milieu. Both strong acid and alkaline pH environments influence the integrity of ssDNA-SWNT, leading to aggregation of nanotubes. Conversely, good conjugate stability can be evaluated in a wide pH range between 3 and 11, revealing unlimited applicability towards cells, where the pH environment is known to vary between neutral and weakly acid pH values above 4.5. After evaluation of the biostability of ssDNA-SWNT conjugates, they have to be tested in ex vivo cytotoxicity assays. Studies are primarily carried out with murine macrophage-like cells J774.1 and in more detail with the human cervix carcinoma cell line HeLa. Both indicate no cytotoxic effects with applied SWNT concentrations. Within the HeLa cell studies, the impact of DGU preparation on SWNT cytotoxicity is a further point of interest. As a result, slightly enhanced cell viability can be observed with DGU purified samples as compared to raw dispersion consisting of non-defined SWNT bundles. Overall, ssDNA-SWNT conjugates can be assumed to be sufficiently biostable and thus suitable for biomedical applications. Further investigations in the second part of this work in chapter 5 are focused on the behavior of ssDNA-SWNT conjugates after cellular uptake. Again, the strong environmental sensitivity of optical properties of individualized (6,5) carbon nanotubes can be used to detect changes of the SWNT emission after internalization. Different techniques have been employed to visualize ssDNA-SWNT structures in HeLa cells using white light, fluorescence, and SWNT photoluminescence microscopy. By PL spectroscopy of ssDNA-SWNTs in cells spectral shifts, line-broadening and shortened lifetimes are observed when comparing SWNT emission inside and outside of cell culture. Neither nanotube aggregation nor the influence of the cell-specific pH environment are sufficient explanations for such spectral behavior. Indeed, the spatial proximity of SWNTs with each other in small sized endosomal cell compartiments is supposed to cause nanotube-nanotube interactions that change the dielectric environment and thus the emission behavior of SWNTs. Within the use of carbon nanotubes as marker and sensor, ssDNA-SWNT conjugates cannot only be localized, but also characterized, with regard to possible nanotube aggregation. The data presented in this work can, on the one hand, exclude a total aggregation of SWNTs within their cellular uptake. But, on the other hand, a small extent of aggregation, pH environmental effects, and the spatial proximity of a high amount of SWNTs in comparatively small endosomes have to be considered as factors that influence SWNT emission properties. In this study, individualized ssDNA-SWNT conjugates can be characterized via time-resolved PL microspectroscopy for the first time. The last project in chapter 6 addresses to new functionalization routes of ssDNA-SWNT conjugate with respect to drug delivery applications while retaining the photophysical characteristics. The SWNT dispersion additive DNA serves as binding site for covalent attachment of agents. For a convenient sample characterization, a fluorophor is used as model compound instead of a specific drug. In general, fluorophor-ssDNA-SWNT systems can be obtained by pre-functionalization of oligomers with dye, followed by attachment of the modified DNA on the nanotube surface. More promising, however, is the route via a direct coupling reaction of activated fluorophor molecules with specific ssDNA-SWNT conjugates. The successful sample functionalization can be evaluated from the fluorescence of the dye in comparision with corresponding control experiments. An attempt for quantification of functionalization is found to be problematic as the revealed values are too high and can thus only be regarded as upper limits for the number of fluorophors per nanotube. A new functionalization method for SWNTs can be established using noncovalently bound DNA as the coupling point. Compared to well-known drug delivery systems, the optical properties of SWNTs can be retained with this procedure, allowing the simultaneous use of nanotubes as cellular transporter and marker or sensor. In addition to the new functionalization strategy, further knowledge about biocompatibility of well-isolated ssDNA-SWNT conjugates and their behavior after cellular uptake can be obtained through this thesis. Thus, a targeted drug delivery with isolated carbon nanotubes as biocompatible and a cell penetrating carrier system could be aimed for future work. KW - Biokompatibilität KW - DNS KW - Nanopartikel KW - Funktionalisierung KW - HeLa-Zelle KW - NIR-Spektroskopie KW - Photolumineszenz KW - Kohlenstoffnanoröhre KW - Dichtegradientenultrazentrifugation KW - carbon nanotube KW - density gradient ultracentrifugation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74552 ER -