TY - THES A1 - Baia, Gheorghe Lucian T1 - Theory and applications of confocal micro-Raman spectroscopy on hybrid polymer coatings and PDMS membranes and spectroscopic studies of doped B2O3-Bi2O3 glass systems T1 - Theorie und Anwendung der konfokalen Mikro-Raman-Spektroskopie an hybriden Polymer-Schichten und PDMS-Membranen und spektroskopische Untersuchungen an dotierten B2O3-Bi2O3 Glas-Systemen N2 - The thesis consists of two major parts. The first part contains a theoretical-experimental study of confocal micro-Raman spectroscopy on hybrid polymer coatings and an application of this spectroscopic method on PDMS-membranes. The theoretical-experimental study includes the application of a model that describes the influence of the refraction effect on the focus length on confocal Raman experiments, and the development of a new model that additionally takes into account the effect of diffraction on the focus dimensions. A parallel comparison between these two theoretical approaches and experimental data has been also drawn and a better agreement between theory and experiment was observed, when both refraction and diffraction effects were considered. Further, confocal resonance micro-Raman spectroscopy has been applied to characterise the diffusion processes of pharmacologically relevant molecules (b-carotene dissolved in dimethylsulfoxide) through a polydimethylsiloxane (PDMS)-membrane. The diffusion rate as a function of the measurement depth and diffusion time as well as the concentration gradient under a steady flux have been determined. The measurements shown that the confocal micro-Raman technique is a powerful tool to investigate the kinetics of diffusion processes within a membrane before the steady state has been reached. The second part of the thesis contains infrared and Raman spectroscopic studies of copper and iron doped B2O3-Bi2O3 glass systems. These studies were performed to obtain specific data regarding their local structure and the role played by dopant ions on boron and bismuthate units. The changes of B2O3 and Bi2O3 structural units due to the relaxation of the amorphous structure, which was induced in these samples by the thermal treatment, were also evidenced. N2 - Die vorliegende Arbeit besteht aus zwei Teilen. Der erste Teil beschäftigt sich mit theoretischen und experimentellen Untersuchungen der konfokalen Mikro-Raman-Spektroskopie hybrider Polymer-Schichten und PDMS-Membranen. Dabei wurden besonders die Dimensionen des Fokus in den Proben untersucht, um so einen tieferen Einblick in die bei solchen Messungen auftretenden physikalischen Phänomene zu erhalten. Es wurde zur Berechnung des konfokalen Mikro-Raman-Response-Profils für verschiedene Eindringtiefen innerhalb zweier unterschiedlich beschichteter Proben eine auf Strahlverfolgung basierende Analyse durchgeführt, wobei die sphärische Aberration, die an der Luft/Beschichtungs-Grenzfläche entsteht, mit berücksichtigt wurde. Außerdem wurde ein theoretischer Ansatz entwickelt, der den Einfluss von Brechung und Beugung auf die Fokusverlängerung bei konfokalen Mikro-Raman-Experimenten beschreibt. Im Vergleich zu dem Modell, das nur den Brechungseffekt in Betracht zieht, wird eine Verkürzung der Fokuslänge erreicht, wenn Brechungs- und Beugungseffekte betrachtet werden, was die Übereinstimmung zwischen experimentellen und theoretischen Daten verbessert. Desweiteren wurden die Diffusion von ß-Carotin durch PDMS-Membranen mittels der konfokalen Resonanz-Mikro-Raman-Spektroskopie untersucht. Zunächst wurden Untersuchungen der Diffusionskinetik vor Erreichen des stationären Zustandes durchgeführt. Hierbei konnte die Diffusionsgeschwindigkeit in Abhängigkeit von der Messtiefe und der Messzeit ermittelt werden. Es wurde zusätzlich der Konzentrationsgradient im stationären Fluss von b-Carotin in PDMS-Membranen untersucht. Die Untersuchungen mit der konfokalen Resonanz-Mikro-Raman-Spektroskopie zeigten, dass diese Methode geeignet ist, Diffusionskinetiken im nicht stationären Zustand innerhalb der Membranen zu beobachten. Derartige Untersuchungen sind extrem wichtig für die Entwicklung neuer Applikationsysteme zur kontrollierten Wirkstofffreisetzung. Im zweiten Teil der vorliegenden Arbeit wurden strukturelle Untersuchungen an Kupfer- und Eisen-dotierten B2O3-Bi2O3 Glas-Systemen mittels Infrarot- und Raman-Spektroskopie durchgeführt. Die lokale Struktur des Glas-Netzwerks und der Einfluss der dotierenden Ionen auf die Bismut-Borat Matrix wurden diskutiert. Desweiteren wurde der Einfluss des Bor-Netzes auf die strukturellen Einheiten des Bismuts in den wärmebehandelten Proben bewiesen. Raman- und Infrarot-Spektren der Proben nach Wärmebehandlung zeigten, dass sich die Glasstabilität verringert, wenn der Bismutgehalt zunimmt. KW - konfokal Mikro-Raman-Spektroskopie KW - Infrarot-Spektroskopie KW - hybrid Polymer-Schichten KW - PDMS-Membranen KW - Kupfer- und Eisen-dotierten Glas-Systemen KW - confocal micro-Raman spectroscopy KW - infrared spectroscopy KW - hybrid polymer coatings KW - PDMS-membranes KW - copper and iron doped glass systems Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-4606 ER - TY - THES A1 - Bolboaca, Monica-Maria T1 - Vibrational characterisation of coordination and biologically active compounds by means of IR absorption, Raman and surface-enhanced Raman spectroscopy in combination with theoretical simulations T1 - Schwingungsspektroskopische Untersuchungen an Koordinationsverbindungen und biologisch aktiven Moleküle mittels IR-Absorptions-, Raman- und Oberflächenverstärkten Raman-Spektroskopie in Kombination mit theoretischen Simulationen N2 - The thesis contains two major parts. The first part deals with structural investigations on different coordination compounds performed by using infrared absorption and FT-Raman spectroscopy in combination with density functional theory calculations. In the first section of this part the starting materials Ph2P-N(H)SiMe3 and Ph3P=NSiMe3 and their corresponding [(MeSi)2NZnPh2P-NSiMe3]2 and Li(o-C6H4PPh2NSiMe3)]2·Et2O complexes have been investigated in order to determine the influence of the metal coordination on the P–N bond length. In the next section the vibrational spectra of four hexacoordinated silicon(IV) and germanium(IV) complexes with three symmetrical bidentate oxalato(2-) ligands have been elucidated. Kinetic investigations of the hydrolysis of two of them, one with silicon and another one with germanium, have been carried out at room temperature and at different pH values and it was observed that the hydrolysis reaction occurs only for the silicon compound, the fastest reaction taking place at acidic pH. In the last section of this part, the geometric configurations of some hexacoordinated silicon(IV) complexes with three unsymmetrical bidentate hydroximato(2-) ligands have been determined. The second part of the thesis contains vibrational investigations of some biologically active molecules performed by means of Raman spectroscopy together with theoretical simulations. The SER spectra of these molecules at different pH values have also been analysed and the adsorption behaviour on the metal surface as well as the influence of the pH on the molecule-substrate interaction have been established. N2 - Die vorliegende Arbeit besteht aus zwei Teilen. Der erste Teil beschäftigt sich mit strukturelle Untersuchungen einiger Koordinationsverbindungen mittels IR- und Raman-Spektroskopie in Kombination mit quantenchemischen Rechnungen basierend auf der Dichtefunktionaltheorie. In ersten Kapitel dieses Teils wurden die Edukten Ph2P-N(H)SiMe3 (1a) und Ph3P=NSiMe3 (1b) und ihren entsprechenden Metallkomplexen [(Me3Si)2NZnPh2PNSiMe3]2 (2a) und [Li(o-C6H4PPh2NSiMe3)]2·EtO (2b) untersucht, um so den Einfluss der Koordination zu einem Metallzentrum auf die P-N-Bindungslänge festzustellen. In nächsten Kapitel wurden die IR- und Raman-Spektren einiger neuer hexakoordinierten Silizium(IV)- und Germanium(IV)-Komplexe mit drei symmetrischen zweizähnigen Oxalato(2-)-Liganden untersucht. Zudem wurden noch kinetische Untersuchungen der Hydrolyse zweier Silizium- bzw. Germanium-Komplexe durchgeführt und es konnte festgestellt werden, dass die Hydrolysereaktion nur im Fall des Siliziumkomplexes auftritt. Die Geschwindigkeitskonstanten wurden bei Raumtemperatur für unterschiedliche pH-Werte bestimmt. Somit konnte gezeigt werden, dass die Reaktion am schnellsten im Säuren abläuft. In letzten Kapitel wurde die Konformation einiger hexakoordinierter Silizium(IV)-Komplexe mit drei antisymmetrischen zweizähnigen Liganden vom Hydroximato(2-)-Typ aufgeklärt. Im zweiten Teil der vorliegenden Arbeit wurden Raman-Spektroskopie in Kombination mit theoretischen Berechnungen zur Schwingungscharakterisierung einiger biologisch aktiver Moleküle angewandt. Die SER-Spektren für unterschiedliche pH-Werte wurden untersucht, um die Adsorptionsverhalten auf der Silberoberfläche zu beschreiben. KW - Komplexe KW - FT-Raman-Spektroskopie KW - Infrarotspektroskopie KW - FT-Raman-Spektroskopie KW - Infrarot-Spektroskopie KW - SERS KW - DFT KW - Koordinationsverbindungen KW - biologisch aktiven Moleküle KW - FT-Raman spectroscopy KW - infrared spectroscopy KW - SERS KW - DFT KW - coordination compounds KW - biologically active molecules Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-4616 ER - TY - THES A1 - Seipel, Michael T1 - Chemische Wellen und Fronten in nichtlinearen Reaktions-Diffusions-Systemen T1 - Chemical waves and fronts in nonlinear reaction-diffusion-systems N2 - Die vorliegende Dissertation beschäftigt sich mit nichtlinearen Reaktions-Transport-Systemen, die in zweidimensionalen Medien chemische Wellen und propagierende Fronten ausbilden können. Grundlage dieser Art von räumlichen Mustern sind sogenannte erregbare Systeme. Ein Themengebiet der Arbeit umfasst die Untersuchung von Spiralwellen in der Belousov-Zhabotinsky-Reaktion (BZ-Reaktion). Ein weiterer Teilabschnitt behandelt die Wechselwirkung zwischen Polymersystemen und nichtlinearen chemischen Reaktionen. In den untersuchten, räumlich ausgedehnten Systemen spielt die Kopplung nichtlinearer chemischer Reaktionen an Transportprozesse eine wichtige Rolle. Die generischen Typen von chemischen Mustern sind Pulswellen in einer Raumdimension, kreisförmige Wellen und Spiralen in einem zweidimensionalen System und kugelschalen- bzw. schraubenförmige Wellen in drei Raumdimensionen. Auf theoretischer Basis werden Effekte von Spiralwellen bei Änderung der Erregbarkeit des Reaktionsmediums dargestellt.In der vorliegenden Arbeit ist es erstmals gelungen, eine Methode zu entwickeln, die es erlaubt die Erregbarkeit in der BZ-Reaktion sowie in einer Vielzahl weiterer nichtlinearer Reaktionen zu beeinflussen. Ein weiteres Themengebiet dieser Dissertation ist die Untersuchung von pH-Systeme in Hydrogelen. Dies sind hydrophile Gele, die ihr Volumen in wässrigen Lösungen verändern können. In der vorliegenden Arbeit wurden Gele auf der Basis von Acrylamid und Methacrylat als Copolymer verwendet und an die oben beschriebenen pH-Oszillatoren angekoppelt. Durch Polymerisation von Acrylamid zusammen mit Natriummethacrylat konnte ein mit einem pH-Oszillator beladenes Gel hergestellt werden, das nach Start der Reaktion durch eine kleine Menge Säure mit einer deutlichen Volumenkontraktion reagiert. Diese Kontraktion des Gels konnte ausgenutzt werden, um die chemische Energie eines pH-Reaktionssystems in eine mechanische Kraftwirkung umzuwandeln. N2 - In this thesis nonlinear reaction-transport-systems are presented, which have the ability to form chemical waves and propagating fronts in two-dimensional media. The theoretical basis for an understanding of these kinds of patterns is the theory of excitability in reaction-diffusion-systems. This work is made up of two main sections: One part comprises the investigation of spiral waves in the Belousov-Zhabotinsky reaction (BZ reaction). The other section describes the interaction between polymer networks and nonlinear chemical reactions. Effects of changing excitability in the reaction medium on spiral waves are explained theoretically. In the present thesis for the first time a method was establised, which allows to deliberately control the excitability of the BZ reaction. Another part of the thesis describes nonlinear pH systems in hydrogels. In these autocatalytic reactions a periodic change of the pH can be observed. The pH systems have been coupled to hydrogels. These polymers are hydrophilic and are able to change their volume in aqueous solution. All of the investigated systems generate propagating acidity fronts after locally acidifying the gel with a small amount sulfuric acid. By polymerizing acrylamide together with sodium methacrylate a gel (loaded with a pH oscillator) was produced, that showed a contraction in volume after starting the reaction with a small amount of acid. This contraction was used to convert the chemical energy of a pH reaction system into a mechanical force effect: A small weight fixed to a strip of gel was lifted a few millimeters after starting the reaction inside the gel with acid. KW - Hydrogel KW - Nichtlineares Phänomen KW - Wasserstoffionenkonzentration KW - Nichtlineare Welle KW - Belousov-Zabotinskij-Reaktion KW - Nichtlinearität KW - Reaktions-Diffusions-Systeme KW - BZ-Reaktion KW - Erregbarkeit KW - Hydrogel KW - Nonlinearity KW - reaction-diffusion-systems KW - BZ reaction KW - excitability KW - hydrogel Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-3392 ER - TY - THES A1 - Rösch, Petra T1 - Raman-spektroskopische Untersuchungen an Pflanzen und Mikroorganismen T1 - Raman spectroscopic investigations on plants and microorganisms N2 - In dieser Arbeit werden Pflanzen, Pflanzengewebe, Pflanzenzellen und Mikro-organismen spektroskopisch untersucht und ihre Inhaltsstoffe unter minimaler Probenpräparation im biologischen Gewebe direkt lokalisiert und identifiziert. Unter den verfügbaren Schwingungs-spektroskopischen Methoden ist die Mikro-Raman-Spektroskopie für diese Fragestellungen besonders gut geeignet, da Wasser Raman-Spektren nur wenig beeinflusst. Daher kann mit Raman-spektroskopischen Methoden auch in stark wasserhaltigem Gewebe gemessen werden. Weiterhin erhält man mit der Mikro-Raman-Spektroskopie eine gute räumliche Auflösung im sub-µm-Bereich, wodurch es möglich ist, heterogene Proben zu untersuchen. Darüber hinaus kann die Mikro-Raman-Spektroskopie mit anderen Methoden, wie z. B. der oberflächenverstärkten Raman-Spektroskopie (SERS), kombiniert werden. In pflanzlichen Zellen liegt eine Vielzahl von Substanzen in geringen Konzentrationen vor. Aufgrund der niedrigen Quantenausbeute des Raman-Effekts treten vor allem Substanzen, die eine Resonanz-Verstärkung erfahren, in den Spektren hervor. Diese Substanzen, wie z. B. b-Carotin, können deshalb in geringen Konzentrationen detektiert werden. Der Schwerpunkt dieser Arbeit liegt in der Untersuchung von Sekundär-Metaboliten wie Alkaloiden, Lipiden oder Terpenen, die in der Pflanze agglomerieren. Neben der Identifikation von Inhaltsstoffen, können die Raman-Spektren von Pflanzen für die chemotaxonomische Klassifizierung mit Hilfe der hierarchischen Clusteranalyse verwendet werden. Die Identifizierung von Mikroorganismen auch in sehr geringen Mengen (Monolage, einzelne Zellen) ist mit der Mikro-Raman-Spektroskopie nur unter bestimmten Voraussetzungen durchführbar. Für weitergehende Untersuchungen wird hier die SERS-Sonde oder ein TERS-Aufbau verwendet werden. N2 - This thesis concentrates on the spectroscopic investigation of plants, plant tissue, plant cells as well as microorganisms. The characteristic components of the biological cells have been localized and identified directly in the biological tissue with minimal sample preparation only. Among the different vibrational spectroscopic methods micro Raman spectroscopy appears to be the most suitable technique for such scientific investigations. For example, water which shows sharp absorptions in the infrared is only a weak Raman scatterer. Thus biological tissues containing a high amount of water can be easily studied with Raman spectroscopy. Due to the use of laser light for the excitation of Raman scattering sub-µm spatial resolution can be realized by micro Raman spectroscopy. This allows the investigation of very heterogeneous samples. Furthermore, micro Raman spectroscopy can be combined with other methods such as surface enhanced Raman spectroscopy (SERS). Plant cells consist of a great variety of substances at low concentrations. As the Raman effect has a poor quantum yield mostly resonance enhanced substances can be identified in the resulting spectra. These substances like e. g. b-carotene can be detected down to very low concentrations. The main focus lies on the investigation of secondary metabolites such as alkaloids, lipids or terpenes, which agglomerate in the plant. Besides the identification of plant components, Raman spectra allow the chemotaxonomic classification of plants when combined with a hierarchical cluster analysis. The identification of microorganisms in low amounts (monolayers, single cells) could only be achieved with Raman spectroscopy when certain conditions are met. Further investigations should focus on the SERS probe or the TERS setup. KW - Pflanzen KW - Raman-Spektroskopie KW - Mikroorganismus KW - Oberflächenverstärkter Raman-Effekt KW - Sekundärmetabolit KW - Mikro-Raman-Spektroskopie KW - SERS KW - Lipide KW - ätherische Öle KW - Clusteranalyse KW - Microorganismen KW - micro Raman spectroscopy KW - SERS KW - lipids KW - essential oils KW - cluster analysis KW - microorganisms Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-3539 ER - TY - THES A1 - Pavel, Ioana-Emilia T1 - Vibrational spectroscopy and density functional theory calculations, a powerful approach for the characterization of pharmaceuticals and new organometallic complexes T1 - Schwingungsspektroskopie und Dichtefunktionaltheorie-Rechnungen, ein vielversprechender Ansatz zur Charakterisierung von Pharmazeutika und neuer metallorganischer Komplexe. N2 - In the current work, several well-known pharmaceuticals (1,4-dihydrazinophthalazine sulfate, caffeine, and papaverine hydrochloride) and new organometallic compounds (nickel(II) cupferronato complexes NiL2An, L = PhN2O2-, n = 1, A = o-phenanthroline (1), o,o’-bipyridine (2) and n = 2, A = H2O (3), o-NH2Py (4), o-C6H4(NH2)2 (5); silylene-bridged dinuclear iron complexes [Cp(OC)2Fe]2SiX2 (X = H (6), F (7), Cl (8), Br (9), I (10)); 3-silaoxetane 3,3-dimethyl-2,2,4,4-tetraphenyl-1-oxa-3-silacyclobutane (11) and 3-silathietane 3,3-dimethyl-2,2,4,4-tetraphenyl-1-sila-3-thiacyclobutane (12) compounds), which have successfully been characterized by using vibrational spectroscopy in conjunction with accurate density functional theory (DFT) calculations, are presented. The DFT computed molecular geometries of the species of interest reproduced the crystal structure data very well and in conjunction with IR and Raman measurements helped us to clarify the structures of the compounds, for which no experimental data were available; and this, especially for the new organometallic compounds, where the X-Ray analysis was limited by the non-availability of single crystals (3, 5, 10). Furthermore, a natural population analysis (NPA) and natural bond orbital (NBO) calculations together with a detailed analysis of the IR and Raman experimental as well as calculated spectra of the new organometallic compounds, allowed us to study some special bonding situations (1-12) or to monitor the structural changes observed with the change in temperature during the Raman experiments (11, 12). By combining these two methods (DFT and vibrational spectroscopy), the auspicious results obtained on the organometallic compounds 6-12 and overall in literature, made us confident of the power of theoretical calculations in aiding the interpretation of rich SERS spectra by solving some interesting issues. Consequently, the Raman and SERS spectra of well-known pharmaceuticals (1,4-dihydrazinophthalazine sulfate, caffeine, and papaverine hydrochloride) or new potentially biological active organometallic complexes (1-5), that were synthetized by our coworkers, were discussed with the assistance of the accurate results obtained from DFT calculations (structural parameters, harmonic vibrational wavenumbers, Raman scattering activities), and many previous incomplete assignments have been analyzed and improved. This allowed us to establish the vibrational behavior of these biological compounds near a biological artificial model at different pH values or concentrations (Ag substrate), taking into account that information about the species present under particular conditions could be of great importance for the interpretation of biochemical processes. The total electron density of molecules and the partial charges situated on selected atoms, which were determined theoretically by NPA, allowed us to establish the probability of different atoms acting as an adsorptive site for the metal surface. Moreover, a closer examination of the calculated orbitals of molecules brought further arguments on the presence or absence of the photoproducts at the Ag surface during the irradiation (1,4-dihydrazinophthalazine sulfate). Overall, the results provide a benchmark illustration of the virtues of DFT in aiding the interpretation of rich vibrational spectra attainable for larger polyatomic adsorbates by using SERS, as well as in furnishing detailed insight into the relation between the vibrational properties and the nature of the Ag substrate-adsorbate bonding. Therefore, we strongly believe that theoretical calculations will become a matter of rapidly growing scientific and practical interest in SERS. N2 - In der vorliegenden Arbeit werden allgemein bekannte Pharmazeutika (1,4-Dihydrazin-phtalazinsulfat, Koffein und Papaverinhydrochlorid) und mehrere neue metallorganische Verbindungen (Nickel(II)-Kupferron-Komplexe NiL2An, L = PhN2O2-, n = 1, A = o-phenanthrolin (1), o,o’-bipyridine (2) and n = 2, A = H2O (3), o-NH2Py (4), o-C6H4(NH2)2 (5); Silicium-verbrückte dinucleare Eisen-Komplexe [Cp(OC)2Fe]2SiX2 (X = H (6), F (7), Cl (8), Br (9), I (10)); 3-Silaoxetan 3,3-Dimethyl-2,2,4,4-tetraphenyl-1-oxa-3-silacyclobutan (11) und 3-Silathietan 3,3-Dimethyl-2,2,4,4-tetraphenyl-1-sila-thiacyclobutan (12) Verbindungen) vorgestellt, die erfolgreich unter Verwendung schwingungsspektroskopischer Methoden in Verbindung mit genauen DFT Rechnungen charakterisiert worden sind. Die mittels DFT berechneten Molekülgeometrien der uns interessierenden Substanzen gaben die Daten, die aus Kristallstrukturanalyse erhalten worden sind, sehr gut wieder und halfen uns zusammen mit IR- und Raman-Messungen die Strukturen der Verbindungen aufzuklären, für die bisher keine experimentellen Daten erhältlich waren. Besondere Aufmerksamkeit wurde denjenigen neuen Metallorganika geschenkt, deren Röntgenstrukturanalyse (3, 5, 10) auf Grund der Fehlens von Einkristallen eingeschränkt war. Desweiteren erlaubten uns “natural population analysis” (NPA)- und ” natural bond orbital“ (NBO)-Analysen, ebenso wie detallierte Auswertungen der experimentellen und berechneten Spektren (IR, Raman) der metallorganischen Verbindungen, die Untersuchung spezieller Bindungssituationen (1-12) und die strukturellen Änderungen (11, 12) zu verfolgen, die mit der Variation der Temperatur während der Raman-Messungen einhergehen. Die vielversprechenden Ergebnisse der Untersuchungen an metallorganischen Verbindungen 6-12 sowie entsprechende bisher publizierte Ergebnisse, die durch Kombination dieser zwei Methoden (DFT und Schwingungsspektroskopie) erhalten worden sind, machten uns zuversichtlich, dass theoretische Berechnungen bei der Auswertung auch komplexer SERS-Spektren durch Lösung einiger interessanter Probleme sehr behilflich sein könnten. Folglich konnten die Raman- und SERS-Spektren von bekannten Pharmazeutika (1,4-Dihydrazin-phtalazinsulfat, Koffein und Papaverinhydrochlorid) oder von neuen, potentiell biologisch aktiven Organometall-Komplexen (1-5), die von Mitarbeitern anderer Institute synthetisiert worden sind, unter Zuhilfenahme genauer Ergebnisse aus DFT-Rechnungen (strukturelle Parameter, harmonische Schwingungswellenzahlen, Raman-Streuaktivitäten) interpretiert werden. So war es möglich, viele bisher unvollständig zugeordnete Schwingungen zuzuordnen und zu erklären. Dies erlaubte uns, das Schwingungsverhalten dieser biologischen Substanzen innerhalb eines künstlichen biologischen Modells (Ag-Substrat) bei verschiedenen pH-Werten und Konzentrationen zu ermitteln. Informationen über das Verhalten solcher Verbindungen unter besonderen Bedingungen könnten bei der Interpretation biologischer Prozesse eine wichtige Rolle spielen. Die totale Elektronendichte dieser Moleküle und die Partialladung an unterschiedlichen Atomen, die durch NPA bestimmt wurden, ermöglichten uns, die Adsorptionswahrscheinlichkeit verschiedener Atome an bestimmten Stellen der Metalloberfläche zu ermitteln. Ferner lieferte eine genauere Betrachtung der berechneten Molekülorbitale weitere Hinweise auf das Auftreten oder Fehlen von Photoprodukten auf der Silberoberfläche während der Bestrahlung (1,4-Dihydrazin-phtalazinsulfat). Zusammenfassend zeigen die Ergebnisse die Vorteile von DFT-Rechnungen bei der Interpretation komplexer Schwingungsspektren größerer polyatomarer Adsorbate auf, die nur unter Ausnützung des SERS-Effekts aufgenommen werden können. Auch tragen sie dazu bei, einen detaillierten Einblick in den Zusammenhang zwischen den Schwingungseigenschaften und der Natur der Silbersubstratadsorbat-Bindung zu liefern. Demzufolge sind wir davon überzeugt, dass theoretische Methoden einen größeren Stellenwert bei einem schnell wachsenden wissenschaftlichen und praktischen Interesse an SERS gewinnen werden. KW - Arzneimittel KW - Oberflächenverstärkter Raman-Effekt KW - Dichtefunktionsformalismus KW - Infrarot- und Raman-Spektroskopie KW - SERS KW - DFT KW - Pharmazeutika KW - neue metallorganische Komplexe KW - Infrared and Raman spectroscopy KW - SERS KW - DFT KW - pharmaceuticals KW - new organometallic complexes Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-7186 ER - TY - THES A1 - Kullmann, Martin Armin T1 - Tracing Excited-State Photochemistry by Multidimensional Electronic Spectroscopy T1 - Auflösung der Photochemie von angeregten Zuständen mittels multidimensionaler elektronischer Spektroskopie N2 - Light-induced excitation of matter proceeds within femtoseconds, resulting in excited states. Originating from these states chemical reaction mechanisms, like isomerization or bond formation, set in. Photophysical mechanisms like energy distribution and excitonic delocalization also occur. Thus, the reaction scheme has to be disentangled by assessing the importance of each process. Spectroscopic methods based on fs laser pulses have emerged as a versatile tool to study these reactions. Within this thesis time-resolved experiments with fs laser pulses on various molecular systems were performed. Novel photosystems, with possible applications ranging from ultrathin molecular wires to molecular switches, were extensively characterized. To resolve the complex kinetics of the investigated systems, time-resolved techniques had to be newly developed. By combining a visible excitation pulse pair with an additional pulse and a continuum probe electronic triggered-exchange two-dimensional spectroscopy (TE2D) was demonstrated for the first time. This goal was accomplished by combining a three-color transient-absorption setup with a pulse shaper. Hence, 2D spectroscopy with a continuum probe was also implemented. Using these methods two different molecular systems in solution were characterized in a comprehensive manner. (ZnTPP)2, a directly beta,beta’-linked Zn-metallated bisporphyrin, and a spiropyran-merocyanine photosystem, 6,8-dinitro BIPS, were characterized. (ZnTPP)2 is a homodimer, featuring strong excitonic effects. These manifest themselves in a twofold splitting of the Soret band (S2). 6,8-Dinitro BIPS exists in one of two possible conformations. The ring closed spiropyran absorbs only in the UV, while the ring open merocyanine also absorbs in the visible. For both molecular systems photodynamics upon illumination were monitored using transient-absorption. However, the obtained results were ambiguous, necessitating more complex methods. In the case of (ZnTPP)2 first the monomeric building block was characterized. There, population transfer from the S2 state into S1 within 2 ps was identified. Afterwards, intersystem crossing proceeds within 2 ns. For (ZnTPP)2 similar pathways were found, albeit the relaxation is faster. The intersystem crossing with 1.5 ns was not only indirectly deduced but directly measured by probing in the NIR spectral range. The excitonic influence of was investigated by coherent 2D spectroscopy in the Soret band. Population transfer within S2 was directly visualized on a time-scale of 100 fs. Calculation of the 2D spectra of a simple homodimer confirmed the results. After this analysis of the distinct excitonic character, this molecule may serve as a building block for larger porphyrin arrays with applications ranging from asymmetric catalysis over biomimicry of electron-transfer to organic optical devices. The second photosystem was the molecular switch 6,8-dinitro BIPS, existing in two conformations. Merocyanine is the more stable form in thermal equilibrium. Transient-absorption measurements uncovered that the sample consisted of a mixture of two merocyanine isomers, referred to as TTC and TTT. However, both isomers are capable of ring-closure forming spiropyran. The remaining excited molecules return to the ground state radiatively. Conducting 2D measurements utilizing a continuum probe the differing photochemistry of both isomers was examined in a single measurement. No isomerization between these conformations was detected. Therefore, 6,8-dinitro BIPS performs a concerted switching without long-living intermediates. This was confirmed by a pump-repump-probe scan. 6,8-DinitroBIPS can be closed by visible and opened by UV pulses using subsequent pulses and vice versa. These mechanisms via singlet pathways satisfy an important criterion for a unimolecular switching device. A second pump-repump-probe experiment showed that the sample is ionized, resulting in a merocyanine radical cation, when the first excited state is resonantly excited. Furthermore, by implementing TE2Dspectroscopy, it was elucidated that only TTC was ionized. Taking all this into account new techniques were developed and complex molecular systems were characterized within this thesis. Deeper insight into the photodynamics of (ZnTPP)2and 6,8-dinitro BIPS was gained by adapting transient absorption for the NIR spectral range, constructing a 2D setup in pump-probe geometry, and combining it with multipulse excitation to coherent TE2D. All techniques solved the questions for which they were constructed, but they are not limited to these cases. Especially TE2D opens new roads in photochemistry. By connecting reactant, product and the corresponding intermediates, a chemical reaction can be tracked through all stages, making unambiguous identification of the reactive states feasible. Thus, fundamental insight into the photochemistry of molecular compounds is gained. N2 - Über Lichtanregung erreichen Moleküle innerhalb von Femtosekunden angeregte Zustände. Aus diesen können photochemische Reaktionen wie Isomerisierungen einsetzen. Zusätzlich treten photophysikalische Effekte wie exzitonische Delokalisierungen auf. Daher ist es wichtig, die auftretenden Relaxationspfade zu analysieren um das Reaktionsschema des Systems zu erhalten. Ultrakurzzeitspektroskopie mit Femtosekundenlaserpulsen hat sich als nützliches Werkzeug erwiesen um lichtinduzierte Reaktionen auf ihrer intrinsischen Zeitskala zu studieren. In dieser Arbeit sind zeitaufgelöste Experimente an unterschiedlichen Verbindungen durchgeführt worden. Einerseits wurden neuartige Molekülklassen umfassend photodynamisch untersucht. Andererseits sind neue breitbandige Spektroskopiemethoden entwickelt worden. Durch die Kombination eines Anregungspulspaars mit einem weiteren Laserpuls sowie einem Weißlichtkontinuum wurde zum ersten Mal elektronische zweidimensionale Spektroskopie mit ausgelöster Umwandlung ("triggered-exchange 2D“, TE2D) demonstriert. Dies war durch die Implementierung eines Pulsformers in ein transientes Absorptionsspektrometer möglich. In einem ersten Experiment wurde die prinzipielle Eignung des Aufbaus getestet indem 2D Spektroskopie mit Weißlichtabfrage implementiert wurde. Diese Methoden wurden dazu genutzt zwei verschiedene Verbindungen zu untersuchen, ein direkt beta,beta'-verknüpftes, Zn-metalliertes Bisporphyrin [(ZnTPP)2] und ein Spiropyran-Merocyanin Photoschalter (6,8-dinitro BIPS). (ZnTPP)2 ist ein Homodimer, in welchem sich starke exzitonische Einflüsse, z. B. das Aufspalten der Soret-Bande (S2), zeigen. 6,8-Dinitro BIPS hingegen besteht aus zwei Konformeren. Zum einen liegt das nur im UV absorbierende Spiropyran vor. Das zweite Konformer ist Merocyanin, welches zusätzlich im sichtbaren absorbiert. Zuerst sind die Relaxationsdynamiken beider Moleküle mittels transienter Absorption untersucht worden. Allerdings waren die Resultate nicht eindeutig, so dass im Anschluss komplexere Messmethoden angewandt wurden. Für das Studium des Bisporphyrins (ZnTPP)2 wurde das zugehörige Monomer untersucht. Nach Anregung relaxiert die Population aus dem S2 in den S1 Zustand. Anschließend tritt Intersystem Crossing in T1 ein. Für das Dimer selbst ergaben sich die gleichen Reaktionswege. Das Intersystem Crossing wurde nicht nur abgeleitet, sondern durch Abfrage im nahinfraroten Spektralbereich direkt gemessen. Der Einfluss der Exzitonen auf das Bisporphyrin wurde durch kohärente 2D Spektroskopie innerhalb der Soret-Bande untersucht. Dies ermöglichte die Visualisierung von Populationstransfer innerhalb von 100 fs. Eine Berechnung der 2D Spektren eines einfachen Homodimers unterstützt dieses Resultat. Indem die hier vorgestellten Ergebnisse genutzt werden, könnte (ZnTPP)2 als Baustein für Porphyrinsysteme dienen. Deren denkbare Anwendungen reichen von asymmetrischer Katalyse über die Nachahmung von biologischem Elektronentransfer hinzu organo-optischen Geräten. Das zweite untersuchte System war der molekulare Schalter 6,8-dinitro BIPS mit Merocyanin als stabile Form im thermischen Gleichgewicht. Transiente Absorptionsmessungen deckten auf, dass die Lösung aus zwei Merocyanin-Isomeren besteht (TTC oder TTT). Es ergab sich ebenso, dass beide eine elektrozyklische Ringschlussreaktion zum Spiropyran durchführen. Mittels eines 2D Spektrums konnte die unterschiedliche Photochemie beider Isomere innerhalb einer einzigen Messung aufgezeigt werden. Zusätzlich wurde keine Isomerisierung zwischen ihnen beobachtet. Damit steht fest, dass 6,8-dinitro BIPS eine konzertierte Reaktion zum Spiropyran durchführt. Der direkte Schaltvorgang wurde eindeutig über Anrege-Wiederanrege-Abfrage Spektroskopie nachgewiesen. Hierfür wurde 6,8-dinitro BIPS mit sichtbarem gefolgt von ultraviolettem Licht bestrahlt. Der resultierende zweifache Schaltvorgang ist ein wichtiges Kriterium für einen Photoschalter. Ein ähnliches Experiment zeigte, dass 6,8-dinitro BIPS ionisiert wird, wenn die angeregte Population resonant bestrahlt wird. Das neugebildete langlebige Produkt konnte einem Kation zugeordnet werden. Durch die Verwendung der neuen elektronischen TE2D Methode ist aufgezeigt worden, dass lediglich TTC ionisiert werden kann. Zusammengefasst gilt, dass sowohl Fortschritte in der Methodenentwicklung als auch in der Charakterisierung von Verbindungen erzielt wurden. Ein tieferes Verständnis über die Dynamiken des Bisporphyrins (ZnTPP)2 und des molekularen Schalters 6,8-dinitro BIPS wurden durch Erweiterungen an einem transienten Absorptionsspektrometers, den Aufbau eines 2D Spektrometers in Anrege-Abfrage-Geometrie und durch die Kombination von letzterem mit Mehrfachanregung zu TE2D Spektroskopie gewonnen. Insbesondere letztere eröffnet neue Möglichkeiten in der Photochemie, da Edukte, Produkte und die zugehörigen Zwischenzustände miteinander verknüpft werden, wodurch lichtinduzierte Reaktionen schrittweise nachvollzogen werden können. KW - Femtosekundenspektroskopie KW - Fotochemie KW - Angeregter Zustand KW - Elektronenspektroskopie KW - femtosecond spectroscopy KW - pericyclic reaction KW - porphyrin KW - merocyanine KW - optical spectroscopy KW - Pericyclische Reaktion KW - Porphyrin KW - Photonenecho KW - Optische Spektroskopie KW - Merocyanine Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-81276 ER - TY - JOUR A1 - Aeschlimann, Martin A1 - Bauer, Michael A1 - Bayer, Daniela A1 - Brixner, Tobias A1 - Cunovic, Stefan A1 - Fischer, Alexander A1 - Melchior, Pascal A1 - Pfeiffer, Walter A1 - Rohmer, Martin A1 - Schneider, Christian A1 - Strüber, Christian A1 - Tuchscherer, Philip A1 - Voronine, Dimitri V. T1 - Optimal open-loop near-field control of plasmonic nanostructures N2 - Optimal open-loop control, i.e. the application of an analytically derived control rule, is demonstrated for nanooptical excitations using polarization-shaped laser pulses. Optimal spatial near-field localization in gold nanoprisms and excitation switching is realized by applying a shift to the relative phase of the two polarization components. The achieved near-field switching confirms theoretical predictions, proves the applicability of predefined control rules in nanooptical light–matter interaction and reveals local mode interference to be an important control mechanism. KW - Chemie Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75256 ER - TY - THES A1 - Rudolf, Philipp Benjamin T1 - Uncovering photoinduced chemical reaction pathways in the liquid phase with ultrafast vibrational spectroscopy T1 - Untersuchungen von photoinduzierten chemischen Reaktionspfaden in flüssiger Phase mittels ultraschneller Schwingungsspektroskopie N2 - The experimental technique predominantly employed within the scope of this Thesis constitutes one subarea of femtochemistry: the time-resolved spectroscopy of photoin- duced chemical reactions in the liquid phase by means of molecular signatures in the mid-infrared (MIR) spectral range. Probing transient vibrational states, i.e., dynamic changes in the vibrational motion of speci� c molecular subunits or functional Groups allows for a distinct separation and assignment of measured signals to emerging molecular species. For this purpose, one key building block is indispensable, which most of the investigations carried out within the � eld of femtochemistry have in common: a coherent light source delivering ultrashort laser pulses with a temporal duration that matches the femtosecond time scale on which molecular motions typically occur. This instrumentation enables the observation of photoinduced chemical reactions from the starting point|the excitation event to the appearance of intermediates to the nal formation of stable photoproducts after several pico- or nanoseconds. This work comprises the acquisition and presentation of time-resolved spectroscopic data related to promising molecular systems upon photoexcitation as well as the im- plementation and testing of experimental optical techniques both for the presented experiments but as well for experiments conceivable in the future. In addition, linear spectroscopy measurements and quantum-chemical simulations on the emerging chemical species have been carried out. In so doing, the primary processes and subse- quently emerging reaction products of two compounds on a timescale of several nanoseconds after photoexcitation have been elucidated in great detail. Both compounds, the [Mn(CO)3(tpm)]+ (tpm = tris(2-pyrazolyl)methane) CO-releasing molecule (CORM) and the 5-diazo Meldrum's acid (DMA), are of academic interest but in addition belong to molecular classes that might be utilized in the near future as dark-stable prodrugs under physiological conditions or that are already utilized in industrial chemistry procedures, respectively. The � ndings of both studies gave rise to implement and examine two techniques for prospective transient absorption experiments, namely the shaping and characterization of ultraviolet (UV) laser pulses and the recording of two-photon excitation spectra. Beyond that, since each of the depicted experiments is based on the detection of weak transient absorption signals in the MIR spectral region, two dif- ferent detection schemes, via chirped-pulse upconversion (CPU) on the one hand and via direct multichannel MCT detection on the other hand, have been juxtaposed at the conclusion of this work. Since both techniques are suitable in femtosecond pump-probe measurements but thereby exhibit individual strengths and weaknesses, a comparative study provides clari� cation of the respective pros and cons. The � first study introduced within this work investigates the complex photochemistry of DMA, a photoactive compound used in lithography and industrial chemistry. By femtosecond MIR transient absorption spectroscopy covering several nanoseconds, the light-induced dynamics and ultrafast formation of several photoproducts from the manifold of reaction pathways have been disclosed to form a coherent picture of the overall reaction scheme. After UV excitation of DMA dissolved in methanol to the second excited state S2, 70% of excited molecules relax back to the S0 ground state. In compet- ing processes, they can either undergo an intramolecular Wolff rearrangement to form ketene, which reacts with a solvent molecule to an enol intermediate and further to carboxylate ester, or they � rst relax to the DMA S1 state, from where they can isomerize to a diazirine. The third competing reaction channel, having the lowest quantum efficiency with respect to the � rst two channels, is the formation of a singlet carbene out of the S1 state. From there an ylide can arise or, via an intersystem crossing, the triplet form of the carbene follows. Whereas the primary reaction steps occur on a picosecond timescale, the subsequently arising intermediates and stable photoproducts are formed within a few hundreds to thousands of picoseconds. For a reliable identi� cation of the involved compounds, density functional theory calculations on the normal modes and Fourier-transform infrared spectroscopy of the reactant and the photoproducts in the chemical equilibrium accompany the analysis of the transient spectra. Additional experiments in ethanol and isopropanol led to slight spectral shifts as well as elongated time constants due to steric hindrance in transient spectra connected with the ester Formation channel, further substantiating the assignment of the occurring reaction pathways and photoproducts. The study demonstrated that the combination of linear and time-resolved spectroscopic measurements in conjunction with quantum-chemical calculations constitutes a powerful tool to unravel even highly complex photoreactions exhibiting multiple consecutive intermediate states within parallel reaction pathways. Although some of the individual reaction steps, for example the ketene formation via Wolff rearrangement, have been observed on ultrashort time scales before, this work encompassed the Observation of the whole set of appearing photoproducts of DMA in different alcohol solutions within several nanoseconds. In this sense, the ultrafast photochemistry of DMA represents a prototype example for a multisequential reaction scheme, elucidated by the capabilities of femtosecond MIR spectroscopy. With a modi� fied instrumentation concerning amongst others the system delivering the fundamental laser pulses or the generation of the UV pump pulses, the next ob- jective within this work was to elucidate the primary processes upon UV Irradiation of a manganese tricarbonyl CORM in aqueous environment. The time-resolved experiment was performed with two different pump wavelengths and furthermore supported by linear spectroscopy methods and time-dependent density functional theory (TDDFT) calculations on the excited states as well as DFT calculations on the ground states. The measurements revealed that irradiating the compound with UV excitation pulses primarily leads to ultrafast photolysis of one CO ligand. Geminate recombination may occur within one picosecond but it remains a minor process as the photolyzed CO group is liberated and the unoccupied coordination site is predominantly fi� lled by an incoming solvent molecule. There was no evidence for hot CO bands, i.e., the remaining CO ligands|in the dicarbonyl photoproduct as well as in the intact CORM are not vibrationally excited through the UV excitation of the CORM. According to this, the excess energy merges into low-frequency vibrational modes associated with the molecule as a whole. Since studies on a macroscopic scale at irradiation times of several minutes prove that UV irradiation eventually leads to the release of two or even all three CO ligands, further loss of CO most likely necessitates manganese oxidation or another interaction with light. To clarify the latter, a consecutive UV pulse was employed in order to excite the photoproducts subsequent to the initial pump interaction. However, the data obtained was not instructive enough to de� nitely exclude the manganese oxidation being responsible for the loss of further CO groups. Besides the exchange of a CO Group by a solvent molecule or the geminate recombination, the employment of two different excitation wavelengths in combination with � ndings derived from the TDDFT calculations suggested another reaction process, namely the possibility that the excitation does not lead to any bond cleavage at all. As the CORM under investigation is tissue-selective and cytotoxic against cancer cells, knowledge of these � rst photoinduced reaction steps is essential for a full understanding of its biological activity. Inspired by these two studies, experimental techniques for prospective transient absorption measurements have been implemented and tested within preparative measure- ments. First, in the course of a UV-pump-MIR-probe experiment with speci� cally tailored excitation pulses, one could pursue the aim of coherently controlling the outcome of a photoreaction in the liquid phase. Out of the rich photochemistry of DMA the vibrational signature of a particular molecular species might thereby serve as a feedback signal, which is a central part of a learning loop that adaptively determines the pulse shape that steers the quantum mechanical system upon photoexcitation into a desired direction. This motivated the installation and testing of devices by means of which the shaping and characterization of ultrashort laser pulses in the UV could be performed. Second, motivated by the biological applications of CORMs, one can imagine a scenario where a certain amount of CORMs is deposited inside cancerous tissue. Since the activation of CO loss by means of UV pulses is not possible due to the absorption characteristics of biological tissue, the simultaneous excitation via two photons from the visible spectral regime seems appealing. However, success or failure of such an application depends on whether the deposited compound efficiently absorbs two photons simultaneously, i.e., whether the two-photon absorption cross section is large enough. Therefore, a setup to record two-photon excitation spectra under full consideration of the crucial laser pulse parameters like the pulse duration, energy and central wavelength was arranged and tested. The � rst results were obtained with a commercially available reference system (Mn2CO10) but the setup as well as the described measurement and data analysis procedure can easily be applied to record the two-photon absorption cross section of more promising molecular systems. Third, as the detection of probe pulses in the MIR spectral region is part of each time-resolved measurement throughout this thesis, a comparison between the newly established technique of CPU and direct multi- channel MCT detection is presented by means of pump{probe experiments on Mn2CO10 and Co4CO12 with a 1 kHz shot-to-shot data acquisition. It was shown that the CPU detection technique scores with its high spectral resolution and coverage of the easy-to-handle and more cost-effective CCD detectors. On the other hand, in the course of the additional nonlinear upconversion process intensity fluctuations of the chirped fundamental pulses are transferred to the probe spectrum in the visible regime. This entails a lower signal-to-noise ratio than the direct MCT detection, which can be compensated by an additional normalization procedure applied to the CPU probe pulses. As a consequence, the CPU detection scheme offers more flexibility for future investigations employing MIR probe pulses. This is of great importance for many applications within the presented � eld of femtochemistry as a huge variety of time-resolved investigations on a multitude of systems in the liquid phase is based on the detection of weak transient absorption signals in the MIR spectral region. N2 - Die vorrangig im Rahmen dieser Arbeit eingesetzte experimentelle Technik stellt ein Teilgebiet der Femtochemie dar: die zeitaufgelöste Spektroskopie photoinduzierter chemischer Reaktionen in flüssiger Phase durch molekulare Charakteristika im mittleren infraroten (MIR) Spektralbereich. Die Detektion transienter Vibrationszustände, das heißt sich zeitlich verändernder Kernbewegungen von bestimmten molekularen Untereinheiten oder funktionellen Gruppen, ermöglicht es, Messsignale zu differenzieren und auftretenden Molekülspezies genau zuzuordnen. Zu diesem Zweck ist ein zentrales Element unabdingbar, das die meisten Experimente im Forschungsgebiet der Femtochemie gemein haben: eine kohärente Lichtquelle, die ultrakurze Laserpulse generiert, welche eine zeitliche Dauer auf der Femtosekunden-Zeitskala besitzen auf welcher sich Kernbewegungen typischerweise abspielen. Dieses Instrument ermöglicht die Beobachtung von photoinduzierten chemischen Reaktionen von dem Startpunkt an -- der eigentlichen Anregung -- über das Auftreten von Zwischenprodukten bis hin zu der abschließenden Herausbildung von stabilen Photoprodukten nach mehreren Piko- oder Nanosekunden. Die vorliegende Arbeit umfasst die Beschreibung der Aufnahme und die Darstellung von zeitaufgelösten spektroskopischen Daten an molekularen Systemen, die vielversprechende Eigenschaften nach einer optischen Anregung zeigen. Darüber hinaus beschreibt sie den Aufbau und die Prüfung von experimentellen optischen Messmethoden, die sowohl für die hier präsentierten als auch für zukünftige, erweiterte Experimente der Anrege-Abfrage-Spektroskopie dienen. Zusätzlich wurden lineare Absorptionsmessungen und quantenchemische Simulationen mittels der Dichtefunktionaltheorie (DFT) durchgeführt, um auftretende chemische Spezies eindeutig identifizieren zu können. Auf diese Weise wurden sowohl die anfänglichen Reaktionsschritte als auch die darauffolgenden Reaktionsprodukte zweier Stoffe auf einer Zeitskala von mehreren Nanosekunden nach einer Photoanregung sehr detailliert dargestellt. Die untersuchten Substanzen sind zum einen [Mn(CO)3(tpm)]+ (tpm = tris(2-pyrazolyl)methan), das zur Gruppe der sogenannten CO-releasing molecules (CORM) gehört, und zum anderen 5-Diazo-Meldrumsäure (DMA). Beide sind von akademischem Interesse, gehören darüber hinaus aber zu anwendungsbezogenen Stoffgruppen, die im Falle der CORMs in naher Zukunft als Prodrug unter physiologischen Bedingungen eingesetzt werden könnten. Im Falle des DMA gibt es bereits Anwendungen in der chemischen Industrie. Die Erkenntnisse dieser beiden Untersuchungen führten hinsichtlich zukünftiger Anrege-Abfrage-Studien zu dem Aufbau und der Inbetriebnahme zweier weiterer experimenteller Techniken, die einerseits der Formung und Charakterisierung von Femtosekundenlaserpulsen im ultravioletten (UV) Spektralbereich und andererseits zur Aufnahme von Zwei-Photonen-Anregespektren dienen. Da jedes der dargestellten Experimente auf der Detektion von schwachen transienten Absorptionssignalen im MIR Spektralbereich beruht, wurden des Weiteren am Ende dieser Arbeit zwei verschiedene Aufnahmemethoden gegenübergestellt: die Detektion mittels der Aufkonversion durch gechirpte Laserpulse (chirped-pulse upconversion, CPU) und die direkte Detektion von MIR-Laserpulsen mittels eines Arrays von Quecksilber-Cadmium-Tellurid-Detektoren (mercury cadmium telluride, MCT). Da beide Detektionstechniken für die Anrege-Abfrage-Spektroskopie geeignet sind, dabei jedoch unterschiedliche Stärken und Schwächen zeigen, schaffte die vergleichende Untersuchung diesbezüglich Klarheit. In der ersten Studie wurde die komplexe Photochemie von DMA untersucht, das als photoaktive Substanz in lithographischen Prozessen verwendet wird. Mit transienter MIR-Absorptionsspektroskopie wurden die lichtinduzierte Bildung und ultraschnellen Dynamiken von zahlreichen Photoprodukten innerhalb eines Zeitfensters von einigen Nanosekunden enthüllt. Dies lieferte ein stimmiges Bild des gesamten Reaktionsschemas, welches aus mehreren Reaktionspfaden besteht. Durch einen UV-Laserpuls wird in Methanol gelöstes DMA in den zweiten elektronischen Zustand S2 angeregt. 70% dieser Moleküle relaxieren wieder in den Grundzustand S0, die restlichen 30% verteilen sich auf drei konkurrierende Reaktionspfade. Zum einen können die angeregten Moleküle über eine intramolekulare Wolff-Umlagerung zu Keten umgeformt werden. Dieses wiederum lagert ein Lösungsmittelmolekül an und bildet damit ein Enol als vorübergehenden Zwischenzustand. Schließlich tautomerisiert daraus Carbonsäureester. Zum anderen relaxiert ein Teil der angeregten Moleküle zunächst in den S1-Zustand des DMA, von wo aus eine Isomerisierung zu Diazirin stattfindet. Der dritte parallele Reaktionspfad weist im Vergleich zu den ersten beiden die geringste Quanteneffizienz auf und führt über den S1-Zustand zu einem Singulett-Carben. Dieses kann sich einerseits zu einem Ylid umwandeln, oder mittels eines Intersystem Crossing in ein Triplett-Carben übergehen. Während die primären Reaktionsschritte innerhalb einiger Pikosekunden ablaufen, werden die daraufhin erscheinenden Zwischenzustände und Endprodukte innerhalb einiger hundert bis tausend Pikosekunden gebildet. Für eine zuverlässige Identifizierung der involvierten Molekülspezies wurde die Analyse der zeitaufgelösten Daten sowohl durch DFT-Simulationen als auch durch lineare Absorptionsmessungen ergänzt. Beide Methoden lieferten wichtige Informationen über die Absorptionscharakteristika des Edukts sowie der auftretenden Zwischen- und Endprodukte. Wegen der sterischen Hinderung zeigten weitere zeitaufgelöste Absorptionsmessungen an in Ethanol oder Isopropanol gelöstem DMA geringe spektrale Verschiebungen und auch verlängerte Zeitkonstanten im Falle der Reaktionsprodukte, die mit der Bildung des Ester verbunden waren. Dies untermauerte um ein Weiteres die Zuordnung der jeweiligen Reaktionspfade und Photoprodukte. Die Studie an DMA zeigte, dass die Kombination aus linearer und zeitaufgelöster Spektroskopie in Verbindung mit quantenchemischen Berechnungen ein mächtiges Werkzeug darstellt, um sogar äußerst komplexe Photoreaktionen zu entschlüsseln, die mehrere aufeinanderfolgende Zwischenzustände innerhalb parallel verlaufender Reaktionspfade aufweisen. Obwohl einige der einzelnen Reaktionsschritte wie zum Beispiel die Bildung des Ketens nach der Wolff-Umlagerung bereits auf ultrakurzen Zeitskalen untersucht wurden, umfasst diese Arbeit die Beobachtung aller auftretenden Photoprodukte des DMA gelöst in verschiedenen Alkoholen innerhalb einiger Nanosekunden nach der Photoanregung. In diesem Sinne stellt die ultraschnelle Photochemie von DMA ein Musterbeispiel für ein multisequentielles Reaktionsschema dar, das dank der Stärken der zeitaufgelösten MIR-Absorptionsspektroskopie entschlüsselt werden konnte. Mit einer modifizierten experimentellen Ausstattung, unter anderem die Systeme betreffend, welche die Fundamentalstrahlung oder die UV-Anregungspulse generierten, war das nächste Ziel dieser Arbeit die primären photoinduzierten Prozesse eines Tricarbonylmangan-CORM in wässriger Lösung zu erforschen. Die zeitaufgelösten Experimente wurden mit zwei verschiedenen UV-Anregungswellenlängen durchgeführt und zusätzlich unterstützt durch lineare Absorptionsmessungen und zeitaufgelöste DFT-Berechnungen (TDDFT) der angeregten elektronischen Zustände sowie DFT-Berechnungen der Grundzustände. Die Messungen zeigten, dass die UV-Anregung der Substanz in erster Linie die ultraschnelle Photolyse einer einzelnen Carbonylgruppe zur Folge hat. Eine geminale Rekombination zum ursprünglichen Komplex kann innerhalb einer Pikosekunde auftreten. Jedoch ist dies ein untergeordneter Prozess, da die abgetrennte Carbonylgruppe freigesetzt wird und die unbesetzte Koordinationsstelle vorrangig von einem Lösungsmittelmolekül belegt wird. Sogenannte heiße Carbonyl-Absorptionsbanden wurden nicht detektiert. Das bedeutet, dass die verbleibenden CO-Liganden -- sowohl im Falle des Dicarbonyl-Photoprodukts als auch im Falle des intakten CORM -- durch die Anregungspulse nicht vibrationsangeregt werden. Demnach wird die Überschussenergie in Vibrationsmoden mit geringer Frequenz transferiert, was einer Schwingung des gesamten Moleküls entspricht. Da Untersuchungen auf makroskopischer Ebene mit Bestrahlungszeiten von mehreren Minuten zeigen, dass UV-Anregung letztlich zur Freisetzung von zwei oder sogar allen drei CO-Liganden führt, bedarf es zur weiteren Photolyse von CO höchstwahrscheinlich einer Oxidation des Mangan oder einer weiteren Wechselwirkung mit Licht. Um letzteres aufzuklären, wurde ein zweiter UV-Anregungspuls in Folge des ersten Anregungspulses eingesetzt. Dieser zweite Puls sollte die Photoprodukte des ersten Pulses noch einmal anregen. Jedoch waren die daraus erhaltenen Messdaten nicht aufschlussreich genug, um die Manganoxidation als Ursache für den Verlust von weiteren CO-Liganden ausschließen zu können. Neben dem Austauch einer CO-Gruppe mit einem Lösungsmittelmolekül sowie der geminalen Rekombination, wurde durch den Einsatz zwei verschiedener Anregungswellenlängen in Verbindung mit den Ergebnissen der TDDFT-Berechnungen die Möglichkeit eines weiteren Reaktionspfades entdeckt: es ist auch möglich, dass die Anregung des CORM zu überhaupt keinem Bindungsbruch führt und insofern ein Teil der angeregten Moleküle völlig intakt bleibt. Da bereits bekannt war, dass das untersuchte CORM gewebsselektiv ist und zytotoxisch gegenüber Krebszellen wirkt, sind die gesammelten Erkenntnisse bezüglich der primären photoinduzierten Reaktionsschritte essentiell, um die biologische Aktivität der Substanz vollständig zu verstehen. Angeregt durch diese beiden Studien wurden experimentelle Techniken für weiterführende transiente Absorptionsmessungen implementiert und in vorbereitenden Messungen getestet. Erstens, im Rahmen eines UV-Anrege-MIR-Abfrage-Experiments mit speziell geformten Anregungspulsen könnte man das Ziel verfolgen, mittels kohärenter Kontrolle den Ausgang einer Photoreaktion in flüssiger Phase zu steuern. Dazu benötigt man ein Rückkopplungssignal, das als ein zentrales Element einer Lernschleife darüber Aufschluss gibt, ob die iterativ angepassten Pulsformen den Reaktionsverlauf in die gewünschte Richtung lenken. Eines der zahlreichen Absorptionssignale der reichhaltigen Photochemie von DMA kann dabei als Rückkopplungssignal dienen. Dieser Ansatz motivierte den Aufbau und erste Tests von Instrumenten, mit denen die Formung und Charakterisierung von ultrakurzen UV-Laserpulsen durchführbar ist. Als zweites, wegen der biologischen Anwendungsmöglichkeiten von CORMs, kann man sich eine Situation vorstellen, in der eine gewisse Menge an CORMs in krebsartigem Gewebe deponiert wird. Da die Aktivierung der zytotoxischen CO-Abgabe durch UV-Laserpulse wegen des Absorptionsverhaltens von biologischem Gewebe nicht möglich ist, wäre es naheliegend die Anregung durch zwei gleichzeitig aufgenommene Photonen im sichtbaren Spektralbereich durchzuführen. Jedoch hängen Erfolg oder Misserfolg einer solchen Anwendung davon ab, ob die eingelagerten CORMs auch auf effiziente Weise zwei Photonen gleichzeitig absorbieren, das heißt ob der Zwei-Photonen-Absorptionsquerschnitt groß genug ist. Deshalb wurde ein Messaufbau konstruiert und getestet, mit welchem man unter vollständiger Berücksichtigung der entscheidenden Laserpulsparameter (Pulsdauer, Pulsenergie und zentrale Wellenlänge) Zwei-Photonen-Anregespektren aufzeichnen kann. Die ersten Resultate wurden anhand eines kommerziell erhältlichen Referenzmoleküls (Mn2CO10) aufgenommen. Der Messaufbau sowie die beschriebene Messroutine und Datenauswertung lassen sich aber ebenso bei anderen Molekülen anwenden, so dass der Zwei-Photonen-Absorptionsquerschnitt von aussichtsreicheren Substanzen bestimmt werden kann. An dritter Stelle, da die Detektion von Abfragelaserpulsen im MIR Spektralbereich teil eines jeden zeitaufgelösten Experiments im Rahmen dieser Arbeit ist, wurde eine Vergleichsstudie durchgeführt, welche die neu entwickelte Technik der CPU einer direkten Aufnahme mittels eines MCT-Arrays gegenüberstellt. Anhand von Anrege-Abfrage-Messungen an Mn2CO10 und Co4CO12 mit einer 1kHz Schuss-zu-Schuss Datenaufnahme wurde gezeigt, dass die CPU-Detektionsmethode mit einer hohen spektralen Auflösung sowie Abdeckung punkten kann und die dabei eingesetzten CCD-Detektoren zudem einfach in der Handhabung und vergleichsweise kostengünstig sind. Auf der anderen Seite übertragen sich in dem zusätzlichen nichtlinearen Aufkonversionsprozess Intensitätsschwankungen von den gechirpten Fundamentallaserpulsen auf die Abfragelaserpulse im sichtbaren Spektralbereich. Dies bringt zwar ein geringeres Signal-Rausch-Verhältnis mit sich als bei der direkten MCT-Detektion, jedoch lässt sich dieser Nachteil kompensieren indem man ein geeignetes Normierungsverfahren auf die CPU-Abfragepulse anwendet. Demnach bietet die CPU-Detektionsmethode mehr Flexibilität hinsichtlich zukünftiger Anwendungen, in denen MIR-Abfragepulse Verwendung finden. Das ist von großer Bedeutung für viele Anwendungen innerhalb des präsentierten Teilgebietes der Femtochemie, da nicht nur ein Großteil der Experimente die in dieser Arbeit vorgestellt wurden auf der Detektion von schwachen transienten Absorptionssignalen im MIR-Spektralbereich basieren, sondern darüber hinaus eine große Vielfalt an zeitaufgelösten Untersuchungen von vielen verschiedenen System in flüssiger Phase existiert. KW - Ultrakurzzeitspektroskopie KW - time-resolved optical spectroscopy KW - nonlinear spectroscopy KW - vibrational spectroscopy KW - femtochemistry KW - Nichtlineare Spektroskopie KW - Schwingungsspektroskopie KW - Zeitauflösung Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96200 ER - TY - THES A1 - Schmid, Paul T1 - Quantenchemische Untersuchungen von Umgebungseinflüssen bei offen- und geschlossenschaligen Systemen T1 - Quantum chemical studies of environmental effects in open-shell and closed-shell systems N2 - In dieser Dissertation werden die Umgebungseinflüsse auf die strukturellen und elektronischen Eigenschaften von verschiedenen offen- und geschlossenschaligen Systemen mittels quantenchemischer Methoden berechnet. Ein Kernpunkt umfasst die Untersuchung von verdreht angeordneten, biradikalischen Diborylalkenen, welche eine ungesättigte C2R2-Brücke (R = Et, Me) besitzen und durch cyclische (Alkyl)(amino)carbene (CAACs) stabilisiert werden. Quantenchemische Berechnungen zeigen, dass hauptsächlich sterische Effekte für die Ausbildung einer verdrehten Molekülanordnung verantwortlich sind, während bei geringen sterischen Wechselwirkungen (R = H) die Delokalisationseffekte überwiegen, wodurch eine planare Struktur begünstigt wird. Die Bevorzugung einer offenschaligen Singulettkonfiguration anstelle eines Tripletts ist auf den großen Energieunterschied der beiden einfach besetzten Molekülorbitale zurückzuführen. Durch die Berechnung der Lösungsmitteleffekte mithilfe von polarisierbaren Kontinuumsmodellen kann gefolgert werden, dass mit zunehmender statischer Dielektrizitätskonstante eine planare und geschlossenschalige Struktur stärker stabilisiert wird als eine verdrehte Anordnung. Ein weiteres Thema dieser Dissertation befasst sich mit der quantenchemischen Analyse eines makrozyklischen Perylenbisimid-Trimersystems, welches eingebettet in einer Polymethylmethacrylat-Matrix bei Temperaturen nahe dem absoluten Nullpunkt eine Lokalisierung der ersten drei angeregten Zustände zeigt. Quantenchemische Vakuumberechnungen ergeben, dass unabhängig von der gegenseitigen geometrischen Orientierung der drei Perylenbisimid-Chromophore der Übergang vom Grundzustand in den S1-Zustand verboten ist und dass die ersten drei angeregten Zustände delokalisiert vorliegen. Mithilfe von expliziten Lösungsmittelmodellen kann jedoch gezeigt werden, dass das Auftreten dieser Lokalisierungen auf eine inhomogene Polymethylmethacrylat-Umgebung zurückzuführen ist, die zu einem Symmetriebruch und somit zu einer Zunahme der Oszillatorstärke für S1 und der Lokalisierungsgrade für S1, S2 und S3 führt. Darüber hinaus wird der Lösungsmitteleinfluss auf die angeregten Zustände des Azulens mittels impliziter und expliziter Lösungsmittelmodelle berechnet. Bei einer Erhöhung der dynamischen Dielektrizitätskonstante im impliziten Modell nehmen die Anregungsenergien der vertikalen Singulettzustände ab, wobei der Effekt mit steigender Oszillatorstärke zunimmt. Die Auswirkung der statischen Dielektrizitätskonstante auf die Anregungsenergien ist dagegen deutlich schwächer ausgeprägt. Im expliziten Modell bewirkt das Lösungsmittel ebenfalls eine Abnahme der Anregungsenergie des hellen Singulettzustands, wenn auch in geringerem Umfang als im impliziten Modell. Als letztes Thema wird der Inhibitionsmechanismus der Cysteinprotease Rhodesain durch zwei modifizierte 1,4-Naphthoquinone untersucht. Während beide Naphthoquinone an der 2-Position eine Dipeptideinheit aufweisen, besitzen sie an der 3-Position entweder einen Nitril- oder Chloridsubstituenten. Zwar erfolgt bei beiden Derivaten die Inhibition über einen kovalent-reversiblen Mechanismus, jedoch verläuft die Hemmung im Falle des Nitrilderivats erheblich effektiver. Die quantenchemischen Berechnungen eines vereinfachten Modells zeigen, dass die Cysteineinheit (HS-R) bevorzugt in einer exothermen und reversiblen Additionsreaktion an die elektronenarme C-C-Doppelbindung der Naphthoquinone anlagert. Dabei werden kleinere Reaktionsenergien für die Reaktion des Chlorderivats als für die Reaktion des Nitrilderivats erhalten. Durch die Berücksichtigung von Wasser in einem impliziten Lösungsmittelmodell kommt es bei fast allen Reaktionsprodukten zu einer Energiezunahme, die bei der Reaktion des Nitrilderivats stärker ausfällt als bei der Reaktion des Chlorderivats. N2 - In this thesis, the environmental effects on the structural and electronic properties of various open-shell and closed-shell systems are calculated using quantum chemical methods. A key issue involves the investigation of twisted, biradical diborylalkenes, which contain an unsaturated C2R2 bridge (R = Et, Me) and are stabilized by cyclic (alkyl)(amino)carbenes (CAACs). Quantum chemical calculations show that mainly steric effects are responsible for the formation of a twisted molecular arrangement, while delocalization effects predominate at low steric interactions (R = H), favoring a planar structure. The preference for an open-shell singlet configuration over a triplet is due to the large energy difference between the two singly occupied molecular orbitals. By calculating the solvent effects using polarizable continuum models, it can be concluded that with an increasing static dielectric constant, a planar and closed-shell structure is more stabilized compared to a twisted conformation. Another topic of this thesis deals with the quantum chemical analysis of a macrocyclic perylene bisimide trimer system, which is embedded in a poly(methyl methacrylate) matrix and shows a localization of the first three excited states at temperatures near absolute zero. Quantum chemical vacuum calculations reveal that regardless of the mutual geometric orientation of the three perylene bisimide chromophores, the transition from the ground state to the S1 state is forbidden and that the first three excited states are delocalized. However, with the help of explicit solvent models, it can be shown that the occurrence of these localizations is caused by an inhomogeneous poly(methyl methacrylate) environment, which leads to symmetry breaking and thus to an increase in the oscillator strength for S1 and the degrees of localization for S1, S2, and S3. In addition, the influence of the solvent on the excited states of azulene is calculated using implicit and explicit solvent models. With an increase in the dynamic dielectric constant in the implicit model, the excitation energies of the vertical singlet states decrease. This effect becomes stronger with rising oscillator strength. In contrast, the effect of the static dielectric constant on the excitation energies is much weaker. In the explicit model, the solvent also causes a decrease in the excitation energy of the bright singlet state, although the extent is smaller than in the implicit model. As a final topic, the inhibition mechanism of the cysteine protease rhodesain by two modified 1,4-naphthoquinones is investigated. While both naphthoquinones have a dipeptide unit at the 2-position, they have either a nitrile or chlorine substituent at the 3-position. Although for both derivatives the inhibition takes place via a covalent reversible mechanism, the inhibition in the case of the nitrile derivative is considerably more effective. The quantum chemical calculations of a simplified model show that the cysteine moiety (HS-R) preferentially attaches to the electron-deficient C-C double bond of the naphthoquinones in an exothermic and reversible addition reaction. Smaller reaction energies are obtained for the reaction of the chlorine derivative than for the reaction of the nitrile derivative. By considering water in an implicit solvent model, the energies of almost all reaction products rise, whereby the energetic increase for the reaction of the nitril derivative is greater than for the reaction of the chlorine derivative. KW - Umgebungseinfluss KW - Lösungsmitteleffekt KW - Biradikal KW - Berechnung KW - CAAC KW - Diborylalkene KW - Quantenchemie Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265106 ER - TY - THES A1 - Kaiser, Dustin T1 - Non-standard computational approaches applied to molecular systems T1 - Unkonventionelle Berechnungsansätze für molekulare Systeme N2 - In this thesis, several contributions to the understanding and modeling of chemical phenomena using computational approaches are presented. These investigations are characterized by the usage of non-standard computational modeling techniques, which is necessitated by the complex nature of the electronic structure or atomic fluctuations of the target molecules. Multiple biradical-type molecules and their spectroscopic properties were modeled. In the course of the investigation, it is found that especially the impact of correct molecular geometries on the computationally predicted absorption properties may be critical. In order to find the correct minimum geometries, Multi-Reference methods may have to be invoked. The impact of geometry relaxation on the excitonic properties of Perylene Bisimide dimers were investigated. Oftentimes, these geometry factors are neglected in Organic Semiconductor modeling as an approximation. This present investigation suggests that this approximation is not always valid, as certain regimes are identified where geometrical parameters have critical impact on the localization and energetic properties of excitons. The mechanism of the Triazolinedione (TAD) tyrosine bioconjugation reaction is investigated using quantum-chemical methods. By comparison of different conceivable mechanisms and their energetic ordering, the TAD tyrosine bioconjugation is found to proceed by means of a base-mediated electrophilic aromatic substitution reaction. The kth nearest neighbor entropy estimation protocol is investigated. This estimator promises accurate entropy estimates even for flexible molecules with multiple structural minima. Our granular investigation of formal and practical properties of the estimator suggests that the uneven variance of a molecule’s vibrational modes is the cause of the observed slow convergence of the estimator. A rescaling procedure to reestablish fast convergence is suggested and benchmarks are performed. N2 - Im Rahmen dieser Arbeit wurden Berechnungsansätze für die Modellierung mit Standardverfahren näherungsweise berechenbarer molekularer und spektroskopischer Probleme diskutiert. Zunächst wurden die spektroskopischen Eigenschaften der biradikalischen Moleküle Methylbismut, Diphenylacetylen, Pentadiynylidin (sowie dessen methylsubstituierte Derivate) und Diphenylpropynyliden untersucht. Diese Forschungsvorhaben wurden in Zusammenarbeit mit experimentell arbeitenden physi kalischen und synthetischen Chemikern durchgeführt. Der Vergleich von sowohl spek troskopisch als auch durch theoretische Rechnungen erlagter Erkenntnisse erlaubt eine genaue Charakterisierung der physiko-chemischen Eigenschaften der Moleküle. Mit Hilfe von computergestützter Modellierung wurden die Ionisierungsenergien und die Absorptionsspektren der Ionisierung in der Franck-Condon-Approximation berechnet. Für Methylbismut wurden skalar-relativistische und Pseudopotenzial-basierte Ansätze zur Berechnung verwendet. Durch Analyse der angeregten elektronischen Zustände und ihrer geometrieabhängigen energetischen Eigenschaften, konnte das transiente Absorptionsspektrum von Diphenylpropynyliden genau charakterisiert und rational isiert werden. ... KW - Quantenchemie KW - Theoretische Chemie KW - Entropie KW - Computational Chemistry KW - Quantum Chemistry Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-276641 ER -