TY - THES A1 - Declerck, Pélagie T1 - Synthesis and technological processing of hybrid organic-inorganic materials for photonic applications T1 - Synthese und technische Prozesse von organisch-anorganischen Hybridmaterialien für photonische Anwendungen N2 - Im Rahmen dieser Doktorarbeit wurden neue UV-strukturierbare organisch-anorganische hybride Polymere für photonische Anwendungen mit einem hohem Brechungsindex und der Möglichkeit, sie durch Ein- bzw. Zwei-Photonen-Polymerisation zu strukturieren, entwickelt. Die Materialien wurden in Bezug auf ihre chemische Struktur, ihre optischen Eigenschaften, und ihrer Fähigkeit, durch 1PP und 2PP strukturierbar zu sein, untersucht. Besonders mit 2PP konnte man mit diesen neuartigen hybriden Materialien 3D-Strukturen erzeugen. ie Hydrolyse und Polykondensationsreaktionen wurden mit · Organo-Alkoxysilanen und Titanalkoxiden, modifiziert mit und ohne komplexierende Liganden und · Organo-Alkoxysilanen, Titanalkoxiden und Organophosphorsäure als Precrusoren durchgeführt. Primäres Ziel dieser Arbeit war es, den Brechungsindex von ORMOCER®en, die auf der Basis von Organo-Alkoxysilan-Precursoren ohne Heteroelemente synthetisiert werden, zu vergrößern. Die chemische Struktur der synthetisierten Materialien und somit mit ihr die Parameter, die den Brechungsindex beeinflussen, wurden eingehend untersucht. Insbesondere die Synthese-Parameter, wie das Einsetzen der Titanalkoxide und ihrer Konzentration, der Organo-Alkoxysilane, die Katalysator-Konzentration, die verwendeten Lösungsmittel und auch die Verfahrensparameter für eine spätere Strukturierung durch lithographische Verfahren, wie die UV-Bestrahlungsdosis, die Initiator-Konzentration und der Entwickler, wurden untersucht. N2 - In the framework of this thesis, new UV-patternable organic-inorganic hybrid polymers with higher refractive indices than reported in the literature for photonic applications were developed and studied with respect to their chemical structure, their optical properties, and their ability of being patterned by 1PP and 2PP. Particularly with 2PP, one could create 3D structures using the novel hybrid materials. The materials were prepared from hydrolysis and polycondensation reactions of · organo-alkoxysilanes and titanium alkoxide precursors, modified with and without CL and organo-alkoxysilanes precursors, and · organo-alkoxysilanes, titanium alkoxide and organophosphorus precursors. The major scope of this work was to increase the refractive index of ORMCER® materials based on only organo-alkoxysilanes. Thus, the parameters which influence the refractive index were investigated thoroughly. In particular, the synthesis parameters such as the introduction of titanium alkoxide and its concentration, the organo-alkoxysilanes, the catalyst concentration, the solvent used, but, also the processing parameters such as, the UV exposure dose, initiator concentration, and developer were investigated. KW - Brechzahl KW - Ormocer KW - Photonischer Kristall KW - Sol-Gel-Verfahren KW - Photolithographie KW - Titan KW - refractive index KW - Ormocer KW - sol-gel KW - photonic crystal Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-56053 ER - TY - THES A1 - Daubinger, Philip T1 - Electrochemical and Mechanical Interplay of State-of-the-Art and Next-Generation Lithium-Ion Batteries T1 - Elektrochemisches und mechanisches Wechselspiel von heutigen und zukünftigen Lithium-Ionen Batterien N2 - The demand for LIB with enhanced energy densities leads to increased utilization of the space within the confinements of the battery housing or to the use of electrode material with increased intrinsic specific energy densities. Both requirements result in more stress on the battery electrodes and separator during cycling or aging. However, the effect of mechanical strain on the cell’s electrochemistry and thus the performance of batteries is rather unexplored compared to the impact of current or temperature, for example. The objective of this thesis was to give a better understanding of the electrochemical and mechanical interplay in current- and next-generation lithium based battery cells. Therefore, the thesis was structured into the investigations on SoA and next-generation LIBs. For SoA LIBs, the investigations of the interplay started at laboratory scale. Here, the expansion of various electrodes and also the impact of mechanical pressure and its distribution on the performance of the cells were studied. The investigations at laboratory scale was followed by an examination of the electrochemical and mechanical interactions on large format commercial LIBs which are used in BEVs. Accordingly, the effect of bracing and its effect on the performance was studied in an aging and post-mortem study. To gain a deeper understanding of the mechanical changes in LIBs, an ultrasonic study was performed for pouch cells. Here, the mechanical changes were further investigated in dependence of SoC and SoH. The effects of the mechanical stress on the performance for next-generation batteries were studied at laboratory scale. In the beginning, the expansion of next-generation anode materials such as silicon and lithium was compared with today’s anode materials. Furthermore, the effect of mechanical pressure and electrolyte on the irreversible dilation and performance was investigated for lithium metal cells. Overall, it was shown that pressure has a significant effect on the performance of today’s and also future LIBs. The interplay of the electrochemical and mechanical effects inside a LIB has a considerable impact on the lifetime, capacity fading and impedance increase of the batteries. N2 - Mit der steigenden Nachfrage nach Lithium-Ionen-Batterien (LIB) mit hoher Energiedichte geht eine effizientere Nutzung des Raumes innerhalb des Batteriegehäuses oder die Verwendung von Elektrodenmaterial mit erhöhter intrinsischer Energiedichte einher. Durch beide Maßnahmen steigt die mechanische Belastung auf die Batterieelektroden und den Separator während eines Zyklus oder im Zuge der Alterung. Deren Auswirkungen auf die elektrochemischen Reaktionen der Elektroden und damit auf die Leistung der Batterien ist jedoch im Vergleich zu den Auswirkungen von Strom oder Temperatur eher unerforscht. Das Ziel dieser Doktorarbeit ist es, ein besseres Verständnis für das elektrochemische und mechanische Zusammenspiel in heutigen und zukünftigen Lithium-Batteriezellen zu entwickeln. Daher wurde die Arbeit in die Untersuchungen von heutigen und zukünftigen LIBs gegliedert. Für heutige LIBs begannen die Untersuchungen des elektrochemisch-mechanischen Zusammenspiels im Labormaßstab. Hier wurde die Ausdehnung unterschiedlicher Elektroden sowie der Einfluss des mechanischen Drucks und seiner Verteilung auf die Leistung der Batteriezellen untersucht. Aufbauend auf den Untersuchungen im Labormaßstab folgte eine Untersuchung der elektrochemischen und mechanischen Wechselwirkungen an großformatigen kommerziellen LIBs, die in BEVs verwendet werden. Dafür wurde der Einfluss von mechanischer Verspannung auf die Leistung der Batterien in einer Alterungs- und Post-Mortem-Studie untersucht. Um ein vertieftes Verständnis der mechanischen Veränderungen innerhalb der LIBs zu entwickeln, wurden kommerzielle Pouch-Zellen mittels Ultraschalluntersuchungen analysiert. Hierbei wurden die mechanischen Veränderungen in Abhängigkeit des Ladezustands und der Alterung weiter untersucht. Die Auswirkungen der mechanischen Belastung auf die Leistung von zukünftigen Batteriesystemen wurde im Labormaßstab untersucht. Zunächst wurde die Ausdehnung von Anodenmaterialien der nächsten Generation wie Silicium und Lithium mit heutigen Anodenmaterialien verglichen. Außerdem wurde der Einfluss von mechanischem Druck und des Elektrolyten auf die irreversible Dilatation und die Performance von Lithium-Metall Zellen untersucht. Insgesamt zeigt diese Arbeit, dass der Druck einen erheblichen Einfluss auf die Leistung heutiger und auch zukünftiger LIBs hat. Das Zusammenspiel der elektrochemischen und mechanischen Effekte in einer LIB hat einen erheblichen Einfluss auf die Lebensdauer, den Kapazitätsabfall und die Impedanzerhöhung der Batterien. KW - Lithium-Ionen-Akkumulator KW - Lithium-Ion Battery KW - Electrochemical and Mechanical Interplay KW - Dilation Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-351253 ER - TY - THES A1 - Collin [geb. Trötschel], Daniela T1 - Untersuchungen zu photostrukturierbaren piezo- und ferroelektrischen Dünnschichten T1 - Investigations concerning photopatternable piezo- and ferroelectrical thin-films N2 - Im Rahmen der vorliegenden Arbeit wurde untersucht, wie sich organisch polymerisierbare Titan(IV)- und Zirkonium(IV)komplexe, die bei der Synthese anorganisch-organischer Hybrid-polymere verwendet werden, in Precursor-Solen für anorganische Beschichtungen verhalten. Dabei sollte ein Konzept zur Herstellung photochemisch strukturierter, anorganischer Dünnschichten erarbeitet werden. Als Beispiel für das anorganische Dünnschichtmaterial wurde Bleizirkonattitanat (PZT) und für die polymerisierbaren Liganden Methacrylsäure gewählt. Der Schwerpunkt der Arbeit lag dabei besonders auf den Untersuchungen der photochemischen Polymerisation mittels UV-lithographischer und Mehrphotonenpolymerisation sowie der in situ Untersuchung während der Pyrolyse des polymerisierten Materials und der Reaktion zur anorganischen Dünnschicht. Der Prozess zur Herstellung photostrukturierter, anorganischer Dünnschichten kann in zwei Schritte eingeteilt werden. Nach der Synthese des Precursor-Sols erfolgten zunächst die licht-induzierte organische Polymerisation und die Entfernung der nicht polymerisierten Bereiche mit Hilfe eines Entwicklerbads. Im Anschluss daran wurden im zweiten Schritt die organischen Bestandteile durch eine thermische Behandlung entfernt und die Reaktion zum anorganischen Oxidmaterial induziert. Die homogensten Schichten wurden dabei mit einem n Butanol-basierten, methacrylat¬funktionalisierten PZT-Sol mit 25 Gew. % Feststoffgehalt auf Stahlsubstraten bei Pyrolyse¬bedingungen ab 500 bis 700 °C mit einer Heizrate von 5 K/min erreicht. An diesen Schichten konnte ferroelektrisches Verhalten nachgewiesen werden. Allerdings reichen die Eigenschaften noch nicht an in der Literatur beschrieben ferro- und piezoelektrische Dünnschichten heran, die ebenfalls aus PZT-Solen hergestellt wurden. Dies liegt zum einen an den zu geringen Schichtdicken und der damit verbundenen erhöhten Durchschlagsgefahr dieser Sol-Gel-basierten PZT-Schichten. Zum anderen reduzieren Grenzflächenreaktionen des chromhaltigen Substrats und der PZT-Solschicht zu Pb2(CrO4)O sehr drastisch die ferroelektrischen Eigenschaften, indem sich nicht-ferroelelektrische Oxidschichten mit niedrigen Permittivitäten bilden und die Beweglichkeit der Domänenwände durch Diffusion von Cr3+-Akzeptorionen in die PZT-Schicht verringert wird. Zunächst wurde die PZT-Solsynthese untersucht. Dabei konnte gezeigt werden, dass die Nebenproduktbildung von verschiedenen Estern vermieden werden kann, wenn die leicht flüchtigen Bestandteile nach der Ligandenaustauschreaktion von Alkoxid gegen Methacrylsäure bei reduziertem Druck und damit verbundenen niedrigeren Reaktionstemperaturen, erfolgte. Die Bindung der Methacrylatliganden ist in jedem Fall bidentat. Bei den n Butanol-basierten PZT-Solen konnte trotz höherer Siedetemperatur und niedrigerem Dampfdruck ein größerer Anteil an Alkohol entfernt werden, als bei n-Propanol-basierten PZT-Solen. Dies wurde auf den etwas höheren +I Effekt des n Butanols und in der Folge der bevorzugten Ligandenaustauschreaktion von Methacryl¬säure gegen den n Butanol im Vergleich zu n Propanol zurückgeführt. Die Größe der PZT-Cluster war langzeitstabil, reproduzierbar herstellbar und betrug ca. 2,0 – 2,5 nm. Aus der Partikelgröße und dem spektros¬kopischen Nachweis von Metalloxobindungen konnte ein Strukturvorschlag basierend auf den zugrundeliegenden Titan- und Zirkoniumkomplexen erstellt werden. Dabei bilden MO6 Komplexe das Grundgerüst stäbchenförmiger, heterometallischer Cluster. Die polymerisierbaren Methacrylatliganden befinden sich auf der Oberfläche und sind gut zugänglich für die Polymerisationsreaktion. Die mittlere Anzahl an Methacrylatliganden pro PZT-Cluster wurde zu 5 - 25 je nach Gewichtung abgeschätzt. Bei der UV-lithographischen Strukturierung ergaben sich zwei unerwartete Effekte. Zum einen trat nach der Schichtherstellung eine reversible Trübung des PZT-Sols auf, welches auf konzentrations¬bedingte Phasenseparation zurückgeführt werden konnte. Zum anderen setzte sich unter N2 Atmosphäre die lichtinduzierte radikalische Kettenreaktion in den methacrylat-funktionalisierten PZT-Solschichten auch in die unbelichteten Bereiche fort. Dieser Effekt wird sonst in dieser Deutlichkeit nur von kationischen Polymerisationsreaktionen beobachtet und auf lange Radikal¬lebensdauern zurückgeführt und wurde mittels Photo-Differentialkalorimetrie weitergehend untersucht. Allerdings konnte aufgrund der Probengeometrie der Einfluss der Atmosphäre mit der Photo-DSC-Methode nicht eindeutig geklärt werden. Die Qualität der pyrolysierten PZT-Schichten konnte durch Variation der Feststoffgehalte und der Pyrolysebedingungen optimiert werden. So wurden durch die Verdünnung der PZT-Sole auf 25 Gew. % Feststoffgehalt bei ansonsten analogen Pyrolyse¬bedingungen dichtere und homogenere Schichten erhalten, wohingegen PZT-Solschichten mit einem Feststoffgehalt von 31 Gew.-% eine xerogelartige Struktur durch agglomerierte Partikel zeigten. Die untersuchten Substrate wiesen einen deutlichen Einfluss auf die nach der Pyrolyse erhaltenen PZT-Schichten auf. Unmetallisierte Silizium-Wafer eigneten sich zwar zur Untersuchung der UV-lithographischen Herstellung strukturierter Solschichten, bei der Pyrolyse bildeten sich jedoch unerwünschte Bleisilicat¬schmelzen, die der PZT-Bildung entgegen wirkten. Weiterhin wurden platinierten Silizium-Wafer mit Titanhaftvermittler¬schicht und SiO2-Sperrschicht verwendet. Diese Substrate zeigten eine durch die hohen Pyrolyse¬temperaturen induzierten Diffusion der Haftvermittlerschicht in die Platinmetallisierung und in der Folge eine Delamination aufgrund hoher Druckspannung in der PZT-Schicht, welche durch die Entfernung der organischen Bestandteile aus der Solschicht resultierte. In der Folge entstanden mechanisch instabile Proben. Die Delamination konnte durch Zwischensinterschritte bei 360 °C bzw. durch die Pyrolyse auf Heizplatten reduziert, jedoch nicht vollständig vermieden werden. Aus diesem Grund konnten keine ferroelektrischen Eigenschaften der PZT-Schichten auf diesen Substraten ermittelt werden. Lediglich auf Stahlsubstraten konnten elektrisch dichte Schichten hergestellt werden. Die Polymerisationsreaktion eines ausgesuchten PZT-Sols, welches bei den Strukturierungs- und Pyrolyseuntersuchungen die besten Ergebnisse zeigte, wurde näher untersucht, um ein Verständnis zu den ablaufenden Reaktionen zu erhalten. Die Reaktion zeigt den für radikalische Kettenpolymerisationen typischen Trommsdorf- bzw. Gel-Effekt. Durch die Verdünnung der PZT-Cluster konnten trotz hoher Anzahl an C=C-Bindungen pro Monomer, d. h. stark quervernetzender Spezies, sehr hohe Umsetzungsgrade erreicht werden. Die initiator¬gehalts-abhängige Steigerung der Reaktionsenthalpie während der Belichtung konnte mit steigenden Umsetzungs¬graden korreliert werden. Dieses Verhalten wird in der Literatur für eine Vielzahl an methacrylatbasierten Monomeren beschrieben. Der empirische Zusammenhang zwischen der Reaktionsrate und der Initiatorkonzentration konnte für das methacrylat¬funktionalisierte PZT-Sol zu bestimmt werden. Die Gesamtaktivierungenergie konnte ebenfalls in Abhängigkeit vom Reaktionsumsatz ermittelt werden. Die Polymerisation eines konzentrierten PZT-Sols mit difunktionellen Monomeren zeigte höhere Umsetzungsgrade als die entsprechenden Reinsubstanzen und ein späteres Eintreten des Gelpunkts. Dies wird zurückgeführt auf die niedrigere Viskosität sowie die geringere Molekülgröße des Reaktivverdünners und die in der Folge bessere Infiltration des durch das PZT-Sol aufgespannten Netzwerks mit zusätzlichen kleinen und beweglichen Monomeren. Da bei der thermischen Behandlung der polymerisierten PZT-Schichten die experimentellen Bedingungen, wie z. B. Heizrate oder Anfangstemperatur der Pyrolyse, einen signifikanten Einfluss besitzen, wurden energiedispersive in-situ-Röntgenbeugungsexperimente mit Hilfe von Synchrotron¬strahlung durch¬geführt. Hierbei konnte vor allem der Einfluss der organischen Polymerisation und der Anfangstemperatur der Pyrolyse auf die Phasenentwicklung des Precursor-Sols untersucht werden. Dabei zeigte sich besonders deutlich, dass die PZT-Bildungstemperatur durch die Belichtung der Probe und damit der Bildung des organischen Netzwerks steigt. Dies wird auf das starke organische Netzwerk und den erhöhten Energiebedarf zur Reorganisation zurückgeführt. Durch eine erhöhte Anfangstemperatur der Pyrolyse von 500 °C kann die in der Literatur beschriebene Verringerung der unerwünschten Pyrochlor-Phase beobachtet werden. Zudem ist die PZT-Bildungstemperatur hierbei niedriger als bei Pyrolysen ab Raumtemperatur. Dies wird mit einer durch den geringeren Anteil an Pyrochlor-Phase erhöhten Triebkraft zur PZT-Bildung erklärt. Die konsekutive Phasenumwandlung von Pyrochlor in die erwünschte PZT-Phase ist bei Pyrolysen ab Raumtemperatur später abgeschlossen als bei Pyrolysen ab 500 °C. Dies kann mit dem geringeren Anteil an Pyrochlor-Phase erklärt werden, da sich ab 500 °C bereits die PZT-Phase zu bilden beginnt. Der Vergleich der Halbwertsbreiten des intensitätsstarken Reflexes bei 31 ° zeigte, dass die Belichtung der Solschichten zu größeren Kristalliten führt, was auf eine niedrigere Nukleationsrate während der Kristallisation zurückzuführen ist. Bei der Auswertung und Diskussion der Ergebnisse der im Rahmen dieser Arbeit untersuchten Thematik ergaben sich einige Ansatzpunkte für weitere Untersuchungen, die jedoch nicht im zeitlichen und thematischen Rahmen dieser Arbeit betrachtet werden konnten. So wäre es interessant weitere Substrate auf ihre Eignung bei der, für die Herstellung strukturierten PZT-Schichten notwendigen, hohen thermischen Belastung zu testen, da die hier untersuchten platinierten Silizium-Wafer bzw. die Stahlsubstrate deutliche Nachteile zeigten. Des Weiteren können neben den hier behandelten polymerisierbaren Carbonsäureliganden weitere mehrzähnige Liganden und dessen Einfluss auf die Precursormaterialien für die Herstellung strukturierter anorganischer Schichten untersucht werden. β-Diketone, Aminoalkohole und auch Phosphonate bilden ebenfalls stabile Metall-Ligand-Bindungen und könnten so die Integration polymerisierbarer Gruppen in die PZT-Cluster analog zu der im Rahmen dieser Arbeit verwendeten Carbonsäure ermöglichen. Das hier erarbeitete Konzept könnte neben den untersuchten ferroelektrischen Schichtmaterialien ebenfalls auf andere dielektrische oder magnetische Materialklassen, wie z. B. Bariumtitanat oder Magnetit übertragen werden. Die Herstellung photostrukturierbarer anorganischer Schichten durch den Einbau polymerisierbarer Liganden eignet sich für zahlreiche Materialklassen, die über flüssige Sol-Gel-Vorstufen synthetisiert werden können. Darüber hinaus können weitere Pyrolysebedingungen mit den hier vorgestellten Analysemethoden untersucht werden. So könnten z. B. verschiedene Atmosphären oder unterschiedliche Heizraten innerhalb eines Pyrolysezyklus variiert werden, um ihren Einfluss auf die Herstellung rissfreier und phasenreiner Schichten zu untersuchen. Dazu müsste der hier vorgestellte experimentelle Aufbau dahingehend erweitert werden, dass eine Gaszufuhr während der Pyrolyse möglich ist. N2 - The broad objective of this study was to investigate the properties of photopolymerizable precursor sols using organically polymerizable titan(IV) and zirconium(IV) complexes, which are commonly used in the synthesis of inorganic-organic hybrid polymers. With the help of these complexes an approach to the preparation of photochemically patterned, inorganic thin films was developed. Lead zirconate titanate (PZT) was chosen as the inorganic material. The polymerizable moiety was introduced into the precursor sol using methacrylic acid as the polymerizable ligand. Particular attention has been drawn to the investigation of the photochemical reaction of the precursor sol and on the in-situ analysis of the thermally induced conversion into the inorganic PZT thin film, respectively. The process for the preparation of photochemically patterned, inorganic thin films can be divided into two independent steps. These are, on the one hand, the light induced organic polymerization of the synthesized precursor sol and on the other hand, the thermal decomposition of the organic moieties along with the formation of crystalline PZT. Patterned PZT thin films were prepared, for example, using a methacrylated PZT-sol based on n butanol. The solid content of this precursor sol was set to 25 wt. % by diluting with high-boiling point organic solvents. The sol was spin-coated onto steel substrates, followed by the patterning process due to light-induced polymerization. After removal of the unexposed areas using a solvent developer, the pyrolysis reaction was started at 500 °C. The inorganic thin-film was obtained by further heating with a heating rate of 5 K/min to reach a final temperature of 700 °C. Although ferroelectric behavior was verified for these samples, their properties are still inferior compared to commonly prepared ferroelectric thin films. This has been attributed to several different reasons, such as low thickness of the thin film, the formation of undesired side-products and acceptor-doping due to ion diffusion out of the steel substrate, respectively. Firstly, there is an increased risk of electric breakdown within the PZT thin-films due to the low thickness of the films. Secondly, an undesired side-product (Pb2(CrO4)O) forms at the interface of the steel substrate and the PZT thin-film. This leads to a non-ferroelectic layer within the PZT, which drastically reduces the ferroelectric behavior. Finally, Cr3+ ions of the steel substrate can migrate into the PZT thin-film forming an acceptor doped material, which results in a reduced domain wall mobility. The synthesis of the PZT sol was investigated and it was shown that the formation of undesired ester by-products could be avoided, if the volatile products of the ligand exchange reaction of alcohol and methacrylic acid are distilled at reduced pressure, as lower distillation temperatures have to be applied. The coordination of the methacrylic acid ligand in the resulting complexes is bidentate. Although the boiling temperature of n butanol is higher and its vapor pressure is lower, a higher amount of alcohol can be removed during distillation in the case of n butanol based PZT sols compared to sols based on n propanol. This may be attributed to a favored ligand exchange reaction. The size of the PZT precursor cluster is is about 2,0 – 2,5 nm. The methacrylated PZT sol can be prepared with a high degree of reproducibility and is storage-stable over several months. Based on this particle size and the spectroscopic detection of metal oxo groups within the PZT precursor sol, a structure was proposed, which is made up of titan- and zirconium-containing MO6-complexes forming rod-like heterometallic clusters. The polymerizable methacrylic ligands are bound to the outer surface of the clusters and thus are susceptible to the polymerization reaction. The average number of methacrylic ligands per PZT sol cluster was estimated at 5 – 25 depending on the weighting. The UV lithography process was marked by two effects. On the one hand the spin-coated PZT precursor films featured a reversible hazing, which was attributed to a concentration dependent phase separation of the precursor. On the other hand, if the light exposure was performed under a constant stream of nitrogen, the radical polymerization reaction proceeded into the shadow areas of the mask. Usually, this behavior is limited to cationic polymerization and is attributed to long lifetimes of the reactive species. In Photo-DSC experiments, this effect is observed for the methacrylated PZT-sol, as well. However, due to the different sample setup the influence of the atmosphere could not be resolved with this Photo-DSC method. The quality of the pyrolyzed PZT thin films was optimized by variation of the solid content and by variation of the pyrolysis parameters. The methacrylated PZT sols with a solid content of 25 % lead to the formation of homogenous and dense thin-films, whereas the pyrolysis of PZT sols with a solid content of 31 % resulted in xerogel like morphology due to agglomeration of precursor particles. The substrates, used within this work, exerted a major influence on the PZT thin films. Pure silicon wafers were appropriate for the investigations concerning the UV lithography process or the polymerization reaction. However, during the thermal treatment of the PZT precursor thin film, the silicon substrate reacted with the sol forming undesired lead silicate meltings, which inhibited PZT formation. The platinized silicon wafers containing titan and silicon oxide sublayers also showed increased reaction during thermal annealing as the titan adhesion layer migrated into the platinum electrode. As a result, the compressive stress generated in the PZT thin-film due to the combustion of the organic residues could not be compensated by the remaining adhesion layer and, consequently, the platinum electrode delaminated. The resulting samples exhibited a very low mechanical stability. The delamination of the electrode layers was reduced by either intermediate annealing steps at 360 °C or by the application of hotplates instead of a furnace. However, a complete prevention of delamination was not achieved. Hence, due to the ensuing electric breakdown, no ferroelectric properties could be obtained from photochemically patterned PZT thin films on these platinized silicon substrates. Furthermore, the polymerization of the methacrylated PZT sol was investigated in order to obtain a better understanding of the reactions that take place. The light induced polymerization exhibited the Trommsdorf or gel effect, which is typical for radical chain reactions. After curing the resulting films showed very high conversion rates, when diluted in various solvents. This is obtained regardless of the high number of polymerizable C=C bonds per cluster, which can lead to highly branched networks in which the mobility of reactive moieties is usually reduced significantly even at low conversion rates. The increase in the reaction enthalpy depending on the content of UV initiator sufficiently correlates with increasing conversion rates. In literature, this behavior is reported for a number of methacrylate¬-based monomers. The empirical relation of the reaction rates and the concentration of UV initiator was determined as . The overall activation energy for the polymerization of the methacrylated PZT sol was calculated depending on the reaction conversion. Additionally, the copolymerization with difunctional monomers exhibited higher conversion rates than the pure monomers and the onset of the gel effect is delayed. Energy dispersive in-situ x-ray diffraction analyses using synchrotron radiation were performed to examine the influence of the different pyrolysis parameters, such as heating rate and starting temperature of the annealing step. It was observed, that the polymerization of the PZT precursor thin-films, and thus the formation of an organic network, resulted in an increase in the temperature needed for PZT formation. This effect was attributed to the strong covalent organic network, which had accumulated during polymerization, and thus an increased energy was needed for reorganization. By increasing the starting temperature of the annealing step to 500 °C, the reduced formation of undesired pyrochlore was observed, as previously reported in literature. Furthermore, the PZT formation temperature is lower compared to pyrolysis starting at room temperature. This was explained by an increased driving force for PZT crystallization due to a lower amount of pyrochlore phase. In addition, the consecutive phase transformation from pyrochlore into PZT was completed at lower temperatures, if the starting temperature was 500 °C. A comparison of the halfwidth of the PZT reflex at 31° revealed that the polymerized PZT thin films exhibited larger crystallite sizes compared to unexposed thin films. In addition to the higher formation temperature, this was accredited to a lower nucleation rate in the polymerized PZT precursor films. During the interpretation and discussion of the results of this thesis, a number of new and interesting aspects arose, which could not be dealt with within the framework of this study. Therefore, it would be interesting to investigate further substrates for their suitability within the PZT preparation process. The substrates used within this work exhibited a number of significant disadvantages, such as thermal instability and undesired reactions with the PZT precursor. Additionally, alongside the methacrylic ligand which was tested within this work, other polymerizable ligands may be used for the synthesis of photopatternable precursor sols. β diketones, amino alcohols and phosphonates also form stable metal ligand bonds, and thus could be used to introduce the polymerizable moiety. The resulting concept of polymerizable precursors for inorganic thin films might also be transferred to dielectric or magnetic material classes, such as barium titanate. In principle, this process is applicable for all materials that can be synthesized by liquid sol-gel precursors. Additionally, further parameters of the pyrolysis could be investigated with the in-situ x-ray diffraction method, which was used within this thesis. The influence of different annealing atmospheres or different heating rates could also be examined. For the variation of the reaction atmosphere, an adaption of the experimental setup would have to be realized first, which allows the gas supply. KW - Ultraviolett-Bestrahlung KW - Sol-Gel-Verfahren KW - Dünne Schicht KW - Photostrukturierung KW - Ferroelektrikum KW - PZT KW - Strukturierung Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-108422 ER - TY - JOUR A1 - Christ, Bastian A1 - Glaubitt, Walther A1 - Berberich, Katrin A1 - Weigel, Tobias A1 - Probst, Jörn A1 - Sextl, Gerhard A1 - Dembski, Sofia T1 - Sol-gel-derived fibers based on amorphous α-hydroxy-carboxylate-modified titanium(IV) oxide as a 3-dimensional scaffold JF - Materials N2 - The development of novel fibrous biomaterials and further processing of medical devices is still challenging. For instance, titanium(IV) oxide is a well-established biocompatible material, and the synthesis of TiO\(_x\) particles and coatings via the sol-gel process has frequently been published. However, synthesis protocols of sol-gel-derived TiO\(_x\) fibers are hardly known. In this publication, the authors present a synthesis and fabrication of purely sol-gel-derived TiO\(_x\) fiber fleeces starting from the liquid sol-gel precursor titanium ethylate (TEOT). Here, the α-hydroxy-carboxylic acid lactic acid (LA) was used as a chelating ligand to reduce the reactivity towards hydrolysis of TEOT enabling a spinnable sol. The resulting fibers were processed into a non-woven fleece, characterized with FTIR, \(^{13}\)C-MAS-NMR, XRD, and screened with regard to their stability in physiological solution. They revealed an unexpected dependency between the LA content and the dissolution behavior. Finally, in vitro cell culture experiments proved their potential suitability as an open-mesh structured scaffold material, even for challenging applications such as therapeutic medicinal products (ATMPs). KW - sol-gel chemistry KW - scaffold KW - dry spinning Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-270694 SN - 1996-1944 VL - 15 IS - 8 ER - TY - THES A1 - Christ, Bastian T1 - Synthese, Fabrikation und Charakterisierung eines faserförmigen Zellträgermaterials auf Basis von Titan-oxo-carboxo-Clustern T1 - Synthesis, fabrication and characterization of a fibrous scaffold based on titanium-oxo-carboxo-clusters N2 - In dieser Arbeit konnten ethanolische Sole aus TEOT und der metabolisierbaren α-Hydroxycarbonsäure Milchsäure (LA) in spinnfähige viskose Spinnmassen überführt werden und erstmalig über die Methode des Druckspinnens zu Mikrofasern prozessiert werden. Die hybriden Fasern sind intrinsisch stabil. Über FTIR- und 13C-MAS-NMR-Untersuchungen konnte gezeigt werden, dass in der Faser der Koordinationsmodus von LA an Ti sowohl im mono- als auch im bidentaten Modus (Nomenklatur bezogen auf die Säureeinheit) vorliegt. Die nähere Untersuchung des Degradationsverhaltens einer LA-Faser zeigte hauptsächlich die Freisetzung von Lactat und Ethanol innerhalb weniger Stunden. Danach kann kaum noch ein Massenverlust der Fasern nachgewiesen werden. Vermutlich ist die Degradationsgeschwindigkeit abhängig von der Sättigungskonzentration der wasserlöslichen Titanoxid-Spezies Ti(OH)4 und Ti(O)(OH)2. Die Löslichkeit dieser Verbindungen beträgt ca. 1 µmol/L. Die Freisetzung von Titanverbindungen an das Degradationsmedium konnte über ICP-Messungen und indirekt auch über NMR-Messungen der Degradationsprodukte in Lösung nachgewiesen werden. Nach ca. einer Woche in Lösung bildet sich der wasserlösliche metallorganische Komplex TiBALDH. Dieser Komplex zeigt keinen negativen Einfluss auf die Umwelt, so dass Zellkulturmedien, die in Kontakt mit den Fasermaterialien getreten sind, in Zukunft nach dem Autoklavieren gefahrlos entsorgt werden können. Zudem sollte keines der detektierten Abbauprodukte in den abgegebenen Mengen toxisch auf den humanen Organismus bei in vivo-Anwendungen wirken. Lactat und Ethanol können im menschlichen Organismus verstoffwechselt werden. TIBALDH ist dem im menschlichen Serum nachweisbaren Titan(IV)citrat-Komplex strukturell sehr ähnlich. Aufgrund der Tatsache, dass die Bildung von TiBALDH ca. 1 Woche dauert, ist die vorherige Bildung des Titan(IV)citrat-Komplexes im humanen Organismus wahrscheinlich. Weiterhin konnte das hybride Fasermaterial durch den Zusatz von basischen Stoffen neutralisiert werden und nach Vorkonditionierung der Fasern als nicht zytotoxisch eingestuft werden. Als Gegenionen wurde Ammonium, das biogene Amin Phenethylamin, die Aminosäure Phenylalanin und das Biopolymer CHI getestet. Für zukünftige Weiterentwicklungen können auch basische Wirkstoffe als Gegenionen herangezogen werden. Somit könnte das hybride Zellträgermaterial zusätzlich eine Drug-Delivery-Funktion erhalten. Die LA-Fasern verhalten sich nach dem Verspinnen sehr flexibel. Bei einer Lagerung bei RT jedoch verspröden diese sehr schnell innerhalb von 3 d. Diese Materialeigenschaft wurde im zweiten Teil der Arbeit näher untersucht und optimiert. Tempern des Fasermaterials bei 170 °C bewirkte eine Umlagerung der LA-Liganden zu AA-Liganden, aber keine Verbesserung der mechanischen Eigenschaften. Versuche einer getemperten LA-Faser mit CHI als Gegenion zeigte durchwegs positive Eigenschaften in den Zytotoxizitätstests und auf deren Oberfläche konnten Zellen der Zelllinien L929, 16HBE, HTB94 und MG63 erfolgreich kultiviert werden. Durch die Verwendung anderer metabolisierbarer α Hydroxycarbonsäuren konnten Rückschlüsse auf die chemische Zusammensetzung der Fasern gezogen werden. Die Fasern scheinen aus wenig untereinander vernetzen Titan-oxo-carboxo-Clustern der Summenformel [Ti6O6(OR)6(Carboxylat)6] (mit R = H2+, H, Et oder „Ti6O6(OR)5(Carboxylat)6“) zu bestehen. Durch Variation der verwendeten Säuren konnten die Wechselwirkungen der Cluster untereinander verstärkt werden, so dass beispielsweise eine Faser mit MA bedeutend flexiblere Eigenschaften – auch bei einer Lagerung für 3d bei RT aufweist. Des Weiteren konnte durch Lagerung dieser Faser bei 4 °C der Versprödungsprozess für mind. 1 Monat gestoppt werden. Eine Lagerung von Medizinprodukten bei 4 °C stellt in Ländern mit ausreichender Infrastruktur kein Problem dar. Aufbauend auf diesen Tatsachen und TGA-MS-Messungen konnte die These aufgestellt werden, dass sich zwischen den wenig untereinander vernetzten Titan-oxo-carboxo-Cluster direkt nach dem Verspinnen noch Wassermoleküle befinden. Diese Reste an Wasser verleihen – vermutlich aufgrund der Ausbildung von Wasserstoffbrückenbindungen – der Faser flexible Eigenschaften. Bei einer Lagerung bei RT entweichen diese Wasserreste und die Faser versprödet; bei einer Lagerung bei 4°C wird das Verdampfen des restlichen Wassers bedeutend verlangsamt. Die Faser mit den flexibelsten Eigenschaften konnte letztendlich durch die Verwendung des zweizähnigen Carboxylat-Liganden MalA erhalten werden. Zusammenfassend konnte in dieser Arbeit ein neuartiges faserförmiges Material auf Basis von Titan-oxo-carboxo-Clustern produziert werden, welches großes Potential besitzt als Zellträgermaterial Anwendung zu finden. Aufbauend auf den hier gewonnenen Ergebnissen können die mechanischen Eigenschaften weiter optimiert und die Anforderungen des gewünschten Zielgewebes feinjustiert werden. Zudem besteht die Möglichkeit dem Material Drug-Delivery-Eigenschaften zu verleihen. Somit könnte das Scaffold aus Mikrofasern neben den bereits integrierten chemischen und physikalischen Stimuli (die Oberflächenfunktionalitäten und die Oberflächentopographie der Fasern) auch durch freigesetzte Wirkstoffe Zellen zur gewünschten Differenzierung anregen. N2 - In this thesis ethanolic sols out of the liquid sol gel precursor TEOT and metabolizable α-hydroxy carboxylic acids (e. g. LA) were transformed into spinnable viscous fluids and were processed for the first time to microfibers. These hybrid microfibers are intrinsic stable. FTIR- and 13C-MAS-NMR-measurements of the fibers show a monodentate as well as a bidentate coordination mode (with regard to the carboxylic unit) of LA to Ti. Degradation experiments show the release of lactate and ethanol within less hours. Afterwards no mass lost is detected anymore. The kinetics of fiber degradation might depend on the saturation concentration of the titanium oxide species Ti(OH)4 and Ti(O)(OH)2 in water. Their solubility in water is 1 µmol/L. The release of titanium containing compounds is detected indirectly by ICP- and NMR-measurements. This compound was identified as TIBALDH, which was shown having no negative impact on environment.[99, 160] Additionally the pH value of the hybrid fibers can be neutralized by adding basic compounds (ammonium, phenetylamine, phenylalanine or chitosan) to be classified as a non-cytotoxic material. LA fibers are very flexible after spinning. After storage at RT the fibers turn into a brittle material within 3 days. This property was investigated in the second part of the thesis. Fiber annealing at a temperature of 170 °C doesn’t result in an improvement of the mechanically properties. Nonetheless cytotoxicity assays of the annealed fibers show promising results and cell proliferation experiments show the proliferation of L929, 16HBE and HTB94 on the fibrous surface. Conclusion of the fiber composition can be drawn by using different metabolizable α-hydroxy carboxylic acids in fiber synthesis. Fibers seem to consist out of less crosslinked titanium-oxo-carboxo-clusters of the molecular formula [Ti6O6(OR)6(carboxylate)6] (with R = H2+, H, Et or „Ti6O6(OR)5(carboxylate)6“). By varying the carboxylates the interaction of the clusters can be enhanced. For instance a fibers with the acid MA shows better flexibility – even after storage at RT for 3 days. Additionally the brittling of fibers can be stopped for at least one months by a storage temperature of 4 °C. Referring to these results and TGA-measurements following hypothesis was put forward: Directly after fiber spinning water molecules are present in the small pores betwenn different titanium-oxo-carboxo-clusters. These water residuals reinforce fiber flexibility due to hydrogen bonds. After storing the fibers at RT residual water molecules will evaporate out of the fibers. Consequently the fibers are brittling. At a storage temperature of 4 °C the evaporation of water molecules is slowed down. Fibers containing MalA – an α-hydroxy carboxylic acid with two coordinating carboxylic groups – were determined as the most flexible fiber. KW - Scaffold KW - Mikrofaser KW - Zellträgermaterial KW - Mikrofasern Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162015 ER - TY - THES A1 - Brockmann, Nicolas T1 - Kompositschichten aus dealuminiertem Zeolith Y und Hybridpolymeren auf Basis von Bis(triethoxysilyl)ethan T1 - Composite coatings made from zeolite Y and hybrid polymers based on bis(triethoxysilyl)ethane N2 - Die vorliegende Arbeit beschäftigt sich mit Kompositschichten aus Zeolithen und Hybridpolymeren, die mittels des Sol-Gel-Prozesses aus Alkyltrialkoxysilanen hergestellt werden. Am Beispiel von dealuminiertem Zeolith Y und Solen aus Bis(triethoxysilyl)ethan wurde untersucht, wie sich die Zugänglichkeit der Zeolithporen in Kompositschichten erhalten lässt. Zur Analyse der Porenzugänglichkeit kamen Gasadsorptionsmessungen zum Einsatz. Zur weiteren Charakterisierung wurden elektronenmikroskopische Aufnahmen und ausführliche spektroskopische Untersuchungen der erhaltenen Hybridpolymer-Sole durchgeführt. Die Ermittlung der mechanischen Eigenschaften erfolgte über die Messung der Wischfestigkeit. Die im Rahmen diverser Experimente erhaltenen Kompositschichten wiesen eine hohe Zeolithporenerreichbarkeit auf, sofern der Zeolithanteil mindestens 70 Volumenprozent betrug, und das jeweilige Sol einen hohen Hydrolyse- und Kondensationsgrad aufwies. Im Zusammenhang mit den genannten Studien wurden Hybridpolymere verglichen, die bei unterschiedlichen pH-Bedingungen mit verschiedenen Mengen an Wasser zur Hydrolysereaktion hergestellt wurden, oder bei denen neben Bis(triethoxysilyl)ethan Methacryloxypropyltrimethoxysilan als zweites Monomer eingesetzt wurde. Letztendlich konnten mit einfachen Mitteln Kompositschichten hergestellt werden, die auf flexible Oberflächen aufgebracht werden konnten und beim Biegen nicht vom Substrat abplatzten. Ferner waren sie wischfest und zeigten bei passender Zusammensetzung eine nahezu vollständige Zeolithporenerreichbarkeit (Zeolithanteil: ≥ 70 Vol.-%; Monomer: Bis(triethoxysilyl)ethan; Hydrolyse- und Polykondensationsreaktion: pH-Wert ≤ 2, Überschuss an Wasser). Ihr Anwendungspotential als Adsorbensschicht für die Aufnahme organischer Schadstoffe wurde beispielhaft anhand der reversiblen Adsorption von Formaldehyd demonstriert. N2 - The presented study describes composite coatings containing zeolites and hybrid polymers synthesized from alkyltrialkoxysilanes. Dealuminated zeolite Y and sols of bis(triethoxysilyl)ethane have been chosen as representatives to study which parameters affect the zeolite pore accessibility. To determine the amount of open pores, we conducted gas sorption experiments. Additionally, electron microscopy and intensive spectroscopic studies were used for further characterization. Wipe resistance has been measured to determine the mechanical properties. We studied hybrid polymers which were synthesized via sol-gel routes at different pH values, under addition of various amounts of water for the hydrolysis reaction or in the presence of methacryloxypropyltrimethoxysilane as a second monomer, besides bis(triethoxysilyl)ethane as main monomer component. Finally, the composite coatings offered high zeolite pore accessibility if the zeolite content was at least 70 vol.% and if the particular hybrid sol offered a high degree of hydrolysis and polycondensation as well as a low content of organic components. Composite coatings have been prepared by a simple manufacturing process and could be applied on flexible polymer films without cracking if the substrate was bent. In addition, the coatings were smudge-proof and offered nearly complete zeolite pore accessibility based on proper selection of the composition (zeolite content: ≥ 70 vol.%; monomer: bis(triethoxysilyl)ethane; hydrolysis and polycondensation reaction: pH value ≤ 2, excess amount of water). By observation of reversible formaldehyde adsorption, composite coatings' potential use as adsorptive agent for volatile organic compounds was successfully demonstrated. KW - Zeolith KW - Adsorptionsisotherme KW - Sol-Gel-Verfahren KW - Beschichtung KW - Ormocer KW - Kompositschicht KW - Hybridpolymer KW - Bis(triethoxysilyl)ethan KW - Alkyltrialkoxysilan Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-150817 ER - TY - THES A1 - Brockmann, Dorothea E. R. T1 - Gefüge-Simulationen an Nicht-Oxid-Keramiken: Korrelation zwischen Mikrostruktur und makroskopischen Eigenschaften T1 - Structure simulations on non-oxide ceramics: correlation between microstructure and macroscopic properties N2 - Die experimentelle Verbesserung der makroskopischen Eigenschaften (z. B. thermische oder mechanische Eigenschaften) von Keramiken ist aufgrund der zahlreichen erforderlichen Experimente zeitaufwändig und kostenintensiv. Simulationen hingegen können die Korrelation von Mikrostruktur und makroskopischen Eigenschaften nutzen, um die Eigenschaften von beliebigen Gefügekompositionen zu berechnen. In bisherigen Simulationen wurden meist stark vereinfachte Modelle herangezogen, welche die Mikrostruktur einer Keramik nur sehr grob widerspiegeln und deshalb keine zuverlässigen Ergebnisse liefern. In der vorliegenden Arbeit wird die Mikrostruktur-Eigenschafts-Korrelation der drei wichtigsten Nicht-Oxid-Keramiken untersucht. Dies sind Aluminiumnitrid (AlN), Siliciumnitrid (Si3N4) und Siliciumcarbid (SiC). Diese drei Keramiktypen vertreten die häufigsten Mikrostrukturtypen, welche bei Nicht-Oxid-Keramiken auftreten können. Zu jedem Keramiktyp liegen zwei verschiedene Proben vor. Alle drei untersuchten Keramiktypen sind zweiphasig. Die Hauptphase von AlN und Si3N4 besteht aus keramischen Körnern, die Nebenphase erstarrt während der Sinterung aus den zugesetzten Sinteradditiven. Die Restporosität von AlN und Si3N4 wird als vernachlässigbar angesehen und in den Simulationen nicht berücksichtigt. Bei den SiC-Proben handelt es sich um Keramiken mit bimodaler Korngröÿenverteilung. Durch Infiltration mit flüssigem Silicium wurden die Hohlräume zwischen den Körnern aufgefüllt, um porenfreie SiSiC-Proben zu erhalten. Anhand von Simulationen werden zunächst reale Mikrostrukturen in Anlehnung an vorliegende Vergleichsproben nachgebildet. Diese Modelle werden durch Abgleich mit rasterelektronenmikroskopischen 2D-Aufnahmen der Proben verifiziert. An den Modellen werden mit der Methode der Finite-Element-Simulation makroskopische Eigenschaften (Wärmeleitfähigkeit, Elastizitätsmodul und Poisson-Zahl) der Keramiken simuliert und mit experimentellen Messungen an den vorliegenden Proben abgeglichen. Der Vergleich der Mikrostruktur von den computergenerierten Gefügen und den vorliegenden Proben zeigt in der Mustererkennung durch das menschliche Auge und quantitativ in den Gefügeparametern eine gute Übereinstimmung. Für die makroskopischen Eigenschaften wird auf der Basis einer ausführlichen Literaturrecherche zu den Materialparametern der beteiligten Phasen eine gute Übereinstimmung zwischen den experimentell gemessenen und den simulierten Eigenschaften erreicht. Evtl. auftretende Abweichungen zwischen Experiment und Simulation können damit erklärt werden, dass die Proben Verunreinigungen enthalten, da aus der Literatur bekannt ist, dass Verunreinigungen eine Verschlechterung der Wärmeleitfähigkeit bewirken. Nachdem die Gültigkeit der Modelle verifiziert ist, wird der Einfluss von charakteristischen Mikrostrukturparametern und Phaseneigenschaften auf die Wärmeleitfähigkeit, den Elastizitätsmodul und die Poisson-Zahl der Keramiken untersucht. Hierzu werden die Mikrostrukturparameter von AlN und Si3N4 gezielt um die Parameter der vorliegenden Vergleichsproben variiert. Bei beiden Keramiktypen werden die Volumenanteile der beteiligten Phasen sowie die mittlere Sehnenlänge der keramischen Körner verändert. Bei den AlN-Keramiken wird zusätzlich der Dihedralwinkel variiert, welcher Auskunft über den Benetzungsgrad der Flüssigphase gibt; bei den Si3N4-Keramiken ist das Achsenverhältnis der langgezogenen Si3N4-Körner von Interesse und wird deshalb ebenfalls variiert. Es zeigt sich, dass die Aufteilung der Teilvolumina zwischen den zwei Phasen den größten Einfluss auf die Eigenschaften der Keramik hat, während die übrigen Mikrostrukturparameter nur eine untergeordnete Rolle spielen. Um die Qualität der Simulationen zu überprüfen, wird die Simulationsreihe an AlN mit unterschiedlicher Aufteilung der Volumina zwischen den beiden Phasen in Relation zu etablierten Modellen aus der Literatur (Mischungsregel und Modell nach Ondracek) gesetzt. Alle Simulationsergebnisse für die Wärmeleitfähigkeit und den Elastizitätsmodul liegen innerhalb der jeweils oberen und unteren Grenze beider Modelle. Es konnte also eine Verbesserung gegenüber den etablierten Modellen erzielt werden. An allen drei Keramiktypen wird der Einfluss der Materialeigenschaften der Haupt- und Nebenphase auf die makroskopischen Eigenschaften der Keramik untersucht. Hierfür werden die Wärmeleitfähigkeit, der Elastizitätsmodul und die Poisson-Zahl der Phasen getrennt voneinander über einen größeren Bereich variiert. Es stellt sich heraus, dass es vom Keramiktyp und dem Volumenanteil der Nebenphase abhängt, wie stark der Einfluss einer Komponenteneigenschaft auf die Eigenschaft der Keramik ist. Mit den im Rahmen dieser Arbeit durchgeführten Simulationen wird der Einfluss von Mikrostrukturparametern und Phaseneigenschaften berechnet. Auf der Grundlage dieser Simulationen können die Architektur des Gefüges simuliert und die Eigenschaften von Keramiken für individuelle Anwendungen berechnet werden. Dies ist die Basis für die Produktion von maßgeschneiderten Keramiken. Zudem können mit den validierten Mikrostrukturmodellen die Eigenschaften von unbekannten Mischphasen ermittelt werden, was experimentell oft nicht möglich ist. N2 - Experimental improvement of macroscopic properties (e. g. thermal or mechanical properties) of ceramics require countless experiments and are therefore costly in terms of time and money. However, simulations use the correlation of microstructure and macroscopic properties to calculate properties of any microstructure. Until now, simulations usually use oversimplified models, which only roughly reproduce a ceramics' microstructure and therefore do not give reasonable results. In the paper on hand, the microstructure-property-correlation of the three most important non-oxide-ceramics (AlN, Si3N4, SiC) is analysed. These three types of ceramic represent the most important types of microstructures, which exist for nonoxidic ceramics. For each type of ceramic, two different samples are examined. All three ceramic types used are two-phase-ceramics. The primary phase of AlN and Si3N4 is built of the ceramic grains and the secondary phase solidifies from the added sinter additives. The remaining porosity of AlN and Si3N4 is regarded to be negligible and is therefore not considered in the simulations. The SiC-samples are ceramics with a bimodal grain size distribution. The spaces in between the grains are filled by infiltration with liquid silicon to get Si-SiC-samples free of pores. At first, by employing simulations, microstructures are generated, which are close to the samples' microstructures. These models are verified by comparing them with two-dimensional scanning electron micrographs. Macroscopic properties (thermal conductivity, Young's modulus, Poisson's Ratio) of the ceramics are calculated by finite element simulations and then compared to experimental measurements on the samples. Analyzing the microstructures of the computer-generated models and the samples shows good agreement in the pattern matching as well as quantitatively in the microstructures parameters. Also for the macroscopic properties good comparison between measured and simulated properties was reached, based on an elaborate literature research on material parameters of all phases involved. Occurring discrepancies between experiment and simulations are assumed to be due to impurities in the sample. From literature it is known that impurities lead to a decline in thermal conductivity. As the models are validated, the influence of characteristic microstructure parameters and material properties of the phases on the thermal conductivity, Young's modulus and Poisson's ratio of ceramics are analysed. Therefore some microstructure parameters of the models of AlN and Si3N4 are deviated from the parameters of the samples. For both ceramic types the volume fractions of both phases and the average chord length of the grains are varied. At the AlN models, the dihedral angle is varied as well, which provides information about the wetting behaviour of the secondary phase; at the Si3N4 models, the aspect ratio of the elongated Si3N4 grains are of importance and hence analysed. It turns out that the volume fractions of the phases have the most significant influence on the ceramics' properties, whereas the other microstructure parameters are less important. To check the quality of the simulations, the simulation data of AlN with different volume fractions is compared to established models from literature ("rule of mixture" and model according to Ondracek). All results from the simulations are within the upper and lower bounds of both models. In comparison with these models, an improvement was achieved. For all three ceramic types, the influence of the material properties of the main and the secondary phase on the ceramics' properties is investigated. Therefore, the phases' thermal conductivity, Young's modulus and Poisson's ratio are separately from each other varied over a large range. It turns out that the influence of a component's property on the property of the ceramic depends on the ceramic type and the volume fraction of the secondary phase. On models of all three ceramic types, the influence of the components' material properties on the macroscopic properties of the ceramic is analysed. Based on these simulations, the architecture of microstructures can be simulated and properties of random ceramics for individual purposes can by calculated. By this, it is possible to produce customised ceramics. Additionally, with the validated microstructure models, the properties of unknown mixed phases can be calculated, which is usually not possible in experiments. KW - Aluminiumnitrid KW - Siliciumcarbid KW - Siliciumnitrid KW - Finite-Elemente-Methode KW - Wärmeleitfähigkeit KW - Mikrostrukturmodellierung KW - Elastizitätsmodul KW - inverse Simulation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157255 ER - TY - JOUR A1 - Borova, Solomiia A1 - Tokarev, Victor A1 - Stahlhut, Philipp A1 - Luxenhofer, Robert T1 - Crosslinking of hydrophilic polymers using polyperoxides JF - Colloid and Polymer Science N2 - Hydrogels that can mimic mechanical properties and functions of biological tissue have attracted great interest in tissue engineering and biofabrication. In these fields, new materials and approaches to prepare hydrogels without using toxic starting materials or materials that decompose into toxic compounds remain to be sought after. Here, we report the crosslinking of commercial, unfunctionalized hydrophilic poly(2-ethyl-2-oxazoline) using peroxide copolymers in their melt. The influence of temperature, peroxide copolymer concentration, and duration of the crosslinking process has been investigated. The method allows to create hydrogels from unfunctionalized polymers in their melt and to control the mechanical properties of the resulting materials. The design of hydrogels with a suitable mechanical performance is of crucial importance in many existing and potential applications of soft materials, including medical applications. KW - hydrogels KW - radical crosslinking KW - poly(2-ethyl-2-oxazoline) KW - thermal crosslinking KW - peroxide containing copolymers Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-238109 VL - 298 ER - TY - JOUR A1 - Borova, Solomiia A1 - Schlutt, Christine A1 - Nickel, Joachim A1 - Luxenhofer, Robert T1 - A Transient Initiator for Polypeptoids Postpolymerization α‐Functionalization via Activation of a Thioester Group JF - Macromolecular Chemistry and Physics N2 - Here, a postpolymerization modification method for an α-terminal functionalized poly-(N-methyl-glycine), also known as polysarcosine, is introduced. 4-(Methylthio)phenyl piperidine-4-carboxylate as an initiator for the ring-opening polymerization of N-methyl-glycine-N-carboxyanhydride followed by oxidation of the thioester group to yield an α-terminal reactive 4-(methylsulfonyl)phenyl piperidine-4-carboxylate polymer is utilized. This represents an activated carboxylic acid terminus, allowing straightforward modification with nucleophiles under mild reaction conditions and provides the possibility to introduce a wide variety of nucleophiles as exemplified using small molecules, fluorescent dyes, and model proteins. The new initiator yielded polymers with well-defined molar mass, low dispersity, and high end-group fidelity, as observed by gel permeation chromatography, nuclear magnetic resonance spectroscopy, and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy. The introduced method can be of great interest for bioconjugation, but requires optimization, especially for protein conjugation. KW - ring-opening polymerization KW - bioconjugation KW - functional initiators KW - polypeptoids KW - postpolymerization modification Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257587 VL - 223 IS - 3 ER - TY - THES A1 - Bockmeyer, Matthias T1 - Structure and Densification of Thin Films Prepared From Soluble Precursor Powders by Sol-Gel Processing T1 - Struktur und Verdichtung von dünnen Schichten hergestellt über das Sol-Gel Verfahren unter Verwendung löslicher Vorstufenpulver N2 - The main focus of this work was to get a deeper understanding of the relationship between the structure of sol-gel films, their densification and their macroscopic cracking. First of all titania was chosen as model system. Therefore a synthesis route starting from the preparation of long-term stable amorphous redissoluble precursor powders based on acetylacetone as chelate ligand was utilized. The solubility and stability of the powders in various solvents can be determined by chemical synthesis and technological parameters. When dissolved in a solvent mixture of ethanol and 1,5-pentanediol, thin films can be easily prepared by dip-coating technique. Thereby the quality of the titania films enormously depends on the calcinations temperature and the solvent mixture is used. In order to investigate the influence of different solvents and solvent mixtures on the microstructure and densification of the precursors, the coating solutions were stripped off (sol powder) and analyzed as function of annealing temperature. It was pointed out that a high densification rate caused by the addition of 1,5-pentanediol, results in dense microstructure with trapped residual carbon. These impurities can retard the phase transformation of anatase to rutile. The analysis of so-called “film powders” scraped off multiple dip-coated substrates provides valuable information on the effect of air moisture and unidirectional densification during drying and aging on the structure of thin films. The high surface-to-volume ratio and access to air moisture determine the chemical composition of the as-prepared film, which controls shrinkage, crystallization and defect structure of the coatings. Further it was shown, that drying as a thin film results in the formation of closed pores and much denser microstructure than the respective sol powder. Without the addition of 1,5-pentanediol all –OEt moieties undergo hydrolysis reactions, which causes the formation of a rigid network. The presence of 1,5-pentanediol retards this hydrolysis reactions and provides some network plasticity. Generally the microstructure of thin films is comparatively close to the microstructure of the film powders. The addition of 1,5-pentandiol prevents hydrolysis and condensation reactions as like in the film powders. However even at 700 °C, thin films never transform to rutile, which was attributed to the tensile stresses in thin films. In thin films and in film powders as well a comparable amount of closed pores are formed during annealing. Further it was shown that most of the thin sol-gel films investigated form a dense crust on their tops during annealing. This explains why crack free films exhibit only closed pores. However, when cracks appear during thin film shrinkage in the coating, this crust is burst, which generates open porosity. The defect density in the coatings was determined by an automated analysis of surface images. The crack formation and quantity can be directly referred to tensile stresses in the coatings, which arise from hydrolysis and condensation during thin film drying and aging. Therefore when 1,5-pentanediol is added to the sol, thin film cracking was avoided, because hydrolysis and condensation reactions are retarded, which preserves a higher network flexibility. Furthermore the crack formation was significantly influenced by the atmospheric humidity that was used during the coating process, which was explained by different drying and condensation rates. Under certain chemical starting conditions water soluble precursor powders can be also obtained. In general the observations made with the water based coating solutions are mostly in agreement with the former results based on ethanol based coating solutions. For example the high surface-to-volume ratio of film powders compared to sol powders also significantly enhances film drying and densification. The addition of 1,5-pentanediol also clearly contributes to their densification behavior and phase evolution. As seen before in the case of ethanol based coatings, 1,5-pentanediol enhances the stability towards hydrolysis and condensation reactions and preserves some network plasticity. Therefore coatings prepared without the addition of 1,5-pentanediol already form cracks during film drying and aging because of tensile stresses. Thus, the addition of 1,5-pentanediol results in a reduction/prevention of crack formation. Nevertheless some differences were observed, i.e. the critical single coating film thickness of ethanol based coatings is nearly twice that of water based coatings. This was explained by the different surface tensions of the basis solvents, which during thin film drying causes significantly higher capillary forces and tensile stresses in water based coatings. When acetylacetone is replaced by triethanolamine as chelating ligand for titanium also re-dissolvable precursor powders can be synthesized. The film powders combine a high hydrolytic stability of the precursor with sufficient intermediate network flexibility. The different type of organics changes the drying and densification behavior: i.e. in contrast to film powders obtained from acetylacetone based precursor powders the structure of triethanolamine based film powders is unaffected by the thin film drying process. This high hydrolytic stability and plasticity of this precursor allows the preparation of defect free coatings up to single film thickness of 300 nm. However triethanolamine based thin films present at intermediary annealing temperatures a distinctively different microstructure compared to acetylacetone based films. The general validity of the conclusions was proved on the basis of zirconia coatings that were also prepared by the use of re-dissolvable precursor powders. In principle all conclusions concerning the interconnection of precursor chemistry, film formation, densification and structure were transferable to the respective zirconia coatings. Differences mainly arise only from differential material properties i.e. bulk density. Finally, it has been pointed out that the findings obtained on the densification behavior of thinsol-gel films are also a valuable tool for improved explanations of other important scientific questions concerning sol-gel films, i.e. scratch resistance of sol-gel coatings, fiber -bridging and – degradation of sol-gel coated fibers. N2 - Grundsätzlich war es Ziel der vorliegenden Arbeit, die Zusammenhänge zwischen Struktur von Sol-Gel Schichten, ihrer Verdichtung und der Entstehung von makroskopischen Rissen besser verstehen zu können. Als Modelsystem wurde hierfür Titanoxid ausgewählt. Hierzu wurde von einer Syntheseroute basierend auf der Verwendung von langzeitstabilen amorphenre-dispergierbaren Vorstufenpulvern mit Acetylaceton als Chelatligand ausgegangen. Die Löslichkeit und Stabilität der Pulver in verschiedenen Lösungsmitteln lässt sich über die chemische Synthese bzw. technologischen Parameter einstellen. Wenn die Pulver in einem Lösungsmittelgemisch aus Ethanol und 1,5-Pentandiol gelöst werden, lassen sich mittels Tauchbeschichtungsverfahren einfach dünne Schichten herstellen. Die Qualität der Titanoxidschichten hängt dabei entscheidend von der verwendeten Pyrolysetemperatur und der Menge an verwendetem 1,5- Pentandiol ab. Um den Einfluss von verschiedenen Lösungsmitteln und Lösungsmittelgemischen auf die Mikrostruktur und Verdichtung der Vorstufen zu untersuchen, wurden die Sole am Rotationsverdampfer eingeengt (Sol-Pulver) und in Abhängigkeit von der Behandlungstemperatur analysiert. Dabei stellte sich heraus, dass eine hohe Verdichtungsrate verursacht durch den Zusatz von 1,5-Pentandiol, in einer dichten Mikrostruktur mit eingeschlossenem Rest-Kohlenstoff resultiert. Diese Kohlenstoff-Rückstände können die Phasenumwandlung von Anatas zu Rutil hemmen. Die Analyse der so genannten „Film-Pulver“, welche von mehrfach tauchbeschichteten Substraten abgekratzt worden sind, ermöglicht den Zugang zu entscheidenden Informationen über den Einfluss der Luftfeuchtigkeit und der unidirektionalen Verdichtung, während der Film-Trocknung und –Alterung, auf die Struktur der dünnen Schichten. Es zeigte sich, dass das große Oberfläche zu Volumen Verhältnis und der Kontakt mit Luftfeuchtigkeit die chemische Zusammensetzung der frisch hergestellten Schichten bestimmen. Diese wiederum steuert die Schichtschrumpfung, Kristallisation und Defektstruktur der Schichten. Ferner konnte dargestellt werden, dass die Trocknung als dünner Film zu der Entstehung von geschlossenen Poren und zu einer deutlich dichteren Mikrostruktur als die der entsprechenden Sol-Pulver führt. Ohne den Zusatz an 1,5-Pentandiol kommt es zur Hydrolyse der –OEt Gruppen, was die Bildung eines rigiden Netzwerks bewirkt. 1,5-Pentandiol als Zusatz hemmt diese Hydrolysereaktionen und bedingt damit eine gewisse Plastizität des Netzwerkes. Im Großen und Ganzen ist die Mikrostruktur der dünnen Schichten mit der Struktur der Film-Pulver gut vergleichbar. Durch den Zusatz an 1,5-Pentandiol werden in den Schichten die Hydrolyse und Kondensationsreaktionen ebenso gehemmt wie in den entsprechenden Film-Pulvern. Allerdings bei den dünnen Schichten ist auch bei 700 °C keine Phasenumwandlung zu beobachten, was auf Zugspannung in den dünnen Filmen zurückzuführen ist. Während der Calcinierung kommt es sowohl in dünne Schichten wie als auch in den Film-Pulvern zur Ausbildung von geschlossenen Poren. Ferner wurde gezeigt, dass die meisten untersuchten dünnen Schichten während der Pyrolyse auf ihrer Oberfläche eine dichte Kruste ausbilden. Dies erklärt warum rissfreie Schichten nur geschlossene Poren aufweisen. Allerdings wenn Risse während der Schichtschrumpfung in der Schicht auftreten, wird diese Kruste durchbrochen, was zur Bildung von offener Porosität führt. Die Defektdichte in den Schichten wurde mittels einer automatisierten Bildanalyse der Oberfläche bestimmt. Die Riss-Bildung und Riss-Häufigkeit kann dabei direkt mit der Entstehung von Zugspannung, durch Hydrolyse und Kondensation während der Schicht-Trocknung und –Alterung, in Zusammenhang gebracht werden. Durch die Zugabe von 1,5-Pentandiol konnte die Rissentstehung verhindert werden, da Hydrolyse und Kondensations-Reaktionen gehemmt werden, was eine höhere Flexibilität des Netzwerkes erhält. Weiterhin wurde die Rissentstehung signifikant durch die herrschende Luftfeuchtigkeit während es Beschichtungsprozesses beeinflusst, was mit unterschiedlichen Hydrolyse- und Kondensations-Raten zu erklären ist. Unter Verwendung bestimmter chemische Syntheseparameter, können ebenso wasserlösliche Vorstufenpulver erhalten werden. Grundsätzlich sind die Untersuchungen an den hieraus resultierenden wässrigen Solen und Schichten in guter Übereinstimmung mit den vorherigen Untersuchungen an ethanolischen Beschichtungssystemen. So zum Beispiel, beschleunigt ebenso das große Oberfläche zu Volumen Verhältnis der Film-Pulver deutlich die Film-Trocknung und –Verdichtung, im Vergleich zu den Sol-Pulvern. Auch beeinflusst ein Zusatz an 1,5-Pentandiol eindeutig das Verdichtungsverhalten und die Phasenentwicklung. Wie schon bereits im Fall der Ethanol basierenden Beschichtungen festgestellt worden ist, erhöht 1,5-Pentandiol die Beständigkeit hinsichtlich Hydrolyse und Kondensationsreaktionen und erhält hiermit eine gewisse Netzwerkplastizität. Deshalb bilden Filme die ohne einen Zusatz an 1,5-Pentandiol hergestellt worden sind, aufgrund von Zugspannung, schon während der Film-Trocknung und -Alterung Risse aus. Durch einen Zusatz von 1,5-Pentandiol kann dagegen die Entstehung von Rissen vermindert bzw. vermieden werden. Allerdings zeigten sich auch einige Unterschiede: So ist zum Beispiel die erreichbare Einzelschichtdicke der ethanolischen Beschichtungssystemen nahezu doppelt so groß wie die der wässrigen Beschichtungssysteme. Dies wurde mit der unterschiedlichen Oberflächenspannung des Basislösungsmittels erklärt, welche während der Schichttrocknung deutlich höhere Kapillarkräfte und Zugspannung in wässrigen Filmen erzeugt. Wird Acetylaceton gegen Triethanolamin als Chelatligand für Titan ausgetauscht, so können ebenso re-dispergierbare Vorstufenpulver hergestellt werden. Die Film-Pulver kombinieren hohe hydrolytische Stabilität der Vorstufe mit einer ausreichenden intermediären Netzwerkflexibilität. Der andere Komplexbildner verändert entscheidend das Trocknungs- und Verdichtungs-Verhalten: so z.B. wird die die Struktur von Film-Pulvern basierend auf Triethanolamin nicht entscheidend durch die Trocknung als dünne Schicht beeinflusst, im Gegensatz zu Film-Pulvern hergestellt von Vorstufenpulvern mit Acetylacetone als Chelatligand. Diese hohe hydrolytische Stabilität und Plastizität der Vorstufe ermöglicht die Herstellung von defektfreien Beschichtungen bis hin zu einer Einzelschichtdicke von 300 nm. Dennoch unterscheidet sich bei intermediären Pyrolysetemperaturen die Mikrostruktur der Triethanolamin basierenden Schichten deutlich von der auf Acetylaceton basierenden Schichtsystemen. Die Allgemeingültigkeit der Schlussfolgerungen wurde anhand Zirkonoxidbeschichtungen, welche ebenfalls unter Verwendung von löslichen Vorstufenpulvern hergestellt worden sind, überprüft. Grundsätzlich zeigte sich hierbei, dass alle Schlüsse hinsichtlich der Zusammenhänge der Vorstufenchemie, Film-Bildung, -Verdichtung und –Struktur auf die entsprechenden Zirkonoxidbeschichtungen übertragbar sind. Unterschiede ergeben sich nur aus unterschiedlichen Materialeigenschaften wie z.B. der makroskopischen Dichte. Letztlich wurde dargestellt, dass die Erkenntnisse hinsichtlich des Verdichtungsverhalten der Sol-Gel Schichten die Grundlage für die Aufklärung vieler anderer wichtiger wissenschaftlich Fragestellungen hinsichtlich Sol-Gel Beschichtungen bilden, wie z.B. der Kratzfestigkeit von Sol-Gel Schichten, Faser-Verbrückung und -Schädigung von Sol-Gel beschichten Fasern. KW - Sol-Gel-Verfahren KW - Dünne Schicht KW - Titan KW - Titandioxid KW - Dünnfilm KW - thin film KW - sol-gel KW - titania Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-24577 ER - TY - THES A1 - Bittner, Andreas T1 - Innovative Materialkonzepte für elektrochemische Energiespeicher T1 - Innovative Material Concepts for Electrochemical Energy Storage N2 - Im Rahmen der vorliegenden Arbeit wurde ein neuer Beschichtungstyp für die Elektrodenmaterialien von Lithium-Ionen-Akkumulatoren entwickelt und charakterisiert. Dieser besteht aus einem speziellen anorganisch-organischen Hybridpolymer, das sich bezüglich seiner Zusammensetzung und Funktion gegenüber bestehenden Beschichtungsmaterialien abhebt. Das anorganisch-organische Netzwerk des Hybridpolymers konnte mittels Feststoff-NMR-Messungen vollständig aufgeklärt werden. Dabei zeigte sich ein stabiles anorganisches Gerüst aus hoch vernetzten Polysiloxan-Einheiten. Zusätzliche organische Modifizierungen liegen als lange bewegliche Ketten mit funktionellen Polyethylenoxid-Einheiten vor oder sind in Form von Polyethern und Diolen vernetzt. Mit dieser speziellen Netzwerkstruktur ist es möglich, Materialeigenschaften zu erzeugen, die über solche von rein anorganischen und rein organischen Beschichtungen hinausgehen. Zu den mit verschiedenen Methoden nachgewiesenen Eigenschaften zählen eine hohe ionische Leitfähigkeit von 10\(^{-4}\) S/cm, eine hohe Elastizität mit E = 63 kPa, eine hohe elektrochemische Stabilität bis 5,0 V vs. Li/Li\(^+\) und eine hohe thermische Stabilität. Eine weitere Besonderheit des neuen Beschichtungsmaterials ist die mehrstufige Vernetzung der anfänglichen Prekursoren zu einem Hybridpolymer-Sol und dem abschließenden Hybridpolymer-Gel. Die im Beschichtungssol vorliegende Teilvernetzung der Vorstufen konnte detailliert mittels Flüssig-NMR-Messungen untersucht und beschrieben werden. Aus den Messungen ließ sich folgern, dass die organisch und anorganisch vernetzbaren Gruppen im Sol teilweise vernetzt vorliegen. Die sterisch erreichbaren Si-OR-Gruppen der so entstandenen Oligomere sind vorwiegend nicht hydrolysiert, wodurch deren anorganische Anbindung an die OH-Gruppen der Partikeloberflächen kinetisch bevorzugt ist. Damit lassen sich besonders homogene und vollständig bedeckende Beschichtungen der Elektrodenmaterialien erzeugen. Dies konnte mit verschiedenen physikalischen und chemischen Methoden nachgewiesen werden: simulationsgestützte Rückstreuanalysen mittels REM, hochaufgelöste TEM-Aufnahmen sowie Elementanalysen durch EDX und XPS. Nach der Optimierung des nasschemischen Beschichtungsprozesses über Rotationsverdampfen ergaben sich für die verschiedenen Elektrodenmaterialien Li\(_4\)Ti\(_5\)O\(_{12}\), Li(Ni,Co,Mn)O\(_2\) und Li(Mn,Ni)\(_2\)O\(_4\) jeweils etwa 20 nm dicke Beschichtungen mit Hybridpolymer. Die Frage nach deren Lösungsmittelbeständigkeit konnte durch die Analyse von behandelten Proben mit TG, REM, XPS und ICP-OES aufgeklärt werden. Dabei zeigte sich sowohl für die Behandlung mit NMP, dem klassischen Lösungsmittel bei der Elektrodenfertigung mit PVDF-Binder, als auch für die Behandlung mit dessen umweltschonenderem Ersatzstoff Aceton eine gute Beständigkeit der Beschichtung. Die Beschichtung löste sich in den Lösungsmitteln an, blieb allerdings als geschlossene nanoskalige Beschichtung erhalten. Lediglich gegenüber dem Lösungsmittel H\(_2\)O, das in Kombination mit dem neuen Binder CMC eingesetzt wird, wurde eine mangelnde Schichtstabilität deutlich. Das dafür verantwortliche Quellverhalten der Beschichtung konnte mittels Dünnschicht-Modellsystem und daran durchgeführten REM-, IR- und EPA-Untersuchungen aufgeklärt werden. Die Optimierung des Hybridpolymer-Materials bezüglich einer besseren H\(_2\)O-Beständigkeit übersteigt den Rahmen dieser Arbeit und liefert die Grundlage für weitere künftige Forschungsarbeiten. Aufgrund der vollständigen Bedeckung der neuen Beschichtung, ihrer besonderen Eigenschaften und ihrer Beständigkeit bei der klassischen Elektrodenfertigung ist es möglich, die Elektrodenmaterialien grundlegend hinsichtlich ihrer wichtigsten Eigenschaften zu verbessern. Hierfür wurden sowohl über die NMP- als auch über die Aceton-Route Elektroden gefertigt und zu Halbzellen und Vollzellen verarbeitet. Die REM-Analyse der Elektroden zeigte, dass die Partikelbeschichtungen keinen negativen Einfluss auf die Homogenität und Morphologie der Elektroden ausüben. Damit war es möglich, jeweils einen direkten Vergleich von beschichteten und unbeschichteten Materialien hinsichtlich ihrer elektrochemischen Performance anzustellen. Für die Kathodenmaterialien Li(Ni,Co,Mn)O\(_2\) und Li(Mn,Ni)\(_2\)O\(_4\) ergaben die Zyklenfestigkeits- und Impedanzmessungen klare Verbesserungen durch die Beschichtung. Verbunden mit einer Verbesserung der Energiedichte erhöhte sich bei beiden Materialien die Zyklenfestigkeit um mehr als 60 %. Bei Li(Mn,Ni)\(_2\)O\(_4\) zeigt sich die Verbesserung in einer erhöhten Zellspannung durch das vergleichsweise hohe Redoxpotential des Materials von etwa 4,7 V vs. Li/Li\(^+\), während sich bei Li(Ni,Co,Mn)O\(_2\) die Hochvoltfähigkeit des Materials verbessert, was mit einer vergrößerten Speicherkapazität verbunden ist. Dabei ist herauszustellen, dass für keines der Materialien ein negativer Einfluss der dünnen Beschichtung auf die Leistungsdichte festgestellt werden konnte. Der erwartete Mechanismus für die verbesserte Elektrodenfunktion durch das Hybridpolymer ist die Bildung einer physikalischen Schutzschicht in Form einer Li\(^+\)-leitfähigen Membran. Diese umgibt das Elektrodenmaterial vollständig, ermöglicht die Ladungsträgerinterkalation und schützt die Elektrode gleichzeitig vor irreversiblen Reaktionen mit dem Elektrolyten. Damit verbunden ist eine verminderte Mn-Auslösung und eine verminderte Entwicklung von isolierenden Deckschichten aus Reaktionsprodukten wie LiF, Li\(_2\)O, Li\(_2\)CO\(_3\), was sich positiv auf die Alterung der Batteriezellen auswirkt. Die Funktion der Beschichtung wurde primär auf den Kathodenmaterialien demonstriert. Doch auch auf der Anodenseite wurde ihre Anwendungstauglichkeit aufgezeigt, was das große Potential der Beschichtung für eine breite Anwendung in Lithium-Ionen-Batterien verdeutlicht. N2 - Concerning its application on the electrode materials of lithium-ion batteries, in this thesis a new type of coating was developed and investigated. The new coating consists of an inorganic-organic hybrid polymer, which significantly differs from existing coating materials regarding composition and function. Its specific inorganic-organic network was characterized by solid-state NMR, which revealed stable inorganic domains consisting of highly cross-linked polysiloxane units with organic modifications. These modifications are long and flexible chains with functional polyethylene oxide units as well as networks cross-linked via polyethers and diols. With its special structure, the hybrid polymer shows material properties which surpass those of pure inorganic and pure organic materials. The properties were validated by different methods and include a high ionic conductivity of 10\(^{-4}\) S/cm, a high elasticity of E = 63 kPa, a high electrochemical stability of 5.0 V vs. Li/Li\(^+\), and a high thermal stability. Another distinctive feature of the new coating is its gradual network formation, starting with the initial precursors, leading to a hybrid polymer sol and ending with the final hybrid polymer gel. The partial cross-linkage of the precursors in the sol was investigated with liquid-state NMR. Based on the measurements it could be concluded that the organically and inorganically cross-linkable groups are partly interconnected in the sol. The sterically accessible Si-OR groups are predominantly not hydrolyzed. So an inorganic linkage of the hybrid polymer sol’s oligomers to the OH groups of the particles’ surfaces is kinetically favored, which enables the creation of particularly homogeneous and entire particle coatings. This was shown by several physical and chemical methods of measurement: simulation-based backscattered electron analysis via SEM, high-resoluted images via TEM and elemental analysis by means of EDS and XPS. After optimization of the wet chemical coating processes via rotary evaporation, hybrid polymer coatings of approximately 20 nm were realized on Li\(_4\)Ti\(_5\)O\(_{12}\), Li(Ni,Co,Mn)O\(_2\) and Li(Mn,Ni)\(_2\)O\(_4\). The solvent resistance of the coatings was investigated by TG, SEM, XPS and ICP-OES. These measurements revealed a good resistance against NMP, the classical solvent for the electrode production with PVDF binder. Similar results were obtained for the environmentally friendly solvent acetone. However, a partial dissolution was observed in both solvents. Nevertheless, a closed nanocoating remained on the particles’ surfaces after solvent treatment. Only for the solvent H\(_2\)O, which is used in combination with the binder CMC, an insufficient resistance became evident, caused by a swelling of the coating that was detected by means of a thin film model system and measurements with SEM, IR, and EPA. An optimization of the hybrid polymer material considering the H\(_2\)O resistance would exceed the scope of this work and provides the basis for future scientific research. Based on the flawless new coating, its specific properties and its resistance during the classical electrode production, it is possible to fundamentally improve electrode materials regarding their most important characteristics. For that reason electrodes were fabricated with NMP and with acetone as solvent and processed to half and full cells. Analysis with SEM revealed that the hybrid polymer coating had no impact on the homogeneity and morphology of the composite electrodes, enabling a direct comparison of the coated and uncoated materials with regard to their electrochemical performance. For the cathode materials, Li(Ni,Co,Mn)O\(_2\) and Li(Mn,Ni)\(_2\)O\(_4\), cycling and impedance measurements showed that by the coating both materials have a considerably improved cycling stability of more than 60 %, going along with an increased energy density. Regarding Li(Mn,Ni)\(_2\)O\(_4\) the improvement is expressed in an increased cell voltage compared to typical materials because of its high redox potential of about 4.7 V vs. Li/Li\(^+\). In the case of Li(Ni,Co,Mn)O\(_2\) an improved high voltage stability enables higher operating voltages and consequently higher capacities. It has to be pointed out that no negative influence of the thin coating on the power density could be detected. The formation of a physical protection layer in the form of a Li\(^+\) conducting membrane is the expected mechanism for the improved electrode function by the hybrid polymer, hence, protecting the electrode against undesired reactions with the electrolyte. As a consequence the Mn leaching and the evolution of insulating surface layers consisting of reaction products like LiF, Li\(_2\)O and Li\(_2\)CO\(_3\) is suppressed, leading to a reduced aging of the electrode materials. The coating function was primarily demonstrated for the cathode materials, but its suitability was also shown on the anode side, revealing the large potential of the coating for a broad application in lithium-ion batteries. KW - Lithium-Ionen-Akkumulator KW - Beschichtung KW - Polymere KW - Lithium-Ionen-Batterie KW - beschichtetes Elektrodenmaterial KW - anorganisch-organisches Hybridpolymer KW - lithium-ion battery KW - coated electrode material KW - inorganic-organic hybrid polymer KW - core-shell particles KW - improved cyle life KW - Kern-Schale-Partikel KW - verbesserte Zyklenfestigkeit Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-152300 ER - TY - THES A1 - Beyer, Matthias T1 - Untersuchungen zu photovernetzbaren und biokompatiblen (Hybrid-)Polymeren T1 - Investigations of photo-curable and biocompatible (hybrid) polymers N2 - Die Arbeit beschäftigte sich mit Untersuchungen zu photovernetzbaren und –strukturierbaren (Hybrid-)Polymeren, um Grundlagen für die Herstellung von Trägergerüststrukturen (Scaffolds) auf Basis photovernetzbarer (Hybrid-)Polymere zu legen und damit in der Zukunft patientenindividuelle medizinische Werkstücke, die beliebig durch Zwei-Photonen-Absorptionsprozesse in drei Dimensionen strukturierbar sind, für die Regenerative Medizin zu ermöglichen. Dafür wurden zunächst die zum Teil in der Literatur unbekannten unterschiedlichen Monomere Acr-1, MAcr-2, Acr-3, MAcr-4 und DiMAcr-5 synthetisiert. Dabei handelt es sich um einfache und gut vergleichbare organische (Meth-)Acrylat-Monomere, die mono- bzw. difunktional in ihren photochemisch reaktiven Gruppen sind. Die synthetisierten organischen Monomere Acr-3, MAcr-4 und DiMAcr-5 wurden in verschiedenen Verhältnissen mit dem anorganisch-organischen Methacrylat-basierten Hybridpolymers ORMOCER® I kombiniert. Die (Co-)Polymerisation der unterschiedlichen Formulierungen wurde in situ mittels UV-DSC-Untersuchung verfolgt. Dabei wurden bei diesen Untersuchungen zum Teil deutliche Unterschiede im Reaktionsverlauf der einzelnen Materialformulierungen festgestellt. So konnten zum Beispiel bei Monomermischungen ein schnellerer Polymerisationsverlauf sowie eine höhere maximale Polymerisationsrate als bei den jeweiligen Einzelkomponenten beobachtet werden (Synergieeffekt). Diese Beobachtungen wurden anhand der Monomerstruktur (unterschiedliche Diffusionsfähigkeiten im vergelten, aber noch nicht erstarrten System durch Mono- bzw. Difunktionalität) und der Art der funktionellen Gruppe (Acrylat- bzw. Methacrylatgruppe) erklärt. Weiterhin wurden der Einfluss des verwendeten Photoinitiators und dessen eingesetzte Konzentration auf die photochemisch-induzierte Copolymerisation eines ausgewählten Systems beleuchtet. Dazu wurden verschiedene Einflussfaktoren der Initiation betrachtet. Neben der eingesetzten Initiatorkonzentration spielen auch die Absorptionseigenschaften, die umgebende Matrix und die Initiatoreffizienz eine große Rolle für den Reaktionsverlauf der photochemischen Vernetzung. Weiterhin wurden die Photoinitiatoren in unterschiedlichen Konzentrationen eingesetzt, um die dadurch induzierte Veränderung des Reaktionsverlaufs zu betrachten. Aus den Einflüssen auf die Reaktionsverläufe konnte geschlossen werden, dass diese sowie auch die maximale Polymerisationsrate RP,max und damit die Reaktionskinetik nicht in jedem Fall linear mit der Initiatorkonzentration zunehmen muss. Erste generelle 2PP-Strukturierungen wurden zudem an ausgewählten Material-formulierungen durchgeführt. Dabei zeigte sich, dass alle Formulierungen bei bestimmten Parameterkombinationen aus Laserleistung und Schreibgeschwindigkeit mittels 2PP strukturiert werden konnten. Außerdem wurden bei den verschiedenen Formulierungen bei gleicher Parameterkombination unterschiedliche Strukturbreiten und damit erstmalig unterschiedliche Strukturvolumina beobachtet. Diese unterschiedlichen Volumina konnten erstmalig mit den unterschiedlichen Reaktionsverläufen der Materialformulierungen korreliert werden. Dabei zeigte sich, dass das chemische Wechselwirkungsvolumen von der Funktionalität der eingesetzten Materialkomponenten abhängig ist, da davon der Grad an Quervernetzung abhängt, der bestimmt, ob ausreichend vernetzte Voxel und Strukturen entstehen, die durch einen Entwicklungsschritt nicht mehr entfernt werden. Im zweiten Teil der Arbeit wurde ein biokompatibles und photostrukturierbares Hybridpolymer (RENACER® MB-I) entwickelt, welches mittels 2PP strukturiert werden konnte, was anhand kleiner wie auch großer Scaffolds mit dem Material demonstriert wurde. Dazu wurde das kommerziell erhältliche Alkoxysilan-Molekül O-(Methacryloxyethyl)-N-(triethoxysilylpropyl)urethan als Precursor verwendet. Durch eine bewusst unvollständige Hydrolyse- und Kondensationsreaktion konnte aus dem Precursorsilan ein Hybridpolymerharz hergestellt werden, welches anorganisch vorverknüpft war. Weiterhin wies es sowohl als Volumenpolymer, als auch in Form von Scaffold-Strukturen eine sehr gute Biokompatibilität auf. Um zu untersuchen, ob die im Hybridpolymer enthaltenen prinzipiell degradierbaren Gruppen unter physiologischen Bedingungen tatsächlich degradieren und Teile aus dem Polymerverband herausgelöst werden können, wurde ein selbstentwickeltes Verfahren für stationäre Degradations-untersuchungen in phosphat-gepufferter Saline (PBS, pH = 7,4) verwendet. Die durch die photochemische Polymerisation neu entstandenen Ketten besaßen ihrer Natur gemäß keine hydrolysierbaren Einheiten, weshalb das Hybridpolymer nicht vollständig degradieren kann. Es konnte jedoch ein prinzipieller Zugang zu Gerüstträgerstrukturen auf Basis photovernetzbarer Polymere für die Regenerative Medizin geschaffen werden. N2 - The objective was the investigation of photo-curable and patternable (hybrid) polymers for applications in regenerative medicine, in order to explore basic principles for scaffold fabrication by two-photon polymerization. This would enable patient-individual medical implants. As model systems for subsequent investigations, the monomers Acr-1, MAcr-2, Acr-3, MAcr-4, and DiMAcr-5 were synthesized. These compounds are well comparable organic (meth)acrylate monomers with a functionality of one and two, respectively. The monomers Acr-3, MAcr-4, and DiMAcr-5 were combined with a well-known methacrylate-based inorganic-organic hybrid polymer ORMOCER® I in different molar ratios. After preparation of the monomers and their formulations with ORMOCER® I introducing defined amounts of photoinitiator Irgacure® 369 into the material systems, the materials’ reaction was monitored in situ by photo-DSC investigations. In particular, the effect of the different monomer ratios on the copolymerization behavior was studied in more detail. A higher maximum polymerization rate and, therewith, a higher reaction speed was found for all formulations of monomer mixtures in contrast to the corresponding individual monomers (synergy effect). Moreover, by comparing the various organic monomers, considerable differences could be identified in between acrylates and methacrylates as well as for the mono- and difunctional species. These effects were explained by means of the type of their photochemically organically cross-linkable functional groups and thus their resulting reactivity as well as by the monomer structure and functionality itself, resulting in different diffusion abilities of mono-, oligo- and polymeric species within gelled systems. Furthermore, the influence of several photoinitiators and the initiator concentration on the photochemically induced copolymerization was investigated. Besides the initiator concentration, also the initiators’ absorption properties, the resin matrix and the initiators’ efficiency play an important role for the reaction profile of the photochemical cross-linking. All different photoinitiators were introduced into the model system in three different concentrations to explore the induced alterations on the reaction profile. For some of the investigated initiators, the maximum polymerization rate RP,max and, therewith, the overall reaction kinetics increased with increasing photoinitiator concentration, but for other initiators, the maximum polymerization rate RP,max was lowered at increased initiator concentrations. Thus, a general relationship between the photoinitiator concentration and the maximum polymerization rate RP,max could not be identified. First structures were generated out of selected mixtures by two-photon polymerization in order to demonstrate the novel materials’ ability of being patterned in three dimensions. Three dimensional structures were generated with specific parameter combinations of laser power and writing speed, whereas each parameter set corresponds to an individual exposure dose deposited in the materials’ volume. In particular, different structure widths were observed for different material formulations fabricated with the same parameter sets. Thus, it was possible for the first time to experimentally observe different chemical interaction volumes. These interaction volumes were correlated to the different reaction profiles of the material formulations, which were received via 1PP photo-DSC measurements. It was shown that the structure volume depends on the functionality of the employed monomers, because their degree of cross-linking depends on their functionality. The degree of cross-linking which results upon polymerization determines, whether a structure maintains stable during the subsequent development process. In the second part of this work, a biocompatible and photo-patternable hybrid material was developed. Commercially available O-(methacryloxyethyl)-N-(triethoxysilylpropyl)-urethane was chosen for an intentional incomplete hydrolysis and condensation reaction in order to receive a RENACER® resin, which includes functional groups for subsequent organic cross-linking. This material showed a very good patterning performance, which was demonstrated by a series of structures and scaffolds. The material yields a good biocompatibility. In order to investigate, whether the hydrolysable functional groups within the hybrid polymer actually degrade under physiological conditions, a procedure routine for stationary degradation studies in phosphate-buffered saline (PBS) was developed. The carbon chain generated through photochemical cross-linking, has no hydrolyzable groups and naturally cannot be degraded, resulting in a hybrid polymer which is not completely degradable. However, a principal access to scaffolds for regenerative medicine on the basis of photo-curable polymers was accomplished which was the purpose of this work. KW - Photopolymerisation KW - Zwei-Photonen-Polymerisation KW - Copolymerisation KW - Reaktionskinetik KW - Biokompatibilität KW - Photo-DSC KW - Kinetik Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-97131 ER - TY - THES A1 - Bertlein, Sarah T1 - Hydrogels as Biofunctional Coatings and Thiol-Ene Clickable Bioinks for Biofabrication T1 - Hydrogele als biofunktionale Beschichtungen und Thiol-Ene-clickbare Biotinten für die Biofabrikation N2 - Ziel dieser Arbeit war die Entwicklung von funktionalisierbaren Hydrogel Beschichtungen für Schmelz-elektrogeschriebene PCL Gerüste und von Bio-druckbaren Hydrogelen für die Biofabrikation. Hydrogel Beschichtungen von Schmelz-elektrogeschriebenen Konstrukten ermöglichten die Kontrolle der Oberflächen-Hydrophilie und damit Zell-Material Interaktionsstudien in minimal Protein-adhäsiven Umgebungen. Zu diesem Zweck wurde ein hydrophiles sternförmiges vernetzbares Polymer verwendet und eine Optimierung der Beschichtungsbedingungen durchgeführt. Außerdem boten neu entwickelte photosensitive Konstrukte eine Zeit- und pH-unabhängige Biofunktionalisierung. Bio-druckbare Hydrogele für die Biofabrikation basierten auf der Allyl-Funktionalisierung von Gelatine (GelAGE) und modifizierten Hyaluronsäure-Produkten, die das Hydrogel-Vernetzen mittels Thiol-En Click Chemie ermöglichen. Die Optimierung der GelAGE Hydrogel-Eigenschaften wurde durch eine detaillierte Analyse der Syntheseparameter, variierender En:SH Verhältnisse, unterschiedlicher Vernetzungsmoleküle und Photoinitiatoren erreicht. Die Homogenität der Thiol-En Netzwerke wurde mit denen der freien radikalischen Polymerisation verglichen und die Verwendbarkeit von GelAGE als Bio-Tinte für den Extrusions-basierten Bio-Druck wurde untersucht. Es wurde angenommen, dass reine Hyaluronsäure-basierte Bio-Tinten eine Beibehaltung der mechanischen und rheologischen Eigenschaften, der Zellviabilität und der Prozessierbarkeit ermöglichen trotz geringerem Polymer- und Thiol-Anteil der Hydrogele. Hydrogel-Beschichtungen: Hoch definierte PCL Gerüste wurden mittels MEW hergestellt und anschließend mit sechs armigen sternförmigen vernetzbaren Polymeren (sP(EO-stat-PO)) beschichtet. Die Vernetzung wird durch die wässrig-induzierte Hydrolyse reaktiver Isocyanatgruppen (NCO) von sP(EO-stat-PO) bedingt. Diese Beschichtung erhöhte die Oberflächen-Hydrophilie und stellte eine Plattform für weitere Biofunktionalisierungen, in minimal Protein-adhäsiven Umgebungen, dar. Nicht nur das Beschichtungsprotokoll wurde hinsichtlich der sP(EO-stat-PO) Konzentrationen und der Beschichtungsdauern optimiert, sondern auch Vorbehandlungen der Gerüste wurden entwickelt. Diese waren essentiell um die finale Hydrophilie von sP(EO-stat-PO) beschichteten Gerüste so zu erhöhen, dass unspezifische Protein-Adhäsionen vollständig unterbunden wurden. Die sP(EO-stat-PO) Schichtdicke, von ungefähr 100 nm, ermöglicht generell in vitro Studien nicht nur in Abhängigkeit der Gerüst-Biofunktionalisierung, sondern auch in Abhängigkeit der Gerüst-Architektur durchzuführen. Das Ausmaß der Hydrogel-Beschichtung wurde mittels einer indirekten Quantifizierung der NCO-Hydrolyse-Produkte ermittelt. Kenntnis über die NCO-Hydrolyse-Kinetik ermöglichte ein Gleichgewicht zwischen ausreichend beschichteten Gerüsten und der Präsenz der NCO-Gruppen herzustellen, welche für die anschließenden Biofunktionalisierungen genutzt wurden. Diese Zeit- und pH-abhängige Biofunktionalisierung war jedoch nur für kleine Biomoleküle möglich. Um diese Beschränkung zu umgehen und auch hochmolekulare Biomoleküle kovalent anzubinden, wurde ein anderer Reaktionsweg entwickelt. Dieser basierte auf der Photolyse von Diazirin-Gruppen und ermöglichte eine Zeit- und pH-unabhängige Biofunktionalisierung der Gerüste mit Streptavidin und Kollagen Typ I. Die Fibrillen bildende Eigenschaft von Kollagen wurde genutzt um auf den Gerüsten verschiedene Kollagen-Konformationen zu erhalten und eine erste in vitro Studie bestätigte die Anwendbarkeit für Zell-Material Interaktionsstudien. Die hier entwickelten Gerüste könnten verwendet werden um tiefere Einblicke in die Grundlagen der zellulären Wahrnehmung zu erhalten. Insbesondere die Komplexität mit der Zellen z.B. Kollagen wahrnehmen bleibt weiterhin klärungsbedürftig. Hierfür könnten diverse Hierarchien von Kollagen-ähnlichen Konformationen an die Gerüste gebunden werden, z.B. Gelatine oder Kollagen-abgeleitete Peptidsequenzen. Dann könnte die Aktivierung der DDR-Rezeptoren in Abhängigkeit der Komplexität der angebundenen Substanzen bestimmt werden. Aufgrund der starken Streptavidin-Biotin Bindung könnten Streptavidin funktionalisierte Gerüste eine vielseitige Plattform für die Immobilisierung von jeglichen biotinylierten Molekülen darstellen. Gelatine-basierte Bio-Tinten: Zuerst wurden die GelAGE-Produkte hinsichtlich der Molekulargewichts-Verteilung und der Integrität der Aminosäuren-Zusammensetzung synthetisiert. Eine detailliert Studie, mit variierenden molaren Edukt-Verhältnissen und Synthese-Zeitspannen, wurde durchgeführt und implizierte, dass der Gelatine Abbau am deutlichsten für stark alkalische Synthesebedingungen mit langen Reaktionszeiten war. Gelatine beinhaltet mehrere funktionalisierbare Gruppen und anhand diverser Model-Substanzen und Analysen wurde die vorrangige Amingruppen-Funktionalisierung ermittelt. Die Homogenität des GelAGE-Polymernetzwerkes, im Vergleich zu frei radikalisch polymerisierten GelMA-Hydrogelen, wurde bestätigt. Eine ausführliche Analyse der Hydrogel-Zusammensetzungen mit variierenden funktionellen Gruppen Verhältnissen und UV- oder Vis-Licht induzierbaren Photoinitiatoren wurde durchgeführt. Die UV-Initiator Konzentration ist aufgrund der Zell-Toxizität und der potenziellen zellulären DNA-Beschädigung durch UV-Bestrahlung eingeschränkt. Das Zell-kompatiblere Vis-Initiator System hingegen ermöglichte, durch die kontrollierte Photoinitiator-Konzentration bei konstanten En:SH Verhältnissen und Polymeranteilen, die Einstellung der mechanischen Eigenschaften über eine große Spanne hinweg. Die Flexibilität der GelAGE Bio-Tinte für unterschiedliche additive Fertigungstechniken konnte, durch Ausnutzung des temperaturabhängigen Gelierungsverhaltens unterschiedlich stark degradierter GelAGE Produkte, für Stereolithographie und Extrusions-basiertem Druck bewiesen werden. Außerdem wurde die Viabilität zellbeladener GelAGE Konstrukte bewiesen, die mittels Extrusions-basiertem Bio-Druck erhalten wurden. Die Verwendung diverser multifunktioneller und makromolekularer Thiol-Vernetzungsmoleküle ermöglichte eine Verbesserung der mechanischen und rheologischen Eigenschaften und ebenso der Prozessierbarkeit. Verglichen mit dem kleinen bis-Thiol-funktionellen Vernetzungsmolekül waren geringere Thiol-Vernetzer-Konzentrationen notwendig um bessere mechanische Festigkeiten und physikochemische Eigenschaften der Hydrogele zu erhalten. Der Extrusions-basierte Bio-Druck unterschiedlicher eingekapselter Zellen verdeutlichte die Notwendigkeit der individuellen Optimierung von Zell-beladenen Hydrogel-Formulierungen. Nicht nur die Zellviabilität von eingekapselten Zellen in Extrusions-basierten biogedruckten Konstrukten sollte bewertet werden, sondern auch andere Parameter wie die Zellmorphologie oder die Kollagen- oder Glykosaminoglykan-Produktion, da diese einige der essentiellen Voraussetzungen für die Verwendung in Knorpel Tissue Engineering Konzepten darstellen. Außerdem sollten diese Studien auf die stereolithographischen Ansätze erweitert werden und letztlich wäre die Flexibilität und Zellkompatibilität der Formulierungen mit makromolekularen Vernetzern von Interesse. Makromolekulare Vernetzer ermöglichten die Reduktion des Polymeranteils und des Thiol-Gehalts und können, insbesondere in Kombination mit dem Zell-kompatibleren Vis-Initiator-System, voraussichtlich zu einer gesteigerten Zellkompatibilität beitragen, was zu klären bleibt. Hyaluronsäure-basierte Bio-Tinten: Unterschiedliche Hyaluronsäure-Produkte (HA) wurden synthetisiert, sodass diese En- (HAPA) oder Thiol-Funktionalitäten (LHASH) beinhalteten, um reine HA Thiol-En vernetzte Hydrogele zu erhalten. In Abhängigkeit des Molekulargewichts der HA-Produkte, der Polymeranteile und des En:SH Verhältnisses, konnte eine große Spanne an mechanischen Festigkeiten abgedeckt werden. Aufgrund der hohen Viskosität war allerdings im Falle von hochmolekularen HA (HHAPA) Produkt-Lösungen (HHAPA + LHASH) die Handhabbarkeit auf 5.0 wt.-% beschränkt. Die Verwendung der gleichen HA Thiol-Komponenten (LHASH) ermöglichte Hybrid-Hydrogele, mit HA und GelAGE, mit reinen HA-Hydrogelen zu vergleichen. Obwohl der Polymeranteil von HHAPA + LHASH Hydrogelen signifikant geringer war, als im Vergleich zu Hybrid-Hydrogelen (GelAGE + LHASH), wurden für gleiche En:SH Verhältnisse ähnliche mechanische und physikochemische Eigenschaften reiner HA-Hydrogele bestimmt. Aufgrund der geringen Viskosität niedermolekularer HA Lösungen (LHAPA + LHASH) konnten diese nicht für den Extrusions-basierten Druck verwendet werden. Das nicht temperaturabhängige HHAPA + LHASH System hingegen konnte mit nur einem Viertel des Polymeranteils der Hybrid Formulierungen gedruckt werden. Im Vergleich zu der Hybrid Bio-Tinte wurde angenommen, dass das hoch viskose Verhalten von HHAPA + LHASH Lösungen, der geringere Polymeranteil, der geringere Druck für das Drucken und eine demzufolge geringere Scherspannung, maßgeblich zu der hohen Zellviabilität in Extrusions-basiert-biogedruckten Konstrukten beisteuerten. Die niedrigmolekulare HA Formulierung (LHAPA + LHASH) konnte zwar nicht für den Extrusions-basierten Druck verwendet werden, allerdings besitzt dieses System Potential für andere additive Fertigungstechniken wie z.B. der Stereolithographie. Um dieses System weiterzuentwickeln wäre, analog zu dem GelAGE System, eine detailliertere Studie zu den Funktionen eingekapselter Zellen hilfreich. Außerdem sollte die Initiierung dieses Systems mit dem Vis-Initiator untersucht werden. N2 - Aim of this thesis was the development of functionalizable hydrogel coatings for melt electrowritten PCL scaffolds and of bioprintable hydrogels for biofabrication. Hydrogel coatings of melt electrowritten scaffolds enabled to control the surface hydrophilicity, thereby allowing cell-material interaction studies of biofunctionalized scaffolds in minimal protein adhesive environments. For this purpose, a hydrophilic star- shaped crosslinkable polymer was used and the coating conditions were optimized. Moreover, newly developed photosensitive scaffolds facilitated a time and pH independent biofunctionalization. Bioprintable hydrogels for biofabrication were based on the allyl-functionalization of gelatin (GelAGE) and modified hyaluronic acid-products, to enable hydrogel crosslinking by means of the thiol-ene click chemistry. Optimization of GelAGE hydrogel properties was achieved through an in-depth analysis of the synthesis parameters, varying Ene:SH ratios, different crosslinking molecules and photoinitiators. Homogeneity of thiol-ene crosslinked networks was compared to free radical polymerized hydrogels and the applicability of GelAGE as bioink for extrusion-based bioprinting was investigated. Purely hyaluronic acid-based bioinks were hypothesized to maintain mechanical- and rheological properties, cell viabilities and the processability, upon further decreasing the overall hydrogel polymer and thiol content. Hydrogel coatings: Highly structured PCL scaffolds were fabricated with MEW and subjected to coatings with six-armed star-shaped crosslinkable polymers (sP(EO-stat-PO)). Crosslinking results from the aqueous induced hydrolysis of reactive isocyanate groups (NCO) of sP(EO-stat-PO) and increased the surface hydrophilicity and provided a platform for biofunctionalizations in minimal protein adhesive environments. Not only the coating procedure was optimized with respect to sP(EO-stat-PO) concentrations and coating durations, instead scaffold pre-treatments were developed, which were fundamental to enhance the final hydrophilicity to completely avoid unspecific protein adsorption on sP(EO-stat-PO) coated scaffolds. The sP(EO-stat-PO) layer thickness of around 100 nm generally allows in vitro studies not only in dependence on the scaffold biofunctionalization but also on the scaffold architecture. The hydrogel coating extent was assessed via an indirect quantification of the NCO-hydrolysis products. Knowledge of NCO-hydrolysis kinetics enabled to achieve a balance of sufficiently coated scaffolds while maintaining the presence of NCO-groups that were exploited for subsequent biofunctionalizations. However, this time and pH dependent biofunctionalization was restricted to small biomolecules. In order to overcome this limitation and to couple high molecular weight biomolecules another reaction route was developed. This route was based on the photolysis of diazirine moieties and enabled a time and pH independent scaffold biofunctionalization with streptavidin and collagen type I. The fibril formation ability of collagen was used to obtain different collagen conformations on the scaffolds and a preliminary in vitro study demonstrated the applicability to investigate cell-material interactions. The herein developed scaffolds could be applied to gain deeper insights into the fundamentals of cellular sensing. Especially the complexity by which cells sense e.g. collagen remain to be further elucidated. Therefore, different hierarchies of collagen-like conformations could be coupled to the scaffolds, e.g. gelatin or collagen-derived peptide sequences, and the activation of DDR receptors in dependence on the complexity of the coupled substances could be determined. Due to the strong streptavidin-biotin bond, streptavidin functionalized scaffolds could be applied as a versatile platform to allow immobilization of any biotinylated molecules. Gelatin-based bioinks: First the GelAGE products were synthesized with respect to molecular weight distributions and amino acid composition integrity. A detailed study was conducted with varying molar ratios of reactants and synthesis durations and implied that gelatin degradation was most dominant for high alkaline synthesis conditions with long reaction times. Gelatin possesses multiple functionalizable groups and the predominant functionalization of amine groups was confirmed via different model substances and analyses. Polymer network homogeneity was proven for the GelAGE system compared to free radical polymerized hydrogels with GelMA. A detailed analysis of hydrogel compositions with varying functional group ratios and UV- or Vis-light photoinitiators was executed. The UV-initiator concentration is restricted due to cytotoxicity and potential cellular DNA damages upon UV-irradiation, whereas the more cytocompatible Vis- initiator system enabled mechanical stiffness tuning over a wide range by controlling the photoinitiator concentration at constant Ene:SH ratios and polymer weight percentages. Versatility of the GelAGE bioink for different AM techniques was proved by exploiting the thermo-gelling behavior of differently degraded GelAGE products for stereolithography and extrusion-based printing. Moreover, the viability of cell-laden GelAGE constructs was demonstrated for extrusion-based bioprinting. By applying different multifunctional thiol-macromolecular crosslinkers the mechanical and rheological properties improved concurrently to the processability. Importantly, lower thiol-crosslinker concentrations were required to yield superior mechanical strengths and physico-chemical properties of the hydrogels as compared to the small bis-thiol-crosslinker. Extrusion-based bioprinting with distinct encapsulated cells underlined the need for individual optimization of cell-laden hydrogel formulations. Not only the viability of encapsulated cells in extrusion-based bioprinted constructs should be assessed, instead other parameters such as cell morphology or production of collagen or glycosaminoglycans should be considered as these represent some of the crucial prerequisites for cartilage Tissue Engineering applications. Moreover, these studies should be expanded to the stereolithographic approach and ultimately the versatility and cytocompatibility of formulations with macromolecular crosslinkers would be of interest. Macromolecular crosslinkers allowed reducing polymer weight percentages and amounts of thiol groups and are thus expected to contribute to increased cytocompatibility, especially in combination with the more cytocompatible Vis-initiator system, which remains to be elucidated. Hyaluronic acid-based bioinks: Different molecular weight hyaluronic acid (HA) products were synthesized to bear ene- (HAPA) or thiol-functionalities (LHASH) to enable pure HA thiol-ene crosslinked hydrogels. Depending on the molecular weight of modified HA products, polymer weight percentages and Ene:SH ratios, a wide range of mechanical stiffness was covered. However, the manageability of high molecular weight HA (HHAPA) product solutions (HHAPA + LHASH) was restricted to 5.0 wt.-% as a consequence of the high viscosity. Based on the same HA thiol component (LHASH), hybrid hydrogels of HA with GelAGE were compared to pure HA hydrogels. Although the overall polymer weight percentage of HHAPA + LHASH hydrogels was significantly lowered compared to hybrid hydrogels (GelAGE + LHASH), similar mechanical and physico-chemical properties of pure HA hydrogels were determined with maintained Ene:SH ratios. Low viscous low molecular weight HA precursor solutions (LHAPA + LHASH) prevented the applicability for extrusion-based bioprinting, whereas the non-thermoresponsive HHAPA + LHASH system could be bioprinted with only one-fourth of the polymer content of hybrid formulations. The high viscous behavior of HHAPA + LHASH solutions, lower polymer weight percentages, decreased printing pressures and consequently declined shear stress during printing, were hypothesized to contribute to high cell viabilities in extrusion-based bioprinted constructs compared to the hybrid bioink. The low molecular weight HA precursor formulation (LHAPA + LHASH) was not applicable for extrusion-based printing, but this system has potential for other AM techniques such as stereolithography. Similar to the GelAGE system a more detailed study on the functions of encapsulated cells would be useful to further develop this system. Moreover, the initiation with the Vis-initiator should be conducted. KW - Biomaterial KW - Bioink KW - hydrogel KW - biofabrication KW - Hydrogel Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-174225 ER - TY - JOUR A1 - Belka, Janina A1 - Nickel, Joachim A1 - Kurth, Dirk G. T1 - Growth on metallo-supramolecular coordination polyelectrolyte (MEPE) stimulates osteogenic differentiation of human osteosarcoma cells (MG63) and human bone marrow derived mesenchymal stem cells JF - Polymers N2 - Background: Culturing of cells is typically performed on standard tissue culture plates generating growth conditions, which in general do not reflect the native three-dimensional cellular environment. Recent investigations provide insights in parameters, which strongly affect the general cellular behavior triggering essential processes such as cell differentiation. The physical properties of the used material, such as stiffness, roughness, or topology, as well as the chemical composition of the cell-surface interface are shown to play a key role in the initiation of particular cellular responses. Methods: We extended our previous research, which identified thin films of metallo-supramolecular coordination polyelectrolytes (MEPEs) as substrate to trigger the differentiation of muscular precursor cells. Results: Here, we show that the same MEPEs similarly stimulate the osteogenic differentiation of pre-osteoblasts. Remarkably, MEPE modified surfaces also trigger the differentiation of primary bone derived mesenchymal stem cells (BMSCs) towards the osteogenic lineage. Conclusion: This result leads to the conclusion that these surfaces individually support the specification of cell differentiation toward lineages that correspond to the natural commitment of the particular cell types. We, therefore, propose that Fe-MEPEs may be used as scaffold for the treatment of defects at least in muscular or bone tissue. KW - cell differentiation KW - metallo-supramolecular polymer KW - interface KW - iron metabolism Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197264 SN - 2073-4360 VL - 11 IS - 7 ER - TY - THES A1 - Belka, Janina T1 - Biomaterialien auf der Basis von Terpyridin-koordinierten Metallionen T1 - Biomaterials based on terpyridine-coordinated metal ions N2 - In der vorliegenden Arbeit wird der Einfluss von Metallkomplexverbindungen auf der Basis von monotopen und ditopen Terpyridin-Liganden auf Zellen behandelt. Es können mehrere Möglichkeiten aufgezeigt werden, wie MEPE als kontrollierte Freisetzungssysteme für Zel-lanwendungen eingesetzt werden können. Es werden 2D-Beschichtungen, 3D-Knochenzemente und Terpyridin funktionalisierte Alginate hergestellt. Es ist möglich, definier-te, homogene Fe-MEPE Schichten auf Borosilikatglas mithilfe der Layer by Layer Technik und mittels Tauschbeschichtung abzuscheiden. Um die Oberfläche und somit die Freisetzung von Metallionen zu erhöhen, werden zusätzlich poröse SiO2-Schichten hergestellt, welche mit Fe-MEPE infiltriert werden. Um die Anwendbarkeit von Metallkomplexverbindungen auf der Basis von monotopen und ditopen Terpyridin-Liganden als Knochenersatzmaterial zu testen werden Hydroxylapatit Knochenzemente synthetisiert. Ziel ist eine retardierende Freisetzung der Metallionen ohne Burst Effekt und ohne den Verlust der Druckstabilitäten der HA Zemen-te. Die Funktionalisierung von Alginat mit 1-Amino-5-(2,2ʹ:6ʹ,2ʹʹ-terpyrid-4ʹ-yl-oxy)pentan resultiert in Hydrogelen, welche ein anderes Gelierverhalten als das unfunktionalisierte Alginat zeigen. Zudem ist es möglich mit Fe(II)- /Ca(II)-Salzmischungen Hydrogele auszubilden. Die funktionalisierten Alginate sind zudem bioaktiv. Zum grundlegenden Verständnis der MEPE Zell Wechselwirkung werden zunächst Zytotoxo-zitätsuntersuchungen mittels WST-1 Test von L929 und C2C12-Zellen mit wässrigen M(II)MEPE Lösungen (Metallionen M= Fe(II), Co(II), Ni(II), Zn(II)) in einem Konzentrationsbe-reich von 1,56x10-11 bis 1,6x10-5 mol L-1 durchgeführt. Fe-MEPE zeigt im betrachteten Kon-zentrationsbereich keine zytotoxischen Eigenschaften auf die eingesetzte Fibroblastenzelllinie. Bei Konzentrationen über 1x10-6 mol L-1 Fe-MEPE sinkt die Mitochondrienaktivität der C2C12-Zellen auf 40%. Dagegen wirken Co- und Zn-MEPE ab einer Konzentration von 1x10-7 mol L-1 stark zytotoxisch auf L929 und C2C12-Zellen. Um selektiv die Differenzierung von C2C12, MG63, humanen mesenchymalen Stammzellen (hMSCs) und humanen Endothelzellen anzuregen, werden die Zellen auf den hergestellten 2D Beschichtungen ausgesät. Es kann gezeigt werden, dass Fe-MEPE die Proliferation zu-gunsten der Stoffwechselaktivität von C2C12, MG63-Zellen und hMSCs hemmt. Bei weiterer Betrachtung der spezifischen myogenen Differenzierungsmarker der C2C12-Zellen bzw. der spezifischen Gene der osteogenen Differenzierung (Osteocalcin und ALP) mithilfe qRT-PCR können erhebliche Stimulierungen auf der mRNA Basis detektiert werden. Auch auf enzymatischer Ebene zeigen Fe-MEPE modifizierte Oberflächen einen stimulierenden Effekt auf die Aktivität der alkalischen Phosphatase der MG63 Zelllinie und humaner mesenchyma-ler Stammzellen. Somit kann eine Stimulierung der myogenen Differenzierung von C2C12-Zellen, sowie oste-ogenen Differenzierung von MG63-Zellen und hMSCs mittels Fe-MEPE beschichteten Ober-flächen innerhalb von drei Tagen nachgewiesen werden. Die Ergebnisse zeigen, dass Fe-MEPE funktionalisierte Oberflächen als innovative Scaffolds für die Behandlung von Kno-chendefekten eingesetzt werden können. N2 - In this thesis the influence of metal complexes based on monotopic and ditopic terpyridine ligands on cells is discussed. There are several ways MEPE can be used as a controlled re-lease system for cell applications. 2D planar and porous coatings, 3D bone cements and ter-pyridine functionalised alginates are produced. It is possible to deposit defined, homogeneous Fe-MEPE layers on borosilicate glass using the layer by layer technique and by dip coating. In order to increase the surface and thus the release of metal ions, porous SiO2 layers are addi-tionally produced, which are infiltrated with Fe-MEPE. To test the applicability of monosubsti-tuted and ditopic terpyridine ligand metal complexes as bone substitutes, hydroxyapatite bone cements are synthesized. The intent is to release the metal ions without a burst effect and without losing the pressure stability of the HA cements. The functionalization of alginate with 1-amino-5-(2,2'-6',2'-terpyrid-4'-yl-oxy) pentane results in hydrogels which exhibit a different gelling behavior than the unfunctionalised alginate. It is possible to form hydrogels with aqueous Fe (II) / Ca (II) salt mixtures. The functionalized algi-nates are bioactive. To gain a basic understanding of the MEPE cell interaction, cytotoxicity studies are first per-formed by WST-1 assay of L929 and C2C12 cells with aqueous M (II) MEPE solutions (metal ions M = Fe (II), Co (II), Ni (II), Zn (II)) in a concentration range of 1.56 × 10 -11 to 1.6 × 10 -5 mole L-1. In the concentration range Fe-MEPE shows no cytotoxic properties on the fibroblast cell line. At concentrations above 1x10-6 mol L-1 Fe-MEPE the mitochondrial activity of C2C12 cells decreases to 40%. In contrast, Co and Zn MEPEs have a strong cytotoxic effect on L929 and C2C12 cells at a concentration of 1x10-7 mol L-1. C2C12, MG63, human mes-enchymal stem cells (hMSCs) and human endothelial cells are seeded on the prepared Fe-MEPE 2D coatings to selectively stimulate the differentiation. It can be shown that Fe-MEPE inhibits the proliferation in favor of the metabolic activity of C2C12, MG63 cells and hMSCs. Further consideration of the specific myogenic differentiation markers of the C2C12 cells or the specific genes of osteogenic differentiation (osteocalcin and ALP) by means of qRT-PCR, significant mRNA-based stimuli can be detected. Likewise on the enzymatic level, the Fe-MEPE modified surfaces have a stimulating effect on the alkaline phosphatase activity of the MG63 cell line and human mesenchymal stem cells. During 3 days Fe-MEPE stimulates my-ogenic differentiation of C2C12 cells as well as osteogenic differentiation of MG63 cells and hMSCs. Thus, the results indicate that Fe-MEPE functionalized surfaces may serve as inno-vative scaffold for the treatment of bone defects. KW - Biologisches Material KW - Terpyridin <2,2':6',2''-> KW - Terpyridinderivate <2,2':6',2''-> KW - Knochen KW - Biomaterial KW - Terpyridin Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-210659 ER - TY - THES A1 - Back, Franziska T1 - Herstellung SiO2-basierter nano- und mikroskaliger Strukturen via UV-Nanoimprintlithographie auf Basis hybridpolymerer Sol-Gel-Materialien T1 - Synthesis of sio2-based nano- and microscale structures by uv-based nanoimprintlithography based on hybrid sol-gel-materials N2 - Die vorliegende Arbeit beschreibt die Entwicklung von SiO2-basierten nano- und mikroskalig strukturierten Schichten, welche eine Temperaturstabilität > 500 °C sowie eine Strukturtreue > 90 % aufzeigen. Diese wurden unter Verwendung von hybridpolymeren, partikelmodifizierten Sol-Gel-Vorstufen via UV-basierter Nanoimprintlithographie (UV-NIL) hergestellt. Der Einfluss chemischer und verfahrenstechnischer Syntheseparameter auf die anorganische Netzwerkbildung der flüssigen Vorstufe (hybridpolymerer Binder), die Polymerisation und Verdichtung der hybridpolymeren Sol-Gel-Schichten während der thermischen Härtung sowie deren Strukturierung via UV-NIL wurden im Detail untersucht und die erhaltenen Zusammenhänge mit den resultierenden Materialeigenschaften korreliert. Dabei dienten die Kenntnisse hinsichtlich des Schrumpf- und Verdichtungsverhaltens von planaren Schichten als Basis für die daraus hergestellten, strukturierten Schichten. N2 - The present work describes the development of SiO2-based nano- and microstructured coatings with temperature stability > 500 °C and structure fidelity > 90 %. The coatings were produced via UV-nanoimprintlithography (UV-NIL) by using particle modified, hybrid sol-gel-precursors. The influence of synthesis chemical and process parameters on formation of inorganic network of the hybrid binder, polymerisation and densification of hybrid sol-gel-films during thermal annealing and imprinting of the hybrid sol-gel-films were investigated and correlated with resulting material properties. The results of shrinkage and densification of planar coatings were used to characterize the structured coatings. KW - Sol-Gel-Verfahren KW - Nanoprägen KW - Temperaturbeständigkeit KW - Strukturtreue KW - Hybridpolymer KW - Nanoimprint Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-107713 ER -