TY - THES A1 - Flachenecker, Günter T1 - Die Dissoziations- und Rekombinations-Reaktion von Jodmolekülen in mikroporösen Porosil-Kristalliten auf der Femtosekunden-Zeitskala T1 - The femtosecond time resolved dissociation and recombination reaction of Iodine molecules which are resided in microporous crystalline Porosils N2 - In dieser Arbeit wurde die unimolekulare Dissoziations- und Rekombinations-Reaktion von Jodmolekülen untersucht, die in mikroporösen Porosil-Kristalliten eingelagert waren. Hierfür wurden sowohl experimentelle Pump-Probe-Experimente als auch theoretische Untersuchungen auf der Femtosekunden-Zeitskala durchgeführt. Die Idee, die diesen Experimenten zugrunde lag, bestand darin, zu erfahren, in welcher Weise und in welchem Maße die Struktur der Umgebung einen Einfluss auf die elementaren dynamischen Prozesse der Reaktion ausübt. Die hier untersuchten Systeme I$_2$ in DDR-, TON-, FER- und MFI-Porosilen sind Modellsysteme für komplexere Moleküle, eingelagert in einer mikroporösen kristallinen Umgebung. N2 - The thesis presents experimental as well as theoretical investigations of the unimolecular reaction of iodine molecules embedded in different porosils. The elementary steps of the reaction could be accessed using femtosecond time-resolved pump-probe spectroscopy. The main goal of the research work was to learn more about the influence of the surroundings of the reacting molecules on the reaction dynamics resulting in dissociation and recombination processes. The iodine molecules enclosed in varying geometrical structures of DDR, TON, FER, and MFI porosils can be considered models for more complex molecular systems even including elementary catalytical processes in the microporous zeolites. KW - Tectosilicate KW - Iodmolekül KW - Molekularbewegung KW - Pump-Probe-Technik KW - Zeolithe KW - Prädissoziation KW - Käfig-Rekombination KW - Wirt-Gast-Wechselwirkung KW - Moleküldynamik KW - Zeolites KW - Predissociation KW - Caging KW - Host-Guest Interaction KW - Molecular Dynamics Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-4472 ER - TY - THES A1 - Fischer, Kathrin Helena T1 - Analyse der chemischen Reaktionen ungesättigter Verbindungen mit FEL- und Synchrotronstrahlung T1 - Analysis of chemical reactions of unsaturated compounds with FEL and synchrotron radiation N2 - Brilliante Strahlungsquellen werden heute vielfach in der Forschung eingesetzt um Kristallstrukturen, Oberflächeneigenschaften oder Reaktionen zu untersuchen. Als Strahlungsquellen werden dafür bevorzugt Freie Elektronenlaser (FEL) oder Synchrotrons eingesetzt, da sie über weite Bereiche durchstimmbar sind und einen hohen Photonenfluss bereitstellen. Im Rahmen der vorliegenden Dissertation werden beide Lichtquellen verwendet um einerseits Isomere von Kohlenwasserstoffradikalen zu identifizieren und andererseits das Verhalten von Borylen und ungesättigten Verbindungen bei Photoionisation zu dokumentieren. Als erstes Experiment am FEL wurde ein IR-Spektrum von gasförmigen Allylradikalen aufgenommen. Das Allyl war ein Testlauf, da es als Kohlenwasserstoffradikal mit einer kleinen Dipolmomentänderung ein gutes Beispiel für ähnliche Verbindungen ist. Trotz der kleinen Änderung des Dipolmoments und der geringen Teilchendichte der Radikale in der Gasphase konnte ein gutes IR-Spektrum mit der IR-UV-Doppelresonanzmethode aufgenommen werden und die beobachteten Banden mit der Literatur zugeordnet werden. Das 3-Trifluoromethyl-3-Phenyl-carben (TFPC) wurde pyrolytisch aus 3-Trifluoromethyl-3-Phenyl-diazirin erzeugt. Dabei kam es beim Großteil der Carbene zu einer Umlagerung zu Trifluorstyrol. Neben dem Hauptprodukt Trifluorstyrol wurde das Triplett TFPC als Nebenprodukt identifiziert. Zusätzlich wurden die Isomerisierungsbarrieren für den Triplett- und Singulett-Übergangszustand berechnet. Die Radikale 1-Phenylpropargyl und 3-Phenylpropargyl sind anhand ihrer IR-Spektren unterscheidbar und lagern sich nicht ineinander oder in Indenyl um. Ausgehend von beiden Radikalen bilden sich die identischen Dimerisierungsprodukte im Massenkanal m/z = 230 (p-Terphenyl) und 228 (1-Phenylethinylnaphthalin (1PEN)). Außergewöhnlich war die Exklusivität dieser Produkte. Somit müssen deren Reaktionsmechanismen kinetisch viel schneller sein. Die Massen m/z = 230 und 228 waren bereits aus einer massenspektrometrischen Studie ausgehend von Benzol und Ethin bekannt, in der ihre Struktur jedoch nicht geklärt wurde. Somit müssen die gefundenen Dimerisierungsprodukte p-Terphenyl und 1PEN wichtige Intermediate bei der Entstehung von polyzyklischen aromatischen Kohlenwasserstoffen (PAK) und Ruß sein. Von gasförmigen NTCDA wurde mittels der TPEPICO-Methode am Synchrotron Schwellenphotoelektronenspektren aufgenommen. Dabei konnte die adiabatische Ionisierungsenergie (IE(ad)) zu 9.66 eV bestimmt werden. Weiterhin wurden noch fünf angeregte Zustände beobachtet, die mittels quantenmechanischer Berechnungen zugeordnet wurden. Es wurde die Photoionisation des Cycloheptatrienradikals (Tropyl) untersucht. Dabei wurde die erste Bande bei 6.23 eV der IE(ad) zugeordnet. Mit einer Franck-Condon Simulation wurden die beiden Schwingungsprogressionen einer CC-Streckschwingung (ν16+) und einer Kombination aus einer Ringatmung (ν2+) und ν16+ zugeordnet. Der erste Triplett- und Singulettzustand des angeregten Tropylkations konnte in Übereinstimmung mit der Literatur zugeordnet werden. Eine Schulter bei 9.85 eV und die intensivste Bande bei 11.6 eV konnten nicht eindeutig interpretiert werden. Neben dem Tropyl erscheint bei etwa 10.55 eV sein dissoziatives Zersetzungsprodukt, das Cyclopentadienylkation. Die IE(ad) des Borylenkomplex [(CO)5CrBN(SiMe3)2] wurde zu 7.1 eV bestimmt. Mit steigender Photonenenergie wurden alle CO-Liganden sequenziell abgespalten, während der Borligand auch bei 15 eV noch nicht dissoziierte. Von den fünf abgespaltenen CO-Liganden konnte die Auftrittsenergie bei 0 K unter Berücksichtigung der kinetischen Verschiebung gefittet werden. Durch einen einfachen thermodynamischen Zyklus wurden aus den Auftrittsenergien der Kationen die Bindungsenergien berechnet. Dabei zeigte sich, dass die zweite Bindungsenergie im Kation erheblich stärker ist als die erste. Dies deutet einen starken trans-Effekt des Borliganden an. In der Dissertation wurden die adiabatische Ionisierungsenergie der Moleküle sowie die Auftrittsenergien der Fragmente und die Bindungsenergien bestimmt. Zudem konnten Isomere anhand ihrer IR-Spektren unterschieden und ihre Dimerisierungsprodukte identifiziert werden. Damit wurden mit p-Terphenyl und 1PEN zwei weitere bedeutende Intermediate im Bildungsmechanismus von Ruß strukturell aufgeklärt. Die Beteiligung dieser Dimerisierungsprodukte am Bildungsmechanismus der PAK initiiert zukünftige Fragen. Was geschieht z.B. mit p-Terphenyl und 1PEN nach ihrer Bildung? Reagieren sie chemisch zu größeren Molekülen oder setzt bei ihnen bereits die Akkumulation zu Partikeln ein? Zusätzlich ist die Frage, ob Phenylpropargyl aus der Reaktion von Phenyl- und Propargylradikalen entsteht noch offen. Die erzielten Resultate haben einen wichtigen Schritt im Bildungsmechanismus der PAK identifiziert und damit die Grundlage für zukünftige Experimente gelegt. N2 - Brilliant light sources like free electron lasers (FEL) and synchrotrons can be used to investigate crystal structures, reactions, or surface properties. These light sources are applied due to their high photon flux and broad wavelength tunability. A free electron laser was employed in the presented work to identify isomers of hydrocarbon radicals and carbenes. By contrary, the photoionization properties of borylene and unsaturated radicals were observed using synchrotron radiation. The important results will be summarized in the following. The first experiment performed at the FEL facility was a test with allyl radicals. Allyl was a good test candidate for other hydrocarbon radicals due to its small change in the dipole moment and low density in the gas phase. Despite of the small change in the dipole moment and particle density a satisfying IR spectrum could be obtained with the IR-UV double resonance method and the observed bands were assigned according to literature. The 3-trifluoromethyl-3-phenyl-carbene (TFPC) was pyrolytically generated from 3-trifluoromethyl-3-phenyl-diazirine. A high percentage of the formed carbene rearranged to trifluorostyrene in the pyrolysis. In addition to the main product trifluorostyrene triplet TFPC was found as a minor product and identified by a comparison with computed IR spectra. Furthermore the barriers for the triplet and singlet transition state were calculated. As a last project with the FEL it was shown that the radicals 1-phenylpropargyl and 3-phenylpropargyl are distinguishable by IR spectroscopy and do not isomerize into each other or indenyl. Additionally, identical dimerisation products are formed in the observed mass channels m/z = 230 and 228, p-terphenyl and 1-phenylethynylnaphthalene (1PEN). This exclusive appearance of just one isomer in each mass channel instead of a broad variety was a striking discovery. Thus, their formation mechanism must be kinetical favored. Since the masses m/z = 230 and 228 were also found in a mass spectrometric study of benzene and acethylene, where their structures were not identified experimentally. The dimerization products p-terphenyl and 1PEN must be important intermediates in the soot formation. The first compound examined with synchrotron radiation was NTCDA. Its threshold photoelectron spectrum was recorded and analyzed applying the TPEPICO technique. The adiabatic ionization energy (IE(ad)) of NTCDA was determined as 9.66 eV. Five additional excited states were observed and assigned by quantum mechanical computations. In a similar project the IE(ad) of the cycloheptatienyl radical (tropyl) was identified to be 6.23 eV. With the help of a Franck-Condon simulation the two observed progressions were assigned to ν16+, a CC stretching and a combination of ν2+, an ringbreathing, and ν16+. Furthermore, the first excited triplet and singlet states were assigned according to literature. A shoulder at 9.85 eV might be the second triplet state or an excited vibration, while the most intense peak appears at 11.6 eV. A distinct assignment of the latter band was not possible employing computations. At approximately 10.55 eV the tropyl ion begins to photoionize dissociatively to form the cyclopentadienyl ion. This value is in good agreement with the appearance energy calculated using a thermochemical cycle. The IE(ad) of the borylene complex [(CO)5CrBN(SiMe3)2] was determined as 7.2 eV. With rising photon energy all five CO-ligands dissociate sequentially, while the boron ligand stays in place. Even at the highest measured energy value of 15 eV the boron ligand did not dissociate. The 0 K appearance energies of the fragments of this sequential CO loss were identified with a fitting procedure including the kinetic shift. Using a simple thermodynamic cycle the binding energies of the cationic complex were obtained. The higher second bond dissociation energy in comparison with the first one indicates a strong trans effect of the borylene ligand. Thermodynamic properties like the adiabatic ionization energy, the appearance energy of the fragments and binding energies were determined. Additionally, different isomers and their dimerization products were identified by their measured IR spectrum. With these experiments the structure of the dimerization products p-terphenyl and 1PEN, two important intermediates in soot formation, were resolved. These dimerization products initialize future questions: What will happen with p-terphenyl and 1PEN after their formation? Will they be involved in a subsequent chemical reaction or start to accumulate? These questions and whether the phenylpropargyl radicals are formed in a reaction of benzene with propargyl radicals should be answered in the future. The obtained results identified an important step in the mechanism of soot production and are the basis for further experiments. KW - Synchrotronstrahlung KW - Freie-Elektronen-Laser KW - Ungesättigte Verbindungen KW - Fotoionisation KW - synchrotron radiation KW - free electron laser KW - infrared KW - photoionization KW - gas phase KW - Fel KW - Infrarot KW - Photoionisation KW - Polycyclische Aromaten KW - Reaktive Zwischenstufe KW - Isomer KW - Gasphase Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-79108 ER - TY - THES A1 - Fecher, Frank Erich T1 - Nichtlineare Dynamik von chemischen Sauerstoff-Oszillatoren T1 - Nonlinear Dynamics of chemical Oxygen Oscillators N2 - Die vorliegende Arbeit hat zum Ziel, das Antwortverhalten nichtlinearer Reaktionen auf zielgerichtete Störungen zu untersuchen. Dabei beschäftigt sie sich mit zwei nichtlinearen chemischen Sauerstoff-Oszillatoren. Bei den beiden nichtlinearen chemischen Reaktionen handelt es sich um den Polyacrylamid-Methylenblau-Sauerstoff- (PA-MBO) Oszillator und um die Kupfer(II)ionen katalysierte Oxidation von Ascorbinsäure durch Luftsauerstoff. Im ersten Fall wird durch selektive Belichtung des Reaktionsmediums die gebildete Geloberfläche durch ein computergenerirtes Muster kodiert. Die Systemantwort wird mit Hilfe einer CCD-Kamera aufgenommen und danach einer Analyse unterzogen. Die erhaltenen Ergebnisse werden anschließend durch eine Computersimulation verifiziert. Die zweite untersuchte Möglichkeit, das PA-MBO-System einer Störung zu unterwerfen, ist das Anlegen eines externen elektrischen Feldes. In einer speziell dafür entworfenen Anordnung bildet sich ein quasi-eindimensionales Turing-Muster. In dieser quasi-eindimensionalen Anordnung kann die Reaktion leicht elektrischen Strömen von bis zu 200 mA/cm2 ausgesetzt werden. Die experimentellen Daten werden anschließend der Karhunen-Loeve Zerlegung unterworfen, um die komplexe Dynamik der Systemantwort zu studieren. Die Oxidation von Ascorbinsäure durch Luftsauerstoff in Gegenwart von Kupfer(II)ionen, wird im CSTR durchgeführt. Dabei läßt sich das Phänomen der stochastischen Resonanz beobachten, wenn man die Flußrate sinusförmig moduliert und dieser Frequenz zusätzlich weißes Rauschen überlagert. N2 - In this work two nonlinear chemical oxygen-oscillators are presented. The two chemical reactions are: the methylene blue-sulfide-oxygen chemical oscillator (MBO) and the oxidation of ascorbic acid by air oxygen catalyzed by copper(II) ions. The effect of various perturbations on these systems is investigated. In the PA-MBO system the gel components acrylamide, N,N'-methylene-bisacrylamide, triethanolamine and the initiator peroxodisulfate are mixed with the components of the methyleneblue-sulfide-oxygen oscillating reaction. The latter are sodiumsulfide, methyleneblue and molecular oxygen from the air. In the MBO reaction sulfide is oxidized by molecular oxygen where methyleneblue acts as redox-catalyst. During the gelation process of acrylamide, chemical reactions between the gel components and the reactants of the MBO are considered to be crucial for the formation of the observed hexagonal and striped patterns. The nonlinearity results from a competitive autocatalysis of polymer species with high molecular weight and low diffusivity. KW - Sauerstoff KW - Oszillator KW - Nichtlineare Dynamik KW - Stochastischer Prozess KW - Nichtlineare Dynamik KW - Sauerstoff-Oszillatoren KW - PA-MBO-System KW - Stochastische Resonanz KW - Nonlinear Dynamics KW - Oxygen-Oscillator KW - PA-MBO-System KW - stochastic resonance Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-185 ER - TY - THES A1 - Falge, Mirjam T1 - Dynamik gekoppelter Elektronen-Kern-Systeme in Laserfeldern T1 - Dynamics of Coupled Electron-Nuclei-Systems in Laser Fields N2 - Die vorliegende Arbeit beschäftigt sich mit der theoretischen Untersuchung zweier Themenkomplexe: der Erzeugung Hoher Harmonischer in Molekülen und dem Einfluss von gekoppelter Elektronen-Kern-Dynamik auf Ultrakurzpuls-Ionisationsprozesse und Quantenkontrolle. Während bei der Untersuchung der Hohen Harmonischen die Auswirkungen der Kernbewegung auf die Spektren im Mittelpunkt des Interesses stehen, wird bei der Analyse der gekoppelter Elektronen-Kern-Dynamik das Hauptaugenmerk auf die nicht-adiabatischen Effekte gerichtet, die auftreten, wenn Kern- und Elektronenbewegung sich nicht, wie es im Rahmen der Born-Oppenheimer-Näherung in der Quantenchemie häufig angenommen wird, voneinander trennen lassen. N2 - This work aims at the theoretical analysis of high harmonic generation in molecules and the influence of coupled electron and nuclear dynamics on ultra-short pulse ionization processes. KW - Nichtadiabatischer Prozess KW - Laserstrahlung KW - Quantenmechanik KW - Molekulardynamik KW - Quantendynamik KW - nicht-adiabatische Effekte KW - Hohe Harmonische KW - Photoelektronenspektroskopie KW - quantum dynamics KW - nonadiabatic effects KW - high harmonic generation KW - photoelectron spectroscopy Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72889 ER - TY - THES A1 - Erdmann, Marco T1 - Coupled electron and nuclear dynamics in model systems T1 - Gekoppelte Elektronen- und Kerndynamik in Modellsystemen N2 - Subject of this work was to investigate the influence of nonadiabatic coupling on the dynamical changes of electron and nuclear density. The properties of electron density have neither been discussed in the stationary case, nor for excited electronic states or for a coupled electronic and nuclear motion. In order to remove these restrictions one must describe the quantum mechanical motion of all particles in a system at the same level. This is only possible for very small systems. A model system developed by Shin and Metiu [1, 2] contains all necessary physical ingredients to describe a combined electronic and nuclear motion. It consists of a single nuclear and electronic degree of freedom and the particle interaction is parameterized in such a way as to allow for a facile switching between and adiabatic (Born-Oppenheimer type) and a strongly coupled dynamics. The first part of the work determined the “static” properties of the model system: The calculation of electronic eigenfunctions, adiabatic potential curves, kinetic coupling elements and transition dipole moments allowed for a prediction of the coupled dynamics. The potentials obtained from different parameterization showed two distinct cases: In the first case the ground and first excited state are separated by a large energy gap which is the typical Born-Oppenheimer case; the second one exhibits an avoided crossing which results in a breakdown of the adiabatic approximation. Due to the electronic properties of the system, the quantum dynamics in the two distinct situations is very different. This was illustrated by calculating nuclear and electron densities as a function of time. In the Born-Oppenheimer case, the electron density followed the vibrational motion of the nucleus. This was demonstrated in two examples. In the strongly coupled case the wave packet did not exhibit features caused by nonadiabatic coupling. However, projections of the wave function onto the electronic states revealed the usual picture obtained from solutions of the nuclear Schrödinger equation involving coupled electronic states. In that case the nuclear motion triggered charge transfer via nonadiabatic coupling. The second part of the work demonstrated that the model system can easily be modified to yield binding situations often found in diatomic molecules. The different situations can be characterized in terms of bound and dissociative adiabatic potential curves. The investigation focussed on the case of an electronic predissociation, where the ground state is dissociative in the asymptotic limit of large internuclear distances. Within our model system we were able to demonstrate how the character of the electron density changes during the fragmentation process. In the third part we investigated the influence of external fields on the correlated dynamics of electron and nucleus. Employing adiabatic potential curves, the structure of absorption spectra can be understood within the weak-field limit. In the above described Born-Oppenheimer case the adiabatically calculated spectrum was in very good agreement with the exact one, whereas in the strongly coupled case the obtained spectrum was not able to resemble the exact one. Regarding the dynamics during a laser excitation process the time-dependent electron and nuclear densities nicely illustrated the famous Franck-Condon principle. The interaction with strong laser pulses lead to an excitation of many bound electronic and vibrational states. The electron density reflected the classical-like quiver motion of the electron induced by the fast variations of the electric field. The nucleus did not follow these fast oscillations because of its much larger mass. The last part of the work extended the original model system by including an additional electron. As a consequence of the Pauli principle, the spatial electronic wave function has to be either symmetric or anti-symmetric with respect to exchange of the two electrons. This corresponds to anti-parallel or parallel electron spins, respectively. The extended model already contains the physical properties of a many-electron system. Solving the time-dependent Schrödinger equation for a typical vibrational wave packet motion clearly indicated that the electron density is no longer suited to “localize” single electrons. We extended the definition of the electron localization function (ELF) to an exact, time-dependent wave function and demonstrated, how the ELF can be used to further characterize a coupled electron and nuclear motion. Finally, we gave an outlook of how to define electron localization in the case of anti-parallel electron spins. We derived a quantity similar to the ELF denoted “anti-parallel spin electron localization function” (ALF) and demonstrated that the ALF allows to follow time-dependent changes of the electron localization in a numerical example. [1] S. Shin, H. Metiu, J. Chem. Phys. 1995, 102, 9285. [2] S. Shin, H. Metiu, J. Phys. Chem. 1996, 100, 7867. N2 - Gegenstand dieser Arbeit war es, den Einfluss nichtadiabatischer Kopplung auf die dynamischen Änderungen von Elektronen- und Kerndichten zu untersuchen. Die Eigenschaften der Elektronendichte wurden bislang weder für den nicht-stationären Fall, noch für angeregte elektronische Zustände oder für eine gekoppelte Elektronen- und Kerndynamik diskutiert. Diese Einschränkungen lassen sich beseitigen, indem man die quantenmechanische Bewegung aller Teilchen eines Systems auf dem gleichen Niveau beschreibt. Dies ist nur für sehr kleine Systeme überhaupt möglich. Ein Modellsystem, das von Shin und Metiu [1, 2] entwickelt wurde, erfüllt alle notwendigen physikalischen Vorraussetzungen, um eine gekoppelte Elektronen- und Kernbewegung zu beschreiben. Das Modell enthält jeweils nur einen Freiheitsgrad für Kern und Elektron, und die Parametrisierung der Teilchenwechselwirkung ermöglicht den flexiblen Wechsel von adiabatischer (Born-Oppenheimer-Fall) zu stark gekoppelter Dynamik. Der erste Teil der Arbeit untersuchte die „statischen“ Eigenschaften des Modellsystems: Die Berechnung elektronischer Eigenfunktionen, adiabatischer Potentialkurven, kinetischer Kopplungselemente und Übergangsdipolmomente erlaubte gewisse Vorhersagen über die zu erwartende, gekoppelte Dynamik. Die Potentiale, die man für verschiedene Parametrisierung erhielt, zeigten zwei deutlich unterschiedliche Fälle: Im ersten Fall, einer gültigen Born-Oppenheimer-Näherung, sind der Grund- und erste angeregte Zustand durch eine große Energielücke voneinander getrennt. Der zweite Fall zeigt eine vermiedene Kreuzung, die zu einem Versagen der adiabatischen Näherung führt. Aufgrund der elektronischen Eigenschaften des Systems, unterscheidet sich die Quantendynamik in den beiden betrachteten Fällen grundlegend, wie durch die Berechnung zeitabhängiger Kern- und Elektronendichten veranschaulicht wurde. Im Born-Oppenheimer-Fall folgte die Änderung der Elektronendichte der Schwingungsbewegung des Kerns. Im Falle starker Kopplung zeigte das Wellenpaket keine Anzeichen einer nichtadiabatischen Kopplung. Die Projektionen der Wellenfunktion auf die elektronischen Zustände enthüllten jedoch das übliche Bild, das man aus der Lösung der Schrödingergleichung der Kerne für gekoppelte elektronische Zustände erhält. In diesem Fall verursachte die Kernbewegung einen Ladungstransfer aufgrund nichtadiabatischer Kopplung. Der zweite Teil der Arbeit zeigte, dass das Modellsystem leicht modifiziert werden kann, um in zweiatomigen Molekülen vorhandene Bindungssituationen zu simulieren. Die verschiedenen Fälle sind durch gebundene und dissoziative adiabatische Potentialkurven charakterisiert. Die Untersuchungen konzentrierten sich auf den Fall einer elektronischen Prädissoziation, d.h. der Grundzustand ist dissoziativ für große Kernabstände. Innerhalb unseres Modellsystems konnten wir zeigen, wie sich die Elektronendichte während des Fragmentierungsprozesses ändert. Im dritten Teil untersuchten wir den Einfluss externer elektrischer Felder auf die korrelierte Elektronen- und Kernbewegung. Mit Hilfe adiabatischer Potentiale kann die Struktur von Absorptionsspektren im Falle schwacher Felder verstanden werden. Für den oben beschriebenen Fall gültiger Born-Oppenheimer-Näherung, stimmte das adiabatisch berechnete Spektrum sehr gut mit dem exakten überein. Für den Fall starker nichtadiabatischer Kopplung zeigte das erhaltene Spektrum keine Übereinstimmung mit dem exakt berechneten. Die Berechnung zeitabhängiger Elektronen- und Kerndichten, während der Wechselwirkung mit einem Laserfeld, veranschaulichte deutlich das Franck-Condon-Prinzip. Die Wechselwirkung mit einem intensiven Laserpuls führte zur Anregung vieler gebundener elektronischer und Schwingungszustände. Die Elektronendichte zeigte die einer klassischen Bewegung sehr ähnliche Zitterbewegung des Elektrons, die durch die schnellen Änderungen des elektrischen Feldes hervorgerufen wird. Der Kern folgte aufgrund seiner wesentlich höheren Masse diesen schnellen Oszillationen nicht. Der letzte Teil der Arbeit erweiterte das ursprüngliche Modell durch Hinzufügen eines weiteren Elektrons. Als Konsequenz des Pauli-Prinzips muss die Ortsraumwellenfunktion entweder symmetrisch oder antisymmetrisch bezüglich Austausches der beiden Elektronen sein. Dies entspricht antiparallelen, bzw. parallelen Elektronenspins. Das erweiterte Modell enthält bereits die physikalischen Eigenschaften eines Mehrelektronensystems. Das Lösen der Schrödingergleichung für eine Schwingungsbewegung des Kerns legte nahe, dass sich die Elektronendichte nicht eignet, die Lokalisierung der Elektronen zu charakterisieren. Wir erweiterten deshalb die Definition der Elektronenlokalisierungsfunktion (ELF) auf eine exakte, zeitabhängige Wellenfunktion und untersuchten, inwieweit sich die ELF eignet, eine gekoppelte Elektronen- und Kernbewegung genauer zu analysieren. Am Ende der Arbeit folgte ein Ausblick, wie Elektronenlokalisierung im Falle antiparalleler Elektronenspins definiert werden kann. Die von uns abgeleitete „Elektronenlokalisierungsfunktion für antiparallelen Spin“ (ALF) erlaubt es, die zeitabhängige Änderung der Elektronenlokalisierung zu beobachten, wie wir an einem numerischen Beispiel verdeutlichen konnten. [1] S. Shin, H. Metiu, J. Chem. Phys. 1995, 102, 9285. [2] S. Shin, H. Metiu, J. Phys. Chem. 1996, 100, 7867. KW - Nichtadiabatischer Prozess KW - Quantenelektrodynamik KW - Quantendynamik KW - nichtadiabatische Kopplung KW - exakte Wellenfunktion KW - Elektronenlokalisierung KW - quantum dynamics KW - nonadiabatic coupling KW - exact wave function KW - electron localization Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-9968 ER - TY - JOUR A1 - Dostál, Jakub A1 - Fennel, Franziska A1 - Koch, Federico A1 - Herbst, Stefanie A1 - Würthner, Frank A1 - Brixner, Tobias T1 - Direct observation of exciton–exciton interactions JF - Nature Communications N2 - Natural light harvesting as well as optoelectronic and photovoltaic devices depend on efficient transport of energy following photoexcitation. Using common spectroscopic methods, however, it is challenging to discriminate one-exciton dynamics from multi-exciton interactions that arise when more than one excitation is present in the system. Here we introduce a coherent two-dimensional spectroscopic method that provides a signal only in case that the presence of one exciton influences the behavior of another one. Exemplarily, we monitor exciton diffusion by annihilation in a perylene bisimide-based J-aggregate. We determine quantitatively the exciton diffusion constant from exciton–exciton-interaction 2D spectra and reconstruct the annihilation-free dynamics for large pump powers. The latter enables for ultrafast spectroscopy at much higher intensities than conventionally possible and thus improves signal-to-noise ratios for multichromophore systems; the former recovers spatio–temporal dynamics for a broad range of phenomena in which exciton interactions are present. KW - energy transfer KW - self-assembly KW - optical spectroscopy Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-226271 VL - 9 ER - TY - INPR A1 - Dietzsch, Julia A1 - Jayachandran, Ajay A1 - Mueller, Stefan A1 - Höbartner, Claudia A1 - Brixner, Tobias T1 - Excitonic coupling of RNA-templated merocyanine dimer studied by higher-order transient absorption spectroscopy T2 - Chemical Communications N2 - We report the synthesis and spectroscopic analysis of RNA containing the barbituric acid merocyanine rBAM2 as a nucleobase surrogate. Incorporation into RNA strands by solid-phase synthesis leads to fluorescence enhancement compared to the free chromophore. In addition, linear absorption studies show the formation of an excitonically coupled H-type dimer in the hybridized duplex. Ultrafast third- and fifth-order transient absorption spectroscopy of this non-fluorescent dimer suggests immediate (sub-200 fs) exciton transfer and annihilation due to the proximity of the rBAM2 units. KW - Barbituric Acid Merocyanines KW - Nucleobase Surrogate Incorporation KW - Higher-order Transient Absorption Spectroscopy KW - rBAM2-labeled RNA strands Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-327772 ET - submitted version ER - TY - THES A1 - Dietzek, Benjamin T1 - Ultrafast linear and non-linear spectroscopy : from biological light-receptors to artificial light-harvesting systems T1 - Ultraschnelle lineare und nicht-lineare Spektroskopie : Von biologischen Lichtrezeptoren zu künstlichen Lichtsammelsystemen N2 - In the experiments presented in this work, linear and non-linear femtosecond time-resolved spectrsocopy were applied to investigate the structure-function and functiondynamics relationship in biological and artificially designed systems. The experiments presented in this work utilize femtosecond time-resolved transient absorption and transient grating as well as picosecond time-resolved fluorescence spectroscopy to investigate the photophysics and photochemistry of biological photoreceptors and address the light-induced excited-state processes in a particular molecular device that serves as a - structurally - very simple light-harvesting antenna and potentially as a catalysis-switch for the production of hydrogen in solution. The combination of white-light probe transient absorption and coherent transient grating spectroscopies yields spectral information about the excited state absorption in concert with high quality, high signal-to-noise kinetic transients, which allow for precise fitting and therefore very accurate time-constants to be extracted from the data. The use of femtosecond time-resolved transient grating spectroscopy is relatively uncommon in addressing questions concerning the excited-state reaction pathways of complex (biological) systems, and therefore the experiments presented in this work constitute according to the literature the first studies applying this technique to a a metalloporphyrin and an artificial light-harvesting antenna. N2 - In der hier vorliegenden Arbeit wurden die Struktur- Funktions- und Funktions- Dynamik- Beziehungen in biologischen und künstlich synthetisierten Systemen untersucht. Hierfür wurden Femtosekunden zeitaufgelöste lineare und nicht-lineare spektroskopische Techniken verwendet. Mittels transienter Absorptions- und transienter Gitterspektroskopie sowie Pikosenkunden zeitaufgelöster Fluoresezenzmessungen wurden ausgewählte pflanzliche Photorezeptoren untersucht und die Relaxationsprozesse im angeregten Zustand einer artifiziellen Lichtsammelantenne charakterisiert. Die Kombination aus Femtosekundenzeitaufgelöster transienter Absorption unter Verwendung eines Weisslichtsuperkontinuums als Probepuls und kohärenter Vier-Wellen-Mischungs-Spektroskopie erlaubt es, breitbandige spektrale Informationen über einen photo-angeregten Zustand zu gewinnen und gleichzeitig Kinetiken mit einem sehr hohen Signal-Rausch-Verhältnis zu messen. Letztere erlauben einen präzisen Fit, und somit können sehr präzise charakteristische Zerfallskonstanten aus den zeitaufgelösten Daten rekonstruiert werden. Durch den komplexeren Versuchsaufbau eines Vier-Wellen-Mischungs-Experiments verglichen mit dem transienter Absorptionsspektroskopie ist die Verwendung von zeitaufgelöster transienter Gitterspektroskopie zur Untersuchung licht-induzierter Prozesse in komplexen biologischen Systemen noch immer relativ unüblich. Daher stellen die hier präsentierten Ergebnisse die ersten Experimente dar, in denen diese Technik zur Untersuchung von angeregter Zustandsrelaxation in einem Metalloporphyrin und einem künstlichen photosynthetischen Reaktionszentrum eingesetzt wurde. KW - Femtosekundenspektroskopie KW - Photorezeptor KW - Licht-Sammel-Komplex KW - Femtosekunden zeitaufgelöste Spektroskopie KW - biologische Photorezeptoren KW - Übergangsmetallkomplexe KW - künstliche Lichtsammelsysteme KW - femtosecond time-resolved spectroscopy KW - biological photoreceptors KW - transition metal complexes KW - artificial light harvesting systems Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-15684 ER - TY - JOUR A1 - Dietschreit, Johannes C. B. A1 - Wagner, Annika A1 - Le, T. Anh A1 - Klein, Philipp A1 - Schindelin, Hermann A1 - Opatz, Till A1 - Engels, Bernd A1 - Hellmich, Ute A. A1 - Ochsenfeld, Christian T1 - Predicting \(^{19}\)F NMR Chemical Shifts: A Combined Computational and Experimental Study of a Trypanosomal Oxidoreductase–Inhibitor Complex JF - Angewandte Chemie International Edition N2 - The absence of fluorine from most biomolecules renders it an excellent probe for NMR spectroscopy to monitor inhibitor–protein interactions. However, predicting the binding mode of a fluorinated ligand from a chemical shift (or vice versa) has been challenging due to the high electron density of the fluorine atom. Nonetheless, reliable \(^{19}\)F chemical‐shift predictions to deduce ligand‐binding modes hold great potential for in silico drug design. Herein, we present a systematic QM/MM study to predict the \(^{19}\)F NMR chemical shifts of a covalently bound fluorinated inhibitor to the essential oxidoreductase tryparedoxin (Tpx) from African trypanosomes, the causative agent of African sleeping sickness. We include many protein–inhibitor conformations as well as monomeric and dimeric inhibitor–protein complexes, thus rendering it the largest computational study on chemical shifts of \(^{19}\)F nuclei in a biological context to date. Our predicted shifts agree well with those obtained experimentally and pave the way for future work in this area. KW - African sleeping sickness KW - covalent inhibitors KW - NMR spectroscopy KW - quantum chemistry KW - structural biology Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214879 VL - 59 IS - 31 SP - 12669 EP - 12673 ER - TY - THES A1 - Dembski, Sofia Viktorovna T1 - Synthese und Charakterisierung von II-VI-Halbleiter-Nanopartikeln in unterschiedlicher Umgebung T1 - Synthesis and Characterization of II-VI-Semiconductor Nanoparticles in Selected Environment N2 - Gegenstand dieser Arbeit ist die Synthese und Charakterisierung von II-VI-Halbleiter-Nanopartikeln (NP) in unterschiedlicher Umgebung. Aufgrund des großen Oberfläche-zu-Volumen-Verhältnisses werden Partikeleigenschaften stark durch ihre Oberfläche und die Wechselwirkung mit der Umgebung beeinflusst. Zuerst wurden strukturierte CdSe und CdSe/ZnS-Kern-Schale Nanopartikel durch eine organometallische Synthese in koordinierenden Lösungsmitteln hergestellt. Die optischen und elektronischen Eigenschaften wurden mittels Absorptions-(UV/VIS)-, Fluoreszenz- und konfokaler Fluoreszenz-Korrelations-Spektroskopie (FCS) untersucht. Die Ermittlung der Kristallstruktur erfolgte durch hochauflösende Transmissionselektronenmikroskopie (HRTEM) und Röntgenpulverdiffraktometrie (XRD). Die experimentellen XRD Resultate wurden durch Simulationen mittels der Debye-Formel sowie Berechnung einer Paarverteilungsfunktion (PDF) für die verschiedenen Nanopartikel-Modelle ausgewertet. Somit konnten die Partikelgröße, -form und die Kristallstruktur ermittelt werden. Ramanspektroskopische Untersuchungen ergaben Informationen über die Zusammensetzung des anorganischen Partikelkerns sowie seiner stabilisierenden Ligandenhülle. Aufbauend auf diesen Ergebnissen aus unterschiedlichen spektroskopischen und mikroskopischen Methoden konnte ein Struktur-Modell für die Kern-Schale Nanopartikel entwickelt werden. Dabei ist ein prolater wurtzitischer CdSe-Kern mit einer segmentartigen, lückenhaften ZnS-Schale beschichtet, die eine Zinkblende-Struktur aufweist. Zur Untersuchung der Umgebungseffekte wurden die CdSe- und CdSe/ZnS-Halbleiter-NP mit hydrophilen Liganden funktionalisiert, reversibel mit einer Polymerhülle beschichtet sowie kontrolliert in Silica-Kolloide eingebettet (Multikernpartikel). Somit konnten die Nanopartikel in unterschiedlich polaren und apolaren Lösungsmitteln stabilisiert und charakterisiert werden. Im Hinblick auf die Anwendungen von Halbleiter-NP als Marker in den Lebenswissenschaften wurde die Biokompatibilität und die lichtinduzierte Fluoreszenzverstärkung von Polymer-beschichteten II-VI-Halbleiter-NP und CdSe/ZnS-dotierten Silica-Kolloiden in unterschiedlichen Umgebungen untersucht. Mit Hilfe der erhaltenen Resultate ist ein neues qualitatives Modell für die lichtinduzierten Aktivierungs- und Desaktivierungsprozesse in Multikernpartikeln entwickelt worden. Ein weiterer Aspekt dieser Arbeit war die Untersuchung der lokalen elektronischen Struktur von II-VI-Halbleiter-NP in unterschiedlichen Umgebungen durch elementspezifische Anregung mit weicher Röntgenstrahlung. Dazu wurde ein Verfahren weiterentwickelt, das es erlaubt, einzelne gespeicherte feste und flüssige Nanopartikel substratfrei mit Hilfe von Synchrotronstrahlung zu analysieren. Darüber hinaus wurde die Röntgenabsorptionsfeinstruktur von deponierten CdSe/ZnS-dotierten Silica-Kolloiden durch die Messung der röntgenangeregten optischen Fluoreszenz (XEOL) bzw. durch die Bestimmung der totalen Elektronenausbeute (TEY) untersucht. N2 - Subject of this thesis is the synthesis and characterization of II-VI-semiconductor nanoparticles (quantum dots, QD) in selected environments. Structured CdSe and CdSe/ZnS core-shell nanoparticles have been prepared by syntheses that are based on the high temperature thermolysis of organometallic precursors in the presence of stabilizing agents. The influence of the local environment on the optical properties of the QD is studied by optical absorption (UV/VIS), photoluminescence, and confocal fluorescence correlation spectroscopy (FCS). The crystal structure of the nanoparticles is characterized by high-resolution electron microscopy (HRTEM) and X-ray diffraction (XRD). The diffraction patterns are fitted directly by modeling the nanocrystals using the Debye equation and pair distribution function (PDF), which models the interatomic distances within the sample. These results allowed us to determine fundamental parameters, such as size, shape, and crystal structure. Raman spectroscopy probes the lattice vibrations of the nanocrystals. This approach is applied to investigate the composition of the core-shell particles and especially to study the bonding between the stabilizing ligands and the nanoparticle surface by analyzing the internal vibrational modes. The results of the several characterization methods allowed us to develop a new model for the core-shell particle structure: ZnS with a zincblende structure forms an irregularly shaped shell around the elongated CdSe core which has a wurtzite structure. Further, the particles are subsequently functionalized either by an exchange of their ligands, or by the reversible adsorption of an amphiphilic polymer. Alternatively, they are embedded in silica colloids in a controlled way (multicore particles). As a result, the nanoparticle properties can be studied in various solvents ranging from apolar to polar liquids as well as in solid environments. Moreover, multicore particles have the potential to be used as selective labels for biological studies. Therefore, the cytotoxicity and the light induced enhancement of the luminescence of the multicore particles in various environments are investigated. Based on the present results, a new qualitative model for the mechanism of the photoactivation and -deactivation of CdSe/ZnS dotted silica colloids in various solvents is developed. The local electronic structure of the QD is studied by element-specific excitation using soft X-rays. For this purpose, a recently developed approach has been improved, allowing the investigation of single solid and liquid particles trapped in an electrodynamic particle trap, which are probed by monochromatic synchrotron radiation. In addition, the near edge X-ray absorption fine structure of deposited CdSe/ZnS doped silica colloids is determined by the measurement of the X-ray excited optical luminescence (XEOL) and the total electron yield (TEY). KW - Zwei-Sechs-Halbleiter KW - Nanopartikel KW - II-VI-Halbleiter-Nanopartikel KW - Umgebungseffekte KW - Oberflächenmodifizierung KW - Multikernpartikel KW - Fluoreszenzverstärkung KW - Röntgenabsorptionsfeinstruktur KW - II-VI-semiconductor nanoparticles KW - quantum dots KW - environmental effects KW - surface modifications KW - multicore particles KW - photoactivation KW - NEXAFS Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-22066 ER -