TY - THES A1 - Kerner, Florian Tobias T1 - Reactions of rhodium(I) with diynes and studies of the photophysical behavior of the luminescent products T1 - Reaktionen von Rhodium(I) mit Diinen und Untersuchung der photophysikalischen Eigenschaften der lumineszenten Produkte N2 - Chapter 1 deals with the reaction of [Rh(acac)(PMe3)2] with para-substituted 1,4-diphenylbuta-1,3-diynes at room temperature, in which a complex containing a bidentate organic fulvene moiety, composed of two diynes, σ-bound to the rhodium center is formed in an all-carbon [3+2] type cyclization reaction. In addition, a complex containing an organic indene moiety, composed of three diynes, attached to the rhodium center in a bis-σ-manner is formed in a [3+2+3] cyclization process. Reactions at 100 °C reveal that the third diyne inserts between the rhodium center and the bis-σ-bound organic fulvene moiety. Furthermore, the formation of a 2,5- and a 2,4-bis(arylethynyl)rhodacyclopentadiene is observed. The unique [3+2] cyclization product was used for the synthesis of a highly conjugated organic molecule, which is hard to access or even inaccessible by conventional methods. Thus, at elevated temperatures, reaction of the [3+2] product with para-tolyl isocyanate led to the formation of a purple organic compound containing the organic fulvene structure and one equivalent of para-tolyl isocyanate. The blue and green [3+2+3] complexes show an unusually broad absorption from 500 – 1000 nm with extinction coefficients ε of up to 11000 M-1 cm-1. The purple organic molecule shows an absorption spectrum similar to those of known diketopyrrolopyrroles. Additionally, the reaction of [Rh(acac)(PMe3)2] with para-tolyl isocyanate was investigated. A cis-phosphine complex of the form cis-[Rh(acac)(PMe3)2(isocyanate)2] with an isocyanate dimer bound to the rhodium center by one carbon and one oxygen atom was isolated. Replacing the trimethylphosphine ligands in [Rh(acac)(PMe3)2] with the stronger σ-donating NHC ligand Me2Im (1,3-dimethylimidazolin-2-ylidene), again, drastically alters the reaction. Similar [3+2] and [3+2+3] products to those discussed above could not be unambiguously assigned, but cis- and trans-π-complexes, which are in an equilibrium with the two starting materials, were formed. Chapters 2 is about the influence of the backbone of the α,ω-diynes on the formation and photophysical properties of 2,5-bis(aryl)rhodacyclopentadienes. Therefore, different α,ω-diynes were reacted with [Rh(acac)(PMe3)2] and [Rh(acac)(P(p-tolyl)3)2] in equimolar amounts. In general, a faster consumption of the rhodium(I) starting material is observed while using preorganized α,ω-diynes with electron withdrawing substituents in the backbone. The isolated PMe3-substituted rhodacyclopentadienes exhibit fluorescence, despite the presence of the heavy atom rhodium, with lifetimes τF of < 1 ns and photoluminescence quantum yields Φ of < 0.01 as in previously reported P(p-tolyl)-substituted 2,5-bis(arylethynyl)rhodacyclopentadienes. However, an isolated P(p-tolyl)-substituted 2,5-bis(aryl)rhodacyclopentadiene shows multiple lifetimes and different absorption and excitation spectra leading to the conclusion that different species may be present. Reaction of [Rh(acac)(Me2Im)2] with dimethyl 4,4'-(naphthalene-1,8-diylbis(ethyne-2,1-diyl))dibenzoate, results in the formation of a mixture trans- and cis-NHC-substituted 2,5-bis(aryl)rhodacyclopentadienes. In chapter 3 the reaction of various acac- and diethyldithiocarbamate-substituted rhodium(I) catalysts bearing (chelating)phosphines with α,ω-bis(arylethynyl)alkanes (α,ω-diynes), yielding luminescent dimers and trimers, is described. The photophysical properties of dimers and trimers of the α,ω-diynes were investigated and compared to para-terphenyl, showing a lower quantum yield and a larger apparent Stokes shift. Furthermore, a bimetallic rhodium(I) complex of the form [Rh2(ox)(P(p-tolyl)3)4] (ox: oxalate) was reacted with a CO2Me-substituted α,ω-tetrayne forming a complex in which only one rhodium(I) center reacts with the α,ω-tetrayne. The photophysical properties of this mixed rhodium(I)/(III) species shows only negligible differences compared to the P(p-tolyl)- and CO2Me-substituted 2,5-bis(arylethynyl)rhodacyclopentadiene, previously synthesized by Marder and co-workers. N2 - Kapitel 1 beschäftigt sich mit der Umsetzung von [Rh(acac)(PMe3)2] mit zwei Äquivalenten para-substituierten 1,4-Diphenylbuta-1,3-diins bei Raumtemperatur. Dabei bildete sich ein Komplex, welcher eine organische Fulveneinheit, bestehend aus zwei Diinen und verbunden über zwei σ-Bindungen mit dem Rhodiumzentralatom, besitzt. Diese Verbindung bildet sich in einer „all-carbon“ [3+2] ähnlichen Zyklisierungsreaktion. Ebenso konnte aus derselben Reaktion ein Komplex mit einer Indeneinheit, bestehend aus drei Diinen, welche durch zwei σ-Bindungen mit dem Rhodiumzentralatom verbunden sind, isoliert und charakterisiert werden. Diese Verbindung bildet sich in einer „all-carbon“ [3+2+3] ähnlichen Zyklisierungsreaktion. Experimente bei 100 °C zeigen, dass sich das zusätzliche dritte Diin zwischen dem Rhodiumzentralatom und der organischen Fulveneinheit einfügt. Zusätzlich konnte die Bildung von 2,4- und 2,5-Bis(arylethinyl)rhodazyklopentadienen bei 100°C beobachtet werden. Diese seltene [3+2] Zyklisierungsreaktion kann benutzt werden um konjugierte, organische Moleküle darzustellen, welche sonst nur schwer oder gar nicht mit bisher bekannten Synthesemethoden zugänglich sind. In der Umsetzung des [3+2] Komplexes mit para-Tolylisocyanat bei 80 °C konnte ein violetter, rein organischer Feststoff erhalten werden, bestehend aus der organischen Fulveneinheit und einem Äquivalent para-Tolylisocyanat. Die blauen und grünen [3+2+3] Komplexe zeigen unter anderem eine ungewöhnliche breite Absorption von 500 – 1000 nm mit einem Extinktionskoeffizienten von bis zu 11000 M-1 cm-1. Die violette, rein organische Verbindung zeigt ein Absorptionsspektrum ähnlich zu bereits bekannten Diketopyrrolopyrrolen. Auch wurde die Reaktion von [Rh(acac)(PMe3)2] mit para-Tolylisocyanat untersucht. Es konnte ein cis-phosphan Komplex, bei dem ein para-Tolylisocyanat-Dimer über ein Kohlenstoff- und ein Sauerstoffatom an das Rhodiumzentralatom koordiniert, isoliert und charakterisiert werden. Substitution des Trimethylphosphans im Rh(I)-Präkursors durch einen NHC Liganden, nämlich Me2Im (1,3-dimethylimidazolin-2-yliden) führt zu einem unterschiedlichen Reaktionsverlauf. Ähnliche [3+2] und [3+2+3] Komplexe konnten nicht zweifelsfrei bestätigt werden, dafür konnte aber gezeigt werden, dass sich in der Reaktion bildende cis- und trans-Komplexe im Gleichgewicht mit den verwendeten Startmaterialien befinden. Im zweiten Kapitel dieser Arbeite wurde der Einfluss des Rückgrats von α,ω-bis(arylethynyl)alkanen (α,ω-Diine) auf die Bildung und die photophysikalischen Eigenschaften von 2,5-Bis(aryl)rhodazyklopentadienen untersucht. Dazu wurden mehrere α,ω-Diine mit unterschiedlichem Rückgrat synthetisiert und diese mit [Rh(acac)(PMe3)2] und [Rh(acac)(P(p-tolyl)3)2] in äquimolaren Mengen reagiert. Es konnte ein schnellerer Verbrauch des Rh(I)-Präkursors bei der Verwendung von vororganisierten α,ω-Diinen mit elektronenziehenden Substituenten am Rückgrat festgestellt werden. Die PMe3-substituierten Rhodazyklopentadiene zeigen Fluoreszenz, trotz der Anwesenheit eines Schwermetalls. Lebenszeiten von τF < 1 ns und Quantenausbeuten von Φ < 0.01, ähnlich wie in P(p-tolyl)-substituierten 2,5-Bis(arylethynyl)rhodazyklopentadienen wurden beobachtet. Bei einem isolierten P(p-tolyl)-substituierten 2,5-Bis(aryl)rhodazyklopentadien konnten mehrere Lebenszeiten, wie auch unterschiedliche Absorptions- und Anregungsspektren detektiert werden, was zu der Schlussfolgerung führt, dass in Lösung mehrere Spezies vorhanden sind. Die Reaktion von [Rh(acac)(Me2Im)2] mit Dimethyl 4,4'-(naphthalen-1,8-diylbis(ethyn-2,1-diyl))dibenzoat führt zur Bildung einer Mischung aus trans- und cis-NHC-substituierter 2,5-Bis(aryl)rhodazyklopentadienen. Im dritten Kapitel, wurde die Bildung lumineszenter Dimere und Trimere aus der Umsetzung von verschiedenen α,ω-Diinen mit katalytischen Mengen verschiedener acac- und diethyldithiocarbamat-substituierter Rhodium(I)-Katalysatoren mit (chelatisierenden) phosphanen untersucht. Anschließend wurden die photophysikalischen Eigenschaften der Dimere und Trimere untersucht und mit para-Terphenyl verglichen. Dabei wurden ähnliche Lebenszeiten, eine geringere Quantenausbeute wie auch größere Stokes-Verschiebungen der Dimere und Trimere im Vergleich zu para-Terphenyl gefunden. Auch wurde die Reaktion zwischen einem bimetallischen Rhodium Komplex [Rh2(ox)(P(p-tolyl)3)4] (ox: oxalat) und einem CO2Me-substituiertem α,ω-bis(arylbutadiynyl)alkan (α,ω-Tetrain) untersucht. In dieser Umsetzung reagierte nur eine der beiden möglichen Rhodium(I)-zentren mit dem α,ω-Tetrain unter Bildung eines 2,5-Bis(arylethynyl)rhodazyklopentadiens. Die photophysikalischen Eigenschaften dieser gemischten Rhodium(I)/(III)-Spezies zeigt nur marginale unterschiede, verglichen mit einem mononuklearen P(p-tolyl)- und CO2Me-substituiertem 2,5-Bis(arylethynyl)rhodazyklopentadiens, welches zuvor im Arbeitskreis Marder schon synthetisiert wurde. KW - Übergangsmetallkomplexe KW - Rhodium KW - Übergangsmetallkomplex KW - Zyklisierung KW - Transitionmetal KW - Cyclization Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-209107 ER - TY - JOUR A1 - Bura, Thomas A1 - Beaupré, Serge A1 - Légaré, Marc-André A1 - Ibraikulov, Olzhas A. A1 - Leclerc, Nicolas A1 - Leclerc, Mario T1 - Theoretical calculations for highly selective Direct Heteroarylation Polymerization: new nitrile-substituted Dithienyl-Diketopyrrolopyrrole-based polymers JF - Molecules N2 - Direct Heteroarylation Polymerization (DHAP) is becoming a valuable alternative to classical polymerization methods being used to synthesize π-conjugated polymers for organic electronics applications. In previous work, we showed that theoretical calculations on activation energy (Ea) of the C–H bonds were helpful to rationalize and predict the selectivity of the DHAP. For readers’ convenience, we have gathered in this work all our previous theoretical calculations on Ea and performed new ones. Those theoretical calculations cover now most of the widely utilized electron-rich and electron-poor moieties studied in organic electronics like dithienyl-diketopyrrolopyrrole (DT-DPP) derivatives. Theoretical calculations reported herein show strong modulation of the Ea of C–H bond on DT-DPP when a bromine atom or strong electron withdrawing groups (such as fluorine or nitrile) are added to the thienyl moiety. Based on those theoretical calculations, new cyanated dithienyl-diketopyrrolopyrrole (CNDT-DPP) monomers and copolymers were prepared by DHAP and their electro-optical properties were compared with their non-fluorinated and fluorinated analogues. KW - DHAP KW - selectivity KW - theoretical calculations KW - conjugated polymers KW - organic electronics Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197648 SN - 1420-3049 VL - 23 IS - 9 ER - TY - THES A1 - Ribbeck, Tatjana T1 - Seltenerdmetallkomplexe mit Cyanoborat-Anionen - sowie - Synthese und Charakterisierung des Hydroxytricyanoborat-Anions T1 - Rare Earth Complexes with Cyanoborate-Anions - and - Synthesis and Characterization of the Hydroxytricyanoborate-Anion N2 - Im Rahmen dieser Arbeit konnten Seltenerdmetallcyanoborate mit unterschiedlich funktionalisierten Anionen, beispielsweise Hydrido-, Fluoro- oder Perfluoralkylcyanoborat-Anionen, synthetisiert und vollständig charakterisiert werden. Lösungen der wasserfreien Komplexe Ln[BH2(CN)2]3 (Ln = La, Eu, Ho) in der korrespondierenden ionischen Flüssigkeit [EMIm][BH2(CN)2] konnten hinsichtlich Dichte Viskosität und Leitfähigkeit in Abhängigkeit der Konzentration des gelösten Komplexes untersucht werden. Alle Europiumkomplexe wurden hinsichtlich ihrer photochemischen Eigenschaften untersucht. Weiterhin konnte im Rahmen dieser Arbeit die erste selektive Synthese des Hydroxytricyanoborat-Anions [B(OH)(CN)3]- vorgestellt werden. Ausgehend von der Brønstedsäure dieses Anions konnte die Synthese einer ganzen Reihe von Salzen und Komplexverbindungen, sowie von ionischen Flüssigkeiten mit diesem Anion realisiert werden. N2 - Within this thesis rare earth cyanoborates with functionalized anions, such as Hydrido-, Fluoro- or Perfluoralkylcyanoborate anions, were synthesized and completely characterized. Solutions of the anhydrous complexes Ln[BH2(CN)2]3 (Ln = La, Eu, Ho) in the corresponding ionic liquid [EMIm][BH2(CN)2] were examined concerning their density, viscosity and conductivity depending on the concentration of the dissolved complex. All complexes containing Eu3+ cations were examined concerning their photochemical properties. Furthermore, the first selective synthesis of the Hydroxytricyanoborate anion [B(OH)(CN)3] was presented within this thesis. Starting from the Brønsted acid of this anion the synthesis of a huge range of salts and complexes, as well as ionic liquids with this anion was realized. KW - Cyanoborate KW - Seltenerdmetallcyanoborate KW - Hydroxytricyanoborat-Anion Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-183465 ER - TY - JOUR A1 - Auerhammer, Dominic A1 - Arrowsmith, Merle A1 - Braunschweig, Holger A1 - Dewhurst, Rian D. A1 - Jiménez-Halla, J. Oscar C. A1 - Kupfer, Thomas T1 - Nucleophilic addition and substitution at coordinatively saturated boron by facile 1,2-hydrogen shuttling onto a carbene donor JF - Chemical Science N2 - The reaction of [(cAAC\(^{Me}\))BH\(_{3}\)] (cAAC\(^{Me}\) = 1-(2,6-iPr\(_{2}\)C\(_{6}\)H\(_{3}\))-3,3,5,5-tetramethylpyrrolidin-2-ylidene) with a range of organolithium compounds led to the exclusive formation of the corresponding (dihydro)organoborates, Li\(^{+}\)[(cAAC\(^{Me}\)H)BH\(_{2}\)R]− (R = sp\(^{3}\)-, sp\(^{2}\)-, or sp-hybridised organic substituent), by migration of one boron-bound hydrogen atom to the adjacent carbene carbon of the cAAC ligand. A subsequent deprotonation/salt metathesis reaction with Me3SiCl or spontaneous LiH elimination yielded the neutral cAAC-supported mono(organo)boranes, [(cAAC\(^{Me}\)H)BH\(_{2}\)R]− (R]. Similarly the reaction of [cAAC\(^{Me}\))BH\(_{3}\)] with a neutral donor base L resulted in adduct formation by shuttling one boron-bound hydrogen to the cAAC ligand, to generate [(cAAC\(^{Me}\)H)BH\(_{2}\)L], either irreversibly (L = cAAC\(^{Me}\)) or reversibly (L = pyridine). Variable-temperature NMR data and DFT calculations on [(cAAC\(^{Me}\)H)BH\(_{2}\)(cAAC\(^{Me}\))] show that the hydrogen on the former carbene carbon atom exchanges rapidly with the boron-bound hydrides. KW - nucleophilic addition KW - nucleophilic substitution KW - boron-bound hydrogen KW - carbene donor Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170255 VL - 8 IS - 10 ER - TY - JOUR A1 - Landmann, Johannes A1 - Hennig, Philipp T. A1 - Ignat'ev, Nikolai V. A1 - Finze, Maik T1 - Borylation of fluorinated arenes using the boron centred nucleophile B(CN)\(_{3}\)\(^{2-}\) - a unique entry to aryltricyanoborates JF - Chemical Science N2 - The potassium salt of the boron-centred nucleophile B(CN)\(_{3}\)\(^{2-}\)(1) readily reacts with perfluorinated arenes, such as hexafluorobenzene, decafluorobiphenyl, octafluoronaphthalene and pentafluoropyridine, which results in KF and the K\(^{+}\) salts of the respective borate anions with one {B(CN)\(_{3}\)} unit bonded to the (hetero)arene. An excess of K\(_{2}\)1 leads to the successive reaction of two or, in the case of perfluoropyridine, even three C–F moieties and the formation of di- and trianions, respectively. Moreover, all of the 11 partially fluorinated benzene derivatives, C\(_{6}\)F\(_{6-n}\)H\(_{n}\) (n = 1–5), generally react with K\(_{2}\)1 to give new tricyano(phenyl)borate anions with high chemo- and regioselectivity. A decreasing number of fluorine substituents on benzene results in a decrease in the reaction rate. In the cases of partially fluorinated benzenes, the addition of LiCl is advantageous or even necessary to facilitate the reaction. Also, pentafluorobenzenes R–C\(_{6}\)F\(_{5}\) (R = –CN, –OMe, –Me, or –CF\(_{3}\)) react via C–F/C–B exchange that mostly occurs in the para position and to a lesser extent in the meta or ortho positions. Most of the reactions proceed via an S\(_{N}\)Ar mechanism. The reaction of 1,4-F\(_{2}\)C\(_{6}\)H\(_{4}\) with K\(_{2}\)1 shows that an aryne mechanism has to be considered in some cases as well. In summary, a wealth of new stable tricyano(aryl)borates have been synthesised and fully characterized using multi-NMR spectroscopy and most of them were characterised using single-crystal X-ray diffraction. KW - borylation KW - boron-centred nucleophile KW - aryltricyanoborates Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170417 VL - 8 IS - 9 ER - TY - INPR A1 - Auerhammer, Dominic A1 - Arrowsmith, Merle A1 - Bissinger, Philipp A1 - Braunschweig, Holger A1 - Dellermann, Theresa A1 - Kupfer, Thomas A1 - Lenczyk, Carsten A1 - Roy, Dipak A1 - Schäfer, Marius A1 - Schneider, Christoph T1 - Increasing the Reactivity of Diborenes: Derivatization of NHC- Supported Dithienyldiborenes with Electron-Donor Groups T2 - Chemistry, A European Journal N2 - A series of NHC-supported 1,2-dithienyldiborenes was synthesized from the corresponding (dihalo)thienylborane NHC precursors. NMR and UV-vis spectroscopic data, as well as X-ray crystallographic analyses, were used to assess the electronic and steric influences on the B=B double bond of various NHCs and electron-donating substituents on the thienyl ligands. Crystallographic data showed that the degree of coplanarity of the diborene core and thienyl groups is highly dependent on the sterics of the substituents. Furthermore, any increase in the electron- donating ability of the substituents resulted in the destabilization of the HOMO and greater instability of the resulting diborenes. KW - diborenes KW - N-heterocyclic carbenes KW - electron donors KW - structural analysis KW - spectroscopy Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-155419 N1 - This is the pre-peer reviewed version of the following article: Auerhammer, D., Arrowsmith, M., Bissinger, P., Braunschweig, H., Dellermann, T., Kupfer, T., Lenczyk, C., Roy, D. K., Schäfer, M. and Schneider, C. (2017), Increasing the Reactivity of Diborenes: Derivatization of NHC-Supported Dithienyldiborenes with Electron-Donor Groups. Chem. Eur. J.. doi:10.1002/chem.201704669, which has been published in final form at doi:10.1002/chem.201704669. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. ER - TY - INPR A1 - Auerhammer, Dominic A1 - Arrowsmith, Merle A1 - Böhnke, Julian A1 - Braunschweig, Holger A1 - Dewhurst, Rian D. A1 - Kupfer, Thomas T1 - Brothers from Another Mother: a Borylene and its Dimer are Non-Interconvertible but Connected through Reactivity T2 - Chemical Science N2 - The self-stabilizing, tetrameric cyanoborylene [(cAAC)B(CN)]4 (I, cAAC = 1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene) and its diborene relative, [(cAAC)(CN)B=B(CN)(cAAC)] (II), both react with disulfides and diselenides to yield the corresponding cAAC-supported cyanoboron bis(chalcogenides). Furthermore, reactions of I or II with elemental sulfur and selenium in various stoichiometries provided access to a variety of cAAC- stabilized cyanoboron-chalcogen heterocycles, including a unique dithiaborirane, a diboraselenirane, 1,3-dichalcogena-2,4-diboretanes, 1,3,4-trichalcogena- 2,5-diborolanes and a rare six-membered 1,2,4,5-tetrathia-3,6-diborinane. Stepwise addition reactions and solution stability studies provided insights into the mechanism of these reactions and the subtle differences in reactivity observed between I and II. KW - borylenes KW - diborenes KW - boron KW - carbenes KW - chalcogens Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157125 ER - TY - INPR A1 - Böhnke, Julian A1 - Braunschweig, Holger A1 - Jiménez-Halla, Oscar A1 - Krummenacher, Ivo A1 - Stennett, Tom E. T1 - Half-Sandwich Complexes of an Extremely Electron-Donating, Re-dox-Active η\(^6\)-Diborabenzene Ligand T2 - Journal of the American Chemical Society N2 - The heteroarene 1,4-bis(CAAC)-1,4-diborabenzene (1; CAAC = cyclic (alkyl)(amino)carbene) reacts with [(MeCN)\(_3\)M(CO)\(_3\)] (M = Cr, Mo, W) to yield half-sandwich complexes of the form [(η\(^6\)-diborabenzene)M(CO)\(_3\)] (M = Cr (2), Mo (3), W (4)). Investigation of the new complexes with a combination of X-ray diffraction, spectroscopic methods and DFT calculations shows that ligand 1 is a remarkably strong electron donor. In particular, [(η\(^6\)-arene)M(CO)\(_3\)] complexes of this ligand display the lowest CO stretching frequencies yet observed for this class of complex. Cyclic voltammetry on complexes 2-4 revealed one reversi- ble oxidation and two reversible reduction events in each case, with no evidence of ring-slippage of the arene to the η\(^4\) binding mode. Treatment of 4 with lithium metal in THF led to identification of the paramagnetic complex [(1)W(CO)\(_3\)]Li·2THF (5). Compound 1 can also be reduced in the absence of a transition metal to its dianion 1\(^{2–}\), which possesses a quinoid-type structure. KW - half-sandwich complexes KW - transition metal complex KW - boron KW - redox reactions Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-156766 N1 - This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in Journal of the American Chemical Society, copyright © 2017 American Chemical Society after peer review. To access the final edited and published work see dx.doi.org/10.1021/jacs.7b12394. ER - TY - THES A1 - Böhnke, Julian T1 - Reaktivität niedervalenter, Carben-stabilisierter Bor-Bor-Mehrfachbindungssysteme T1 - Reactivity of low-valent, carbene-stabilized boron-boron multiple bonds N2 - Im Rahmen dieser Arbeit war es möglich, vielfältige Reaktivitäten des Diborakumulens (7) und davon abgeleiteter Verbindungen zu untersuchen. Häufig begründet in den bemerkenswerten elektronischen Eigenschaften der verwendeten CAAC-Liganden, konnten neuartige und teilweise ungewöhnliche Bindungsmodi an niedervalenten Borspezies beobachtet werden. Der Einfluss der starken σ-Donor-Fähigkeiten und der hohen π-Acidität der cyclischen (Alkyl)(amino)carbene spiegeln sich hierbei in vergleichenden Reaktivitätsstudien mit den entsprechenden NHC-stabilisierten Bor–Bor-Mehrfachbindungssystemen wider. Zunächst wurde jedoch auf die Synthese weiterer Diborakumulene eingegangen und am Beispiel der Bis(CAACCy)-stabilisierten B2-Einheit (12) erfolgreich durchgeführt. Mit vergleichbaren 11B-NMR-Verschiebungen und Bindungslängen unterscheidet sich die Verbindung in ihren elektronischen Eigenschaften kaum von B2(CAAC)2 (7), welches aufgrund der besseren Zugänglichkeit für die Reaktivitätsstudien eingesetzt wurde. Grundlegende Studien zum Redoxverhalten des Diborakumulens zeigten die vollständige, oxidative Spaltung der Bor–Bor-Bindung mit Chlorgas unter Ausbildung eines CAAC-stabilisierten Bortrichlorid-Fragments. Die Arbeiten zum Bis(boraketen) 17 und die Darstellung des Bis(boraketenimins) 18 durch die Umsetzung des Diborakumulens mit Kohlenstoffmonoxid bzw. geeigneten Isocyaniden, stellte einen ersten größeren Teilbereich dieser Arbeit dar. Durch die enorme π-Rückbindung in die CAAC-Liganden und die CO-Liganden aus der elektronenreichen B2-Einheit kommt es in 17 zu einer Aufweitung der B–B-Bindung und orthogonal zueinander stehenden Molekülhälften. Im weiteren Verlauf konnte ein Mechanismus für die Addition von CO an B2(CAAC)2 gefunden werden, in dem aufgrund hoher energetischer Barrieren eine Umsetzung zum Bis(boralacton) – einer Spezies, die für die Reaktion von Kohlenstoffmonoxid mit NHC-stabilisierten Diborinen gefunden wurde – unterbunden wird. Die elektronischen und strukturellen Unterschiede zwischen Diborinen und dem Diborakumulen 7 konnten so erstmals anhand definierter Reaktionsbedingungen evaluiert werden. Die Reaktion von 7 mit zwei Äquivalenten tert-Butylisocyanid führte zur Bildung eines Bis(boraketenimins). Ähnlich wie im Bis(boraketen) 17 kommt es auch hier unter anderem zu einer starken π-Rückbindung in den Isocyanidliganden einhergehend mit der Aufweitung der B–B-Bindung und orthogonal zueinander stehenden Molekülhälften. Die Thermolyse der Verbindung führte zu einer Abspaltung zweier tert-Butylradikale und zur Bildung des ersten, strukturell charakterisierten Dicyanodiborens 20. Das Dicyanodiboren zeigte hier eine strukturelle Besonderheit: Während ein CAAC-Ligand in Konjugation mit dem π-System der B2-Einheit steht, zeigt der zweite CAAC-Ligand eine orthogonale Orientierung zu diesem, was vermutlich zu einer Polarisierung der B=B-Doppelbindung führt und potentiell hochinteressante Reaktivitäten ermöglicht. So führte die Umsetzung von 20 mit Kohlenstoffmonoxid zur Spaltung der B–B-Bindung und Insertion eines µ2-gebundenen CO-Moleküls in die BB-Einheit. Die Tatsache, dass ein ähnliches Reaktionsverhalten bisher nur vom ebenfalls CAAC-stabilisierten Dihydrodiboren 22 bekannt war (vide infra), demonstrierte an diesem Beispiel eindeutig die bemerkenswerten Fähigkeiten von CAACs reaktive, niedervalente Hauptgruppenelementverbindungen zu stabilisieren. Die Reaktivität des Diborakumulens 7 gegenüber Diwasserstoff stellte einen weiteren, großen Teilaspekt dieser Arbeit dar. Das Rühren von 7 unter einer H2-Atmosphäre führte zur 1,2-Addition des H2-Moleküls an die B2-Einheit unter Ausbildung eines trans-ständigen, Basen-stabilisierten Dihydrodiborens 22. Im Gegensatz zum Dicyanodiboren (20) handelt es sich bei 22 um eine C2-symmetrische Verbindung, dessen π-System im HOMO aufgrund der π-Acidität der CAAC-Liganden über das gesamte C–B–B–C-Grundgerüst delokalisiert ist. Die Hydrierung wurde ebenfalls mit hochreinem D2 durchgeführt, um eine Hydridabstraktion aus dem Lösungsmittel auszuschließen. DFT-Berechnungen konnten zudem die Bor-gebundenen Wasserstoffatome als Hydride klassifizieren und den Mechanismus der Addition von Diwasserstoff an die B2-Einheit ermitteln. Mit einem berechneten, exothermen Reaktionsverlauf stellt die Umsetzung von 7 zu 22 auf diesem Weg das erste Beispiel einer nicht katalysierten Hydrierung einer homodinuklearen Mehrfachbindung der 2. Periode dar. Das CAAC-stabilisierte Dihydrodiboren 22 zeigte im Verlauf dieser Arbeit vielfältige Bindungsmodi aus der Umsetzung mit Kohlenstoffmonoxid. Unter anderem die Eigenschaft von CAACs, eine 1,2-Wasserstoffwanderung von angrenzenden BH-Einheiten auf das Carbenkohlenstoffatom zu begünstigen, führte zur Ausbildung verschiedener Tautomere. Während das Produkt aus der formalen Addition und Insertion von zwei CO-Molekülen (24) lediglich unter CO-Atmosphäre stabil war, konnte unter Argonatmosphäre ein Tautomerengemisch von 25 mit intakter Bor–Bor-Bindung und einer Boraketeneinheit isoliert werden. Während dieser Prozess vollständig reversibel war, führte das Erhitzen von 25 zur Bildung eines Alkylidenborans (26), welches ebenfalls in zwei tautomeren Formen vorlag. Darüber hinaus konnte die Bildung einer weiteren Spezies (27) in geringen Ausbeuten beobachtet werden, die aus der vollständigen Spaltung eines CO-Fragments und der Bildung einer intramolekularen C≡C-Dreifachbindung resultierte. VT-NMR- und Korrelationsexperimente, Kristallisationen unter verschiedenen Atmosphären, Schwingungsspektroskopie sowie die mechanistische Analyse der Umsetzungen basierend auf DFT-Berechnungen ermöglichten hier einen tiefen und detaillierten Einblick in die zugrunde liegenden Prozesse. Die thermische Umsetzung des Dihydrodiborens 22 mit Acetylen führte wider Erwarten nicht zur Cycloaddition an die B=B-Doppelbindung, sondern zur Insertion in diese. Das erhaltene Produkt 28 zeigte eine C2-symmetrische Struktur und durchgängig sp2-hybridisierte Kohlenstoff- und Borzentren entlang der Hauptachse. Eine DFT-Studie ergab ein konjugiertes π-System, dass dem 1,3,5-Hexatrien stark ähnelte. Eine weitere Umsetzung von 22 mit zwei Äquivalenten Diphenyldisulfid führte ebenfalls zur Spaltung der B=B-Doppelbindung und zur Ausbildung eines CAAC-stabilisierten, sp3-hybridisierten Monoborans. Das Diborakumulen 7 konnte in zwei weiteren Reaktivitätsstudien selektiv mit Kohlenstoffdioxid und Aceton umgesetzt werden. Die Reaktion von B2(CAAC)2 mit zwei CO2-Molekülen führte zur Ausbildung einer Spezies mit einer Boraketenfunktionalität und einem Borsäureesterderivat (30). Für die Aktivierung von Kohlenstoffdioxid an unpolaren Mehrfachbindungen gab es bisher kein Beispiel in der Literatur, sodass diese mechanistisch untersucht wurde. Hier erfolgte die Reaktion über eine ungewöhnliche, sukzessive [2+1]-Cycloaddition an die koordinativ ungesättigten Boratome mit einem insgesamt stark exergonen Verlauf. Die Umsetzung von 7 mit Aceton führte zur Ausbildung eines fünfgliedrigen Heterocyclus mit einer C=C-Doppelbindung und asymmetrisch verbrückter Bor–Bor-Bindung mit einem orthogonal zum Heterocyclus stehenden μ2-Hydrid. Interessanterweise zeigte hier eine vergleichende Studie von Tobias Brückner an einem SIDep-stabilisierten Diborin bei einer analogen Reaktionsführung ein 1,2-Enol-Additionsprodukt, sodass der zugrunde liegende Reaktionsmechanismus ebenfalls untersucht wurde. Während das 1,2-Enol-Additionsprodukt als Intermediat zur Bildung von 31 beschrieben werden konnte, führten moderate Energiebarrieren und ein deutlich exergoner Reaktionsverlauf im Fall des Diborakumulens zu einer doppelten Acetonaktivierung. Für 31 konnte darüber hinaus ein Isomerengemisch beobachtet werden, das nach der Bildung nicht mehr ineinander überführt werden konnte. Die Reaktion des Diborakumulens mit Münzmetallhalogeniden ergab für die Umsetzung von 7 mit drei Äquivalenten Kupfer-(I)-chlorid-Dimethylsulfidaddukt eine T-förmige Koordination von drei CuCl-Fragmenten an die B2-Einheit (33). Setzte man das Diborakumulen 7 mit einem Äquivalent IMeMe um, bildete sich das heteroleptisch substituierte Mono-Basenaddukt 34. Dieses zeigte eine thermische Labilität, sodass sich nach einem Zeitraum von 24 Stunden bei erhöhter Temperatur selektiv das Produkt einer CH-Aktivierung isolieren ließ. Das gleiche Produkt (35) konnte ebenfalls durch die Zugabe einer Lewis-Säure (Galliumtrichlorid) zu 34 nach kurzer Zeit bei Raumtemperatur erhalten werden. Setzte man 34 mit einem weiteren Äquivalent IMeMe um, so bildete sich das Bis(IMeMe)-Addukt des Diborakumulens 36, das zunächst an das Bis(CO)-Addukt 17 erinnerte und durch die hohe sterische Spannung im System eine stark aufgeweitete Bor–Bor-Bindung besitzt. Die Reaktion von 34 gegenüber Kohlenstoffmonoxid lieferte das heteroleptisch substituierte Basenaddukt 37. Das elektronenreiche Boratom des Boraketenstrukturfragments führt hier zu einer erheblichen π-Rückbindung in den CO-Liganden, der die niedrigsten, zu diesem Zeitpunkt jemals beobachteten Wellenzahlen für die CO-Schwingung in einer derartigen Funktionalität aufweist. Eine abschließende Umsetzung des Mono-Basenaddukts 34 mit Diwasserstoff führte zur spontanen Hydrierung beider Boratome und zur Spaltung der Bor–Bor-Bindung. Die Reaktionsmischung zeigte nach erfolgter Reaktion ein 1:1-Verhältnis aus einem CAAC-stabilisierten BH3-Fragment 39 und einem zweifach Basen-stabilisierten BH-Borylen 38. Die Spaltung einer Bor–Bor-(Mehrfach)-Bindung zur Synthese von heteroleptisch Lewis-Basen-stabilisierten Borylenen stellte dabei einen bisher nicht bekannten Zugang zu dieser Verbindungsklasse dar. Ein sehr großer Teilbereich dieser Arbeit beschäftigte sich mit der Synthese und Reaktivität von Diborabenzol-Derivaten. Setzte man das Diborakumulen 7 mit Acetylen um, so konnte die Bildung eines CAAC-stabilisierten 1,4-Diborabenzols beobachtet werden. Das planare Grundgerüst, C–C- und B–C-Bindungen im Bereich von (partiellen) Doppelbindungen, stark entschirmte Protonen des zentralen B2C4H4-Heterocyclus, Grenzorbitale, die denen des Benzols ähneln, sowie negative NICS-Werte stellen 42 als einen 6π-Aromaten dar, der mit seinem energetisch stark destabilisierten HOMO als elektronenreicher Ligand in der Übergangsmetallchemie eingesetzt werden konnte (vide infra). Die Reaktion von B2(CAAC)2 mit Propin bzw. 2-Butin lieferte hingegen 2π-aromatische, paramagnetische Verbindungen mit Schmetterlingsgeometrie aus der [2+2]-Cycloaddition an die Bor–Bor-Bindung und anschließender Umlagerung zu den thermodynamisch stabileren 1,3-Diboreten. Die weitere, thermisch induzierte Umsetzung von 40 und 41 mit Acetylen ermöglichte die Darstellung der Methyl-substituierten 1,4-Diborabenzol-Derivate 43 und 44. Um die Eigenschaften des CAAC-stabilisierten 1,4-Diborabenzols zu analysieren, wurde sowohl die Redoxchemie von 42 als auch dessen potentieller Einsatz als η6-Ligand an Übergangsmetalle der Chromtriade untersucht. Es zeigte sich, dass durch die Reduktion mit Lithium die Darstellung des zweifach reduzierten Diborabenzols 45 möglich war. Die Ausbildung eines quinoiden Systems führte hier zu einem Isomerengemisch aus cis/trans-konfigurierten CAAC-Liganden. Die Umsetzung der isolierten Verbindung mit 0.5 Äquivalenten Zirkoniumtetrachlorid führte quantitativ zur Bildung von 42 und demonstrierte somit das hohe Reduktionspotential der dilithiierten Spezies. Durch die Reaktion von 42 mit [(MeCN)3M(CO)3] (M = Cr, Mo, W) gelang darüber hinaus die Darstellung von 18-Valenzelektronen-Halbsandwichkomplexen. Die Koordination des elektronenreichen Heteroarens an die Metalltricarbonyl-Segmente lieferte die niedrigsten, zu diesem Zeitpunkt je beobachteten Carbonylschwingungen für [(η6-aren)M(CO)3]-Komplexe, die durch den starken, elektronendonierenden Einfluss des Liganden auf das Metall und die daraus resultierende erhebliche Rückbindung in die antibindenden π*-Orbitale der CO-Liganden hervorgerufen werden. DFT-Analysen der Verbindungen zeigten zudem im Vergleich zu [(η6-C6H6)Cr(CO)3] signifikant höhere Bindungsenergien zwischen dem Metallfragment und dem 1,4-Diborabenzol und unterstreichten zusammen mit weiteren spektroskopischen und theoretischen Analysen die bemerkenswerten Eigenschaften von 42 als überaus stark elektronendonierender Ligand. Letztlich gelang in einer Reaktivitätsstudie am Wolframkomplex 48 die Darstellung eines Mono-Radikalanions (49), das vermutlich das erste Beispiel eines monoanionischen Aren-Metalltricarbonyl-Komplexes der Gruppe 6 darstellt. Ein abschließendes, großes Thema dieser Arbeit beschäftigte sich mit der Synthese von Biradikalen aus verdrehten Doppelbindungen und dem Vergleich mit den verwandten, diamagnetischen Diborenen. Die Reaktion des Diborakumulens mit verschieden substituierten Disulfiden und einem Diselenid führte zur Ausbildung von persistenten, paramagnetischen, biradikalischen Spezies durch die 1,2-Addition an die Bor–Bor-Mehrfachbindung. Während die Addition der Substrate an das IDip-stabilisierte Diborin 5 geschlossenschalige, diamagnetische Diborene mit coplanarer Anordnung der Substituenten lieferte, konnte nach der Addition der Substrate an das Diborakumulen 7 stets eine Bor–Bor-Einfachbindung mit orthogonaler Ligandenorientierung festgestellt werden. ESR-spektroskopische und magnetische Messungen der Proben ergaben für 51e einen Triplett-Grundzustand bei Raumtemperatur und durch den captodativen-Effekt der π-Donor Stickstoffatome und der π-Akzeptor Boratome eine erhebliche Delokalisierung der ungepaarten Elektronen in die Liganden. Detaillierte theoretische Studien konnten darüber hinaus zeigen, dass die Singulett-Zustände der synthetisierten Diborene stabiler als die Triplett-Zustände sind und dass die Triplett-Zustände der paramagnetischen Verbindungen 51a,b,e stabiler als die entsprechenden Singulett-Zustände sind. Die Verbindungen liegen stets in ihrem Grundzustand vor und lieferten somit hochinteressante Modellsysteme zum tieferen Verständnis dieser Verbindungsklasse. N2 - Within the scope of this work, various reactivities of the diboracumulene 7 and derivatives thereof were investigated. Induced by the exceptional electronic properties of the applied CAAC ligands, unprecedented and exceptional binding modes of low-valent boron species have been observed. The influence of the strong σ-donor properties and the pronounced π-acidity of the cyclic (alkyl)(amino)carbenes is reflected in comparative reactivity studies with the respective NHC-stabilized boron–boron multiple bonded systems. Initially the synthesis of further diboracumulenes was attempted and realized with a bis(CAACCy)-stabilized B2 unit (12). With comparable 11B NMR shifts and similar bond lengths, the compound does not significantly differ in terms of its electronic properties from B2(CAAC)2 (7), which was used in the reactivity studies due to its superior accessibility. Fundamental studies on the redox properties of B2(CAAC)2 showed the complete oxidative cleavage of the boron–boron bond with chlorine gas while forming a CAAC-stabilized boron trichloride fragment. Research on the bis(boraketene) 17 and the synthesis of the bis(boraketeneimine) 18 through the treatment of the diboracumulene 7 with carbon monoxide and suitable isocyanides represents the first major section of this work. Due to the strong π-backbonding into the CAAC ligands and the CO ligands from the electron rich B2 unit, the B–B bond of 17 is significantly elongated and the π-frameworks are mutually orthogonal. By means of DFT calculations the reaction pathway could be investigated, which shows high energetic barriers for the conversion of 17 to the bis(boralactone), a species that was observed for the NHC-stabilized boron–boron multiple bonds. In this way the electronic and structural differences between diborynes and the diboracumulene 7 could be evaluated under defined reaction conditions for the first time. The reaction of 7 with two equivalents of tert-butyl isocyanide led to the formation of a bis(boraketeneimine). Comparable to the bis(boraketene), 18 shows strong π-backbonding into the isocyanide ligands, which is concomitant with an elongated B–B bond and orthogonally oriented boraketeneimine moieties. Thermolysis of the compound led to the elimination of two tert-butyl radicals and formation of the first structurally characterized dicyanodiborene (20). The dicyanodiborene shows a structural peculiarity: While one CAAC ligand is in conjugation with the π-system of the B2 unit, the second one shows an orthogonal orientation to the π-framework, which presumably results in polarization of the B=B double bond and potentially enables highly interesting reactivity. Thus, the addition of carbon monoxide to 20 led to the splitting of the B–B bond and the insertion of a µ2-bound CO molecule into the B2 unit. The fact that similar reactivity is only known from the CAAC-stabilized dihydrodiborene 22 (vide infra) clearly demonstrates the exceptional properties of CAACs to stabilize highly reactive, low-valent main group compounds. The reactivity of the diboracumulene 7 towards dihydrogen represents another major section of this work. When 7 was stirred under a H2 atmosphere the H2 molecule was added across the B2 unit in a 1,2-addition, leading to the formation of a base-stabilized trans dihydrodiborene. In contrast to the dicyanodiborene, 22 is C2 symmetric and the π-system in the HOMO is delocalized over the whole C–B–B–C framework due to the π-acidity of the CAAC ligands. The hydrogenation was also carried out with pure D2 to rule out hydrogen abstraction from the solvent. DFT calculations also classified the boron-bound hydrogens as hydrides and determined the mechanism of the dihydrogen addition to the B2 unit. With a calculated exothermic reaction pathway, the reaction from 7 to 22 represents the first example of an uncatalyzed hydrogenation of a homodinuclear multiple bond of the second row. In this work the CAAC-stabilized dihydrodiborene 22 showed diverse binding modes when treated with carbon monoxide. Among other outcomes, the propensity to promote 1,2-hydrogen shifts from adjacent BH-moieties to the carbene carbon atom led to the formation of various tautomers. While the product of the formal addition and insertion of two CO molecules was only stable under a CO atmosphere (24), under argon atmosphere two tautomers of 25 with a boron–boron bond and boraketene unit could be isolated. This process was found to be completely reversible. However, heating of 25 led to the formation of an alkylidene borane 26 which also exists in two tautomers. Furthermore, the formation of another species in low yields from the complete splitting of a CO fragment and the formation of an intramolecular C≡C triple bond could be observed. VT-NMR and correlation experiments, crystallizations under different atmospheres, vibrational spectroscopy, as well as determination of the reaction pathway by means of DFT calculations, enabled a deep and detailed insight into the underlying processes. The reaction of the dihydrodiborene 22 with acetylene under thermal conditions did not lead to the expected cycloaddition across the B=B double bond but to the insertion of acetylene into it. The obtained product 28 showed a C2 symmetric structure with sp2-hybridized carbon and boron centers along the major axis. A DFT study showed a conjugated π-system which closely resembles the of 1,3,5-hexatriene. Another reaction of 22 with two equivalents of diphenyl disulfide yielded the splitting of the B=B double bond and the formation of a CAAC-stabilized sp3-hybridized monoborane. In two other reactivity studies the diboracumulene could be selectively reacted with carbon dioxide and acetone. The reaction of B2(CAAC)2 with two CO2 molecules led to the formation of a species with a boraketene functionality and a boronic ester group (30). There are no reported examples of the activation of carbon dioxide with apolar multiple bonds, which is why the reaction pathway was investigated by DFT calculations. The reaction proceeds via an unusual successive [2+1] cycloaddition to the coordinatively unsaturated boron atoms with the whole process being strongly exergonic. The reaction of 7 with acetone led to the formation of a five-membered heterocycle with a C=C double bond and an unsymmetrically bridged boron–boron bond with a µ2 hydride orthogonal to the heterocycle. Interestingly, a comparative study from Tobias Brückner with a SIDep-stabilized diboryne and analogous reactions conditions resulted in the 1,2-enol addition product so that the underlying reaction pathway was also investigated. While the 1,2-enol addition product can be described as an intermediate on the way towards 31, moderate energetic barriers and a noticeably exergonic reaction pathway led to a double acetone activation when using the diboracumulene. 31 also showed a mixture of two isomers that could not be interconverted after formation. The reaction of B2(CAAC)2 with (Me2S)CuCl led to a T-shaped coordination of three CuCl fragments to the B2 unit. If treated with one equivalent IMeMe, the diboracumulene showed the formation of the heteroleptic substituted mono base adduct 34. Due to its thermal lability, after 24 hours at elevated temperature the selective formation of a C–H activation product was observed. The same product (35) could be obtained within minutes after addition of a Lewis acid (gallium trichloride) to 34 at room temperature. The addition of another equivalent of IMeMe to 34 led to the formation of the bis(IMeMe) adduct of the diboracumulene 36, which was reminiscent of the bis(CO) adduct 17 and features a strongly elongated B–B bond due to the steric strain in the system. The reaction of 34 towards carbon monoxide resulted in the formation of the heteroleptic base adduct 37. The electron rich boron atom of the boraketene fragment induces strong π-backdonation into the CO ligand, resulting in the lowest observed CO stretch for such a functionality. A final reactivity test of the monobase adduct 34 was carried out with dihydrogen, which led to the spontaneous hydrogenation of both boron atoms and the splitting of the boron–boron bond. The reaction mixture showed two species in a 1:1 ratio: a CAAC-stabilized BH3 fragment 39 and a twofold base-stabilized BH-borylene 38. The splitting of a boron–boron (multiple) bond to access heteroleptic Lewis-base-stabilized borylenes provides a novel approach towards this class of compounds. A large part of this work concerns with the synthesis and reactivity of diborabenzene derivatives. When treating the diboracumulene 7 with acetylene, the formation of a CAAC-stabilized 1,4-diborabenzene could be observed. The planar framework, C–C and B–C bonds within the area of (partial) double bonds, strongly deshielded protons of the central B2C4H4 heterocycle, frontier orbitals that resemble those of benzene as well as negative NICS values represent 42 as a 6π-aromatic system. Due to its tremendously energetically destabilized HOMO, the compound was capable to be used as an electron rich ligand in transition metal chemistry (vide infra). The reactions of B2(CAAC)2 with propyne and 2-butyne led to the formation of 2π-aromatic, paramagnetic compounds with a butterfly shape from the [2+2] cycloaddition to the boron–boron-bond followed by a rearrangement to the thermodynamically more stable 1,3-diboretes. The thermally induced reaction of 40 and 41 with acetylene enabled the formation of the methyl-substituted 1,4-diborabenzene derivatives 43 and 44. To evaluate the properties of the CAAC-stabilized 1,4-diborabenzene 42, the redox properties as well as the potential application as a η6-ligand for transition metals of the chromium triad, were investigated. The reduction of 42 with elemental lithium led to the formation of the two-electron reduction product 45. The formation of a quinoidal system led to an isomeric mixture of cis/trans configured CAAC ligands. Treatment of the compound with 0.5 equivalents of zirconium tetrachloride led to the quantitative formation of 42 and thereby demonstrating the high reduction potential of the dilithiated species. Furthermore, the reaction of 42 with [(MeCN)3M(CO)3] (M = Cr, Mo, W) enabled the synthesis of 18-valence-electron half-sandwich complexes. The coordination of the electron rich heteroarene to the metal tricarbonyl fragments resulted in the lowest ever observed carbonyl stretches for [(η6-arene)M(CO)3] complexes due to the strong electron donation of the ligand to the metal and the resulting backdonation into the antibonding π*-orbitals of the CO ligands. DFT calculations revealed (in contrast to [(η6-C6H6)Cr(CO)3]) significantly higher binding energies between the metal fragment and the 1,4-diborabenzene and together with further spectroscopic and theoretical analyses underline the remarkable ability of 42 to act as an exceedingly electron donating ligand. Ultimately in a reactivity study with the tungsten complex 48, it was possible to obtain the radical monoanion 49, which is the first example of a monoanionic arene metal tricarbonyl complex of group 6 metals. A final topic of this work concerned the synthesis of biradicals from twisted double bonds and the comparison with their diamagnetic congeners, diborenes. The reaction of the diboracumulene with differently substituted disulfides and one diselenide led to the formation of persistent, paramagnetic biradicals through 1,2 additions across the boron–boron multiple bond. While the addition of the reagents to the IDip-stabilized diboryne provided closed-shell, diamagnetic diborenes with a coplanar orientation of the substituents, the addition to the diboracumulene 7 led to the formation of a boron–boron single bond with mutually orthogonal ligands. EPR spectroscopy as well as magnetic measurements of the samples showed a triplet ground state for 51e at room temperature with a strong delocalization of the unpaired electrons into the ligands due to the captodative effect of the π-donor nitrogen atoms and π-acceptor boron atoms. Furthermore, detailed theoretical studies showed that the singlet states of the synthesized diborenes are always more stable than the triplet states and that the triplet states of the paramagnetic compounds 51a,b,e are always more stable than the respective singlet states. All compounds exist in their ground states and therefore represent highly interesting model systems for a deeper understanding of this class of compounds. KW - Bor KW - Mehrfachbindung KW - Reaktivität KW - CAAC KW - Diborakumulen KW - Diborin KW - Diboren KW - Carben Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-163335 ER - TY - INPR A1 - Stoy, Andreas A1 - Böhnke, Julian A1 - Jiménez-Halla, J. Oscar C. A1 - Dewhurst, Rian D. A1 - Thiess, Torsten A1 - Braunschweig, Holger T1 - CO\(_2\) Binding and Splitting by Boron–Boron Multiple Bonds T2 - Angewandte Chemie, International Edition N2 - CO\(_2\) is found to undergo room-temperature, ambient- pressure reactions with two species containing boron-boron multiple bonds, leading to incorporation of either one or two CO\(_2\) molecules. In one case, a thermally-unstable intermediate was structurally characterized, indicating the operation of an initial 2+2 cycloaddition mechanism in the reaction. KW - carbon dioxide KW - CO2 fixation KW - diborenes KW - diborynes KW - boron Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164265 N1 - This is the pre-peer reviewed version of the following article: A. Stoy, J. Böhnke, J. O. C. Jiménez‐Halla, R. D. Dewhurst, T. Thiess, H. Braunschweig, Angew. Chem. Int.Ed. 2018, 57,5947 –5951, which has been published in final form at DOI: 10.1002/anie.201802117. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. ER - TY - INPR A1 - Arrowsmith, Merle A1 - Mattock, James D. A1 - Böhnke, Julian A1 - Krummenacher, Ivo A1 - Vargas, Alfredo A1 - Braunschweig, Holger T1 - Direct access to a cAAC-supported dihydrodiborene and its dianion T2 - Chemical Communications N2 - The two-fold reduction of (cAAC)BHX\(_2\) (cAAC = 1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene; X = Cl, Br) provides a facile, high-yielding route to the dihydrodiborene (cAAC)\(_2\)B\(_2\)H\(_2\). The (chloro)hydroboryl anion reduction intermediate was successfully isolated using a crown ether. Overreduction of the diborene to its dianion [(cAAC)\(_2\)B\(_2\)H\(_2\)]\(^{2−}\) causes a decrease in the B–B bond order whereas the B–C bond orders increase. KW - carbenes KW - diborenes KW - boron KW - main-group chemistry KW - diborynes Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164276 N1 - This is the pre-peer reviewed version of the following article: Chemical Communications, 2018, 54, 4669-4672 which has been published at DOI: 10.1039/C8CC01580E ER - TY - JOUR A1 - Böhnke, Julian A1 - Brückner, Tobias A1 - Hermann, Alexander A1 - González-Belman, Oscar F. A1 - Arrowsmith, Merle A1 - Jiménez-Halla, J. Oscar C. A1 - Braunschweig, Holger T1 - Single and double activation of acetone by isolobal B≡N and B≡B triple bonds JF - Chemical Science N2 - B≡N and B≡B triple bonds induce C-H activation of acetone to yield a (2-propenyloxy)aminoborane and an unsymmetrical 1-(2- propenyloxy)-2-hydrodiborene, respectively. DFT calculations showed that, despite their stark electronic differences, both the B≡N and B≡B triple bonds activate acetone via a similar coordination-deprotonation mechansim. In contrast, the reaction of acetone with a cAAC-supported diboracumulene yielded a unique 1,2,3-oxadiborole, which according to DFT calculations also proceeds via an unsymmetrical diborene, followed by intramolecular hydride migration and a second C-H activation of the enolate ligand. KW - acetone KW - diborynes KW - iminoboranes KW - boron KW - small-molecule activation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164286 VL - 9 ER - TY - INPR A1 - Cid, Jessica A1 - Hermann, Alexander A1 - Radcliffe, James E. A1 - Curless, Liam D. A1 - Braunschweig, Holger A1 - Ingleson, Michael J. T1 - Synthesis of Unsymmetrical Diboron(5) Compounds and Their Conversion to Diboron(5) Cations T2 - Organometallics N2 - Reaction of bis-catecholatodiboron-NHC adducts, B\(_2\)Cat\(_2\)(NHC), (NHC = IMe (tetramethylimidazol-2-ylidene), IMes (1,3-dimesitylimidazol-2-ylidene) or IDIPP (1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene)) with BCl3 results in the replacement of the catecholato group bound to the four coordinate boron with two chlorides to yield diboron(5) Lewis acid-base adducts of formula CatB-BCl\(_2\)(NHC). These compounds are precursors to diboron(5) monocations, accessed by adding AlCl\(_3\) or K[B(C\(_6\)F\(_5\))\(_4\)] as halide abstraction agents in the presence of a Lewis base. The substitution of the chlorides of CatB-BCl\(_2\)(NHC) for hydrides is achieved using Bu\(_3\)SnH and a halide abstracting agent to form 1,1-dihydrodiboron(5) compounds, CatB-BH\(_2\)(NHC). Attempts to generate diboron(4) monocations of formula [CatB-B(Y)(NHC)]\(^+\) (Y = Cl or H) led to the rapid formation of CatBY. KW - diboron KW - boronium cations KW - boron KW - Lewis acids KW - electrophiles Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164299 N1 - This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in Organometallics, copyright © 2018 American Chemical Society after peer review. To access the final edited and published work see dx.doi.org/10.1021/acs.organomet.8b00288 ER - TY - THES A1 - Mao, Lujia T1 - Transition Metal-Catalyzed Construction of Benzyl/Allyl sp\(^3\) and Vinyl/Allenyl sp\(^2\) C-B Bonds T1 - Übergangsmetall katalysierte Konstruktion von Benzyl/Allyl sp\(^3\) und Vinyl/Allenyl sp\(^2\) C-B Bindungen N2 - Organoboron compounds, such as benzyl-, allyl-, allenyl-, vinyl-, and 2-boryl allyl-boronates, have been synthesized via metal-catalyzed borylations of sp3 C-O and C-H bonds. Thus, Cu-catalyzed borylations of alcohols and their derivatives provide benzyl-, allyl-, allenyl-, vinyl-, and 2-boryl allyl-boronates via nucleophilic substitution. The employment of Ti(OiPr)4 turns the OH moiety into a good leaving group (‘OTi’). The products of Pd-catalyzed oxidative borylations of allylic C-H bonds of alkenes were isolated and purified, and their application in the one-pot synthesis of stereodefined homoallyl alcohols was also investigated. Chapter 2 presents a copper-catalyzed synthesis of benzyl-, allyl-, and allenyl-boronates from benzylic, allylic, and propargylic alcohols, respectively, employing a commercially available catalyst precursor, [Cu(CH3CN)4]2+[BF4-]2, and Xantphos as the ligand. The borylation of benzylic alcohols was carried out at 100 oC with 5-10 mol % [Cu(CH3CN)4]2+[BF4-]2, which afforded benzylic boronates in 32%-95% yields. With 10 mol % [Cu(CH3CN)4]2+[BF4-]2, allylic boronates were provided in 53%-89% yields from the borylation of allylic alcohols at 60 or 100 oC. Secondary allylboronates were prepared in 72%-84% yields from the borylation of primary allylic alcohols, which also suggests that a nucleophilic substitution pathway is involved in this reaction. Allenylboronates were also synthesized in 72%-89% yields from the borylation of propargylic alcohols at 40 or 60 oC. This methodology can be extended to borylation of benzylic and allylic acetates. This protocol exhibits broad reaction scope (40 examples) and high efficiency (up to 95% yield) under mild conditions, including the preparation of secondary allylic boronates. Preliminary mechanistic studies suggest that nucleophilic substitution is involved in this reaction. Chapter 3 reports an efficient methodology for the synthesis of vinyl-, allyl-, and (E)-2-boryl allylboronates from propargylic alcohols via copper-catalyzed borylation reactions under mild conditions. In the presence of a commercially available catalyst precursor (Cu(OAc)2 or Cu(acac)2) and ligand (Xantphos), the reaction affords the desired products in up to 92% yield with a broad substrate scope (43 examples). Vinylboronates were synthesized in 50%-83% yields via Cu-catalyzed hydroboration of mono-substituted propargylic alcohols. With 1,1-disubstituted propargylic alcohols as the starting materials and Cu(OAc)2 as the catalyst precursor, a variety of allylboronates were synthesized in 44%-83% yields. The (E)-2-boryl allylboronates were synthesized in 54%-92% yields via the Cu-catalyzed diboration of propargylic alcohols. The stereoselectivity is different from the Pd(dba)2-catalyzed diboration of allenes that provided (Z)-2-boryl allylboronates predominantly. The isolation of an allenyl boronate as the reaction intermediate suggests that an SN2’-type reaction, followed by borylcupration, is involved in the mechanism of the diboration of propargylic alcohols. In chapter 4, a Pd-catalyzed allylic C-H borylation of alkenes is reported. The transformation exhibits high regioselectivity with a variety of linear alkenes, employing a Pd-pincer complex as the catalyst precursor, and the allylic boronate products were isolated and purified. This protocol can also be extended to one-pot carbonyl allylation reactions to provide homoallyl alcohols efficiently. An interesting mechanistic feature is that the reaction proceeds via a Pd(II)/Pd(IV) catalytic cycle. Formation of the Pd(IV) intermediate occurs by a unique combination of an NCNpincer complex and application of F-TEDA-BF4 as the oxidant. An important novelty of the present C-H borylation reaction is that all allyl-Bpin products can be isolated with usually high yields. This is probably a consequence of the application of the NCN-pincer complex as catalyst, which selectively catalyzes C-B bond formation avoiding subsequent C-B bond cleavage based side-reactions N2 - Bisher ist es uns gelungen, effiziente Methoden zur Erzeugung von Benzyl/Allyl-sp3- und Vinyl/Allenyl-sp2-C-B-Bindungen mit Hilfe von Kupfer- oder Palladium-katalysierter Borylierung der entsprechenden Alkohole oder Alkene zu entwickeln, bei welchen es sich um leicht zugängliche Substrate handelt. Kapitel 2 In Kapitel 2 wird das erste Beispiel einer Cu-katalysierten, direkten Borylierung von Alkoholen (40 Beispiele) vorgestellt. Dies stellt eine effiziente Methode dar, um ein breites Spektrum an Benzyl-, Allyl- und Allenyl-Boronaten unter milden Bedingungen herzustellen. Die Verwendung von Ti(OiPr)4 wandelt den OH-Rest in eine hervorragende Abgangsgruppe (‚OTi‘) um, was eine wichtige Rolle bei der Borylierung von Alkoholen spielt. Obwohl ein Cu(II)-Komplex als Vorstufe für den Katalysator eingesetzt wurde, wird davon ausgegangen, dass der aktive Katalysator für die Borylierungsreaktion eine Cu(I)-Spezies ist. Benzylboronate wurden mit Hilfe einer Cu-katalysierten Borylierung von Benzylalkoholen (Gl. Z-1) dargestellt, wobei sowohl der Kupferkomplex [Cu(CH3CN)4]2+[BF4-]2 als auch der Xantphos-Ligand kommerziell erhältlich sind. Für die Borylierung von Benzylalkoholen wurde eine Katalysatorladung von 5 mol% des Kupferkatalysators verwendet, was auf eine hohe Effizienz dieser Methode schließen lässt. Alle Benzylboronate wurden in moderaten bis hohen Ausbeuten (bis zu 95%) isoliert. Diese Vorgehensweise lässt sich ebenso auf die Borylierung von Benzylacetaten anwenden, wobei ein Benzylboronat mit 54% Ausbeute erhalten werden kann. Dies lässt darauf schließen, dass es sich um eine allgemein anwendbare Methode handelt. Ferner wurden Allylboronate mit Hilfe einer vergleichbaren Route wie die Benzylboronate dargestellt (Gl. Z-2), wobei die Temperatur auf 60 °C abgesenkt werden kann. Bei der Borylierung von Allylalkoholen wurden ausgehend von primären Allylalkoholen sekundäre Allylboronate erhalten. Diese Reaktion unterscheidet sich daher von früheren Pd-katalysierten Borylierungen von Zusammenfassung Allylalkoholen, welche ausschließlich zu linearen Allylboronaten aufgrund der Bildung von (3- Allyl)Pd-Intermediaten führten. Anhand dieses Ergebnisses wird angenommen, dass eine nukleophile Substitution Teil des entsprechenden Mechanismus ist. Weiterhin weist diese Reaktion die Möglichkeit auf, chirale Allylboronate ausgehend von verschiedenen primären Allylalkoholen zu erhalten. Diese finden signifikante Anwendung bei der asymmetrischen Synthese. Unseres Wissens nach stellt diese Methode außerdem das erste Beispiel einer katalytischen Synthese von sekundären Allylboronaten dar, die direkt von Alkoholen ausgeht. Die Borylierung konnte ebenfalls mit sekundären und tertiären Allylalkoholen durchgeführt werden, wobei die entsprechenden Allylboronate in guten Ausbeuten erhalten wurden. Diese Cu-katalysierte Borylierungsreaktion kann außerdem Anwendung in der Borylierung von Propargylalkoholen finden (Gl. Z-3), wobei die Darstellung von Allenylboronaten in guten Ausbeuten erreicht wird. Hierbei kann die Reaktionstemperatur weiter auf 40 °C abgesenkt werden. Des Weiteren weist die Regioselektivität der Borylierung von Propargylakoholen darauf hin, dass die Reaktion über eine nukleophile Substitution verläuft. Die in Kapitel 2 vorgestellten Ergebnisse lassen darauf schließen, dass die Cu-katalysierte Borylierung von Akoholen eine allgemein anwendbare Methode zur Synthese von Benzyl-, Allylund Allenylboronaten darstellt. Kapitel 3 In Kapitel 3 wird eine Methode zur Synthese von Vinyl-, Allyl- und (E)-2-Boryl-Allyl-Boronaten mit Hilfe von Cu-katalysierter Borylierung von Propargylalkoholen (43 Beispiele) vorgestellt. Hierzu wurden kommerziell erhältliche Kupferkatalysatoren wie Cu(acac)2 und Cu(OAc)2 eingesetzt. In dieser Vorschrift wird erneut Ti(OiPr)4 verwendet, um durch die Reaktion mit Alkoholen (OH) in eine bessere Abgangsgruppe (OTi) zu erhalten. Zugang zu den (E)-2-Boryl-Allylboronaten wurde mit Hilfe von Cu-katalysierter Diborylierung von Propargylalkoholen (Gl. Z-4) ermöglicht. Die Reaktion kann bei 60 oder 80 °C durchgeführt werden. Die Regioselektivität dieser Cu-katalysierten Diborylierungsreaktion unterscheidet sich von der Pd2(dba)3-katalysierten Diborylierung von Allenen, bei der 2-Boryl-Allyl-Boronate mit C=C Doppelbindungen an der terminalen Position erhalten werden. Die Stereoselektivität weist ebenfalls einen Unterschied zur Pd(dba)2-katalysierten Diborylierung von Allenen auf. Bei dieser werden vorranging (Z)-2-Boryl-Allyl-Boronate mit C=C-Doppelbindungen an der internen Position erzeugt. Dies offenbart eine einzigartige Eigenschaft unserer Cu-katalysierten Diborylierung von Propargylalkoholen, welche die Nützlichkeit von Alkoholen in der Entwicklung der synthetischen Methode erweitert. Die Isolierung eines Allenylboronates als Zwischenprodukt während der Reaktion lässt vermuten, dass der Mechanismus der Diborylierung von Propargylalkoholen gemäß einer SN2‘-Reaktion verläuft, auf die eine Borylcuprierung folgt. Die Borylierung von 1,1-disubstituierten Propargylalkoholen, bei der Cu(OAc)2 als Vorstufe des Katalysators eingesetzt wird, führt zur Bildung von (Z)-Allylboronaten als Hauptprodukt (Gl. Z-5). Die Regio- und Stereoselektivität dieser Reaktion und der Cu-katalysierten Borylcuprierung von Allenylsilanen stimmen überein, wobei ein Unterschied zur Pd-katalysierten Borylierung von Allylalkoholen besteht, bei der vorrangig (E)-Allylboronate entstehen. Es liegt nahe, dass die Cukatalysierte Borylierung von 1,1-disubstituierten Propargylalkoholen eine alternative Route zur Herstellung von (Z)-Allylboronaten darstellt, da die Startmaterialien entweder kommerziell erhältlich oder einfach herzustellen sind. Vinylboronate werden ebenfalls mit Hilfe der Cu-katalysierten Borylierung von monosubstituierten Propargylalkoholen (Gl. Z-6) dargestellt. Die Regioselektivität hierbei stimmt mit der der Cu-katalysierten Borylcuprierung von Alkinen überein. Verglichen mit der Borylcuprierung von Allenen bietet die Borylierung von mono-substituierten Propargylalkoholen einen direkteren Zugang zur Darstellung von Vinylboronaten, da Allene in der Regel ausgehend von Propargylalkoholen dargestellt werden. Alle in Kapitel 3 diskutierten Ergebnisse weisen darauf hin, dass die Cu-katalysierte Borylierung von Propargylalkoholen eine einzigartige Methode zur Synthese von Vinyl-, Allyl- und (E)-2-Boryl- Allylboronaten bietetund eine allgemein anwendbare Vorschrift zur Herstellung von Organobor- Verbindungen mit einfach zugänglichen Startmaterialien darstellt. Die Regio- und Stereoselektivität unterscheidet sich außerdem von den bereits bekannten Methoden. Obwohl Cu(II)-Vorstufen der Katalysatoren eingesetzt werden, handelt es sich bei der katalytisch aktiven Spezies vermutlich um eine Cu(I)-Verbindung, da die Borylierungsreaktionen unter reduktiven Bedingungen durchgeführt werden. Kapitel 4 In Kapitel 4 wurde eine Pd-katalysierte oxidative Borylierung der C-H Bindungen von Alkenen (Gl. Z-7) vorgestellt, bei der eine Vielzahl an linearen Allylboronaten in guten Ausbeuten erzeugt wurde (Gl. Z-7). Außerdem konnten alle Allylboronate isoliert und gereinigt werden, was eine einzigartige Eigenschaft dieser Methode darstellt. Ein interessanter mechanistischer Aspekt dieser Reaktion ist das Durchlaufen eines Pd(II)/Pd(IV)-Katalysezyklus. Die Bildung des Pd(IV)-Intermediates erfolgt durch eine einzigartige Kombination des NCN-Pincerkomplexes A als Katalysaror und F-TEDABF4 als Oxidationsreagenz. Eine wichtige Neuerung der vorgestellten C-H-Borylierungsreaktion ist, dass sämtliche Allyl-BPin-Produkte für gewöhnlich in hohen Ausbeuten isoliert werden können. Dies ist vermutlich eine Folge der Verwendung des Pincer-Komplexes A als Katalysator, welcher selektiv die C-B-Bindungsbildung katalysiert und anschließend, als Pd(IV)-Spezies, C-BBindungsspaltungen als Nebenreaktionen vermeidet. Außerdem kann unsere Vorschrift auf Eintopf-Reaktionen von Aldehyden mit Allylen angewendet werden, um Homoallylalkohole zu erhalten (Gl. Z-8). Zusammengefasst haben wir eine Vielzahl an Borylierungsreaktionen entwickelt, um Benzyl-, Allyl-, Allenyl-, Vinyl- und 2-Boryl-Allylboronate mit Hilfe von Cu- oder Pd-katalysierter Borylierung von Alkoholen und Alkenen, bei denen es sich um leicht zugängliche Startmaterialien handelt, darzustellen. Die Reinigung dieser reaktiven Organobor-Verbindungen weist darauf hin, dass unsere Methoden die Werkzeuge zur Untersuchung der Reaktivität dieser Verbindungen liefern könnten. Die Synthese von sekundären Allylboronaten und 2-Boryl-Allylboronaten beinhaltet außerdem die potenzielle Anwendung in der asymmetrischen Synthese zur Erzeugung wertvoller asymmetrischer Organobor-Verbindungen. KW - borylation KW - synthetic methodology KW - Übergangsmetall KW - Borylierung Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-154022 ER - TY - INPR A1 - Wang, Sunewang Rixin A1 - Arrowsmith, Merle A1 - Braunschweig, Holger A1 - Dewhurst, Rian A1 - Paprocki, Valerie A1 - Winner, Lena T1 - CuOTf-mediated intramolecular diborene hydroarylation T2 - Chemical Communications N2 - Upon complexation to CuOTf, a PMe\(_3\)-stabilized bis(9-anthryl) diborene slowly undergoes an intramolecular hydroarylation reaction at room temperature. Subsequent triflation of the B–H bond with CuOTf, followed by a PMe\(_3\) transfer, finally yields a cyclic sp\(^2\)-sp\(^3\) boryl-substituted boronium triflate salt. KW - boron KW - C-H activation KW - transition metals Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-154055 N1 - This is the pre-peer reviewed version of the following article: Chemical Communications, 2017, 11945-11947 which has been published at DOI: 10.1039/C7CC07371B. ER - TY - INPR A1 - Braunschweig, Holger A1 - Brückner, Tobias A1 - Deißenberger, Andrea A1 - Dewhurst, Rian A1 - Gackstatter, Annika A1 - Gärtner, Annalena A1 - Hofmann, Alexander A1 - Kupfer, Thomas A1 - Prieschl, Dominic A1 - Thiess, Torsten A1 - Wang, Sunewang Rixin T1 - Reaction of Dihalodiboranes(4) with N-Heterocyclic Silylenes: Facile Construction of 1-Aryl-2-Silyl-1,2-Diboraindanes T2 - Chemistry, A European Journal N2 - Dihalodiboranes(4) react with an N-heterocyclic silylene (NHSi) to generate NHSi-adducts of 1-aryl-2-silyl-1,2-diboraindanes as confirmed by X-ray crystallography, featuring the functionalization of both B–X (X = halogen) bonds and a C–H bond under mild conditions. Coordination of a third NHSi to the proposed 1,1-diaryl- 2,2-disilyldiborane(4) intermediates, generated by a two-fold B–X insertion, may be crucial for the C–H borylation that leads to the final products. Notably, our results demonstrate the first C–H borylation with a strong B–F bond activated by silylene insertion. KW - diborane KW - boron KW - silylenes KW - CH activation KW - bond activation KW - diboraindanes KW - diboranes KW - synthetic methods KW - borylation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-153068 N1 - This is the pre-peer reviewed version of the following article: H. Braunschweig, T. Brückner, A. Deißenberger, R. D. Dewhurst, A. Gackstatter, A. Gärtner, A. Hofmann, T. Kupfer, D. Prieschl, T. Thiess, S. R. Wang, Reaction of Dihalodiboranes(4) with a N-Heterocyclic Silylene: Facile Construction of 1-Aryl-2-Silyl-1,2-Diboraindanes, Chem. Eur. J. 2017, 23, 9491., which has been published in final form at dx.doi.org/10.1002/chem.201702377. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving ER - TY - INPR A1 - Arrowsmith, Merle A1 - Böhnke, Julian A1 - Braunschweig, Holger A1 - Celik, Mehmet Ali T1 - Reactivity of a Dihydrodiborene with CO: Coordination, Insertion, Cleavage and Spontaneous Cyclic Alkyne Formation T2 - Angewandte Chemie, International Edition N2 - Under a CO atmosphere the dihydrodiborene [(cAAC)HB=BH(cAAC)] underwent coordination of CO concomitant with reversible hydrogen migration from boron to the carbene carbon atom, as well as reversible CO insertion into the B=B bond. Heating of the CO-adduct resulted in two unusual cAAC ring-expansion products, one presenting a B=C bond to a six-membered 1,2-azaborinane-3-ylidene, the other an unprecedented nine-membered cyclic alkyne resulting from reductive cleavage of CO and spontaneous C≡C triple bond formation. KW - CO activation KW - diborene KW - ring expansion KW - insertion KW - cyclic (alkyl)(amino)carbene Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-153318 N1 - This is the pre-peer reviewed version of the following article: Arrowsmith, M., Böhnke, J., Braunschweig, H. and Celik, M., Reactivity of a Dihydrodiborene with CO: Coordination, Insertion, Cleavage and Spontaneous Cyclic Alkyne Formation. Angew. Chem. Int. Ed. 2017, 129,14475 –14480. Accepted Author Manuscript. doi:10.1002/anie.201707907. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. ER - TY - THES A1 - Schuster, Julia Katharina T1 - Lewis-Basen-Stabilisierte Mono- und Dinukleare Verbindungen des Galliums und Niedervalente Verbindungen des Berylliums - Darstellung und Reaktivitätsstudien T1 - Lewis-Base-Stabilized Mono- and Dinuclear Gallium Compounds and Low-Valent Beryllium Compounds - Synthesis Reactivity Studies N2 - The present work is divided into two parts, the first of which is concerned with the synthesis and reactivity of carbene-stabilized gallium compounds. The second part of this thesis adresses the synthesis of novel, beryllium-containing compounds, whereby, in addition to investigations into new structural motifs of linear, sp-hybridized beryllium compounds, the stabilization of low valent beryllium complexes by the use of carbene ligands is a central part of this thesis. 1 Lewis-base-stabilized gallium compounds In this chapter, two different synthetic routes towards carbene stabilized, low-valent gallium compounds were investigated. By the use of CAAC ligands, four different [GaCl3(RCAAC)]-species (R = Me, Cy, Et, Menth) were realized, and investigated in terms of their reactivity towards reducing agents. However, all experimental approaches led to either decomposition products or renewed isolation of the starting materials and the synthesis of dinuclear gallium compounds via reductive coupling of two CAAC-Ga fragments was found not to be feasible. A different approach towards low-valent gallium compounds was the chemical reduction of Lewis-base-stabilized digallanes(4), in which the two gallium atoms are already connected via a σ bond. The synthesis of such compounds by reaction of either the subhalide ´GaI` or the mixed-valent salt [Ga]+[GaCl4]– with two equivalents of the free MeCAAC did not afford the double Lewis-base-stabilized [Ga2X4(MeCAAC)2] species (X = I, Cl). However, [Ga2Cl4(MeCAAC)2] was accessible through ligand exchange reaction of [Ga2Cl4(1,4-dioxane)2] with two equivalents of MeCAAC, due to the relatively weakly-coordinating nature of 1,4-dioxane. In an analogous fashion, three additional Lewis-base-stabilized digallanes(4) could be realized when the carbenes CyCAAC, SIDep und IDipp were used. The reactivity of the Lewis-base-stabilized digalliumtetrachlorides was tested towards different reducing agents. However, none of the reactions led to a distinct product formation and the synthesis of neutral, Ga-Ga multiple bond systems could not be realized in this manner. However, treatment of [Ga2Cl4(MeCAAC)2] with two equivalents of 1,3,2 diazaborolyllithium induced Ga-Ga bond cleavage and [GaCl2{B(NDippCH)2}(MeCAAC)] was isolated as the only boron-containing compound. The halide exchange reactions of the double Lewis-base adducts of digalliumtetrachloride were also investigated. Treatment of [Ga2Cl4(MeCAAC)2] and [Ga2Cl4(CyCAAC)2] with 1.3 molar equivalents of either BBr3 or BI3, well established reagents for halide exchange at other Group 13 elements, yielded the corresponding [Ga2X4(MeCAAC)2] (X = Br, I ) and [Ga2X4(CyCAAC)2] (X = Br, I), with retention of the carbene ligands. Also, the reaction of [Ga2Br4(CyCAAC)2] with BI3 afforded the fully iodinated species. In contrast to the MeCAAC-stabilized compounds, which feature extreme insolubility in common organic solvents, the CyCAAC-stabilized compounds could be characterized by NMR spectroscopy and X-ray diffraction. 2 Lewis-base-stabilized beryllium compounds The reaction of BeCl2 with two equivalents 1,3,2-diazaborolyllithium provided the homoleptic, linear Be{B(NDippCH)2}2. In its 9Be NMR spectrum, the compound shows a chemical shift of δ = 45 ppm, significantly outside the normal range of two-coordinate beryllium compounds. The electrophilic nature of the beryllium center in Be{B(NDippCH)2}2 was calculated by quantum chemical calculations and demonstrated by its reactivity towards different substrates: methanolysis of Be{B(NDippCH)2}2 induced a Be-B bond cleavage, and, along with insoluble materials presumed to be the polymeric beryllium methanolate, cleanly afforded the protonated 1,3,2 diazaborole. The use of deuterated MeOD in the reaction confirmed methanol as the proton source. Treatment of Be{B(NDippCH)2}2 with one equivalent of the small carbene IMe effected addition at the beryllium center to yield the trigonal mixed Lewis-base adduct. The heteroleptic BeCl{B(NDippCH)2} could not be synthesized by the reaction of BeCl2 with equimolar amounts of 1,3,2-diazaborolyllithium. Therefore, [BeClCp*] was used as starting material for the synthesis of novel, heteroleptic sp-hybridized beryllium species. Treatment of [BeClCp*] with various NHCs did not lead to the expected adduct formation, but yielded, only in the case of IiPr, the metallocene [BeCp*2] and the double Lewis-base adduct [BeCl2(IiPr)2] in a ligand exchange reaction. The reaction of [BeClCp*] with equimolar amounts of 1,3,2 diazaborolyllithium formed the linear coordinated [BeCp*{B(NDippCH)2}] in a salt elimination reaction. A central part of this work was the monomerization of BeCl2 by the use of CAAC ligands. Four differerent [BeCl2(RCAAC)] species (R = Me, Cy, Et, Menth) were synthesized via reaction of the corresponding free carbenes and BeCl2. Furthermore, the reactivity of these kinds of compounds towards different substrates was investigated. Treatment of [BeCl2(MeCAAC)] with equimolar amounts of 1,3,2-diazaborolyllithium afforded the trigonal mixed Lewis-base adduct [BeCl{B(NDippCH)2}(MeCAAC)] in a salt elimination reaction. This compound showed limited stability under reduced pressure, in solution as well as in the solid state, and subsequently formed the protonated 1,3,2 diazaborole and a beryllium containing compound that could not be further identified. The reaction of [BeCl2(MeCAAC)] with Bogdanović-Magnesium ([Mg(C14H10)(thf)3]) provided the CAAC-stabilized berylliumanthracendiyl [Be(C14H10)(MeCAAC)], which was isolated as a red solid. The mechanism of this reaction might be described as a nucleophilic addition of the dianionic anthracene unit to the beryllium center with concomitant loss of MgCl2. [Be(C14H10)(MeCAAC)] shows structural similarities to the magnesium containing species [Mg(C14H10)(thf)3], as both compounds show a non-planar anthracene moiety in their solid-state structures, due to the loss of aromaticity of the substituent. None of the attempts to chemically reduce the various [BeCl2(RCAAC)] compounds with a range of one-electron reducing agents afforded a selective reaction product, and either decomposition products or starting materials were isolated. However, treatment of the Lewis-base adducts [BeCl2(MeCAAC)] and [BeCl2(CyCAAC)] with potassium graphite in the presence of an additional equivalent of RCAAC (R = Me, Cy) yielded the homoleptic and heteroleptic compounds [Be(CyCAAC)2], [Be(MeCAAC)2] and [Be(MeCAAC)(CyCAAC)]. The solid-state structures of the double Lewis-base stabilized beryllium compounds show linear geometries around the beryllium center and significant differences to their beryllium-containing starting materials. A contraction of the Be1-C1 bonds as well as an elongation of the ligand-centered C1-N1 bonds was observed, indicative of strong Be-C bonding. Whereas the beryllium atom is usually found in its +II oxidation state, the central atom in the linear [Be(CAAC)] compounds is formally in its elemental form. Therefore, these compounds represent the first neutral complexes with a formally zerovalent CAAC-stabilized s-block element. The unusual electronic structure of these compounds is emphasized by their deep violet color (λmax (THF) = 575/579 nm). Quantum chemical calculations describe the bonding situation in [Be(CAAC)2] with a combination of donor-acceptor interactions between two ground-state singlet CAAC ligands and Be(0) in a 1s22s02p2 electronic configuration, resulting in a 3c 2e− π bond stretching over the C Be C core. Furthermore, the stabilization arising from π backdonation from Be to the CAAC ligands was found to significantly predominate over that from σ-donation from CAAC to the beryllium center. The NHC-stabilized compounds [Be(IDipp)2] and [Be(IDipp)(IMes)] and the mixed NHC/CAAC-stabilized species [Be(MeCAAC)(NHC)] (NHC = IDipp, IMes, SIDep) could not be synthesized. This might be explained by the different electronic properties of the carbenes. On the one hand, the π-accepting abilities of the NHCs are likely insufficient to form a 3c 2e− π bond. On the other hand, the stability of the mixed CAAC/NHC stabilized Be(0) compounds might not be sufficient due to differences in the σ-donating and π accepting properties of the ligands, which limits the formation of a symmetrical 3c 2e− π bond across the C-Be-C unit. N2 - Die vorliegende Arbeit ist in zwei Abschnitte gegliedert und befasst sich im ersten Teil mit der Darstellung und Reaktivität neuartiger, Carben-stabilisierter Galliumverbindungen. Der zweite Teil wurde den Untersuchungen zur Darstellung von berylliumhaltigen Verbindungen gewidmet, wobei, neben der Synthese von neuartigen, monomeren, sp-hybridisierten Berylliumverbindungen, die Stabilisierung niedervalenter Berylliumverbindungen durch die Verwendung von Carbenen einen zentralen Teil der Arbeit darstellt. 1 Lewis-Basen-stabilisierte Galliumverbindungen Zur Darstellung von Carben-stabilisierten, niedervalenten Galliumverbindungen wurden zwei unterschiedliche Syntheserouten herangezogen. Dabei konnten zum einen vier [GaCl3(RCAAC)]-Spezies (R = Me, Cy, Et, Menth) dargestellt werden, deren Verhalten unter reduktiven Bedingungen untersucht wurde. Jedoch führte keiner der Versuche zur chemischen Reduktion dieser Systeme zu einheitlichen Produkten und die Darstellung von dinuklearen Galliumverbindungen durch eine reduktive Kupplung zweier CAAC-Ga-Fragmente war auf diesem Weg nicht realisierbar. Ein weiterer Ansatz zur Darstellung von niedervalenten Digalliumverbindungen war die Reduktion Lewis-Basen-stabilisierter Digallan(4)-Verbindungen, bei welchen die beiden Galliumatome bereits über eine σ Einfachbindung verknüpft vorliegen. Die Synthese solcher Verbindungen durch die direkte Umsetzung des Galliumsubhalogenids ´GaI` bzw. des gemischt-valenten Salzes [Ga]+[GaCl4]– mit zwei Äquivalenten des freien Carbens MeCAAC führte nicht zu den doppelt Carben stabilisierten [Ga2X4(MeCAAC)2]-Spezies (X = I, Cl). Jedoch konnte [Ga2Cl4(MeCAAC)2] ausgehend von [Ga2Cl4(1,4 Dioxan)2], auf Basis der relativ schwach koordinierenden 1,4-Dioxan-Liganden, mittels Ligandaustauschreaktion dargestellt werden. In analoger Weise waren drei zusätzliche Vertreter realisierbar, wobei die Carbene CyCAAC, SIDep und IDipp verwendet wurden. Die Reaktivität der Lewis-Basen-stabilisierten Digalliumtetrachloride wurde gegenüber unterschiedlicher Reduktionsmittel getestet, wobei bei keiner der Umsetzungen ein einheitliches Produkt isoliert werden konnte. Die Darstellung von neutralen, Ga-Ga-Mehrfachbindungssystemen war folglich auf diese Weise nicht möglich. Die Umsetzung von [Ga2Cl4(MeCAAC)2] mit zwei Äquivalenten 1,3,2-Diazaborolyllithium führte zu einem Ga-Ga-Bindungsbruch und [GaCl2{B(NDippCH)2}(MeCAAC)] konnte als einziges Bor-haltiges Produkt isoliert werden. Ein weiterer zentraler Bestandteil dieser Arbeit beschreibt die Halogenaustauschreaktionen der doppelt Lewis-Basen-stabilisierten Digalliumtetrachloride. Die Verbindungen [Ga2Cl4(MeCAAC)2] und [Ga2Cl4(CyCAAC)2] wurden jeweils mit BBr3 oder BI3 umgesetzt, welche gängigerweise zum Halogenaustausch weiterer Gruppe-13-Verbindungen eingesetzt werden. Alle Reaktionen führten zu einem vollständigen Halogenaustausch der Digalliumtetrachloride unter Retention der Liganden und die Produkte [Ga2X4(MeCAAC)2] (X = Br, I) und [Ga2X4(CyCAAC)2] (X = Br, I) konnten isoliert werden. Auch die Umsetzung von [Ga2Br4(CyCAAC)2] mit BI3 lieferte die iodierte Spezies. Die CyCAAC-stabilisierten Vertreter weisen im Gegensatz zu den MeCAAC-stabilisierten Spezies eine bessere Löslichkeit in gängigen organischen Lösungsmitteln auf und konnten anhand von NMR-spektroskopischen Methoden charakterisiert werden. 2 Lewis-Basen-stabilisierte Berylliumverbindungen Durch die Umsetzung von BeCl2 mit zwei Äquivalenten 1,3,2-Diazaborolyllithium konnte das homoleptisch substituierte, lineare Be{B(NDippCH)2}2 dargestellt werden. Dieses zeigt im 9Be NMR-Spektrum eine Resonanz bei δ = 45 ppm, welche im Vergleich zu anderen linear-koordinierten Berylliumverbindungen weit zu tiefem Feld verschoben ist und bis dato das erste Beispiel dieses Frequenzbereichs darstellt. Der elektrophile Charakter des Berylliumatoms in Be{B(NDippCH)2}2 wurde anhand quantenchemischer Rechnungen postuliert und durch die Reaktivität der Verbindung gegenüber unterschiedlichen Substraten bestätigt. Die Methanolyse von Be{B(NDippCH)2}2 führt zu einem Be-B Bindungsbruch und neben dem, in gängigen Lösungsmitteln unlöslichen, Feststoff (Ben(OMe)m), wurde das protonierte 1,3,2 Diazaborol isoliert. Anhand von Deuterierungsexperimenten konnte Methanol als Protonenquelle identifiziert werden. Die Reaktion mit äquimolaren Mengen IMe lieferte ein trigonal planares Lewis-Basenaddukt. Durch die Umsetzung von BeCl2 mit stöchiometrischen Mengen des 1,3,2 Diazaborolyllithiums konnte die einfach borylierte Verbindung BeCl{B(NDippCH)2} nicht realisiert werden. Um heteroleptisch substituierte, lineare Berylliumverbindungen darzustellen, wurde [BeClCp*] als Edukt eingesetzt. Die Umsetzung mit NHCs führte lediglich im Fall des sterisch weniger anspruchsvollen IiPr zu einer Reaktion, welche nicht unter Adduktbildung verlief, sondern unter Ligandaustausch [BeCp*2] und das zweifach IiPr-stabilisierte Berylliumdichlorid lieferte. Die Umsetzung von [BeClCp*] mit äquimolaren Mengen 1,3,2 Diazaborolyllithium verlief in einer Salzeliminierung und das linear koordinierte [BeCp*{B(NDippCH)2}] wurde isoliert. Ein zentraler Bestandteil dieser Arbeit war die Monomerisierung von BeCl2 durch die Verwendung von CAAC-Liganden. Vier unterschiedlich substituierte Vertreter dieser [BeCl2(RCAAC)]-Spezies (R = Me, Cy, Et, Menth) konnten durch Umsetzung von BeCl2 mit dem entsprechenden freien Carben realisiert werden. Weiterhin erfolgte eine Untersuchung dieser Verbindungen gegenüber unterschiedlicher Substrate. Die Reaktion von [BeCl2(MeCAAC)] mit 1,3,2-Diazaborolyllithium verlief in einer Salzeliminierungsreaktion zu dem verzerrt trigonal planar koordinierten [BeCl{B(NDippCH)2}(MeCAAC)]. Die Verbindung konnte als Feststoff isoliert werden, wies jedoch eine limitierte Stabilität auf und zerfiel, sowohl in Lösung als auch in fester Form, unter Vakuum in das protonierte 1,3,2-Diazaborol und eine berylliumhaltige Verbindung, dessen Struktur nicht aufgeklärt werden konnte. Bei der Umsetzung von [BeCl2(MeCAAC)] mit Bogdanović-Magnesium ([Mg(C14H10)(thf)3]) konnte das CAAC-stabilisierte Berylliumanthracendiyl [Be(C14H10)(MeCAAC)] als roter, kristalliner Feststoff isoliert werden. Der Reaktionsmechanismus dieser Umsetzung ist bislang nicht vollständig geklärt, jedoch wird eine nukleophile Addition des Dianions des Anthracens an das Berylliumzentrum postuliert, welche eine Salzeliminierung zur Folge hat. Die Verbindung weist strukturelle Ähnlichkeiten zu der Magnesium-haltigen Spezies im Festkörper auf und für beide Verbindungen wird, durch den Verlust der Aromatizität des Anthracenylsubstituenten, eine Aufhebung der Planarität des Ringsystems beobachtet. Versuche zur Reduktion der unterschiedlich substituierten [BeCl2(RCAAC)]-Verbindungen mit einer Reihe an Einelektronen-Reduktionsmitteln führten nicht zum Erfolg und es konnte in keinem der Fälle ein einheitliches Produkt isoliert werden. Hingegen lieferte die Reaktion der Lewis-Basenaddukte [BeCl2(MeCAAC)] und [BeCl2(CyCAAC)] mit Kaliumgraphit und einem zusätzlichen Äquivalent RCAAC (R = Me, Cy) die homoleptisch- und heteroleptisch-substituierten Verbindungen [Be(CyCAAC)2], [Be(MeCAAC)2] und [Be(MeCAAC)(CyCAAC)]. Die Festkörperstrukturen der doppelt Lewis-Basen-stabilisierten Berylliumverbindungen zeigen deutliche Unterschiede zu denen der Edukte. Sowohl eine Kontraktion der Be1-C1-Bindungslängen, als auch eine Verlängerung der ligandzentrierten C1-N1-Bindungslängen ist zu beobachten, womit die Be-C-Bindungen der [BeL2] Verbindungen mit einem partiellen Doppelbindungscharakter beschrieben werden können. Im Gegensatz zu anderen, zweifach koordinierten Berylliumverbindungen, welche gewöhnlich in der formalen Oxidationsstufe +II vorliegen, wird in [Be(CAAC)2] das Berylliumatom formal in seiner elementaren Form stabilisiert. Die Verbindungen stellen somit bis dato die ersten neutralen Komplexe dar, bei welchen ein s-Block-Element in der formalen Oxidationsstufe 0 stabilisiert wird. Die ungewöhnliche elekronische Struktur dieser Spezies wird bereits an der tief-violetten Färbung der Verbindungen deutlich (λmax (THF) = 575/579 nm). Quantenmechanische Berechnungen beschreiben die Bindungssituation in [Be(CAAC)2] mit einer Kombination aus Donor-Akzeptor-Wechselwirkungen zwischen zwei CAAC-Liganden im Singulett-Grundzustand und einem neutralen Be(0) im doppelt angeregten Zustand (1s22s02p2). Daraus resultiert eine 3c-2e−-π-Bindung, welche sich über den CCarben Be CCarben-Kern erstreckt und im Vergleich zur σ Hinbindung einen größeren Anteil zur Stabilisierung des Systems beiträgt. Die analogen NHC-stabilisierten Vertreter [Be(IDipp)2] bzw. [Be(IDipp)(IMes)] als auch die heteroleptisch substituierten Spezies [Be(MeCAAC)(NHC)] (NHC = IDipp, IMes, SIDep) konnten nicht realisiert werden. Eine Erklärung hierfür könnten die elektronischen Unterschiede der Carbene liefern. Zum einen reicht vermutlich die Akzeptorfähigkeit der NHCs nicht aus, um eine 3c-2e−-π-Bindung auszubilden und zum anderen ist auch die Stabilität von gemischten CAAC/NHC-stabilisierten Be(0)-Komplexen nicht gegeben, wenn durch die unterschiedliche σ-Donor bzw. π-Akzeptorfähigkeit der Liganden keine symmetrische π-Bindung ausgebildet werden kann. KW - Beryllium KW - Beryllium(0)-Verbindungen KW - Gallium KW - Lewis-Basen Addukte KW - niedervalente Verbindungen KW - Lewis-Basen-stabilisierte Galliumverbindungen Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166381 ER - TY - INPR A1 - Böhnke, Julian A1 - Dellermann, Theresa A1 - Celik, Mehmet Ali A1 - Krummenacher, Ivo A1 - Dewhurst, Rian D. A1 - Demeshko, Serhiy A1 - Ewing, William C. A1 - Hammond, Kai A1 - Heß, Merlin A1 - Bill, Eckhard A1 - Welz, Eileen A1 - Röhr, Merle I. S. A1 - Mitric, Roland A1 - Engels, Bernd A1 - Meyer, Franc A1 - Braunschweig, Holger T1 - Isolation of diradical products of twisted double bonds T2 - Nature Communications N2 - Molecules containing multiple bonds between atoms—most often in the form of olefins—are ubiquitous in nature, commerce, and science, and as such have a huge impact on everyday life. Given their prominence, over the last few decades, frequent attempts have been made to perturb the structure and reactivity of multiply-bound species through bending and twisting. However, only modest success has been achieved in the quest to completely twist double bonds in order to homolytically cleave the associated π bond. Here, we present the isolation of double-bond-containing species based on boron, as well as their fully twisted diradical congeners, by the incorporation of attached groups with different electronic properties. The compounds comprise a structurally authenticated set of diamagnetic multiply-bound and diradical singly-bound congeners of the same class of compound. KW - diradicals KW - diborenes KW - carbenes KW - boron Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-160248 N1 - Submitted version of Julian Böhnke, Theresa Dellermann, Mehmet Ali Celik, Ivo Krummenacher, Rian D. Dewhurst, Serhiy Demeshko, William C. Ewing, Kai Hammond, Merlin Heß, Eckhard Bill, Eileen Welz, Merle I. S. Röhr, Roland Mitrić, Bernd Engels, Franc Meyer & Holger Braunschweig: Isolation of diborenes and their 90°-twisted diradical congeners. Nature Communications. Volume 9, Article number: 1197 (2018) doi:10.1038/s41467-018-02998-3 ER - TY - INPR A1 - Stennett, Tom A1 - Mattock, James A1 - Vollert, Ivonne A1 - Vargas, Alfredo A1 - Braunschweig, Holger T1 - Unsymmetrical, Cyclic Diborenes and Thermal Rearrangement to a Borylborylene T2 - Angewandte Chemie, International Edition N2 - Cyclic diboranes(4) based on a chelating monoanionic, benzylphosphine linker were prepared by boron-silicon exchange between arylsilanes and B\(_2\)Br\(_4\). Coordination of Lewis bases to the remaining sp\(^2\) boron atom yielded unsymmetrical sp\(^3\)-sp\(^3\) diboranes, which were reduced with KC\(_8\) to their corresponding trans-diborenes. These compounds were studied by a combination of spectroscopic methods, X-ray diffraction and DFT calculations. PMe\(_3\)-stabilized diborene 6 was found to undergo thermal rearrangement to gem- diborene 8. DFT calculations on 8 reveal a polar boron-boron bond, and indicate that the compound is best described as a borylborylene. KW - boron KW - borylene KW - multiple bonds KW - rearrangement KW - DFT calculations Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-160258 N1 - This is the pre-peer reviewed version of the following article: T. E. Stennett, J. D. Mattock, I. Vollert, A. Vargas, H. Braunschweig, Angew. Chem. Int. Ed. 2018, 57, 4098., which has been published in final form at DOI: 10.1002/anie.201800671. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. VL - 57 ER - TY - THES A1 - Drisch, Michael T1 - Beiträge zur Chemie schwach koordinierender Cyanoborat- und Fluorophosphat-Anionen T1 - Chemistry of weakly coordinating cyanoborate and fluorophosphate anions N2 - Zusammenfassung Synthetisch einfach zugängliche, thermisch und chemisch robuste schwach oder mittelstark wechselwirkende Anionen sind wichtige Bausteine für neue Materialien wie zum Beispiel ionische Flüssigkeiten und Li-Leitsalze. Im Rahmen der vorliegenden Arbeit wurden zum einen neue schwach koordinierende Borat- und Pentafluorophosphat-Anionen entwickelt und zum anderen effiziente Synthesen zu bereits bekannten Cyanoborat-Anionen ausgearbeitet. Aufgrund ihrer interessanten Eigenschaften wie niedriger Viskosität und elektrochemischer Stabilität wird der Einsatz von ionischen Flüssigkeiten mit dem [BH(CN)3]−-Anion seit längerer Zeit intensiv untersucht. Ausgehend von Na[BH4] wurde eine äußerst effiziente Synthese zu K[BH(CN)3], die auch für den molaren Maßstab geeignet ist, entwickelt. Die Synthese verläuft über Tricarboxylatohydridoborate als Zwischenstufen, welche sich bei vergleichsweise niedrigen Temperaturen von 60 °C weiter mit TMSCN und TMSCl (Kat.) zum [BH(CN)3]−-Anion cyanieren lassen. Durch schrittweise Cyanierung mit TMSCN, ohne den Einsatz eines Lewis-Säure-Katalysators wie TMSCl, wurden die Carboxylatocyanoborate M[BH(CN)(OC(O)Et)2] (M+ = Na+, [Ph4P]+) und M[BH(CN)2(OC(O)Et)] (M+ = Na+, [EMIm]+) synthetisiert und zum Teil strukturell charakterisiert. [EMIm][BH(CN)2(OC(O)Et)] ist eine bei Raumtemperatur flüssige ionische Flüssigkeit mit einem Schmelzpunkt von −78 °C. Die dynamische Viskosität ist mit 44.81 mPa∙s bei 20 °C etwa vier Mal so hoch wie die von [EMIm][BH(CN)3] mit 12.36 mPa∙s. Ausgehend von den nun in sehr guten Ausbeuten und in hohen Reinheiten zugänglichen Cyanohydridoboraten wurden verschiedene Fluorierungsmethoden untersucht, um daraus Cyanofluoroborate zu synthetisieren. So wurde K[BF(CN)3] ausgehend von K[BH(CN)3] über direkte Fluorierung mit F2 in aHF oder F-TEDA, XeF2 sowie (Et2N)SF3 in Acetonitril synthetisiert. K[BH(CN)3] reagiert in aHF in Gegenwart von Fluor jedoch nicht selektiv zu K[BF(CN)3]. Es kommt zur teilweisen Addition eines HF-Moleküls an eine Cyanogruppe, welche nach wässriger Aufarbeitung K[BF(CN)2(C(O)NH2)] liefert. Die Säureamid-Gruppe lässt sich aber anschließend mit COCl2 leicht entwässern, sodass K[BF(CN)3] selektiv erhalten wird. Ebenfalls ist eine indirekte Fluorierung durch vorheriges Umsetzen eines entsprechenden [BH(CN)3]− Borats mit Cl2 oder Br2 und nachfolgender Fluorierung mit Et3N∙3HF möglich. Die gezeigten Fluorierungen wurden ebenfalls auf weitere Hydridoborate übertragen. Na[BH(CN)2(OC(O)Et)] wurde unter Erhalt der Propoxylato-Gruppe in einer Eintopfsynthese mit Br2 und Et3N∙3HF zu Na[BF(CN)2(OC(O)Et)] fluoriert. K[BF(CN)3] konnte ausgehend von K[BH(CN)3] ebenfalls mit Hilfe der elektrochemischen Fluorierung (ECF, Simons-Prozess) im Gramm-Maßstab hergestellt werden. Dabei gelang die erste Fluorierung einer B−H-Spezies mit dem Simons-Prozess überhaupt. Bei der ECF von K[BF(CN)3] wurden bei fortschreitender Reaktionsdauer NMR-spektroskopisch verschiedene CF3-Borate beobachtet. Während der ECF kommt es also teilweise zu einer C≡N-Bindungsspaltung. Die Fluorierung von CN-Gruppen mit ClF zu CF3-Gruppen wurde ebenfalls auf eine Reihe weiterer Borate angewendet. So wurden K[(C2F5)B(CF3)3] und K[(C2F5)BF(CF3)2] ausgehend von K[(C2F5)B(CN)3] und K[(C2F5)BF(CN)2] synthetisiert und mit einigen Zwischenstufen NMR-spektroskopisch charakterisiert. Neben Boraten sind besonders Salze von schwach koordinierende Phosphat-Anionen wie Li[PF6] für elektrochemische Anwendungen von Interesse. Auf Basis von verschiedenen aminverbrückten Phosphonsäuren wurden neuartige Salze mit mehrfach negativ geladenen Oligo-Phosphat-Anionen synthetisiert. {((HO)2(O)PCH2)2NCH2}2 und ((HO)2(O)PCH2)3N reagieren mit wasserfreiem Fluorwasserstoff zu den entsprechenden Oligo-Pentafluorophosphat-Anionen [{(F5PCH2)2NHCH2}2]2− und [(F5PCH2)2NH]2−. Die verbrückenden Stickstoffatome werden dabei protoniert, was zu zweifach negativ geladenen Phosphat-Anionen führt. Unterschiedliche Salze mit organischen und anorganischen Kationen wurde so isoliert. Weitere Salze, wie das [Ph3C]-, [EMIm]- oder das Li-Salz, wurden durch Metathesereaktionen erhalten. Das Stickstoffatom in -Position zum Phosphoratom scheint essenziel für die Fluorierung der Phosphonsäure-Gruppe mit aHF zu einer PF5-Gruppe zu sein. Dies wurde durch die Umsetzung anderer funktionalisierter Phosphonsäuren wie z.B. (HO)2(O)PMe bestätigt, da es dabei nur zu einer Teilfluorierung zum F2(O)PMe kam. Die Kalium-Salze K2[{(F5PCH2)2NHCH2}2] und K2[(F5PCH2)3NH] lassen sich mit KH in DMF deprotonieren und so Salze mit den dreifach bzw. vierfach negativ geladenen Anionen [{(F5PCH2)2NCH2}2]4− und [(F5PCH2)3N]3− erhalten. K4[{(F5PCH2)2NCH2}2] und K3[(F5PCH2)2N] sind hydrolyseempfindlich und werden leicht protoniert. Die deprotonierten Anionen können jedoch mit Methyliodid oder Allyliodid weiter umgesetzt und so funktionalisiert werden. Das methylierte bzw. allylierte Stickstoffatom sorgt für eine deutliche Stabilisierung der Anionen. So steigt zum Beispiel die Zersetzungstemperatur von K2[{(F5PCH2)2N(CH3)CH2}2] im Vergleich zu K2[{(F5PCH2)2NHCH2}2] um über 100 °C auf 300 °C. Des Weiteren steigt auch die Stabilität gegenüber Hydrolyse bei Salzen mit den methylierten Phosphat-Anionen deutlich an. K2[{(F5PCH2)2NHCH2}2] wird nach einigen Minuten in H2O langsam hydrolisiert. Dagegen ist K2[{(F5PCH2)2N(CH3)CH2}2] mehrere Tage sowohl wasser- als auch basenstabil. Das durch eine Metathesereaktion von Li[BF4] mit K2[{(F5PCH2)2N(CH3)CH2}2] erhaltene Li2[{(F5PCH2)2N(CH3)CH2}2] hat in -Butyrolacton eine Leitfähigkeit von 2.67 mS∙cm−1 (c = 0.1 mol∙L−1). Einige Oligo-Pentafluorophosphate wurden ebenfalls strukturanalytisch charakterisiert. N2 - Summary Weakly or moderately coordinating anions which are synthetically easily accessible and thermally and chemically robust are important building blocks for new materials such as ionic liquids or Li-conducting salts. Within the scope of the present work, new weakly coordinating borate and pentafluorophosphate anions were developed and efficient syntheses for already known cyanoborate anions were developed. Due to their interesting properties such as low viscosity and electrochemical stability, the use of ionic liquids with the [BH(CN)3]− anion has been extensively investigated for a long time. Starting from Na[BH4], a very efficient synthesis for K[BH(CN)3], which is also suitable for the molar scale, has been developed. The synthesis proceeds via tricarboxylatohydridoborates as intermediates, which can be cyanated with TMSCN and TMSCl (cat.) to the [BH(CN)3]− anion at a relatively low temperature of 60 °C. The carboxylatocyanoborates M[BH(CN)(OC(O)Et)2] (M+ = Na+, [Ph4P]+) and M[BH(CN)2(OC(O)Et)] (M+ = Na+, [EMIm]+) were synthesized by stepwise cyanation with TMSCN of the tricarboxylatohydridoborates without using a Lewis acid catalyst. Some of the carboxylatocyanoborates were structurally characterized. [EMIm][BH(CN)2(OC(O)Et)] is an ionic liquid and liquid at room temperature with a melting point of −78 °C. Its dynamic viscosity at 20 °C is 44.81 mPa∙s, which is about four times higher than the one of [EMIm][BH(CN)3] with 12.36 mPa∙s. Various fluorination methods were investigated in order to synthesize cyanofluoroborates starting from the cyanohydridoborates which are now available in very good yields and in high purities. K[BF(CN)3] was obtained by direct fluorination with F2 in aHF or F-TEDA, XeF2, and (Et2N)SF3 in acetonitrile. K[BH(CN)3] reacts in aHF in the presence of fluorine non-selectively to K[BF(CN)3], and one HF molecule adds to single cyano group, which provides K[BF(CN)2(C(O)NH2)] after aqueous work-up. The carboxamide group can be easily dehydrated with COCl2 to give K[BF(CN)3] selectively. An indirect fluorination is possible as well. In the first step the the [BH(CN)3]− borate is reacted with Cl2 or Br2 and subsequent fluorination with Et3N∙3HF yields [BF(CN)3]−. The new fluorination reactions were applied to other hydridoborates. Na[BH(CN)2(OC(O)Et)] was fluorinated while retaining the propoxylato group in a one pot synthesis with Br2 and Et3N∙3HF to give Na[BF(CN)2(OC(O)Et)]. Starting from K[BH(CN)3], K[BF(CN)3] was also prepared by means of electrochemical fluorination (ECF, Simons process) on a gram scale. With this process the first fluorination of a B−H species according to the Simons process was achieved. The ECF of K[BF(CN)3] gives several CF3 borates when longer reaction times were applied as shown by NMR spectroscopy. Thus the ECF leads to a partial C≡N bond cleavage. Similar transformation have been reported for M[B(CN)4] (M = Li+, Na+, K+) and ClF or ClF3 to give M[B(CF3)4].[24] The fluorination of CN groups with ClF to CF3 groups has also been adopted for a range of other borates. For example, K[(C2F5)B(CF3)3] and K[(C2F5)BF(CF3)2] were synthesized from K[(C2F5)B(CN)3] and K[(C2F5)BF(CN)2] and together with some intermediates these borate anions were characterized by NMR spectroscopy. In addition to borates, salts of weakly coordinating phosphate anions such as Li[PF6] are of particular interest for electrochemical applications. On the basis of various amine-bridged phosphonic acids, novel salts were synthesized with multiple negatively charged oligo-phosphate anions. {((HO)2(O)PCH2)2NCH2}2 and ((HO)2(O)PCH2)3N react with anhydrous hydrogen fluoride to the corresponding oligo-pentafluorophosphate anions [{(F5PCH2)2NHCH2}2]2− and [(F5PCH2)2NH]2−. The bridging nitrogen atoms are protonated, during the reaction, which leads to double negatively charged phosphate anions. Different salts with organic- and inorganic cations were isolated. Other salts such like the [Ph3C], [EMIm], or the Li salt were obtained by metathesis reactions. The nitrogen atom in -position to the phosphorus atom seems to be essential for the fluorination of the phosphonic acid group with aHF to a PF5 group. This assumption was proven by reacting other functionalized phosphonic acids, e.g. (HO)2(O)PMe, that showed only partial fluorination to F2(O)PMe. The poassium salts K2[{(F5PCH2)2NHCH2}2] and K2[(F5PCH2)3NH] were deprotonated with KH in DMF to obtain salts with the triple or quadruple negatively charged anions [{(F5PCH2)2NCH2}2]4− and [(F5PCH2)3N]3−. K4[{(F5PCH2)2NCH2}2] and K3[(F5PCH2)2N] are sensitive to hydrolysis and were easily protonated. However the deprotonated anions can be further reacted with methyl iodide or allyl iodide and thus functionalized. The methylated or allylated nitrogen atom ensures a significant stabilization of the anions. For example, the decomposition temperature of K2[{(F5PCH2)2N(CH3)CH2}2] increases by 100 °C to 300 °C compared to K2[{(F5PCH2)2NHCH2}2]. Furthermore, the stability of salts with the methylated phosphate anions towards hydrolysis increases significantly, also K2[{(F5PCH2)2NHCH2}2] is slowly hydrolyzed after a few minutes in H2O. On the other hand, K2[{(F5PCH2)2N(CH3)CH2}2] is water- and base-stable for several days. During a methatesis reaction of Li[BF4] with K2[{(F5PCH2)2N(CH3)CH2}2] the obtained Li2[{(F5PCH2)2N(CH3)CH2}2] has a conductivity of 2.67 mS∙cm−1 in -Butyrolacton (c = 0.1 mol∙L−1). Some oligo-pentafluorophosphates were also characterized by X-ray crystallography. KW - Anion KW - Phosphate KW - Borate KW - schwach koordinierende Anionen Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146802 ER - TY - THES A1 - Waag-Hiersch, Luisa T1 - „iClick“-Reaktionen von Ru- und Rh-Azid-Komplexen mit elektronenarmen Alkinen: Regioselektivität, Stabilität und Kinetik T1 - "iClick"-reactions of Ru and Rh azide complexes with electron-deficient alkynes: regioselectivity, stability and kinetic studies N2 - Die regioselektive Funktionalisierung von Bio(makro)molekülen erfordert Reaktionen, die mit einem biologischen System weder interagieren noch interferieren. Bestimmte funktionelle Gruppen, wie Azide oder Alkine, sind unter physiologischen Bedingungen inert, kommen nicht in der Natur vor, lassen sich selektiv miteinander verknüpfen und sind nicht-toxisch gegenüber Zellen und Organismen. Für die Einführung metallbasierter Funktionalitäten in solche Zielstrukturen stellen Click-Reaktionen daher einen schnellen Zugang dar, wobei Reaktionen, die ohne Zusatz von Katalysator und bei Raumtemperatur ablaufen von besonderem Interesse sind. Das Ziel der vorliegenden Arbeit war es daher die „iClick“-Reaktion von Ruthenium-Azid-Komplexen der allgemeinen Formel [Ru(N3)(aren)(N-N)]+ mit bidentaten Stickstoffliganden sowie Rhodium-Azid-Komplexen der allgemeinen Formel [Rh(Cp*)(N3)(bpyR,R)]+ mit unterschiedlich substituierten 2,2‘-Bipyridin-Coliganden (R = OCH3, H, COOCH3) gegenüber elektronenarmen Alkinen zu untersuchen. Röntgenstrukturanalysen der resultierenden Triazolat-Komplexe sollten den Koordinationsmodus bestätigten, da die Produkte der Click-Reaktionen prinzipiell als zwei verschiedene Regioisomere auftreten können. Die [Rh(Cp*)(N3)(bpyR,R)]CF3SO3-Komplexe mit 2,2‘-Bipyridin (bpy), dem elektronenziehenden Ligand 4,4‘-Bis(methoxycarbonyl)-2,2′-bipyridin (bpyCOOCH3,COOCH3) sowie dem elektronenschiebenden Ligand 4,4’-Dimethoxy-2,2‘-bipyridin (bpyOCH3,OCH3) wurden aus den entsprechenden Rhodium-Chlorido-Komplexen durch Fällung des Halogenids mit Silbertrifluormethansulfonat und anschließender Umsetzung mit Natriumazid hergestellt. In Lösung waren diese Verbindungen jedoch nur begrenzt stabil, wobei der Komplex mit bpyOCH3,OCH3 am wenigsten empfindlich war, während [Rh(Cp*)(N3)(bpyCOOCH3,COOCH3)]CF3SO3 aufgrund der sehr schnellen Zersetzung nicht isoliert werden konnte. Die „iClick“-Reaktion der Rhodium-Azid-Komplexe mit 4,4,4-Trifluorobut-2-insäureethylester ergab dann aber die stabilen Triazolat-Komplexe [Rh(Cp*)(triazolatCF3,COOEt)(bpyR,R)]CF3SO3 in sehr guter Ausbeute. Die Ruthenium-Azid-Komplexe [Ru(N3)(N-N)(p­cym)]PF6 mit N-N = bpy, bpyCOOCH3,COOCH3, bpyOCH3,OCH3, Bipyrimidin (bpym) sowie Dipyrido[3,2­a:2',3'­c]phenazin (dppz) wurden ausgehend von den jeweiligen Ruthenium-Chlorido-Komplexen durch Fällung des Halogenid-Liganden mit Silbertrifluormethansulfonat und anschließender Umsetzung mit Natriumazid in guter bis moderater Ausbeute hergestellt. Um den Einfluss des Aren-Liganden zu untersuchen wurde außerdem der entsprechende Hexamethylbenzol-Komplex [Ru(N3)(bpy)(hmb)]CF3SO3 in moderater Ausbeute hergestellt. Alle [Ru(N3)(aren)(N-N)]X-Komplexe mit X = PF6- oder CF3SO3- wurden mittels 1H, 13C NMR- und IR-Spektroskopie, CHN-Analyse sowie ESI-Massenspektrometrie charakterisiert. Die „iClick“-Reaktion dieser Komplexe erfolgte mit 4,4,4-Trifluorobut-2-insäureethylester und teilweise auch mit Dimethylacetylendicaboxylat (DMAD) in sehr guter bis guter Ausbeute. Außerdem konnten für die Röntgenstrukturanalyse taugliche Einkristalle von [Ru(triazolatCF3,COOEt)(bpy)(hmb)]CF3SO3 und [Ru(triazolatCF3,COOEt)(bpyCOOCH3,COOCH3)(p­cym)]PF6 erhalten werden, die die N2-Koordination des Triazolat-Liganden an das Zentralatom bestätigten. Um diese als metallbasierte Marker einsetzen zu können, müssen die resultierenden Triazolat-Komplexe bei biologisch relevanten pH-Werten und gegenüber Ligandenaustausch, zum Beispiel mit den Aminosäureseitenketten von Proteinen, stabil sein. Durch HPLC-Untersuchungen an [Ru(triazolatCF3,COOEt)(bpy)(hmb)]CF3SO3 wurde gezeigt, dass dieser Komplex in wässriger Lösung über einen pH-Bereich von 1 bis 8 bei Raumtemperatur mindestens 24 h stabil ist. Außerdem konnte eine weitgehende Stabilität gegenüber Ligandenaustausch mit den Seitenketten der Aminosäuren L­Cystein, L-Histidin, L­Methionin und L-Glutaminsäure bei 37 °C über mindestens 72 h festgestellt werden. Insbesondere die Geschwindigkeit der „iClick“-Reaktion ist in einem biologischen Kontext von Bedeutung, da die Konjugationsreaktionen schneller ablaufen müssen als interessierende biologische Prozesse. Mittels HPLC und IR-Spektroskopie wurde für die „iClick“-Reaktion der Rutheniumazid-Komplexe [Ru(N3)(bpyR,R)(p-cym)]PF6 mit R = OCH3, H oder COOCH3 sowie [Ru(N3)(bpy)(hmb)]CF3SO3 mit einem Überschuss an 4,4,4-Trifluorobut-2-insäureethylester Geschwindigkeitskonstanten pseudoerster Ordnung im Bereich von 1 ­ 3*10-3 s-1 bestimmt. Außerdem war es mittels IR-Spektroskopie in Lösung möglich die Geschwindigkeits-konstante pseudoerster Ordnung für die „iClick“-Reaktion der Rhodiumazid-Verbindungen [Rh(Cp*)(N3)(bpyR,R)]CF3SO3 mit R = OCH3, H oder COOCH3 und 4,4,4-Trifluorobut-2-insäureethylester zu 2 ­ 4*10-3 s-1 zu ermitteln. Insgesamt zeigte sich, dass Komplexe mit elektronenreichen Coliganden schneller mit 4,4,4-Trifluorobut-2-insäureethylester reagieren als solche mit elektronenärmeren Liganden. Auch war die Geschwindigkeitskonstante für die Reaktion der Rhodium-Komplexe höher als für die Rutheniumverbindungen. Die Geschwindigkeitskonstanten zweiter Ordnung wurden aus der 19F NMR-spektroskopischen Untersuchung der Reaktion von 4,4,4-Trifluorobut-2-insäureethylester und [Ru(N3)(bpyR,R) (p-cym)]PF6 mit R = OCH3, H oder COOCH3 sowie [Ru(N3)(bpy)(hmb)]CF3SO3 bei 20 °C bestimmt. Bei annähernd gleichem Verhältnis von Alkin und Rutheniumazid-Komplexen wurden Geschwindigkeitskonstanten im Bereich von 1 - 2*10-2 L mol-1 s-1 erhalten. Diese sind größer als die der Staudinger-Ligation, aber kleiner als die der spannungsinduzierten Azid-Alkin Cycloaddition. Prinzipiell sollte damit also eine biologische Anwendung möglich sein. Außerdem wurde die Aktivierungsenergie der Reaktion von [Ru(N3)(bpy)(p­cym)]PF6 mit 4,4,4-Trifluorobut-2-insäureethylester aus der Untersuchung der Temperaturabhängigkeit im Bereich von -20 °C bis +20 °C mit VT-NMR zu 46.1 kJ mol-1 bestimmt. In den 19F NMR-Spektren des Reaktionsgemisches zeigte sich bei -20 °C neben dem Signal des N2-koordinierten Triazolats außerdem ein weiteres, das dem N1-Isomer zuzuordnen ist, welches bei Erwärmen jedoch wieder verschwand. In einer DFT-Rechnung wurde die Geometrie von [Ru(N3)(bpy)(hmb)]CF3SO3 optimiert. Dabei zeigte sich, dass nur etwa 25 – 30% aller Trajektorien angreifender Alkinmolekülen einen Zugang zum Azid ermöglichen, sodass die Reaktionsgeschwindigkeit um etwa einen Faktor vier niedriger liegen sollte als für nicht oder nur wenig abgeschirmte Organoazid-Verbindungen. Die „iClick“-Reaktion der hier untersuchten Metall-Azid-Komplexe mit elektronenarmen Alkinen zeigt also bereits jetzt Reaktionsgeschwindigkeiten vergleichbar etablierter Biokonjugationsreaktionen. In Zukunft sollte daher das Potential anderer Metall-Azid-Bausteine untersucht und auch das Alkin variiert werden. N2 - The regioselective functionalization of bio(macro)molecules requires reactions which do not interact or interfere with biological systems. Certain functional groups such as azides or alkynes are inert under physiological conditions, do not occur naturally, can selectively react with each other and are non-toxic to cells and organisms. To introduce metal-based functionalities in biological target structures, click reactions enable a fast access. In particular those which take place without catalyst and at room temperature are of special interest. Thus, the aim of the present thesis was to investigate the “iClick” reaction of ruthenium azide complexes [Ru(N3)(arene)(N-N)]+ with bidentate nitrogen ligands and also that of rhodium azide complexes [Rh(Cp*)(N3)(bpyR,R)]+ with different 4,4’-substituted 2,2‘-bipyridin coligands with R = OCH3, H or COOCH3 towards electron-deficient alkynes. X-ray studies on ruthenium triazolate complexes were to establish the coordination mode, since the triazolate productes derived from click chemistry can result in two different regioisomers. The [Rh(Cp*)(N3)(bpyR,R)]CF3SO3 complexes with 2,2-bipyridine (bpy), electron-withdrawing ligand 4,4‘-bis(methoxycarbonyl)-2,2′-bipyridine (bpyCOOCH3,COOCH3) and also electron-donating ligand 4,4’-dimethoxy-2,2‘-bipyridine (bpyOCH3,OCH3) were synthesised from the corresponding rhodium chloride complexes by abstraction of the halide using silver trifluoromethanesulfonate followed by introduction of the azide ligand with sodium azide. However, these complexes have only limited stability in solution. The compound with bipyOCH3,OCH3 is the most stable, while [Rh(Cp*)(N3)(bpyCOOCH3,COOCH3)]CF3SO3 could not be isolated due to the fast decomposion. Still, the “iClick” reaction of rhodium azide complexes with 4,4,4-trifluoro-2-butynoic acid ethyl ester allowed isolation of the triazolate complexes [Rh(Cp*)(triazolateCF3,COOEt)(bpyR,R)]CF3SO3 in very good yield. The corresponding ruthenium azide complexes [Ru(N3)(N-N)(p¬cym)]PF6 with N-N = bpy, bpyCOOCH3,COOCH3, bpyOCH3,OCH3, bipyrimidine (bpym) and dipyrido[3,2¬a:2',3'-c]phenazine (dppz) were also synthesised in a moderate to good yield from the corresponding ruthenium chloride complexes by halide abstraction using silver trifluoromethanesulfonate followed by introduction of azide ligand with sodium azide. To investigate the effect of the arene, the hexamethylbenzene complex [Ru(N3)(bipy)(hmb)]CF3SO3 was also synthesised in a moderate yield. All [Ru(N3)(arene)(N¬N)]X complexes with X = PF6- or CF3SO3- were characterised by 1H, 13C NMR and IR spectroscopy, CHN analysis and ESI mass spectrometry. The “iClick” reaction of these complexes with 4,4,4-trifluoro-2-butynoic acid ethyl ester and in some cases with dimethyl acetylenedicarboxylate (DMAD) proceeded in good to excellent yield. Furthermore, single crystals suitable for X-ray structure analysis were obtained for the triazolate complexes [Ru(triazolateCF3,COOEt)(bpy)(hmb)]CF3SO3 and [Ru(triazolateCF3,COOEt)(bpyCOOCH3,COOCH3)(p¬cym)]PF6 and confirmed the N2 coordination of the triazolate to the metal center. To use these triazolate complexes as metal-based markers, they have to be stable at biologically relevant pH and towards ligand exchange, for example with amino acid side chains in proteins. Thus, HPLC studies on [Ru(triazolateCF3,COOEt)(bpy)(hmb)]CF3SO3 demonstrated the stability in a pH range of 1 to 8 for at least 24 h at room temperature. In addition, the stability towards ligand exchange with functional groups of amino acid side chains in L-cysteine, L-histidine, L-methionine and L-glutamic acid was studied over 72 h at 37 °C and essentially no ligand exchange was observed. The rate constant of the “iClick” reaction is important for its use in bioconjugation since the labeling reactions have to be faster than the biological processes of interests. Pseudo-first order rate constants were determined in the range of 1 ¬ 3×10-3 s-1 for the “iClick” reaction of [Ru(N3)(bpyR,R) (p¬cym)]PF6 with R = OCH3, H or COOCH3 and also [Ru(N3)(bpy)(hmb)]CF3SO3 with an excess of 4,4,4-trifluoro-2-butynoic acid ethyl ester by HPLC and IR spectroscopy. Using solution IR spectroscopy, pseudo-first order rate constants for the “iClick” reaction of [Rh(Cp*)(N3)(bpyR,R)]CF3SO3, R = OCH3, H or COOCH3 and an excess of 4,4,4-trifluoro-2-butynoic acid ethyl ester were also determined to be 2 ¬ 4×10-3 s-1. These experiments show that complexes with electron-rich coligands react faster than those with electron-deficient ligands. Furthermore, rate constants were higher for the rhodium versus ruthenium azide complexes. Second order rate constants were determined by 19F NMR spectroscopy investigation of the reaction of 4,4,4-trifluoro-2-butynoic acid ethyl ester with [Ru(N3)(bpyR,R)(p-cym)]PF6 with R = OCH3, H or COOCH3 as well as [Ru(N3)(bpy)(hmb)]CF3SO3 at 20 °C. The alkyne was used at approximately the same molar amount as the ruthenium azide complexes and rate constants were obtained in the range of 1 - 2×10-2 L mol-1 s-1. These are higher than those reported for the Staudinger ligation but lower than those of the strain-promoted alkyne-azide cycloaddition. Thus, the method appears to be suitable for biolabeling applications. Furthermore, the activation energy of the reaction of [Ru(N3)(bpy)(p-cym)]PF6 with 4,4,4-trifluoro-2-butynoic acid ethyl ester was determined as 46.1 kJ mol-1 by variable-temperature NMR studies at -20 to +20 °C. 19F NMR spectra recordet at -20 °C showed one additional signal for the N1-coordinated triazolate in addition to the N2-coordinated one which however disappeared upon warming to room temperature. Using DFT methods, the geometry of [Ru(N3)(bpy)(hmb)]CF3SO3 was optimized und showed that only about 25 – 30% of all possible trajectories enable access to the azide group for attacking alkyne molecules. Therefore, the reaction is expected to be slower than that of less-shielded organoazide compounds by a factor of four. Thus, the “iClick” reaction of the metal azide complexes evaluated with electron-deficient alkynes shows rate constants comparable to established bioconjugation reactions. In future work, the potential of additional metal azide building blocks should be investigated, and the influence of other alkyne coupling partners studied. KW - Ruthenium KW - Rhodium KW - Azide KW - Alkine KW - iClick Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146286 ER - TY - INPR A1 - Arrowsmith, Merle A1 - Böhnke, Julian A1 - Braunschweig, Holger A1 - Celik, Mehmet A1 - Claes, Christina A1 - Ewing, William A1 - Krummenacher, Ivo A1 - Lubitz, Katharina A1 - Schneider, Christoph T1 - Neutral Diboron Analogues of Archetypal Aromatic Species by Spontaneous Cycloaddition N2 - Among the numerous routes organic chemists have developed to synthesize benzene derivatives and heteroaro- matic compounds, transition-metal-catalyzed cycloaddition reactions are the most elegant. In contrast, cycloaddition reactions of heavier alkene and alkyne analogues, though limited in scope, proceed uncatalyzed. In this work we present the first spontaneous cycloaddition reactions of lighter alkene and alkyne analogues. Selective addition of unactivated alkynes to boron–boron multiple bonds under ambient con- ditions yielded diborocarbon equivalents of simple aromatic hydrocarbons, including the first neutral 6p-aromatic dibora- benzene compound, a 2 p-aromatic triplet biradical 1,3-dibor- ete, and a phosphine-stabilized 2 p-homoaromatic 1,3-dihydro- 1,3-diborete. DFT calculations suggest that all three com- pounds are aromatic and show frontier molecular orbitals matching those of the related aromatic hydrocarbons, C6H6 and C4H42+, and homoaromatic C4H5+. KW - Aromaticity KW - Biradicals KW - Boron KW - Cycloaddition KW - Multiple bonds KW - Diborane KW - Cycloaddition Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142500 ER - TY - THES A1 - Eck, Martin T1 - Iron- and Copper-catalyzed Borylation of Alkyl and Aryl Halides and B–B Bond Activation and NHC Ring-expansion Reactions of the Diboron(4) Compound Bis(ethylene glycolato)diboron (B\(_2\)eg\(_2\)) T1 - Eisen- und kupferkatalysierte Borylierung von Alkyl- und Arylhalogeniden und B-B Bindungsaktivierung und NHC Ringerweiterungsreaktionen der Diboran(4) Verbindung Bis(ethylenglykol)diboran (B\(_2\)eg\(_2\)) N2 - The purpose of the present work was, in the first part, to investigate the potential of iron-based metal complexes in catalytic borylation reactions with alkyl halides as substrates and B2pin2 as the borylation reagent. Moreover, extended studies of the recently reported, copper mediated borylation reactions of aryl halides were performed, including the screening of substrates and alkoxy bases as well as ligand-screening. Investigations were undertaken on the role of Cu-nanoparticles, which might be involved in this catalytic reaction. Furthermore, Cu-phosphine complexes were synthesized as precursors, but attempts to isolate Cu-boryl species which are intermediates in the proposed catalytic cycle were unsuccessful, although 11B NMR evidence for a Cu-boryl complex was obtained. In the second part of this work, the alternative, Lewis-acidic diboron(4) compound bis(ethylene glycolato)diboron (B2eg2) was synthesized to compare its reactivity with the reactivity of other diboron(4) compounds (e.g. B2neop2, B2cat2, B2pin2 and B2(NMe2)4). Therefore, reactions of B2eg2 with different Lewis-bases, such as NHCs and phosphines, were performed to investigate the possible formation of sp2-sp3 or sp3-sp3 adducts and ring-expansion reactions (RERs). The aim was to obtain a better general insight into the reactivity of diboron(4) compounds with Lewis-bases because they are both used as reactants in transition metal-catalyzed and metal-free borylation reactions. Understanding the B–B bond activation process promoted by Lewis-bases provides a new perspective on the reaction pathways available for various borylation reactions. N2 - Im ersten Teil der vorliegenden Arbeit wurde das Potential eisenkatalysierter Borylierungsreaktionen von Alkylhalogeniden (Substrate) mit B2pin2 als Borylierungsreagenz untersucht. Weiterhin wurden detaillierte und intensive Untersuchungen zur literaturbekannten kupferkatalysierten Borylierung von Arylhalogeniden durchgeführt, einschließlich eines Screenings von unterschiedlich funktionalisierten Substraten und diversen Alkoxybasen. Es wurde ebenfalls ein sehr umfangreiches Ligandenscreening durchgeführt. Des Weiteren wurden die mögliche Entstehung und der mögliche Einfluss von Kupfernanopartikeln auf die Borylierungsreaktion untersucht. Um Intermediate der kupferkatalysierten Borylierung zu untersuchen wurden Kupferphosphankomplexe als Vorläufermoleküle für die Synthese von Kupferborylkomplexen hergestellt. Aufgrund der sehr hohen Reaktivität gelang es jedoch nicht, die entsprechenden Kupferborylkomplexe zu isolieren und zu charakterisieren. Es gelang allerdings in einem in situ 11B{1H}-NMR-Experiment, ein 11B{1H}-Signal zu detektieren, welches in dem zu erwartendem Bereich für einen Kupferborylkomplex lag und einen ersten Hinweis für die Bildung eines solchen Kupferborylkomplexes lieferte. Im zweiten Teil der vorliegenden Arbeit wurde das alternative, lewissaure Diboran(4)-Derivat Bis(ethylenglykol)diboran (B2eg2) synthetisiert, um dessen Reaktivität mit der Reaktivität von anderen Diboran(4)-Verbindungen (z.B. B2neop2, B2cat2, B2pin2 und B2(NMe2)4) zu vergleichen. Hierfür wurden Reaktionen von B2eg2 mit unterschiedlichen Lewisbasen wie NHCs und Phosphanliganden durchgeführt und die mögliche Bildung von sp2-sp3 oder sp3-sp3 hybridisierten mono- bzw. bis-Addukten sowie mögliche NHC-Ringerweiterungsreaktionen untersucht. Im Allgemeinen wurde im zweiten Teil der Arbeit versucht ein besseres Verständnis über die Reaktivität von Diboran(4)-Verbindungen mit Lewisbasen zu erlangen, da beide als Reaktanten in übergangsmetallkatalysierten und metallfreien Borylierungsreaktionen verwendet werden. Dies macht es zwingend erforderlich die B–B-Bindungsaktivierung durch Lewisbasen zu verstehen, da hierdurch eine komplett neue Perspektive auf mögliche Reaktionspfade vieler Borylierungsreaktionen eröffnet wird. KW - Boron KW - Catalysis KW - Chemistry Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149791 ER - TY - INPR A1 - Wang, Sunewang R. A1 - Arrowsmith, Merle A1 - Böhnke, Julian A1 - Braunschweig, Holger A1 - Dellermann, Theresa A1 - Dewhurst, Rian D. A1 - Kelch, Hauke A1 - Krummenacher, Ivo A1 - Mattock, James D. A1 - Müssig, Jonas H. A1 - Thiess, Torsten A1 - Vargas, Alfredo A1 - Zhang, Jiji T1 - Engineering a Small HOMO-LUMO Gap and Intramolecular B–B Hydroarylation by Diborene/Anthracene Orbital Intercalation T2 - Angewandte Chemie, International Edition N2 - The diborene 1 was synthesized by reduction of a mixture of 1,2-di-9-anthryl-1,2-dibromodiborane(4) (6) and trimethylphosphine with potassium graphite. The X-ray structure of 1 shows the two anthryl rings to be parallel and their π(C\(_{14}\)) systems perpendicular to the diborene π(B=B) system. This twisted conformation allows for intercalation of the relatively high-lying π(B=B) orbital and the low-lying π* orbital of the anthryl moiety with no significant conjugation, resulting in a small HOMO-LUMO gap (HLG) and ultimately an unprecedented anthryl B–B bond hydroarylation. The HLG of 1 was estimated to be 1.57 eV from the onset of the long wavelength band in its UV–vis absorption spectrum (THF, λ\(_{onset}\) = 788 nm). The oxidation of 1 with elemental selenium afforded diboraselenirane 8 in quantitative yield. By oxidative abstraction of one phosphine ligand by another equivalent of elemental selenium, the B–B and C\(^1\)–H bonds of 8 were cleaved to give the cyclic 1,9-diboraanthracene 9. KW - boron KW - small HOMO-LUMO gap KW - diborenes KW - borylation KW - hydroarylation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148126 N1 - This is the pre-peer reviewed version of the following article: S. R. Wang, M. Arrowsmith, J. Böhnke, H. Braunschweig, T. Dellermann, R. D. Dewhurst, H. Kelch, I. Krummenacher, J. D. Mattock, J. H. Müssig, T. Thiess, A. Vargas, J. Zhang, Angew. Chem. Int. Ed. 2017, 56, 8009., which has been published in final form at DOI: 10.1002/anie.201704063. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. VL - 56 IS - 27 ER - TY - INPR A1 - Braunschweig, Holger A1 - Krummenacher, Ivo A1 - Lichtenberg, Crispin A1 - Mattock, James A1 - Schäfer, Marius A1 - Schmidt, Uwe A1 - Schneider, Christoph A1 - Steffenhagen, Thomas A1 - Ullrich, Stefan A1 - Vargas, Alfredo T1 - Dibora[2]ferrocenophane: A Carbene-Stabilized Diborene in a Strained cis-Configuration T2 - Angewandte Chemie, International Edition N2 - Unsaturated bridges that link the two cyclopentadienyl ligands together in strained ansa metallocenes are rare and limited to carbon-carbon double bonds. The synthesis and isolation of a strained ferrocenophane containing an unsaturated two-boron bridge, isoelectronic with a C=C double bond, was achieved by reduction of a carbene-stabilized 1,1’-bis(dihaloboryl)ferrocene. A combination of spectroscopic and electrochemical measurements as well as density functional theory (DFT) calculations was used to assess the influence of the unprecedented strained cis configuration on the optical and electrochemical properties of the carbene-stabilized diborene unit. Initial reactivity studies show that the dibora[2]ferrocenophane is prone to boron-boron double bond cleavage reactions. KW - Boron KW - Metallocenes KW - Metallocene KW - Bor KW - Diborane KW - density functional calculations KW - strained molecules KW - diborenes Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-141981 N1 - This is the pre-peer reviewed version of the following article: Angewandte Chemie, International Edition, Volume 56, Issue 3, 889–892, which has been published in final form at doi:10.1002/anie.201609601. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. ER - TY - THES A1 - Hailmann, Michael T1 - Carba-closo-dodecaboranylethinyl-Liganden und deren Einsatz als Liganden für Münzmetall(I)-Komplexe T1 - Carba-closo-dodecaboranyl ligands and their use as ligands for coinage metal complexes N2 - Ein wesentliches Ziel dieser Arbeit war die Synthese von mehrfach funktionalisierten Carba-closo-dodecaborat-Anionen, um lineare Bausteine für höhermolekulare Netzwerke zu generieren. Speziell funktionelle Gruppen, die entweder zwei Koordinationstellen aufweisen oder weitere Funktionalisierungen ermöglichen, stehen im Fokus. Des Weiteren soll die Koordinationschemie von Carba-closo-dodecaborat-Anionen mit Ethinylgruppen am antipodalen Boratom, besonders in Hinsicht auf die Bildung von Münzmetall(I)-Komplexen untersucht werden. Im Rahmen dieser Themengebiete wurden zahlreiche zweifach funktionalisierte Derivate des Carba-closo-dodecaboratanions synthetisiert. Drei ausgewählte Anionen sind in Abbildung 141 gezeigt. Überdies wurde mit der Synthese von [1-H2CHCC(O)NH-closo-1-CB11H11]- gezeigt, dass die Aminofunktion derivatisiert werden kann. Diese Resultate ermöglichen die Synthese einer breiten Palette an linearen Bausteinen, beispielsweise für die Verwendung als Linker in höhermolekularen Netzwerken.Zudem wurden Bausteine synthetisiert, welche über Wasserstoffbrücken-bindungen lineare Stränge bilden . Aufgrund des, für Carboxylgruppen selten beobachteten Motivs von tetrameren Einheiten mit dem Graph-Set-Deskriptor [R44(16)] sticht die Struktur von [1-HO(O)C-12-HCC-closo-1-CB11H10]- besonders hervor, da normalerweise für Carbonsäuren die Bildung von Dimeren bevorzugt ist.[129-131] Die maximale Länge des tetrameren, cyclischen Bausteins beträgt 2.24 nm. Das Anion [1-H2N(O)C-12-HCC-closo-1-CB11H10]- bildet einen linearen Strang mit einer Länge von 2.10 nm, welcher an beiden Enden funktionelle Gruppen trägt. Ein interessantes Einsatzgebiet von derartigen Verbindungen ist wiederum die Verwendung als Liganden im Bereich von Münzmetall(I)-Komplexen, wie sie beispielsweise von Himmelspach et al.[87] synthetisiert wurden, wobei in diesem Fall über das Wasserstoffbrückenbindungsmotiv ein Verknüpfungspunkt vorhanden wäre, um höhermolekulare Netzwerke zu bilden. Des Weiteren wurde der elektronische Einfluss verschiedener funktioneller Gruppen auf die Polarisierung der Alkinylfunktion über das {closo-CB11}-Gerüst untersucht. Die Differenzen der experimentellen und berechneten chemischen Verschiebungen der Alkinylresonanzen stehen in linearem Zusammenhang mit der berechneten Differenz der NBO-Ladung des entsprechenden Clusters, wie Abbildung 143 zu entnehmen ist. Im Vergleich mit in 1,4-Position substituierten Derivaten von Benzol und Bicyclo[2.2.2]oktan wird deutlich, dass bei dem Carba-closo-dodecaborat-Anion in größerem Maße induktive Effekte eine Rolle spielen, aber zu einem gewissen Teil auch mesomere Effekte über das {closo-1-CB11}-Gerüst vermittelt werden. Dementsprechend ist das Carba-closo-dodecaborat-Anion zwischen den beiden Extremfällen Benzol - mit dominierenden mesomeren Effekten - und Bicyclo[2.2.2]oktan - mit reinen induktiven Effekten - einzuordnen.Durch die Verwendung ausgewählter funktionalisierter Pyridinderivate wurde ein breites Spektrum unterschiedlicher AgI-Cluster synthetisiert. Mit Pyridin und 4-Me-Pyridin ist die Struktur im Festkörper ein Oktaeder. Bei Verwendung von 4 tBu-Pyridin wird neben eines, auf einer Seite geöffneten Oktaeders, auch ein stark verzerrtes geschlossenes Oktaeder beobachtet. Wird 4-F3C-Pyridin als Ligand verwendet, werden je nach Reaktionstemperatur zwei verschiedene geometrische Grundgerüste im Festkörper erhalten. Bei Temperaturen über 20 °C wird ein Oktaeder und bei Temperaturen unter 15 °C ein Dekaeder aus AgI-Ionen im Festkörper gebildet. Bei Einsatz von 3,5-Me-Lutidin hingegen formt sich eine pentagonale Bipyramide.Diese Komplexe phosphoreszieren bei Raumtemperatur, was für diese Verbindungsklasse sehr selten beobachtet wird. Des Weiteren konnten Informationen hinsichtlich der Struktur-Eigenschafts-Beziehung solcher Komplexe erhalten werden, so wird die Quantenausbeute der einzelnen Komplexe maßgeblich von der Struktur beeinflusst wird. Während das am häufigsten beobachtete geometrische Grundgerüst das Oktaeder ist und die Quantenausbeuten für diese Serie von Clustern in einem Bereich zwischen 0.01 und 0.14 liegen, wird bei Verwendung von 3,5-Me2-Lutidin als Ligand eine pentagonale Bipyramide gebildet, die sich darüber hinaus mit einer Quantenausbeute von 0.76 deutlich von allen anderen bislang synthetisierten Komplexen hervorhebt. Mit den eben erwähnten Silber(I)-Komplexen wurden Ergebnisse bei Umsetzungen mit halogenidhaltigen Salzen erhalten. Auch hier wurden Unterschiede bei den verschiedenen Liganden beobachtet und bei Verwendung von 3,5-Me2-Lutidin wurden, in Abhängigkeit der verwendeten Kationen der eingesetzten Halogenid-Salze, unterschiedliche Komplexe erhalten. Im Falle des [Et4N]+-Kations bleibt die pentagonale Bipyramide erhalten und [Et4N][Ag7(12-CC-closo-1-CB11H11)4(3,5-Me2-C5H3N)9] bildet sich, während bei Verwendung des [Ph4P]+-Kations [Ph4P][Ag7(12-CC-closo-1-CB11H11)4(3,5-(Me)2C5H3N)13] erhalten wird und die Struktur im Kristall ist mit der von [Ag(C5H5N)4][(Ag7(12-CC-closo-1-CB11H11)4(C5H5N)11] verwandt. Die Struktur-Eigenschaft-Beziehung der Komplexe wird hierbei bestätigt, da für beide Komplexe sehr unterschiedliche Quantenausbeuten gemessen werden. Der Cluster mit dem pentagonal bipyramidalen Aufbau [Et4N][Ag7(12-CC-closo-1-CB11H11)4(3,5-Me2-C5H3N)8] hat eine Quantenausbeute von 0.23 gemessen, während die Quantenausbeute im Fall von [Ph4P][Ag7(12-CC-closo-1-CB11H11)4(3,5-(Me)2C5H3N)13] nur 0.04 beträgt. Dies belegt, dass die Struktur des AgI-Clusters im Festkörper die Lumineszenzeigenschaften maßgeblich bestimmt. Des Weiteren wurden verschiedene Münzmetallkomplexe mit Carboranyl-ethinyl- und Triphenylphosphan-Liganden synthetisiert . Auch diese Komplexe lumineszieren bei Bestrahlung mit UV-Licht. Im Falle des gemischten Komplexes {12-(Ph3PAu)((Ph3P)2Ag)]-CC-closo-1-CB11H11} konnte die Quantenausbeute auf 0.39 im Vergleich zu den reinen AgI- und AuI-Verbindungen erhöht werden. In diesen Fällen liegt die Quantenausbeute bei lediglich 0.01 beziehungsweise 0.02. N2 - The synthesis of difunctionalized carba-closo-dodecaborate anions was an essential aim of this work in order to form linear building blocks for the use in molecular frameworks. The focus was on functional groups with two coordination centers or the ability for further functionalization. Furthermore, of major interest was the coordination chemistry of alkyne-functionalized carba-closo-dodecaborate anions regarding their ability to form coinage metal complexes. As a part of this work numerous difunctionalized complexes were synthesized.Moreover, linear building blocks with the ability to form linear assemblies due to hydrogen bonding were prepared. At this point the structure of [1-HO(O)C-12-HCC-closo-1-CB11H10]- has to be highlighted because of the formation of a tetrameric unit with the graph-set-descriptor [R44(16)] and a maximum length of 2.24 nm. Furthermore, the structure of [1-H2N(O)C-12-HCC-closo-1-CB11H10]- in the solid state is a dimeric unit with a length of 2.10 nm and two coordination centers at both ends. The electronic influence of different functional groups was studied regarding their effect on the polarisation over the {closo-CB11} cage of the alkyne function. The experimental and calculated values of D[d(13CCC)] show a linear correlation with the corresponding calculated NBO charges (Figure 3). A comparison with functionalized derivatives of benzene and bicyclo[2.2.2]octane shows that inductive and mesomeric effects are transported over the {closo-CB11} cage. The mesomeric effects play a minor role, therefore, the {closo-CB11} cage has to be classified between benzene derivatives (with dominantly mesomeric effects) and derivatives of bicyclo[2.2.2]octane (with only inductive effects).A range of different AgI clusters (figure 4) was obtained by using selected derivatives of pyridine. In the solid state, the clusters form octahedra in the case of C5H5N and 4-Me-C5H4N. In the case of 4-tBu-C5H4N, an octahedron with one open side is observed, along with a distorted octahedron, in a 95:5 ratio. When 4-F3C-C5H4N is used as a ligand, two different complexes were obtained, depending on the reaction temperature. In contrast, the structure of [Ag(3,5-Me2-C5H3N)4][Ag7(12-CC-closo-1-CB11H11)4(3,5-Me2-C5H3N)10] is a pentagonal bipyramid.These clusters show phosphorescence at room temperature, which is rare for this class of complexes. Whereas the octahedron is the dominant motif in the solid state, for the complex [Ag(3,5-Me2-C5H3N)4][Ag7(12-CC-closo-1-CB11H11)4(3,5-Me2-C5H3N)10] a quantum yield of 0.76 is observed, which is markedly higher than those of other AgI clusters. The relation between the structure of the AgI clusters and their luminescence properties is verified by further reactions with halide salts. Two different complexes were obtained by reacting [Ag(3,5-Me2-C5H3N)4][Ag7(12-CC-closo-1-CB11H11)4(3,5-Me2-C5H3N)10] with [Et4N]Cl and [Ph4P]Br. The geometric framework of [Et4N][Ag7(12-CC-closo-1-CB11H11)4(3,5-Me2-C5H3N)8] remains a pentagonal bipyramid, whereas an octahedron is observed in the case of [Ph4P][Ag7(12-CC-closo-1-CB11H11)4(3,5-(Me)2C5H3N)13] (figure 5). Due to the structure of [Ph4P][Ag7(12-CC-closo-1-CB11H11)4(3,5-(Me)2C5H3N)13] the quantum yield (in this case 0.04) is significantly lower than the value of [Et4N][Ag7(12-CC-closo-1-CB11H11)4(3,5-Me2-C5H3N)8] (Phi = 0.23). Several coinage metal complexes were synthesized with carboranylalkynyl and triphenylphosphine ligands (figure 6). These complexes also show phosphorescence in the solid state. The quantum yield rises to 0.39 in the case of {12-[(Ph3PAu)((Ph3P)2Ag)]-CC-closo-1-CB11H11} whereas the values for the homonuclear metal complexes are very low (0.01-0.02). KW - Carborane KW - Münzmetall(I)-Komplexe KW - Alkinylkomplexe KW - Funktionalisierte Carborat-Anionen KW - Carboranylethinyl-Liganden KW - Lumineszenz Ag(I)-Komplexe Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149249 ER - TY - THES A1 - Schwenk, Nicola T1 - Seeing the Light: Synthesis of Luminescent Rhodacyclopentadienes and Investigations of their Optical Properties and Catalytic Activity T1 - Licht sehen: Synthese lumineszierender Rhodacyclopentadiene und Untersuchung ihrer optischen Eigenschaften und katalytischen Aktivität N2 - Luminescent organotransition metal complexes are of much current interest. As the large spin-orbit coupling of 2nd and 3rd row transition metals usually leads to rapid intersystem crossing from S1 to T1, which enables phosphorescence, there is a special interest in using triplet-emitting materials in organic or organometallic light emitting diodes (OLEDs). Marder et al. have found that, reductive coupling of both para-R-substituted diarylbutadiynes and diaryldodecatetraynes on Rh(PMe3)4X leads to quantitative yields of bis(arylethynyl)-rhodacyclopentadienes with complete regiospecificity (R = BMes2, H, Me, OMe, SMe, CF3, CN, CO2Me, NMe2, NO2, C≡C-TMS and X = -C≡C-TMS, -C≡C-C6H4-4-NMe2, -C≡C-C≡C-C6H4-4-NPh2, Me, Cl).47,49 Unexpectedly, these compounds show intense fluorescence rather than phosphorescence (ɸf = 0.33-0.69, t = 1.2 3.0 ns). The substituent R has a significant influence on the photophysical properties, as absorption and emission are both bathochromically shifted compared to R = H, especially for R = π-acceptor. To clarify the mechanism of the formation of the rhodacyclopentadienes, and to investigate further their unique photophysical properties, a series of novel, luminescent rhodacyclopentadienes with dithiocarbamate as a bidentate ligand at the rhodium centre has been synthesised and characterised (R = NO2, CO2Me, Me, NMe2, SMe, Ar = C6F4-4-OMe). The rhodacyclopentadienes have been formed via reductive coupling of diaryl undecatetraynes with [Rh(k2-S,S`-S2CNEt2)(PMe3)2]. The structures of a series of such compounds were solved by single crystal X-ray diffraction and are discussed in this work. The compounds were fully characterised via NMR, UV/Vis and photoluminescence spectroscopy as well as by elemental analysis, high-resolution mass spectrometry (HRMS) and X-ray diffraction. When heating the reactions, another isomer is formed to a certain extent. The so-called dibenzorhodacyclopentadienes already appeared during earlier studies of Marder et al., when acetylacetonate (acac) was employed as the bidentate ligand at the Rh-centre. They are probably formed via a [4+2] cycloaddition reaction and C-H activation, followed by a β-H shift. Use of the perfluorinated phenyl moiety Ar = C6F4-4-OMe provided a total new insight into the mechanism of formation of the rhodacyclopentadiene isomers and other reactions. Besides the formation of the expected rhodacyclopentadiene, a bimetallic compound was generated, isolated and characterised via X-ray crystallography and NMR spectroscopy, elemental analysis and high resolution mass spectrometry. For further comparison, analogous reactions with [Rh(k2 S,S` S2CNEt2)(PPh3)2] and a variety of diaryl undecatetraynes (R = NO2 CO2Me, Me, NMe2, SMe, Ar = C6F4-4-OMe) were carried out. They also yield the expected rhodacyclopentadienes, but quickly react with a second or even third equivalent of the tetraynes to form, catalytically, alkyne cyclotrimerisation products, namely substituted benzene derivatives (dimers and trimers), which are highly luminescent. The rhodacyclopentadienes (R = NO2, CO2Me, Me, SMe, Ar = C6F4-4-OMe) are stable and were isolated. The structures of a series of these compounds were obtained via single crystal X-ray crystallography and the compounds were fully characterised via NMR, UV/Vis and photoluminescence spectroscopy as well as by elemental analysis and HRMS. Another attempt to clarify the mechanism of formation of the rhodacyclopentadienes involved reacting a variety of diaryl 1,3-butadiynes (R = CO2Me, Me, NMe2, naphthyl) with [Rh(k2 S,S` S2CNEt2)(PMe3)2]. The reactions stop at an intermediate step, yielding a 1:1 trans π-complex, confirmed by single crystal X-ray diffraction and NMR spectroscopy. Only after several weeks, or under forcing conditions (µw / 80 °C, 75 h), the formation of another major product occurs, having bound a second diaryl 1,3-butadiyne. Based on earlier results of Murata, the product is identified as an unusual [3+2] cycloaddition product, ϭ-bound to the rhodium centre. N2 - Lumineszierende Übergangsmetallkomplexe sind aktuell sehr gefragt. Da die starke Spin-Bahn-Kopplung von Übergangsmetallen der zweiten und dritten Reihe zu einem schnellen Inter-System-Crossing führt, und damit zu Phosphoreszenz, gilt der Verwendung Triplett-emittierender Materialien in organischen und organometallischen Licht emittierenden Dioden (OLEDs) besonders großes Interesse. Marder et al. fanden heraus, dass die reduktive Kupplung von para R-substituierten Diarylbutadiinen und Diaryldodecatetraynen an Rh(PMe3)4X zu quantitativen Ausbeuten von Bis(Arylethinyl)-Rhodacyclopentadienen führt (R = BMes2, H, Me, OMe, SMe, CF3, CN, CO2Me, NMe2, NO2, C≡C-TMS and X = -C≡C-TMS, -C≡C-C6H4-4-NMe2, -C≡C-C≡C-C6H4-4-NPh2, Me, Cl), wobei sich nur ein Regioisomer bildet. Überaschenderweise zeigen diese Verbindungen intensive Fluoreszenz an Stelle von Phosphoreszenz (ɸf = 0.33-0.69, t = 1.2 3.0 ns). Der Substituent R hat großen Einfluss auf die Lumineszenz Eigenschaften. Die Absorption sowie Emission sind im Vergleich zu R = H jeweils bathochrom verschoben, wobei der Effekt im Fall von R = π-Akzeptor stärker ausgeprägt ist. Um den Bildungsmechanismus der Rhodacyclopentadiene aufzuklären und ihre einzigartigen Lumineszenz Eigenschaften intensiver zu untersuchen, wurde eine Reihe von neuen, lumineszierenden Rhodacyclopentadienen mit dem bidentaten Liganden Dithiocarbamat am Rhodium-Zentrum dargestellt und charakterisiert (R = NO2, CO2Me, Me, NMe2, SMe, Ar = C6F4-4-OMe). Die Rhodacyclopentadiene entstanden durch reduktive Kupplung von Diarylundecatetrainen mit [Rh(k2-S,S`-S2CNEt2)(PMe3)2]. Die Strukturen einiger solcher Verbindungen wurden mit Hilfe von Röntgenstrukturanalyse gelöst und werden in der vorliegenden Arbeit diskutiert. Die Verbindungen wurden mit Hilfe von NMR, optischer Spektroskopie, sowie Elementaranalyse, hochauflösender Massenspektrometrie (HRMS) und Röntgenstrukturanalyse vollcharakterisiert. Wurden die Reaktionen erhitzt, bildete sich zu einem gewissen Anteil ein anderes Isomer. Das sogenannte Dibenzorhodacyclopentadien tauchte bereits während früherer Untersuchungen von Marder et al. auf, wobei Acetylacetonat (acac) als bidentater Ligand am Rh-Zentrum eingesetzt wurde. Diese werden möglicherweise durch eine [4+2] Zykloaddition und eine C-H Aktivierung, gefolgt von einem β-H Shift gebildet. Reaktionen die mit dem perfluorierten Phenylrest Ar = C6F4-4-OMe durchgeführt wurden, ermöglichten völlig neue Einblicke in den Bildungsmechanismus der Isomere der Rhodacyclopentadiene und anderer Reaktionen. Neben der Bildung des erwarteten Rhodacyclopentadiens, entstand eine bimetallische Verbindung, welche isoliert und mittels Röntgenstrukturanalyse, NMR-Spektroskopie, Elementaranalyse und HRMS charakterisiert wurde. Um weitere Vergleiche anzustellen, wurde analoge Reaktionen mit einer Reihe von Diarylundecatetrainen (R = NO2 CO2Me, Me, NMe2, SMe, Ar = C6F4-4-OMe) und [Rh(k2 S,S` S2CNEt2)(PPh3)2] durchgeführt. Diese führen ebenfalls zu den erwarteten Rhodacyclopentadienen, jedoch erfolgt schnelle Reaktion mit einem zweiten oder sogar dritten Äquivalent Tetrain um katalytisch Alkin-Trimerisierungsprodukte zu bilden, bei denen es sich um substituierte Benzolderivate (Dimere und Trimere) handelt. Diese sind stark lumineszierend. Die Rhodacyclopentadiene sind stabil und konnten isoliert werden. Von einigen Verbindungen konnten Röntgenstrukturanalysen durchgeführt werden. Alle isolierten Verbindungen wurden mittels NMR und optischer Spektroskopie, sowie Elementaranalyse und HRMS charakterisiert. Ein weiterer Ansatz um den Bildungsmechanismus der Rhodacyclopentadiene aufzuklären beinhaltete die Reaktion einer Reihe von Diarylbutadiinen (R = CO2Me, Me, NMe2, naphthyl) mit [Rh(k2 S,S` S2CNEt2)(PMe3)2]. Die Reaktionen stoppen an der Stelle eines Zwischenproduktes, bei dem es sich um einen 1:1 trans π-Komplex handelt, der mittels Röntgenstrukturanalyse und NMR Spektroskopie bestätigt werden konnte. Erst nach einigen Wochen oder unter harschen Reaktionsbedingungen (µw / 80 °C, 75 h), konnte die Bildung eines weiteren Produktes beobachten werden, an welches ein zweites Diarylbutadiin gebunden ist. Ausgehend von früheren Ergebnissen von Murata, wurde das Produkt als ein [3+2]-Zykloadditionsprodukt identifiziert. KW - Rhodium KW - Fluoreszenz KW - Rhodacyclopentadiene KW - Cyclotrimerisation KW - Fluorescence KW - Organometallic chemistry Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149550 ER - TY - INPR A1 - Arrowsmith, Merle A1 - Böhnke, Julian A1 - Braunschweig, Holger A1 - Deißenberger, Andrea A1 - Dewhurst, Rian A1 - Ewing, William A1 - Hörl, Christian A1 - Mies, Jan A1 - Muessig, Jonas T1 - Simple Solution-Phase Syntheses of Tetrahalodiboranes(4) and their Labile Dimethylsulfide Adducts T2 - Chemical Communications N2 - Convenient, solution-phase syntheses of tetrahalodiboranes(4) B\(_2\)F\(_4\), B\(_2\)Cl\(_4\) and B\(_2\)I\(_4\) are presented herein from common precursor B\(_2\)Br\(_4\). In addition, the dimethylsulfide adducts B\(_2\)Cl\(_4\)(SMe\(_2\))\(_2\) and B\(_2\)Br\(_4\)(SMe\(_2\))\(_2\) are conveniently prepared in one-step syntheses from the commercially-available starting material B\(_2\)(NMe\(_2\))\(_4\). The results provide simple access to the full range of tetrahalodiboranes(4) for the exploration of their untapped synthetic potential. KW - Boron KW - Diboranes KW - Tetrafluorodiborane Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149438 N1 - This is the pre-peer reviewed version of the following article: Chemical Communications, 2017,53, 8265-8267, which has been published in final form at doi:10.1039/C7CC03148C. VL - 53 ER - TY - THES A1 - Baus, Johannes Armin T1 - Synthese, Struktur und Eigenschaften neuer Silicium(II)- und Silicium(IV)-Komplexe T1 - Syntheses, Structure and Properties of new Silicon(II) and Silicon(IV) Complexes N2 - Die vorliegende Arbeit stellt einen Beitrag zur Chemie höherkoordinierter Silicium(II) und Silicium(IV)-Verbindungen dar. Ein wesentlicher Teilaspekt der durchgeführten Untersuchungen betraf das Studium der Reaktivität der beiden donorstabilisierten Silylene 1 und 2. Im Einzelnen wurden die folgenden Teilprojekte bearbeitet: Die neutrale, hexakoordinierte Silicium(IV)-Verbindung 10 und die ionische, pentakoordinierte Silicium(IV)-Verbindung 11 wurden Umsetzung von 5 (dem Chloro-Analogon von 10) mit Me3SiBr bzw. Me3SiI in Transsilylierungsreaktionen dargestellt. Die mit 10 verwandten Verbindungen 5–9 wurden bereits früher synthetisiert und im Rahmen dieser Arbeit zusammen mit 10 erstmalig bezüglich ihrer Moleküldynamik in Lösung untersucht. Die Verbindungen 5–10 zeigten in Lösung bei Raumtemperatur unterschiedlich stark ausgeprägte Dynamikphänomene, die mittels VT-NMR-Experimenten untersucht wurden. Die neutralen, hexakoordinierten Silicium(IV)-Verbindungen 12 und 16 wurden durch sequentielle Umsetzung der entsprechenden sekundären Amine Ph2NH bzw. iPr2NH mit n-Butyllithium und Kohlenstoffdisulfid sowie anschließende Umsetzung mit Tetrachlorsilan dargestellt und als die Acetonitrilsolvate 12·MeCN bzw. 16·MeCN isoliert. Es handelt sich hierbei um die ersten hexakoordinierten Silicium(IV)-Komplexe mit einem SiS4Cl2-Gerüst. Die neutrale, hexakoordinierte Silicium(IV)-Verbindung 17 mit einem SiN4Cl2-Gerüst wurde durch Umsetzung des Silylens 2 mit Chlor dargestellt. Im Gegensatz zu dieser oxidativen Addition schlug die Synthese von 17 durch Umsetzung von Tetrachlorsilan mit zwei Moläquivalenten des entsprechenden Lithiumguanidinats [iPrNC(NiPr2)NiPr]Li fehl: Es entstand lediglich der entsprechende pentakoordinierte Mono(guanidinato)silicium(IV)-Komplex mit drei Chloroliganden. Die Umsetzung von 1,2-Diphenylethin mit dem Silylen 1 lieferte den neutralen, hexakoordinierten Silicium(IV)-Komplex 19. Der neutrale, pentakoordinierte Silicium(IV)-Komplex 20 wurde in einer Redoxreaktion durch Umsetzung des Silylens 2 mit Dimangandecacarbonyl dargestellt. Dabei wurde das Silicium(II)- zu einem Silicium(IV)-Fragment oxidiert und das Dimanganfragment unter Verlust von zwei Carbonylliganden reduziert. Die neutralen, tetrakoordinierten Silicium(II)-Übergangsmetallkomplexe 22, 23 und 24 (isoliert als 24·THF) konnten durch Umsetzung des Silylens 2 mit den entsprechenden Übergangsmetalldibromiden bzw. Nickel(II)-bromid–1,2-Dimethoxyethan dargestellt werden. Im Fall von Nickel gelang die Umsetzung mit dem freien NiBr2 nicht. Die Verbindungen 22 und 23 stellen paramagnetische Komplexe mit jeweils tetraedrisch koordinierte Übergangsmetallatomen dar. Das Nickelatom in Verbindung 24·THF ist dagegen quadratisch-planar koordiniert und damit diamagnetisch, wie es für d8-Metalle auch zu erwarten ist. Den drei Verbindungen 22, 23 und 24·THF gemeinsam ist der besondere Bindungsmodus einer der beiden Guanidinatoliganden, der das Siliciumatom und das Übergangsmetallatom miteinander verbrückt, was zur Ausbildung einer spirocyclischen Struktur führt. Der neutrale, pentakoordinierte Zink–Silylen-Komplex 25 wurde in einer Lewis-Säure/Base-Reaktion durch Umsetzung des Silylens 2 mit Zink(II)-bromid dargestellt und als das Solvat 25·0.5Et2O isoliert. Obwohl sich das Reaktionsprodukt wie auch bei den Verbindungen 22–24 als ein Lewis-Säure/Base-Addukt verstehen lässt, ist der Koordinationsmodus von Verbindung 25 anders: Beide Guanidinatoliganden sind bidentat an das Siliciumatom gebunden. Die neutralen Bis(silylen)palladium(0)- bzw. Bis(silylen)platin(0)-Komplexe 28 und 29 repräsentieren die ersten homoleptischen, dikoordinierten Bis(silylen)-Komplexe dieser Metalle mit N-heterocyclischen Silylenliganden und im Fall des Platin(0)-Komplexes 29 den ersten homoleptischen, dikoordinierten Platin(0)–Silylen-Komplex überhaupt. Verbindung 28 wurde durch Umsetzung von drei Moläquivalenten des Silylens 2 mit dem Palladium(II)-Komplex [PdCl2(SMe2)2] dargestellt. Dabei reduziert ein Moläquivalent des Silylens den Palladium(II)-Komplex und wird selbst zu Verbindung 17 oxidiert und die beiden verbliebenen Moläquivalente des Silylens substituieren die Dimethylsulfidliganden am Palladiumatom. Dieselbe Synthesestrategie ließ sich jedoch nicht auf die Darstellung von Verbindung 29 übertragen. Offenbar reicht das Reduktionspotenzial des Silylens 2 hier nicht aus. Zur Darstellung von Verbindung 29 wurde zunächst der Platin(II)-Komplex [PtCl2(PiPr3)2] mit Natrium/Naphthalin reduziert und anschließend wurden die beiden Triisopropylphosphanliganden durch Silylenliganden substituiert. N2 - This thesis represents a contribution to the chemistry of higher-coordinate silicon(II) and silicon(IV) compounds. A major part oft he investigations performed concerned reactivity studies with the donor-stabilised silylenes 1 and 2. The following subprojects were carried out: The neutral six-coordinate silicon(IV) compound 10 and the ionic five-coordinate silicon(IV) compound 11 were synthesised via transsilylation reactions by treatment of 5 (the chloro analogue of 10) with Me3SiBr and Me3SiI, respectively. The derivatives of 10, compounds 5–9, were already synthesised before and were investigated in this study for the first time (together with 10) for their molecular dynamics in solution. Compounds 5–10 showed interesting dynamic phenomena in solution at ambient temperature, which were studied by VT NMR experiments. The neutral six-coordinate silicon(IV) complexes 12 and 16 were synthesised by sequential treatment of the respective secondary amine Ph2NH and iPr2NH, respectively, with n-butyl¬lithium and carbon disulfide and subsequent treatment with tetrachlorosilane and were isolated as the acetonitrile solvates 12·MeCN and 16·MeCN, respectively. Compounds 12 and 16 represent the first six-coordinate silicon(IV) complexes with an SiS4Cl2 skeleton. The neutral six-coordinate silicon(IV) compound 17 with an SiS4Cl2 skeleton was synthesised by treatment of silylene 2 with chlorine. In contrast to this oxidative addition, the synthesis of 17 by treatment of tetrachlorosilane with two molar equivalents of the respective lithium guanidinate [iPrNC(NiPr2)NiPr]Li failed. Instead, the corresponding five-coordinate mono(guanidinato)silicon(IV) complex with three chloro ligands was obtained. Treatment of 1,2-diphenylethyne with silylene 1 furnished the neutral six-coordinate silicon(IV) complex 19. The neutral five-coordinate silicon(IV) complex 20 was synthesised in a redox reaction by treatment of silylene 2 with dimanganesedecacarbonyl. In this reaction, the silicon(II) fragment was oxidised to a silicon(IV) fragment and the dimanganese moiety was reduced, accompanied by loss of two carbonyl ligands. The neutral four-coordinate transition-metal–silicon(II) complexes 22, 23 and 24 (isolated as 24·THF) were synthesised by treatment of silylene 2 with the respective transition-metal dibromides and the nickel(II)-bromide 1,2-dimethoxyethane adduct, respectively. In case of nickel, the treatment with free NiBr2 was not successful. Compounds 22 and 23 represent paramagnetic complexes with tetrahedrally coordinated transition metal atoms. In contrast, the nickel atom of 24·THF is coordinated in a square-planar fashion, resulting in diamagnetism as expected for d8 metals. The three compounds 22, 23 and 24·THF have the special binding mode of one of the two guanidinato ligands in common; which bridges the silicon atom and the transition metal, resulting in a spirocyclic structure. The neutral five-coordinate zinc–silylene complex 25 was synthesised in a Lewis acid/base reaction by treatment of silylene 2 with zinc(II)-bromide and isolated as the solvate 25·0.5Et2O. Although the product of this reaction can be understood as a Lewis acid/base adduct (as in the case of compounds 22, 23 and 24·THF) the coordination mode of 25·is different: both guanidinato ligands bind in a bidentate fashion to the silicon atom. The neutral bis(silylene)palladium(0) and bis(silylene)platinum(0) complexes 28 and 29, respectively, represent the first homoleptic two-coordinate bis(silylene) complexes of these metals with N-heterocyclic silylene ligands, and the platinum(0) complex is even the first homoleptic two-coordinate silylene–platinum(0) complex at all. Compound 28 was prepared by treatment of three molar equivalents of silylene 2 with the palladium(II) complex [PdCl2(SMe2)2]. In this reaction, one molar equivalent of the silylene reduces the palladium(II) complex and is oxidised itself to compound 17, and the remaining two molar equivalents of silylene 2 substitute the dimethylsulfide ligands at the palladium atom. However, the same synthetic strategy could not be applied to the preparation of compound 29. Obviously, the reduction potential of silylene 2 was sufficient in this case. For the preparation of 29, the platinum(II) complex [PtCl2(PiPr3)2] was reduced by sodium/naphthalene, followed by substitution of the two triisopropylphosphine ligands by two silylene 2 ligands. KW - Siliciumverbindungen KW - Koordinationslehre KW - Silylen KW - Silicium(II) KW - Silicium(IV) KW - Bis(guanidinato)silylen KW - Bis(amidinato)silylen Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143910 ER - TY - THES A1 - Lubitz, Katharina T1 - Synthese und Untersuchungen zur Reaktivität NHC-stabilisierter Kobaltverbindungen T1 - Synthesis and reactivity of NHC-stabilized cobalt complexes N2 - Die vorliegende Arbeit befasst sich mit der Synthese und den Eigenschaften verschiedener NHC-stabilisierter Kobaltkomplexe. Der Fokus liegt dabei einerseits auf der Entwicklung geeigneter Organokobaltverbindungen, welche sich in CVD bzw. ALD-Prozessen zur Abscheidung von elementarem Kobalt eignen. Hierfür wurden verschiedene NHC-stabilisierte sowie gemischt substituierte Kobalt(carbonyl)(nitrosyl)komplexe dargestellt und die thermischen Eigenschaften dieser Verbindungen untersucht. Andererseits wurden Studien zur Synthese und Reaktivität NHC-stabilisierter Halbsandwichverbindungen des Kobalts durchgeführt. Dabei wurde unter anderem überprüft, inwiefern sich der sterische Einfluss des NHC-Liganden auf die Fähigkeiten auswirkt, Element-Element-Bindungen in Silanen und Diboranen zu aktivieren. Ferner wurden weitere Untersuchungen zur Reaktivität derartiger Komplexe, insbesondere gegenüber Alkinen, vorgenommen. Ein weiterer Teil dieser Arbeit beschäftigt sich mit der Darstellung und Reaktivität NHC-Phosphiniden-stabilisierter Kobaltverbindungen. N2 - The present work concerns the synthesis and reactivity of various NHC-stabilized cobalt complexes. The first part focuses on the development of cobalt compounds suitable for depositing elemental cobalt in chemical vapor deposition processes (CVD and ALD). Therefore, a variety of NHC-stabilized cobalt carbonyl nitrosyl complexes, as well as asymmetrically substituted cobalt complexes, were synthesized and the thermal properties were investigated. Secondly, the thesis addresses the synthesis and reactivity of NHC-stabilized cobalt half sandwich complexes with a focus on the investigation of the influence of sterically demanding carbene ligands in the stoichiometric activation of element-element bonds, as well as further reactivity studies of this class of compounds. Furthermore, studies have been performed on the synthesis and reactivity of NHC-phosphinidene substituted cobalt complexes. KW - Kobalt KW - N-Heterozyklische Carbene KW - Chemische Gasphasenabscheidung Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-206854 ER - TY - INPR A1 - Hermann, Alexander A1 - Cid, Jessica A1 - Mattock, James D. A1 - Dewhurst, Rian D. A1 - Krummenacher, Ivo A1 - Vargas, Alfredo A1 - Ingleson, Michael J. A1 - Braunschweig, Holger T1 - Diboryldiborenes: π‐Conjugated B\(_4\) Chains Isoelectronic to the Butadiene Dication T2 - Angewandte Chemie, International Edition N2 - sp\(^2\)–sp\(^3\) diborane species based on bis(catecholato)diboron and N-heterocyclic carbenes (NHCs) are subjected to catechol/bromide exchange selectively at the sp\(^3\) boron atom. The reduction of the resulting 1,1-dibromodiborane adducts led to reductive coupling and isolation of doubly NHC-stabilized 1,2-diboryldiborenes. These compounds are the first examples of molecules exhibiting pelectron delocalization over an all-boron chain. KW - diboranes KW - diborenes KW - N-heterocyclic carbenes KW - boron chains KW - pi-conjugation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167977 N1 - This is the pre-peer reviewed version of the following article: A. Hermann, J. Cid, J. D. Mattock, R. D. Dewhurst, I. Krummenacher, A. Vargas, M. J. Ingleson, H. Braunschweig, Angew. Chem. Int. Ed. 2018, 57, 10091, which has been published in final form at https://doi.org/10.1002/anie.201805394. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. ER - TY - INPR A1 - Böhnke, Julian A1 - Arrowsmith, Merle A1 - Braunschweig, Holger T1 - Activation of a Zerovalent Diboron Compound by Desymmetrization T2 - Journal of the American Chemical Society N2 - The desymmetrization of the cyclic (alkyl)(amino)carbene-supported diboracumulene, B\(_2\)(cAAC\(^{Me}\))\(_2\) (cAAC\(^{Me}\) = 1- (2,6-diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene) by mono-adduct formation with IMe\(^{Me}\) (1,3-dimethylimidazol-2-ylidene) yields the zerovalent sp-sp\(^2\) diboron compound B\(_2\)(cAAC\(^{Me}\))\(_2\)(IMe\(^{Me}\)), which provides a versatile platform for the synthesis of novel symmetrical and unsymmetrical zerovalent sp\(^2\)-sp\(^2\) diboron compounds by adduct formation with IMe\(^{Me}\) and CO, respectively. Furthermore, B\(_2\)(cAAC\(^{Me}\))\(_2\)(IMe\(^{Me}\)) displays enhanced reactivity compared to its symmetrical precursor, undergoing spontaneous intramolecular C-H activation and facile twofold hydrogenation, the latter resulting in B-B bond cleavage and the formation of the mixed-base parent borylene, (cAAC\(^{Me}\))(IMe\(^{Me}\))BH. KW - diboryne KW - boron KW - carbenes KW - low-valent main group chemistry KW - erovalent diboron compounds KW - desymmetrization KW - bond activation KW - hydrogenation KW - borylene Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167983 N1 - This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Journal of the American Chemical Society, copyright © American Chemical Society after peer review. To access the final edited and published work see https://doi.org/10.1021/jacs.8b06930 (Julian Böhnke, Merle Arrowsmith, and Holger Braunschweig: Reactivity Enhancement of a Zerovalent Diboron Compound by Desymmetrization, Journal of the American Chemical Society 2018, 140, (32), 10368-10373. DOI: 10.1021/jacs.8b06930) ER - TY - THES A1 - Wehner, Tobias T1 - Multifunktionale Kompositmaterialien auf Basis lanthanidhaltiger Verbindungen mit lumineszierenden Nanopartikeln und superparamagnetischen Mikropartikeln T1 - Multifunctional composite materials based on lanthanide containing compounds with luminescent nanoparticles and superparamagnetic microparticles N2 - Die vorliegende Arbeit umfasst die Synthese und Charakterisierung 23 neuartiger, multifunktionaler Kompositmaterialien basierend auf lanthanidhaltigen Verbindungen sowie verschiedenen Nano- und Mikropartikeln. Die dargestellten Materialien konnten als Core/Shell-Systeme mit einem nano- bzw. mikropartikelhaltigen Kern und einer lanthanidhaltigen Hülle charakterisiert werden und vereinen aufgrund ihres Kompositcharakters die spezifischen Eigenschaften der Einzelkomponenten wie Lumineszenz, Superparamagnetismus oder Reflexionseigen-schaften miteinander. Zur Synthese multifunktionaler, lumineszierender Materialien wurden zirconylbasierte, lumineszierende Nanopartikel mit Lanthanidchloriden und lanthanidhaltigen MOFs funktionalisiert. Die Kompositsysteme LnCl3@ZrO(FMN) (FMN = Flavinmononukleotid, Ln = Y, Sc, La, Eu, Tb, Ho) ermöglichen eine Modifizierung der Lumineszenzeigenschaf-ten der Materialien abhängig von der Reaktionstemperatur sowie dem verwendeten Selten-Erd-Ion. Durch Variation der Nanopartikelkomponente konnte mittels der Kom-posite LnCl3@ZrO(MFP) (MFP = Methylfluoresceinphosphat) ein zusätzlicher sol-vatochromer Effekt der Systeme eingeführt werden, während das Kompositmaterial YCl3@ZrO(RP) (RP = Resorufinphosphat) eine andere Chromatizität zugänglich macht. Durch Modifizierung von ZrO(FMN)- und ZrO(MFP)-Nanopartikeln mit 3∞[Eu2(BDC)3]· 2DMF·2H2O (BDC2- = Benzol-1,4-dicarboxylat) wurden Kompositmaterialien dargestellt, die zwei Lumineszenzprozesse mit unterschiedlicher Chromatizität und unterschiedli-cher Anregbarkeit miteinander kombinieren und somit eine reversible Schaltbarkeit zwischen beiden Prozessen durch Variation der Anregungswellenlänge ermöglichen. Zur Synthese luminomagnetischer Materialien wurden superparamagnetische Fe3O4/SiO2-Mikropartikel mit einer Vielzahl lanthanidhaltiger MOFs, die sich hinsichtlich ihrer Lumineszenzeigenschaften und ihrer Stabilität gegenüber Luft und Wasser unterscheiden, modifiziert. Als MOFs wurden hierbei 2∞[Ln2Cl6(Bipy)3]·2Bipy (Bipy = 4,4‘-Bipyridin, Ln = Nd, Sm, Eu, Tb, Er), 3∞[Eu(Im)2], 3∞[Ba0.95Eu0.05(Im)2] (Im = Imidazolat) und 3∞[Eu2(BDC)3]·2DMF·2H2O eingesetzt. Die Variation der zur Funktionalisierung verwendeten Komponente oder eine Kombination mehrerer MOFs ermöglicht eine Anpassung der Lumineszenz der Kompositmaterialien innerhalb des kompletten sichtbaren Spektralbereichs sowie im NIR-Bereich. Die dargestellten luminomagnetische Kompositmaterialien mit wasserempfindlichen MOFs können zur Detektion von Wasser in verschiedenen organischen Lösungsmitteln verwendet werden und stellen somit eine mobile und einfach anwendbare Alternative zur Karl-Fischer-Titration mit einer vergleichbaren Sensitivität dar. So eignen sich die Kompositsysteme 2∞[Eu2Cl6(Bipy)3]·2Bipy@Fe3O4/SiO2 und 2∞[Eu2Cl6(Bipy)3]·2Bipy, 2∞[Tb2Cl6(Bipy)3]·2Bipy@Fe3O4/SiO2 als optische turn-off-Sensoren, während das Kom-posit 3∞[Eu2(BDC)3]·2DMF·2H2O,2∞[Tb2Cl6(Bipy)3]·2Bipy@Fe3O4/SiO2 als ratiometrischer Sensor verwendet werden kann. Als Alternative zu sphärischen Partikeln wurden auch anisotrope, stäbchenförmige Fe3O4/SiO2-Mikropartikel mittels 3∞[Eu2(BDC)3]·2DMF·2H2O modifiziert. Das resul-tierende Kompositmaterial vereint die isotropen Lumineszenzeigenschaften der MOF-Hülle mit der anisotropen Reflexion von sichtbarem Licht der. Durch die Wahl der Anregungswellenlänge und Richtung eines externen Magnetfelds wird eine stufenlose und reversible Schaltbarkeit zwischen isotropen und anisotropen Eigenschaften ermöglicht. Durch mechanochemische Umsetzung der MOF-Edukte [LnCl3(Py)4]·0.5Py (Ln = Eu, Ho) und 4,4‘-Bipyridin konnte eine Vielzahl von literaturbekannten lanthanidhaltigen Komplexen und Koordinationspolymeren mittels einer neuen und zeiteffizienten Syntheseroute dargestellt werden. Hierbei kann die Verknüpfungsdimension der resultierenden Produkte abhängig von verschiedenen Reaktionsparametern, die den Energieeintrags der Kugelmühle beeinflussen, gesteuert werden. N2 - The thesis at hand deals with the synthesis and characterization of 23 novel multi-functional composite materials that are based on lanthanide containing compounds as well as different nano- and microparticles. The synthesized compounds can be described as core/shell systems with a nanoparticle and microparticle containing core, respectively, and a lanthanide containing shell. Due to their composite character, the materials combine the specific properties of their single constituents such as luminescence, superparamagnetism or reflection properties. For the synthesis of multifunctional luminescent materials, zirconyl containing, lumines-cent nanoparticles were modified with lanthanide chlorides as well as lanthanide con-taining MOFs. The composite materials LnCl3@ZrO(FMN) (FMN = flavin mononucleo-tide, Ln = Y, Sc, La, Eu, Tb, Ho) enable a modification of the materials’ luminescence properties in dependence on the reaction temperature and the particular rare earth ion. Variation of the nanoparticle component leads on the one hand to formation of the sys-tem LnCl3@ZrO(MFP) (MFP = methylfluorescein phosphate), which exhibits a strong solvatochromic effect, and on the other hand to the composite YCl3@ZrO(RP) (RP = resorufin phosphate), which makes another chromaticity of the luminescence ac-cessible. The modification of ZrO(FMN) and ZrO(MFP) nanoparticles with 3∞[Eu2(BDC)3]· 2DMF·2H2O (BDC2- = benzene-1,4-dicarboxylate) results in composite materials that combine two luminescence processes with a different chromaticity and a diverse excita-tion range. Therefore, a continuous and reversible switching between both processes can be executed by variation of the excitation wavelength. For the synthesis of luminomagnetic materials, superparamagnetic Fe3O4/SiO2 micro-particles were modified with a variety of lanthanide containing MOFs that differ in terms of their luminescence properties and their water and air stability. For this purpose, the MOFs 2∞[Ln2Cl6(Bipy)3]·2Bipy (Bipy = 4,4’-Bipyridine, Ln = Nd, Sm, Eu, Tb, Er), 3∞[Eu(Im)2], 3∞[Ba0.95Eu0.05(Im)2] (Im- = imidazolate) and 3∞[Eu2(BDC)3]·2DMF·2H2O were employed for microparticle functionalization. By variation of the selected MOF or a combination of two different compounds, the luminescence properties of the composite materials could be adjusted in the whole visible spectral region as well as in the NIR region. The synthesized luminomagnetic composite materials with water sensitive MOFs can be applied for the detection of water in various organic solvents. Therefore, such compo-sites can be used as alternative to the Karl-Fischer titration that is easy applicable, mo-bile and exhibits similar detection limits. The composite materials 2∞[Eu2Cl6(Bipy)3]· 2Bipy@Fe3O4/SiO2 and 2∞[Eu2Cl6(Bipy)3]·2Bipy,2∞[Tb2Cl6(Bipy)3]·2Bipy@Fe3O4/SiO2 can be deployed as optical turn-off sensors, while the composite system 3∞[Eu2(BDC)3]· 2DMF·2H2O,2∞[Tb2Cl6(Bipy)3]·2Bipy@Fe3O4/SiO2 is suitable for a ratiometric determina-tion of the water content. As alternative to spherical particles, anisotropic rod-like Fe3O4/SiO2 microparticles were functionalized with 3∞[Eu2(BDC)3]·2DMF·2H2O. The resulting composite material com-bines the isotropic luminescence of the MOF shell with the anisotropic reflection of visible light of the microparticle component. A continuous and reversible switching between both optical properties is enabled by the variation of the excitation wavelength and the direction of an external magnetic field. The mechanochemical reaction of the MOF precursors [LnCl3(Py)4]·0.5Py (Ln = Eu, Ho) and 4,4’-bipyridine leads to a variety of lanthanide containing complexes and coordina-tion polymers that have already been reported in literature. Thus, a novel and time effi-cient synthesis route could be described for an alternative preparation of these com-pounds. The dimensionality of the resulting substances can be influenced in dependence on different reaction parameters that have an influence on the application of energy by the ball mill. KW - Photolumineszenz KW - Metallorganisches Netzwerk KW - Superparamagnetismus KW - Mikropartikel KW - Nanopartikel KW - Kompositmaterialien KW - Lumineszenzsensor KW - Luminomagnetische Partikel Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158186 ER - TY - THES A1 - Rieger, Max T1 - Preconcentration with Metal-Organic Frameworks as adsorbents for airborne Explosives and Hazardous Materials - A study using inverse gas chromatography T1 - Anreicherung mit Metal-Organic Frameworks als „Adsorbentien für luftgetragene Explosiv- und Gefahrstoffe - Eine Studie mit inverser Gaschromatographie" N2 - Sensitivity and selectivity remain the central technical requirement for analytical devices, detectors and sensors. Especially in the gas phase, concentrations of threat substances can be very low (e.g. explosives) or have severe effects on health even at low concentrations (e.g. benzene) while it contains many potential interferents. Preconcentration, facilitated by active or passive sampling of air by an adsorbent, followed by thermal desorption, results in these substances being released in a smaller volume, effectively increasing their concentration. Traditionally, a wide range of adsorbents, such as active carbons or porous polymers, are used for preconcentration. However, many adsorbents either show chemical reactions due to active surfaces, serious water retention or high background emission due to thermal instability. Metal-organic frameworks (MOFs) are a hybrid substance class, composed inorganic and organic building blocks, being a special case of coordination polymers containing pores. They can be tailored for specific applications such as gas storage, separation, catalysis, sensors or drug delivery. This thesis is focused on investigating MOFs for their use in thermal preconcentration for airborne detection systems. A pre-screening method for MOF-adsorbate interactions was developed and applied, namely inverse gas chromatography (iGC). Using this pulse chromatographic method, the interaction of MOFs and molecules from the class of explosives and volatile organic compounds was studied at different temperatures and compared to thermal desorption results. In the first part, it is shown that archetype MOFs (HKUST-1, MIL-53 and Fe-BTC) outperformed the state-of-the-art polymeric adsorbent Tenax® TA in nitromethane preconcentration for a 1000 (later 1) ppm nitromethane source. For HKUST-1, a factor of more than 2000 per g of adsorbent was achieved, about 100 times higher than for Tenax. Thereby, a nitromethane concentration of 1 ppb could be increased to 2 ppm. High enrichment is addressed to the specific interaction of the nitro group as by iGC, which was determined by comparing nitromethane’s free enthalpy of adsorption with the respective saturated alkane. Also, HKUST-1 shows a similar mode of sorption (enthalpy-entropy compensation) for nitro and saturated alkanes. In the second part, benzene of 1 ppm of concentration was enriched with a similar setup, using 2nd generation MOFs, primarily UiO-66 and UiO-67, under dry and humid (50 %rH) conditions using constant sampling times. Not any MOF within the study did surpass the polymeric Tenax in benzene preconcentration. This is most certainly due to low sampling times – while Tenax may be highly saturated after 600 s, MOFs are not. For regular UiO-66, four differently synthesized samples showed a strongly varying behavior for dry and humid enrichment which cannot be completely explained. iGC investigations with regular alkanes and BTEX compounds revealed that confinement factors and dispersive surface energy were different for all UiO-66 samples. Using physicochemical parameters from iGC, no unified hypothesis explaining all variances could be developed. Altogether, it was shown that MOFs can replace or add to state-of-the-art adsorbents for the enrichment of specific analytes with preconcentration being a universal sensitivity-boosting concept for detectors and sensors. Especially with iGC as a powerful screening tool, most suitable MOFs for the respective target analyte can be evaluated. iGC can be used for determining “single point” retention volumes, which translate into partition coefficients for a specific MOF × analyte × temperature combination. N2 - Empfindlichkeit und Selektivität bleiben die zentralen technischen Anforderungen an analytische Geräte, Detektoren und Sensoren. Speziell in der Gasphase können die Konzentrationen von Gefahrstoffen sehr niedrig sein (z. B. Explosivstoffe) oder bereits bei niedrigen Konzentrationen schädigende Auswirkungen auf die Gesundheit aufweisen (z. B. Benzol) während sie viele potenzielle Interferenzien enthält. Präkonzentration, die durch aktives oder passives Sampling von Luft durch ein Adsorbens, gefolgt von einer Thermodesorption realisiert wird, setzt diese Substanzen effektiv in einem kleineren Volumen frei, was zu einer Erhöhung der Konzentration führt. Üblicherweise wird hierfür eine breite Auswahl an Adsorbentien wie Aktivkohlen oder poröse Polymere verwendet. Jedoch weisen viele Adsorbentien entweder chemische Reaktionen wegen aktiver Oberflächen, starke Wasserretention oder hohe Hintergrundemission wegen thermischer Instabilität auf. Metal-organic frameworks (MOFs) sind eine hybride Substanzklasse, ein Spezialfall der porösen Koordinationspolymere, die aus anorganischen und organischen Baugruppen aufgebaut sind. Sie können für spezifische Anwendungen wie Gasspeicherung, Trennung, Katalyse, Sensorik oder Wirkstofftransport maßgeschneidert werden. Diese Arbeit befasst sich hauptsächlich mit der Untersuchung von MOFs bei der thermischen Anreicherung für luftgetragene Detektionssysteme. Eine Methode zur schnellen Untersuchung von MOF-Analyt Interaktionen wurde entwickelt und angewendet, die inverse Gaschromatographie (iGC). Mit dieser pulschromatographischen Methode wurde die Interaktion von MOFs und Molekülen aus der Klasse der Explosivstoffe sowie Klasse der flüchtigen organischen Verbindungen (VOCs) in der Gasphase bei verschiedenen Temperaturen untersucht und mit Thermodesorptionsmessungen verglichen. Im ersten Teil der Arbeit würde gezeigt das Modell-MOFs (HKUST-1, MIL-53 und Fe-BTC) den polymeren Standard Tenax® TA beim Anreichern von Nitromethan an einer 1000 (später 1) ppm Nitromethan Quelle übertrafen. Im Fall von HKUST-1 konnte ein Faktor von 2000 pro Gramm erreicht werden, etwa 100-fach höher als für Tenax. Auf diese Weise könnte eine Nitromethan Konzentration von 1 ppb auf 2 ppm erhöht werden. Diese hohen Anreicherungsfaktoren entstammen vermutlich der hohen spezifischen Wechselwirkung der Nitrogruppe mit den MOFs. Diese wurden durch iGC beim Vergleich von Nitromethans freier Adsorptionsenthalpie mit dem entsprechenden gesättigten Alkan ermittelt. HKUST-1 weist auch einen ähnlichen Adsorptionsmodus (Enthalpie-Entropie Kompensation) für Nitro- und gesättigte Alkane auf. Im zweiten Teil der Arbeit wurde die Anreicherung von 1 ppm Benzol, mit einem ähnlichen Aufbau und anderen MOFs, hauptsächlich UiO-66 und UiO-67, unter trockenen und feuchten (50 %rF) Bedingungen bei konstanten Samplingzeiten, untersucht. Hierbei konnte kein MOF das polymere Tenax beim Anreichern von Benzol übertreffen. Dies liegt vermutlich an den niedrigen Samplingzeiten – während Tenax nach 600 s bereits stark gesättigt ist, gilt dies nicht für MOFs. Im Fall von UiO-66 zeigten vier Proben unterschiedlicher Herkunft ein stark unterschiedliches Verhalten bei trockener und feuchter Anreicherung welches nicht vollständig erklärt werden kann. iGC Untersuchungen mit gesättigten Alkanen und BTEX-Verbindungen konnten aufzeigen, dass räumliche Beschränktheitsfaktoren und dispersive Oberflächenenergien für alle vier Proben unterschiedlich waren. Mit physikochemischen Parametern aus iGC-Messungen konnte jedoch keine einheitliche Hypothese zum Unterscheiden der Proben entwickelt werden. Insgesamt konnte gezeigt werden, dass MOFs bestehende Adsorbens-Standards zum Anreichern von bestimmten Analyten ersetzen oder erweitern können, wobei Präkonzentration ein Konzept ist, welches universell die Empfindlichkeit eines Detektors oder Sensors steigern kann. Insbesondere mit iGC als mächtiges Werkzeug zur Vorselektion können passende MOFs für die entsprechenden Zielanalyten evaluiert werden. Ebenso kann iGC auch zur Bestimmung von Einzelpunkt Retentionsvolumen, welche Verteilungskoeffizienten für eine bestimmte MOF × Analyt × Temperatur Kombination entsprechen, genutzt werden. KW - Metallorganisches Netzwerk KW - MOF KW - Gas chromatography KW - iGC KW - Explosives KW - Preconcentration KW - Explosivstoff KW - Inverse Gaschromatographie Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177750 ER - TY - THES A1 - Griesbeck, Stefanie Ingrid T1 - A Very Positive Image of Boron: Triarylborane Chromophores for Live Cell Imaging T1 - Ein sehr positives Bild von Bor: Triarylboran Farbstoffe für Lebendzellenmikroskopie N2 - Efficient quadrupolar chromophores (A–pi–A) with triarylborane moieties as acceptors have been studied by the Marder group regarding their non‐linear optical properties and two‐photon absorption ability for many years. Within the present work, this class of dyes found applications in live‐cell imaging. Therefore, the dyes need to be water‐soluble and water‐stable in diluted aqueous solutions, which was examined in Chapter 2. Furthermore, the influence of the pi‐bridge on absorption and emission maxima, fluorescence quantum yields and especially the two-photon absorption properties of the chromophores was investigated in Chapter 3. In Chapter 4, a different strategy for the design of efficient two‐photon excited fluorescence imaging dyes was explored using dipoles (D–A) and octupoles (DA3). Finding the optimum balance between water‐stability and pi‐conjugation and, therefore, red‐shifted absorption and emission and high fluorescence quantum yields, was investigated in Chapter 5 N2 - Effiziente quadrupole Farbstoffe (A–pi–A) mit Triarylboraneinheiten als Akzeptoren wurden innerhalb der letzten Jahre von der Arbeitsgruppe Marder bezüglich ihrer nicht‐linearen optischen Eigenschaften und Zweiphotonenabsorptionsfähigkeiten untersucht. In der vorliegenden Arbeit wurde diese Farbstoffklasse zur Untersuchung lebender Zellen mittels Fluoreszenzmikroskopie angewendet. Hierzu müssen die Farbstoffe wasserlöslich und in verdünnten wässrigen Lösungen stabil sein. Dies wurde in Kapitel 2 untersucht. Außerdem wurde der Einfluss der pi‐Brücke auf das Absorptions‐ und Emissionsmaximum, die Fluoreszenzquantenausbeute und vor allem die Zweiphotonenabsorptionsfähigkeit untersucht (Kapitel 3). In Kapitel 4 wurden andere molekulare Designstrategien verfolgt um effiziente Zweiphotonenangeregtenfluoreszenzfarbstoffe zu erhalten. Dazu zählen die Strukturmotive des Dipols (D–A) und des Oktupols (DA3). Bestandteil des Kapitels 5 war die Optimierung zwischen Wasserstabilität und pi‐Konjugation und eine damit verbundene rotverschobene Absorption und Emission, sowie eine hohe Fluoreszenzquantenausbeute KW - Borane KW - Bor KW - Lumineszenz KW - Fluoreszenz KW - Zweiphotonenabsorption KW - imaging KW - luminescence KW - fluorescence KW - two-photon absorption KW - borane Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-179921 ER - TY - JOUR A1 - Betts, Jonathan A1 - Nagel, Christopher A1 - Schatzschneider, Ulrich A1 - Poole, Robert A1 - La Ragione, Robert M. T1 - Antimicrobial activity of carbon monoxide-releasing molecule [Mn(CO)\(_3\)(tpa-\(\kappa^{3}N\))]Br versus multidrug-resistant isolates of Avian Pathogenic \(Escherichia\) \(coli\) and its synergy with colistin JF - PLoS ONE N2 - Antimicrobial resistance is a growing global concern in human and veterinary medicine, with an ever-increasing void in the arsenal of clinicians. Novel classes of compounds including carbon monoxoide-releasing molecules (CORMs), for example the light-activated metal complex [Mn(CO)\(_3\)(tpa-\(\kappa^{3}N\))]Br, could be used as alternatives/to supplement traditional antibacterials. Avian pathogenic \(Escherichia\) \(coli\) (APEC) represent a large reservoir of antibiotic resistance and can cause serious clinical disease in poultry, with potential as zoonotic pathogens, due to shared serotypes and virulence factors with human pathogenic \(E.\) \(coli\). The \(in\) \(vitro\) activity of [Mn(CO)\(_3\)(tpa-\(\kappa^{3}N\))]Br against multidrug-resistant APECs was assessed via broth microtitre dilution assays and synergy testing with colistin performed using checkerboard and time-kill assays. \(In\) \(vivo\) antibacterial activity of [Mn(CO)\(_3\)(tpa-\(\kappa^{3}N\))]Br alone and in combination with colistin was determined using the \(Galleria\) \(mellonella\) wax moth larvae model. Animals were monitored for life/death, melanisation and bacterial numbers enumerated from larval haemolymph. \(In\) \(vitro\) testing produced relatively high [Mn(CO)\(_3\)(tpa-\(\kappa^{3}N\))]Br minimum inhibitory concentrations (MICs) of 1024 mg/L. However, its activity was significantly increased with the addition of colistin, bringing MICs down to \(\geq\)32 mg/L. This synergy was confirmed in time-kill assays. \(In\) \(vivo\) assays showed that the combination of [Mn(CO)\(_3\)(tpa-\(\kappa^{3}N\))]Br with colistin produced superior bacterial killing and significantly increased larval survival. In both \(in\) \(vitro\) and \(in\) \(vivo\) assays light activation was not required for antibacterial activity. This data supports further evaluation of [Mn(CO)\(_3\)(tpa-\(\kappa^{3}N\))]Br as a potential agent for treatment of systemic infections in humans and animals, when used with permeabilising agents such as colistin. KW - Chemistry KW - Larvae KW - Antibacterials KW - Antibiotics KW - Birds KW - Bacterial pathogens KW - Manganese KW - Antibiotic resistance KW - Antibacterial therapy Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173687 VL - 12 IS - 10 ER - TY - JOUR A1 - Ji, Lei A1 - Griesbeck, Stefanie A1 - Marder, Todd B. T1 - Recent developments in and perspectives on three-coordinate boron materials: a bright future JF - Chemical Science N2 - The empty p\(_z\)-orbital of a three-coordinate organoboron compound leads to its electron-deficient properties, which make it an excellent π-acceptor in conjugated organic chromophores. The empty p-orbital in such Lewis acids can be attacked by nucleophiles, so bulky groups are often employed to provide air-stable materials. However, many of these can still bind fluoride and cyanide anions leading to applications as anion-selective sensors. One electron reduction generates radical anions. The π-acceptor strength can be easily tuned by varying the organic substituents. Many of these compounds show strong two-photon absorption (TPA) and two-photon excited fluorescence (TPEF) behaviour, which can be applied for e.g. biological imaging. Furthermore, these chromophores can be used as emitters and electron transporters in OLEDs, and examples have recently been found to exhibit efficient thermally activated delayed fluorescence (TADF). The three-coordinate organoboron unit can also be incorporated into polycyclic aromatic hydrocarbons. Such boron-doped compounds exhibit very interesting properties, distinct from their all-carbon analogues. Significant developments have been made in all of these areas in recent years and new applications are rapidly emerging for this class of boron compounds. KW - anorganic chemistry KW - boron KW - 3-coordinate boron KW - Lewis acids KW - OLED KW - polycyclic aromatic hydrocarbons KW - chromophore Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-171912 VL - 8 IS - 2 ER - TY - INPR A1 - Arrowsmith, Merle A1 - Braunschweig, Holger A1 - Stennett, Tom T1 - Formation and Reactivity of Electron-Precise B–B Single and Multiple Bonds T2 - Angewandte Chemie, International Edition N2 - Recent years have seen rapid advances in the chemistry of small molecules containing electron-precise boron-boron bonds. This review provides an overview of the latest methods for the controlled synthesis of B–B single and multiple bonds as well as the ever-expanding range of reactivity displayed by the latter. KW - Boron KW - Main-group chemistry KW - Multiple bonding KW - Organoboron chemistry KW - Transition metals Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-145631 N1 - This is the pre-peer reviewed version of the following article: Angew.Chem. Int. Ed. 2017, 56,96–115, which has been published in final form at 10.1002/anie.201610072. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. N1 - Submitted Version VL - 56 IS - 1 ER - TY - THES A1 - Hupp, Benjamin T1 - Untersuchung von Struktur-Eigenschafts-Beziehungen Kupfer(I)-basierter NIR-Emitter und MRP-Materialien T1 - Investigation of structure-property relationships of copper(I)-based NIR emitters and MRP materials N2 - Im Rahmen dieser Arbeit wurden lumineszente Kupfer(I)-verbindungen untersucht, um durch die Herstellung von Struktur-Eigenschafts-Beziehungen einen Beitrag zur Erforschung niederenergetischer Emitter und mechanoresponsiver Phosphoreszenzmaterialien zu leisten. Darüber hinaus wurden Vorarbeiten zur Ergründung kooperativer Effekte in dinuklearen Kupfer(I)-komplexen durchgeführt. Im Bereich niederenergetischer Emitter wurden tetraedrische Kupferverbindungen mit Chromophorliganden auf Basis des Grundmotivs 2-(Pyridin-2-yl)-imdazol untersucht. Komplexe mit diesem Liganden emittieren meistens Grün bis Orange, daher wurde ein Stickstoffatom im Rückgrat des Liganden durch Schwefel substituiert, um eine bathochrome Verschiebung zu bewirken. Zur Untersuchung des Einflusses der Donorstärke, Sterik und Komplexgeometrie auf das Emissionsverhalten wurden diverse Phosphane und ein NHC als Donorliganden verwendet. Die Emissionsmaxima der untersuchten Verbindungen liegen erwartungsgemäß im Orangen bis Tiefroten und es konnten für diesen Emissionsbereich gute Quantenausbeuten von bis zu 11 % erreicht werden. Die Anfälligkeit tetraedrischer Kupfer(I)-komplexe für Verzerrungen im angeregten Zustand und die damit einhergehende Erhöhung strahlungsloser Prozesse ließ sich durch den Einsatz sterisch anspruchsvoller Liganden unterdrücken. Um das Potenzial für die Verwendung in optoelektronischen Bauteilen zu ergründen, wurden umfangreiche Stabilitätstests durchgeführt, die die enorme thermische Belastbarkeit im Festkörper sowie langfristige Stabilität in verdünnter Lösung einiger Verbindungen bestätigten. Ferner wurden in Kooperation mit der Gruppe um Prof. Holger Braunschweig photophysikalische Studien an zwei dinuklearen und einem trinuklearen Kupfer(I)-diborinkomplex durchgeführt, die im Rahmen der Promotionen von Dr. Jan Mies und Dr. Theresa Dellermann synthetisiert wurden. Die Verbindungen weisen in Festkörper und Lösung tiefrote Phosphoreszenz auf. Die Effizienz des trinuklearen Komplexes (φ = 0.58 im Festkörper) ist deutlich höher als die der beiden dinuklearen Verbindungen (φ < 0.03). Die Kupfer-Diborin-Bindung besitzt einen signifikanten kovalenten Anteil. Die Übergangsmetallatome haben somit einen starken Einfluss auf die strahlenden Übergänge, was zum Auftreten von Phosphoreszenz führt. Für effiziente Emission ist eine lineare Anordnung zweier Kupferfragmente um das Diborin notwendig, was im Fall des trinuklearen Komplexes stets gewährleistet ist, für die dinuklearen Komplexe jedoch nur in Lösung zu beobachten ist. Durch die Studien wurde einerseits das komplexe Emissionsverhalten dieser Komplexe aufgeklärt und andererseits die Relevanz dieser neuen Verbindungsklasse für niederenergetische Emittermaterialien gezeigt. Zusätzlich wurden Vorarbeiten zur Untersuchung kooperativer Effekte in dinuklearen Kupfer(I)-verbindungen unter Ausschluss schwer zu erhaltender cuprophiler Wechselwirkungen durchgeführt. Es sollten mono- und dinukleare Kupfer(I)-komplexe mit Bisbenzimidazol und Benzimidazolpyrimidin als verbrückenden Chromophorliganden synthetisiert und photophysikalisch untersucht werden, um eine eventuelle Erhöhung der Effizienz der dinuklearen Komplexe gegenüber ihren mononuklearen Analoga zu quantifizieren. Im Rahmen dieser Arbeit gelang es, einen zuverlässigen Syntheseweg für die im Rückgrat alkylierten verbrückenden Liganden zu etablieren. Ferner wurden erste Versuche zur Herstellung kationischer und neutraler mononuklearer Komplexe durchgeführt. Außerdem wurde die mechanochrome Lumineszenz eines aus Vorarbeiten bekannten dinuklearen Kupferkomplexes untersucht und Struktur-Eigenschafts-Beziehungen hergestellt. Hierzu wurden Komplexsalze mit den Anionen PF6- und BF4- hergestellt und mittels zahlreicher Spektroskopiemethoden analysiert, um umfangreiche Informationen zu den Eigenschaften im Grund- und angeregten Zustand zu sammeln. Durch Schwingungsspektroskopie wurde nachgewiesen, dass die Phasenänderung zu keiner veränderten Konstitution der Verbindung im Grundzustand führt. Durch 1H-19F-HOESY- sowie 19F-Festkörper-NMR-Experimente wurde festgestellt, dass sowohl in Lösung wie auch im Festkörper Kation und Anion gepaart vorliegen und miteinander wechselwirken. Da die BF4- und PF6-Komplexe in Lösung ein sehr ähnliches Emissionsverhalten zum amorphen Feststoff aufweisen, wurde davon ausgegangen, dass die für die Emission verantwortlichen Strukturen in beiden Medien vergleichbar sind. Zusätzlich gelang es, mittels ESR-Spektroskopie nachzuweisen, dass im Grundzustand keine ausreichende Annäherung der beiden Kupferatome stattfindet, um dipolare Wechselwirkungen zu erzeugen. Mithilfe quantenchemischer Rechnungen wurde die mechanochrome Lumineszenz nicht auf das Auftreten von Cuprophilie zurückgeführt, sondern auf die Ausbildung einer Cu-F-Bindung im angeregten Zustand, was ein völlig neuer Mechanismus für mechanochrome Lumineszenz bei Kupfer(I)-komplexen ist. In weiterführenden photophysikalischen Studien wurde zudem gezeigt, dass die Emission auch Empfindlichkeit gegenüber Temperatur sowie Lösungsmitteldämpfen aufweist und es sich somit um eine multiresponsive Verbindungsklasse handelt. N2 - In the context of this work, luminescent copper(I) compounds were investigated in order to contribute to the investigation of low-energy emitters and mechanoresponsive phosphorescence materials by establishing structure-property relationships. In addition, preparatory work was carried out to investigate cooperative effects in dinuclear copper(I) complexes. In the field of low-energy emitters, tetrahedral copper compounds with chromophore ligands based on the basic motif 2-(pyridin-2-yl)-imdazole were investigated. Complexes with this ligand mostly emit green to orange, therefore a nitrogen atom in the backbone of the ligand was substituted by sulfur to cause a bathochromic shift. To investigate the influence of donor strength, sterics and complex geometry on emission behavior, various phosphanes and an NHC were used as donor ligands. As expected, the emission maxima of the investigated compounds lie in the orange to deep red range and good quantum yields for this emission range of up to 11 % could be achieved. The susceptibility of tetrahedral copper(I) complexes to distortions in the excited state and the associated increase in radiationless processes could be suppressed by the use of sterically demanding ligands. In order to determine the potential for use in optoelectronic devices, extensive stability tests were carried out which confirmed the enormous thermal stability in the solid state as well as long-term stability in diluted solution of some compounds. Furthermore, in cooperation with the group around Prof. Holger Braunschweig, photophysical studies on one trinuclear and two dinuclear copper(I) diboryne complexes were carried out, which were synthesized in the context of the doctorates of Dr. Jan Mies and Dr. Theresa Dellermann. The compounds show deep red phosphorescence in solid and solution. The efficiency of the trinuclear complex (φ = 0.58 in solid state) is significantly higher than that of the two dinuclear compounds (φ < 0.03). The copper diboryne bond has a significant covalent portion. The transition metal atoms thus have a strong influence on the radiative transitions, which leads to the occurrence of phosphorescence. For efficient emission, a linear arrangement of two copper fragments around the diboryne is necessary, which is always guaranteed in the case of the trinuclear complex, but can only be observed in solution for the dinuclear complexes. On the one hand, the complex emission behavior of these complexes was clarified by the studies and, on the other hand, the relevance of this new compound class for low-energy emitter materials was demonstrated. In addition, preparatory work was carried out to investigate cooperative effects in dinuclear copper(I) compounds, excluding cuprophilic interactions that are difficult to obtain. Mono- and dinuclear copper(I) complexes with bisbenzimidazole and benzimidazolpyrimidine as bridging chromophore ligands should be synthesized and photophysically investigated in order to quantify a possible increase in the efficiency of the dinuclear complexes compared to their mononuclear analogues. In the course of this work, it was possible to establish a reliable synthetic pathway for the alkylated bridging ligands. In addition, first experiments for the syntheses of cationic and neutral mononuclear complexes were carried out. In addition, the mechanochromic luminescence of a dinuclear copper complex known from preliminary work was investigated and structure-property relationships were established. Complex salts with the anions PF6- and BF4- were prepared and analyzed by means of numerous spectroscopic methods in order to collect comprehensive information on the properties in the ground and excited state. By vibrational spectroscopy it was proven that the phase change does not lead to a changed constitution of the compound in the ground state. Through 1H-19F-HOESY and 19F solid state NMR experiments, it was determined that cation and anion are paired and interact both in solution and in the solid state. Since the BF4 and PF6 complexes in solution exhibit very similar emission behavior to the amorphous solid, it was assumed that the structures responsible for the emission are comparable in both media. In addition, ESR spectroscopy was used to prove that in the ground state, the two copper atoms do not approach each other sufficiently to produce dipolar interactions. Using quantum chemical calculations, mechanochromic luminescence was not attributed to the occurrence of cuprophilicity, but to the formation of a Cu-F bond in the excited state, which is a completely new mechanism for mechanochromic luminescence in copper(I) complexes. Further photophysical studies have shown that the emission is also sensitive to temperature and solvent vapors, making it a multi-responsive compound class. KW - Kupferkomplexe KW - Funktionswerkstoff KW - Phosphoreszenz KW - Mechanoresponsive Phosphoreszenz KW - Nahinfrarot-Emitter KW - Funktionsmaterialien KW - Photophysik Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-187694 ER - TY - JOUR A1 - Brückner, Tobias A1 - Dewhurst, Rian D. A1 - Dellermann, Theresa A1 - Müller, Marcel A1 - Braunschweig, Holger T1 - Mild synthesis of diboryldiborenes by diboration of B–B triple bonds JF - Chemical Science N2 - A set of diboryldiborenes are prepared by the mild, catalyst-free, room-temperature diboration of the B–B triple bonds of doubly base-stabilized diborynes. Two of the product diboryldiborenes are found to be air- and water-stable in the solid state, an effect that is attributed to their high crystallinity and extreme insolubility in a wide range of solvents. KW - boron KW - diborenes KW - diboration KW - triple bonds KW - diborynes Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-186306 VL - 10 ER - TY - INPR A1 - Légaré, Marc-André A1 - Pranckevicius, Conor A1 - Braunschweig, Holger T1 - Metallomimetic Chemistry of Boron T2 - Chemical Reviews N2 - The study of main-group molecules that behave and react similarly to transition-metal (TM) complexes has attracted significant interest in recent decades. Most notably, the attractive idea of replacing the all-too-often rare and costly metals from catalysis has motivated efforts to develop main-group-element-mediated reactions. Main-group elements, however, lack the electronic flexibility of TM complexes that arises from combinations of empty and filled d orbitals and that seem ideally suited to bind and activate many substrates. In this review, we look at boron, an element that despite its nonmetal nature, low atomic weight, and relative redox staticity has achieved great milestones in terms of TM-like reactivity. We show how in interelement cooperative systems, diboron molecules, and hypovalent complexes the fifth element can acquire a truly metallomimetic character. As we discuss, this character is powerfully demonstrated by the reactivity of boron-based molecules with H2, CO, alkynes, alkenes and even with N2. KW - boron KW - small-molecule activation KW - catalysis KW - low-valent main group chemistry Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-186317 N1 - This document is the unedited Author’sv ersion of a Submitted Work that was subsequently accepted for publication in Chemical Reviews,copyright ©American Chemical Society after peer review. To access the final edited and published work see https://doi.org/10.1021/acs.chemrev.8b00561. ER - TY - INPR A1 - Brückner, Tobias A1 - Stennett, Tom E. A1 - Heß, Merlin A1 - Braunschweig, Holger T1 - Single and Double Hydroboration of B-B Triple Bonds and Conver- gent Routes to a Cationic Tetraborane T2 - Journal of the American Chemical Society N2 - A compound with a boron-boron triple bond is shown to undergo stepwise hydroboration reactions with catecholborane to yield an unsymmetrical hydro(boryl)diborene and a 2,3-dihydrotetraborane. Abstraction of H– from the latter compound produces an unusual cationic, planar tetraborane with a hydrogen atom bridging the central B2 moiety. Spectroscopic and crystallographic data and DFT calculations support a ‘protonated diborene’ structure for this compound, which can also be accessed via direct protonation of the corresponding diborene. KW - boron KW - multiple bonding KW - hydroboration Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-188632 N1 - This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Journal of the American Chemical Society, copyright © American Chemical Society after peer review. To access the final edited and published work see https://doi.org/10.1021/jacs.9b07991. ER - TY - INPR A1 - Muessig, Jonas H. A1 - Thaler, Melanie A1 - Dewhurst, Rian D. A1 - Paprocki, Valerie A1 - Seufert, Jens A1 - Mattock, James D. A1 - Vargas, Alfredo A1 - Braunschweig, Holger T1 - Phosphine-Stabilized Diiododiborenes: Isolable Diborenes with Six Labile Bonds T2 - Angewandte Chemie, International Edition N2 - The lability of B=B, B-P and B-halide bonds is combined in the syntheses of the first diiododiborenes. In a series of reactivity tests, these diiododiborenes demonstrate cleavage of all six of their central bonds in different ways, leading to products of B=B hydrogenation and dihalogenation as well as halide exchange. KW - boron KW - low-valent main-group species KW - iodine KW - multiple bonding KW - 1,2-additions Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178608 N1 - This is the pre-peer reviewed version of the following article: J. H. Muessig, M. Thaler, R. D. Dewhurst, V. Paprocki, J. Seufert, J. D. Mattock, A. Vargas, H. Braunschweig, Angew. Chem. Int. Ed. 2019, 58, 4405, which has been published in final form at https://doi.org/10.1002/anie.201814230. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. ER - TY - INPR A1 - Stennett, Tom A1 - Mattock, James A1 - Pentecost, Leanne A1 - Vargas, Alfredo A1 - Braunschweig, Holger T1 - Chelated Diborenes and their Inverse-Electron-Demand Diels- Alder Reactions with Dienes T2 - Angewandte Chemie, International Edition N2 - A doubly base-stabilized diborane based on a benzylphosphine linker was prepared by a salt elimination reaction between 2-LiC\(_6\)H\(_4\)CH\(_2\)PCy\(_2\).Et\(_2\)O and B\(_2\)Br\(_4\). This compound was reduced with KC8 to its corresponding diborene, with the benzylphosphine forming a five-membered chelate. The diborene reacts with butadiene, 2-trimethylsiloxy-1,3-butadiene and isoprene to form 4,5-diboracyclohexenes, which interconvert between their 1,1- (geminal) and 1,2- (vicinal) chelated isomers. The 1,1-chelated diborene undergoes a halide-catalysed isomerisation into its thermodynamically favoured 1,2-isomer, which undergoes Diels-Alder reactions more slowly than the kinetic product. KW - boron KW - cycloaddition KW - DFT calculations KW - chelates KW - low-valent compounds Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178268 N1 - This is the pre-peer reviewed version of the following article: T. E. Stennett, J. D. Mattock, L. Pentecost, A. Vargas, H. Braunschweig, Angew. Chem. Int. Ed. 2018, 57, 15276., which has been published in final form at https://doi.org/10.1002/anie.201809217. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. ER - TY - JOUR A1 - Ansell, Melvyn B. A1 - Kostakis, George E. A1 - Braunschweig, Holger A1 - Navarro, Oscar A1 - Spencer, John T1 - Synthesis of functionalized hydrazines: facile homogeneous (N-heterocyclic carbene)-palladium(0)-catalyzed diboration and silaboration of azobenzenes JF - Advanced Synthesis & Catalysis N2 - The bis(N-heterocyclic carbene)(diphenylacetylene)palladium complex Pd(ITMe)\(_2\)(PhCCPh)] (ITMe=1,3,4,5-tetramethylimidazol-2-ylidene) acts as a highly active pre-catalyst in the diboration and silaboration of azobenzenes to synthesize a series of novel functionalized hydrazines. The reactions proceed using commercially available diboranes and silaboranes under mild reaction conditions. KW - Palladium-catalyzed silaboration KW - B-B bond KW - molecular-structure KW - terminal alkynes KW - crystal-structure KW - alkenes KW - complexes KW - mechanism KW - boron KW - design KW - azobenzenes KW - dilaboration KW - N-heterocyclic carbenes KW - palladium KW - silaboration Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-186582 VL - 358 IS - 23 ER - TY - INPR A1 - Stennett, Tom A1 - Bertermann, Rüdiger A1 - Braunschweig, Holger T1 - Construction of Linear and Branched Tetraboranes via 1,1- and 1,2-Diboration of Diborenes T2 - Angewandte Chemie, International Edition N2 - Sterically unencumbered diborenes based on a benzylphosphine chelate undergo diboration reactions with bis(catecholato)diboron in the absence of a catalyst to yield tetraboranes. The symmetrical diborenes studied undergo 1,2- diborations, whereas an unsymmetrical derivative was found to yield a triborylborane-phosphine adduct as the result of a formal 1,1-diboration. A related borylborylene compound also underwent a 1,2-diboration to produce a borylene-borane adduct. KW - boron KW - diboration KW - chain structures KW - low-valent compounds KW - isomers Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178276 N1 - This is the pre-peer reviewed version of the following article: T. E. Stennett, R. Bertermann, H. Braunschweig, Angew. Chem. Int. Ed. 2018, 57, 15896., which has been published in final form at https://doi.org/10.1002/anie.201809976. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. ER - TY - INPR A1 - Brückner, Tobias A1 - Arrowsmith, Merle A1 - Heß, Merlin A1 - Hammond, Kai A1 - Müller, Marcel A1 - Braunschweig, Holger T1 - Synthesis of fused B,N-heterocycles by alkyne cleavage, NHC ring-expansion and C-H activation at a diboryne T2 - Chemical Communications N2 - The addition of alkynes to a staturated N-heterocyclic carbene (NHC)-supported diboryne results in spontaneous cycloaddition, with complete B≡B and C≡C triple bond cleavage, NHC ring- expansion and activation of a variety of C-H bonds, leading to the formation of complex mixtures of fused B,N-heterocycles. KW - heterocycles KW - alkynes KW - boron KW - carbenes Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-184899 N1 - This is the pre-peer reviewed version of the following article: Chem. Commun., 2019,55, 6700-6703, which has been published in final form at doi:10.1039/C9CC02657F ER - TY - INPR A1 - Stennett, Tom E. A1 - Bissinger, Philipp A1 - Griesbeck, Stefanie A1 - Ullrich, Stefan A1 - Krummenacher, Ivo A1 - Auth, Michael A1 - Sperlich, Andreas A1 - Stolte, Matthias A1 - Radacki, Krzysztof A1 - Yao, Chang-Jiang A1 - Würthner, Frank A1 - Steffen, Andreas A1 - Marder, Todd B. A1 - Braunschweig, Holger T1 - Near-Infrared Quadrupolar Chromophores Combining Three-Coordinate Boron-Based Superdonor and Superacceptor Units T2 - Angewandte Chemie, International Edition N2 - In this work, two new quadrupolar A-π-D-π-A chromophores have been prepared featuring a strongly electron- donating diborene core and strongly electron-accepting dimesitylboryl F(BMes2) and bis(2,4,6-tris(trifluoromethyl)phenyl)boryl (BMes2) end groups. Analysis of the compounds by NMR spectroscopy, X-ray crystallography, cyclic voltammetry and UV-vis-NIR absorption and emission spectroscopy indicated that the compounds possess extended conjugated π-systems spanning their B4C8 cores. The combination of exceptionally potent π-donor (diborene) and π- acceptor (diarylboryl) groups, both based on trigonal boron, leads to very small HOMO-LUMO gaps, resulting in strong absorption in the near-IR region with maxima in THF at 840 and 1092 nm, respectively, and very high extinction coefficients of ca. 120,000 M-1cm-1. Both molecules also display weak near-IR fluorescence with small Stokes shifts. KW - boron KW - near-IR chromophores KW - conjugation KW - low-valent compounds KW - synthesis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-180391 N1 - This is the pre-peer reviewed version of the following article: T. E. Stennett, P. Bissinger, S. Griesbeck, S. Ullrich, I. Krummenacher, M. Auth, A. Sperlich, M. Stolte, K. Radacki, C.-J. Yao, F. Wuerthner, A. Steffen, T. B. Marder, H. Braunschweig, Angew. Chem. Int. Ed. 2019, 58, 6449. , which has been published in final form at https://doi.org/10.1002/anie.201900889. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. ER - TY - INPR A1 - Arrowsmith, Merle A1 - Dömling, Michael A1 - Schmidt, Uwe A1 - Werner, Luis A1 - Castro, Abril C. A1 - Jiménez-Halla, J. Oscar C. A1 - Müssig, Jonas A1 - Prieschl, Dominic A1 - Braunschweig, Holger T1 - Spontaneous trans‐Selective Transfer Hydrogenation of Apolar B=B Double Bonds T2 - Angewandte Chemie, International Edition N2 - The transfer hydrogenation of NHC-supported diborenes with dimethylamine borane proceeds with high selectivity for the trans-1,2-dihydrodiboranes(6). DFT calculations suggest a stepwise proton-first-hydride-second reaction mechanism via an intermediate μ-hydrodiboronium dimethylaminoborate ion pair. KW - transfer hydrogenation KW - diborene KW - amine borane dehydrocoupling KW - diboranes KW - DFT mechanism Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-184874 N1 - This is the pre-peer reviewed version of the following article: M. Dömling, M. Arrowsmith, U. Schmidt, L. Werner, A. C. Castro, J. O. C. Jiménez-Halla, R. Bertermann, J. Müssig, D. Prieschl, H. Braunschweig, Angew. Chem. Int. Ed. 2019, 58, 9782. doi:10.1002/anie.201902656, which has been published in final form at https://doi.org/10.1002/anie.201902656. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. ER - TY - JOUR A1 - Braunschweig, Holger A1 - Ewing, William C. A1 - Ghosh, Sundargopal A1 - Kramer, Thomas A1 - Mattock, James D. A1 - Östreicher, Sebastian A1 - Vargas, Alfredo A1 - Werner, Christine T1 - Trimetallaborides as starting points for the syntheses of large metal-rich molecular borides and clusters JF - Chemical Science N2 - Treatment of an anionic dimanganaborylene complex ([{Cp(CO)\(_2\)Mn}\(_2\)B]\(^-\)) with coinage metal cations stabilized by a very weakly coordinating Lewis base (SMe\(_2\)) led to the coordination of the incoming metal and subsequent displacement of dimethylsulfide in the formation of hexametalladiborides featuring planar four-membered M\(_2\)B\(_2\) cores (M = Cu, Au) comparable to transition metal clusters constructed around four-membered rings composed solely of coinage metals. The analogies between compounds consisting of B\(_2\)M\(_2\) units and M\(_4\) (M = Cu, Au) units speak to the often overlooked metalloid nature of boron. Treatment of one of these compounds (M = Cu) with a Lewis-basic metal fragment (Pt(PCy\(_3\))\(_2\)) led to the formation of a tetrametallaboride featuring two manganese, one copper and one platinum atom, all bound to boron in a geometry not yet seen for this kind of compound. Computational examination suggests that this geometry is the result of d\(^{10}\)-d\(^{10}\) dispersion interactions between the copper and platinum fragments. KW - anionic dimetalloborylene complexes KW - trimetallaborides KW - tetrametallaborides KW - Boron KW - metallaboranes KW - crystal structure KW - metal borylene complexes Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-191511 VL - 7 IS - 1 ER - TY - INPR A1 - Hermann, Alexander A1 - Arrowsmith, Merle A1 - Trujillo-Gonzalez, Daniel A1 - Jiménez-Halla, J. Oscar C. A1 - Vargas, Alfredo A1 - Braunschweig, Holger T1 - Trapping of a Borirane Intermediate in the Reductive Coupling of an Arylborane to a Diborene T2 - Journal of the American Chemical Society N2 - The reductive coupling of an NHC-stabilized aryldibromoborane yields a mixture of trans- and cis-diborenes in which the aryl groups are coplanar with the diborene core. Under dilute reduction conditions two diastereomers of a borirane-borane intermediate are isolated, which upon further reduction give rise to the aforementioned diborene mixture. DFT calculations suggest a mechanism proceeding via nucleophilic attack of a dicoordinate borylene intermediate on the aryl ring and subsequent intramolecular B-B bond formation. KW - boron KW - reactive intermediates KW - reductive coupling Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203140 N1 - This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Journal of the American Chemical Society, copyright © American Chemical Society after peer review. To access the final edited and published work see https://doi.org/10.1021/jacs.0c02306 ER - TY - THES A1 - Lenczyk, Carsten T1 - Koordination und Funktionalisierung von Dihydroboranen an Übergangsmetallkomplexen - Darstellung neuer Carbodiphosphorane und deren Koordination an ausgewählte Substrate T1 - Coordination and functionalization of dihydroboranes with transition metal complexes - Synthesis of new carbodiphosphoranes and their coordination to selected substrates N2 - Teil 1: Koordination und Funktionalisierung von Dihydroboranen an Übergangsmetallkomplexen Im Rahmen der vorliegenden Arbeit wurden Untersuchungen zur Koordination und Funktionalisierung von Dihydroboranen an Übergangsmetallkomplexen durchgeführt. Aufgrund der möglichen Anwendung in Dehydrokupplungsreaktionen wurde die Umwandlung von Dihydroboranen in Borylenkomplexe genauer untersucht. Teil 2: Darstellung neuer Carbodiphosphorane und deren Koordination an ausgewählte Substrate Durch Anwendung einfacher Synthesemethoden konnten in der vorliegenden Arbeit neuartige Carbodiphosphorane dargestellt werden. Diese wurden im weiteren Verlauf der Untersuchungen auf ihre Reaktivität gegenüber ausgewählten Substraten untersucht. N2 - Part 1 Coordination and functionalization of dihydroboranes with transition metal complexes The present work has focused on the coordination and functionalization of dihydroboranes towards various transition metal complexes. In light of possible applications in dehydrocoupling reactions, the conversion of dihydroboranes to borylene complexes was investigated in detail. Part 2 Various carbodiphosphoranes have been synthesized using simple reaction methods. In addition, these carbodiphosphoranes were used to probe the reactivity of this class of compounds towards selected substrates. KW - Borylene KW - Übergangsmetallkomplexe KW - Dehydrokupplung KW - Dihydroborane KW - Borylene Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-180581 ER - TY - THES A1 - Berthel, Johannes H. J. T1 - Synthese und Charakterisierung neuer NHC-stabilisierter Nickelkomplexe für die Gasphasenabscheidung T1 - Synthesis and characterization of new NHC-stabilized nickel complexes for the vapor deposition N2 - Die vorliegende Arbeit befasst sich mit der Synthese und Charakterisierung NHC-stabilisierter Nickelkomplexe, die durch weitere Co-Liganden wie Carbonyle, Olefine, Alkine, Alkyle, Cyanide oder Allylliganden koordiniert sind. Ferner gibt diese Arbeit einen Überblick über die thermischen Eigenschaften dieser Verbindungen, um deren Potenzial für den Einsatz zur Abscheidung elementaren Nickels in CVD- bzw. ALD-Prozessen abschätzen zu können. Dabei konnten vor allem die Substanzklassen der Carbonyl- und Alkylkomplexe als geeignete Präkursoren für die Gasphasenabscheidung elementaren Nickels identifiziert werden, von denen einige ausgewählte Vertreter bereits erfolgreich in CVD-Prozessen getestet wurden. N2 - The present work is about the synthesis and characterization of NHC-stabilized nickel complexes, which are coordinated by further co-ligands like carbonyls, olefins, alkynes, alkyls, cyanides or allylic ligands. This work presents an overview of the thermical properties of these nickel compounds, which gives an insight in their potential for using them to deposit elemental nickel in CVD and ALD processes. It was found the carbonyl and alkyl complexes were identified as useful precursors for vapor depositing elemental nickel. Some of these compounds have already been tested successfully in CVD processes. KW - Nickelkomplexe KW - Heterocyclische Carbene <-N> KW - CVD-Verfahren KW - NHC KW - Nickel KW - Gasphasenabscheidung KW - Carbene Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147571 ER - TY - THES A1 - Prieschl, Dominic T1 - Reaktivitätsstudien zu Diboranen(4) und NHC-stabilisierten µ-Hydridodiboranen(5) T1 - Reactivity studies of diboranes(4) and NHC-stabilised µ-hydrido diboranes(5) N2 - Die vorliegende Arbeit behandelt im ersten Abschnitt die Synthese und Reaktivität neuartiger Diborane(4). Ebenfalls wurde die Reaktivität von Dihalogendiboranen(4) gegenüber Phenylazid untersucht, wobei symmetrische Vertreter unter Beibehalt der B-B-Bindung die fünfgliedrigen B2N3 Heterocyclen 14 und 15 lieferten. Der zweite Abschnitt dieser Arbeit beschäftigt sich mit der unerwarteten Reaktivität der NHC-stabilisierten μ-Hydridodiborane(5) XXIII und XXIV. Der abschließende Teil dieser Arbeit befasst sich mit den ersten Versuchen zur Darstellung eines CAAC-stabilisierten, Diboranyl-substituierten Borylens. N2 - The first part of this thesis focuses on the synthesis and reactivity of novel diboranes(4). Furthermore, the reactivity of dihalodiboranes(4) towards phenyl azide was investigated. Symmetrical derivatives Ia and IIb gave five-membered B2N3 heterocycles 14 and 15 with retention of the B-B bond. The second chapter of this work deals with the unexpected reactivity of NHC-stabilized μ-hydridodiboranes(5) XXIII and XXIV. The final part of this thesis focuses on the first attempts to synthesize a CAAC-stabilised, diboranyl-substituted borylene. KW - Diborane KW - Diborane(4) KW - diboranes(4) KW - Diborane(5) KW - diboranes(5) KW - sp2-sp3 KW - Bor KW - boron Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-210749 ER - TY - THES A1 - Hock, Andreas T1 - NHC-stabilized Alanes and Gallanes T1 - NHC-stabilisierte Alane und Gallane N2 - This thesis describes the synthesis and reactivity of NHC-stabilized Lewis-acid/Lewis-base adducts of alanes and gallanes (NHC = Me2ImMe, iPr2Im, iPr2ImMe, Dipp2Im, Dipp2ImH). As this field of research has developed tremendously, especially in the last five years, the first chapter provides an overview of the current state of knowledge. The influence of electronegative π-donor-substituents on the stability of the NHC alane adducts is examined in chapter 2. For this purpose, the carbene stabilized alanes (NHC)∙AlH3 (NHC = iPr2Im, Dipp2Im) were reacted with secondary amines of different steric demand and with phenols. The π-donor substituents saturate the Lewis acidic aluminium center and coordination of a second NHC-ligand was not observed. The strongly electronegative N and O substituents increase the Lewis acidity of the aluminium atom, which leads to stronger Al-CNHC as well as Al-H bonds, which inhibits the insertion of the carbene into the Al-H bond. In Chapter 3 the development of the synthesis and reactivity of carbene-stabilized gallanes is presented. The synthesis of NHC gallane adducts (NHC)∙GaH3, (NHC)∙GaH2Cl and (NHC)∙GaHCl2 and their reactivity towards NHCs and cAACMe were investigated in detail. The reaction of the mono- and dichlorogallanes (NHC)∙GaH2Cl and (NHC)∙GaHCl2 (NHC = iPr2ImMe, Dipp2Im) with cAACMe led to insertion of the cAACMe with formation of chiral and achiral compounds depending on the sterically demand of the used NHC. Furthermore, the formation of bis-alkylgallanes was observed for the insertion of two equivalents of cAACMe with release of the NHC ligand. Chapter 4 describes investigations concerning the synthesis and reactivity of NHC-stabilized iodoalanes and iodogallanes, which are suitable for the formation of cationic aluminium and gallium dihydrides. The reaction of (NHC)∙EH2I (E = Al, Ga) stabilized by the sterically less demanding NHCs (NHC = Me2ImMe, iPr2Im, iPr2ImMe) with an additional equivalent of the NHC led to the formation of the cationic bis-NHC aluminium and gallium dihydrides [(NHC)2∙AlH2]+I- and [(NHC)2∙GaH2]+I-. Furthermore, the influence of the steric demand of the used NHC was investigated. The adduct (Dipp2Im)∙GaH2I was reacted with an additional equivalent of Dipp2Im. Due to the bulk of the NHC used, rearrangement of one of the NHC ligands from normal to abnormal coordination occurred and the cationic gallium dihydride [(Dipp2Im)∙GaH2(aDipp2Im)] was isolated. Chapter 5 of this thesis reports investigations concerning the reduction of cyclopentadienyl-substituted alanes and gallanes with singlet carbenes. NHC stabilized pentamethylcyclopentadienyl aluminium and gallium dihydrides (NHC)∙Cp*MH2 (E = Al, Ga) were prepared by the reaction of (AlH2Cp*)3 with the corresponding NHCs or by the salt elimination of (NHC)∙GaH2I with KCp*. The gallane adducts decompose at higher temperatures with reductive elimination of Cp*H and formation of Cp*GaI. . The reductive elimination is preferred for sterically demanding NHCs (Dipp2Im > iPr2ImMe > Me2ImMe). In addition, NHC ring expansion of the backbone saturated carbene Dipp2ImH was observed for the reaction of the NHC with (AlH2Cp*)3, which led to (RER-Dipp2ImHH2)AlCp*. Furthermore, the reactivity of the adducts (NHC)∙Cp*EH2 (E = Al, Ga) towards cAACMe was investigated. The reaction of the alane adducts stabilized by the sterically more demanding NHCs iPr2ImMe and Dipp2Im afforded the exceptionally stable insertion product (cAACMeH)Cp*AlH V-10 with liberation of the NHC. The reaction of the gallium hydrides (NHC)∙Cp*GaH2 with cAACMe led to the reductive elimination of cAACMeH2 and formation of Cp*GaI. A variety of neutral and cationic carbene-stabilized alanes and gallanes are presented in this work. The introduction of electronegative π-donor substituents (Cl-, I-, OR-, NR2-) and the investigations on the thermal stability of these compounds led to the conclusion that the stability of alanes and gallanes increased significantly by such a substitution. Investigations on the reactivity of the NHC adducts towards cAACMe resulted in various insertion products of the carbene into the Al-H or Ga-H bonds and the first cAACMe stabilized dichlorogallane was isolated. Furthermore, a first proof was provided that carbenes can be used specifically for the (formal) reduction of group 13 hydrides of the higher homologues. Thus, the synthesis of Cp*GaI from the reaction of (NHC)∙Cp*GaH2 with cAACMe was developed. In the future, this reaction pathway could be of interest for the preparation of other low-valent compounds of aluminium and gallium. N2 - Die vorliegende Arbeit befasst sich mit der Synthese und Reaktivität NHC stabilisierter Lewis-Säuren/Lewis-Basen Addukte von Alanen und Galanen. Da sich dieses Forschungsgebiet insbesondere in den letzten fünf Jahren rasant entwickelt hat, wird im ersten Kapitel dieser Arbeit eine Übersicht über den gegenwärtigen Kenntnisstand gegeben. Nachdem in vorangegangenen Arbeiten in der Gruppe gezeigt werden konnte, dass NHC-substituierte Alane (NHC)∙AlH3 eine begrenzte Stabilität bezüglich einer möglichen Eliminierung von Dihydroaminal NHC-H2 bzw. der Ringerweiterung oder Ringöffnung des NHC-Liganden aufweisen, wird in Kapitel 2 der Arbeit der Einfluss elektronegativer π-Donor-Substituenten am Aluminium auf die Stabilität der dargestellten NHC-Alan-Addukte untersucht. Dazu wurden die Carben stabilisierten Alane (NHC)∙AlH3 (NHC = iPr2Im, Dipp2Im) mit sekundären Aminen unterschiedlichen sterischen Anspruchs und Phenolen umgesetzt. Die π-Donor Substituenten sättigen das Lewis-saure Aluminiumzentrum ab, sodass eine Koordination eines zweiten NHC-Liganden nicht möglich ist. Ferner erhöhen die stark elektronegativen N- und O-Substituenten die Lewis-Acidität des Aluminiumatoms, das zu stärkeren Al-CNHC, aber auch Al-H-Bindungen führt und vermutlich deshalb die Insertion des Carbens in diese Bindung erschwert ist. Kapitel 3 beschreibt die Entwicklung der Synthese von Carben-stabilisierten Gallanen und Untersuchungen zu deren Reaktivität. Es wurde die Darstellung der NHC-Gallan-Addukte und ihre Reaktivität gegenüber NHCs und cAACMe im Detail untersucht. Durch die Substitution der Hydrid-Substituenten durch Chloride konnte mit zunehmendem Chlorierungsgrad eine erhöhte Stabilität der Addukte festgestellt werden. Die Reaktion von cAACMe mit den NHC-stabilisierten Gallanen führt zur Insertion des cAACMe in die Ga-H-Bindung unter Ausbildung chiraler und achiraler Insertionsprodukten, sowie der zweifachen Insertion von cAACMe unter Abspaltung des NHC-Liganden und Bildung von Bisalkylgallanen. Kapitel 4 beschreibt Untersuchungen zur Synthese und Reaktivität Carben-stabilisierter Iodtriele, welche zur Darstellung kationischer Aluminium- und Galliumdihydride geeignet sind. Die Reaktion der NHC-Iodotriele (NHC)∙EH2I (E = Al, Ga), welche durch weniger sterisch anspruchsvollen NHCs stabilisiert werden, mit einem zusätzlichen Äquivalent des entsprechenden NHCs führt zur Bildung der kationischen bis-NHC-Aluminium- und Galliumdihydride [(NHC)∙MH2]+I. Um den Einfluss des sterischen Anspruchs des NHCs zu untersuchen, wurde das Addukt (Dipp2Im)∙GaH2I mit einem zusätzlichen Äquivalent Dipp2Im umgesetzt. Aufgrund der Sterik der verwendeten Carbene führte dies zur Umlagerung eines NHCs von normaler zu abnormaler Koordination unter Bildung von [(Dipp2Im)∙GaH2(aDipp2Im)]I. Im fünften Kapitel der Arbeit werden Untersuchungen zur Reduktion Cp*-substituierter Triele mit Carbenen beschrieben. Die Darstellung NHC-stabilisierter Cp* -Alane- und Gallane (NHC)∙Cp*MH2 (M = Al, Ga) erfolgte durch die direkte Umsetzung von (AlH2Cp*)3 mit den entsprechenden NHCs, bzw. durch Salzeliminierung ausgehend von (NHC)∙GaH2I mit KCp*. Die Gallan-Addukte zersetzen sich bei höheren Temperaturen unter reduktiver Eliminierung von Cp*H und Bildung von Cp*GaI. Die reduktive Eliminierung findet bevorzugt für sterisch anspruchsvolle NHCs statt. Darüber hinaus wurde eine NHC Ringerweiterungsreaktion des im Rückgrat gesättigten Carbens Dipp2ImH bei der Reaktion mit (AlH2Cp*)3 unter Ausbildung von (RER-Dipp2ImHH2)AlCp*. Darüber hinaus wurde die Reaktivität der Addukte (NHC)∙Cp*EH2 (E = Al. Ga) gegenüber cAACMe untersucht. Die Reaktion der durch die sterisch anspruchsvolleren NHCs iPr2ImMe und Dipp2Im stabilisierten Addukte mit cAACMe führte zur Bildung des außergewöhnlich stabilen Insertionsproduktes (cAACMeH)Cp*AlH unter Abspaltung des NHC-Liganden. Die Reaktion der Galliumhydride (NHC)∙Cp*GaH2 mit cAACMe führte stattdessen direkt zur reduktiven Eliminierung von cAACMeH2 unter Ausbildung von Cp*GaI.Im Rahmen dieser Arbeit wurden neutrale und kationische Carben-stabilisierte Alane und Gallane eingehend untersucht. Durch das Einführen elektronegativer π-Donor-Substituenten und Untersuchungen zur thermischen Belastbarkeit dieser Verbindungen wurde nachgewiesen, dass sich die Stabilität der Alane bzw. Gallane durch eine derartige Substitution deutlich erhöht. Untersuchungen zur Reaktivität der NHC-Addukte gegenüber cAACMe brachte diverse Insertionsprodukte des Carbens in Al-H bzw. Ga-H-Bindungen hervor. Ferner konnte das erste cAACMe-stabilisierte Dichlorogalliumhydrid dargestellt werden. Darüber hinaus wurde ein erster Nachweis erbracht, dass Carbene gezielt zur (formalen) Reduktion von Hydriden der höheren Homologen der Gruppe 13 verwendet werden können. So wurde die Synthese von Cp*GaI aus der Reaktion von (NHC)∙Cp*GaH2 mit cAACMe entwickelt. In Zukunft könnte dieser Reaktionspfad zur Darstellung niedervalenter Verbindungen der Triele Aluminium und Gallium von Interesse sein. KW - Aluminiumhydridderivate KW - Gallium KW - Heterocyclische Carbene <-N> KW - Aluminium KW - Carbene Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-212525 ER - TY - INPR A1 - Wang, Sunewang Rixin A1 - Arrowsmith, Merle A1 - Braunschweig, Holger A1 - Dewhurst, Rian A1 - Dömling, Michael A1 - Mattock, James A1 - Pranckevicius, Conor A1 - Vargas, Alfredo T1 - Monomeric 16-Electron π-Diborene Complexes of Zn(II) and Cd(II) T2 - Journal of the American Chemical Society N2 - Despite the prevalence of stable π-complexes of most d\(^{10}\) metals, such as Cu(I) and Ni(0), with ethylene and other olefins, complexation of d\(^{10}\) Zn(II) to simple olefins is too weak to form isolable complexes due to the metal ion's limited capacity for π-backdonation. By employing more strongly donating π- ligands, namely neutral diborenes with a high-lying π(B=B) or- bital, monomeric 16-electron M(II)-diborene (M = Zn, Cd) π- complexes were synthesized in good yields. Metal–B2 π- interactions in both the solid and solution state were confirmed by single-crystal X-ray analyses and their solution NMR and UV-vis absorption spectroscopy, respectively. The M(II) centers adopt a trigonal planar geometry and interact almost symmetrically with both boron atoms. The MB2 planes significantly twist out of the MX\(_2\) planes about the M-centroid(B–B) vector, with angles rang- ing from 47.0° to 85.5°, depending on the steric interactions be- tween the diborene ligand and the MX\(_2\) fragment. KW - boron KW - transition metal complex KW - diborene Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-153058 N1 - This is the pre-peer reviewed version of the following article: Journal of the American Chemical Society, 2017, 139 (31), pp 10661–10664, which has been published in final form at doi:10.1021/jacs.7b06644. ER - TY - THES A1 - Müssig, Jonas Heinrich T1 - Synthese und Reaktvität von Gruppe 13 Elementhalogeniden gegenüber metallischen und nicht-metallischen Lewis-Basen T1 - Synthesis and Reactivity of Group 13 Elemental halides towards Metal and Nonmetal Lewis-Bases N2 - Im Rahmen der vorliegenden Arbeit wurden Dibortetrahalogenide dargestellt, deren Eigenschaften strukturell sowie spektroskopisch analysiert und deren Reaktivität gegenüber Lewis-basischen Hauptgruppenelementverbindungen untersucht. Durch anschließende Reaktivitätsstudien konnten unter anderem neuartige Diborene dargestellt und analysiert werden. Weiterhin wurde die Verbindungsklasse der Elementhalogenide der Gruppe 13 in der Oxidationsstufe +2 (B, Ga, In) und +3 (In) bezüglich ihrer Reaktivität gegenüber Übergangsmetall Lewis-Basen untersucht. Die gebildeten, neuartigen Bindungsmodi der Gruppe 13 Elemente am Übergangsmetall wurden strukturell, spektroskopisch sowie quantenchemisch analysiert. N2 - As a part of the present work diborontetrahalides were synthesized, analyzed and their reactivity was investigated towards Lewis-basic main group compounds. Subsequent reactivity studies were performed and novel Diborenes were synthesized and analyzed. Furthermore the reactivity of group 13 elemental halides in the oxidation state +2 (B, Ga, In) and +3 (In) was investigated towards Lewis-basic transition metal complexes. The novel bonding motifs of the group 13 elements at the metal center were investigated structurally, spectroscopically and by quantum chemical calculations. KW - Übergangsmetallkomplex KW - Bor KW - Lewis-Base KW - Gallium KW - Indium KW - Gruppe 13 element KW - Diboren Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-179831 ER - TY - THES A1 - Sieck, Carolin T1 - Synthesis and Photophysical Properties of Luminescent Rhodacyclopentadienes and Rhodium 2,2'-Biphenyl Complexes T1 - Synthese und photophysikalische Eigenschaften von lumineszierenden Rhodacyclopentadienen und Rhodium 2,2'-Biphenyl Komplexen N2 - The photochemistry and photophysics of transition metal complexes are of great interest, since such materials can be exploited for a wide range of applications such as in photocatalysis, sensing and imaging, multiphoton-absorption materials and the fabrication of OLEDs. A full understanding of the excited state behavior of transition metal compounds is therefore important for the design of new materials for the applications mentioned above. In principle, the luminescence properties of this class of compounds can be tuned by changing the metal or subtle changes in the ligand environment. Furthermore, transition-metal complexes continue to play a major role in modern synthetic chemistry. In particular, they can realize selective transformations that would either be difficult or impossible by conventional organic chemistry. For example, they enable the efficient and selective formation of carbon–carbon bonds. One famous example of these types of transformations are metal-catalyzed cyclization reactions. Herein, metallacyclopentadiene complexes are considered as key intermediates in a number of metal-mediated or -catalyzed cyclization reactions, i.e. the [2+2+2] cyclotrimerization of alkynes. Recent research has focused on the synthesis and characterization of these metallacyclic intermediates such as MC4 ring systems. Metallacyclopentadienes are structurally related to main group EC4 systems such as boroles, siloles, thiophenes and phospholes. Overall, this group of compounds (EC4 analogues) is well known and has attracted significant attention due to their electron-transport and optical properties. Unlike transition metal analogues, however, these EC4 systems show no phosphorescence, which is due to inefficient SOC compared to 2nd and 3rd row transition metals, which promoted us to explore the phosphorescence potential of metallacyclopentadienes. In 2001, Marder et al. developed a one-pot high-yield synthesis of luminescent 2,5 bis(arylethynyl)rhodacyclopentadienes by reductive coupling of 1,4-diarylbuta-1,3-diynes at a suitable rhodium(I) precursor. Over the past years, a variety of ligands (e.g. TMSA, S,S’ diethyldithiocarbamate, etc.) and 1,4-bis(p-R-phenyl)-1,3-butadiynes or linked , bis(p-R-arylethynyl)alkanes (R = electron withdrawing or donating groups) were investigated and always provided a selective formation of 2,5 bis(arylethynyl)rhodacyclopentadienes, which were reported to be fluorescent despite presence of the heavy atom. To examine the influence of the ligand sphere around the rhodium center on the intersystem-crossing (ISC) processes in the above-mentioned fluorescent rhodacyclopentadienes and to increase the metal character in the frontier orbitals by destabilizing the Rh filled d-orbitals, a -electron donating group was introduced, namely acetylacetonato (acac). Interestingly, in 2010 Tay reacted [Rh(κ2-O,O-acac)(PMe3)2] with ,-bis(p-R-arylbutadiynyl)alkanes and observed not only the fluorescent 2,5 bis(arylethynyl)rhodacyclopentadienes, but also rhodium 2,2’-bph complexes as products, which were reported to be phosphorescent in preliminary photophysical studies. In this work, the reaction behavior of [Rh(κ2-O,O-acac)(L)2] (L = PMe3, P(p-tolyl)3) with different ,-bis(p-R-arylbutadiynyl)alkanes was established. Furthermore, the separation of the two isomers 2,5-bis(arylethynyl)rhodacyclopentadienes (A) and rhodium 2,2’-bph complexes (B), and the photophysical properties of those were explored in order to clarify their fundamentally different excited state behaviors. Reactions of [Rh(κ2-O,O-acac)(P(p-tolyl3)2)] with ,-bis(arylbutadiynyl)alkanes gives exclusively weakly fluorescent 2,5-bis(arylethynyl)rhodacyclopentadienes. Changing the phosphine ligands to PMe3, reactions of [Rh(κ2-O,O-acac)(PMe3)2] and , bis(arylbutadiynyl)alkanes afford two isomeric types of MC4 metallacycles with very different photophysical properties, as mentioned before. As a result of a normal [2+2] reductive coupling at rhodium, 2,5 bis(arylethynyl)rhodacyclopentadienes (A) are formed, which display intense fluorescence. Rhodium 2,2’-bph complexes (B), which show phosphorescence, have been isolated as a second isomer originating from an unusual [4+2] cycloaddition reaction and a subsequent -H-shift. Control of the isomer distribution, of 2,5-bis(arylethynyl)rhodacyclopentadienes (A) and rhodium biphenyl complexes (B), is achieved by modification of the linked , bis(arylbutadiynyl)alkane. Changing the linker length from four CH2 to three CH2 groups, dramatically favors the formation of the rhodium biphenyl isomer B, providing a fundamentally new route to access photoactive metal biphenyl compounds in good yields. This is very exciting as the photophysical properties of only a limited number of bph complexes of Ir, Pd and Pt had been explored. The lack of photophysical reports in the literature is presumably due to the limited synthetic access to various substituted 2,2’-bph transition metal complexes. On the other hand, as the reaction of [Rh(κ2-O,O-acac)(P(p-tolyl)3)2] with , bis(arylbutadiynyl)alkanes provides a selective reaction to give weakly fluorescent 2,5 bis(arylethynyl)rhodacyclopentadiene complexes with P(p-tolyl)3 as phosphine ligands, a different synthetic access to 2,5-bis(arylethynyl)rhodacyclopentadiene complexes with PMe3 as phosphine ligands was developed, preventing the time-consuming separation of the isomers. The weak rhodium-phosphorus bonds of 2,5-bis(arylethynyl)rhodacyclopentadiene complexes bearing P(p tolyl)3 as phosphine ligands, relative to those of related PMe3 complexes, allowed for facile ligand exchange reactions. In the presence of an excess of PMe3, a stepwise reaction was observed, giving first the mono-substituted, mixed-phosphine rhodacyclopentadiene intermediates and, subsequently, full conversion to the highly fluorescent 2,5 bis(arylethynyl)-rhodacyclopentadienes bearing only PMe3 ligands (by increasing the reaction temperature). With spectroscopically pure 2,5-bis(arylethynyl)rhodacyclopentadiene complexes A (bearing PMe3 as phosphine ligands) and rhodium 2,2-bph complexes B in hand, photophysical studies were conducted. The 2,5-bis(arylethynyl)rhodacyclopentadienes (A) are highly fluorescent with high quantum yields up to 54% and very short lifetimes (τ = 0.2 – 2.5 ns) in solution at room temperature. Even at 77 K in glass matrices, no additional phosphorescence is observed which is in line with previous observations made by Steffen et al., who showed that SOC mediated by the heavy metal atom in 2,5-bis(arylethynyl)rhodacyclopentadienes and 2,5 bis(arylethynyl)iridacyclopentadienes is negligible. The origin of this fluorescence lies in the pure intra-ligand (IL) nature of the excited states S1 and T1. The HOMO and the LUMO are nearly pure  and * ligand orbitals, respectively, and the HOMO is energetically well separated from the filled rhodium d orbitals. The absence of phosphorescence in transition metal complexes due to mainly IL character of the excited states is not unusual, even for heavier homologues than rhodium with greater SOC, resulting in residual S1 emission (fluorescence) despite ISC S1→Tn being sufficiently fast for population of T1 states. However, there are very few complexes that exhibit fluorescence with the efficiency displayed by our rhodacyclopentadienes, which involves exceptionally slow S1→Tn ISC on the timescale of nanoseconds rather than a few picoseconds or faster. In stark contrast, the 2,2’-bph rhodium complexes B are exclusively phosphorescent, as expected for 2nd-row transition metal complexes, and show long-lived (hundreds of s) phosphorescence (Ф = 0.01 – 0.33) at room temperature in solution. As no fluorescence is detected even at low temperature, it can be assumed that S1→Tn ISC must be faster than both fluorescence and non-radiative decay from the S1 state. This contrasts with the behavior of the isomeric 2,5-bis(arylethynyl)rhodacyclopentadienes for which unusually slow ISC occurs on a timescale that is competitive with fluorescence (vide supra). The very small values for the radiative rate constants, however, indicate that the nature of the T1 state is purely 3IL with weak SOC mediated by the Rh atom. The phosphorescence efficiency of these complexes in solution at room temperature is even more impressive, as non-radiative coupling of the excited state with the ground state typically inhibits phosphorescence. Instead, the rigidity of the organic -system allows the ligand-based excited triplet state to exist in solution for up to 646 s and to emit with high quantum yields for biphenyl complexes. The exceptionally long lifetimes and small radiative rate constants of the rhodium biphenyl complexes are presumably a result of the large conjugated -system of the organic ligand. According to TD DFT studies, the T1 state involves charge-transfer from the biphenyl ligand into the arylethynyl moiety away from the rhodium atom. This reduces the SOC of the metal center that would be necessary for fast phosphorescence. These results show that the π-chromophoric ligand can gain control over the photophysical excited state behavior to such an extent that even heavy transition metal atoms like rhodium participate in increasing the fluorescence such as main-group analogues do. Furthermore, in the 2,2’-bph rhodium complexes, the rigidity of the organic -system allows the ligand-based excited triplet state to exist in solution for up to hundreds of s and to emit with exceptional quantum yields. Therefore, investigations of the influence of the ligand sphere around the rhodium center have been made to modify the photophysical properties and furthermore to explore the reaction behavior of these rhodium complexes. Bearing in mind that the P(p-tolyl)3 ligands can easily be replaced by the stronger -donating PMe3 ligands, ligand exchange reactions with N heterocyclic carbenes (NHCs) as even stronger -donors was investigated. Addition of two equivalents of NHCs at room temperature led to the release of one equivalent of P(p-tolyl3) and formation of the mono-substituted NHC rhodium complex. The reaction of isolated mono-NHC complex with another equivalent of NHC at room temperature did not result in the exchange of the second phosphine ligand. Moderate heating of the reaction to 60 °C, however, resulted in the formation of tetra-substituted NHC rhodium complex [Rh(nPr2Im)4]+[acac]-. To circumvent the loss of the other ligands in the experiments described above, a different approach was investigated to access rhodacyclopentadienes with NHC instead of phosphine ligands. Reaction of the bis-NHC complex [Rh(κ2-O,O-acac)(nPr2Im)2] with , bis(arylbutadiynyl)alkanes at room temperature resulted 2,5-bis(arylethynyl)-rhodacyclopentadienes with the NHC ligands being cis or trans to each other as indicated by NMR spectroscopic measurements and single-crystal X-ray diffraction analysis. Isolation of clean material and a fundamental photophysical study could not be finished for reasons of time within the scope of this work. Furthermore, shortening of the well conjugated -system of the chromophoric ligand (changing from tetraynes to diynes) was another strategy to examine the reaction behavior of theses ligands with rhodium(I) complexes and to modify the excited state behavior of the formed rhodacyclopentadienes. The reaction of [Rh(κ2-O,O-acac)(PMe3)2] with 1,7 diaryl 1,6-heptadiynes (diynes) leads to the selective formation of 2,5 bis(aryl)rhodacyclopentadienes. These compounds, however, are very weakly fluorescent with quantum yields ФPL < 1, and very short emission lifetimes in toluene at room temperature. Presumably, vibrational modes of the bis(phenyl)butadiene backbone leads to a higher rate constant for non-radiative decay and is thus responsible for the low quantum yields compared to their corresponding PMe3 complexes with the bis(phenylethynyl)butadiene backbone at room temperature. No additional phosphorescence, even at 77 K in the glass matrix is observed. Chancing the phosphine ligands to P(p-tolyl)3, reactions of [Rh(κ2-O,O-acac)(P(p-tolyl3)2)] with 1,7-diaryl-1,6-heptadiynes, however, resulted in a metal-mediated or -catalyzed cycloaddition reaction of alkynes and leads to full conversion to dimerization and trimerization products and recovery of the rhodium(I) starting material. This is intuitive, considering that P(Ar)3 (Ar = aryl) ligands are considered weaker -donor ligands and therefore have a higher tendency to dissociate. Therefore, rhodium(I) complexes with aryl phosphines as ligands have an increasing tendency to promote catalytic reactions, while the stronger -donating ligands (PMe3 or NHCs) promote the formation of stable rhodium complexes. Finally, in Chapter 4, the findings of the work conducted on N-heterocyclic carbenes (NHCs) and cyclic (alkyl)(amino)carbenes (CAACs) is presented. These compounds have unique electronic and steric properties and are therefore of great interest as ligands and organo-catalysts. In this work, studies of substitution reactions involving novel carbonyl complexes of rhodium and nickel are reported. For characterization and comparison of CAACmethyl with the large amount of data available for NHC and sterically more demanding CAAC ligands, an overview on physicochemical data (electronics, sterics and bond strength) is provided. The reaction of [Rh(-Cl)(CO)2]2 with 2 equivalents of CAACmethyl at low temperature afforded the mononuclear complex cis-[(RhCl(CO)2(CAACmethyl)]. However, reacting [Rh( Cl)(CO)2]2 with CAACmethyl at room temperature afforded a mixture of complexes. The mononuclear complex [(RhCl(CO)(CAACmethyl)2], the chloro-bridged complexes [(Rh2( Cl)2(CO)3(CAACmethyl)], [Rh(-Cl)(CO)(CAACmethyl)]2 and a carbon monoxide activation product were formed. The carbon monoxide activation product is presumably formed via the reaction of two equivalents of the CAAC with CO to give the bis-carbene adduct of CO, and subsequent rearrangement via migration of the Dipp moiety. While classical N-heterocyclic carbenes are not electrophilic enough to react with CO, related diamidocarbenes and alkyl(amino)carbenes undergo addition reactions with CO to give the corresponding ketenes. Consequently, to obtain the CAAC-disubstituted mononuclear complex selectively, 8 equivalents of CAACmethyl were reacted with 1 equivalent of [Rh(-Cl)(CO)2]2. For the evaluation of TEP values, [Ni(CO)3(CAAC)] was synthesized in collaboration with the group of Radius. With the complexes [(RhCl(CO)(CAACmethyl)2] and [Ni(CO)3(CAAC)] in hand, it was furthermore possible to examine the electronic and steric parameters of CAACmethyl. Like its bulkier congeners CAACmenthyl and CAACcy, the methyl-substituted CAAC is proposed to be a notably stronger -donor than common NHCs. While it has a very similar TEP value of 2046 cm-1, it additionally possess superior -acceptor properties (P = 67.2 ppm of phosphinidene adduct). CAACs appear to be very effective in the isolation of a variety of otherwise unstable main group and transition metal diamagnetic and paramagnetic species. This is due to their low-lying LUMO and the small singlet-triplet gap. These electronic properties also allow free CAACs to activate small molecules with strong bonds. They also bind strongly to transition metal centers, which enables their use under harsh conditions. One recent development is the use of CAACs as ligands in transition metal complexes, which previously were only postulated as short-lived catalytic intermediates.[292,345] The availability of these reactive species allows for a better understanding of known catalytic reactions and the design of new catalysts and, moreover, new applications. For example Radius et al.[320] prepared a CAAC complex of cobalt as a precursor for thin-film deposition and Steffen et al.[346] reported a CAAC complex of copper with very high photoluminescent properties, which could be used in LED devices. With the development of cheap and facile synthetic methods for the preparation of CAACs and their corresponding transition metals complexes, as well as the knowledge of their electronic properties, it is safe to predict that applications in and around this field of chemistry will continue to increase. N2 - Die photochemischen und photophysialischen Eigenschaften von Übergangsmetall-komplexen sind von großem Interesse, da solche Materialien für eine Vielzahl von Anwendungen, zum Beispiel in der Photokatalyse, für Sensing und Imaging, als Multiphotonenabsorptionsmaterialien und in der Herstellung von OLEDs genutzt werden können. Ein grundlegendes Verständnis des angeregten Zustands von Übergangsmetallverbindungen ist daher für die Entwicklung neuer Materialen für die oben genannten Anwendungen maßgeblich. Grundsätzlich können die Lumineszenzeigenschaften dieser Klasse von Verbindungen einerseits durch das Metall selbst, oder andererseits durch subtile Modifikation der Ligandensphäre beeinflusst werden. Darüber hinaus spielen Übergangsmetallkomplexe weiterhin eine wichtige Rolle in der modernen Synthesechemie. Insbesondere können Bindungen selektiv geknüpft werden, die in der klassischen organischen Chemie nur schwer zugänglich oder nicht realisierbar sind. So ermöglichen sie beispielsweise die effiziente und selektive Knüpfung von Kohlenstoff-Kohlenstoff-Bindungen. Ein bekanntes Beispiel für solch eine Bindungsknüpfung sind metallkatalysierte Ringschlussreaktionen. Hierbei spielen Metallacyclopentadien-Komplexe als Zwischenstufen bei metallvermittelten oder katalysierten Ringschlussreaktionen, wie beispielsweise der [2+2+2] Cyclotrimerisierung von Alkinen, eine Schlüsselrolle. Die jüngsten Forschungen konzentrierten sich auf die Synthese und Charakterisierung dieser metallacyclischen Zwischenprodukte, auch MC4-Ringsysteme genannt, welche strukturell mit Hauptgruppen-EC4-Systemen wie Borolen, Silolen, Thiophenen und Phospholen verwandt sind. Insgesamt ist diese Gruppe von Verbindungen (EC4-Analoga) wohlbekannt und hat aufgrund ihrer Elektronentransport- und optischen Eigenschaften beträchtliche Aufmerksamkeit erregt. Im Gegensatz zu Übergangsmetallanaloga zeigen Hauptgruppen-EC4-Systeme jedoch keine Phosphoreszenz, was auf eine ineffiziente Spin-Bahn-Kopplung zurückzuführen ist. Im Vergleich dazu zeigen Übergangsmetalle der fünften und sechsten Periode Phosphoreszenz, weshalb es von großem Interesse ist, die Lumineszenzeigenschaften der Metallacyclopentadiene näher zu untersuchen. Im Jahr 2001 entwickelte Marder et al. eine Eintopfsynthese von lumineszierenden 2,5 Bis(arylethinyl)rhodacyclopentadienen durch reduktive Kupplung von 1,4 Diarylbuta 1,3 diinen an einer geeigneten Rhodium(I)-Vorstufe. In den vergangenen Jahren wurden eine Vielzahl von Liganden (z.B. TMSA, S,S'-Diethyldithiocarbamat, usw.) und Substarten (1,4-Bis(p-R-phenyl)-1,3-butadiine oder verknüpfte ,-Bis(p-R-arylethinyl)alkane (R = Elektronen-ziehende oder schiebende Gruppen)) untersucht, wobei stets eine selektive Reaktion zu 2,5-Bis(arylethinyl)rhodacyclopentadien-Komplexen beobachtet werden konnte. Trotz des Zentralatoms Rhodium wurde ausschließlich Fluoreszenz beobachtet. Um den Einfluss der Ligandensphäre um das Rhodiumatom auf die Interkombination (Intersystem-Crossing Prozesse, ISC) in diesen fluoreszierenden Rhodacyclopentadienen zu untersuchen und den Metallcharakter in den Grenzorbitalen durch Destabilisierung der Rhodium-d-Orbitale zu erhöhen, wurde Acetylacetonat (acac), ein  Elektronen-schiebender Ligand, eingeführt. Interessanterweise beobachtete Tay im Jahr 2010 durch Reaktion von , Bis(p R arylbutadiinyl)alkanen mit [Rh(κ2-O,O-acac)(PMe3)2] nicht nur die fluoreszierenden 2,5-Bis(arylethinyl)-rhodacyclopentadiene, sondern auch einen isomeren Rhodium 2,2' Biphenyl Komplex, der in ersten photophysikalischen Studien Phosphoreszenz zeigte. In dieser Arbeit wurden das Reaktionsverhalten und die Reaktionsbedingungen von [Rh(κ2 O,O acac)(L)2] (L = PMe3, P(p-tolyl)3) mit verschiedenen , Bis(p R-arylbutadiinyl)alkanen untersucht. Weiterhin wurde die Trennung der beiden Isomere 2,5-Bis(arylethinyl)rhodacyclopentadien (A) und Rhodium-2,2'-bph-Komplex (B) optimiert und die photophysikalischen Eigenschaften der beiden Isomere untersucht. Die Reaktion von [Rh(κ2-O,O-acac)(P(p-tolyl3)2)] mit ,-Bis(arylbutadiinyl)alkanen führt selektiv zum 2,5-Bis(arylethinyl)rhodacyclopentadien-Isomer A, welches nur schwach fluoresziert. Wird jedoch der Phosphanligand P(p-tolyl3) mit PMe3 ersetzt, führt die Reaktion von [Rh(κ2 O,O acac)(PMe3)2] und ,-Bis(arylbutadiinyl)alkanen zu zwei verschiedenen Isomeren von MC4-Metallacyclen mit grundverschiedenen photophysikalischen Eigenschaften. 2,5 Bis(arylethinyl)rhodacyclopentadiene (A) werden durch eine reduktive [2+2]-Kopplung an Rhodium gebildet und weisen eine intensive Fluoreszenz auf. Das zweite Isomer waren Rhodium-2,2'-bph-Komplexe (B), die Phosphoreszenz zeigen. Dies rührt von einer ungewöhnlichen [4+2]-Cycloadditionsreaktion und einer nachfolgenden  H Verschiebung her. Die Kontrolle des Isomeren-Verhältnisses von 2,5-Bis(arylethinyl)rhodacyclopentadienen (A) und Rhodium-2,2'-bph-Komplexen (B) erfolgt durch Modifizierung der Alkankette des verknüpften ,-Bis(arylbutadiinyl)alkans. Die Veränderung der Ligandenbrücke von vier zu drei CH2-Gruppen begünstigt die Bildung des Rhodium-Biphenyl-Isomers B drastisch und bietet einen grundsätzlich neuen Weg, um Zugang zu photoaktiven Biphenyl-Metallverbindungen in guten Ausbeuten zu erhalten. Die photophysikalischen Eigenschaften sind bisher nur von einer begrenzten Anzahl an Biphenyl-Komplexen von Iridium, Palladium und Platin untersucht worden, wobei die geringe Menge an Beispielen vermutlich auf limitierte Synthesestrategien von verschieden-substituierten 2,2'-bph Übergangsmetall-komplexen zurückzuführen ist. Da die Reaktion von [Rh(κ2-O,O-acac)(P(p-tolyl3)2)] mit ,-Bis(arylbutadiinyl)alkanen selektiv zu 2,5-Bis(arylethinyl)rhodacyclopentadien-Komplexen mit P(p-tolyl3) als Phosphanliganden führt, und um die zeitaufwendige Trennung der Isomere zu vermeiden, wurde eine neue Synthesestrategie für 2,5 Bis(arylethinyl)rhodacyclopentadien-Komplexe mit PMe3 als Phosphanliganden entwickelt. Die relativ schwache Rhodium-P(p tolyl)3 Bindung von 2,5 Bis(arylethinyl)rhodacyclopentadien-Komplexen ermöglicht Liganden-Austauschreaktionen. Durch Zugabe von PMe3 im Überschuss bei Raumtemperatur wurde eine schrittweise Reaktion beobachtet, wobei zuerst die monosubstituierte Phosphan Rhodacyclopentadien-Zwischenstufe und anschließend durch Erwärmung vollständige Umsetzung und somit der zweifach PMe3 substituierte 2,5 Bis(arylethinyl)rhodacyclopentadien-Komplex erhalten werden konnte. Die isolierten 2,5-Bis(arylethinyl)rhodacyclopentadien-Komplexe A (mit PMe3 als Phosphanliganden) und Rhodium-2,2'-bph-Komplexe B wurden auf ihre photophysikalischen Eigenschaften hin untersucht. Isomer A ist stark fluoreszierend mit hohen Quantenausbeuten von bis zu 54% und sehr kurzen Lebenszeiten (τ = 0,2  2,5 ns) in Lösung bei Raumtemperatur. Sogar bei 77 K in Glasmatrizen wird keine Phosphoreszenz beobachtet, was im Einklang mit früheren Beobachtungen von Steffen et al. ist, die zeigten, dass Spin-Bahn-Kopplung (SOC) durch das Schwermetallatom in 2,5-Bis(arylethinyl)rhodacyclopentadienen und 2,5 Bis(arylethinyl)iridacyclopentadienen vernachlässigbar ist. Der Ursprung dieser Fluoreszenz liegt in der reinen Intra-Ligand-Natur der angeregten Zustände S1 und T1. Das HOMO und das LUMO sind fast reine - und *-Ligandenorbitale und das HOMO ist energetisch gut von den gefüllten d-Orbitalen des Rhodiums getrennt. Die Abwesenheit von Phosphoreszenz in Übergangsmetallkomplexen ist aufgrund des dominierenden IL-Charakters der angeregten Zustände bei schwereren Homologen, im Vergleich zu Rhodium, und somit größeren Spin Bahn Kopplungskonstanten nicht ungewöhnlich, auch wenn ISC von S1→Tn ausreichend effizient ist, um Triplett-Zustände zu erreichen. Allerdings gibt es im Vergleich zu unseren Rhodacyclopentadienen sehr wenige Komplexe, die Fluoreszenz mit der Effizienz und mit diesen außergewöhnlich langsamen Intersystem-Crossing Prozessen im Nanosekundenbereich anstatt von einigen Pikosekunden oder schneller besitzen. Im Gegensatz dazu sind die Rhodium-2,2'-bph-Komplexe B ausschließlich phosphoreszierend, wie es für Übergangsmetallkomplexe erwartet wird. Sie zeigen bei langen Lebenszeiten (Hunderte von s) Phosphoreszenz-Quantenausbeuten von bis zu 33% bei Raumtemperatur in Lösung. Da auch bei niedriger Temperatur keine Fluoreszenz festgestellt wird, kann davon ausgegangen werden, dass S1→Tn-ISC schneller als Fluoreszenz und strahlungslose Relaxation aus dem S1-Zustand sein muss. Dies ist jedoch gegenläufig zum Verhalten der isomeren 2,5 Bis(arylethinyl)rhodacyclopentadiene, für die ein ungewöhnlich langsames ISC auf der Zeitskala auftritt, die mit Fluoreszenz konkurrenzfähig ist (siehe oben). Die sehr kleinen Werte für die Strahlungsgeschwindigkeitskonstanten weisen jedoch darauf hin, dass der T1-Zustand reinen 3IL-Charakter mit schwacher Spin-Bahn-Kopplung vom Rhodiumatom ausgehend besitzt. Die Phosphoreszenz-Effizienz dieser Komplexe in Lösung bei Raumtemperatur ist noch beeindruckender, da die nicht-strahlende Kopplung des angeregten Zustands mit dem Grundzustand typischerweise die Phosphoreszenz hemmt. Stattdessen erlaubt die Rigidität des organischen -Systems, dass der ligandenbasierte angeregte Triplettzustand für mehrere hundert s stabil vorliegt und einen effizienten strahlenden Übergang in den Grundzustand vollzieht. Die außergewöhnlich langen Lebensdauern und kleinen Strahlungsgeschwindigkeitskonstanten der Rhodium-2,2'-bph-Komplexe sind vermutlich ein Ergebnis des hochkonjugierten -Systems des organischen Liganden. Laut unseren TD-DFT-Studien wird die Elektronendichte durch Ladungstransfer vom Rhodiumatom auf die Arylethinylreste übertragen und verringert somit die Spin-Bahn-Kopplung des Metallzentrums, die für eine kurze Phosphoreszenzlebenszeit erforderlich wäre. Diese Ergebnisse zeigen, dass der π-chromophore Ligand maßgeblich Einfluss auf den angeregten Zustand hat, dass auch schwere Übergangsmetallkomplexe wie Rhodium fluoreszieren können, wie es eigentlich nur von Hauptgruppenanaloga bekannt ist. Aufgrund der erhaltenen Ergebnisse und im Hinblick auf die Modifikation der optischen Eigenschaften und darüber hinaus das Reaktionsverhalten dieser Rhodiumkomplexe zu erforschen, wurde der Einfluss der Ligandensphäre um das Rhodiumatom untersucht. In Anbetracht dessen, dass die P(p-tolyl)3-Liganden leicht durch die stärker -donierenden PMe3 Liganden er-setzt werden können, wurden Ligandenaustausch-reaktionen mit N heterocyclischen Carbenen (NHCs) als noch stärkere -Donoren unter-sucht. Die Addition von zwei Äqui-valenten NHC führt bei Raumtemperatur zur Substitution von nur einem Äquivalent P(p-tolyl3) und somit zur Bildung des monosubstituierten NHC Rhodiumkomplexes. Die Reaktion des isolierten Mono-NHC-Komplexes mit einem weiteren Äquivalent NHC bei Raumtemperatur führte jedoch auch nicht zum gewünschten Austausch des zweiten Phosphanliganden. Erhöhung der Reaktionstemperatur auf 60 °C resultiert in der Bildung des tetra-substituierten NHC-Rhodiumkomplexes [Rh(nPr2Im)4]+[acac]-. Um zweifach NHC-substituierte 2,5 Bis(arylethinyl)-rhodacyclopentadiene zu erhalten, wurde eine neue Syntheseroute entwickelt. Durch Reaktion des Bis-NHC-Komplexes [Rh(κ2 O,O acac)(nPr2Im)2] mit , Bis(arylbutadiinyl)alkanen bei Raumtemperatur konnten 2,5 Bis(arylethinyl)rhodacyclopentadiene mit NHC-Liganden in cis- und trans-Stellung zueinander erhalten werden und durch NMR-spektroskopische Messungen und Einkristallröntgenbeugungsanalyse identifiziert werden. Die Isolierung und volle Charakterisierung sowie eine fundamentale photophysikalische Studie konnten im Rahmen dieser Arbeit aus Zeitgründen nicht beendet werden. Weiterhin wurden die optischen Eigenschaften und das Reaktionsverhalten von Rhodiumkomplexen mit einem verkürzten konjugierten -System des chromophoren Liganden untersucht. Hierbei werden zur Synthese anstatt Tetrainen, Diine eingesetzt. Die Umsetzung von [Rh(κ2-O,O-acac)(PMe3)2] mit 1,7-Diaryl-1,6-heptadiinen führt zur selektiven Bildung von 2,5 Bis(aryl)rhodacyclopentadienen. Diese Verbindungen sind jedoch nur sehr schwach fluoreszierend, was sich in Quantenausbeuten ФPL < 1% und sehr kurzen Emissionslebenszeiten in Toluol bei Raumtemperatur zeigt. Vermutlich führt Schwingung und Rotation des Bis(phenyl)butadien-Grundgerüsts vermehrt zu strahlungsloser Relaxation in den Grundzustand und ist somit für die geringeren Quantenausbeuten im Vergleich zu PMe3-Komplexen mit dem Bis(phenylethinyl)butadien-Grundgerüst verantwortlich. Phosphoreszenz konnte auch bei Tieftemperaturmessungen bei 77 K in der Glasmatrix nicht beobachtet werden. Die Reaktionen von [Rh(κ2-O,O-acac)(P(p-tolyl3)2)] mit 1,7-Diaryl-1,6-heptadiinen führten jedoch zu einer metallvermittelten oder -katalysierten Cycloadditionsreaktion von Alkinen und zur Bildung von Dimerisierungs- und Trimerisierungsprodukten. Arylphosphan-Liganden (P(Ar)3 (Ar = Aryl)) gelten als schwächere -Donorliganden und haben daher eine höhere Tendenz zur Dissoziation. Hiermit lässt sich erklären, dass Rhodium(I)-Komplexe mit Arylphosphan-Liganden eine zunehmende Tendenz haben, katalytische Reaktionen einzugehen, während die stärkeren -Donor-Liganden (PMe3 oder NHCs) die Bildung stabiler Rhodiumkomplexe begünstigen. In Kapitel 4 werden die Ergebnisse der Untersuchung von NHCs und cyclischen (Alkyl)(amino)carbenen (CAACs) präsentiert. Diese Verbindungen besitzen einzigartige elektronische und sterische Eigenschaften und sind daher als Liganden für Katalysatoren in organokatalytischen Reaktionen von großem Interesse. In dieser Arbeit werden Studien von Substitutionsreaktionen an neuartigen Carbonylkomplexen von Rhodium und Nickel vorgestellt. Zur Charakterisierung und zur Einordnung von CAACmethyl wird mit der großen Menge an Daten, die für NHCs und sterisch- anspruchsvollere CAAC-Liganden zur Verfügung stehen, ein Überblick über physikochemische Parameter (Elektronik, Sterik und Bindungsstärke) gegeben. Die Reaktion von [Rh(-Cl)(CO)2]2 mit zwei Äquivalenten CAACmethyl führte bei tiefer Temperatur zur Bildung des mononuklearen Komplexes cis-[(RhCl(CO)2(CAACmethyl)]. Bei Raumtemperatur jedoch bildeten sich durch Reaktion von [Rh(-Cl)(CO)2]2 mit CAACmethyl der mononukleare Komplex [(RhCl(CO)(CAACmethyl)2], die chlorverbrückten Komplexe [(Rh2( Cl)2(CO)3(CAACmethyl)], [Rh(-Cl)(CO)(CAACmethyl)]2 und ein Kohlenmonoxid-Aktivierungsprodukt. Das Kohlenmonoxid-Aktivierungsprodukt wird vermutlich durch Reaktion von zwei Äquivalenten des CAACs mit CO und anschließender Umlagerung durch Migration der Dipp-Gruppe gebildet. Während klassische N-heterocyclische Carbene nicht elektrophil genug sind, um mit CO zu reagieren, gehen verwandte Diamidocarbene und (Alkyl)(amino)carbene Additionsreaktionen mit CO ein. Für die selektive Synthese des CAAC-disubstituierten mononuklearen Komplexes wurden acht Äquivalente CAACmethyl mit einem Äquivalent [Rh(-Cl)(CO)2]2 umgesetzt. Für die Auswertung von TEP-Werten wurde [Ni(CO)3(CAAC)] in Zusammenarbeit mit der Gruppe um Radius synthetisiert. Durch Isolierung der Komplexe [(RhCl(CO)(CAACmethyl)2] und [Ni(CO)3(CAAC)] war es weiterhin möglich, die elektronischen und ster-ischen Parameter von CAACmethyl zu untersuchen. Genau wie die sterisch anspruchsvolleren Ver-bindungen CAACmenthyl und CAACcy, ist das Methyl substituierte CAAC im Vergleich zu üblichen NHCs ein besonders starker -Donor. Während dieser einen sehr ähnlichen TEP-Wert von 2046 cm-1 aufweist, besitzt er zusätzlich ausgezeichnete -Akzeptor-Eigenschaften (P = 67,2 ppm Phosphinidenaddukt). Durch das tiefliegende LUMO und das kleine HOMO-LUMO-Gap sind CAACs sehr effektiv für die Isolierung einer Vielzahl von ansonsten instabilen diamagnetischen und paramagnetischen Spezies von Hauptgruppen- und Übergangs-metallverbindngen. Die elektronischen Eigenschaften erlauben auch freien CAACs, kleine Moleküle mit starken Bindungen zu aktivieren. Eine neuere Entwicklung ist die Verwendung von CAACs als Liganden in Übergangsmetall-komplexen, die bisher nur als kurzlebige katalytische Zwischenstufen postuliert wurden.[271,324] Die Isolierung dieser reaktiven Spezies ermöglicht ein besseres Verständnis für bereits bekannte katalytische Reaktionen, sowie die Entwicklung neuer Katalysatoren und Anwendungen. Sol entwickelte Radius et al.[300] zum Beispiel einen CAAC-Komplex aus Kobalt als Vorläufer für die Dünnfilmabscheidung von Werkstoffen und Steffen et al.[326] berichtete von CAAC-Kupfer-Komplexen mit sehr hohen Photolumineszenz-Quantenausbeuten, die in LED Geräten eingesetzt werden könnten. Mit der Entwicklung von günstigen und flexiblen Synthesemethoden für die Herstellung von CAACs und deren entsprechenden Übergangsmetallkomplexen sowie der Kenntnis ihrer elektronischen Eigenschaften scheint es sicher, dass Anwendungen rund um dieses Ligandensystem weiter zunehmen werden. KW - Fluorescence KW - Phosphorescence KW - Rhodium KW - Sonogashira coupling KW - Carbenes KW - Übergangsmetallkomplexe KW - Rhodium KW - Lumineszenz Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-154844 ER - TY - THES A1 - Hofmann, Alexander T1 - Neue niedervalente Organoaluminiumverbindungen: Darstellung und Eigenschaften T1 - New low valent organoaluminium compounds: synthesis and reactivity N2 - Die vorliegende Arbeit befasst sich mit der Darstellung und der Reaktivität von cyclopentadienylsubstituierten, niedervalenten Aluminiumverbindungen. Mit der Einführung einer Cp*-Gruppe konnte ein neues, bromsubstituiertes Dialan dargestellt, charakterisiert und auf seine Reaktivitäten untersucht werden. Neben 1,2-Dialuminierungen von Alkinen sowie einer Nitreninsertion, war eine Lewis-Basen-induzierten Disproportionierung des Dialans zu beobachten. Die Lewis-Basen-induzierten Disproportionierung konnte angewendet werden, um eine monomere 1,3,5-Tri-tert-butylcyclopentadienyl-Al(I)-Spezies zu isolieren. Um das Reaktionsverhalten mit anderen Al(I)-Verbindungen zu vergleichen, wurden Umsetzungen mit Distickstoffmonoxid und Phenylazid untersucht. Dabei wurden ähnliche Strukturmuster wie bei den anderen Al(I)-Systemen beobachtet. Weiterhin konnten verschieden Al-B-Verbindungen mit unterschiedlichen B-Al-Bindungen dargestellt werden, unter anderem die erste B-Al-Mehrfachbindung. N2 - Within this work, the synthesis and reactivity of cyclopentadienyl substituted, low valent aluminium complexes was investigated. Introduction of a Cp*-group allowed the synthesis of a new dibromodialane. The reactivity of compound 2 includes 1,2-dialumination of alkynes, nitrene insertion into the Al-Al-Bond, and Lewis base induced disproportionation of dialane. With the method of Lewis base induced disproportionation, a monomeric 1,3,5-Tri-tert-butylcyclopentadienyl Al(I) species was isolated. For comparison of the reactivity with other Al(I)-compounds, it was reacted with Nitrous Oxide and phenylazide, obtaining structures that are similar to those obtained in analogous reactions with other Al(I)-systems. Furthermore several compounds with different B-Al-interactions were synthesized, including the first B-Al multiple bond KW - Aluminiumverbindungen KW - Koordinativ ungesättigte Verbindungen KW - Cyclopentadienylkomplexe KW - Bor-Aluminium-Verbindungen KW - Niedervalente Verbindungen Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178526 ER - TY - THES A1 - Seufert, Jens T1 - Synthese und Reduktionsverhalten neuer Lewis-Basen-Addukte des Bors sowie Redox-aktiver Ligandentransfer durch Silylene T1 - Synthesis and reduction of novel Lewis-base adducts of boron and redox-active Ligand Transfer through silylenes N2 - Im Rahmen dieser Arbeit war es möglich, diverse Lewis-Basen für deren Einsatz zur Stabilisierung niedervalenter Borverbindungen zu testen. Dabei wurden neuartige Mono- und Diboran(4)-Addukte mit mesoionischen Carbenen, Phosphanen und Alkyl-verbrückten Carbenen synthetisiert, charakterisiert und deren Reduktionsverhalten getestet. Des Weiteren konnte gezeigt werden, dass elektronenreiche Bis(amidinato)- und Bis(guanidinato)silylene eine diverse Vielfalt an Reaktionstypen induzieren und dabei zu Redox-Reaktionen und Ligandenübertrag neigen. N2 - Within the scope of this work, a variety of Lewis-bases were tested for their capability to stabilize low-valent boron compounds. Thereby, novel adducts of mono- and diboranes with mesoionic carbenes, phosphines and alkyl-bridged carbenes were synthesized, characterized and their reduction behavior was tested. Furthermore, it was shown that electron-rich bis(amidinato)- and bis(guanidinato)silylenes induce a range of interesting reactions and are prone to ligand transfer as well as redox reactions. KW - Bor KW - Reaktivität KW - Silylen KW - Carbene KW - Ligandentransfer KW - verbrückende Carbene KW - mesoionische Carbene Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173987 ER - TY - THES A1 - Meier, Michael T1 - Synthese und Eigenschaften von funktionalisierten Borolen und 1,2-Azaborininen T1 - Synthesis and properties of functionalized boroles and 1,2-azaborinines N2 - Im Rahmen dieser Arbeit konnte das Portfolio an literaturbekannten, freien Bisborolen beträchtlich erweitert werden. Die Reihe der Oligothiophen-verbrückten Borole konnte um die Vertreter der Ter- bzw. Quaterthiophene erweitert werden. Weiterhin wurden Lewisbasenaddukte mit IMes, CAAC und DMAP dargestellt und zur röntgenspektrographischen Charakterisierung herangezogen. Durch den Vergleich der spektroskopischen Daten mit den bereits literaturbekannten Vertretern wurde eine schrittweise Entwicklung der Absorptionsmaxima in Abhängigkeit der Anzahl der Thienyleinheiten detektiert. Daraus konnte sowohl auf eine Verkleinerung der HOMO-LUMO-Abstände mit zunehmender Kettenlänge, als auch die Entwicklung zu einem Grenzwert bei einer hypothetisch unendlichen Kettenlänge geschlossen werden, welcher sich bei ca. ca. 2,40 eV befindet. Weiterhin wurden 9,9-Dimethylfluoren und Biphenyl erfolgreich zu Bisborolen umgesetzt. Beide Systeme sind aufgrund ihrer strukturellen Gemeinsamkeiten sowie ihrer Vergleichbarkeit mit literaturbekannten Bis(borolyl)benzol - Verbindungen von besonderem Interesse. Zudem konnte ein Vergleich der spektroskopischen Daten aller literaturbekannten und im Rahmen dieser Arbeit dargestellten Bisborole bewerkstelligt werden. Es wurde somit gezeigt, dass heteroaromatisch-verbrückte Bisborole eine größere energetische HOMO-LUMO-Lücke aufzeigen, als aromatisch-verbrückte Systeme. Zudem spielt die Position der Borolylgruppen und der damit verbundene Grad an pi-Interaktionen eine wichtige Rolle. Die beiden im Rahmen dieser Arbeit dargestellten Systeme 1,1'-(9,9-Dimethylfluoren-2,7-diyl)bis-(2,3,4,5-tetraphenylborol) und 4,4'-Bis(2,3,4,5-tetraphenylborol-1-yl)-1,1'-biphenyl reihen sich energetisch zwischen dem 1,3- bzw. 1,4-Bis(2,3,4,5-tetraphenylborol-1-yl)benzol ein. Insbesondere der Vergleich zwischen 1,4-Bis(2,3,4,5-tetraphenylborol-1-yl)benzol und 4,4'-Bis(2,3,4,5-tetraphenylborol-1-yl)-1,1'-biphenyl offenbart keine signifikante Energiedifferenz zwischen einer Phenyl- und einer Biphenylbrücke, was ein Indiz dafür darstellt, dass die Erweiterung des Spacers um eine zweite Phenyleinheit bei analoger 1,4-Verknüpfung nahezu keinen Einfluss auf die elektronischen Eigenschaften des Systems hat. Auch die Überführung von 1,1'-(9,9-Dimethylfluoren-2,7-diyl)bis-(2,3,4,5-tetraphenylborol) und 4,4'-Bis(2,3,4,5-tetraphenylborol-1-yl)-1,1'-biphenyl in die entsprechenden 1,2-Azaborinine wurde unter Verwendung von Trimethylsilylazid bewerkstelligt. Neben der Darstellung und Untersuchung neuer Bisborole wurde 9-(Thiophen-2-yl)carbazol erfolgreich für den Aufbau borhaltiger Donor-Akzeptor-Systeme eingesetzt. Es konnten im Zuge dessen ein Borol und dessen IMes-Addukt, ein 1,2-Azaborinin sowie ein Dimesitylboryl-substituiertes Derivat dargestellt und auf ihre optischen und elektronischen Eigenschaften hin untersucht werden. Dabei stand insbesondere die elektrochemische Quantifizierung der Elektronenakzeptorstärke des Borols im Vergleich zum Dimesitylboran im Fokus. Es wurde ein signifikanter Unterschied des Borols (Epc = -1.60 V, CH2Cl2) im Vergleich zum Dimesitylboran (E1/2 = -2.39 V, THF) detektiert, woraus eine deutlich höhere Akzeptorstärke des Borols abgeleitet werden kann. Zusätzlich wurden spektroskopische und photophysikalische Untersuchungen in Abhängigkeit der jeweiligen Verbindung durchgeführt. Durch den Vergleich des energetisch niedrigsten Absorptionsmaximas des Borols mit bereits literaturbekannten, thienylsubstituierten Borolen konnte ein signifikanter Donoreinfluss der Carbazoleinheit bestätigt werden. N2 - Within the scope of this thesis, a library of novel, free bisborole compounds was prepared, characterized and their spectroscopic properties examined. Oligothiophen-bridged bisboroles could be extended to ter- and quaterthiophenes. Furthermore, Lewis base adducts with IMes, cAAC and DMAP were synthesized and characterized by X-ray crystallography. By comparing the spectroscopic data with literature-known compounds, a successive increase in the absorption maxima with the number of thiophene units could be observed/identified. Extension of the chain length leads to an increasingly smaller HOMO-LUMO gap and a limiting value of 2.40 eV considering a hypothetically infinitely long thiophene spacer. Furthermore, 9,9-dimethylfluorene and biphenyl were successfully converted into bisboroles. Both systems are of special interest due to their structural similarities and comparability to the literature-known Bis(borolyl)benzene - compounds. Additionally, a spectroscopic comparison between all new and literature-known bisboroles could be achieved during this work. It was shown that heteroaryl-brigded bisboroles offer a larger HOMO-LUMO gap then aryl-brigded systems. Furthermore the position of the borolyl groups and the degree of pi-conjugation play an important role. Both systems 1,1'-(9,9-dimethylfluorene-2,7-diyl)bis-(2,3,4,5-tetraphenylborole) and 4,4'-bis(2,3,4,5-tetraphenylborole-1-yl)-1,1'-biphenyl are found to be energetically between 1,3- and 1,4-bis(2,3,4,5-tetraphenylborole-1-yl)benzene. The comparison between 1,4-bis(2,3,4,5-tetraphenylborole-1-yl)benzene and 4,4'-bis(2,3,4,5-tetraphenylborole-1-yl)-1,1'-biphenyl shows almost no difference in energy between a phenyl- and biphenyl-bridged system, indicating that expanding the system with another phenyl unit with the same 1,4-linkage has virtually no influence on the electronic properties. Additionally, the conversion of 1,1'-(9,9-dimethylfluorene-2,7-diyl)bis-(2,3,4,5-tetraphenylborole) and 4,4'-bis(2,3,4,5-tetraphenylborole-1-yl)-1,1'-biphenyl into the corresponding 1,2-azaborinines was achieved by reaction with trimethylsilyl azide. Besides the synthesis and investigation of new bisborole compounds, 9-(thiophen-2-yl)carbazole was successfully converted into new donor-acceptor-systems. Based on this system, a borole, an IMes-adduct, an 1,2-azaborinine and also a dimesitylboryl-substituted derivative were successfully prepared, characterized and investigated for their optical and electronic properties, with focus on the electrochemical quantification of the Lewis acid strength of the borole and the dimesitylborane. A significant difference in the first reduction potentials was detected between the borole (Epc = 1.60 V, CH2Cl2) and the dimesitylborane (E1/2 = -2.39 V, THF), indicating a much higher acceptor strength of borole. Additionally, spectroscopic and photophysical investigations were performed on each of these compounds. By comparison of the lowest maximum of the borole with literature-known, thienyl-substituted boroles, a significant donor influence of the carbazole group could be confirmed. KW - Borheterocyclen KW - Fünfringheterocyclen KW - Lewis-Säure KW - Sechsringverbindungen KW - Aromatische Verbindungen KW - Borole KW - 1,2-Azaborinine KW - Donor-Brücke-Akzeptor Systeme KW - Bisborole KW - Thiophen KW - boroles KW - 1,2-azaborinines KW - donor–bridge–acceptor systems KW - bisboroles KW - thiophene Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178402 ER - TY - THES A1 - Hermann, Alexander T1 - Untersuchung von B-B-Doppelbindungen als Bestandteil konjugierter p-Systeme T1 - Integration of B-B Double Bonds in conjugated p-Systems N2 - Der erste Teil dieser Arbeit beschäftigt sich mit der "Synthese und Reaktivität sterisch anspruchsvoller Iminoborane". Dabei war es möglich, ausgehend von einem Terphenylamin geeignete Aminoborane zu synthetisieren, welche anschließend mit starken, nicht-nukleophilen Basen umgesetzt wurden. Mittels formaler HCl-Eliminierung mit LiTmp gelang auf diese Weise die Darstellung sterisch anspruchsvoller Iminoborane. Der zweite Teil dieser Arbeit befasst sich mit der "Untersuchung von B-B-Doppelbindungen als Bestandteil konjugierter p-Systeme". Durch die Verwendung von sterisch wenig anspruchsvollen Liganden oder Boryl-Substituenten war es möglich planare Diboren-Systeme zu generieren und darüberhinaus Divinyldiborene darzustellen. N2 - The first part of this work deals with the "Synthesis and Reactivity of Sterically Demanding Iminoboranes". Starting with a terphenylamine, it was possible to synthesize aminoboranes, which were then reacted with strong, non-nucleophilic bases. Formal HCl elimination mit LiTmp thus enabled the preparation of sterically demanding iminoboranes. The second part of this thesis focuses on the "Integration of B-B Double Bonds in conjugated p-Systems". By using sterically low damanding ligands or boryl-substituents it was possible to generate planar diborene structures and to synthesize divinyldiborenes. KW - Konjugation KW - Hauptgruppenelementverbindungen KW - Diborene KW - Hauptgruppenelementchemie KW - Conjugation KW - Diborene KW - Main Group Chemistry Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204592 ER - TY - THES A1 - Deißenberger, Andrea T1 - Dibortetrahalogenide für die Darstellung neuer borhaltiger Verbindungen in niedrigen Oxidationsstufen T1 - Diborontetrahalides for the synthesis of novel boron-containing compounds in low oxidation-states N2 - Im Rahmen dieser Arbeit konnten nasschemische Synthesen für Dibortetrafluorid und chlorid ausgehend von Dibortetrabromid entwickelt werden, die durch einfachen Halogenaustausch mit SbF3 bzw. GaCl3 realisiert wurden. In Verbindung mit Arbeiten von Dr. Jonas Müssig zur Synthese von B2I4 gelang die Darstellung aller vier Dibortetrahalogenide mittels einfacher Schlenktechnik basierend auf der Synthese von B2Br4 durch Nöth und Pommerening im Jahr 1981. Dibortetrachlorid konnte mit Phosphanen (PMe3, PCy3 und PPh3) und Singulett-Carbenen (IDipp und MeCAAC) zu den klassischen Bisaddukten 44−46 bzw. 54 und 55 umgesetzt werden. Die Addition eines Isonitrils (CNtBu) an B2Cl4 führte zunächst zur Ausbildung des Bisadduktes 53, allerdings konnte in Lösung eine Umlagerung beobachtet werden, deren Verlauf 11B-NMR-spektroskopisch verfolgt wurde, jedoch nicht final aufgeklärt werden konnte. Durch die Zugabe eines Unterschusses der Lewis-Basen IDipp bzw. PCy3 sollten zunächst Monoaddukte von B2Cl4 dargestellt werden, deren Umsetzung mit einer weiteren Lewis-Base die Synthese asymmetrischer Lewis-Basen-Addukte von B2Cl4 ermöglichen sollte. Die sp2-sp3-Diborane 56 und 57 konnten bei tiefen Temperaturen 11B-NMR-spektroskopisch nachgewiesen werden, allerdings führte eine Abfangreaktion mit diversen Lewis-Basen nicht zu den gewünschten asymmetrischen Addukten. Bei Raumtemperatur konnte eine Folgereaktion von 56 zur Chlorid-verbrückten kationischen Spezies 58 mit einem Tetrachloroborat-Anion beobachtet werden. Im Fall von Dibortetrafluorid konnten keine Lewis-Basen-Addukte (LB = PMe3 und MeCAAC) isoliert werden. Die Reaktivität von B2Cl4 gegenüber ungesättigten Substraten wurde anhand mehrerer literaturbekannter Beispiele (Acetylen, 2-Butin, 3-Hexin, Diphenylacetylen und Bis(trimethylsilyl)acetylen) nachvollzogen und um die terminalen Alkine Propin und 1 Hexin erweitert. Eine selektive Addition von B2Br4 an Dreifachbindungen gelang nicht. Die so erhaltenen Diborylalkene sollten zur Darstellung von 1,2-Diboreten genutzt werden, wobei zunächst über eine von Siebert et al. entwickelte Route die Bis(N,N-dialkylaminochlorboryl)alkene 67g, h, j und k dargestellt wurden. Ein nachfolgender Ringschluss unter reduktiven Bedingungen verlief nur für die Diisopropyl¬amino-substituierten Diborylalkene 67g und j selektiv und lieferte das 1,2-Dihydro-1,2-diboret 71g und das umgelagerte 1,3-Dihydro-1,3-diboret 68j. Der Austausch der Aminosubstituenten gegen Halogenide, der für eine weitere Reduktion zur B-B-Doppelbindung nötig wäre, gelang nicht. Die Umsetzung der Diborylalkene 61 (R = Me), 62 (R = Et) und 65 (R = Ph) mit Singulett-Carbenen (LB = IMe, IiPr, IDipp und MeCAAC) führte zu den chloridverbrückten Monoaddukten 74−76 und 79−81. Alle Verbindungen dieses Typs zeigten in NMR-spektroskopischen Untersuchungen ein sp2- und ein sp3-koordiniertes Borzentrum, welche für die CAAC-stabilisierten Verbindungen auch röntgenkristallografisch nachgewiesen werden konnten. Theoretische Untersuchungen bestätigten die Relevanz des verbrückenden Chloratoms zur Stabilisierung dieser Verbindungen. Für die Stammverbindung der Diborylalkene (59 (R = H)) konnte bei der Umsetzung mit MeCAAC eine unlösliche Verbindung erhalten werden, deren Struktur als Bisaddukt 82 mittels NMR-spektroskopischen Untersuchungen im Festkörper und durch Verbrennungsanalyse bestätigt werden konnte. Die Reduktion der CAAC-stabilisierten Diborylalkene 79 und 80 in Gegenwart von MeCAAC führte zu den captodativ-stabilisierten Diborylradikalen 83 und 84, deren Strukturanalyse eine orthogonale Anordnung der C2-Brücke zur B(CAAC)-Einheit offenlegt. Ausführliche EPR-spektroskopische Untersuchungen bei variabler Temperatur und theoretische Berechnungen bestätigen eine schwache Wechselwirkung der beiden Radikalzentren und einen offenschaligen Singulett-Grundzustand mit einem energetisch tiefliegenden Triplett-Zustand (ΔES T = 0.017 kcal mol−1). Der experimentell bestimmte Spin-Spin-Abstand und die Analyse der einfach besetzten Molekülorbitale (SOMO) bestätigen eine Delokalisierung der Spindichte über die NCAAC-CCAAC-B-Einheit. Der Austausch der verbrückenden Einheit und die somit einhergehende Verringerung der Sterik führt zu einer Planarisierung des Moleküls im Festkörper (87). Theoretische Untersuchungen und die Auswertung der strukturellen Parameter ergeben eine Delokalisierung der Elektronendichte über das gesamte planare System. EPR- und NMR-spektroskopische Untersuchungen ergaben dennoch Hinweise auf das Vorliegen einer paramagnetischen Verbindung. Untersuchungen zum Reduktionsverhalten von zweifach CAAC-stabilisiertem 1,4-Bis-(dibromboryl)benzol (97) ergaben die vollständige Enthalogenierung der Borzentren. Im Zuge dessen entstand ein hochreaktives, lineares Borylen, welches eine CH-Aktivierung mit dem Isopropylsubstituenten des CAAC-Liganden eingeht (98). Zur Stabilisierung des Borylens wurde die Reduktion in Gegenwart weiterer Lewis-Basen (Pyridin (Pyr), IiPr, IMeMe, PMe3, CNtBu und CO) durchgeführt, die in der Ausbildung der Diborylene 99−104 resultierten. Die Darstellung einer para-Phenylen-verbrückten Donor-Akzeptor-Verbindung (D: Borylen, A: BMes2) gelang nicht. N2 - Within the scope of this work, solution-phase syntheses of diborontetrafluoride and chloride were developed using simple halogen exchange reactions, by reacting the precursor B2Br4 with SbF3 or GaCl3, respectively. In combination with the work of Dr. Jonas Müssig on the synthesis of B2I4, the preparation of all four diborontetrahalides was achieved by usual Schlenk technique, based on the synthesis of diborontetrabromide by Nöth and Pommerening in 1981. Diborontetrachloride was reacted with phosphines (PMe3, PCy3 and PPh3) and singlet carbenes (IDipp and MeCAAC) to yield bisadducts 44, 45, 46, 54 and 55, respectively. Reaction with an isonitrile (CNtBu) initially resulted in the formation of bisadduct 53, which underwent rearrangement in solution. The process was investigated by 11B NMR spectroscopy but was not finally resolved. Addition of a substoichiometric amount of the Lewis bases IDipp and PCy3 was supposed to lead to a monoadduct which should be subsequently reacted with another Lewis base to yield an asymmetric Lewis base adduct of B2Cl4. The sp2-sp3-diboranes 56 and 57 were indeed detected by 11B NMR spectroscopy at low temperatures but could not be trapped by another Lewis base to form the desired asymmetric adducts. At room temperature 56 underwent a follow-up reaction to give the chloride-bridged cationic species 58, supported by a tetrachloroborate anion. In the case of diborontetrafluoride no Lewis base adducts (LB = PMe3 and MeCAAC) could be isolated. The reactivity of B2Cl4 towards unsaturated substrates was confirmed for several literature known examples (acetylene, 2-butyne, 3-hexyne, diphenylacetylene and bis(trimethylsilyl)acetylene) and expanded to the terminal alkynes propyne and 1-hexyne. The addition of B2Br4 to triple bonds was not selective. Those diborylalkenes should be utilized for the syntheses of 1,2-diboretes. Bis(N,N-dialkylaminochloroboryl)alkenes 67g, h, j and k were synthesized according to a route developed by Siebert et al. but the subsequent reductive ring closure was only selective for diborylalkenes bearing diisopropylamino substituents 67g and j, yielding the 1,2-dihydro-1,2-diborete 71g and the rearranged 1,3-dihydro-1,3-diborete 68j.[155] An exchange of the amino substituents for halides, which would have been necessary for a further reduction to yield a B-B double bond, was not possible. Reaction of the diborylalkenes 61 (R = Me), 62 (R = Et) and 65 (R = Ph) with singlet carbenes (LB = IMe, IiPr, IDipp and MeCAAC) led to the chloride-bridged monoadducts 74−76 and 79−81. NMR spectroscopic investigations of those examples showed an sp2- as well as an sp3-hybridized boron atom, which could be structurally determined for the CAAC-stabilized compounds by X-ray crystallography. Theoretical analyses showed the importance of the bridging chloride for the stability of these compounds. Addition of MeCAAC to the parent diborylalkene 59 (R = H) resulted in an insoluble precipitate, whose bisadduct structure 82 was confirmed by solid-state NMR spectroscopy and elemental analysis. Reduction of CAAC-stabilized diborylalkenes 79 and 80 in the presence of MeCAAC led to the formation of captodatively stabilized diborylradicals 83 and 84, whose olefinic bridging unit lies perpendicular to the B(CAAC) unit, as shown by X-ray crystallography. Detailed EPR spectroscopic investigations at variable temperature alongside with theoretical studies confirmed a weak interaction of both radical centers and an open shell singlet ground state with a triplet state negligibly higher in energy (ΔES T = 0.017 kcal mol−1). The experimentally determined interspin distance and the analysis of the singly occupied molecular orbitals (SOMO) revealed a delocalization of the spin density over the NCAAC-CCAAC-B π system. Exchange of the bridging unit accompanied by the reduction of steric crowding led to a planarization of the molecule in the solid state (87). Theoretical studies and the evaluation of the structural parameters showed the delocalization of electron density over the entire planar system. EPR and NMR spectroscopic investigations indicated a paramagnetic nature of 87. Reduction of doubly CAAC-stabilized 1,4-bis(dibromoboryl)benzene (97) resulted in complete dehalogenation of the boron centers. As a result, a highly reactive, linear borylene was formed, which underwent CH activation with the isopropyl substituent of the CAAC ligand (98). In order to stabilize the borylene, reductions were performed in the presence of other Lewis bases, such as pyridine (Pyr), IiPr, IMeMe, PMe3, CNtBu and CO, resulting in the formation of diborylenes 99−104. The attempted synthesis of a para-phenylene-bridged donor-acceptor compound (D: borylene, A: BMes2) was not successful. KW - Dibortetrahalogenide KW - Biradikal KW - Borylene KW - Borylradikale Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-187758 ER - TY - THES A1 - Paprocki, Valerie Indra Katharina T1 - Synthese und Reaktivität neuartiger Komplexe mit carbo- und heterocyclischen pi-Liganden T1 - Synthesis and reactivity of novel complexes featuring carbo- and heterocyclic pi-ligands N2 - Die vorliegende Arbeit befasst sich mit der Synthese, Charakterisierung und Reaktivität von Nebengruppen-Metallkomplexen, die mindestens einen pi-koordinierenden Liganden tragen. Im ersten Abschnitt liegt der Fokus auf heteroleptischen Systemen mit carbocyclischen Liganden, zu deren Synthese die gängige Methodik der Salzeliminierung herangezogen wird. Das Metallierungsverhalten dieser Komplexe, sowie die Reaktivität von Komplexen mit reduktionsstabilen funktionellen Gruppen an den Ligandensystemen wird untersucht. Der zweite Abschnitt behandelt die Redox- und Koordinationseigenschaften des CAAC-stabilisierten 1,4 Diborabenzols, wobei Alkali-Metalle, Gruppe 10 Metalle, Lanthanoide, sowie die Actinoide Thorium und Uran untersucht werden. N2 - The present work deals with the synthesis, characterization and reactivity studies of subgroup metal complexes bearing at least one sandwich-type carbo- or heterocyclic ligand. The first chapter covers studies on the synthesis of heteroleptic sandwich complexes employing the well-established salt-metathesis strategy. The metalation properties as well as the reactivity of the complexes is investigated. The second chapter of this work discusses further studies on the redox and coordination properties of neutral, CAAC-stabilized 1,4-diborabenze. To this end reactions with alkali and group 10 metals, elements of the lanthanides as well as the actinide metals Thorium and Uranium are reviewed. KW - Sandwich-Verbindungen KW - Metallierung KW - Diborabenzolderivate KW - Thorium KW - Uran KW - Sandwich Komplexe KW - Diborabenzol Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193707 ER - TY - THES A1 - Liu, Siyuan T1 - New Avenues in the Reactivity of Borylene Complexes T1 - Neue Wege in der Reaktivität von Borylenkomplexen N2 - The thesis is mainly about the reactivities of borylene complexes. Including the investigation of the reaction of base stabilized terminal borylene with elemental chalcogens. On the other hand the are also the reactivity of borylene with bipyridine species is also studies. A C-H activation of the Cp2WH2 using borylene is also discovered. Finally the reaction of a borylene with Lewis acids such as GaCl3 and InBr3 is also studied. N2 - Die Fragestellung der Arbeit zielte auf die Erforschung der Reaktivität von Borylenkomplexen (20, 22, 43, 50, 90, 104). Reaktionen von Übergangsmetallborylen-Komplexen wurden mit einer Reihe von verschiedenen Reagenzien untersucht, deren Produkte neuartige Bindungsmotive zeigten. Viele der Verbindungen wurden als erste Beispiele ihrer Art isoliert, mit teils sehr ungewöhnlichen strukturellen Eigenschaften. Durch spektroskopische und strukturelle Charakterisierungsmethoden wurden sowohl die Konstitution der Verbindungen bestätigt als auch ihre Bindungsverhältnisse aufgeklärt ... KW - borylene KW - chalcogen KW - Borylene KW - Chalkogene Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-184302 ER - TY - THES A1 - Auerhammer, Dominic T1 - Synthese und Reaktivität von niedervalenten Bor(I)-Verbindungen T1 - Synthesis and Reactivity of Low-valent Boron(I) Compounds N2 - Kapitel 1 Darstellung und Reaktivität des Cyanoborylens (3) Im Rahmen dieser Arbeit ist es gelungen, in einer dreistufigen Synthese das erste basenstabilisierte Cyanoborylen [(cAAC)B(CN)]4 (3) in hohen Ausbeuten darzustellen (Schema 64). Hervorzuheben ist hierbei, dass dieser Ansatz keine „klassische“ Metallborylen- Vorstufe benötigt, weshalb wenig Synthesestufen und bessere Ausbeuten erreicht werden konnten. Schema 64. Darstellung von [(cAAC)B(CN)]4 (3). Eine erste Besonderheit von [(cAAC)B(CN)]4 (3) ist, dass dieses das einzige bislang bekannte Borylen darstellt, welches eine Stabilisierung durch Oligomerisierung erfährt und somit in Folgereaktionen nicht erst in situ generiert werden muss. Die elektronische Untersuchung von 3 durch Cyclovoltammetrie hat zudem gezeigt, dass 3 ein Redoxpotential von E1/2 = −0.83 V besitzt und somit eine chemische Oxidation zu neuen Verbindungen führen könnte, was durch Umsetzung mit AgCN demonstriert wurde (Schema 65). Hierdurch konnte [(cAAC)B(CN)3] (4) erfolgreich dargestellt und vollständig charakterisiert werden. [(cAAC)B(CN)3] (4) ist erst das zweite strukturell untersuchte basenstabilisierte Tricyanoboran. Zudem wurde die Reaktivität von [(cAAC)B(CN)]4 (3) gegenüber verschiedenen Lewis-Basen untersucht. Ziel hierbei war es, das oligomere Strukturmotiv aufzubrechen und gemischte zweifach basenstabilisierte Borylene zu realisieren. Hierbei konnte eine deutliche Abhängigkeit von der Basenstärke und dem sterischen Anspruch der Lewis-Base aufgedeckt werden. So hat sich gezeigt, dass Lewis-Basen wie THF, MeCN, Pyridin und PEt3 zu schwach sind, um die oligomere Struktur aufzubrechen. Im Gegensatz dazu führten die Umsetzungen von [(cAAC)B(CN)]4 (3) mit den starken Lewis-Basen cAAC bzw. IPr zu keinerlei Umsatz, was vermutlich auf einen zu großen sterischen Anspruch zurückzuführen ist. Dementsprechend verlief die Umsetzung von [(cAAC)B(CN)]4 (3) mit der starken und sterisch nicht anspruchsvollen Base IMeMe erfolgreich und lieferte [(cAAC)B(CN)(IMeMe)] (5) in guten Ausbeuten (Schema 65). Schema 65. Umsetzung von [(cAAC)B(CN)]4 (3) mit AgCN und IMeMe. Während [(cAAC)B(CN)(PEt3)] (6) nicht durch Umsetzung von [(cAAC)B(CN)]4 (3) mit PEt3 zugänglich ist, konnte dieses jedoch auch durch Reduktion von [(cAAC)BBr2(CN)] (2) in Gegenwart von PEt3 erhalten werden (Schema 66). [(cAAC)B(CN)(PEt3)] (6) stellt hierbei das das bislang erste bekannte Phosphan-stabilisierte Borylen dar. Schema 66. Kristallstruktur und Synthese von [(cAAC)B(CN)(PEt3)] 6. Kapitel 2 Reaktivität von 3 gegenüber Chalcogenen und Chalcogeniden In weiterführenden Studien wurde zudem die Reaktivität von 3 gegenüber Chalcogenen und Chalcogeniden im Detail untersucht. Durch Verwendung der entsprechenden Stöchiometrie konnte 3 hierbei selektiv zu den Bor-Chalcogen-Heterocyclen 9, 10, 13-15 umgesetzt werden (Schema 67). Schema 67. Darstellung von 9, 10, 13-15. Diese Ergebnisse wurden anschließend mit der Reaktivität des Konstitutionsisomers LII verglichen. In diesem Zusammenhang konnten 11 und 12 durch stöchiometrische Reaktionsführung dargestellt werden (Schema 68), welche nachfolgend in die bereits erwähnten Verbindungen 9 und 10 überführt werden konnten (Schema 69). Schema 68. Darstellung von 11 und 12. Schema 69. Darstellung von 9 und 10 aus 11 bzw. 12. Des Weiteren konnte 3 erfolgreich mit Ph2Se2, Me2Se2 und Ph2S2 zu 16-18 umgesetzt werden (Schema 70), wobei 16 und 18 auch durch Umsetzung von LII mit Ph2Se2 bzw. Ph2S2 zugänglich sind (Schema 70). Schema 70. Synthese von 16-18. Das tetramere Borylen 3 und das Diboren LII zeigen ähnliche Reaktivitäten gegenüber elementaren Chalcogenen sowie Dichalcogeniden. Lediglich die Darstellung der dreigliedrigen B2E-Heterocyclen 11 und 12 gelingt selektiv nur ausgehend von LII. Kapitel 3 Darstellung und Reaktivität des Borylanions (19) Ein weiterer Aspekt dieser Arbeit beschäftigte sich mit der Synthese und Reaktivität des Borylanions 19, eines der wenigen bekannten nukleophilen Borspezies. Der Zugang zu 19 durch Deprotonierung von 1 (Schema 71) ist hierbei besonders bemerkenswert, da es eine bis dato kaum bekannte bzw. verwendete Methode ist, da borgebundene Wasserstoffatome in der Regel hydridischer Natur sind, weshalb eine Deprotonierung normalerweise nicht möglich ist und nur für zwei weitere Systeme beschrieben ist. Hierzu zählen die Synthese des Dianions XLVII[6a, 6b] und die Synthese des Borylanions XLVIII[45]. Eine Gemeinsamkeit dieser drei Spezies ist die Gegenwart elektronenziehender Cyanidsubstituenten welche eine Umpolung der B‒H-Bindung bedingen, wodurch eine Deprotonierung erst ermöglicht wird. Schema 71. Synthese von 19. Um diesen Sachverhalt genauer zu untersuchen, wurden Rechnungen durchgeführt und die partiellen Ladungen (NBO) des borgebunden Wasserstoff an BH3, [(cAAC)BH3] und 1 auf dem BP86/def2-SVP-Niveau berechnet (Abbildung 53). Abbildung 53. Teilladungen (NBO) von BH3, [(cAAC)BH3] und 1 (BP86/def2-SVP). Durch Austausch eines der Hydride in [(cAAC)BH3] durch eine Cyanogruppe werden die borgebunden Wasserstoffe in 1 deutlich protischer (+0.038, +0.080), wobei schon durch Koordination des cAAC-Liganden an BH3 zwei der vorher hydridischen Wasserstoffe (BH3: partielle Ladung: –0.101) erheblich positiver geladen wird (+0.050). Der nukleophile Charakter von 19 wurde anschließend durch Reaktivitätsstudien untersucht. So führte die Umsetzung von 19 mit [(PPh3)AuCl] zur Bildung von [(cAAC)BH(CN)(AuPPh3)] (20) (Schema 72). Während die Umsetzung von 19 mit Tritylderivaten keine isolierbare Verbindung lieferte, konnte durch Umsetzung mit den schweren, weichen Homologen R3ECl (R = Ph, E = Ge, Sn und Pb; R = Me, E = Sn) eine ganze Reihe von Boranen dargestellt werden (Schema 72). Schema 72. Synthese von 20-24. Die Umsetzung der entsprechenden Silylderivate R3SiCl war hingegen mit einem anderen Reaktionsverlauf verbunden (Schema 73). Schema 73. Synthese von 25-28. Demnach erfolgt die Reaktion von 19, im Gegensatz zu den höheren Homologen, mit den Silylderivaten nicht am weichen, nukleophilen Borzentrum sondern am härteren Cyanostickstoffatom. Demzufolge wurden hierbei zunächst die Silylisonitrilverbindungen 25 und 26 gebildet, wobei 25 labil ist und innerhalb kürzester Zeit in 27 übergeht. Im Gegensatz dazu konnte 28 nur durch Bestrahlung von 26 dargestellt werden. Die Bindungsverhältnisse in 26 wurden zudem auch durch DFT-Rechnungen auf dem BP86/def2-SVP-Niveau untersucht. Die Analyse der Kohn–Sham MOs offenbarte hierbei ein HOMO mit π-Bindungscharakter über die gesamte CcAAC‒B‒CCN-Einheit mit angrenzendem π-Antibindungscharakter über die C‒NEinheiten beider Donorliganden (Abbildung 54). Abbildung 54. Gemessene (links) und berechnete (mitte) Struktur und HOMO (rechts) von 26. Während die Umsetzung von 26 mit Cu(I)Cl dessen hohes Reduktionsvermögen verdeutlichte, führte die Umsetzung mit Lithium in THF zur Bildung des Borylanions 19 und LiSiPh3. Die Reaktion von 26 mit BH3∙SMe2 lieferte hingegen quantitativ [(cAAC)BH3] (29), während bei Umsetzung mit Ph3SnCl quantitativ 22 gebildet wurde (Schema 74). Dieses sehr unterschiedliche Reaktionsverhalten rechtfertigt eine Beschreibung von 26 sowohl als ein Silylisonitrilborylen, als auch eine zwitterionische Silyliumboryl-Spezies. Schema 74. Ambiphile Reaktivität von 26 als neutrales Silylisonitrilborylen (A) oder als zwitterionische Silyliumboryl-Spezies (B). Kapitel 4 Darstellung und Reaktivität von [(cAAC)BH3] (29) Da 1 selektiv deprotoniert werden kann und [(cAAC)BH3] (29) Rechnungen zufolge ebenfalls borgebundene Wasserstoffe mit protischem Charakter besitzt, wurde versucht, diese Reaktivität auf 29 zu übertragen. Demzufolge wurde im Rahmen dieser Arbeit [(cAAC)BH3] (29) dargestellt und dessen Reaktivität gegenüber anionischen (Schema 75) und neutralen (Schema 76) Nukleophilen untersucht. Es hat sich jedoch gezeigt, dass die Umsetzung von [(cAAC)BH3] (29) mit Lithiumorganylen nicht zur Deprotonierung führt, sondern zur Bildung der Lithiumborate 30, 32 und 34, unabhängig von der Hybridisierung des Lithiumorganyls (sp3: LiNp, sp2: LiMes, sp: LiCCPh). Der Reaktionsmechanismus wurde durch DFT-Rechnungen untersucht (Abbildung 47). Diese zeigen eindeutig, das [(cAAC)BH3] (29) in einem Gleichgewicht mit dem entsprechenden Boran [(cAAC‒H)BH2] steht. Bei der stark exergonischen nukleophilen Addition der entsprechenden Basen wird [(cAAC‒H)BH2] aus dem Gleichgewicht entfernt (30: −29.6 kcal∙mol‒1; 32: ‒12.4 kcal∙mol‒1) und die Lithiumborate 30 und 32 gebildet. Diese Lithiumborate gehen dann durch Reaktion mit Me3SiCl in die entsprechenden cAACBoranaddukten 31, 33 und 35 über (Schema 75). Schema 75. Synthese von 30-35. Diese zweistufige Synthese ist deshalb bemerkenswert, da dies einer ungewöhnlichen Substitution an einem sp3-Boran gleichkommt. Des Weiteren wurde die Reaktivität von [(cAAC)BH3] (29) gegenüber neutralen Lewis-Basen untersucht. So konnte bei der Umsetzung mit cAAC Verbindung 36 und bei der Umsetzung mit Pyridin Verbindung 37 erhalten werden (Schema 76). Schema 76. Synthese von 36 und 37. Der Mechanismus der Bildung von 36 und 37 wurde ebenfalls durch DFT-Rechnungen untersucht, welche auf eine reversible Reaktion des Pyridin-Addukts 37 hindeutet. Dies konnte auch experimentell bestätigt werden. Im Gegensatz dazu ist die Bildung von 36 irreversibel. Kapitel 5 Darstellung und Vergleich neuer Diborene Im Rahmen dieser Arbeit ist es zudem gelungen, eine Reihe an NHC-Boranaddukten (42-50) darzustellen und diese zum Großteil in die entsprechenden Diborene (51-58) zu überführen (Schema 77). Schema 77. Synthese der NHC-Boranaddukte 42-50 sowie deren Umsetzung zu den Diborenen 51-58. Die meisten Verbindungen konnten hierbei vollständig charakterisiert und somit die NMR-spektroskopischen und strukturellen Daten miteinander verglichen werden. Die 11B-NMRSignale von 51-58 wurden in einem engen Bereich (20.2 bis 22.5 ppm) beobachtet, welcher sich mit dem von X und XI (21.3 und 22.4 ppm)[17] deckt. Im Festkörper weisen die Diborene einen B‒B-Abstand zwischen 1.576(4) Å (51) und 1.603(4) Å (54) auf, ohne dass ein Trend erkennbar ist. Dieser Bereich ist zudem nahezu identisch mit bereits bekannten IMe-stabilisierten 1,2-Diaryldiborenen (1.585(4) bis 1.593(5) Å).[16-17] Einige dieser Diborene sind durch die entsprechende Wahl des Substitutionsmusters sehr labil und konnten deshalb nicht isoliert werden. Es ist dennoch gelungen UV-vis-spektroskopische Daten von 51, 52, 57 und 58 zu erhalten (Abbildung 55). Abbildung 55. UV-vis-Absorptionsspektren von 51, 52, 57 und 58. Die genaue Analyse der UV-vis-Spektren von 51, 52, 57 und 58 offenbart eine gewisse Abhängigkeit der Maxima vom Substitutionsmuster. Der Vergleich der Diborene 51-58 hat gezeigt, dass das Substitutionsmuster einen entscheidenden Einfluss auf die Lage der Grenzorbitale hat, was die Eigenschaften der Diborene deutlich verändert. So führte die Einführung einer Diphenylaminogruppe am Thienylrest zur Aufhebung der Koplanarität der Th‒B=B‒Th-Ebene, weshalb die entsprechenden Spezies durch die fehlende π-Konjugation sehr labil sind. Diese Beeinflussung der Koplanarität konnte bereits in kleinem Ausmaß bei der Substitution durch eine Me3Si-Gruppe beobachtet werden. Auch der Einfluss unterschiedlicher NHCs wurde untersucht. Während die Einführung von IMeMe kaum einen Einfluss auf die Absorptionsmaxima zeigt, führt die Verwendung von IPr zu einer deutlichen Verschiebung. Als das stabilste Diboren erwies sich im Rahmen dieser Untersuchung das [(IMe)BTh)]2 (X). N2 - Chapter 1 Synthesis and reactivity of cyanoborylene 3 In the context of this work, a successful high-yielding three-step synthesis of the first basestabilised cyanoborylene [(cAAC)B(CN)]4 (3) was developed (Scheme 1). It should be emphasized that this approach does not involve a „classical“ metal borylene precursor, which is why fewer synthetic steps and better yields could be achieved. Scheme 1. Synthesis of the tetrameric borylene [(cAAC)B(CN)]4 (3). The first notable feature of borylene 3 is its unique self-stabilising nature via oligomerization, which means that it does not have to be generated in situ. The electronic properties of 3 were investigated by cyclic voltammetry, showing an oxidation wave at E1/2 = −0.83 V, implying that chemical oxidation could lead to new compounds. This was demonstrated by the reaction with AgCN (Scheme 2) which yielded [(cAAC)B(CN)3] (4). Compound 4 is only the second structurally characterized base-stabilized tricyanoborane. Additionally, the reactivity of 3 with different Lewis bases was investigated. The aim was to break up the tetrameric structural motif and obtain mixed base-stabilized borylenes. This study demonstrated dependence on the strength and steric demands of the Lewis base. Weak Lewis bases such as THF, MeCN, pyridine and PEt3 proved too weak to break up the tetrameric structure. Similarly, the reaction of 3 with strong Lewis bases such as cAAC or IPr remained unsuccessful, probably due to a too large steric hindrance. In contrast, the reaction of 3 with the strong and sterically non-demanding base IMeMe successfully yielded the mixed base borylene [(cAAC)B(CN)(IMeMe)] (5) in high yields (Scheme 2). Scheme 2. Reactions of [(cAAC)B(CN)]4 (3) with AgCN and IMeMe. While [(cAAC)B(CN)(PEt3)] (6) could not obtained by reaction of 3 with PEt3, this could be achieved by reducing [(cAAC)BBr2(CN)] (2) in the presence of excess PEt3 (Scheme 3). [(cAAC)B(CN)(PEt3)] (6) represents the first known phosphine-stabilized borylene. Scheme 3. Synthesis of [(cAAC)B(CN)(PEt3)] 6. Chapter 2 Reactivity of 3 toward chalcogens and chalcogenides In further studies, the reactivity of 3 towards elemental chalcogens was investigated in detail. By using the appropriate stoichiometry, 3 could be selectively converted to the four-, five- or six-membered diborachalcogen heterocycles 9, 10, 13-15 (Scheme 4). Scheme 4. Synthesis of 9, 10, 13-15 from 3. These results were then compared with the reactivity of the constitutional isomer of 3, diborene LII towards elemental chalcogens. In this context, the 3-membered B2E heterocycles 11 and 12 could be prepared by stoichiometric reaction (Scheme 5). These could subsequently be converted into the four-membered B2E2 heterocycles 9 and 10 already mentioned (Scheme 6). Scheme 5. Synthesis of 11 und 12 from diborene LII. Scheme 6. Synthesis of 9 and 10 by ring-expansion of 11 or 12. Furthermore, borylene 3 was successfully converted to the boron dichalcogenides 16-18 with Ph2Se2, Me2Se2, and Ph2S2 (Scheme 7). 16 and 18 were also accessible by reaction of diborene LII with Ph2Se2 and Ph2S2, respectively (Scheme 7). Scheme 7. Synthesis of dichalcogenides 16-18 from borylene 3 and diborene LII. The tetrameric borylene 3 and the diborene LII show similar reactivities towards elemental chalcogens and dichalcogenides. Only the synthesis of the 3-membered B2E heterocycles 11 and 12 succeeds exclusively from LII. Chapter 3 Synthesis and reactivity of the boryl anion (19) Another aspect of this work was the synthesis and reactivity of the (cyano)hydroboryl anion 19, a rare example of a nucleophilic boron species. The access to 19 by deprotonation of the (dihydro)cyanoborane 1 (Scheme 8) is particularly noteworthy, since boron-bonded hydrogen atoms are usually hydridic in nature and not amenable to deprotonation. Only two other systems allowing the deprotonation of a borane have been described. The tricyano-boryl dianion XLVII[6a, 6b] and the synthesis of the dicyanoboryl anion XLVIII[45]. A common feature of these three species is the presence of electron-withdrawing cyanide substituents, which cause an Umpolung of the B−H bond, thus enabling deprotonation. Scheme 8. Synthesis and solid state structure of the boryl anion 19. To investigate this peculiary more closely, calculations were carried out on the BP86/def2-SVPLevel and the partial charges (NBO) of boron-bound hydrogen at BH3, [(cAAC)BH3] and 1 calculated (Figure 1). Figure 1. Partial charges (NBO) of BH3, [(cAAC)BH3] and 1 (BP86/def2-SVP). By replacing one of the hydrides in [(cAAC)BH3] by a cyano group, the boron-bound hydrogens in 1 become significantly more protic (+0.038, +0.080). Even coordination of the cAAC ligand to BH3 results in two of the previously hydridic hydrogens (BH3: partial charge: –0.101) to became much more positive (+0.050). The nucleophilic character of 19 was then examined by reactivity studies. For example, the reaction of 19 with [(PPh3)AuCl] led to the formation of the gold boryl complex [(cAAC)BH(CN)(AuPPh3)] (20) (Scheme 9). While the reaction of 19 with trityl derivatives did not yield any isolable compound, reactions with the heavier group 14 homologues R3ECl (R = Ph, E = Ge, Sn und Pb; R = Me, E = Sn) yielded a series of triorganotetrel boranes, compounds 21-24 (Schema 9). Scheme 9. Synthesis of 20-24 from boryl anion 19. The reaction of the corresponding silyl derivatives R3SiCl with 19, however, provided a different course of reaction (Scheme 10). Scheme 10. Synthesis of 25-28 from boryl anion 19. In contrast to the higher homologues, the reaction of 19 with the silyl derivatives occurs not at the soft, nucleophilic boron center but at the harder cyano nitrogen atom. The silylisonitrile compounds 25 and 26 were initially formed as the kinetic products. However, 25 was labile and transformed rapidly into the silylborane 27. In contrast, the silylborane 28 could only be obtained by irradiation of 26. In addition, the bonding situation in 26 were examined by DFT calculations at the BP86/def2-SVP level. The Kohn–Sham MO analysis revealed a HOMO with π-character over the entire CcAAC‒B‒CCN unit with contiguous π-antibonding character across the C‒N units of both donor ligands (Figure 2). Figure 2. X-ray crystallographic (left) and calculated (center) structure and HOMO (right) of 26 (BP86/def2-SVP). The electronic nature of 26 was also investigated experimentally. While the reaction of 26 with Cu(I)Cl, which yielded Cu(0), demonstrated its high reducing power, the reaction with elemental lithium in THF led to the formation of the boryl anion 19 and LiSiPh3. In contrast, the reaction of 26 with BH3∙SMe2 quantitatively gave [(cAAC)BH3] (29), while the (triphenyltin)borane 22 was quantitatively formed upon reaction with Ph3SnCl (Scheme 11). This divergent reaction behavior justifies a description of 26 as both a silylisonitrile borylene and a zwitterionic silylium boryl species. Scheme 11. Ambiphilic reactivity of 26 as a neutral silylisonitrile borylene (A) or as a zwitterionic silylium boryl species (B). Chapter 4 Synthesis and reactivity of [(cAAC)BH3] (29) Since [(cAAC)BH2(CN)] 1 can be selectively deprotonated and [(cAAC)BH3] (29) also dispays slightly protic boron-bound hydrogens (see Figure 1), attempts were made to deprotonate 29. For this purpose [(cAAC)BH3] (29) was synthesized and its reactivity towards anionic (Scheme 12) and neutral (Scheme 13) nucleophiles was investigated. Instead of a deprotonation, the reaction of [(cAAC)BH3] (29) with organolithium compounds leads tot he formation of lithium borates 30, 32 and 34, in which a hydrogen has migrated from boron to cAAC and the organic residue is bound to the boroncenter. This reactivity is applicable to sp3-, sp2- and sp-hybridized organolithium compounds. The reaction mechanism was also examined by DFT-calculations. These clearly show that [(cAAC)BH3] (29) is in equilibrium with the tautomeric borane [(cAAC‒H)BH2] by migration of one hydrogen from boron to cAAC. The strongly exergonic nucleophilic addition of the LiR bases with [(cAAC‒H)BH2] (30: ‒29.6 kcal∙mol‒1; 32: ‒12.4 kcal∙mol‒1) directly leads to the formation of the lithium borates 30 and 32. The latter then react with Me3SiCl under elimination of LiCl and Me3SiH to form the cAAC-borane adducts 31, 33 and 35 (Scheme 12). Scheme 12. Synthesis of 30-35 by direct nucleophilic substitution at sp3-boron. This two-step synthesis is remarkable because it is effectively an unusual substitution at a sp3-borane. Furthermore, the reactivity of [(cAAC)BH3] (29) towards neutral Lewis bases was investigated. Thus, [(cAAC−H)BH2(cAAC)] 36 was obtained from the reaction with cAAC and [cAAC−H)BH2(pyr)] 37 from the reaction with pyridine (Scheme 13). Scheme 13. Synthesis of 36 and 37 from 29. The mechanism of formation of 36 and 37 was also investigated by DFT calculations, which suggest reversible formation of the pyridine adduct 37. This was also confirmed experimentally in solution by a Van´t Hoff equilibrium analysis and in the solid state by removal of pyridine from 37 to yield pure 29. In contrast, the formation of 36 is irreversible. Chapter 5 Synthesis and comparison of new diborenes In the context of this work, a series of new NHC thienylborane adducts (42-50) was also synthesized and successfully reduced to the corresponding diborenes (51-58) in the majority of cases (Scheme 14). Scheme 14. Synthesis of NHC thienylborane adducts 42-50 and the rediction to the corresponding diborenes 51-58. Most of the compounds were completely characterized, enabling comparison of NMR spectroscopic and structural data. The 11B NMR resonances of 51-58 were observed within a narrow range (20.2 to 22.5 ppm), which was consistent with that of previously reported analogues X and XI (21.3 and 22.4 ppm).[17] In the solid state, the diborenes displayed a B−B distance of 1.576(4) Å (51) to 1.603(4) Å (54), with no apparent trend, depending on their substitution. These bond lenghts are almost identical to already known IMe-stabilized 1,2-diaryldiborenes (1.585(4) to 1.593(5) Å).[16-17] Some of these diborenes were not stable in solution depending on the substitution pattern, and therefore could not be isolated. Nevertheless, UV-vis spectroscopic data of 51, 52, 57 and 58 were obtained (Figure 3). Figure 3. UV-vis-absorption spectra of 51, 52, 57 and 58. Careful analysis of the UV-vis spectra of 51, 52, 57 and 58 revealed some dependence of the absorption maxima upon the substitution patter of the thienyl substituents and the NHC ligands. The comparison of diborene 51-58 showed that the substitution pattern has a decisive influence on the position of the frontier orbitals, which significantly alters the properties of the diborene. Thus, the introduction of a diphenylamino group on the thienyl residue prevents the coplanarity of the thiophenes with the diborene plane, which is why these species are very unstable due to the lack of π-conjugation. This influence on coplanarity and stability was also observed, albeit to a lesser extent, in the Me3Si-substituted thiophene derivatives. The influence of different NHCs was also investigated. While the introduction of IMeMe has nearly no influence on the absorption maxima, the use of IPr leads to a significant shift. Within this study the most stable diborene proved to be [(IMe)BTh]2 (X). KW - Borylene KW - Borylene KW - Diboren KW - Borylanion KW - cAAC KW - niedervalent KW - Diborene KW - low-valent Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158866 ER - TY - THES A1 - Nutz, Marco T1 - Synthese und Reaktivität terminaler Arylborylenkomplexe der Gruppe 6 T1 - Syntheses and reactivity of terminal Arylborylen complexes of Group 6 N2 - Die Synthese unterschiedlicher terminaler Gruppe 6 Borylenkomplexe wurde durchgeführt. Dabei wurden neben NMR- und IR-spektroskopischen Untersuchungen, die Identitäten der Verbindungen mittels Röntgenkristallographie festgestellt. Ferner wurden Studien zur Reaktivität des nucleophilen Borzentrums in diesen Verbindungen durchgeführt und die erhaltenen Reaktionsprodukte ebenfalls durch die oben genannten Spektroskopiemethoden charakterisiert. Dabei lag das Augenmerkt besonders auf der Darstellung von monovalenten Borverbindungen, sowie Verbindungen mit Bor-Element-Mehrfachbindungen. N2 - Synthesis and reactivity of group 6 arylborylene complexes. Characterization via NMR, IR spectroscopy and X-Ray analysis. KW - Borylene KW - Borylenkomplexe KW - Bor-Übergangsmetallkomplexe KW - Borkomplexe Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-154859 ER - TY - THES A1 - Gackstatter, Annika T1 - Reaktivität von Boranen gegenüber Hauptgruppenelement-Lewisbasen und Reaktiviät von Lanthanoid- und Actinoidkomplexen gegenüber Boranen T1 - Reactivity of boranes against maingroup element Lewis bases and Reactivity of Lanthanide and actinide complexes against boranes N2 - Die Reaktivität acyclischer Carbene, N-heterocyclischer Silylene und Germylene gegenüber verschiedenen Boranen sowie die weitere Reaktivtät der erhaltenen Verbindungen wird untersucht. Im zweiten Teil wird die Darstellung und Reaktiviert einiger Thorium- und Lanthanoidhydridoboratkomplexe genauer beleuchtet. N2 - The reactivity of acyclic carbenes, N-heterocyclic silylenes and germylenes with different boranes and the reactivity of obtained substances is studied in detail. The second part deals with the synthesis and reactivity of thorium and lanthanide hydridoborate complexes. KW - Thorium KW - Silylen KW - Boran KW - Lanthanoide KW - Carbene KW - NHSi KW - ADC KW - NHGe Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149452 ER - TY - INPR A1 - Englert, Lukas A1 - Stoy, Andreas A1 - Arrowsmith, Merle A1 - Müssig, Jonas H. A1 - Thaler, Melanie A1 - Deißenberger, Andrea A1 - Häfner, Alena A1 - Böhnke, Julian A1 - Hupp, Florian A1 - Seufert, Jens A1 - Mies, Jan A1 - Damme, Alexander A1 - Dellermann, Theresa A1 - Hammond, Kai A1 - Kupfer, Thomas A1 - Radacki, Krzysztof A1 - Thiess, Torsten A1 - Braunschweig, Holger T1 - Stable Lewis Base Adducts of Tetrahalodiboranes: Synthetic Methods and Structural Diversity T2 - Chemistry - A European Journal N2 - A series of 22 new bis(phosphine), bis(carbene) and bis(isonitrile) tetrahalodiborane adducts has been synthesized, either by direct adduct formation with highly sensitive B2X4 precursors (X = Cl, Br, I) or by ligand exchange at stable B2X4(SMe2)2 precursors (X = Cl, Br) with labile dimethylsulfide ligands. The isolated compounds have been fully characterized using NMR spectroscopic, (C,H,N)- elemental and, for 20 of these compounds, X-ray crystallographic analysis, revealing an unexpected variation in the bonding motifs. Besides the classical B2X4L2 diborane(6) adducts, some of the more sterically demanding carbene ligands induce a halide displacement leading to the first halide-bridged monocationic diboron species, [B2X3L2]A (A = BCl4, Br, I). Furthermore, low-temperature 1:1 reactions of B2Cl4 with sterically demanding N-heterocyclic carbenes led to the formation of kinetically unstable mono-adducts, one of which was structurally characterized. A comparison of the NMR and structural data of new and literature-known bis-adducts shows several trends pertaining to the nature of the halides and the stereoelectronic properties of the Lewis bases employed. KW - diborane(6) KW - Lewis-base adducts KW - ligand exchange KW - crystallography KW - NMR spectroscopy Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-184888 N1 - This is the pre-peer reviewed version of the following article: L. Englert, A. Stoy, M. Arrowsmith, J. H. Muessig, M. Thaler, A. Deißenberger, A. Häfner, J. Böhnke, F. Hupp, J. Seufert, J. Mies, A. Damme, T. Dellermann, K. Hammond, T. Kupfer, K. Radacki, T. Thiess, H. Braunschweig, Chem. Eur. J. 2019, 25, 8612. https://doi.org/10.1002/chem.201901437, which has been published in final form at https://doi.org/10.1002/chem.201901437. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. ER - TY - THES A1 - Merz, Julia T1 - C-H Borylation: A Route to Novel Pyrenes and Perylenes and the Investigation of their Excited States and Redox Properties T1 - C-H Borylierung: Eine Route zu neuen Pyrenen und Perylenen und die Untersuchung der angeregten Zustände und Redoxeigenschaften N2 - Pyrene is a polycyclic aromatic hydrocarbon (PAH) that has very interesting photophysical properties which make it suitable for a broad range of applications. The 2,7-positions of pyrene are situated on nodal planes in both the HOMO and LUMO. Hence, electrophilic reactions take place at the 1-, 3-, 6-, and 8-positions. The goal of this project was to develop novel pyrene derivatives substituted at the 2- and 2,7-positions, with very strong donors or/and acceptors, to achieve unprecedented properties and to provide a deeper understanding of how to control the excited states and redox properties. For that reason, a julolidine-type moiety was chosen as a very strong donor, giving D-π and D-π-D systems and, with Bmes2 as a very strong acceptor, D-π-A system. These compounds exhibit unusual photophysical properties such as emission in the green region of the electromagnetic spectrum in hexane, whereas all other previously reported pyrene derivatives substituted at the 2,7-positions show blue luminescence. Furthermore, spectroelectrochemical measurements suggest very strong coupling between the substituents at the 2,7-positions of pyrene in the D-π-D system. Theoretical studies show that these properties result from the very strong julolidine-type donor and Bmes2 acceptor coupling efficiently to the pyrene HOMO-1 and LUMO+1, respectively. Destabilization of the former and stabilization of the latter lead to an orbital shuffle between HOMO and HOMO 1, and LUMO and LUMO+1 of pyrene. Consequently, the S1 state changes its nature sufficiently enough to gain higher oscillator strength, and the photophysical and electrochemical properties are then greatly influenced by the substituents. In another project, further derivatives were synthesized with additional acceptor moieties at the K-region of pyrene. These target derivatives exhibit strong bathochromically shifted absorption maxima (519-658 nm), which is a result of the outstanding charge transfer character introduced into the D-π-D pyrene system through the additional acceptor moiety at the K-region. Moreover, emission in the red to NIR region with an emission maximum at 700 nm in CH2Cl2 is detected. The excited state lives unusual long for K-region substituted pyrenes; however, such a lifetime is rather typical for 2,7-substituted pyrene derivatives. The polycyclic aromatic hydrocarbon perylene, especially perylene diimide, has received considerable attention in recent years and has found use in numerous applications such as dyes, pigments and semiconductors. Nevertheless, it is of fundamental importance to understand how to modulate the electronic and photophysical properties of perylene depending on the specific desired application. Perylenes without carboxyimide groups at the peri positions are much less well studied due to the difficulties in functionalizing the perylene core directly. In particular, only ortho heteroatom substituted perylenes have not been reported thus far (exception: (Bpin)4-Per was already reported by Marder and co-workers). Thus, the effect of substituents on the ortho positions of the perylene core has not been investigated. Two perylene derivatives were synthesized that bear four strong diphenylamine donor or strong Bmes2 acceptor moieties at the ortho positions. These compounds represent the first examples of perylenes substituted only at the ortho positions with donors or acceptors. The investigations show that the photophysical and electronic properties of these derivatives are unique and different compared to the well-studied perylene diimides. Thus, up to four reversible reductions or oxidations are possible, which is unprecedented for monomeric perylenes. Furthermore, the photophysical properties of these two ortho-substituted derivatives are unusual compared to reported perylenes on many regards. Thus, large Stokes shifts are obtained, and the singlet excited state of these derivatives lives remarkably long with intrinsic lifetimes of up to 94 ns. In a cooperation with Dr. Gerard P. McGlacken at University College Cork in Ireland, different quinolones were borylated using an iridium catalyst system to study the electronic and steric effect of the substrates. It was possible to demonstrate that the Ir-catalyzed borylation with the dtbpy ligand allows the direct borylation of various 4-quinolones at the 6- and 7-positions. Thus, later stage functionalization is possible with this method and more highly functionalized quinolones are also compatible with this mild reaction conditions. N2 - Pyren ist ein polycyclischer aromatischer Kohlenwasserstoff (PAK) mit sehr interessanten photophysikalischen Eigenschaften, der sich daher für ein breites Anwendungsspektrum eignet. Die 2,7-Positionen von Pyren befinden sich sowohl im HOMO als auch im LUMO auf Knotenebenen. Daher finden elektrophile Reaktionen an den 1-, 3-, 6- und 8-Positionen statt. Das Ziel dieses Projekts war die Entwicklung neuer Pyrenderivate, die an den 2- und 2,7-Positionen substituiert sind und sehr starke Donoren oder / und Akzeptoren aufweisen, um beispiellose Eigenschaften zu erzielen und ein tiefgreifenderes Verständnis für die Steuerung der angeregten Zustände und Redoxzustände zu erhalten. Aus diesem Grund wurde die Julolidin-Einheit als sehr starker Donor gewählt um D-π und D-π-D -Systeme zu entwickeln und mit Bmes2 als sehr starker Akzeptor wurde ein D-π-A System entwickelt. Diese Verbindungen zeigen ungewöhnliche photophysikalische Eigenschaften wie die Emission im grünen Bereich des elektromagnetischen Spektrums in Hexan, während alle anderen zuvor beschriebenen Pyrenderivate, die an den 2,7-Positionen substituiert sind, blaue Lumineszenz zeigen. Darüber hinaus legen spektroelektrochemische Messungen eine unerwartet starke Kopplung zwischen den Substituenten an den 2,7-Positionen von Pyren im D-π-D-System nahe. Theoretische Studien zeigen, dass diese Eigenschaften aus der sehr starken Kopplung zwischen dem Julolidin-Donor und Bmes2-Akzeptor mit dem Pyren HOMO-1 bzw. LUMO + 1 resultieren. Die Destabilisierung des Ersteren und die Stabilisierung des Letzteren führen zu einem Orbital-Shuffle zwischen HOMO und HOMO-1 und LUMO und LUMO+1 von Pyren. Folglich ändert der S1-Zustand seinen Charakter ausreichend, um eine höhere Oszillatorstärke zu erzielen. Die photophysikalischen und elektrochemischen Eigenschaften werden damit stark von den Substituenten beeinflusst. In einem weiteren Projekt wurden weitere Derivate mit zusätzlichen Akzeptoreinheiten in der K-Region von Pyren synthetisiert. Alle Zielderivate weisen starke bathochrom verschobene Absorptionsmaxima (519-658 nm) auf, was auf den hervorragenden Ladungstransfercharakter zurückzuführen ist, der durch die zusätzliche Akzeptoreinheit in der K-Region in das D-π-D-Pyrensystem eingeführt wurde. Emission im Rot-NIR-Bereich mit einem Emissionsmaximum bei 700 nm in CH2Cl2 wurde sogar detektiert. Der angeregte Zustand ist ungewöhnlich langlebig für K-substituierte Pyrene, diese sind jedoch typisch für 2,7-substituierte Pyrenderivate. Der polycyclische aromatische Kohlenwasserstoff Perylen, insbesondere Perylendiimid, erlangte in den letzten Jahren beträchtliche Aufmerksamkeit und fand Verwendung in zahlreichen Anwendungen wie Farbstoffen, Pigmenten oder Halbleitern. Dennoch ist es von grundlegender Bedeutung zu verstehen, wie die elektronischen und photophysikalischen Eigenschaften von Perylen in Abhängigkeit von der spezifischen gewünschten Anwendung moduliert werden können. Perylene ohne Carboxyimidgruppen an den Peripositionen sind aufgrund der Schwierigkeiten bei der direkten Funktionalisierung des Perylenkerns bislang kaum untersucht worden. Ziel dieses Projektes war es den bisher unbekannten Einfluss von Substituenten auf die ortho-Positionen des Perylenkerns zu untersuchen. Es wurden zwei Perylenderivate synthetisiert, die an den ortho-Positionen vier starke Diphenylamin-Donor oder vier starke Bmes2-Akzeptor-Einheiten aufweisen. Diese Verbindungen stellen die ersten Beispiele für Perylene dar, die nur an den ortho-Positionen mit Donoren oder Akzeptoren substituiert sind. Die Untersuchungen zeigen, dass die photophysikalischen und elektronischen Eigenschaften dieser Derivate im Vergleich zu den gut untersuchten Perylendiimiden einzigartig sind. Somit sind bis zu vier reversible Reduktionen oder Oxidationen dieser Verbindungen möglich, was für monomere Perylene bisher beispiellos ist. Darüber hinaus sind die photophysikalischen Eigenschaften dieser beiden ortho-substituierten Derivate in vielerlei Hinsicht ungewöhnlich im Vergleich zu den bekannten Perylenen. Durch Substitution an den ortho-Positionen werden große Stokes-Verschiebungen erhalten und der Singulett-angeregte Zustand unserer Derivate ist mit intrinsischen Lebensdauern von bis zu 94 ns bemerkenswert lang. In Zusammenarbeit mit Dr. Gerard P. McGlacken vom University College Cork in Irland wurden verschiedene Quinolone mittels eines Iridium-Katalysatorsystems boryliert, um die elektronische und sterische Kontrolle der Substrate zu untersuchen. Es konnte gezeigt werden, dass die Ir-katalysierte Borylierung mit dem dtbpy-Liganden die direkte Borylierung verschiedener 4-Quinolone in 6- und 7-Position ermöglicht. Somit ist mit dieser Methode eine spätere Funktionalisierung möglich, und höher funktionalisierte Quinolone sind mit diesen milden Reaktionsbedingungen auch kompatibel. KW - Pyren KW - Perylen KW - Pyrene KW - Perylene KW - Polycyclic Aromatic Hydrocarbons KW - Fluorescene KW - PAK KW - Fluoreszenz KW - Borylierung Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-185226 ER - TY - THES A1 - Häring, Mathias T1 - Neuartige Tricyanoborate der Tetrelgruppe -und- Poly- und Ionomere mit Tricyanoboraten T1 - Novel Tricyanoborates of the Tetrel Group -and- Poly- and Ionomers with Tricyanoborates N2 - Diese Arbeit beschäfftig sich mit der Synthese und Charakterisierung neuartiger Tricyanoborate der Hauptgruppe 4, sowie der Synthese und Charakterisierung neuartiger Polymere mit Tricyanoboratgruppen. N2 - This work deals with the synthesis and characterization of novel tricyanoborates of the main group 4 together with the synthesis and characterization of novel polymers with tricyanoborate groups. KW - Tricyanoborate KW - Borate KW - B(CN)3 KW - Polymer KW - Tetrele Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169488 ER - TY - THES A1 - Tian, Yaming T1 - Selective C-X and C-H Borylation by N-Heterocyclic Carbene Nickel(0) Complex T1 - Selektive C-X und C-H Borylierung mittels N-Heterozyklischer Carben Nickel(0) Komplexe N2 - Organoboron compounds are important building blocks in organic synthesis, materials science, and drug discovery. The development of practical and convenient ways to synthesize boronate esters attracted significant interest. Photoinduced borylations originated with stoichiometric reactions of arenes and alkanes with well-defined metal-boryl complexes. Now photoredox-initiated borylations, catalyzed either by transition-metal or organic photocatalysts, and photochemical borylations with high efficiency have become a burgeoning area of research. In this chapter, we summarize research in the field of photocatalytic C-X borylation, especially emphasizing recent developments and trends, based on transition-metal catalysis, metal-free organocatalysis and direct photochemical activation. We focus on reaction mechanisms involving single electron transfer (SET), triplet energy transfer (TET), and other radical processes. We developed a highly selective photocatalytic C-F borylation method that employs a rhodium biphenyl complex as a triplet sensitizer and the nickel catalyst [Ni(IMes)2] (IMes = 1,3-dimesitylimidazolin-2-ylidene) for the C-F bond activation and defluoroborylation process. This tandem catalyst system operates with visible (400 nm) light and achieves borylation of a wide range of fluoroarenes with B2pin2 at room temperature in excellent yields and with high selectivity. Direct irradiation of the intermediary C-F bond oxidative addition product trans-[NiF(ArF)(IMes)2] leads to fast decomposition when B2pin2 is present. This destructive pathway can be bypassed by indirect excitation of the triplet states of the nickel(II) complex via the photoexcited rhodium biphenyl complex. Mechanistic studies suggest that the exceptionally long-lived triplet excited state of the Rh biphenyl complex used as the photosensitizer allows for efficient triplet energy transfer to trans-[NiF(ArF)(IMes)2], which leads to dissociation of one of the NHC ligands. This contrasts with the majority of current photocatalytic transformations, which employ transition metals as excited state single electron transfer agents. We have previously reported that C(arene)-F bond activation with [Ni(IMes)2] is facile at room temperature, but that the transmetalation step with B2pin2 is associated with a high energy barrier. Thus, this triplet energy transfer ultimately leads to a greatly enhanced rate constant for the transmetalation step and thus for the whole borylation process. While addition of a fluoride source such as CsF enhances the yield, it is not absolutely required. We attribute this yield-enhancing effect to (i) formation of an anionic adduct of B2pin2, i.e. FB2pin2-, as an efficient, much more nucleophilic {Bpin-} transfer reagent for the borylation/transmetalation process, and/or (ii) trapping of the Lewis acidic side product FBpin by formation of [F2Bpin]- to avoid the formation of a significant amount of NHC-FBpin and consequently of decomposition of {Ni(NHC)2} species in the reaction mixture. We reported a highly selective and general photo-induced C-Cl borylation protocol that employs [Ni(IMes)2] (IMes = 1,3-dimesitylimidazoline-2-ylidene) for the radical borylation of chloroarenes. This photo-induced system operates with visible light (400 nm) and achieves borylation of a wide range of chloroarenes with B2pin2 at room temperature in excellent yields and with high selectivity, thereby demonstrating its broad utility and functional group tolerance. Mechanistic investigations suggest that the borylation reactions proceed via a radical process. EPR studies demonstrate that [Ni(IMes)2] undergoes very fast chlorine atom abstraction from aryl chlorides to give [NiI(IMes)2Cl] and aryl radicals. Control experiments indicate that light promotes the reaction of [NiI(IMes)2Cl] with aryl chlorides generating additional aryl radicals and [NiII(IMes)2Cl2]. The aryl radicals react with an anionic sp2-sp3 diborane [B2pin2(OMe)]- formed from B2pin2 and KOMe to yield the corresponding borylation product and the [Bpin(OMe)]•- radical anion, which reduces [NiII(IMes)2Cl2] under irradiation to regenerate [NiI(IMes)2Cl] and [Ni(IMes)2] for the next catalytic cycle. A highly efficient and general protocol for traceless, directed C3-selective C-H borylation of indoles with [Ni(IMes)2] as the catalyst was achieved. Activation and borylation of N-H bonds by [Ni(IMes)2] is essential to install a Bpin moiety at the N-position as a traceless directing group, which enables the C3-selective borylation of C-H bonds. The N-Bpin group which is formed is easily converted in situ back to an N-H group by the oxidiative addition product of [Ni(IMes)2] and in situ-generated HBpin. The catalytic reactions are operationally simple, allowing borylation of of a variety of substituted indoles with B2pin2 in excellent yields and with high selectivity. The C-H borylation can be followed by Suzuki-Miyaura cross-coupling of the C-borylated indoles in an overall two-step, one-pot process providing an efficient method for synthesizing C3-functionalized heteroarenes. N2 - Es wurden effiziente und allgemeine Methoden für die selektive C-B-Verknüpfung mittels [Ni(IMes)2]-katalysierter Borylierungen von Arylfluoriden, Arylchloriden und substituierten Indolen entwickelt, welches alles leicht verfügbare Substrate sind. ... KW - Organoboron Compounds KW - N-Heterocyclic Carbene KW - Borylation KW - Photocatalysis KW - C-F KW - C-Cl KW - C-H KW - Nickel KW - Rhodium KW - Borylierung KW - Heterocyclische Carbene <-N> KW - Nickelkomplexe Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-213004 ER - TY - THES A1 - Bertsch, Stefanie T1 - Photolytisch und thermisch induzierte Transmetallierung von Aminoborylenkomplexen T1 - Photolytically and thermally induced transmetallation of amino borylene complexes N2 - Aminoborylenkomplexe der Gruppe 6 [(OC)5M=BN(SiMe3)2] (M = Cr, Mo, W) reagieren mit Übergangsmetallkomplexen unter Transfer der Boryleneinheit bzw. in Transmetallierungsreaktionen und bilden dabei neuartige Borylenkomplexe. In dieser Dissertation wird die Synthese, Charakterisierung und Reaktivität der auf diesem Wege dargestellten Verbindungen - unter anderem Hydridoborylenkomplexe, Bis(borylen)komplexe und borylensubstituierte MOLPs - beschrieben. N2 - Amino borylene complexes of group 6 [(OC)5M=BN(SiMe3)2] (M = Cr, Mo, W) undergo reactions with transition metal complexes to form novel borylene complexes. These reactions can be viewed either as borylene transfer or as transmetallation reactions. In this thesis the syntheses, characterizations and reactivities of these novel compounds – amongst others hydridoborylene complexes, bis(borylene) complexes and borylene substituted MOLPs - is reported. KW - Borylene KW - Übergangsmetallkomplexe KW - Transmetallierung KW - Aminoborylenkomplexe KW - Borylentransfer Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-106797 ER - TY - THES A1 - Sowik, Thomas T1 - Assessment of the surface functionalization of SPION and DND nanomaterials for cellular uptake and fluorescence imaging T1 - Abschätzung der Oberflächenfunktionalisierung von SPION und DND Nanomaterialien für die Zellaufnahme und Fluoreszenzimaging N2 - The aim of this work was to synthesize and functionalize different bio-relevant nanomaterials like silica-coated superparamagnetic iron oxide nanoparticles (SPIONs) as contrast agents for T2 magnetic resonance imaging (MRI) and detonation nanodiamond (DND) with the neurohormone peptide allatostatin 1 (ALST1) and a fluorescent dye. Analytical techniques for the determination and quantification of surface functional groups like amines, azides, and peptides were also developed and established. Thus, in the first part of the work, a TGF-1 binding peptide and allatostatin 1 (ALST1), both supposed to act as active tumour targeting vectors, were synthesized by solid-phase peptide synthesis (SPPS) and characterized by high pressure liquid chromatography (HPLC) and mass spectrometry. Then, azide-functionalized silica nanoparticles were synthesized by the Stöber process and characterized by transmission electron microscopy (TEM) and infrared spectroscopy (IR). The surface loading of amine and azide groups was determined by a new protocol. The azide groups were reduced with sodium boronhydride to amine and then functionalized with Fmoc-Rink Amide linker according to a standard SPPS protocol. Upon cleavage of Fmoc by piperidine, the resulting dibenzofulvene and its piperidine adduct were quantified by UV/Vis spectroscopy and used to determine the amount of amine groups on the nanoparticle surface. Then, ALST1 and related tyrosine- and phenylalanine substituted model peptides were conjugated to the azide-functionalized silica nanoparticles by copper(I)-catalyzed azide-alkyne dipolar cycloaddition (CuAAC). The successful peptide conjugation was demonstrated by the Pauly reaction, which however is only sensitive to histidine- and tyrosine-containing peptides. As a more general alternative, the acid hydrolysis of the peptides to their individual amino acid building blocks followed by derivatization with phenyl isothiocyanate (PITC) allowed the separation, determination, and quantification of the constituent amino acids by HPLC. In the second part of the work, amine- and azide-functionalized silica-coated superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized by co-precipitation and subsequent silica-coated based on the Stöber process and characterized by TEM and IR. The amine surface loading was determined by the method already established for the pure silica systems. The azide surface loading could also be quantified by reduction with sodium boronhydride to amine groups and then conjugation to Fmoc-Rink amide linker. Upon cleavage of Fmoc with piperidine, the total amine surface loading was obtained. The amount of azide surface groups was then determined from the difference of the total amine surface loading and the amine surface loading. Thus, it was possible to quantify both amine and azide surface groups on a single nanoparticle system. Superparamagnetic iron oxide nanoparticles (SPIONs) are potent T2 contrast agents for magnetic resonance imaging (MRI). Due to their natural metabolism after injection into the blood stream, SPIONs mostly end up inside macrophages, liver, spleen or kidneys. To generate a potential target-specific SPION-based T2 contrast agent for MRI, the neurohormone peptide ALST1 was conjugated by CuAAC to the azide- and amine functionalized superparamagnetic iron oxide nanoparticles, since ALST1 is supposed to target difficult-to-treat neuroendocrinic tumours due to its analogy to galanin and somastatin receptor ligands. The organic fluorescent dye cyanine 5 (Cy5) was also conjugated to the silica-coated superparamagnetic iron oxide nanoparticles (SPIONs) via a NHS-ester to the amines to enable cell uptake studies by fluorescence microscopy. These constructs were characterized by TEM, dynamic light scattering (DLS), and IR. The amino acids of the conjugated ALST1 were determined by the HPLC method as described before for peptide-modified silica nanoparticle surfaces. Then, the relaxivity r2 was measured at 7 T. However, a r2 value of 27 L/mmolFe·s for the dual ALST1-/Cy5-functionalized silica-coated SPIONs was not comparable to T2 contrast agents in clinical use, since their relaxivity is commonly determined at 1.5 T, and no such instrument was available. However, it can be assumed that the synthesized dual ALST1-/Cy5-functionalized silica-coated SPION would show a lower r2 at 1.5 T than at 7T. Commercial T2 MRI contrast agents like VSOP-C184 from Ferropharm show at r2 values of about 30 L/mmolFe·s at 1.5 T. Still, the relaxivity of the new material has some potential for application as a T2 contrast agent. Then, the material was used in cell uptake studies by fluorescence microscopy with the conjugated Cy5 dye as a probe. The dual ALST1-/Cy5-functionalized silica-coated SPION showed a high degree of agglomeration with no cellular uptake unlike described for ALST1-functionalized nanoparticles in literature. It is assumed that upon agglomeration of the particles, constructs form which are unable to be internalized by the cellular endocytotic pathways anymore. As a future perspective, the tendency of the particle to agglomerate should be reduced by changing the coating material to polyethylene glycol (PEG) or chitosan, which are known to be bio-compatible, bio-degradable and prevent agglomeration. In the third part of the work, the rhenium compound [ReBr(CO)3(L)] with L = 2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline and its manganese analogue were synthesized by heating the ligand and rhenium pentacarbonyl bromide or and manganese pentacarbonyl bromide respectively, in toluene. However, [MnBr(CO)3(L)] was unstable upon illumination by UV light at 365 nm. Thus, it was dismissed for further application. The photophysical properties of [ReBr(CO)3(L)] were explored, by determination of the excited-state life time by the time-correlated single-photon counting (TCSPC) method and the quantum yield by a fluorescence spectrometer equipped with an integration sphere. A value of  = 455 ns, a Stokes shift of 197 nm and a rather low quantum yield =were found. Metal complexes are supposed to have superior properties compared to organic dyes due to their large Stokes shifts, long excited-state life times, and high quantum yields. Thus, amine- and azide-functionalized detonation nanodiamond (DND) as an alternative biological inert carrier system was functionalized with ALST1 to enhance its cell uptake properties. A luminescent probe for cell uptake studies using fluorescence microscopy was also attached, either based on the new rhenium complex or the commercially available organic dye Cy5, respectively. The aldehyde-functionalized rhenium complex was conjugated to the DND via oxime ligation, which is known to be a mild and catalyst-free conjugation method. The amount of peptide ALST1 on the DND was analyzed and quantified after acid hydrolysis and PITC derivatization by HPLC as described before. Then, the ALST1-/luminescent probe-functionalized DND was investigated for its photophysical properties by fluorescence spectroscopy. The Cy5-functionalized material showed a slightly lower fluorescence performance in aqueous solution than reported in literature and commercial suppliers with a life time  < 0.4 ns and quantum yields not determinable by integration sphere due to the week signal intensity. The rhenium complex-functionalized material had a very low signal intensity in only aqueous medium, and thus determination of life times and quantum yield by fluorescence spectroscopy was not possible. After incubation with MDA-MB 231 cells, the Cy5-functionalized DND could easily be detected due to its red fluorescence. However, it was not possible to visualize the rhenium complex-functionalized DND with fluorescence microscopy due to the low fluorescence intensity of the complex in aqueous medium and the lack of proper filters for the fluorescence microscope. Cy5-functionalized DND did not show any cellular uptake in fluorescence microscopy after conjugation with ALST1. Since the nanodiamond surface is known to strongly adsorb peptides and proteins, it is assumed that the peptide chain is oriented perpendicular to the nanoparticle surface and thus not able to interact with cell membrane receptors to promote cell uptake of the particles. As a future perspective, the ALST1-promoted cellular uptake of the DND should be improved by using different linker systems for peptide conjugation to prevent adsorption of the peptide chain on the particle surface. The new analytical methods for amino-, azide-, and peptide-functionalized nanoparticles have great potential to assist in the quantification of nanoparticle surface modifications by UV/Vis spectroscopy and HPLC. The determination of surface amine and azide groups based on the cleavage of conjugated Fmoc-Rink amide linker and detected by UV/Vis spectroscopy is applicable to all amine-/azide-functionalized nanomaterials. However, particles which form very stable suspension with the cleavage mixture can cause quantification problems due to scattering, making an accurate quantification of dibenzofulvene and its piperidine adduct impossible. The detection of tyrosine- and histidine-containing peptides based on the Pauly reaction is well-suited as a fast and easy-to-perform qualitative demonstration of successful peptide surface conjugation. However, its major drawback as a colourimetric approach is that coloured particles cannot be evaluated by this method. The amino acid analysis based on HPLC after acid hydrolysis of peptides conjugated to nanoparticle surfaces to its individual building blocks and subsequent derivatization with PITC, can be used on all nanomaterials with peptide or protein surface modification. It allows detection of amino acids down to picomolar concentrations and even enables analysis of very small peptide surface loadings. However, the resulting HPLC traces are difficult to analyze. Three new analytical methods based on UV/Vis and HPLC techniques have been developed and established. They assisted in the characterization of the synthesized DND and SPIONs with dual functionalization by ALST1 and Cy5 or [ReBr(CO)3(L)], respectively. However, the nanomaterials showed no cellular uptake due to a high tendency to agglomerate. The cellular uptake should be improved and the tendency to agglomerate of the SPIONs should be reduced by changing the surface coating from silica to either PEG or chitosan. Furthermore, different linker systems for connecting peptides to DND surfaces should be synthesized and evaluated to reduce potential peptide chain adsorption. N2 - Das Ziel dieser Arbeit war die Synthese und Funktionalisierung biologisch relevanter Nanomaterialien wie die Silica-umhüllten superparamagnetischen Eisenoxid Nanopartikel (SPIONs) als Kontrastmittel für T2 gewichtete Magnetresonanztomographie (MRT) und Detonantionsnanodiamant mit dem Neurohormonpeptid Allatostatin 1 (ALST1) sowie einem Fluoreszenzfarbstoff. Des Weiteren sollten analytische Methoden zur Bestimmung und Quantifizierung von funktionellen Oberflächenmodifikationen wie Amine, Azide und Peptide entwickelt und etabliert werden. Aus diesem Grund wurden im ersten Teil der Arbeit ein TGF-1 bindendes Peptid und Allatostatin 1 (ALST1), welche beide spezifisch Tumorgewebe anzielen, mit Hilfe der Festphasen Peptid Synthese (SPPS) hergestellt und durch HPLC und Massenspektrometrie charakterisiert. Danach wurden Azid-funktionalisierte Silica-Partikel durch den Stöber Prozess hergestellt und mit Hilfe von Transmissionselektronenmikroskopie (TEM) und Infrarot Spektroskopie (IR) charakterisiert. Die Oberflächenbeladung von Aminen und Aziden wurde mit einer neuen Methode bestimmt. Azidgruppen wurden mit Natriumborhydrid zu Aminen reduziert und anschließend mit dem Fmoc-Rink Amid Linker unter Verwendung des allgemeinen SPPS Verfahrens. Durch die Abspaltung von Fmoc mit Piperidin wurden Dibenzofulven und sein Piperidin-Adduct gebildet und mit Hilfe von UV/Vis Spektroskopie quantifiziert um die Oberflächenbeladung der Amino-Gruppen auf den Nanopartikeln zu bestimmen. Danach wurden ALST1 und verwandte Tyrosin- und Phenylalanin- substituierte Modellpeptide synthetisiert und durch die Kuper(I)-katalysierte Azid-Alkin dipolare Cycloaddition (CuAAC) an die Oberfläche der Silica-Partikel konjugiert. Die erfolgreiche Peptidkonjugation wurde mit Hilfe der Pauly Reaktion, welche jedoch ausschließlich auf Tyrosin- und Histidin-haltige Peptide und Proteine anwendbar ist, nachgewiesen. Als eine universellere Alternative wurden die Peptid-konjugierten Nanomaterialien mit konzentrierter Salzsäure hydrolysiert und anschließend mit Phenylisothiocyanat (PITC) derivatisiert, was die Trennung, Bestimmung und Quantifikation der individuellen Aminosäuren des Peptids durch HPLC ermöglichte. In dem zweiten Teil dieser Arbeit wurden Amin- und Azid-funktionalisierte Silica-umhüllte superparamagnetische Eisenoxidnanopartikel (SPIONs) durch Co-Präzipitation und anschließender Silica-Ummantelung basierend auf dem Stöber Prozess synthetisiert und mit Hilfe von TEM und IR charakterisiert. Die Oberflächenbeladung der Aminogruppen wurde an Hand der bereits etablierten Methode für Silica-Partikel bestimmt. Die Oberflächenbeladung der Azidgruppen wurde quantifiziert durch deren Reduktion mit Natriumborhydrid zu Aminogruppen und der darauf folgenden Verknüpfung mit dem Fmoc-Rink Amid Linker. Durch die Abspaltung des Fmoc mit Piperidin und dessen Quantifizierung durch UV/Vis Spektroskopie wurde so die gesamte Aminogruppen Oberflächenbeladung erhalten. Die Oberflächenbeladung mit Azidgruppen wurde dann durch die Differenz aus gesamter Amin- und tatsächlicher Amin-Oberflächenbeladung berechnet. Auf diese Weise war es möglich die Oberflächenbeladung sowohl von Aminen, als auch von Aziden an nur einem einzigen Nanopartikelsystem zu bestimmen. SPIONs können als Kontrastmittel für T2-gewichtete MRT Messungen verwendet werden. Jedoch werden sie auf Grund ihres Metabolismus nach der Injektion ins Blutsystem von Makrophagen, Leber, Milz und Niere aufgenommen. Um ein potentielles, gewebespezifisches SPION-basiertes Kontrastmittel für T2-gewichtete MRT Messungen zu erzeugen wurde das Neurohormonpeptid ALST1 mit Hilfe der CuAAC an die Azid-/Amin-funktionalisierten Silica-ummantelten SPIONs konjugiert, da von ALST1 eine Spezifität auf schwierig zu behandelnde neuroendokrine Tumore vermutet wird, auf Grund seiner Ähnlichkeit zu Galanin und Somastatin Rezeptorliganden. Der organische Fluoreszenzfarbstoff Cyanin 5 (Cy5) wurde ebenfalls an den Azid-/Amin-funktionalisierten Silica-ummantelten SPIONs über einen NHS-Ester konjugiert um Zellaufnahmestudien mit Hilfe von Fluoreszenzmikroskopie zu ermöglichen. Diese Materialien wurden mit TEM, dynamischer Lichtstreuung (DLS) und IR charakterisiert. Die Aminosäuren des konjugierten ALST1 wurden an Hand der bereits für Silica-Partikel beschriebenen HPLC-Methode bestimmt. Danach wurde die Relaxivität r2 bei 7 T gemessen. Leider sind der gemessene Wert von 27 L/mmolFe·s für das duale System ALST1-/Cy5-functionaliserte Silica-ummantelte SPIONs nicht mit klinisch verwendete T2 Kontrastmittel zu vergleichen, da diese bei einer Feldstärke von 1.5 T verwendet werden. Es ist jedoch anzunehmen, dass das synthetisierte Nanopartikelsystem bei 1.5 T eine geringere Relaxivität r2 zeigen würde als bei 7 T. Jedoch zeigen kommerzielle Kontrastmittel für T2-gewichtete MRT Messungen wie zum Beispiel VSOP-C184 von Ferropharm r2 Werte um die 30 L/mmolFe·s. Von daher hat das neue Material durchaus Potential als Kontrastmittel für T2-gewichtete MRT Messungen. Danach wurde das Material auf seine Zellaufnahme mit Hilfe von Fluoreszenzmikroskopie unter Verwendung des konjugierten Cy5 als Sonde untersucht. Die dualen ALST1-/Cy5-functionaliserte Silica-ummantelte SPIONs wurden mit MDA-MB 231 Zellen inkubiert, zeigten jedoch einen hohen Grad an Agglomeration, wobei große Konstrukte gebildet wurden die nicht mehr durch die zellularen Endozytosewege internalisiert werden konnten. Für weitere Anwendungen muss die Tendenz der Partikel zur Agglomeration verringert werden. Dies kann durch einen Wechsel der Hülle von Silica zu Polyethylenglykol (PEG) oder Chitosan erreicht werden, welche dafür bekannt sind Agglomeration zu verhindern als auch biologisch kompatibel, abbaubar zu sein. Im dritten Teil der Arbeit wurde die Rheniumverbindung [ReBr(CO)3(L)] mit L = 2-Phenyl-1H-imidazo[4,5-f][1,10]phenanthrolin und ihr Mangan-Analogon synthetisiert durch Erhitzen des Liganden und Bromopentacarbonylrhenium, beziehungsweise Bromopentacarbonyl-mangan, in Toluol. Der Komplex [MnBr(CO)3(L)] wurde jedoch wegen seiner Instabilität bei Belichtung mit UV-Licht der Wellenlänge 365 nm für weitere Anwendungen verworfen. Die photophysikalischen Eigenschaften von [ReBr(CO)3(L)] wurden untersucht durch die Bestimmung der Lebenszeit des angeregten Zustandes mit der time-correlated single-photon counting (TCSPC) Methode und die Quantenausbeute mit Hilfe eines Fluoreszenzspektrometers welches mit einer Integrationsphäre ausgerüstet war. Ein Wert von  = 455 ns, einem Stokes shift von 197 nm und eine eher niedrige Quantenausbeute  = 0.05 wurden ermittelt. Es wird behauptet, dass Metallkomplexe den organischen Fluoreszenzfarbstoffen überlegende Stokes shifts, Lebenszeiten des angeregten Zustandes sowie Quantenausbeuten haben. Aus diesem Grund wurde der Amino- und Azid-funktionalisierte DND mit ALST1, auf Grund seiner Eigenschaft die Zellaufnahme zu verstärken, funktionalisiert. Des Weiteren wurde eine Fluoreszenzsonde für Zellaufnahmestudien unter Verwendung von Fluoreszenzmikroskopie und die Partikeloberfläche konjugiert, welche entweder auf [ReBr(CO)3(L)] oder Cy5 basierten. Die Aldehyd-funktionalisierte Rheniumverbindung wurde über die Oxime Ligation an den Nanopartikel konjugiert, welche als milde und Katalysator-freie Konjugationsmethode bekannt ist. Die Menge des Peptids ALST1 auf der DND Oberfläche wurde durch HPLC nach saurer Hydrolyse und Derivatisierung mit PITC wie zuvor beschrieben analysiert und quantifiziert. Danach wurden die dualen ALST1-/Lumineszenzsonde-funktionalisierten DND in Bezug auf ihre photophysikalischen Eigenschaften mit Hilfe der Fluoreszenzspektroskopie untersucht. Das Cy5-funktionaliserte Material zeigte in wässrigem Medium etwas geringere Lebenszeit des angeregten Zustandes mit  < 0.4 ns als in der Literatur beschrieben und eine nicht bestimmbare Quantenausbeute durch die Integrationssphäre auf Grund der schwachen Emissionsintensität. Das [ReBr(CO)3(L)]-funktionalisierte Material zeigte eine sehr geringe Emissionsintensität in wässrigen Medium, welche es unmöglich machte die Lebenszeit des angeregten Zustandes und die Quantenausbeute zu bestimmen. Es war nicht möglich das Rhenium Komplex-funktionalisierte Material auf Grund seiner geringen Emissionsintensität in der Fluoreszenzmikroskopie nach Inkubation mit MDA-MB 231 Zellen zu visualisieren. Nach der Inkubation des Cy5-functionalisierten DND mit MDA-MB 231 Zellen, konnte das Material sehr gut auf Grund seiner roten Fluoreszenz identifiziert werden. Jedoch zeigte es keine Internalisierung in die Zellen nach Konjugation mit ALST1. Es wird vermutet dass die Peptidkette flach auf die Nanodiamantoberfläche, welche für ihre starke, nicht-kovalente Interaktion mit Proteinen und Peptiden bekannt ist, adsorbiert ist. Für zukünftige Anwendungen muss die ALST1-vermittelte Zellaufnahme der Detonationsnanodiamanten verbessert werden. Dies kann erreicht werden durch die Verwendung anderer Linker-Systeme zur Verbrückung von Peptid und Partikeloberfläche um Adsorption zu verhindern. Die neuen analytischen Methoden für Amino-, Azid-, und Peptid-funktionalisierte Nanopartikel haben großes Potential in der Quantifizierung von Oberflächenmodifikationen von Nanopartikeln durch HPLC und UV/Vis. Die Bestimmung von Oberflächenbeladungen von Amin- und Azidgruppen basierend auf der Abspaltung von konjugiertem Fmoc des Fmoc-Rink Amid Linkers und Detektion durch UV/Vis Spektroskopie ist anwendbar auf alle Amin- und Azid-funktionalisierten Nanomaterialien. Jedoch kann es bei Partikeln welche besonders stabilen Suspensionen mit der Abspaltlösung bilden zu Problemen in der Quantifikation von Dibenzofulven und seinem Piperidin Addukt mittels UV/Vis Spektroskopie auf Grund von Streuung kommen. Die Detektion von Tyrosin- und Histidin-enthaltenden Peptiden auf Nanopartikeloberflächen auf Grundlage der Pauly Reaktion ist besonders geeignet als schneller und einfach durchzuführender qualitativer Nachweis für die erfolgreiche Konjugation von Peptiden auf Nanopartikeloberflächen. Der Hauptnachteil ist jedoch, dass Partikel mit Eigenfarbe nicht verwendet werden können. Die Aminosäureanalyse auf Grundlage von HPLC nach saurer Hydrolyse von Peptid-funktionalisierten Nanomaterialien und anschließender Derivatisierung mit PITC kann für alle Peptid- oder Protein-modifizierten Nanomaterialien verwendet werden. Es ermöglicht die Detektion von bis zu pikomolaren Konzentrationen und damit die Quantifizierung sehr geringe Oberflächenbeladungen mit Peptiden und Proteinen. Jedoch sind die resultierenden HPLC Chromatogramme schwierig zu interpretieren. Drei neue analytische Methoden auf der Grundlage von UV/Vis und HPLC Techniken wurden entwickelt und etabliert. Sie halfen bei der erfolgreichen Charakterisierung der synthetisierten DND und SPIONs mit dualer Funktionalisierung durch ALST1 und Cy5, beziehungsweise [ReBr(CO)3(L)]. Jedoch zeigten die Nanomaterialien auf Grund der hohen Tendenz zur Agglomeration keine Zellaufnahme. Das weitere Vorgehen umfasst die Verbesserung der Zellaufnahme durch ersetzen der Silica-Hülle der SPIONs mit PEG oder Chitosan. Bei den DND müssen andere Linkersysteme in Betracht gezogen und dann synthetisiert werden, welche die Adsorption der Peptidkette auf der Oberfläche des Partikels verhindern. KW - Nanopartikel KW - Bioanorganische Chemie KW - Peptide KW - SPION KW - Nanodiamond KW - Neuropeptide Hormone KW - Particle analytics KW - fluorescence KW - SPION KW - Nanodiamant KW - Neuropeptidhormon KW - Partikelanalytik KW - Fluoreszenz Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-103709 ER - TY - THES A1 - Weismann, Julia T1 - Methandiid-basierte Cabenkomplexe: Von ihrer Synthese und elektronischen Struktur zur Anwendung in Bindungsaktivierungsreaktionen und katalytischen Umsetzungen T1 - Methandiide based carbene complexes: from their Synthesis and electronic structure to their application in bond activation reactions and catalytic transformations. N2 - Die vorliegende Arbeit beschäftigt sich mit der Anwendung des Sulfonyl-stabilisierten Methandiids 20-Li2 als Ligand in Übergangsmetallkomplexen. Dabei konnte 20-Li2 mit ver-schiedenen Übergangsmetallhalogeniden in Salzmetathesereaktionen umgesetzt werden. Insgesamt wiesen die synthetisierten Methandiid-basierten Komplexe flexible Bindungsverhältnisse bezüglich der MC-Bindung und unterschiedliche Koordinationsmodi der Sulfonyl-Gruppe auf, die die Stabilität und Reaktivität der Komplexe signifikant beeinflussten. In Abhängigkeit von der chemischen Natur des Metallfragmentes und der Co Liganden konnten Carbenkomplexe mit einer ylidischen M-C-Wechselwirkung (A) und solche mit einer echten M=C-Doppelbindung (B) zugänglich gemacht werden. Dabei gelang die Etablierung einer Vielzahl an neuen Komplexen sowohl mit frühen (Zirkonium) als auch späten (Palladium, Ruthenium, Iridium) Übergangsmetallen. Die synthetisierten Verbindungen zeigten dabei unterschiedliche strukturelle und elektronische Eigenschaften, was zu deren Unterteilung in die zwei Komplexklassen A und B führte. So konnte bei der Umsetzung von Methandiid 20-Li2 mit Zirkonocendichlorid die selektive Bildung des Zirkonocenkomplexes 50 beobachtet werden, bei dem NMR spektroskopische (z.B. Hochfeldverschiebung des 13C NMR-Signals des Carben-Kohlenstoffatoms) und röntgenstrukturanalytische (z.B. Pyramidalisierung des „Carben“-Kohlenstoffatoms) Untersuchungen erste Hinweise darauf lieferten, dass sich 50 nicht als Carbenkomplex mit einer Zr=C-Doppelbindung beschreiben lässt. Dies konnte durch quantenchemische Rechnungen bestätigt werden, wobei die „Natural Bond Orbital“-Analyse (NBO-Analyse) eine deutliche negative Ladung am zentralen Kohlenstoffatom (qc = 1.42) und somit dessen nukleophilen Charakter aufdeckte. Zusätzlich lieferten die Rechnungen eine deutlich positive Ladung am Zirkoniumatom (qZr = 1.35), weshalb die Zr-C-Interaktion in 50 am besten mit einer ylidischen Wechselwirkung beschrieben wird. Ähnliche Resultate konnten auch bei den aus den Umsetzungen von 20-Li2 mit [(PPh3)2PdCl2] bzw. [(PPh3)3RuCl2] erhaltenen Komplexen 51a bzw. 52-Int beobachtet werden. Wie für Verbindung 50 ergab die NBO-Analyse von 51a bzw. 52-Int zwar eine  Bindung zwischen Metall- und Kohlenstoffatom, interessanterweise aber keine  Wechselwirkung. Aufbauend auf der elektronischen Struktur von 51a bzw. 52-Int zeichnen sich die beiden Komplexe durch eine hohe Instabilität und Reaktivität aus. Dabei bildete 51a in Lösung diverse Zersetzungsprodukte, während der Ruthenium-Carbenkomplex 52-Int selektiv die Phenylgruppe des Sulfonyl-Substituentens in ortho Position unter Ausbildung der cyclometallierten Spezies 52 intramolekular deprotonierte. Das Cyclometallierungsprodukt 52 konnte in einer Ausbeute von 62% isoliert und vollständig charakterisiert werden. Die schwache -Interaktion zwischen Metall- und Kohlenstoffatom konnte im Falle der Palladium- und Rutheniumkomplexe auf den Elektronenreichtum der späten Übergangsmetalle zurückgeführt werden, welcher durch die guten  Donor- und schlechten  Akzeptoreigenschaften der Phosphan-Liganden zusätzlich verstärkt wurde. Durch Austausch der Triphenylphosphan-Liganden in der Rutheniumdichlorid-Vorstufe gegen das Aren p-Cymol konnte die elektronische Natur am Metallfragment derartig beeinflusst werden, dass ein selektiver Zugang zu Ruthenium-Carbenkomplex 53 gelang. Verbindung 53 konnte in einer guten Ausbeute von 86% in Form eines dunkelvioletten Feststoffes isoliert und vollständig charakterisiert werden. Dass es sich bei 53 tatsächlich um einen Carbenkomplex mit einer M=C-Doppelbindung handelt, konnte mithilfe der Molekülstruktur im Festkörper, den NMR-spektroskopischen Daten und der berechneten elektronischen Struktur bestätigt werden. So wies 53 eine kurze Ru=C-Bindung und eine planare Koordinationsumgebung des zentralen Kohlenstoffatoms [Winkelsumme: 358.9(1) Å] auf. Zusätzlich sprachen die im Vergleich zu Methandiid 20-Li2 verlängerten P-C- und C-S-Abstände für geschwächte elektrostatische Wechselwirkungen im Ligand-Rückgrat und somit für einen effizienten Elektronentransfer vom Methandiid zum Metall. Die NBO-Analyse ergab sowohl eine - als auch -Wechselwirkung der M-C-Bindung mit einer nur leichten Polarisierung zum Kohlenstoffatom. Ähnliche Beobachtungen (kurzer Ir-C-Abstand, Planarität am Kohlenstoffatom, reduzierte elektrostatische Wechselwirkungen im Ligand-Rückgrat, NBO-Analyse) wurden ebenfalls für den Iridium-Carbenkomplex 53 gemacht.Die negativere Ladung am Carben-Kohlenstoffatom wies hierbei allerdings auf einen leicht ylidischeren Charakter der MC-Bindung als im Ruthenium-Analogon 53 hin. Aufbauend auf der elektronischen Natur der M=C-Bindung ergaben sich unterschiedliche Reaktivitäten der Carbenkomplexe. Während der Zirkonocenkomplex 50 gegenüber Aldehyden, Ketonen und Disulfiden entweder keine Reaktivität oder Zersetzung zum zweifach protonierten Liganden zeigte, erfolgte ausgehend von Ruthenium-Carbenkomplex 52-Int die intramolekulare CH-Aktivierung zu 52. Im Gegensatz dazu konnte der Ruthenium-Carbenkomplex 53 in einer Vielzahl von EH-Bindungsaktivierungen eingesetzt werden. Dabei konnten zahlreiche E-H-Bindungen bei Raumtemperatur aktiviert und das nicht-unschuldige Verhalten des Methandiid-Liganden unter Beweis gestellt werden. So konnten die O-H- und N-H-Bindungen in einer Serie von Alkoholen und Aminen, die P-H-Bindung in sekundären Phosphanoxiden und die hydridischen SiH- und BH-Bindungen in Silanen und Boranen durch 53 gespalten werden. Durch röntgenstrukturanalytische Aufklärung der Molekülstrukturen im Festkörper konnte gezeigt werden, dass die Bindungsaktivierung im Allgemeinen unter 1,2-Addition der Substrate auf die Ru=C-Doppelbindung unter Bildung der entsprechenden cis-Additionsprodukte erfolgte. Die Aufhebung der Metall-Kohlenstoffdoppel- zu einer -einfachbindung machte sich in einer Verlängerung der Ru=C-Bindung von 1.965(2) Å in 53 auf etwa 2.2 Å bemerkbar. Zudem konnte in allen Molekülstrukturen der Aktivierungsprodukte eine Pyramidalisierung des ehemals planaren Carben-Kohlenstoffatoms detektiert werden. Bezüglich der Regioselektivität verliefen die Umsetzungen mit Substraten, in denen das Wasserstoffatom einen protischen (O-H, N-H-Bindungen) bzw. mäßig protischen/hydridischen (P-H-Bindungen) Charakter aufweist, erwartungsgemäß unter Protonierung des nukleophilen Carben-Kohlenstoffatoms. Interessanterweise führten die O-H- und N-H-Aktivierungsreaktionen z.T. zur Ausbildung eines Gleichgewichts zwischen Carbenkomplex und Additionsprodukt. Dabei konnte ein derartiger Gleichgewichtsprozess in der Chemie Methandiid-basierter Carbenkomplexe bisher nicht beobachtet werden, was die außerordentliche Stabilität des Rutheniumkomplexes 53 unterstreicht. Diese Reversibilität wurde bspw. anhand der Umsetzung von Komplex 53 mit p Methoxyphenol mittels VT-NMR-Studien untersucht. Dabei konnte gezeigt werden, dass sich das Gleichgewicht beim Abkühlen auf 80 °C gemäß entropischer Effekte fast vollständig auf die Seite des Additionsproduktes verschieben lässt, während beim Erwärmen auf Raumtemperatur das Gleichgewicht auf der Seite des Carbenkomplexes liegt. Ähnliche Gleichgewichtsprozesse konnten bei der N-H-Aktivierung beobachtet werden. Bei der Aktivierung von Ammoniak konnte das Additionsprodukt 60 nicht isoliert werden, da auch hier ein stark temperaturabhängiges Gleichgewicht vorlag, wobei erst ab 90 °C das Gleichgewicht vollständig auf der Seite des Aktivierungskomplexes 60 lag. Daher konnte 60 nicht isoliert und eindeutig identifiziert werden. In folgenden Arbeiten sollte die Isolierung von 60 im Festkörper angestrebt und somit dessen Existenz nachgewiesen werden. Zudem könnten auch hier Übertragungsreaktionen des aktivierten Ammoniaks auf ungesättigte Substrate durchgeführt werden. Überraschenderweise zeigte die Si-H-Bindungsaktivierung von unterschiedlich substituierten aliphatischen und aromatischen Silanen ein analoges Reaktionsmuster und führte zur selektiven Bildung der entsprechenden Silylkomplexe 66a-66f anstelle der aufgrund der Polaritäten zu erwartenden Hydrido-Spezies. Mittels DFT-Rechnungen konnte gezeigt werden, dass der Reaktionsmechanismus der SiH-Aktivierung nicht über eine konzertierte 1,2-Addition, sondern über einen zweistufigen Prozess verläuft. Dabei ermöglichen die flexiblen Koordinationseigenschaften des Liganden in 53 eine oxidative Addition der Si-H-Bindung an das Ruthenium-Zentrum, auf die ein Hydrid-Transfer zum Methandiid-Kohlenstoffatom folgt. Neben einfachen Bindungsaktivierungen wurde das Potential der synthetisierten Silylkomplexe 66a-66c in Hydrosilylierungsreaktionen untersucht. In diesem Zusammenhang wurde die Hydrosilylierung von Norbornen angestrebt. Während bei Raumtemperatur keine Reaktion stattfand, konnte nach Erhöhung der Temperatur auf 80 °C das gewünschte Hydrosilylierungsprodukt 68 zwar mittels GC-MS-Analytik nachgewiesen werden, jedoch entstand bei den gewählten Reaktionsbedingungen das ROMP-Produkt 69 als Hauptprodukt. In weiterführenden Arbeiten müssen noch Optimierungsversuche der Reaktionsbedingungen zu einem selektiveren Umsatz zum Hydrosilylierungsprodukt durchgeführt werden. Interessante Ergebnisse lieferten zudem die Umsetzungen des Ruthenium-Carbenkomplexes 53 mit Boranen und verschiedenen Boran-Lewis-Basen-Addukten. Dabei führte die Reaktion von 53 mit Catecholboran zur Bildung des Hydridokomplexes 73, dessen Molekülstruktur im Festkörper bestimmt werden konnte. Jedoch konnte der Komplex aufgrund seiner Instabilität in Lösung bisher nicht vollständig NMR-spektroskopisch und mittels Elementaranalytik charakterisiert werden. Im Gegensatz zur Si-H-Aktivierung findet hier die Addition entsprechend der Polarität der B-H-Bindung statt. Erstaunlicherweise führte die BH Bindungsaktivierung in Pinakolboran jedoch nicht zu einer zu 73 analogen Hydrid-Spezies. Der NMR-spektroskopische Verlauf der Umsetzung deutete zunächst auf die Bildung des BH-Additionsproduktes unter Protonierung des PCS-Rückgrats hin, welches sich in eine andere, bisher nicht identifizierbare Spezies umwandelte. Wiederum zu einem anderen Ergebnis führte die Umsetzung von 53 mit BH3∙SMe2. Durch Insertion eines Borans in die Thiophosphoryl-Einheit unter Aktivierung der B-H-Bindung wurde hierbei Komplex 76 gebildet, der als zentrales Strukturmotiv einen P–B–S–Ru–C-Fünfring aufwies. Neben der Spaltung polarer E-H-Bindungen gelang außerdem die Aktivierung der unpolaren Bindung in Diwasserstoff unter Bildung des Hydridokomplexes 77. Mittels Röntgenstrukturanalyse konnte auch hier eine cis-Addition von H2 auf die RuC-Doppel-bindung bestätigt und das Signal des hydridischen Wasserstoffatom eindeutig im 1H NMR-Spektrum der Verbindung bei H = 6.62 ppm detektiert werden. Interessanterweise konnte Verbindung 77 ebenfalls durch Dehydrierung von iso Propanol bzw. Ameisensäure (HCOOH) unter Abspaltung von Aceton bzw. CO2 synthetisiert werden. Aufbauend auf der beobachteten Dehydrierung von iPrOH unter Bildung des Hydridokomplexes 77 wurde der Frage nach einer möglichen Anwendung des Carbenkomplexes 53 in der katalytischen Transferhydrierung von Ketonen zu Alkoholen nachgegangen. Obgleich die Aktivierung von H2 bzw. die Dehydrierung von iPrOH keine Reversibilität aufwies, sollte ein Katalysezyklus basierend auf einem Wechselspiel zwischen Carben- 53 und Hydridokomplex 77 mit iPrOH als Wasserstoffquelle realisierbar sein. Diesbezüglich lieferten erste Reduktionsversuche von Acetophenon zu 1 Phenylethanol mit 53 und KOtBu als Hilfsbase allerdings schlechte Alkohol-Ausbeuten im Vergleich zu literaturbekannten, übergangsmetallkatalysierten Transferhydrierungen. Ein Katalyseansatz mit 0.50 mol-% 53 und 19 mol-% KOtBu ergab nach 24 h bei 75 °C eine Alkohol-Ausbeute von gerade einmal 55%. Zudem konnte eine starke Abhängigkeit der Umsätze von der eingesetzten Basenmenge beobachtet werden, was auf eine konkurrierende, Basen-induzierte Reduktion hindeutete. Eine Optimierung der Katalysebedingungen gelang durch Zugabe von Triphenylphosphan. Mithilfe des Additivs konnte innerhalb von 12 h bei 75 °C mit 0.50 mol-% 53, 6.20 mol-% KOtBu und 6.20 mol-% PPh3 ein nahezu quantitativer Umsatz (94%) von Acetophenon zu 1-Phenylethanol beobachtet werden. Sogar eine Verringerung der Basen- und Phosphanmenge auf 1.60 und 1.10 mol-% reichte aus, um Ausbeuten von 90% zu erreichen (Abb. 4.5., rechts). Dabei konnte Rutheniumkomplex 53 als erster Methandiid-basierter Carbenkomplex mit katalytischem Potential in Transferhydrierungen etabliert werden. Außerdem beschränkte sich die katalytische Aktivität von 53/PPh3 nicht nur auf die Reduktion von Acetophenon, sondern konnte auch erfolgreich auf weitere aromatische und aliphatische Ketone übertragen werden. Mittels NMR-spektroskopischer Untersuchungen des Katalyseverlaufs gelang ein Nachweis der katalytisch aktiven Spezies im Katalysezyklus. So konnte bei 75 °C zunächst die erwartungsgemäße Entstehung des Hydridokomplexes 77 beobachtet werden. Dieser setzte sich anschließend mit PPh3 zum cyclometallierten Phosphankomplex 52 um. Aufbauend auf diesen Beobachtungen wurde ebenfalls Komplex 52 hinsichtlich seines katalytischen Potentials in der Reduktion von Acetophenon untersucht, wobei noch bessere Umsätze als mit dem Katalysator 53/PPh3 beobachtet wurden. Hierbei konnte bereits nach 3 h mit 0.50 mol-% 52 und 1.60 mol-% KOtBu eine Ausbeute von 95% erzielt werden. Zudem führten Ansätze mit 52 auch ohne Zugabe einer Base zu Umsätzen von ca. 40%. Eine Übertragung der Katalysebedingungen auf die Reduktion weiterer Keton-Derivate lieferte ebenfalls gute Ergebnisse und ergab Alkohol-Ausbeuten zwischen 72% und 96%. Die für Ruthenium-Carbenkomplex 53 gefundene Reaktivität und das nicht-unschuldige Verhalten des Methandiid-Liganden konnten außerdem auch für Iridium-Carbenkomplex 55 beobachtet werden. So konnten analoge NH, PH- und SiH-Additionsprodukte selektiv synthetisiert und in guten Ausbeuten (etwa 60-90%) analysenrein erhalten werden. In Analogie zu Rutheniumkomplex 53 führte die Aktivierung von Substraten mit unterschiedlichen E-H-Bindungen entsprechend der Ladungsverteilung im Ir+C--Fragment zur Protonierung der PCS-Brücke in 55. Dabei wiesen auch hier die Additionsprodukte im Allgemeinen eine cis-Anordnung der vorherigen E-H-Einheit auf. Einzige Ausnahme stellte das mit p-Nitroanilin gebildete NH-Aktivierungsprodukt 61b dar. Hierbei konnte mittels Röntgenstrukturanalyse eine trans-Anordnung der Amido-Einheit und des PCHS-Brückenprotons detektiert werden, die durch Ausbildung einer Wasserstoffbrückenbindung zwischen der Amido-NH- Einheit und dem Sauerstoffatom des Sulfonyl-Substituentens begünstigt wird. Zudem konnte für die Bildung von 61b ein bei Raumtemperatur reversibler Reaktionsprozess unter Rückbildung des Carbenkomplexes 55 und Abspaltung von p-Nitroanilin beobachtet werden. In künftigen Experimenten sollte untersucht werden, ob aufgrund der Reversibilität katalytische Hydroaminierungen mit 61b realisierbar sind. Trotz des hydridischen Charakters des Si-H-Wasserstoffatoms in Silanen wurden auch mit Carbenkomplex 55 ausschließlich die SiH-Bindungsaktivierungskomplexe 71a-71c gebildet. Zudem konnte bei der Aktivierung von Triphenylsilan zwar das Additionsprodukt 71a mittels NMR-spektroskopischer Untersuchungen in der Reaktionslösung nachgewiesen werden, jedoch setzte sich dieses bereits bei Raumtemperatur zum cyclometallierten Komplex 72 um. Interessanterweise resultierten die Aktivierung von H2 und die Dehydrierung von iPrOH ebenfalls in 72. Mittels NMR-spektroskopischer Untersuchungen des Reaktionsverlaufes konnte hierbei gezeigt werden, dass die Cyclometallierung ausgehend von dem in situ gebildeten Iridium-Hydridokomplex 79 stattfindet. Deuterierungsexperimente mit iPrOH-d8 belegten außerdem, dass die Protonierung der PCS Brücke durch iPrOH und nicht durch direkte ortho-C-H-Aktivierung der Sulfonyl-Phenyl-Gruppe erfolgt. Die Isolierung des Iridium-Hydridokomplexes 79 war aufgrund seiner schnellen Umsetzung zu 72 daher nicht möglich. Die Nukleophilie des Carben-Kohlenstoffatoms und die ausgezeichnete M=C-Wechselwirkung in Ruthenium-Carbenkomplex 53 ermöglichten neben EH-Bindungsaktivierungen außerdem [2+2]-Cycloadditionsreaktionen mit Iso- und Thioisocyanaten. In diesem Zusammenhang konnten mit tert-Butyl- und Phenylisocyanat die Cycloadditionsprodukte 80a und 80b synthetisiert, in guten Ausbeuten isoliert (79% bzw. 80%) und vollständig charakterisiert werden. Die mittels Röntgenstrukturanalyse durchgeführte Aufklärung der Molekülstruktur von 80a im Festkörper bestätigte die Ausbildung eines C-Ru-N-C-Vierringes als zentrales Strukturmotiv, was mit literaturbekannten Umsetzungen dieser Art übereinstimmt. Mit tert-Butyl- und Phenylthioisocyanat hingegen wurden die Iminkomplexe 81a/b unter Addition der Ruthenium-Kohlenstoff-Doppelbindung an das CS-Fragment im Thioisocyanat erhalten. Dabei konnte die Ausbildung eines C-Ru-S-C-Vierringes als zentrales Strukturmotiv beobachtet werden. Insgesamt folgte die Selektivität der gebildeten [2+2]-Cycloadditionsprodukte 80a/b und 81a/b den Prinzipien des HSAB-Konzeptes, wonach jeweils das weichere Atom des Heteroallens an das Ruthenium-Zentrum bindet. Obgleich die Reaktivität Methandiid-basierter Carbenkomplexe mit verschiedenen Heteroallenen bereits in der Literatur beschrieben wurde, stellte die Umsetzung mit Thioisocyanaten zu 81a/b ein bisher unbekanntes Reaktionsverhalten dieser Verbindungsklasse dar. Neben der Anwendung des Methandiids 20-Li2 als Ligand für die Synthese neuer Übergangsmetallkomplexe erwies sich das Dianion außerdem als geeignet für die Darstellung des Li/Cl-Carbenoids 83. Dabei konnte 83 zum einen durch Oxidation von 20-Li2 mit Hexachlorethan (C2Cl6) und zum anderen durch Metallierung des chlorierten Liganden 82 synthetisiert und in guten Ausbeuten (67-82%) als farbloser, kristalliner Feststoff isoliert werden. Verbindung 83 erwies sich dabei als ein seltenes, bei Raumtemperatur stabiles Li/Cl-Carbenoid. Aufgrund der Stabilität im Festkörper als auch in Lösung bei Raumtemperatur konnte 83 zudem NMR-spektroskopisch und mittels Elementaranalytik vollständig charakterisiert werden. Ebenfalls gelang die Aufklärung der Molekülstruktur von 83 im Festkörper. Diese zeigte keinen direkten Kontakt zwischen dem Carbenoid-Kohlenstoff- und Lithiumatom und lieferte damit neben der elektronischen Stabilisierung eine Erklärung für die beobachtete Stabilität von 83. Dabei beteiligt sich das Ligandsystem durch Koordination der Sulfonyl-Gruppen an das Lithiumatom erheblich an der Stabilisierung, sodass eine Lithiumchlorid-Eliminierung erschwert wird. Außerdem zeigte die Molekülstruktur keine Verlängerung der C-Cl-Bindung, wie es für unstabilisierte Carbenoide in der Literatur beschrieben wird. Diese Tatsache und die im 13C-NMR-Spektrum beobachtete Abschirmung des Carbenoid-Kohlenstoffatoms im Vergleich zur chlorierten Vorstufe 82 lieferten erste Anzeichen für einen geringen carbenoiden Charakter von 83. Außerdem bestätigten quantenchemische Rechnungen keine signifikante Polarisierung der CCl-Bindung. Die durch die Stabilisierung resultierende Verringerung des carbenoiden Charakters und somit der Ambiphilie spiegelte sich auch in der Reaktivität von 83 wider. So konnte Verbindung 83 nicht als Cyclopropanierungsreagenz verwendet werden, wie es zumeist für klassische Carbenoide der Fall ist. Gegenüber Elektrophilen wie Methyliodid oder Chlordiphenylphosphan reagierte 83 in Analogie zu Organolithiumbasen zu den Verbindungen 84a und 84b. Jedoch konnte 83 als Carbenvorstufe zur Synthese des Palladium-Carbenkomplexes 51a unter LiCl-Eliminierung eingesetzt werden, was den leicht vorhandenen carbenoiden Charakter von 83 wiedergibt. Zudem wurde 83 hinsichtlich seines Aktivierungspotentials von EE-Bindungen untersucht. Während die Aktivierung der BH-Bindung in Boranen und die BB-Bindung in Diboranen nicht gelang, konnte die SS-Bindung in 2,2‘-Dipyridyl- und 4,4‘-Dipyridyldisulfid gespalten und Verbindung 90 analysenrein erhalten werden (Schema 4.8.). Studien zur Aufklärung dieses Reaktionsverhaltens stehen jedoch noch aus. Bezüglich der Aktivierung von P-H-Bindungen in unterschiedlich substituierten aromatischen Phosphanen konnte für 83 eine zu einem Silyl-stabilisierten Carbenoid analoge Reaktivität gefunden werden. Hierbei erfolgte keine Addition der P-H-Bindung an das carbenoide Kohlenstoffatom, sondern die selektive Dehydrokupplung der Phosphane zu Diphosphanen unter LiCl-Eliminierung. Diese überraschende und bis dato für Carbenoide unbekannte Reaktivität erfolgte unter milden Reaktionsbedingungen (Raumtemperatur) und ohne Einsatz von Übergangsmetallkatalysatoren. Insgesamt konnte für Verbindung 83 ein vielfältiges Reaktionsverhalten gefunden werden. Neben dessen Eignung als Carbenvorstufe bei der Synthese von Übergangsmetall-Carbenkomplexen, konnte die Spezies in der Aktivierung von SS- und PH-Bindungen eingesetzt werden. In zukünftigen Reaktivitätsstudien sollte das beobachtete Potential auf weitere Substrate übertragen werden. N2 - This thesis deals with the application of the sulfonyl stabilized methandiide 20-Li2 as a ligand in transition metal complexes. In this context, 20-Li2 reacted with several transition metal halides to the corresponding carbene complexes via salt metathesis reaction. The obtained systems exhibited flexible bonding situations concerning the nature of the MC bond and revealed different coordination modes of the sulfonyl moiety. This flexibility significantly influenced the stability and the reactivity of these complexes. Depending on the nature of the metals and co-ligands, carbene complexes with a more ylidic interaction (A) and such with a real MC double bond (B) could be obtained. In this context, a variety of novel complexes with both early (zirconium) and late (palladium, ruthenium, iridium) transition metals were establishe.The synthesized compounds revealed different structural and electronic properties, enabling their classification into the categories A and B. For example, the reaction of methandiide 20-Li2 with zirconocene dichloride led to the selective formation of zirconocene complex 50. NMR spectroscopy (e.g. high-field shift of the 13C NMR signal of the carbene carbon atom) and the molecular structure (e.g. pyramidalisation of the “carbene“ carbon atom) led to the conclusion, that 50 could not be described as a carbene complex with a ZrC double bond. This could also be confirmed by theoretical studies. Thus, the “Natural Bond Orbital“ analysis (NBO analysis) showed a significant negatively charged carbon atom (qc = 1.42), in line with the nucleophilicity of 50 and a positive charge at the zirconium atom (qZr = 1.35). Hence, the nature of the ZrC bond in 50 is best described by an ylidic interaction. Similar results were obtained when methandiide 20-Li2 was treated with [(PPh3)2PdCl2] or [(PPh3)3RuCl2] to form the complexes 51a and 52-Int. Comparable to 50, NBO analysis of 51a and 52-Int revealed only a  bond between the metal and the carbon atom, but no  interaction. According to the electronic structure of 51a and 52-Int, both complexes turned out to be instable and highly reactive while compound 51a decomposed in solution under the formation of several decomposition products and the ruthenium carbene intermediate 52-Int underwent an intramolecular CH-activation of the phenyl group of the sulfonyl moiety to the cyclometalated complex 52. Product 52 could be isolated in a yield of 62% and fully characterized. In the case of the palladium and ruthenium complexes, the observed weak  interaction between metal and carbon atom can be referred to the electron rich metal centers. Here, the electron density of the late transition metals was additionally increased by strong  donor and poor  acceptor abilities of the phosphine ligands. Hence, substitution of the phosphines in the ruthenium dichloride precursor by an arene ligand (p-cymene) resulted in a change of the electronics of the metal fragment, allowing the selective access to ruthenium carbene complex 53. Compound 53 could be isolated in 86% yield as a purple solid and fully characterized. X-ray diffraction analysis, NMR spectroscopy and theoretical studies confirmed the double bond character of the MC interaction in 53. The molecular structure of 53 revealed a short RuC bond and a planar coordination environment of the central carbon atom [sum of angles: 358.9(1) Å]. In comparison with the bond lengths of the PCS backbone in methandiide 20-Li2, elongated PC and CS bonds were found in 53, indicating weaker electrostatic interactions within the ligand framework and thus an efficient electron transfer from the methandiide to the metal fragment. Additionally, the NBO analysis revealed both  and  contribution of the MC bond with only a slight polarization to the carbon atom. Similar observations (short IrC distance, planar coordination environment of the carbon atom, reduced electrostatic interactions within the ligand framework, NBO analysis) were made for iridium carbene complex 55. Nevertheless, the carbene carbon atom in 55 was found to exhibit a higher negative charge, indicating a more pronounced ylidic character of the MC bond compared to ruthenium complex 53. According to the electronic nature of the MC bond, different reactivity patterns could be observed for the carbene complexes. Whereas the reaction of zirconocene complex 50 with aldehydes, ketones or disulfides was either unsuccessful or led to decomposition under formation of the protonated ligand 20, an intramolecular CH activation to 52 could be observed in the case of ruthenium carbene complex 52-Int. On the contrary, ruthenium carbene complex 53 could be applied in a variety of EH bond activation reactions at room temperature. The reactions proved the non-innocent behaviour of the methandiide ligand which serves as nucleophilic center. Hence, the OH and NH bonds in a series of alcohols and amines (products 56, 58 and 59), the PH bond in secondary phosphine oxides and the hydridic SiH and BH bonds in silanes and boranes could be splitted using complex 53. X-ray diffraction analyses of the activation products revealed a 1,2-addition of the substrates across the RuC double bond to the corresponding cis-addition products. Thereby, the change from a metal carbon double to a metal carbon single bond was acoompanied by an elongation of the RuC bond from 1.965(2) Å in 53 to about 2.2 Å. Additionally, a pyramidalization of the carbon atom could be detected, instead of a planar coordination environment as in carbene complex 53. All activation reactions performed with substrates containing a protic (OH, NH bonds) or a slightly protic/hydridic (PH bonds) hydrogen occurred via protonation of the nucleophilic carbene carbon atom. Interestingly, some OH and NH activation reactions resulted in an equilibrium between the carbene and the activation complex. It is important to note, that such an equilibrium has so far not been observed for methandiide based carbene complexes and thus underlines the extraordinary stability of ruthenium complex 53. The reversibility could be confirmed by VT NMR experiments, such as of the reaction of 53 with p methoxyphenol. These studies showed that the equilibrium can almost completely be shifted towards the addition product at 80 °C due to entropical reasons. On the contrary, warming the sample to room temperature led to the re-formation of carbene complex 53. A reversible reaction process could also be observed for the activation of NH bonds. For example, in the case of the activation of ammonia the amido complex 60 could not be isolated due to a strong temperature dependency of the equilibrium. Temperatures as low as 90 °C were necessary to move the equilibrium to the side of the activation product. Future studies will focus on the isolation of 60 in solid state in order to confirm the existence of 60. Furthermore, a transfer of the activated ammonia to unsaturated substrates will be tested. Surprisingly, reactions of a series of aliphatic and aromatic silanes with 53 led to an analogous bond activation and to the selective formation of the silyl complexes 66a 66f. According to the polarity of the SiH bond in silanes, a reverse reactivity with formation of the corresponding hydrido complexes was expected, but could not be observed at all. The reaction mechanism could be elucidated by DFT studies and was found to proceed via a stepwise process. Thereby, the flexible MC bond in 53 enabled an oxidative addition of the SiH bond to the ruthenium center, followed by a hydride transfer to the methanide carbon atom. Besides the isolation and characterization of the silyl complexes 66a-66f, those complexes were also tested in the catalytic hydrosilylation of norbornene. Whereas no reaction was observed at room temperature, hydrosilylation product 68 was formed at 80 °C. Nevertheless, the formation of 68 was only accomplished in small amounts as confirmed by GC-MS analysis. Instead, the ROMP product turned out to be the main product under the reaction conditions. Future studies should concentrate on the optimisation of the reaction conditions in order to improve the selectivity of the hydrosilylation reaction. In contrast to the so far discussed EH bond activation reactions, carbene complex 53 showed diverse reactivities towards boranes and different borane Lewis base adducts. The reaction of 53 with catechol borane gave hydrido complex 73, which could be characterized by X-ray diffraction analysis. In contrast to the activation of the SiH bond, the BH bond activation complex 73 reflects the expected reactivity due to the polarity of the BH and the MC bond. Surprisingly, the activation of the BH bond in pinacol borane did not lead to a hydrido complex similar to 73. In this case, NMR studies of the reaction process confirmed the formation of the BH addition product under protonation of the PCS backbone, followed by a rapid conversion to a novel, so far unidentified complex. The formation of a completely different product was again observed within the reaction of 53 with BH3∙SMe2. Here, complex 76 could be isolated, which is formed by activation of the BH bond, accompanied by an insertion of one borane into the thiophosphoryl moiety. The molecular structure of 76 revealed a five-membered P–B–S–Ru–C ring as the central structural motif. Besides its activation potential concerning polar EH bonds, carbene complex 53 was also applied in the activation of non polar bonds like the one in dihydrogen giving way to hydrido complex 77. The molecular structure of 77 could be confirmed by X-ray diffraction analysis and revealed a cis-addition of H2 across the RuC double bond. Additionally, the signal for the hydridic hydrogen atom could be detected in the 1H NMR spectrum at H = 6.62 ppm. Interestingly, compound 77 could also be obtained by dehydrogenation of iso propanol or formic acid (HCOOH) via formation of acetone or CO2. Based on the observed dehydrogenation of iPrOH, an application of carbene complex 53 as catalyst in catalytic transfer hydrogenations of ketones to alcohols was assumed. Despite the fact that the activation of H2 and the dehydrogenation of iPrOH did not show any reversibility, a catalytic cycle including both carbene complex 53 and hydrido complex 77 with iPrOH as hydrogen source should be realizable (Fig. 4.5., left). First attempts aiming at the catalytic reduction of acetophenone to 1 phenylethanol with 53 and KOtBu as base delivered poor yields of the alcohol in comparison with literature-known transition metal catalysts. For example, 0.50 mol-% 53 and 19 mol-% KOtBu gave 1 phenylethanol in only 55% yield after 24 h at 75 °C. Additionally, the conversions turned out to depend on the amount of base indicating a competing base induced reduction. Optimization of the reaction conditions by adding triphenylphosphine as additive led to almost quantitative conversions (94%) to 1 phenylethanol within 12 h at 75 °C using 0.50 mol-% 53, 6.20 mol-% KOtBu and 6.20 mol % PPh3. Yields of about 90% could still be achieved when decreasing the KOtBu and PPh3 loadings to 1.60 and 1.10 mol. Overall, ruthenium complex 53 is the first methandiide based carbene complex applied in catalytic transfer hydrogenations. Thereby, the catalytic activity of 53/PPh3 was not only limited to the reduction of acetophenone, but could also be transferred to further aromatic and aliphatic ketones. The reaction process of the catalytic transfer hydrogenation was studied by NMR spectroscopy to determine the catalytic active species formed during the reaction process. These studies showed that at first the hydrido complex 77 is formed at 75 °C, followed by its reaction with PPh3 to the cyclometalated phosphine complex 52. Studies on the catalytic ability of 52 itself in the transfer hydrogenation of acetophenone to 1 phenylethanol revealed even better performances. Overall, better yields could be obtained when using 52 as catalyst. A yield of 95% could already be obtained after 3 h using 0.50 mol-% 52 and 1.60 mol-% KOtBu. Additionally, a test reaction using only 52 without any additional base led to a remarkable yield of about 40%. Comparable to the catalytic system 53/PPh3, complex 52 could also be applied in the catalytic reduction of further ketones giving yields of about 72% to 96%. The observed reactivity of ruthenium carbene complex 53 and the non-innocent behavior of the methandiide ligand could also be established for iridium carbene complex 55. Here, similar NH, PH and SiH addition products could be synthesized selectively and isolated in good yields of 60-90%. Analogous to ruthenium complex 53, the activation of substrates with different EH bonds led to protonation of the PCS bridge in 55. This is in line with the polarization distribution of the Ir+C- bond in 55. The activation products again revealed a cis-addition of the EH unit on the IrC fragment. However, one exception was observed in the case of the reaction of 55 with p-nitro-aniline, which led to the formation of the N H activation product 61b with a trans-arrangement of the amido ligand relative to the PCHS hydrogen atom. Here, the trans-arrangement is favoured due to the formation of a hydrogen bond between the amido and the sulfonyl units. Additionally, complex 61b showed a reversible reaction process at room temperature, leading to the re-formation of carbene complex 55 and of p-nitroaniline. Due to the reversibility of 61b in solution, further studies should concentrate on the potential of 61b as catalyst for hydroamination reactions. Despite the hydridic character of the hydrogen atom in silanes, SiH bond activation reactions of carbene complex 55 exclusively led to the formation of the silyl complexes 71a-71c under protonation of the nucleophilic carbene carbon atom in 55. Interestingly, 71a was found to be instable and further reacted to the cyclometalated complex 72 already at room temperature. Additionally, the activation of H2 and the dehydrogenation of iPrOH also resulted in the formation of 72. Here, the reaction process was studied by NMR spectroscopy. These experiments revealed that the cyclometalation occurs from hydrido complex 79, which is formed in situ during the reaction process. Furthermore, deuteration experiments with iPrOH d8 evidenced that the protonation of the PCS fragment results from the reaction of 55 with iPrOH and is not formed via an intramolecular cyclometalation via CH activation of the sulfonyl phenyl group. Due to the rapid transformation of hydrido complex 79 to the cyclometalated species 72, the isolation of 79 was not possible. The nucleophilicity of the carbene carbon atom and the special MC interaction in ruthenium carbene complex 53 also allowed for [2+2] cycloaddition reactions with iso- and thioisocyanates. In this context, reaction of 53 with tert-butyl and phenyl isocyanate afforded the cycloaddition products 80a and 80b. The complexes 80a/b could be isolated in good yields (about 80%) as well as fully characterized. X-ray diffraction analysis of 80a confirmed the formation of a four-membered CRuNC ring as the central structural motif of 80a. These findings were in line with literature-known cycloaddition reactions of methandiide based carbene complexes with isocyanates. On the contrary, reaction of 53 with tert-butyl and phenyl thioisocyanate afforded the complexes 81a/b. Here, addition of the heteroallene to the ruthenium carbon double bond occurred via the CS fragment of the thioisocyanate. Hence, the [2+2] cycloaddition resulted in the formation of a four-membered CRuSC ring as central structural motif. Overall, the observed selectivity of the [2+2] cycloaddition reactions to 80a/b and 81a/b can be explained by the HSAB concept. Accordingly, the softer atom of the heteroallene is connected to the soft ruthenium center. Despite the fact that the reactivity of methandiide based carbene complexes with different heteroallenes has already been reported in literature, cycloaddition reactions with thioisocyanates affording complexes such as 81a/b has so far been unknown. Besides its application as ligand for the synthesis of novel transition metal complexes, methandiide 20-Li2 was found to be suitable for the synthesis of Li/Cl carbenoid 83. On the one hand, compound 83 could be obtained by oxidation of 20-Li2 with hexachloroethane (C2Cl6) and on the other hand by metalation of the chloro derivative 82. Carbenoid 83 could be isolated as a colorless, crystalline solid in good yields (67 82%) and represents a rare example of a room temperature stable Li/Cl carbenoid. Due to the stability of 83 both in solid state and in solution at room temperature, the carbenoid could be characterized by NMR spectroscopy and elemental analysis. Moreover, the molecular structure of 83 could be determined by X-ray diffraction analysis, revealing no direct contact between the carbenoid carbon and the lithium atom. Instead, the sulfonyl group of the ligand system coordinates to the lithium atom and thus inhibits the elimination of lithium chloride. This and the electronic stabilisation by the α substituents result in the observed stability of 83. Furthermore, the molecular structure did not reveal an elongation of the CCl bond as often described for unstabilised carbenoids. These findings and the observed deshielding of the carbenoid carbon atom in the 13C NMR spectrum relative to the chlorinated precursor 82 suggested a reduced carbenoid character of 83. This reduced carbenoid character of 83 could also be observed in reactivity studies. Contrary to classical carbenoids, 83 could thus not be used as reagent for cyclopropanation reactions. However, the still present nucleophilicity could be proven by treatment of 83 with electrophiles like methyl iodide or chlorodiphenylphosphine. Here, the compounds 84a and 84b could be obtained via salt elimination reactions. Additionally, 83 could be applied as carbene precursor for the synthesis of palladium carbene complex 51a under elimination of lithium chloride. The observed reactivity underlined the still present carbenoid character of 83. Furthermore, the potential of 83 in the activation of EE bonds in different substrates was tested. Whereas the activation of the BH bond in boranes and the BB bond in diboranes was not possible with 83, the SS bond in 2,2‘-dipyridyl and 4,4‘ dipyridyl disulfide could be splitted. The mechanism of this reaction, however, still has to be elucidate A remarkable reactivity was also observed in the reaction of carbenoid 83 with various secondary phosphines. Here, no addition of the PH bond to the carbenoid carbon atom occurred, but instead the selective dehydrocoupling of the phosphines to diphosphines via elimination of lithium chloride. It is important to note that this unexpected and so far unknown reactivity could be carried out unter mild reaction conditions (room temperature) using different functionalized phosphines and did not require the use of transition metal complexes. Overall, compound 83 exhibits a huge variety of reactivity patterns. Besides its function as carbene precursor for the synthesis of transition metal carbene complexes, the carbenoid behaviour could also be applied in the activation of SS and PH bonds. Future investigations should aim at the extension of the activation potential of 83 to further substrates. KW - Carbenkomplexe KW - Dianion KW - Chemische Bindung KW - nicht-unschuldiges Ligandverhalten KW - Aktivierung KW - Methandiide KW - Methandiid-basierte Carbenkomplexe KW - Bindungsaktivierungsreaktionen Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121549 ER - TY - THES A1 - Nagel, Christoph T1 - Novel manganese- and molybdenum-based photoactivatable CO-releasing molecules: synthesis and biological activity T1 - Neue Mangan- und Molybdän-basierte CO-releasing molecules: Synthese und biologische Aktivität N2 - Since its discovery as a small signaling molecule in the human body, researchers have tried to utilize the beneficial cytoprotective properties of carbon monoxide in therapeutic applications. Initial work focused on the controlled direct application of CO gas. However, to circumvent the disadvantages of this method such as requirement for special equipment, hospitalization of the patient and the risk of overdosing, metal-carbonyl complexes were developed as CO-releasing molecules (CORMs) which are able to deliver CO in a tissue-specific manner. However, upon the release of CO from the metal coordination sphere, complex fragments termed inactivated CORMs (iCORMs) with free coordination sites remain which can undergo nonspecific follow-up reactions under physiological conditions. Thus, the first aim of the present thesis was the coordination of tetradentate ligands such as tris(2-pyridylmethyl)amine (tpa), bis(2-pyridylmethyl)(2-quinolylmethyl)amine (bpqa), bis(2-quinolylmethyl)(2-pyridylmethyl)amine (bqpa) and tris(2-quinolylmethyl) amine (tmqa) in a tridentate facial manner to a fac-Mn(CO)3 moiety previously established as a photoactivatable CO-releasing molecule (PhotoCORM). The desired coordination of the pedant donor group upon photolytic CO release at 365 nm was demonstrated by UV/Vis-, IR- und 1H NMR experiments and verified by DFT calculations. All complexes of the series showed long-term dark stability in phosphate-buffered saline (PBS), but released between two and three equivalents of carbon monoxide with half-lives of around 5-10 minutes upon illumination at 365 nm. Although the photolytic properties of the complexes were quite similar besides the differences in type of hetereoaromatic ligands, the determination of the logP values showed an increase of lipophilicity with the number of quinoline groups, which might enable tissue-specific uptake. A significant cellular manganese uptake as well as the binding of CO released upon photolysis to the cytochrome c oxidases in E. coli cells was demonstrated for [Mn(CO)3(tpa)]+. Furthermore, this complex exhibited photoinduced bactericidal activity when the cells were grown in succinate-containing medium and thus unable to change their metabolism to mixed acid fermentation. In the second part of the project, the hexadentate ligand 1,4,7-tris(2-pyridylmethyl)-1,4,7-triazacyclononane (py3tacn) was coordinated to a facial Mn(CO)3 moiety. The resulting [Mn(CO)3(py3tacn-3N)]+ complex has one pedant donor group per labile carbonyl ligand and thus is a significant improvement over the 1st generation tpa-complexes. The metal-coligand inactivated CORM (iCORM) fragment expected to be generated upon complete photolytic CO release, [Mn(py3tacn-6N)]2+, was synthesized independently and will serve as a well-defined negative control in upcoming biological tests. The corresponding CORM has long-term dark stability in pure dimethylsulfoxide or phosphate-buffered myoglobin solution, with three equivalents of CO released with a half-life of 22 minutes upon illumination at 412 nm. The photolysis was also followed by IR spectroscopy and the intermediates, in line with a stepwise release of carbon monoxide, and occupation of vacated sites by the pedant pyridine group were verified by DFT calculations. Due to possible tissue damage by energy-rich light and the inverse correlation of tissue penetration depth and illumination wavelength, the absorption maxima of PhotoCORMs should ideally be in the phototherapeutic window between 600 and 1200 nm. Thus, in the third part of this work, a series of heterobinuclear Mn(CO)3/Ru(bpy)2 PhotoCORMs was prepared to shift the absorption of these compounds into the red region of the UV/Vis spectrum. For the synthesis of such Mn(I)/Ru(II) complexes, the bridging ligands 2,3-di(2-pyridyl)quinoxaline (dpx) and 3-(pyridin-2-yl)-1,2,4-triazine[5,6-f]-1,10-phenanthroline (pytp) were prepared and the two binding pockets subsequently filled with a Ru(bpy)2 and a fac-Mn(CO)3 moiety. The resulting two heterobinuclear metal complexes [Ru(bpy)2(dpx)MnBr(CO)3]2+ and [Ru(bpy)2(pytp)MnBr(CO)3]2+ as well as [Ru(etx)(tbx)MnBr(CO)3]2+ with etx = ethyl(2,2':6',2''-terpyridine)-4'-carboxylate and tbx = N-((2,2’:6’,2’’-terpyridin)-4’-yl)2,2’-bipyridine-5-carboxamide which was prepared by a metal precursor provided by the group of Prof. Dr. Katja Heinze showed a significant shift of the main absorption bands to higher wavelengths as well as two times higher extinction coefficients than the analogous mononuclear Mn(I) compounds. However, both the Mn(I)/Ru(II) and Mn(I) complexes had a reduced stability in phosphate-buffered myoglobin solution even in the absence of light. The efficiency of the CO-release from [Ru(etx)(tbx)MnBr(CO)3]2+ and [Ru(bpy)2(dpx)MnBr(CO)3]2+ could be controlled by proper choice of the excitation wavelength. A change from 468 to 525 nm or even 660 nm led to a decrease of the number of CO equivalents released from two to one and an elongation of the half-lives. Finally, since nitric oxide also serves as a small messenger molecule in the human body with its signaling pathways interacting with those of CO, a mixed-ligand CO/NO metal complex was sought. [Mo(CO)2(NO)(iPr3tacn)]+ with iPr3tacn = 1,4,7-triisopropyl-1,4,7-triazacyclonane was selected from the literature and its molecular structure determined by single crystal diffraction, demonstrating the presence of an NO+ ligand in the coordination sphere as indicated by a MO-N-O angle close to 180°. Photolysis of [Mo(CO)2(NO)(iPr3tacn)]+ required high-energy UV light, which prevented a quantification of the CO release due to photolytic decomposition of the myoglobin. However, solution IR experiments showed that the complex lost the two carbon monoxide ligands upon illumination at 254 nm while the NO remained tightly bound to the metal. The structures observed of the intermediates were also verified by DFT calculations. In conclusion, in this project, four different classes of novel transition metal-based photoactivatable CO-releasing molecules (PhotoCORMs) were prepared and studied. The first group incorporated one additional free donor group per LMn(CO)3 moiety but varied in the number of coordinated pyridyl and quinolinyl groups which allows the control of the lipophilicity of these compounds. As an extension of this concept, the second series incorporated one free donor group per labile carbonyl ligand which gives rise to well-defined photolysis products that can be independently prepared and assayed. The third class was based on a Ru(II) photosensitizer unit connected to a MnBr(CO)3 PhotoCORM moiety. This shifts the absorption maximum from 500 nm to about 585 nm in [Ru(bpy)2(dpx)MnBr(CO)3]2+. Finally, a first mixed-ligand CO/NO carrier molecule was evaluated for its photolytic behavior. However, while the carbonyl ligands were photolabile at low excitation wavelengths, release of the NO ligand was not observed under the conditions studied. In a next step, detailed studies on the bioactivity of the different classes of PhotoCORMs need to be carried out with partner groups from biochemistry to fully explore their biomedical potential. N2 - Seit der Entdeckung als von Kohlenstoffmonoxid small signaling molecule im menschlichen Körper stehen seine zellschützenden Eigenschaften im Interesse der Forschung, die für therapeutische Anwendungen nutzbar gemacht werden könnten. Anfangs lag hierbei der Fokus auf einer kontrollierten Verabreichung von gasförmigem Kohlenstoffmonoxid. Um die Nachteile dieser Methode, wie beispielsweise spezielle klinische Ausrüstung sowie das Risiko einer Überdosierung zu umgehen wurden Metallkomplexe mit CO-Liganden als CO-releasing molecules (CORMs) entwickelt, welche in der Lage sind Kohlenstoffmonoxid gewebespezifisch im Körper abzugeben. Durch die Freisetzung von CO aus der Koordinationssphäre eines Metallzentrums entstehen jedoch auch Komplexfragmente, sogenannte inactivated CORMs (iCORMs), welche unter physiologischen Bedingungen unbekannte Folgereaktionen eingehen können. Deshalb bestand das erste Ziel der vorliegenden Doktorarbeit darin, die tetradentaten Liganden Tris(2-pyridylmethyl)amin (tpa), Bis(2-pyridylmethyl)(2-quinolylmethyl)amin (bpqa), Bis(2-quinolyl-methyl)(2-pyridylmethyl)amin (bqpa) und Tris(2-quinolylmethyl)amin (tmqa) an eine faciale Mn(CO)3 Einheit zu koordinieren, deren Komplexe dann als photoactivatable CO-releasing molecules (PhotoCORM) fungieren sollten. Die Koordination der zusätzlichen Donorgruppe im Zuge der photolytischen CO Freisetzung wurde am Beispiel von [Mn(CO)3(tpa)]+ durch UV/Vis-, IR- und 1H NMR-Experimente gezeigt und durch DFT-Rechnungen untermauert. Alle Verbindungen der Serie zeigten in Phosphat-Puffer eine hohe Stabilität im Dunkeln. Durch Photoaktivierung bei einer Wellenlänge von 365 nm konnten aus den Komplexen zwei bis drei Äquivalente CO mit einer Halbwertszeit um 10 Minuten freigesetzt werden. Obwohl die photolytischen Eigenschaften der Komplexe sehr ähnlich waren, steigt die Lipophilie angegeben durch den logP-Wert mit steigender Anzahl der im Komplex enthaltenen Quinolin-Gruppen an, was die Gewebeaufnahme erleichtern sollte. Für [Mn(CO)3(tpa)]+ konnte ein deutlicher Anstieg der intrazellulären Mangankonzentration sowie die Bindung von freigesetztem CO an die Cytochrom c-Oxidasen in E. coli beobachtet werden. Auch zeigte diese Verbindung eine photoinduzierte Toxizität gegenüber diesen Bakterienkulturen, solange diese in Succinat-haltigem Nährmedium gezüchtet wurden und somit nicht in der Lage waren ihren Stoffwechsel auf die „mixed acid fermentation“ umzustellen. Im zweiten Teil der Arbeit sollte dann der hexadentate Ligand 1,4,7-Tris(2-pyridylmethyl)-1,4,7-triazacyclonane (py3tacn) an eine faciale Mn(CO)3-Einheit koordiniert werden. Der resultierende [Mn(CO)3(py3tacn-3N)]+ Komplex verfügt über eine freie Donorgruppe für jeden Kohlenstoffmonoxid-Liganden. Das Metall-Coligand-Fragment, [Mn(py3tacn-6N)]2+, welches als photolytisches Endprodukt erwartet wird, wurde über einen separaten Syntheseweg hergestellt und wird als Negativkontrolle in kommenden biologischen Testreihen eingesetzt werden. Untersuchungen zur CO-Freisetzung aus [Mn(CO)3(py3tacn-3N)]+ zeigten, dass die Verbindung sowohl in Dimethylsulfoxid als auch in gepuffertem Myoglobin im Dunkeln lange Zeit stabil ist. Bei Belichtung mit 412 nm können aus dem Komplex etwa drei Äquivalente CO mit einer Halbwertszeit von 22 Minuten freisetzt werden. Der Photolyseprozess wurde auch mittels IR-Spektroskopie verfolgt und die Zwischenstufen, welche Hinweis auf eine stufenweise Abgabe der CO-Liganden wie auch die Besetzung der freien Koordinationsstellen durch die freien Pyridingruppen gaben, durch DFT Rechnungen belegt. Aufgrund der Möglichkeit von Gewebeschädigungen durch kurzwelliges UV-Licht und den inversen Zusammenhang von Gewebeeindringtiefe und Belichtungswellenlänge, sollte das Absorptionsmaximum eines PhotoCORMs idealerweise im phototherapeutischen Fenster zwischen 600 und 1200 nm liegen. Deshalb wurden im dritten Teil dieser Arbeit hetereobinukleare Mn(CO)3/Ru(bpy)2 PhotoCORMs hergestellt, um die Absorption der Verbindungen in den roten Bereich des sichtbaren Spektrums zu verschieben. Für die Synthese der Mn(I)/Ru(II) PhotoCORMs wurden 2,3-Di(2-pyridyl)quinoxalin (dpx) und 3-(pyridin-2-yl)-1,2,4-triazin[5,6-f]-1,10-phenanthrolin (pytp) als verbrückende Liganden verwendet, wobei zunächst eine Bindungstasche mit Ru(bpy)2 und anschließend die zweite mit Mn(CO)3 gefüllt wurden. Die zwei resultierenden hetereobinukleare Metallkomplexe [Ru(bpy)2(dpx)MnBr(CO)3]2+ und [Ru(bpy)2(pytp)MnBr(CO)3]2+ sowie [Ru(etx)(tbx)MnBr(CO)3]2+, mit etx = Ethyl(2,2':6',2''-terpyridin)-4'-carboxylat und tbx = N-((2,2’:6’,2’’-Terpyridin)-4’-yl)2,2’-bipyridin-5-carboxamid, welcher aus einer Ruthenium-Vorstufe aus der Arbeitsgruppe von Prof. Dr. Katja Heinze synthetisiert wurde zeigten eine deutliche Verschiebung der intensivsten Absorptionsbande zu höheren Wellenlängen und eine Verdopplung der Extinktionskoeffizienten im Vergleich zu den analogen mononuklearen Mn(I)-Verbindungen. Jedoch konnte sowohl für die Mn(I)/Ru(II)- als auch für die Mn(I)-Komplexe selbst unter Lichtausschluss eine Zersetzung in gepuffertem Myoglobin festgestellt werden. Die Effizienz der CO-Freisetzung aus [Ru(etx)(tbx)MnBr(CO)3]2+ und [Ru(bpy)2(dpx)MnBr(CO)3]2+ lässt sich durch die Wahl einer geeigneten Anregungswellenlänge kontrollieren. Durch den Wechsel von 468 zu 525 nm oder sogar 660 nm wurde die Anzahl der freigesetzten CO-Äquivalente von zwei auf eins reduziert. Auch konnte eine Verlängerung der Halbwertszeiten festgestellt werden. Da Stickstoffmonoxid ebenfalls als small messenger molecule im menschlichen Körper bekannt ist, dessen Signalwege mit denen von CO interagieren, wurde ein gemischter CO/NO-Metallkomplex gesucht. [Mo(CO)2(NO)(iPr3tacn)]+ mit iPr3tacn = 1,4,7-triisopropyl-1,4,7-triazacyclonan wurde aus der Literatur ausgewählt und synthetisiert. Die molekulare Struktur der Verbindung konnte erstmals durch Röntgenbeugung am Einkristall aufgeklärt werden und enthält mit einem Mo-N-O Winkel von 180° das Stickstoffmonoxids als NO+-Liganden. Das energiereiche UV-Licht, welches zur Photolyse von [Mo(CO)2(NO)(iPr3tacn)]+ benötigt wurde, führte unter den Bedingungen des Myoglobin-Assay jedoch zu einer Zersetzung des Proteins. Durch Photolyse-Experimente in Acetonitril, welche mit IR-Spektroskopie verfolgt wurden, konnte jedoch die Freisetzung der beiden CO-Liganden durch Belichtung mit 254 nm beobachtet werden während der Nitrosyl-Ligand an das Metallzentrum gebunden blieb. Die gefundenen Photolyseprodukte konnten auch mittels DFT-Rechnungen identifiziert werden. Zusammengefasst wurden im Rahmen dieser Doktorarbeit vier verschiedene Klassen von übergangsmetallbasierten photoactivatable CO-releasing molecules (PhotoCORMs) hergestellt und untersucht. Die erste Gruppe von Molekülen verfügt über eine zusätzliche freie Donorgruppe pro fac-Mn(CO)3-Einheit, variiert aber in der Anzahl der koordinierten Pyridyl- und Quinolinyl-Einheiten, wodurch die Lipophilie der Verbindungen eingestellt werden kann. Die Verbindungen der zweiten Generation beinhalten eine freie Donorgruppe pro labilen Carbonyl-Liganden. Dies führt zu wohldefinierten photolytischen Endprodukten, welche auch separat hergestellt und getestet werden können. Die dritte Klasse basiert auf Ru(II)-Photosensitizern, die an eine MnBr(CO)3-PhotoCORM-Einheit angebunden wurden. Dies hat im Fall von [Ru(bpy)2(dpx)MnBr(CO)3]2+ eine Verschiebung des Absorptionsmaximums von 500 nm zu 585 nm zur Folge. Schließlich konnte ein gemischtes CO/NO-Trägermolekül erstmals auf seine photolytischen Eigenschaften untersucht werden. Während beide CO-Liganden in[Mo(CO)2(NO)(iPr3tacn)]+ labil waren, konnte eine Freisetzung des NO-Liganden unter den vorliegenden Bedingungen nicht beobachtet werden. In der Weiterführung dieses Projekts sollten detaillierte Studien zur biologischen Aktivität der verschiedenen PhotoCORMs durchgeführt werden um das volle biomedizinische Potential dieser Verbindungen zu ermitteln. KW - Kohlenmonoxid KW - Ligand KW - Mangan KW - Metallcarbonyle KW - CO-releasing molecules KW - metal carbonyl KW - manganese KW - carbonmonoxide KW - biological activity Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120376 ER - TY - THES A1 - Kramer, Thomas T1 - Übergangsmetall-Bor-Wechselwirkungen in Boryl- und Boridkomplexen T1 - Transitionmetal-Boron-Interactions in Boryl and Boride Complexes N2 - Durch Untersuchungen zur Reaktivität von Boryl- und Boridverbindungen konnten deren Bindungssituationen aufgeklärt und neuartige Koordinationsmotive von Übergangsmetall-Bor-Verbindungen erhalten werden. Die erhaltenen Verbindungen wurden mittels NMR-Spektroskopie, IR-Spektroskopie, Elementaranalyse und Röntgendiffraktometrie untersucht und zusätzlich wurden DFT-Rechnungen angefertigt. An verschieden substituierten Eisenborylkomplexen wurden Reaktivitätsuntersuchungen gegenüber Halogenidabstraktionsmitteln und Reduktionsmitteln durchgeführt und im Falle der Boridkomplexe wurden Verbindungen mit bis dato unbekanntem Strukturmotiv erhalten. N2 - Investigations into the reactivities of boryl and boride complexes provided insight into their bonding and led to previously unknown coordination motifs for transition-metal-boron complexes. The resulting compounds were analyzed via NMR spectroscopy, IR spectroscopy, elemental analyses and crystal structure analyses. Their electronic structures were investigated by theoretical calculations using DFT methods. The reactivities of substituted iron boryl complexes toward halogenide abstracting and reducing reagents were studied and, in case of the boride complexes, novel structural motifs were dentified. KW - Übergangsmetall KW - Mehrkernige Komplexe KW - Borylgruppe KW - Dimerisierung KW - Übergangsmetall-Borverbindungen KW - Borchemie KW - Boridkomplexe KW - Isonitrilinsertion KW - Boride KW - Borylkomplexe Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112222 ER - TY - THES A1 - Dück, Klaus T1 - Synthese, Untersuchung und Polymerisation neuartiger Sandwichkomplexe T1 - Synthesis, Investigation and Polymerization of new Sandwich Compounds N2 - In dieser Dissertation werden die Ergebnisse zur Synthese und Polymerisation gespannter Manganoarenophane vorgestellt. Weiterhin wird die Reaktivität von Bis(benzol)titan und die Synthese von ansa-Verbindungen dieses Komplexes, sowie Untersuchungen zu deren Eigenschaften beschrieben. Zum Vergeleich wird auch der Komplex Bis(mesityl)titan untersucht. Die Polymerisation von zinnverbrückten, gespannten Vanadium-Sandwichkomplexen und die Untersuchungen der paramagnetischen Eigenschaften ist ebenso in dieser Dissertationsschrift beschrieben. Zusätzlich wird die Synthese heteroleptischer Sandwichkomplexe des Scandiums und Yttriums dargestellt, sowie deren Ringsubstitution. Die Vorarbeiten zur Synthese heteroleptischer Sandwichkomplexe der Lanthanoide bildet ebenso einen Bestandteil dieser Schrift, wie die Synthese von ansa-Komplexen des Thorocens und Uranocens via flytrap-Methode. N2 - This Dissertation presents the results of the synthesis and polymerization of strained Manganoarenophanes. Furthermore the reactivity of bis(benzene)titanium and the synthesis of its ansa-compounds, as well as property investigations are shown. Comparative studies of the complex bis(mesityl)titanium are also described. The polymerization of tin-bridged, strained Vanadium sandwich compounds and the investigations of their paramagnetic properties are also described within this dissertation. Additionally the synthesis of heteroleptic sandwich complexes of Scandium and Yttrium and their ring substitution are presented. First results concerning the synthesis of heteroleptic sandwich complexes of the Lanthanides are a part of this work as well as the synthesis of ansa-compounds of Thorocene and Uranocene via flytrap-method. KW - Sandwich-Verbindungen KW - Überbrückte Verbindungen KW - Polymerisation KW - Lanthanoide KW - Actinoide KW - ansa-Komplexe/ ansa complexes KW - ringsubstituierte Sandwichverbindungen/ ring-substitueted sadnwich compounds KW - Verbrückte Verbindungen Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112600 ER - TY - JOUR A1 - Waelbroeck, M. A1 - Camus, J. A1 - Tastenoy, M. A1 - Feifel, R. A1 - Mutschler, E. A1 - Tacke, R. A1 - Strohmann, C. A1 - Rafeiner, K. A1 - Rodrigues de Miranda, J. F. A1 - Lambrecht, G. T1 - Binding and functional properties of hexocyclium and sila-hexocyclium derivatives to muscarinic receptor suhtypes JF - British Journal of Pharmacology N2 - 1 We have compared the binding properties of several hexocyclium and sila-hexocyclium derivatives to muscarinic Ml receptors (in rat brain, human neuroblastoma (NB-OK I) cells and calf superior cervical ganglia), rat heart M2 receptors, rat pancreas M3 receptors and M4 receptors in rat striatum, with their functional antimuscarinic properties in rabbit vas deferens (Ml/M4-like), guinea-pig atria (M2), and guinea-pig ileum (M3) muscarinic receptors. 2 Si la-substitution (C/Si exchange) of hexocyclium (~ sila-hexocyclium) and demethyl-hexocyclium (~demethyl-sila-hexocyclium) did not significantly affect their affinities for muscarinic receptors. By contrast, sila-substitution of demethoxy-hexocyclium increased its affinity 2 to 3 fold for all the muscarinic receptor subtypes studied. 3 The p-fluoro- and p-chloro-derivatives of sila-hexocyclium had lower affinities than the parent compound at the four receptor subtypes, in binding and pharmacological studies. 4 In binding studies, o-methoxy-sila-hexocyclium (Ml = M4 ~ M3 ~ M2) had a much lower affinity than sila-hexocyclium for the four receptor subtypes, and discriminated the receptor subtypes more poorly than sila-hexocyclium (Ml = M3> M4> M2)' This is in marked contrast with the very clear selectivity of demethoxy-sila-hexocyclium for the prejunctional MtlM4-like heteroreceptors in rabbit vas deferens. 5 The tertiary amines demethyl-hexocyclium, demethyl-sila-hexocyclium and demethyl-o-methoxy-silahexocyclium had 10 to 30 fold lower affinities than the corresponding quaternary ammonium derivatives. KW - Hexocyclium/sila-hexocyclium derivatives KW - o-methoxy-sila-hexocyclium KW - muscarinic receptor subtypes KW - structure/ affinity relationships KW - binding/functional correlations KW - muscarinic receptor antagonists Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128265 VL - 112 ER - TY - JOUR A1 - Tacke, Reinhold A1 - Niederer, Reinhold T1 - Sila-Pharmaka, 9. Mitt. [1] Darstellung und Eigenschaften potentiell curarewirksamer Silicium-Verbindungen, I T1 - Sila-Drugs, 9th Communication [1] Preparation and Properties of Silicon Compounds with Potential Curare-Like Activity, I JF - Zeitschrift für Naturforschung B N2 - Organosilicon compounds 8, 9 and 10 with potential curare-like action and their precursors 0, 6 and 7 were synthesized for the first time. 0-10 were characterized by their physical and chemical properties, and their structures were confirmed by analyses, IH NMR and mass spectroscopy (only for 0-7). The pharmacological and toxicological data of 8, 9 and 10 are reported. KW - curare-like activity KW - toxicological properties KW - pharmacological properties KW - silicon compounds Y1 - 1978 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128277 VL - 33 IS - 4 ER - TY - JOUR A1 - Pfeiffer, A. A1 - Hanack, C. A1 - Kopp, R. A1 - Tacke, R. A1 - Moser, U. A1 - Mutschler, E. A1 - Lambrecht, G. A1 - Herawi, M. T1 - Human Gastric Mucosa Expresses Glandular M3 Subtype of Muscarinic Receptors JF - Digestive Diseases and Sciences N2 - Five subtypes of muscarinic receptors have been distinguished by pharmacological and molecular biological methods. This report characterizes the muscarinic subtype present in human gastric mucosa by radioligand binding studies. The receptor density was 27 ± 6 fmol/mg protein and the tritiated ligand N-methylscopolamine had an affinity of (Kn) 0.39 ± 0.08 nM (n = 11). The M1 receptor selective antagonist pirenzepine and the M2 receptor selective ligand AF-DX 116 had low affinities of 148 ± 32 nM (n = 13) and 4043 ± 1011 nM (n = 3) K n , respectively. The glandular M3 antagonists hexahydrosiladifenidol and silahexocyclium had high affinities ofKn 78 ± 23 nM (n = 5) and 5.6 ± 1.8 nM (n = 3). The agonist carbachol interacted with a single low-affinity site and binding was insensitive to modulation by guanine nucleotides. Antagonist and agonist binding studies thus showed an affinity profile typical of M3 receptors of the glandular type. KW - glandular M3 receptor KW - acid secretion KW - muscarinic receptor subtype KW - human gastric mucosa KW - stomach Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128286 VL - 35 IS - 12 ER - TY - JOUR A1 - Tacke, Reinhold A1 - Link, Matthias A1 - Bentlage-Felten, Anke A1 - Zilch, Harald T1 - Zum thermischen Verhalten einiger Kohlensäure[(methylphenylsilyl)methyl]ester-Derivate T1 - On the Thermal Behaviour of Some (Methylphenylsilyl)methyl Carbonate Derivatives JF - Zeitschrift für Naturforschung B N2 - The synthesis and the thermal behaviour of the (methylphenylsilyl)methyl carbonates \(CH_3(C_6H_5)Si(H)CH_2OC(O)X (6: X = OCH_3; 7: X = Cl; 8: X = N(CH_3)_2)\) is described. 8 rearranges in toluene solution at 100 °C quantitatively to give the carbam oyloxysilane \(C_6H_5(CH_3)_2SiOC(O)N(CH_3)_2\) (11), whereas neat 6 and 7 at 135 °C undergo quantitative formation of \(C_6H_5(CH_3)_2SiOCH_3\) (12) and \(C_6H_5(CH_3)_2SiCl\) (13), respectively. The formation of 12 and 13 is explained by a rearrangement reaction (by analogy to the rearrangement of 8), follow ed by a decarboxylation. The thermally induced transformations 6 →12, 7 →13, and 8 →11 were found to be first-order reactions with half-lifes of ~2.6 h (135 °C, neat), ~4.5 h (135 °C, neat), and ~3.7 h (100 °C, in toluene), respectively. KW - decarboxylation KW - (Methylphenylsilyl)methyl carbonates KW - rearrangement KW - dimethylphenylsilyl carbonates Y1 - 1985 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128293 VL - 40 IS - 7 ER - TY - JOUR A1 - Tacke, Reinhold A1 - Linoh, Haryanto A1 - Stumpf, Burghard A1 - Abraham, Wolf-Rainer A1 - Kieslich, Klaus A1 - Ernst, Ludger T1 - Mikrobiologische Umwandlung von Silicium-Verbindungen: Enantioselektive Reduktion von Acetessigsäure-(trimethylsilylalkyl)estern und deren Carba-Analoga T1 - Microbiological Transformation of Silicon Compounds: Enantioselective Reduction of Trimethylsilylalkyl Acetoacetates and their Carba-Analogues JF - Zeitschrift für Naturforschung B N2 - The trimethylsilylalkyl acetoacetates 1 b and 2 b as well as their carba analogues 1 a and 2 a have been reduced microbiologically by Kloeckera corticis (ATCC 20109), leading to the corresponding ( + )-3(S)-hydroxybutanoates 3b, 4b, 3a, and 4a. The enantiomeric purity was found to be 80% (3a, 3b, 4b) and 65% (4a), respectively. The reduction of lb and 2b is - to our knowledge - the first example for a controlled microbiological transformation of organosilicon substrates. KW - enantioselective reduction KW - microbiological transformation KW - silicon compounds Y1 - 1983 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128304 VL - 38 IS - 5 ER - TY - JOUR A1 - Pfeiffer, A. A1 - Rochlitz, H. A1 - Noelke, B. A1 - Tacke, R. A1 - Moser, U. A1 - Mutschler, E. A1 - Lambrecht, G. T1 - Muscarinic receptors mediating acid secretion in isolated rat gastric parietal cells are of M3 type JF - Gastroenterology N2 - Five subtypes of muscarinic receptors have been identified by pharmacological and molecular biological methods. The muscarinic receptor subtype mediating acid secretion at the level of the parietal cell was unknown. Therefore, this study was performed to characterize muscarinic receptors on rat gastric parietal cells using the 3 subtype-selective antagonists hexahydrosiladifenidol and silahexocyclium, which have high affinity for glandular M3 subtypes, and AF-DX 116, which has high affinity to cardiac M2 receptors. The affinity of these antagonists was determined by radioligand binding experiments. In addition, their inhibitory potency on carbachol-stimulated inositol phosphate production was investigated. Inhibition of carbachol-stimulated aminopyrine uptake was used as an indirect measure of proton production. Both M3 antagonists, hexahydrosiladifenidol and silahexocyclium, had nanomolar affinities for parietal cell muscarinic receptors and potently antagonized inositol phosphate production with nanomolar Ki values. Silahexocyclium similarly antagonized aminopyrine accumulation while hexahydrosiladifenidol behaved as a noncompetitive antagonist. AF-DX 116 was a low-affinity ligand and a weak competitive antagonist at parietal-cell muscarinic receptors. It was concluded that muscarinic M3 receptors mediate acid secretion probably by activation of the phosphoinositide second messenger system in rat gastric parietal cells. KW - hexahydrosiladifenidol KW - muscarinic receptors KW - parasympatholytics KW - radioligand assay KW - parasympatholytics/pharmacology KW - gastric acid/secretion KW - animals KW - piperidines/pharmacology KW - piperazines/pharmacology KW - gastric/secretion parietal cells KW - muscarinic/physiology receptors KW - muscarinic/drug effects receptors KW - rats KW - piperidines KW - piperazines KW - silahexocyclium Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128337 VL - 98 IS - 1 ER - TY - JOUR A1 - Jaiswal, Neelam A1 - Lambrecht, Günter A1 - Mutschler, Ernst A1 - Tacke, Reinhold A1 - Malik, Kafait U. T1 - Pharmacological characterization of the vascular muscarinic receptors mediating relaxation and contraction in rabbit aorta JF - Journal of Pharmacology and Experimental Therapeutics N2 - Studies were performed in the rabbit aortic rings, precontracted with norepinephrine, to determine the subtype(s) of muscarinic receptors involved in endothelium-dependent relaxation and contraction in the absence of endothelium elicited by cholinergic stimuli. Acetylcholine (ACh) and arecaidine propargyl ester (APE), a M2 and M3 agonist, produced a dose-dependent relaxation and contraction in endothelium-intact and endothelium-denuded rabbit aortic rings, respectively. Both of these responses were blocked by the muscarinic receptor antagonist atropine. M1 selective agonist McN-A-343 [4-[N-(3-chlorophenyl)carbamoyloxy]-2-butinyltrimethylammonium+ ++ chloride] did not produce any effect on the tone of precontracted aortic rings. ACh- and APE-induced relaxation in aortic rings with intact endothelium was selectively blocked by M3 receptor antagonists hexahydrosila-difenidol and p-fluoro-hexahydro-sila-difenidol (pA2 of 7.84 and 7.18) but not by M1 antagonist pirenzepine or M2 receptor antagonists AF-DX 116 [11-(2-[(diethylamino)methyl]- 1-piperidinyl]acetyl)-5, 11-dihydro-6H-pyrido-[2,3-b][1,4]-benzo-diazepin-6-one] and methoctramine. ACh- and APE-induced contraction was inhibited by M2 receptor antagonists AF-DX 116 and methoctramine (pA2 of 7.11 and 6.71) but not by pirenzepine, hexahydro-sila-difenidol or p-fluoro-hexahydro-sila-difenidol. ACh- and APE-induced relaxation or contraction were not altered by nicotinic receptor antagonist hexamethonium or cyclooxygenase inhibitor indomethacin. These data suggest that relaxation elicited by cholinergic stimulin in endothelium-intact aortic rings is mediated via release of endothelium-derived relaxing factor consequent to activation of M3 receptors located on endothelial cells, whereas the contraction in aortic rings denuded of their endothelium is mediated via stimulation of M2 receptors located on smooth muscle cells. KW - (4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium chloride/pharmacology KW - acetylcholine KW - animals KW - antihypertensive agents / pharmacology KW - aorta, abdominal / drug effects KW - aorta, abdominal / physiology KW - aorta, abdominal / ultrastructure KW - arecoline/analogs & derivatives KW - arecoline KW - atropine KW - diamines KW - endothelium, vascular / drug effects KW - endothelium, vascular / physiology KW - hexamethonium KW - hexamethonium compounds KW - indomethacin KW - male KW - muscarinic antagonists KW - muscle contraction KW - muscle relaxation KW - norepinephrine KW - parasympatholytics KW - piperidines KW - pirenzepine KW - rabbits Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128358 VL - 258 IS - 3 ER - TY - THES A1 - Geyer, Marcel T1 - Synthese und biologische Charakterisierung neuartiger siliciumorganischer Wirkstoffe sowie Synthese neuartiger siliciumorgansicher Synthese-Bausteine T1 - Synthesis and biological characterization of new silicon-containing drugs and synthesis of new silicon-containing building blocks for synthesis N2 - Aufbauend auf dem Konzept der C/Si-Bioisosterie beschreibt die vorliegende Arbeit die Synthese und biologische Charakterisierung siliciumorganischer Wirkstoffe sowie Beiträge zur Synthese von siliciumorganischen Synthese-Bausteinen unter Verwendung der Silicium-Schutzgruppen MOP (4-Methoxyphenyl), DMOP (2,6-Dimethoxyphenyl) und TMOP (2,4,6-Trimethoxyphenyl). Die entsprechenden Zielverbindungen sowie alle isolierten Zwischenstufen wurden durch NMR-Spektroskopie in Lösung (1H, 13C, 29Si) und Elementaranalyse (C, H, N) bzw. HRMS-Analytik (ESI) charakterisiert. Zusätzlich konnte in einigen Fällen eine strukturelle Charakterisierung durch Einkristall-Röntgenstrukturanalyse realisiert werden. N2 - Based on the concept “C/Si bioisosterism”, this doctoral thesis describes the synthesis and pharmacological characterization of silicon-containing drugs as well as contributions to the synthesis of silicon-containing building blocks containing the silicon protecting groups MOP (4-methoxyphenyl), DMOP (2,6-dimethoxyphenyl), and TMOP (2,4,6-trimethoxyphenyl). The identities of the respective target compounds and their isolated intermediates were established by NMR spectroscopic studies (1H, 13C, 29Si) and elemental analyses (C, H, N) or HRMS studies (ESI). In some cases, an additional characterization by single-crystal X-ray diffraction was performed. KW - Wirkstoff KW - siliciumorganische Wirkstoffe KW - Siliciumorganische Verbindungen KW - Silicium Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123766 ER - TY - THES A1 - Nitsch [geb. Lube], Jörn S. T1 - Struktur, Reaktivität und Photophysik von Kupfer(I)-Komplexen T1 - Structure, Reactivity and Photophysics of Copper(I) complexes N2 - In der Arbeit wurden die Strukturen, Reaktivitäten und die Photophysik von verschiedenen Kupfer(I)-Komplexen untersucht. Dazu wurden zunächst Kupfer(I)-Halogenid und -Pseudohalogenid Verbindungen der Typen [CuX] und [Cu2I2] mit Phenanthrolin und dessen Derivaten sowohl strukturell als auch photophysikalisch detailliert charakterisiert. Diese Verbindungen weisen eine breite XMLCT-Absorption zwischen 450-600 nm und Emissionsbanden zwischen 550-850 nm im Festkörper auf. Es zeigte sich für diese strukturell einfachen Verbindungen ein komplexes und sehr unterschiedliches photophysikalisches Verhalten. Dabei wurde neben strukturellen Parametern, wie z.B. π-Wechselwirkungen, auch der Einfluss des Halogen bzw. Pseudohalogenatoms untersucht. Es konnte gezeigt werden, dass mindestens zwei angeregte Zustände an der Emission von [CuI(dtbphen)] (16) und [CuBr(dtbphen)] (17) im Feststoff beteiligt sind und es wurden mögliche Mechanismen wie TADF und die Beteiligung von zwei Triplett Zuständen diskutiert. Die Glasmatrixmessungen von 17 in 2-Methyltetrahydrofuran wie auch die temperaturabhängigen Messungen von [Cu2(µ2-I)2(dmphen)2] (21) zeigen im Gegensatz dazu keinen Hinweis auf TADF. In der Summe zeichnet sich ein komplexes photophysikalisches Bild dieser Komplexe, in der neben molekularen Parametern auch Festkörpereffekte eine wichtige Rolle spielen und die eine einfache Zuordnung zu einem bestimmten Mechanismus schwierig machen. Neuartige Verbindungen mit einem Cuban-Strukturmotiv [L4Cu4X4] (X = Br (32) und Cl (33)), die von einem Phosphininliganden (L = 2,4-Diphenyl-5-methyl-6-(2,3-dimethylphenyl)-phosphinin, 31) koordiniert sind, wurden in einer weiteren Studie photophysikalisch untersucht. Im Gegensatz zu anderen Schweratomkomplexen des Phosphinins, wie z.B. [Ir(C^P)3] (mit C^P = cyclometalliertes 2,4,6-Triphenylphosphinin) zeigen die Cu(I)-Verbindungen bereits bei Raumtemperatur eine intensive Phosphoreszenz. Die LE-Emission kann auf der Grundlage von DFT-Rechnungen einem 3XMLCT Zustand zugeordnet werden. Im Kontrast zu strukturanalogen Pyridin Komplexen ist kein clusterzentrierter 3CC Übergang festzustellen, sondern eine schwache HE-Emissionsbande ist mit großer Wahrscheinlichkeit der Restfluoreszenz des Phosphininliganden 31 geschuldet. Eine weitere Ligandenmodifikation wurde mit der Einführung von NHCs als starke σ-Donor Liganden erreicht. Einerseits wurde die Photophysik von [Cu2Cl2(NHC^Pic)2]-Systemen (mit NHC^Pic = N-Aryl-N'-(2-picolyl) imidazolin 2 yliden) untersucht, die einen Hybridliganden mit Picolyl- und NHC Funktionalität beinhalten. Es konnte gezeigt werden, dass diese Verknüpfung eines starken σ-Donoren und eines π*-Akzeptors zu hohen Quantenausbeuten von bis zu 70% führen kann, wenn zusätzlich auch dispersive Cu-Cu-Wechselwirkungen vorhanden sind. Die Effizienz der Emission kann sich bei Anwesenheit dieser dispersiven Interaktionen im Gegensatz zu Systemen ohne kurze Cu-Cu-Abstände um den Faktor zwei erhöhen. Dinukleare Strukturen von Typ [Cu2Cl2(IMesPicR)2] wurden für die Komplexe 41-44 gefunden, die einen Donor-Substituenten in der para-Position der Picolyl-Funktionalität tragen. Für eine Nitro-Gruppe in der 4-Postion konnte der mononukleare Komplex [CuCl(IMesPicR)] (45) isoliert werden. Ferner können die Substituenten am NHC ebenfalls die Strukturen im Festkörper beeinflussen. So kann für 46 eine polymere Struktur [CuCl(IDippPic)]∞ festgestellt werden. Die Emission in diesen Systemen ist mit einer Elektronenumverteilung aus der Pyridin- und Carbenfunktionalität in das Kupfer- bzw. Chloridatom (LMXCT-Übergang) verbunden. Dabei zeigen die Komplexe [Cu2Cl2(IMesPicH)2] (41), [Cu2Cl2(IMesPicMe)2] (42) und [Cu2Cl2(IMesPicCl)2] (43) zusätzlich Anzeichen von TADF. Zum anderem sind NHC Liganden und dispersive Cu-Cu-Wechselwirkungen Gegenstand einer weiteren strukturellen und photophysikalischen Studie. In dieser wurden die Cu-Cu-Abstände in dinuklearen Kupfer(I)-Bis-NHC-Komplexen [Cu2(tBuIm2(R^R))2](PF6)2 (50-52) durch die Einführung von Methylen, Ethylen und Propylenbrückeneinheiten systematisch variiert. Die erhaltenen Komplexe wurden strukturell und photophysikalisch mit einem mononuklearen Komplex [Cu(tBu2Im)2](PF6) (53) verglichen. Dadurch konnte der Einfluss von kurzen Cu-Cu-Abständen auf die Emissionseigenschaften gezeigt werden, auch wenn der genaue Ursprung einer ebenfalls beobachteten Mechanochromie noch nicht gänzlich aufgeklärt ist. Möglich ist die Existenz verschiedener Konformere in den Pulverproben (Polymorphie), die das Entstehen niederenergetischer Banden in der zerriebenen, amorphen Pulverprobe von [Cu2(tBuIm2(C3H6))2](PF6)2 (52), aber auch die duale Emissionen von [Cu2(tBuIm2(CH2))2](PF6)2 (50) und [Cu2(tBuIm2(C2H4))2](PF6)2 (51) erklären könnten. Die hochenergetische Bande kann für alle Komplexe aufgrund von DFT-und TD-DFT-Rechnungen, 3LMCT Zuständen zugeordnet werden, während niederenergetische Emissionsbanden immer dann zu erwarten sind, wenn 3MC-Zustände populiert werden können, bzw. wenn dispersive Cu-Cu-Wechselwirkungen möglich sind. Der letzte Beweis steht jedoch mit der Isolation anderer polymorpher Phasen und derer photophysikalischen Charakterisierung noch aus. Im letzten Teil dieser Arbeit wurde gezeigt, wie die Deformations und Interaktionsenergie das Koordinationsverhalten und die Reaktivität von d10 [M(NHC)n]-Komplexen beeinflussen können. Hierzu wurden die Bildung von d10-[M(NHC)n]-Komplexen (n = 1-4; mit M = Co-, Rh-, Ir-, Ni, Pd, Pt, Cu+, Ag+, Au+, Zn2+, Cd2+ and Hg2+) in der Gasphase und in polarer Lösung (DMSO) auf DFT-D3(BJ)-ZORA-BLYP/TZ2P-Niveau berechnet und die Bindungssituation der Metall-Carben-Bindung analysiert. Dabei zeigt sich, dass dikoordinierte Komplexe [M(NHC)2] für alle d10-Metalle thermodynamisch stabile Spezies darstellen, jedoch jede weitere höhere Koordination stark vom Metall bzw. von der Deformationsenergie abhängen. Hier konnte auf Grundlage einer quantitativen Kohn Sham-Molekülorbitalbetrachtung die Ursache für die unterschiedlich hohen Werte der Deformationsenergie (ΔEdef) in den NHC‒M‒NHC-Fragmenten aufgeklärt werden. Hohe Werte sind auf ein effektives sd-Mischen bzw. auf das σ-Bindungsgerüsts zurückzuführen, während niedrige bzw. negative Werte von ΔEdef mit einem signifikanten π-Rückbindungsanteil assoziiert sind. Zudem ist ein hoher elektrostatischer Anteil in der Interaktionsenergie ein wichtiger Faktor. So können trotz hoher berechneter Werte für die Deformationsenergien der Gruppe 12 (Zn(II), Cd(II) und Hg(II)), tetrakoordinierte Komplexe der Form [M(NHC)4] hohe thermodynamische Stabilität aufweisen. Diese allgemeinen Beobachtungen sollten nicht auf den NHC-Liganden beschränkt sein, und sind deswegen für Synthesen und Katalysezyklen von Bedeutung, in denen d10-MLn (n = 1-4) Komplexe Anwendung finden. N2 - In this work, the structures, reactivities and photophysical properties of different copper(I) complexes were investigated. In the first part, copper(I) halide and pseudohalide complexes of [CuX] and [Cu2I2] with phenanthroline and its derivatives were structurally and photophysically characterized in detail. These complexes display a broad XMLCT absorption between 450-600 nm and an emission band between ca. 550-850 nm in the solid state. Despite their structural simplicity, these complexes show a complicated and quite diverse photophysical behavior. Therefore not only structural parameters, such as e.g., π-interactions were investigated, but also the influence of the halogen- and pseudohalogen atoms on the photophysics were studied. It has been shown that at least two excited states are involved in the emission of [CuI(dtbphen)] (16) and [CuBr(dtbphen)] (17) in the solid state. Possible mechanisms, such as TADF were discussed as well as the contribution of two triplet states. Measurements in a glassy matrix (2-Methyltetrahydrofuran) for 17 and temperature dependent measurements for [Cu2(µ2-I)2(dmphen)2] (21) show in contrast no evidence for TADF. In summary, the photophysics of these complexes are influenced by molecular parameters, as well as solid state effects, which makes the assignment to one photophysical mechanism difficult. Two hitherto unprecedented cubane-like structures [L4Cu4X4] (X = Br (32) and Cl (33)) with a phosphinine ligand were photophysically investigated in another study. In contrast to other heavy metal complexes bearing a phosphinine ligand, such as [Ir(C^P)3] (with C^P = cyclometalated 2,4,6-triphenylphosphinine), these Cu(I) compounds show even at room temperature an intense phosphorescence. According to DFT calculations, the LE emission band corresponds to a 3XMLCT state. No cluster centered 3CC transition, which is normally observed for structurally analogous Cu(I) cuban complexes with pyridine as the ligand, is found for 32 and 33. A weak HE emission band in the emission spectrum of 32 can most probably be assigned to residual fluorescence of the phosphinine ligand 31. Further ligand modification was achieved with the introduction of NHCs as strong σ-donors. The photophysics of [Cu2Cl2(NHC^Pic)2]-systems (with NHC^Pic = N-Aryl-N'-(2-picolyl)-imidazoline-2-yliden), which bear hybrid ligands with an NHC and picolyl moiety, were investigated. It was shown that the combination of a strong σ-donor and π*-acceptor in a bridging ligand can lead to a high quantum yield of up to 70% in the solid state, if in addition dispersive Cu-Cu- interactions exist. Remarkably the efficiency of the emission is two times higher if these interactions are present in comparison to structures that have no short Cu-Cu-distances. The para-substituent of the picolyl arm determines whether a dinuclear structure is formed, as has been found for the complexes [Cu2Cl2(IMesPicR)2] (41-44) with donor substituents, or whether a mononuclear species [CuCl(IMesPicR)] is isolated, as in the case of the nitro compound 45. Furthermore, the substituent of the NHC also has an influence on the nuclearity of the complexes, leading to the polymeric arrangement of [CuCl(IDippPic)]∞ (46) in its crystal structure. The emission in these systems originates from a charge transfer from the pyridine and carbene moiety to the copper and chloride atom (LMXCT transition). In addition, the complexes [Cu2Cl2(IMesPicH)2] (41), [Cu2Cl2(IMesPicMe)2] (42) and [Cu2Cl2(IMesPicCl)2] (43) show signs of TADF. NHC ligands and dispersive Cu-Cu interaction were the subject of another structural and photophysical study. Here, the Cu-Cu distances in dinuclear copper(I) bis-NHC complexes [Cu2(tBuIm2(R^R))2](PF6)2 (50-52) were systematically varied by the introduction of a methylene, ethylene and propylene bridging unit. The structures and photophysics of the resulting complexes were compared to a mononuclear complex [Cu(tBu2Im)2](PF6) (53). Thus, the influence of short Cu-Cu distances on the emission properties could be established, although the origins of an additional mechanochromic effect is only partially understood. It is feasible that this latter effect is caused by the existence of different conformers in the powder samples (polymorphism), which would explain the occurrence of a low energy emission band in the ground and amorphous powder sample of [Cu2(tBuIm2(C3H6))2](PF6)2 (52), but also the dual emission of [Cu2(tBuIm2(CH2))2](PF6)2 (50) and [Cu2(tBuIm2(C2H4))2](PF6)2 (51). Based on DFT and TD-DFT calculations, the high energy band for all complexes could be assigned to a 3LMCT transitions, whereas low energy bands are expected if population of 3MC states is possible, i.e. if dispersive Cu-Cu-interactions are present. However the ultimate proof of this assumption, i.e. the isolation and photophysical characterization of other polymorphs, has not yet been achieved. In the last part of this work, it was shown how deformation and interaction energy can influence the coordination and reactivity of d10-[M(NHC)n] complexes. For this, the formation of d10-[M(NHC)n] complexes (n = 1-4; M = Co-, Rh-, Ir-, Ni, Pd, Pt, Cu+, Ag+, Au+, Zn2+, Cd2+ and Hg2+) was calculated in the gas phase and in polar solution (DMSO), and the bonding situations were analyzed using DFT-D3(BJ) at ZORA-BLYP/TZ2P level. Although all investigated d10 metals form very stable, dicoordinated [M(NHC)2] species, the thermodynamics of further complexation strongly depend on the metal, i.e. on the deformation energy (ΔEdef). The origin for the different values for the deformation energies in NHC‒M‒NHC fragments could be established based on a quantitative Kohn-Sham molecular-orbital analysis. High values for deformation energies are caused by a high degree of s-d mixing, i.e. by the σ-bond framework, whereas low or even negative values of ΔEdef are associated with a strong π-backdonation in the metal carbene bond. Furthermore, a high electrostatic contribution to the interaction energy is also an important factor. Thus, despite high values for deformation energies found for the group 12 (Zn(II), Cd(II) und Hg(II)), tetrahedral complexes of the type [M(NHC)4] show high thermodynamic stability. These general findings are not restricted to NHC ligands, and thus should have wider implications for the synthesis of d10-MLn (n = 1-4) complexes and for understanding the catalytic cycles in which they are employed. KW - Kupferkomplexe KW - Photophysik KW - DFT KW - Copper complexes KW - photophysics KW - Fotophysik Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123787 ER - TY - THES A1 - Ritschel, Benedikt Tobias T1 - Lewis-Basen-stabilisierte Bor–Bor-Mehrfachbindungssysteme – Reaktivitätsstudien an Diboracumulenen und Dicyanodiborenen T1 - Lewis base-stabilized boron-boron multiple bonds - reactivity studies on diboracumulenes and dicyanodiborenes N2 - Die vorliegende Arbeit umfasst im Wesentlichen Studien über die Reaktivität von Diboracumulenen sowie Dicyanodiborenen gegenüber diversen Substraten verschiedener Substanzklassen, wie z. B. Acetylenen, Aminen, Aziden, Nitrilen, Isonitrilen und Übergangsmetallen. Auf diese Weise sollen zunächst Einblicke in das unterschiedliche Reaktionsverhalten der niedervalenten Borverbindungen ermöglicht sowie ein Verständnis für die erhaltenen, teils neuartigen, Bindungsmodi und Substanzklassen etabliert werden. Die jeweiligen MecAAC- und CycAAC-stabilisierten Verbindungen wurden hierbei auf den Einfluss des sterischen Anspruchs der Liganden in Bezug auf die Reaktivität untersucht. Die aufgeführten Kapitel beziehen sich daher auf die Reaktivität der Diboracumulene wie auch die der Dicyanodiborene gegenüber Verbindungen jeweils einer bestimmten Substanzklasse. Die erhaltenen Produkte werden, soweit möglich, miteinander verglichen. N2 - The present work mainly comprises studies on the reactivity of diboracumulenes as well as dicyanodiborenes towards diverse substrates of different substance classes, such as acetylenes, amines, azides, nitriles, isonitriles and transition metals. In this way, insights into the different reaction behavior of the low-valent boron compounds of the obtained, partly novel, binding modes and substance classes should be established. In this context, the respective MecAAC- and CycAAC-stabilized compounds were examined towards the influence of the steric requirement of the ligands with respect to the reactivity. Therefore, the chapters refer to the reactivity of the diboroacumulenes as well as that of the dicyanodiborenes towards compounds of a particular substance class in each case. Where possible, the products obtained are compared with each other. KW - Bor KW - Reaktivitätsstudien KW - reacitvity studies KW - Mehrfachbindung KW - Hauptgruppenelementverbindungen KW - Diboren KW - Diboracumulen KW - diborene KW - diboracumulene Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-243306 ER - TY - THES A1 - Roth, Patrick T1 - Metalltricarbonyl-basierte CO-releasing molecules (CORMs): Variation der Freisetzungskinetik und Biokonjugation T1 - Metal tricarbonyl-based CO-releasing molecules (CORMs): Bioconjugation and modulation of CO-release kinetics N2 - Kohlenstoffmonoxid ist ein wichtiges kleines Signalmolekül das im menschlichen Körper durch die enzymatische Wirkung von Häm-Oxygenase (HO) auf Häm produziert wird. Für eine thera-peutische Anwendung werden Metallcarbonyl-Komplexe als CO-releasing molecules (CORMs) untersucht, die eine kontrollierte Freisetzung in biologischen Zielstrukturen erlauben. Dafür wird entweder die Ligandenperipherie ("drug sphere") modifiziert oder die CORMs an bio-molekulare Trägersysteme konjugiert. Im Rahmen dieser Arbeit stand dabei die lichtinduzierte Freisetzung von Kohlenstoffmonoxid aus Mangan(I)tricarbonyl-Komplexen im Vordergrund. Die oktaedrische Koordinationssphäre des Metallzentrums wurde dabei durch verschiedene faciale tridentate Liganden komplettiert, welche außerdem eine einfache und modulare Verknüpfung mit biologischen Träger-molekülen ermöglichen sollten. Als Chelatoren wurden Derivate von N,N-Bis(pyridin-2-ylmethyl)amin (bpa) ausgewählt, in denen das zentrale Stickstoffatom mit Alkylaminen unterschiedlicher Kettenlänge funktionalisiert ist, welche über Amid-Bindungen mit Carboxylat-modifizierten Trägermolekülen verknüpft werden können. Diesen bpa-Liganden sollte ein neuartiges Ligandensystem auf der Basis von N-(Phenanthridin-6-ylmethyl)-N-(chinolin-2-ylmethyl)ethan-1,2-diamin (pqen) gegenübergestellt werden, in denen die Phenanthridin-Gruppe interessante photophysikalische und photochemische Eigenschaften erwarten lässt. Die CO-releasing molecules sollten zudem mit den isostrukturellen Rhenium(I)tricarbonyl-Komplexen verglichen werden, die als Marker für die Fluoreszenz-mikroskopie dienen. N2 - In many organisms, carbon monoxide is generated in a controlled fashion by the degradation of heme by heme oxygenase (HO) enzymes. This small signaling molecule is involved in the control of blood pressure and possess anti-inflammatory, anti-apoptotic, and cytoprotective properties. However, a key issue is the tissue-specific delivery of carbon monoxide without concomitant formation of elevated toxic levels of CO in blood. In that context, metal carbonyl complexes show great potential for a safe CO delivery in a spatially and temporally well-controlled manner. Such CO-releasing molecules (CORMs) are composed of an inner "CORM sphere", which determines the CO release kinetics, and an outer "drug sphere", which controls bioavailability and tissue-specific uptake. In the context of this work, a series of photoactivatable CO-releasing molecules based on manganese(I) tricarbonyl groups was synthesized. In these systems, the octahedral coordination sphere of the metal center is completed by a variety of facial tridentate N^N^N ligands. Derivatives of bis(2-pyridylmethyl)amine (bpa) were selected as the chelator, in which the central tertiary nitrogen atom is functionalized with alkylamines of different chain lengths that can be linked to carboxylate-modified biological carrier molecules via amide bonds. The series of bpa ligands was contrasted with a novel ligand system based on N-(phenanthridin-6-ylmethyl)-N-(quinolin-2-ylmethyl)ethane-1,2-diamine (pqen), in which the phenanthridine group possesses interesting photophysical and photochemical properties. The series of CO-releasing molecules was complemented with the isostructural rhenium(I) tricarbonyl complexes, which might serve as markers for fluorescence microscopy. KW - Metallcarbonyle KW - Lumineszenz KW - Biomolekül KW - Organische Synthese KW - Reaktionskinetik KW - CO-releasing molecule KW - CORM KW - Magan(I)-Carbonylkomplexe KW - Rhenium(I)-Carbonylkomplexe KW - Biokonjugation KW - tissue targeting Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-240171 ER - TY - THES A1 - Matler, Alexander T1 - Synthese und Reaktivität von Übergangsmetall-stabilisierten und Lewis-basenstabilisierten Borylenen T1 - Synthesis and reactivity of transition metal-stabilized and Lewis base-stabilized borylenes N2 - Die vorliegende Arbeit befasst sich im ersten Teil mit der Reaktivität von Gruppe 8 Borylenkomplexen. Zunächst wurde der Eisenborylenkomplex 71 mit verschiedenen Carbodiimiden umgesetzt. Die entstandenen Produkte in Form von Spiroverbindungen, [2+2]-Cycloadditionsprodukten sowie Diazadiboretidinen konnten strukturell und spektroskopisch untersucht werden. Außerdem wurde 71 mit Aziden umgesetzt, was NMR-spektroskopisch zur Bildung von Tetrazaborolen führt. Der Eisenbis(borylen)komplex 72 wurde ebenfalls mit Carbodiimiden umgesetzt und die entstandenen Verbindungen, unter anderem Diazadiboretidine, strukturell und spektroskopisch untersucht. Eine Umsetzung von 72 mit Stickstoffbasen wie Azobenzol, 2,2'-Bipyridin oder Pyridazin führte bei letzterem zur Bildung eines Koordinationsprodukts. Während die Umsetzungen des Eisentetrakis(borylen)komplexes 73 mit Methylisocyanid, Magnesium und Trimethylphosphan zu Zersetzung führten, konnten mit Bis(piperidyl)acetylen und Diisopropylcarbodiimid keine Umsetzungen festgestellt werden. Nach Aufnahme eines UV/Vis- und CV-Spektrums des Eisentetraborkomplexes 74 wurde versucht, diesen mit diversen Erd- und Erdalkalimetallverbindungen zu reduzieren. Hierbei konnte entweder keine Reaktion oder Zersetzung festgestellt werden. Weitere Umsetzungen von 74 erfolgten mit unterschiedlichen Lewis-Basen, Stickstoffbasen, Säuren, Gasen, Chalkogenen, DIC und einer Platin(0)-verbindung. Diese Umsetzungen führten zu keinen identifizierbaren Produkten. Im zweiten Teil dieser Arbeit wurde die Synthese und Reaktivität des basenstabilisierten Borylens 89 untersucht. Nach Verbesserung der Synthesebedingungen konnte ein photolytisch induzierter Ligandenaustausch des CO-Liganden mit verschiedenen Substraten durchgeführt werden. Hierbei führten die Umsetzungen mit Carbenen oder Phosphanen in Abhängigkeit derer sterischer Eigenschaften zu den entsprechenden Adduktverbindungen. Außerdem konnte eine Adduktverbindung mit Schwefel dargestellt werden, während eine Umsetzung mit Selen nur zur Zersetzung führte. Die Umsetzung mit DMAP lieferte im Gegensatz zur den vorherigen Adduktverbindungen ein biradikalisches Produkt, welches durch ESR-Messung charakterisiert werden konnte. Eine lösungmittelabhängige Reaktion findet mit Trifluorophosphan statt, mit welchem die entsprechende instabile Borylenverbindung NMR-spektroskopisch untersucht werden konnte. Die Borazidspezien 169 und 170 sowie das Aminoboran 171 konnten durch Umsetzung von 89 mit Mesityl- und Phenylazid generiert und vollständig charakterisiert werden. In Anlehnung an die Synthese von Fischercarbenkomplexen wurde 89 mit Organometallverbindungen umgesetzt, um die Reaktivität des CO-Liganden zu erforschen. Nach Umsetzungen mit Phenyllithium, Methyllithium oder Benzylkalium erfolgte die Methylierung in situ mittels Methyltriflat oder dem Meerwein-Salz [Me3O][BF4]. Die entstandenen Fischercaben-analogen Verbindungen konnten strukturell und spektroskopisch charakterisiert werden. N2 - The present work deals in the first part with the reactivity of group 8 borylene complexes. First, the iron borylene complex 71 was reacted with various carbodiimides. The resulting products in the form of spiro compounds, [2+2]-cycloaddition products as well as diazadiboretidines could be studied structurally and spectroscopically. In addition, 71 was reacted with azides, leading to the formation of tetrazaboroles by NMR spectroscopy. The iron bis(borylene) complex 72 was also reacted with carbodiimides and the resulting compounds, including diazadiboretidines, were studied structurally and spectroscopically. Reaction of 72 with nitrogen bases such as azobenzene, 2,2'-bipyridine, or pyridazine led to the formation of a coordination product in the latter. While reactions of the iron tetrakis(borylene) complex 73 with methyl isocyanide, magnesium and trimethylphosphane led to decomposition, no reactions were detected with bis(piperidyl)acetylene and diisopropylcarbodiimide. After recording a UV/Vis and CV spectrum of the iron tetraboron complex 74, attempts were made to reduce it with various earth and alkaline earth metal compounds. Here, either no reaction or decomposition was observed. Further reactions of 74 were carried out with various Lewis bases, nitrogen bases, acids, gases, chalcogens, DIC, and a platinum(0) compound. These reactions did not lead to any identifiable products. In the second part of this work, the synthesis and reactivity of the base-stabilized borylene 89 was investigated. After improvement of the synthesis conditions, photolytically induced ligand exchange of the CO ligand with different substrates could be performed. Here, the reactions with carbenes or phosphanes led to the corresponding adduct compounds depending on their steric properties. In addition, an adduct compound with sulfur could be presented, while a reaction with selenium only led to decomposition. In contrast to the previous adduct compounds, the reaction with DMAP gave a biradical product, which could be characterized by ESR measurement. A solvent-dependent reaction occurs with trifluorophosphane, with which the corresponding unstable borylene compound could be studied by NMR spectroscopy. The borazide species 169 and 170 as well as the aminoborane 171 could be generated and fully characterized by reacting 89 with mesityl and phenyl azide. Following the synthesis of Fischer carbene complexes, 89 was reacted with organometallic compounds to explore the reactivity of the CO ligand. After reactions with phenyllithium, methyllithium or benzyl potassium, methylation was carried out in situ using methyl triflate or the Meerwein salt [Me3O][BF4]. The resulting Fischercaben-analogous compounds could be characterized structurally and spectroscopically. KW - Borylene KW - Borylenkomplexe KW - Bor-Übergangsmetallkomplexe KW - Borkomplexe KW - Lewis-basenstabilisierte Borylene KW - Lewis base-stabilized borylene Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-240184 ER - TY - THES A1 - Englert, Lukas T1 - Synthese und Reaktivität Phosphan-stabilisierter Diborene T1 - Synthesis and Reactivity of Phosphine-stabilised Diborenes N2 - Die vorliegende Arbeit beschäftigt sich mit der Synthese und Reaktivität von Phosphan-stabilisierten Diborenen. Der erste Teil beschreibt die Darstellung von Tetrabromdiboran(4)-Addukten mit zweizähnigen (84a–87c) und einzähnigen Phosphanen (43a–c; 88a–89b), welche ausgehend von B2Br4(SMe2)2 (83) in einer Substitutionsreaktion in sehr guten Ausbeuten erhalten wurden. In fast allen Fällen gelang es mithilfe der Molekülstrukturen im Festkörper die Verbindungen näher zu untersuchen. Dabei konnten erstmalig Phosphan-verbrückte Diboran(6)-Verbindungen 86a–87a strukturell charakterisiert werden. Eine Besonderheit stellt in diesem Zusammenhang der PBBP-Torsionswinkel α dar, der die Abwinklung zwischen den Phosphanliganden angibt und welcher mit steigender Sterik zunimmt, was auf attraktive Dispersionswechselwirkungen zwischen den organischen Resten zurückzuführen ist. Einige Addukte wurden experimentell auf ihr Redoxverhalten hin untersucht. Obwohl bei vielen Reduktionsversuchen Diboren-typische NMR-Signale beobachtet wurden, sind die meisten Produkte so instabil, dass keine weiteren Beweise für die erfolgreiche Darstellung der jeweiligen Diborene erbracht werden konnten. Nur für 88c gelang die zielgerichtete Reduktion zum Diboren 93c zu reduzieren. Die analysenreine Isolierung von 93c gelang jedoch nicht, sodass es in situ zum Diboren-Übergangsmetall-side-on Komplex 94 umgesetzt wurde. Quantenchemische Untersuchungen der Grenzorbitale zeigten, dass sehr wahrscheinlich die energetische Lage der MOs mit Anteilen auf den σ*-Orbitalen der B‒Br-Bindungen ausschlaggebend für eine erfolgreiche Reduktion von Bisphosphanaddukten zum Diboren ist. Allerdings stellt auch der räumliche Anspruch der Phosphane einen entscheidenden Stabilitätsfaktor für das entstehende Phosphan-stabilisierte Diboren dar. Weiterhin wurde das Portfolio an Phosphan-stabilisierten 1,2-Diaryldiborenen mit den Ver-bindungen 97a–98b erweitert und die Synthese derartiger Diborene in einer Eintopfsynthese optimiert. Außerdem gelang die erstmalige Darstellung Phosphan-stabilisierter Diborene mit Durylsubstituenten (98a/b), die sich aber, mitsamt ihren Brom-verbrückten Monoadduktvorstufen 96a/b, als unerwartet labil erwiesen. Die Diborene zeigen für diese Verbindungsklasse typische NMR-spektroskopische und röntgenkristallographische Messdaten. Zusätzlich wurden 97a/b mittels UV/Vis-Spektroskopie und quantenchemischen Methoden näher analysiert. Das Hauptaugenmerk der durchgeführten Forschungsarbeiten lag auf der Untersuchung der Reaktivität des Diborens 48a. Dessen B=B-Bindungsordnung konnte in zwei Reaktionen mit unterschiedlichen Oxidationsmitteln unter Bildung des Radikalkations [100]∙+ herabgesetzt werden. Eine Oxidation der B=B-Bindung gelang auch mit der Umsetzung von 48a mit Chalkogenen und chalkogenhaltigen Reagenzien. Unter anderem gelang mit der Darstellung des 1,2-Dimesityl-1,2-di(phenylseleno)diborans(4) (104) die Synthese eines seltenen Beispiels für ein strukturell aufgeklärtes, selenhaltiges Diboran(4). Dabei konnte außerdem erstmals die vollständige Freisetzung beider Lewis-Basen aus einem Diboren unter gleichzeitiger Reduktion der Bindungsordnung beobachtet werden. Weiterhin wurde 48a mit stickstoffhaltigen Heteroaromaten umgesetzt. Dabei lassen die spektroskopischen und quantenchemischen Daten ein Pyridin-stabilisiertes Diboren 105 vermuten. In weiteren Versuchen wurde 48a mit 2,2'-Bipyridin untersucht und ein Monoboran und das 1,4-Diaza-2,3- diborinin 106 erhalten. 106 wurde im Festkörper und quantenchemisch näher untersucht. Eine NICS-Analyse bescheinigt dem zentralen B2N2C2-Ring des Diborans(4) ein außer-ordentliches Maß an Aromatizität. Ferner war 48a in der Lage, Element-Wasserstoffbindungen zu aktivieren (E = B, Si, N, S). Während für die Umsetzungen mit diversen Silanen nur über die Reaktionszusammensetzung spekuliert werden konnte, gelang die Strukturaufklärung zweier Produkte der Reaktion mit HBCat (110 und 111) mittels Einkristallröntgenstrukturanalyse. In diesem Zusammenhang gelang die Darstellung der sp2-sp3-Diborane(5) 112–113b in Umsetzungen von 48a mit einem Thiol bzw. mit Anilinderivaten in guten Ausbeuten. Die NMR-spektroskopischen und kristallographischen Daten der Produkte sind miteinander vergleichbar und liegen im erwarteten Bereich derartiger Verbindungen. Zusätzlich konnte in den stickstoffhaltigen Produkten 113a/b die trans-Konfiguration der B=N-Doppelbindung mittels 1H–1H-NOESY-NMR-Experimenten bestätigt werden. Das Diboren 48a zeigt auch ein reichhaltiges Reaktivitätsverhalten gegenüber kleinen Molekülen. Nach dem Austausch der Schutzgasatmosphäre gegen N2O oder CO2 konnte die oxidative Zersetzung von 48a zum literaturbekannten Boroxinderivat 114 festgestellt werden. Gänzlich anders verlief die Reaktion von 48a mit CO, wobei ein interessanter, achtgliedriger Heterocyclus 115 gebildet wurde, der formal aus zwei gespaltenen CO-Molekülen und zwei Diborenen besteht. Die genaue Beschreibung der Bindungssituation innerhalb der BC(P)B-Einheit kann, anhand der Festkörperstruktur von 115 und DFT-Berechnungen, mit literaturbekannten α-borylierten Phosphoryliden verglichen werden. Mit hoher Wahrscheinlichkeit liegt eine Mischform der mesomeren Grenzstrukturen 115-A, 115-B und 115-C vor, da für alle drei Strukturvorschläge experimentelle Hinweise gefunden werden können. Das Diboren 48a reagierte mit H2 ohne Katalysator, unter thermischer Belastung, erhöhtem Druck und langer Reaktionszeit zu unterschiedlichen Produkten. Erste Umsetzungen führten hierbei zum Produkt 118a, das in folgenden Hydrierungen aber nicht mehr reproduziert werden konnte. Stattdessen wurde die selektive Bildung der Monoborane 119a/b beobachtet. Für beide Reaktivitäten wurde je ein Reaktionsmechanismus quantenchemisch untersucht. Das Schlüsselintermediat ist dabei jeweils ein hochreaktives Intermediat Int3, welches vermutlich für eine Vielzahl an Reaktivitäten von 48a verantwortlich ist. Das letzte Kapitel widmete sich unterschiedlichen Cycloadditionen von 48a mit verschiedenen ungesättigten Substraten. Die Reaktivität gegenüber Aziden konnte hierbei nicht vollständig aufgeklärt werden. Allerdings gelang es ein PMe3-stabilisiertes Phosphazen 122 als Nebenprodukt nachzuweisen und gezielt in einer Staudinger-Reaktion darzustellen. Mit Carbodiimiden reagierte das Diboren 48a unter photolytischen Bedingungen zu den 1,2,3-Azadiboretidinen 123a–c, wobei die Reaktionsgeschwindigkeit stark vom sterischen Anspruch des Carbodiimids abhängig war. Das Azadiboretidin 123a konnte im Festkörper näher untersucht werden und stellt ein seltenes Beispiel für einen solchen Heterocyclus dar. Die thermische Umsetzung von 48a mit den Carbodiimiden lieferte hingegen ein noch nicht vollständig aufgeklärtes Produkt. Anhand der spektroskopischen Daten wird die Darstellung eines NHCs mit Diboran(4)-Rückgrat der Art B2Mes2(NiPr)2C: (124a) vermutet. Quantenchemische Untersuchungen sagen für 124a ähnliche Bindungsparameter wie für ein literaturbekanntes π-acides NHC voraus. Die Reaktion von 48a mit terminalen Alkinen führte zielgerichtet zu PMe3-stabilisierten 1,3-Dihydro-1,3-diboreten 126a–d. In Lösung konnten für 126c/d zusätzlich die jeweiligen Konstitutionsisomere 127c/d mit Anteilen von unter 10% NMR-spektroskopisch beobachtet werden. Im Festkörper wird hingegen nicht das Diboret 126d, sondern ausschließlich das Konstitutionsisomer 127d beobachtet. Die Lewis-Formel der Diborete legt nahe, dass ein elektronenarmes, dreifach koordiniertes Kohlenstoffatom in der BCB-Einheit vorliegt, was im 13C{1H}-NMR-Spektrum mit den entsprechenden Signalen bestätigt wird. Eine elektronische Delokalisation wird mit den ermittelten B‒C-Atomabständen innerhalb der BCsp2B-Einheiten von 126a–c und 127d unterstützt. Die P‒Csp2-Bindung in 127d weist zudem einen kurzen P=C-Bindungsabstand auf, was einen sehr hohen π-Anteil vermuten lässt. Die einmalige Beschreibung des C‒H-Aktivierungsprodukts 131 im Festkörper gibt einen Hinweis auf eine anfängliche [2+2]-Cycloaddition zwischen der B=B-Doppelbindung und dem terminalen Alkin, die über eine 1,3-Umlagerung zur Bildung der 1,3-Diborete führt. Ferner gelang unter den identischen Reaktionsbedingungen aus 48a und 1,4‐Diethinylbenzol die Darstellung der Mono‐ und Bis(1,3‐dihydro‐1,3‐diborete) 128 und 129, wobei 129 nur im Festkörper genauer untersucht werden konnte. Die Umsetzung von 48a mit 1,3,5‐Triethinylbenzol ergab ein Produktgemisch der Form (B2Mes2(PMe3)HCC)n(C6H3)(CCH)3−n (130-n; n = 1, 2, 3), welches Hinweise auf die zweifache bzw. dreifache Diboretbildung lieferte. DFT-Berechnungen sagen für das Bisdiboret 129 eine Kommunikation zwischen beiden Heterocyclen über den zentralen Benzolring voraus, was die Ursache für die beobachtete Fluoreszenz sein könnte. Das Diboren 48a reagierte zudem mit Diazabutadienen unter thermischen Bedingungen in inversen Diels-Alder-Reaktionen zu 1,2,3,4-Tetraaryl-1,4-diaza-2,3-diborininen 132a–e. Dies stellt einen neuen Zugang zu dieser Substanzklasse dar. Dabei zeigte sich eine direkte Korrelation zwischen der Reaktionszeit und dem räumlichen Anspruch der Diazabutadiene. Die erfolgreiche Aufarbeitung der 1,4-Diaza-2,3-diborinine ist aufgrund ihrer hohen Löslichkeit in gängigen Lösungsmitteln wesentlich vom Kristallisationsverhalten der Produkte abhängig. Die analoge Umsetzung unter photochemischen Bedingungen gab Hinweise darauf, dass diese Reaktion dem Mechanismus einer inversen [4+2]-Cycloaddition folgt. Bemerkenswert ist die hohe Stabilität der Diborane(4) 132b/c gegenüber Luft und Wasser, die vermutlich auf der kinetischen Stabilisierung durch die ortho- Methylgruppen der Stickstoff-gebundenen Aromaten beruht. Im Gegensatz dazu wurde bei der Reaktion zwischen 48a und dem Diazabutadien (MesN)2C2Mes2 das 1,2,3,4-Tetramesityl-5,6-dimethyl-1,4-diaza-2,3-diborinin 132e nur in Spuren nachgewiesen. Unter den gewählten Bedingungen wurde stattdessen Verbindung 133 gebildet. Die systematische, experimentelle Untersuchung dieser Reaktivität wurde jedoch im Rahmen dieser Arbeit nicht durchgeführt. Die Schlüsselschritte des Reaktionsmechanismus zur Bildung von 133 führen höchstwahrscheinlich wieder über das Intermediat Int3. Nach einer 1,2-Wanderung eines Mesitylsubstituenten wird das Monophosphan-stabilisierte Zwitterion Int13a gebildet, welches in seiner Grenzstruktur Int13b als Borylen beschrieben werden kann. Eine anschließende intramolekulare C‒H-Aktivierung resultiert im Diboran(5) 133. Mit dieser Arbeit ist es gelungen, neue Erkenntnisse über die Chemie Phosphan-stabilisierter Diborene zu erhalten. Die labil gebundenen Phosphane eröffnen diesen Diborenen eine einzigartige Reaktivität, die bei den NHC-Vertretern nicht gefunden wird. In der Zukunft könnten neue Konzepte entwickelt werden dieses Reaktionsverhalten weiter zu nutzen. Wünschenswert wäre es die Diboren-Monomere miteinander zu Ketten zu verknüpfen. N2 - The present work deals with the synthesis and reactivity of phosphine-stabilised diborenes. The first section describes the preparation of tetrabromodiborane(4) adducts with bidentate (84a–87c) and monodentate phosphines (43a–c; 88a–89b). These were obtained from B2Br4(SMe2)2 (83) in a substitution reaction in very good yields. In almost all cases, it was possible to investigate the compounds more closely based on their solid-state molecular structures. For the first time, the structures of phosphine-bridged di¬bo¬rane(6) compounds 86a–87a were determined. A special feature in this context is the PBBP torsion angle α, which indicates the angular deflection between the phosphine ligands. Contrary to expectations, the angle α decreases with increasing steric demand, which is probably due to attractive dispersion interactions between the organic residues. The adducts 84a/b, 135a/c, 87a, 88a/c/d and 136a were experimentally investigated for their redox behaviour. Although diborene-type NMR signals were observed in some reduction experiments, most of the products are so unstable that no further evidence for the successful preparation of the respective diborenes was obtained. Therefore, only 88c was successfully reduced to the diborene 93c. However, the isolation of 93c was not successful, thus it was instead reacted in situ with ZnBr2 to form the side-on transition metal diborene complex 94. Quantum-chemical investigations of the frontier orbitals showed that the energy level of the MOs with lobs corresponding to the σ* orbitals of the B‒Br bonds is most likely decisive for the successful reduction of bisphosphine adducts to diborenes. However, the steric demand of the phosphines is also a crucial stabilising factor for the resulting phosphine-stabilised diborene. Furthermore, the portfolio of phosphine-stabilised 1,2-diaryldiborenes was expanded with compounds 97a–98b and the synthesis of these diborenes was optimised in a one-pot synthesis. In addition, phosphine-stabilised diborenes with duryl substituents (98a/b) were synthesised for the first time, which, together with their bromine bridged monoadduct precursors 96a/b, proved to be unexpectedly labile. The prepared diborenes provided NMR spectroscopic and X-ray crystallographic data which are typical for this class of compounds. Moreover, 97a/b was analysed in more detail using UV/vis spectroscopy and quantum-chemical methods. The main focus of this research lies in the investigation of the reactivity of the diborene 48a. Its B=B bond order was reduced in two reactions with different oxidizing agents forming the radical cation [100]∙+. An oxidation of the B=B bond was also achieved with the reaction of 48a with chalcogens and chalcogen-containing reagents. Furthermore, with the preparation of 1,2-dimesityl-1,2-di(phenylseleno)diborane(4) (104), the synthesis of a rare example of a structurally elucidated selenium containing diborane(4) was achieved. In addition, the complete release of both Lewis bases from a diborene with simultaneous reduction of the B=B bond order was observed for the first time. Furthermore, 48a was reacted with nitrogen containing heteroaromatics. The spectroscopic and quantitative chemical data indicate a pyridine-stabilised diborene 105. Further experiments were aimed at exploring the reactivity of 48a towards 2,2'-bipyridine and the monoborane 107d and the 1,4-diaza-2,3-diborinine 106 were obtained. The solid-state structure of 106 and quantum-chemical investigations suggested a bonding situation comparable to that of carbon analogues. In addition, a NICS analysis confirmed that the central B2N2C2 ring of diborane(4) 106 has an extraordinary degree of aromaticity. Compound 48a was also able to activate element-hydrogen bonds (E = B, Si, N, S). While for the reactions with various silanes the reaction composition could only be speculated upon, the structure of two products of the reaction with HBCat (110 and 111) were elucidated by means of single crystal X-ray structure analysis. In this context, the sp2-sp3 diboranes(5) 112–113b were obtained in good yields in reactions of 48a with a thiol and with aniline derivatives, respectively. The NMR spectroscopic and crystallographic data of the products are comparable and lie within the expected range of such compounds. In addition, the trans configuration of the B=N double bond in the nitrogenous products 113a/b was confirmed by 1H‒1H-NOESY NMR experiments. The diborene 48a also shows a rich reactivity towards small molecules. After replacing the inert gas atmosphere with N2O or CO2, the oxidative decomposition of 48a to the literature-known boroxine derivative 114 was detected. The reaction of 48a with CO was completely different, whereby an interesting, eight-membered heterocycle 115 was formed, which formally consists of two cleaved CO molecules and two diborenes. Based on the solid-state structure of 115 and DFT calculations, the exact description of the bonding situation within the BC(P)B unit can be compared with literature-known α-borylated phosphorus ylides. It is highly probable that a mixed form of the mesomeric structures 115-A, 115-B and 115-C is present since experimental evidence can be found for all three proposed structures. The diborene 48a reacted with H2 without the need for a catalyst, with heating, high pressure and long reaction times leading to different products. Initial reactions led to the product 118a, which could not be reproduced in subsequent hydrogenations. Instead, the selective formation of the monoboranes 119a/b was observed. One reaction mechanism was computationally determined for each of the reactivities. The key intermediate in each case is the highly reactive intermediate Int3, which is presumably responsible for a large number of the reactivity patterns of 48a. The last chapter is devoted to different cycloadditions of 48a with different unsaturated substrates. The reactivity towards azides could not be fully elucidated. However, it was possible to detect a PMe3 stabilised phosphazene 122 as a byproduct, which could be independently synthesised via a Staudinger reaction. The diborene 48a reacted with carbodiimides under photolytic conditions to give the 1,2,3 azadiboretidines 123a–c, whereby the reaction rate was strongly dependent on the steric demand of the carbodiimide. The solid-state structure of azadiboretidine 123a was determined and represents a rare example of such a heterocycle. The thermal reaction of 48a with carbodiimides, on the other hand, yielded a product that has not yet been fully elucidated. Based on the spectroscopic data, the preparation of a NHC with a diborane(4) backbone of the type B2Mes2(NiPr)2C: (124a) is suspected. Quantum-chemical investigations predicted similar bonding parameters for 124a as for a literature known π-acidic NHC. The reaction of 48a with terminal alkynes led to PMe3-stabilised 1,3-dihydro-1,3-diboretes 126a–d. For 126c/d the respective constitutional isomers 127c/d with proportions of less than 10% could additionally be observed via solution NMR spectroscopy. In the solid state, on the other hand, not the diborete 126d but exclusively the constitutional isomer 127d was observed. The Lewis formulas of the diboretes suggest that an electron-deficient, tricoordinate carbon atom is present in the BCB unit, which is confirmed by its 13C{1H} NMR spectrum, which contains corresponding signals. The electronic delocalisation is supported by the experimentally derived B‒C atomic distances within the BCsp2B units of 126a–c and 127d. The P‒Csp2 bond in 127d is short, suggesting a high degree of π-character. The unique description of the C‒H activation product 131 in the solid state suggests an initial [2+2] cycloaddition between the B=B double bond and the terminal alkyne, which leads to the formation of the 1,3-diboretes via a 1,3 rearrangement. Using the identical reaction conditions as the reaction between 48a and 1,4-diethylbenzene, the preparation of the mono- and bis(1,3-dihydro-1,3-diboretes) 128 and 129 was achieved, whereby 129 could only be structurally authenticated. The reaction of 48a with 1,3,5-triethynylbenzene gave a mixture of products of the type (B2Mes2(PMe3)HCC)n(C6H3)(CCH)3-n (130-n; n = 1, 2, 3), which provided evidence for the two- and threefold diborete formation, respectively. DFT calculations predict some degree of communication between the two heterocycles via the central benzene ring in the bisdiborete 129, which could be the cause of the observed fluorescence. The diborene 48a also reacted with diazabutadienes under thermal conditions in inverse Diels-Alder reactions to give 1,2,3,4-tetraaryl-1,4-diaza-2,3-diborinines 132a–e. This represents a new approach to this substance class. Thereby, a direct correlation between the reaction time and the steric demand of the diazabutadienes was observed. The successful work-up of the 1,4-diaza-2,3-diborinines is essentially dependent on the crystallisation behaviour of the products due to their high solubility in common solvents. The analogous conversion under photochemical conditions indicated that this reaction follows the mechanism of an inverse electron demand [4+2] cycloaddition. The high stability of the diborane(4) 132b/c against air and water is remarkable, which is probably due to the kinetic stabilisation by the ortho-methyl groups of the nitrogen-bound aryl groups. In contrast, the reaction between 48a and the diazabutadiene (MesN)2C2Mes2 gave the 1,2,3,4-tetramesityl-5,6-dimethyl-1,4-diaza-2,3-diborinine 132e, but only in small amounts. Instead, compound 133 was formed under the chosen conditions. However, the systematic, experimental investigation of this reactivity was not carried out within the scope of this work. The key intermadiate of the reaction mechanism for the formation of 133 is most probably again the intermediate Int3. After a 1,2-migration of a mesityl substituent, the monophosphine-stabilised zwitterion Int13a is formed, which can be described as a borylene in its mesomeric structure Int13b. A subsequent intramolecular C‒H activation results in the diborane(5) 133. This work provides new insights into the chemistry of phosphine-stabilised diborenes. The labile phosphine groups provide a unique reactivity to the diborenes that is not found in the NHC-bound derivatives. In the future, new concepts could be developed to further exploit this reaction behaviour. Along these lines, it would be desirable to link diborenes with each other to create chains. KW - Bor KW - Synthese KW - Doppelbindung KW - Phosphin KW - Reaktivität KW - Diboren KW - Phosphan-stabilisiert KW - Diborene KW - Phosphine-stabilised Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241365 ER - TY - THES A1 - Liu, Zhiqiang T1 - Fluorinated Aryl Boronates as Units in Organic Synthesis T1 - Fluorierte Arylboronate als Einheiten in organischer Synthese N2 - It is generally acknowledged that polyfluoroarenes are important fluorinated structural units for various organic molecules, such as pharmaceuticals, agrochemicals, and organic materials. Polyfluorinated aryl alkynes and alcohols are also powerful building blocks in chemical synthesis because of their versatility to be transformed into various useful molecules and also their ubiquity in natural product synthesis. Efficient methods for the synthesis of polyfluorinated aryl alkynes and alcohols are presented in Chapter 2 and Chapter 3. In addition, 3-amino-indoles have found a broad applications in medicinal chemistry as effective anticancer agents, compounds with analgesic properties and can function as potent inhibitors of tubulin polymerization, and agents for the prevention of type II diabetes. A simple method for the synthesis of 3-amino-indoles via the annulation reaction of polyfluorophenylboronates with DMF is reported in Chapter 4. Chapter 2 In Chapter 2, a mild process for the copper-catalyzed oxidative cross-coupling of electron-deficient polyfluorophenylboronate esters with terminal alkynes (Scheme S-1) is reported. This method displays good functional group tolerance and broad substrate scope, generating cross-coupled alkynyl(fluoro)arene products in moderate to excellent yields. This copper-catalyzed reaction was conducted on a gram scale to generate the corresponding product in good yield (72%). Scheme S-1. Copper-catalyzed oxidative cross-coupling of terminal alkynes with polyfluorophenylboronate esters. Based on previous reports and the aforementioned observations, a plausible catalytic cycle for this oxidative cross-coupling reaction is shown in Scheme S-2. The first step involves the addition of an alkynyl anion to Cu leading to the formation of alkynylcopper(II) species B. Subsequent transmetalation between ArFBpin and intermediate B occurs to form intermediate C. The desired product 3a is generated by eductive elimination. Finally, the oxidation of Cu(0) to Cu(II) with DDQ and Ag2O regenerates A to complete the catalytic cycle. Scheme S-2. Proposed mechanism of copper(II)-catalyzed oxidative cross-coupling between terminal alkynes and polyfluorophenylboronate esters. Chapter 3 In Chapter 3, A convenient and efficient protocol for the transition metal-free 1,2-addition of polyfluoroaryl boronate esters to aldehydes and ketones is reported, which provides secondary alcohols, tertiary alcohols, and ketones (Scheme S-3). The distinguishing features of this procedure include the employment of commercially available starting materials and the broad scope of the reaction with a wide variety of carbonyl compounds giving moderate to excellent yields. Scheme S-3. Base-promoted 1,2-addition of polyfluorophenylboronates to aldehydes and ketones. Control experiments were carried out to gain insight into the reaction mechanism. The reaction of 2a with pentafluorobenzene 5 under standard conditions was examined, yet 3a was not formed in any detectable amounts (Scheme S-4a), indicating that the C-Bpin moiety is essential and deprotonation of the fluoroarene or nucleophilic attack at the fluoroarene by the base is not a plausible pathway. Interestingly, for the standard reaction between 1a and 2a, the yield dropped dramatically if 18-crown-6 ether and K2CO3 were added (Scheme S-4b). This experimental result indicates that the presence of the potassium ion plays a crucial role for the outcome of the reaction. Furthermore, if the reaction of 1a and 2a was performed in the presence of only a catalytic amount of K2CO3 (20 mol%) (Scheme S-4c), reaction rates were reduced, and a week was required to produce 3a in good yield. This finding again indicates that the potassium ion (or the base) plays an important role in the reaction. Substituting ortho-fluorines by ortho-chlorines, using either C6Cl5Bpin 2,6-dichlorophenyl-1-Bpin as substrates, did not yield any product as shown by in situ GCMS studies. Scheme S-4. Control experiments. Based on DFT calculations, a mechanism for the 1,2-addition of polyfluorophenylboronates to aryl aldehydes in the presence of K2CO3 as base is proposed, as shown in Scheme S-5. K2CO3 interacts with the Lewis-acidic Bpin moiety of substrate 1 to generate base adduct A, which weakens the carbon-boron bond and ultimately cleaves the BC bond along with attachment of a potassium cation to the aryl group. The resulting ArF- anion adduct B undergoes nucleophilic attack at the aldehyde carbon atom of substrate 2 to generate methanolate C. The methanolate oxygen atom then attacks the electrophilic Bpin group to obtain compound D. Transfer of K2CO3 from intermediate D to the boron atom of the more Lewis-acidic polyfluorophenyl-Bpin 1 finally closes the cycle and regenerates complex A. Thus, the primary reaction product is the O-borylated addition product E, which was detected by HRMS and NMR spectroscopy for the perfluorinated derivative. Scheme S-5. Proposed mechanism of the 1,2-addition of polyfluorophenylboronates to aldehydes and ketones. Chapter 4 Chapter 4 presents a novel protocol for the transition metal-free addition and annulation of polyfluoroarylboronate esters to DMF, which provides 3-aminoindoles and tertiary amines in moderate to excellent yields (Scheme S-6). Scheme S-6. Annulation and addition reactions of polyfluorophenylboronates with DMF. While exploring the application of this strategy in synthesis, perfluorophenylBpin reacted smoothly with ethynylarenes and DMF to afford propargylamines with moderate to excellent yields (Scheme S-7). Scheme S-7. Three-component cross-coupling reaction for the synthesis of propargylamines. N2 - Polyfluorarene sind wichtige fluorierte Schlüsselstruktureinheiten für verschiedene organische Moleküle, wie z. B. Pharmazeutika, Agrochemikalien und organische Materialien. Auch polyfluorierte Arylalkine und -alkohole sind aufgrund ihrer vielseitigen Möglichkeiten, in verschiedene nützliche Moleküle umgewandelt zu werden als auch wegen ihrer Allgegenwart in der Naturstoffsynthese, leistungsfähige Bausteine. Effiziente Methoden zur Synthese polyfluorierter Arylalkine und -alkohole werden in Kapitel 2 und Kapitel 3 vorgestellt. Darüber hinaus haben 3-Amino-Indole eine breite Anwendung in der medizinischen Chemie als wirksame Antikrebsmittel, Verbindungen mit analgetischen Eigenschaften und als potente Inhibitoren der Tubulinpolymerisation sowie als Mittel zur Prävention von Typ-II-Diabetes gefunden. Eine einfache Methode zur Synthese von 3-Amino-Indolen über die Annulierungssreaktion von Polyfluorphenylboronaten mit DMF wird in Kapitel 4 berichtet. Kapitel 2 In Kapitel 2 wird über ein mildes Verfahren zur kupferkatalysierten oxidativen Kreuzkupplung von elektronenarmen Polyfluorphenylboronatestern mit terminalen Alkinen (Schema S-1) berichtet. Diese Methode zeichnet sich durch eine gute Toleranz gegenüber funktionellen Gruppen und eine große Bandbreite an Substraten aus und erzeugt kreuzgekoppelte Alkinyl(fluor)aren-Produkte in moderaten bis exzellenten Ausbeuten. Diese kupferkatalysierte Reaktion wurde im Gramm-Maßstab durchgeführt, und erzeugt das entsprechende Produkt in guter Ausbeute (72 %). Schema S-1. Kupfer-katalysierte oxidative Kreuzkupplung terminaler Alkine mit Polyfluorphenylboronatestern. Basierend auf früheren Arbeiten und den oben erwähnten Beobachtungen ist ein plausibler katalytischer Zyklus für diese oxidative Kreuzkupplungsreaktion in Schema S-2 dargestellt. Der erste Schritt beinhaltet die Addition eines Alkinylanions, was zur Bildung des Alkinylkupfer(II)-Komplexes B führen sollte. Anschließend erfolgt eine Transmetallierung zwischen ArFBpin und dem Zwischenprodukt B zur Bildung des Zwischenproduktes C. Das gewünschte Produkt 3a wirde dann daraus durch reduktive Eliminierung erzeugt. Durch eine Oxidation des dabei entstehenden Cu(0)-Komplexes mit DDQ und Ag2O wird Komplex A regeneriert und der katalytische Zyklus schließt sich. Schema S-2. Vorgeschlagener Mechanismus der Kupfer(II)-katalysierten oxidativen Kreuzkupplung terminaler Alkine und Polyfluorphenylboronatestern. Kapitel 3 In Kapitel 3 wird ein praktisches und effizientes Protokoll für die übergangsmetallfreie 1,2-Addition von Polyfluorarylboronatestern an Aldehyde und Ketone vorgestellt, welches sekundäre Alkohole, tertiäre Alkohole und Ketone liefert (Schema S-3). Die besonderen Merkmale dieses Verfahrens sind die Verwendung kommerziell erhältlicher Ausgangsmaterialien und die große Bandbreite der Reaktion mit einer Vielzahl von Carbonylverbindungen, die mäßige bis exzellente Ausbeuten erbringen. Schema S-3. Basen-unterstützte 1,2-Addition von Polyfluorphenylboronaten an Aldehyde und Ketone. Um einen Einblick in den Reaktionsmechanismus zu erhalten, wurden Kontrollexperimente durchgeführt. Die Reaktion von 2a mit Pentafluorbenzol 5 unter Standardbedingungen wurde untersucht, jedoch wurde 3a nicht in nachweisbaren Mengen gebildet (Schema S-4a). Dies deudet darauf hin, dass der C-Bpin Anteil essenziell ist und eine Deprotonierung des Fluorarens oder ein nukleophiler Angriff am Fluoraren durch die Base kein plausibler Weg ist. Interessanterweise sank bei der Standardreaktion zwischen 1a und 2a die Ausbeute dramatisch, wenn 18-Kronen-6-Ether und K2CO3 zugesetzt wurden (Schema S-4b). Dieses experimentelle Ergebnis belegt, dass die Anwesenheit des Kalium-Ions eine entscheidende Rolle für den Ausgang der Reaktion spielt. Wenn die Reaktion von 1a und 2a in Gegenwart von nur einer katalytischen Menge K2CO3 (20 mol%) durchgeführt wurde (Schema S-4c), waren die Reaktionsgeschwindigkeiten geringer und es war eine Woche erforderlich, um 3a in guter Ausbeute zu erlangen. Dieser Befund weist erneut darauf hin, dass das Kalium-Ion (oder die Base) eine wichtige Rolle bei der Reaktion spielt. Die Substitution von ortho-Fluorsubstituenten durch ortho-Chlorsubstituenten, wobei entweder C6Cl5Bpin oder 2,6-Dichlorphenyl-Bpin als Substrate verwendet wurden, lieferte kein Produkt, wie in situ GCMS-Studien zeigten. Schema S-4. Kontrollexperimente. Ein Vorschlag zum Mechanismus der 1,2-Addition von Polyfluorphenylboronaten an Arylaldehyde in Gegenwart von K2CO3 als Base wird in Schema S-5 vorgeschlagen. Dabei wechselwirkt die Base K2CO3 mit der Lewis-sauren Bpin-Einheit des Substrats 1 unter Ausbildung des Basenadduktes A, in welchem die Kohlenstoff-Bor-Bindung geschwächt ist und schließlich die B-C Bindung gespalteen wird, wobei sich ein Kaliumkation an die Arylgruppe anlagert. Das resultierende ArF- Anion im Addukt B greift nukleophil am Aldehyd-Kohlenstoffatom von Substrat 2 an, um Methanolat C zu erzeugen. Das Methanolat-Sauerstoffatom reagiert dann mit der elektrophilen Bpin-Gruppe, um Verbindung D zu erhalten. Die Übertragung von K2CO3 vom Zwischenprodukt D auf das Boratom des Lewis-acideren Polyfluorphenyl-Bpin 1 schließt schließlich den Zyklus und regeneriert den Komplex A. Das primäre Reaktionsprodukt ist also das O-borylierte Additionsprodukt E, das mittels HRMS und NMR-Spektroskopie für das perfluorierte Derivat nachgewiesen wurde. Schema S-5. Vorgeschlagener Mechanismus der 1,2-Addition von Polyfluorphenylboronaten an Aldehyden und Ketonen. Kapitel 4 In Kapitel 4 wird ein neuartiges Protokoll für die übergangsmetallfreie Addition und Annulierungsreaktion von Polyfluorarylboronatestern an DMF vorgestellt, das 3-Aminoindole und tertiäre Amine in mäßigen bis ausgezeichneten Ausbeuten liefert(Schema S-6). Schema S-6. Annulierungs- und Additionsreaktion von Polyfluorphenylboronaten mit DMF. Bei der Erkundung der Anwendung dieser Strategie in der Synthese konnten Propargylamine mit mäßigen bis ausgezeichneten Ausbeuten hergestellt werden (Schema S-7). Schema S-7. Kreuzkupplungsreaktion für die Synthese von Propargylaminen. KW - Fluorinated Aryl Boronates KW - Fluorierte Arylboronate Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-245769 ER - TY - THES A1 - Hagspiel, Stephan Alexander T1 - Synthesis and Reactivity of Pseudohalide-substituted Boranes and Borylenes T1 - Synthese und Reaktivität Pseudohalogenid-substituierter Borane und Borylene N2 - This work involves the synthesis and reactivity of pseudohalide-substituted boranes and borylenes. A series of compounds of the type (CAAC)BR2Y (CAAC = cyclic alkyl(amino)carbene; R = H, Br; Y = CN, NCS, PCO) were prepared first. The two-electron reduction of (CAAC)BBr2Y (Y = CN, NCS) in the presence of a second Lewis base L (L = N-heterocyclic carbene) resulted in the formation of the corresponding doubly Lewis base-stabilized pseudohaloborylenes (CAAC)(L)BY. These borylenes show versatile reactivity patterns, including their oxidation to the corresponding radical cations, coordination via the respective pseudohalide substituent to group 6 metal carbonyl complexes, as well as a boron-centered protonation with Brønsted acids to boronium cations. Reduction of (CAAC)BBr2(NCS) in the absence of a second donor ligand, led to the formation of boron-doped thiazolothiazoles via reductive dimerization of two isothiocyanatoborylenes. These B,N,S-heterocycles possess a low degree of aromaticity as well as interesting photophysical properties and can furthermore be protonated as well as hydroborated. Additionally, CAAC adducts of the parent boraphosphaketene (CAAC)BH2(PCO) could be prepared, which readily reacted with boroles [Ph4BR'] (R' = aryl) via decarbonylation in a ring expansion reaction. The obtained 1,2-phosphaborinines represent B,P-isosteres of benzene and consequently could be coordinated to metal carbonyl complexes of the chromium triade via η6-coordination, resulting in new half-sandwich complexes thereof. N2 - Diese Arbeit beinhaltet die Synthese und Reaktivität von Pseudohalogenid-substituierten Boranen und Borylenen. Dabei wurde zunächst eine Reihe an Verbindungen des Typs (CAAC)BR2Y (CAAC = cyclisches Alkyl(amino)carben; R = H, Br; Y = CN, NCS, PCO) dargestellt. Die Zweielektronenreduktion von (CAAC)BBr2Y (Y = CN, NCS) in der Gegenwart einer weiteren Lewis-Base L (L = N-heterocyclisches Carben) resultierte in der Bildung der entsprechenden zweifach Lewis-Basen-stabilisierten Pseudohalogenborylene (CAAC)(L)BY. Diese Borylene zeigen eine vielseitige Folgechemie, wobei sie zu den korrespondierenden Radikalkationen oxidiert, über den jeweiligen Pseudohalogenidsubstituenten an Metallcarbonylkomplexe der Gruppe 6 koordiniert sowie mit Brønsted-Säuren Bor-zentriert zu Boroniumkationen protoniert werden können. Die Reduktion von (CAAC)BBr2(NCS) in Abwesenheit eines weiteren Donorliganden führte über die reduktive Dimerisierung zweier Isothiocyanatoborylene zur Bildung Bor-dotierter Thiazolothiazole. Diese B,N,S-Heterocyclen verfügen über ein geringes Ausmaß an Aromatizität sowie interessante photophysikalische Eigenschaften, und können darüber hinaus protoniert wie auch hydroboriert werden. Des Weiteren konnten CAAC-Addukte des Stammboraphosphaketens (CAAC)BH2(PCO) dargestellt werden, die bereitwillig unter Decarbonylierung in einer Ringerweiterungsreaktion mit Borolen [Ph4BR‘] (R‘ = Aryl) reagieren. Die erhaltenen 1,2-Phosphaborinine stellen B,P-Isostere des Benzols dar und konnten folglich über eine η6-Koordination an Metallcarbonylkomplexe der Chromtriade koordiniert werden, woraus neue Halbsandwichkomplexe dieser resultierten. KW - Borylene KW - Pseudohalogenide KW - Heteroaromaten KW - boron KW - pseudohalides KW - heterocycles KW - aromaticity KW - DFT KW - Bor KW - Pseudohalogenide KW - Heterocyclen KW - Aromatizität KW - DFT Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-249459 ER - TY - THES A1 - Rempel, Anna T1 - Synthese und Reaktivität von Boryldiazenidokomplexen T1 - Synthesis and Reactivity of Boryldiazenido Complexes N2 - Die vorliegende Arbeit befasst sich mit der Synthese, Charakterisierung und Reaktivität von Boryldiazenidokomplexen. Im ersten Abschnitt wird die Synthese von neuartigen Boryldiazenidokomplexen behandelt. Im zweiten Teil werden Studien zu den Reaktivitäten dieser Verbindungen gegenüber Elektrophilen, Lewis-Basen sowie Reaktionen an den Element-Halogen-Bindungen vorgestellt. N2 - The present work deals with the synthesis, characterization and reactivity of boryldiazenido complexes. In the first section, the synthesis of novel boryldiazenido complexes is discussed. In the second part, studies on the reactivities of these compounds toward electrophiles, Lewis bases, and reactions at the element-halogen bonds are presented. KW - Übergangsmetallkomplexe KW - Diazenidokomplexe KW - Bor KW - Distickstoffkomplexe KW - Boryldiazenidokomplexe KW - Boryldiazenido Complexes Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-247415 ER - TY - THES A1 - Drescher, Regina T1 - Neue Aluminiumheterocyclen: Darstellung und Eigenschaften von Aluminolen und Aluminafluorenen T1 - New Aluminum Heterocycles: Preparation and Properties of Alumols and Alumafluorenes N2 - Die Vorliegende Arbeit befasst sich mit der Darstellung und Reaktivität von Aluminolen, als auch Aluminafluorenen. Die Aluminole gehen eine Ringerweiterungsreaktion mit organischen Aziden ein, welche zur Bildung von sechsgliedrigen Aluminium-Stickstoff-Heterocyclen, den ersten nicht annulierten 1,2 Azaaluminabenzolen führt. Weiterhin findet die Ringerweiterung des Aluminols mit einem Nitron, einem Iminoboran und einem Amin-N-Oxid statt, wodurch neue sechs-, sieben- und achtgliedrige cyclische Spezies mit hohem Heteroatomgehalt entstehen. Insgesamt wurden fünf neue Aluminafluorene hergestellt, die je nach Substituent am Aluminiumzentrum unterschiedliche Strukturen aufweisen. Ihre relativer Lewis-Säure-Stärke wurde mit der Gutmann-Beckett-Methode ermittelt. Neben der Bildung von Addukten mit NHCs, CAAC und DMAP, wurde in das Bromaluminiumfluoren auch (tert-Butylimino)mesitylboran insertiert, welches zur Bildung eines siebengliedrigen Aluminacyclus führte. N2 - The present work deals with the preparation and reactivity of aluminols as well as aluminafluorenes. The aluminols undergo a ring-expansion reaction with organic azides leading to the formation of six-membered aluminum-nitrogen heterocycles, the first non-annelated 1,2-azaaluminabenzoles. In addition, ring extension of the aluminol with a nitrone, an iminoborane, and an amine N-oxide occurs, giving rise to new six-, seven-, and eight-membered cyclic species with high heteroatom content. A total of five new aluminafluorenes were prepared, with different structures depending on the substituent at the aluminum center. Their relative Lewis acidity was determined by Gutmann-Beckett method. In addition to the formation of adducts with NHCs, CAAC, and DMAP, (tert-butylimino)mesitylborane was also introduced into the bromoaluminum fluorene, resulting in the formation of a seven-membered aluminacyclic. KW - Aluminiumverbindungen KW - Aluminole KW - Aluminafluorene Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246523 ER - TY - JOUR A1 - Stennett, Tom E. A1 - Jayaraman, Arumugam A1 - Brückner, Tobias A1 - Schneider, Lea A1 - Braunschweig, Holger T1 - Hydrophosphination of boron–boron multiple bonds JF - Chemical Science N2 - Five compounds containing boron–boron multiple bonds are shown to undergo hydrophosphination reactions with diphenylphosphine in the absence of a catalyst. With diborenes, the products obtained are highly dependent on the substitution pattern at the boron atoms, with both 1,1- and 1,2- hydrophosphinations observed. With a symmetrical diboryne, 1,2-hydrophosphination yields a hydro(phosphino)diborene. The different mechanistic pathways for the hydrophosphination of diborenes are rationalised with the aid of density functional theory calculations. KW - boron KW - diborenes KW - diborynes Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-240681 VL - 11 ER - TY - THES A1 - Mück, Felix Maximilian T1 - Synthese, Struktur und Eigenschaften neuer Silicium(II)- und Silicium(IV)-Komplexe mit Guanidinato-Liganden T1 - Synthesis, structure, and properties of novel silicon(II) and silicon(IV) complexes with guanidinato ligands N2 - Die vorliegende Arbeit stellt einen Beitrag zur Chemie Donor-stabilisierter Silylene mit Guanidinato-Liganden dar. Im Vordergrund standen die Synthese, Charakterisierung und Reaktivitäts-Untersuchungen der beiden neuartigen Silicium(II)-Komplexe 23 und 24, die sterisch unterschiedlich anspruchsvolle Ligand-Systeme besitzen. Ein weiterer Schwerpunkt betrifft die Charakterisierung daraus resultierender tetra-, penta- und hexakoordinierter Silicium(II)- bzw. Silicium(IV)-Komplexe. Im Rahmen dieser Arbeit wurden die Donor-stabilisierten trikoordinierten Silylene 23 und 24, die neutralen tetrakoordinierten Silicium(II)-Komplexe 25·C4H8O und 26, die neutralen tetrakoordinierten Silicium(IV)-Komplexe 27–36, 38, 47–49 und 51, die neutralen penta-koordinierten Silicium(II)-Komplexe 39·0.5C6H5CH3, 40–42 und 46, die neutralen pentakoordinierten Silicium(IV)-Komplexe 18, 19, 37 und 56, die kationischen penta-koordinierten Silicium(IV)-Komplexe 52 und 53 sowie die neutralen hexakoordinierten Silicium(IV)-Komplexe 20, 55·0.5C6H5CH3, 57 und 58 erstmalig dargestellt. Die Charakterisierung dieser Verbindungen erfolgte durch Elementaranalysen (außer 33), NMR-Spektroskopie im Festkörper (15N-, 29Si-, 31P- (nur 27) und 77Se-VACP/MAS-NMR (nur 32, 35, 50 und 53) sowie 11B- (nur 39·0.5C6H5CH3), 27Al- (nur 40 und 41) und 125Te-HPDec/MAS-NMR (nur 33, 36 und 51)) und in Lösung (außer 39, 40, 52 und 53; 1H-, 13C-, 27Al- (nur 41), 29Si-, 31P- (nur 27), 77Se- (nur 32, 35 und 50) und 125Te-NMR (nur 33, 36 und 51)) sowie durch Kristallstrukturanalysen. Synthese und Charakterisierung zweier neuartiger Donor-stabilisierter Mono- und Bis(guanidinato)silylene Die Donor-stabilisierten Silylene 23 und 24 wurden im Sinne einer reduktiven HCl-Eliminierung durch Umsetzung des pentakoordinierten Dichlorohydrido(guanidinato)-silicium(IV)- (18) bzw. hexakoordinierten Chlorohydridobis(guanidinato)silicium(IV)-Komplexes (20) mit Kaliumbis(trimethylsilyl)amid dargestellt. Die entsprechenden Vorstufen 18 und 20 wurden durch Umsetzung von Trichlorsilan mit einem Moläquivalent Lithium-N,N´´-bis(2,6-diisopropylphenyl)-N´N´-dimethylguanidinat bzw. zwei Moläquivalenten N,N´,N´,N´´-tetraisopropylguanidinat erhalten. Jegliche Versuche, das Donor-stabilisierte Silylen 22 durch Reduktion des entsprechenden pentakoordinierten Trichloro(guanidinato)-silicium(IV)-Komplexes 19 mit Alkalimetallen zu erhalten, schlugen fehl. Die Si-Koordinationspolyeder der pentakoordinierten Silicum(IV)-Komplexe 18 und 19 sind stark verzerrte trigonale Bipyramiden mit einem Chlor- und Stickstoff-Atom in den axialen Positionen. Das Si-Koordinationspolyeder von 20 ist ein stark verzerrter Oktaeder mit dem Chloro- und Hydrido-Liganden in cis-Stellung. Das Silicium-Atom der beiden Silylene 23 und 24 ist verzerrt pseudotetraedrisch von drei Stickstoff-Atomen sowie dem freien Elektronenpaar als vierten „Liganden“ umgeben. Beide Verbindungen liegen sowohl im Festkörper als auch in Lösung trikoordiniert vor (ein bidentater Guanidinato- und ein monodentater Amido-/Guanidinato-Ligand). Die Trikoordination von 24 in Lösung wurde auch durch quantenchemische Rechnungen bestätigt. Im Unterschied zu 24 ist das analoge Bis(amidinato)silylen 1 im Festkörper trikoordiniert und in Lösung tetrakoordiniert. Reaktivitätsstudien des Donor-stabilisierten Mono(guanidinato)silylens 23 Ausgehend von dem Silylen 23 wurden die tetrakoordinierten Silicium(II)-Komplexe 25 und 26, die tetrakoordinierten Silicium(IV)-Komplexe 27–36 und 38 sowie der pentakoordinierte Silicium(IV)-Komplex 37 dargestellt. Die Bildung dieser Produkte basiert auf Lewis-Säure/Base- (25, 26) bzw. oxidativen Additionsreaktionen (27–38). Mit Ausnahme der Bildung von 25, 27 und 34–36 ist das typische Reaktivitätsspektrum des Silylens 23 an zusätzliche Reaktivitätsfacetten gekoppelt: (i) eine Änderung des Koordinationsmodus von einem bidentat an ein Koordinationszentrum bindenden zu einem bidentat an zwei Koordinationsstellen bindenden Guanidinato-Liganden (26), (ii) eine 1,3-SiMe3-Verschiebung einer der beiden SiMe3-Gruppen des Amido-Liganden (28–33) oder (iii) eine nukleophile Reaktion einer der beiden Stickstoff-Ligand-Atome des Guanidinato-Liganden als Teil einer Umlagerungs-reaktion (38). Silylen 23 reagierte mit Zink(II)chlorid und Diethylzink unter Bildung der neutralen tetrakoordinierten Silicium(II)-Verbindungen 25 (isoliert als 25·C4H8O) bzw. 26 mit einer Silicium–Zink-Bindung. Hierbei reagiert 23 mit Zink(II)chlorid und Diethylzink im Sinne einer Lewis-Säure/Base-Reaktion unter Bildung des Lewis-Säure/Base-Adduktes 25 und – nach einer zusätzlichen Umlagerung – Verbindung 26. Die Si-Koordinationspolyeder von 25·C4H8O und 26 im Kristall sind (stark) verzerrte Tetraeder, wobei im Falle von 25·C4H8O der Guanidinato-Ligand bidentat und bei 26 monodentat an das Silicium-Atom gebunden ist. Die tetrakoordinierten Silicium(IV)-Komplexe 27–36 und 38 sowie der pentakoordinierte Silicium(IV)-Komplex 37 wurden im Sinne einer oxidativen Additionsreaktion durch Umsetzung von 23 mit Diphenylphosphorylazid (→ 27), 2,4-Hexadiin (→ 28), 1,4-Diphenyl-butadiin (→ 29), Distickstoffmonoxid (→ 30), Diphenyldisulfid (→ 31), Diphenyldiselenid (→ 32), Diphenylditellurid (→ 33), Schwefel (→ 34), Selen (→ 35), Tellur (→ 36), Kohlenstoffdioxid (→ 37) bzw. Kohlenstoffdisulfid (→ 38) dargestellt. Verbindung 37 konnte außerdem durch Umsetzung von 30 mit Kohlenstoffdioxid synthetisiert werden. Die Reaktion von 23 mit Diphenylphosphorylazid verläuft unter Eliminierung von Stickstoff und Bildung von Verbindung 27 mit einer Silicium–Stickstoff-Doppelbindung, wobei 27 als ein intramolekular Donor-stabilisiertes Silaimin beschrieben werden kann. Bei den Verbindungen 28 und 29 handelt es sich um Donor-stabilisierte Silaimine mit einer an das Silicium-Atom gebundenen dreifach substituierten Vinylgruppe. Es wird angenommen, dass 23 zunächst mit einer der beiden C–C-Dreifachbindungen der Diine in einer [2+1]-Cycloaddition zu den entsprechenden Silacyclopropenen reagiert, welche danach zu 28 bzw. 29 umlagern. Hierbei wandert jeweils eine der beiden SiMe3-Gruppen in einer 1,3-Verschiebung vom Stickstoff-Atom des Amido-Liganden zum Kohlenstoff-Atom des intermediär gebildeten Silacyclopropenringes. Die Verbindungen 30–33 stellen die ersten thermisch stabilen Donor-stabilisierten Silaimine mit einem SiN3El-Gerüst dar (El = O, S, Se, Te). Es wird angenommen, dass bei der Reaktion von 23 mit Distickstoffmonoxid unter Eliminierung von Stickstoff, zunächst ein tetrakoordinierter Silicium(IV)-Komplex mit einer Silicium–Sauerstoff-Doppelbindung gebildet wird, der dann im Sinne einer 1,3-SiMe3-Verschiebung vom Stickstoff- zum Sauerstoff-Atom zu Verbindung 30 umlagert. Für die Bildung von 31–33 postuliert man zunächst eine homolytische El–El-Bindungsaktivierung (El = S, Se, Te) der entsprechenden Diphenyldichalcogenide (Bildung von zwei Si–ElPh-Gruppen). Die anschließende 1,3-Verschiebung einer der beiden SiMe3-Gruppen des Amido-Liganden zu einem der beiden ElPh-Liganden führt dann unter Abspaltung von Me3SiElPh zur Bildung von 31–33. Die Reaktion von 23 mit den elementaren Chalcogenen Schwefel, Selen und Tellur verläuft ebenfalls im Sinne einer oxidativen Addition unter Bildung der Verbindungen 34–36 mit einer Silicium–Chalcogen-Doppelbindung. Für die Bildung von 37 wird ein dreistufiger Mechanismus postuliert, wobei in einem ersten zweistufigen Schritt durch Reaktion von 23 mit einem Molekül Kohlenstoffdioxid unter Eliminierung von Kohlenstoffmonoxid zunächst Verbindung 30 als Zwischenstufe gebildet wird. Durch Addition eines zweiten Moleküls Kohlenstoffdioxid an die Silicium–Stickstoff-Doppelbindung von 30 resultiert dann der pentakoordinierte Silicium(IV)-Komplex 37 mit einem N,O-chelatisierenden Carbamato-Liganden. Der postulierte Mechanismus wird von der Tatsache gestützt, dass 37 ebenfalls durch Umsetzung von 30 mit einem Überschuss an Kohlenstoffdioxid synthetisiert werden kann. Aus der Reaktion des Silylens 23 mit Kohlenstoffdisulfid resultiert die cyclische Verbindung 38. Die Si-Koordinationspolyeder von 27–36 im Kristall sind stark verzerrte Tetraeder mit einem bidentaten Guanidinato-, einem Amido- (nur 27 und 34–36) bzw. Imino-Liganden (nur 28–33) sowie einer Si–El-Einfachbindung (28, 29: El = C; 30: El = O; 31: El = S; 32: El = Se; 33: El = Te) bzw. Si–El-Doppelbindung (27: El = N, 34: El = S; 35: El = Se; 36: El = Te). Das Si-Koordinationspolyeder von 37 ist eine stark verzerrte trigonale Bipyramide, wobei sich das Sauerstoff-Atom des Carbamato-Liganden und ein Stickstoff-Atom des Guanidinato-Liganden in den axialen Positionen befinden. Das Si-Koordinationspolyeder von 38 lässt sich als verzerrtes Tetraeder beschreiben. Reaktivitätsstudien des Donor-stabilisierten Bis(guanidinato)silylens 24 Silylen 24 reagiert mit den Lewis-Säuren Triphenylboran, Triphenylalan und Zink(II)chlorid unter Bildung der entsprechenden pentakoordinierten Silicium(II)-Komplexe 39, 40 und 42, welche eine Silicium–Bor-, Silicium–Aluminium- bzw. Silicium–Zink-Bindung besitzen. Silylen 24 reagiert hierbei als Lewis-Base unter Ausbildung von Lewis-Säure/Base-Addukten. Die Si-Koordinationspolyeder von 39, 40 und 42 im Kristall sind stark verzerrte trigonale Bipyramiden, wobei sich das Bor-, Aluminium- und Zink-Atom jeweils in einer äquatorialen Position befindet. Aus NMR-spektroskopischen Untersuchungen geht hervor, dass die Silicium–Zink-Verbindung 42 auch in Lösung stabil ist, während die Silicium–Bor- und Silicium–Aluminium-Verbindung 39 bzw. 40 in Lösung nicht stabil sind. Beide Komplexe dissoziieren quantitativ zu 24 und ElPh3 (El = B, Al). Die Bis(guanidinato)silicium(II)-Komplexe 39 und 40 besitzen ähnliche Strukturen wie ihre Bis(amidinato)-Analoga 3 und 41, die jeweiligen Amidinato/Guanidinato-Analoga 3/39 bzw. 41/40 unterscheiden sich aber signifikant in ihrer chemischen Stabilität in Lösung. Da 39 und 40 in Lösung auch bei tieferer Temperatur (T = –20 °C) dissoziiert vorliegen und die entsprechenden Amidinato-Analoga 3 und 41 selbst bei höherer Temperatur (T = 70 °C) noch stabil sind, wird vermutet, dass das Bis(amidinato)silylen 1 bessere σ-Donor-Eigenschaften besitzt und somit eine stärkere Lewis-Base im Vergleich zum Bis(guanidinato)silylen 24 ist. Des Weiteren reagiert Silylen 24 als ein Nukleophil mit den Übergangsmetallcarbonyl-verbindungen [M(CO)6] (M = Cr, Mo, W) und [Fe(CO)5] unter Bildung der entsprechenden tetrakoordinierten Silicium(II)-Komplexe 43–45 bzw. des pentakoordinierten Silicium(II)-Komplexes 46. Die Si-Koordinationspolyeder der spirocyclischen Silicium(II)-Verbindungen 43–45 im Kristall sind stark verzerrte Tetraeder, wobei jeweils ein Guanidinato-Ligand bidentat an das Silicium-Atom bindet und der andere Guanidinato-Ligand das Silicium- mit dem Metall-Atom verbrückt. Die beiden Si-Koordinationspolyeder von 46 sind stark verzerrte trigonale Bipyramiden mit dem Eisen-Atom in einer äquatorialen Position. Beim Vergleich der Bis(guanidinato)silicium(II)-Komplexe 43–46 mit den jeweiligen Amidinato-Analoga 4–7 fällt auf, dass sich lediglich die Eisen-Verbindungen 7 und 46 entsprechen. Die Umsetzung des Bis(amidinato)silylens 1 mit [M(CO)6] (M = Cr, Mo, W) führt dagegen im Sinne einer nukleophilen Substitution eines Carbonyl-Liganden zu den pentakoordinierten Silicium(II)-Komplexen 4–6, während die analoge Umsetzung des Bis(guanidinato)silylens 24 zur Substitution von zwei CO-Liganden führt und sich die tetrakoordinierten Silicium(II)-Verbindungen 43–45 mit einem verbrückenden Guanidinato-Liganden bilden. Die tetrakoordinierten Silicium(IV)-Komplexe 47–51 wurden im Sinne einer oxidativen Additionsreaktion durch Umsetzung von Silylen 24 mit Azidotrimethylsilan (→ 47), Distickstoffmonoxid (→ 48), Schwefel (→ 49), Selen (→ 50) bzw. Tellur (→ 51) dargestellt. Die Bildung von 47 und 48 wird dabei von einer Stickstoff-Eliminierung begleitet. Die Si-Koordinationspolyeder von 47–51 im Kristall sind stark verzerrte Tetraeder. Der zweikernige Komplex 48 besitzt jeweils zwei Silicium-gebundene monodentate Guanidinato-Liganden sowie einen Si2O2-Ring. Die Verbindungen 47 und 49–51 sind die ersten tetrakoordinierten Bis(guanidinato)silicium(IV)-Komplexe mit einer Silicium–Stickstoff- bzw. Silicium=Chalcogen-Doppelbindung (S, Se, Te). Am Beispiel der Verbindungen 47–51 wird erneut die unterschiedliche Reaktivität der Amidinato/Guanidinato-analogen Silylene 1 (im Festkörper tri- und in Lösung tetrakoordiniert) und 24 (sowohl in Lösung als auch im Festkörper trikoordiniert) deutlich. Interessanterweise führen die oxidativen Additionsreaktionen der Amidinato/Guanidinato-Analoga 1 und 24 mit Azidotrimethylsilan, Distickstoffmonoxid, Schwefel, Selen und Tellur zu Produkten mit unterschiedlichen Koordinationszahlen des Silicium-Atoms. Die Verbindungen 8 und 10–12 repräsentieren hierbei pentakoordinierte Silicium(IV)-Komplexe mit zwei bidentaten Amidinato-Liganden, wohingegen es sich bei den entsprechenden Analoga 47 und 49–51 um tetrakoordinierte Silicium(IV)-Komplexe mit einem monodentaten und einem bidentaten Guanidinato-Liganden handelt. Zugleich stellt 9 einen dinuklearen pentakoordinierten Silicium(IV)-Komplex mit jeweils einem monodentaten und einem bidentaten Amidinato-Liganden dar, während der zweikernige tetrakoordinierte Komplex 48 jeweils zwei monodentate Guanidinato-Liganden trägt. Ebenfalls im Sinne einer oxidativen Additionsreaktion wurden die kationischen penta-koordinierten Silicium(IV)-Komplexe 52 und 53 durch die Umsetzung von Silylen 24 mit Diphenyldisulfid (→ 52) bzw. Diphenyldiselenid (→ 53) dargestellt. Die Si-Koordinationspolyeder von 52 und 53 sind stark verzerrte trigonale Bipyramiden, wobei sich das Schwefel- bzw. Selen-Atom jeweils in einer äquatorialen Position befindet. Die Reaktion des Bis(guanidinato)silylens 24 mit Diphenyldisulfid und Diphenyldiselenid verläuft formal unter heterolytischer Aktivierung einer Chalcogen–Chalcogen-Bindung und führt zur Bildung der kationischen pentakoordinierten Silicium(IV)-Komplexe 52 und 53. Im Gegensatz dazu führt die Reaktion des analogen Bis(amidinato)silylens 1 mit Diphenyldiselenid unter homolytischer Se–Se-Bindungsaktivierung zu der neutralen hexakoordinierten Silicium(IV)-Verbindung 13. Des Weiteren wurde die Reaktivität des Silylens 24 gegenüber kleinen Molekülen untersucht. Die hexakoordinierten Silicium(IV)-Komplexe 55, 57 und 58 sowie der pentakoordinierte Silicium(IV)-Komplex 56 wurden im Sinne einer oxidativen Additionsreaktion durch Umsetzung von 24 mit einem Überschuss an Kohlenstoffdioxid (→ 55; isoliert als 55·C6H5CH3), einer äquimolaren Menge an Kohlenstoffdisulfid (→ 56), einer stöchio-metrischen Menge an Schwefeldioxid (→ 57) bzw. einem sehr großen Überschuss an Schwefeldioxid (welches auch als Solvens diente; → 58) dargestellt. Verbindung 58 wurde als ein Cokristallisat der Isomere cis-58 und trans-58 isoliert, die sich hinsichtlich der relativen Anordnung der beiden exocyclischen Sauerstoff-Atome voneinander unterscheiden. Die Si-Koordinationspolyeder von 55·C6H5CH3, 57 und 58 im Kristall sind stark verzerrte Oktaeder. Die Sauerstoff-Ligand-Atome der bidentaten O,O´-chelatisierenden Carbonato- (55), Sulfito- (57) und Dithionito-Liganden (58) stehen jeweils in cis-Position zueinander. Verbindung 58 ist die zweite strukturell charakterisierte Silicium-Verbindung mit einem bidentat O,O´-chelatisierenden Dithionito-Liganden, und die Verbindungen 55, 57 und 58 repräsentieren sehr seltene Beispiele für Hauptgruppenelement-Verbindungen mit einem O,O´-chelatisierenden Carbonato-, Sulfito- und Dithionito-Liganden. Der Komplex 57 und sein Amidinato-Analogon 16 repräsentieren zwei von drei Hauptgruppenelement-Verbindungen mit einem O,O´-chelatisierenden Sulfito-Liganden. Die Komplexe 55 und 58 stellen zusammen mit ihren Amidinato-Analoga 14 und 17 die einzigen bekannten Verbindungen mit einem O,O´-chelatisierenden Carbonato- bzw. nicht verbrückenden Dithionito-Liganden dar. Die Bildung von 55, 57 und 58 ist eines der wenigen Beispiele für Reaktionen der Amidinato/Guanidinato-analogen Silylene 1 und 24, die zu Struktur-analogen Produkten führen (Amidinato/Guanidinato-Analoga 14/55, 16/57 und 17/58), während in der Mehrzahl der Fälle unterschiedliche Reaktionsprofile beobachtet wurden. Das Si-Koordinationspolyeder von 56 ist eine stark verzerrte trigonale Bipyramide, mit dem Kohlenstoff-Ligand-Atom in einer äquatorialen Position. Der pentakoordinierte Silicium(IV)-Komplex 56 repräsentiert mit seinem über das Kohlenstoff-Atom bindenden CS22–-Liganden eine bisher einzigartige Koordinationsform in der Siliciumchemie, und die Bildung von 56 ist ein weiteres Beispiel für das unterschiedliche Reaktionsprofil der Amidinato/Guanidinato-analogen Silylene 1 und 24. Das Bis(amidinato)silylen 1 reagiert mit Kohlenstoffdisulfid zu dem hexakoordinierten Silicium(IV)-Komplex 15 mit einem S,S´-chelatisierenden Trithiocarbamato-Liganden und unterscheidet sich damit von seinem Guanidinato-Analogon sowohl in der Silicium-Koordinationszahl als auch in der Bindungsform. N2 - This thesis is a contribution to the chemistry of donor-stabilized silylenes with guanidinato ligands. The main focus of this work was the synthesis, characterization, and reactivity studies of the two novel silicon(II) complexes 23 and 24 with different sterically demanding ligand systems. A second focus was the characterization of the resulting four-, five-, and six-coordinate silicon(II) or silicon(IV) complexes. In the course of these studies, the donor-stabilized three-coordinate silylenes 23 and 24, the neutral four-coordinate silicon(II) complexes 25·C4H8O and 26, the neutral four-coordinate silicon(IV) complexes 27–36, 38, 47–49, and 51, the neutral five-coordinate silicon(II) complexes 39·0.5C6H5CH3, 40–42 and 46, the neutral five-coordinate silicon(IV) complexes 18, 19, 37, and 56, the cationic five-coordinate silicon(IV) complexes 52 and 53, and the neutral six-coordinate silicon(IV) complexes 20, 55·0.5C6H5CH3, 57, and 58 were prepared for the first time. These compounds were characterized by elemental analyses (except 33), NMR spectroscopic studies in the solid state (15N, 29Si, 31P (27 only), and 77Se VACP/MAS NMR (32, 35, 50, and 53 only) as well as 11B (39·0.5C6H5CH3 only), 27Al (40 and 41 only), and 125Te HPDec/MAS NMR (33, 36, and 51 only)) and in solution (except 39, 40, 52, and 53; 1H, 13C, 27Al (41 only), 29Si, 31P (27 only), 77Se (32, 35, and 50 only), and 125Te NMR (33, 36, and 51)), and single-crystal X-ray diffraction. Synthesis and characterization of two novel donor-stabilized mono- and bis(guanidinato)-silylenes The donor-stabilized silylenes 23 and 24 were synthesized by treatment of the five-coordinate dichlorohydrido(guanidinato)silicon(IV) complex 18 and six-coordinate chlorohydrido-bis(guanidinato)silicon(IV) complex 20, respectively, with potassium bis(trimethylsilyl)amide (reductive hydrogen chloride elimination). Compound 18 was prepared by treatment of trichlorosilane with one molar equivalent of lithium N,N´´-bis(2,6-diisopropylphenyl)-N´N´-dimethylguanidinate, and 19 was obtained by treatment of trichlorosilane with two molar equivalents of lithium N,N´,N´,N´´-tetraisopropylguanidinate. All attempts to synthesize silylene 22 by reduction of the corresponding five-coordinate trichloro(guanidinato)silicon(IV) complex 19 with alkali metals failed. The silicon coordination polyhedra of the five-coordinate silicon(IV) complexes 18 and 19 are strongly distorted trigonal bipyramids, with a chlorine and nitrogen atom in the axial positions. The silicon coordination polyhedron of 20 is a strongly distorted octahedron, with the chloro and hydrido ligands in cis positions. The silicon atoms of silylenes 23 and 24 are coordinated in a pseudo-tetrahedral fashion by three nitrogen atoms and the lone electron pair as the fourth “ligand”. Both silylenes are three-coordinate both in the solid state and in solution (one bidentate guanidinato and one monodentate amido/guanidinato ligand). The three-coordination of 24 in solution was also confirmed by quantum chemical calculations. This is in contrast to the analogous bis(amidinato)silylene 1, which is three-coordinate only in the solid state and four-coordinate in solution. Reactivity studies of the donor-stabilized mono(guanidinato)silylene 23 Starting from silylene 23, the four-coordinate silicon(II) complexes 25 and 26, the four-coordinate silicon(IV) complexes 27–36 and 38, and the five-coordinate silicon(IV) complex 37 were synthesized. The formation of these products is based on Lewis acid/base (25, 26) or oxidative addition reactions (27–38). Except for the formation of 25, 27, and 34–36, the typical silylene reactivity of 23 is coupled with additional reactivity facets, such as (i) a switch of the coordination mode of the guanidinato ligand from bidentate binding to only one coordination center to bidentate binding to two different coordination centers (→ 26), (ii) a 1,3-SiMe3 shift of one of the two SiMe3 groups of the amido ligand (→ 28–33), or (iii) a nucleophilic reaction of one of the two nitrogen ligand atoms of the guanidinato ligand as part of a rearrangement reaction (→ 38). Silylene 23 reacts with zinc chloride and zinc diethyl to give the neutral four-coordinate silicon(II) complexes 25 (isolated as 25·C4H8O) and 26, respectively, with a silicon–zinc bond. In these transformations silylene 23 reacts as a Lewis base to furnish the Lewis acid/base adducts 25 and (upon an additional rearrangement) compound 26. The silicon coordination polyhedra of 25·C4H8O and 26 are (strongly) distorted tetrahedra. In the case of 25, the guanidinato ligand binds in a bidentate and in 26 in a monodentate fashion to the silicon atom. The four-coordinate silicon(IV) complexes 27–36 and 38 and the five-coordinate silicon(IV) complex 37 were formed in an oxidative addition reaction by treatment of 23 with diphenylphosphoryl azide (→ 27), 2,4-hexadiyne (→ 28), 1,4-diphenylbutadiyne (→ 29), dinitrogen monoxide (→ 30), diphenyl disulfide (→ 31), diphenyl diselenide (→ 32), diphenyl ditelluride (→ 33), sulfur (→ 34), selenium (→ 35), tellurium (→ 36), carbon dioxide (→ 37), and carbon disulfide (→ 38) respectively. Additionally, compound 37 could also be synthesized by treatment of 30 with carbon dioxide. The reaction of 23 with diphenylphosphoryl azide proceeds with a nitrogen elimination and formation of 27 with a silicon–nitrogen double bond. Compound 27 and can be formally described as an intramolecularly donor-stabilized silaimine. Compounds 28 and 29 can be formally described as donor-stabilized silaimines with a silicon-bound trisubstituted vinyl group. The reaction mechanism is postulated to be a [1+2] cycloaddition of 23 with one of two C–C triple bonds of the diynes to form the corresponding silacyclopropenes, which then undergo a rearrangement with a 1,3-shift of one of the two SiMe3 groups from the nitrogen atom of the amido ligand to the carbon atom of the silacyclopropene ring. Compounds 30–33 represent the first thermally stable donor-stabilized silaimines with an SiN3El skeleton (El = O, S, Se, Te). The formation of 30 can be rationalized in terms of an oxidation of 23 with dinitrogen monoxide to give a four-coordinate silicon(IV) complex with an silicon–oxygen double bond, which then undergoes a 1,3-shift of one of the two SiMe3 groups from the nitrogen to the oxygen atom to give 30 (including elimination of nitrogen). The formation of 31–33 can be rationalized in terms of a homolytic El–El bond activation (El = S, Se, Te) of the corresponding diphenyl dichalcogenides (formation of two Si–ElPh groups), followed by a 1,3-shift of one of the two SiMe3 groups to one of the two Si–ElPh moieties and elimination of Me3SiElPh. Reaction of 23 with the elemental chalcogens sulfur, selenium, and tellurium proceeds also in terms of an oxidative addition to form compounds 34–36 with a silicon–chalcogen double bond. For the formation of 37, a three-step process is proposed. In a first two-stage step, silylene 23 reacts with one molecule of carbon dioxide to give the stable four-coordinate silicon(IV) complex 30 as an intermediate (elimination of carbon monoxide). Addition of a second carbon dioxide molecule to the silicon–nitrogen double bond of 30 finally afforded the five-coordinate silicon(IV) complex 37 with an N,O-chelating carbamato ligand. This mechanism is strongly supported by the finding that treatment of 30 with an excess of CO2 also afforded compound 37. Reaction of 23 with carbon disulfide leads to the cyclic silicon(IV) complex 38. The silicon coordination polyhedra of 27–36 in the crystal are strongly distorted tetrahedra, with a bidentate guanidinato ligand, an amido ligand (27 and 34–36 only), and an imino ligand (28–33), respectively, and with an Si–El single bond (28, 29: El = C; 30: El = O; 31: El = S; 32: El = Se; 33: El = Te) and an Si–El double bond (27: El = N, 34: El = S; 35: El = Se; 36: El = Te), respectively. The silicon coordination polyhedron of 37 is a strongly distorted trigonal bipyramid, with the oxygen atom of the carbamato ligand and a nitrogen atom of the guanidinato ligand in the axial positions. The silicon coordination polyhedron of 38 is a distorted tetrahedron. Reactivity of the donor-stabilized silylene 24 Silylene 24 reacts with the Lewis acids triphenylborane, triphenylalane, and zinc chloride to give the respective five-coordinate silicon(II) complexes 39, 40, and 42, which contain an Si–B, Si–Al, and Si–Zn bond, respectively. In these transformations, silylene 24 reacts as a Lewis base to afford Lewis acid/base adducts. The silicon coordination polyhedra of 39, 40, and 42 in the crystal are strongly distorted trigonal bipyramids, with the boron, aluminum, and zinc atom in an equatorial position. NMR spectroscopic studies demonstrated that the silicon–zinc compound 42 is also stable in solution, whereas the silicon–boron and silicon–aluminum compounds 39 and 40, respectively, are unstable in solution. Both complexes dissociate quantitatively to form 24 and ElPh3 (El = B, Al). The bis(guanidinato)silicon(II) complexes 39 and 40 and the analogous bis(amidinato)silicon(II) complexes 3 and 41 are characterized by similar structures each. However, the respective amidinato/guanidinato analogues 3/39 and 41/40 differ significantly in their chemical stability in solution. As 39 and 40 even dissociate at lower temperature (T = –20 °C) and the corresponding amidinato analogues 3 and 41 are stable at higher temperatures (T = 70 °C), the bis(amidinato)silylene 1 is suggested to be a better σ-donor and thus a stronger Lewis base compared to the bis(guanidinato)silylene 24. Furthermore, silylene 24 reacts as a nucleophile with the transition-metal carbonyl complexes [M(CO)6] (M = Cr, Mo, W) and [Fe(CO)5] to form the corresponding four-coordinate silicon(II) complexes 43–45 and the five-coordinate silicon(II) complex 46. The silicon coordination polyhedra of 43–45 are strongly distorted tetrahedra, with one silicon-bound bidentate guanidinato ligand and a second guanidinato ligand that bridges the silicon and the transition-metal atom. The two silicon coordination polyhedra of 46 are strongly distorted trigonal bipyramids, with the iron atom in an equatorial site. Comparison of the bis(guanidinato)silicon(II) complexes 43–46 with the respective amidinato analogues 4–7 reveals that only the iron complexes 7 and 46 have analogous structures. In contrast, the bis(amidinato)silylene 1 reacts with [M(CO)6] (M = Cr, Mo, W) in terms of a monosubstitution (replacement of one of the six carbonyl ligands) to give the five-coordinate silicon(II) complexes 4–6, whereas treatment of [M(CO)6] with the bis(guanidinato)silylene 24 leads to a disubstitution (replacement of two carbonyl ligands) to afford the four-coordinate silicon(II) complexes 43–45. The four-coordinate silicon(IV) complexes 47–51 were synthesized in terms of an oxidative addition reaction by treatment of 24 with trimethylsilyl azide (→ 47), dinitrogen monoxide (→ 48), sulfur (→ 49), selenium (→ 50), and tellurium (→ 51), respectively. The formation of 47 and 48 proceeds with the elimination of nitrogen. The silicon coordination polyhedra of 47–51 in the crystal are strongly distorted tetrahedra. The dinuclear complex 48 contains two monodentate guanidinato ligands each and an Si2O2 ring. Compounds 47 and 49–51 represent the first four-coordinate bis(guanidinato)silicon(IV) complexes with a silicon–nitrogen or silicon–chalcogen double bond (S, Se, Te), respectively. The formation of compounds 47–51 once again emphasizes the different reactivities of the amidinato/guanidinato-analogous silylenes 1 (three-coordinate in the solid-state and four-coordinate in solution) and 24 (three-coordinate both in the solid state and in solution). It is interesting to note that the oxidative addition reactions of the amidinato/guanidinato analogues 1 and 24 with trimethylsilyl azide, dinitrogen monoxide, sulfur, selenium and tellurium lead to products with different silicon coordination numbers. Compounds 8 and 10–12 represent five-coordinate silicon(IV) complexes with two bidentate amidinato ligands, whereas the corresponding analogues 47 and 49–51 are four-coordinate silicon(IV) complexes that contain one bidentate and one monodentate guanidinato ligand. Likewise, compound 9 is a dinuclear five-coordinate silicon(IV) complex with one bidentate and one monodentate amidinato ligand, whereas the dinuclear four-coordinate complex 48 contains two monodentate guanidinato ligands each. The cationic five-coordinate silicon(IV) complexes 52 and 53 were also synthesized in terms of an oxidative addition reaction by treatment of 24 with diphenyl disulfide (→ 52) and diphenyl diselenide (→ 53), respectively. The silicon coordination polyhedra of 52 and 53 are strongly distorted bipyramids, with the sulfur or the selenium atom in an equatorial position. The formation of 52 and 53 is formally based on a heterolytic chalcogen–chalcogen bond activation of diphenyl disulfide and diphenyl diselenide by the bis(guanidinato)silylene 24. In contrast, a homolytic Se–Se bond activation was observed for the reaction of diphenyl diselenide with the analogous bis(amidinato)silylene 1 (formation of the six-coordinate silicon(IV) complex 13). Furthermore, the reactivity of silylene 24 towards small molecules was investigated. The six-coordinate silicon(IV) complexes 55, 57, and 58 and the five-coordinate silicon(IV) complex 56 were prepared in terms of an oxidative addition reaction by treatment of 24 with an excess of carbon dioxide (→ 55), with an equimolar amount of carbon disulfide (→ 56), with a stoichiometric amount of sulfur dioxide (→ 57), and with a vast excess of liquid sulfur dioxide (which served also as the solvent; → 58), respectively. Compound 58 was isolated as a co-crystallizate of the isomers cis-58 and trans-58, which differ in their relative orientation of the two exocyclic oxygen atoms. The silicon coordination polyhedra of 55·C6H5CH3, 57, and 58 are strongly distorted octahedra. The oxygen ligand atoms of the bidentate O,O´-chelating carbonato (55), sulfito (56), and dithionito (57) ligands are found in cis positions each. Compound 58 is the second structurally characterized silicon compound with a bidentate O,O´-chelating dithionito ligand, and 55, 57, and 58 represent very rare examples of main-group element compounds with an O,O´-chelating carbonato, sulfito, or dithionito ligand. Complex 57 and its amidinato analogue 16 represent two of three main-group element compounds with an O,O´-chelating sulfito ligand, and complexes 55 and 58 (together with their amidinato analogues 14 and 17) are even the only known molecular compounds that contain an O,O´-chelating carbonato and non-bridging dithionito ligand, respectively. The formation of 55, 57, and 58 is one of the rare examples of reactions of the amidinato/guanidinato-analogous silylenes 1 and 24 that lead to structurally analogous products (amidinato/guanidinato analogues 14/55, 16/57, and 17/58), whereas in most cases different reactivity profiles were observed. The silicon coordination polyhedron of 56 is a strongly distorted trigonal bipyramid, with the carbon atom in an equatorial position. The five-coordinate silicon(IV) complex 56 with its carbon-bound CS22– ligand represents an unprecedented coordination mode in silicon chemistry, and the formation of 56 is a further example of the different reactivity profiles of the amidinato/guanidinato-analogous silylenes 1 and 24. The bis(amidinato)silylene 1 reacts with carbon disulfide to give the six-coordinate silicon(IV) complex 15 with an S,S´-chelating trithiocarbonato ligand and thereby differs from its guanidinato analogue 56 by both the silicon-coordination number and the coordination mode. KW - Siliciumkomplexe KW - Komplex-Chemie KW - Silylene KW - Hauptgruppen-Chemie KW - Silandiylverbindungen KW - Koordinationslehre Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-136377 ER - TY - THES A1 - Dannenbauer, Nicole T1 - Koordinationspolymere und -verbindungen mit intrinsischer Lumineszenz auf Basis von Selten-Erd-Chloriden, Thiazol, Thiolaten und Amin-Co-Liganden T1 - Coordination polymers and compounds with intrinsic luminescence based on rare earth chlorides, thiazole, thiolates and amine co-ligands N2 - In dieser Arbeit konnten 69 neue und neuartige Koordinationspolymere sowie Komplexe mit schwefelhaltigen Liganden auf Selten-Erd-Chlorid-Basis synthetisiert und strukturell charak-terisiert werden. Durch die Umsetzung der Chloride mit dem Liganden Thiazol konnten bei Raumtemperatur, abhängig vom Ionenradius und der eingesetzten Menge Thiazol, sowohl Koordinationspolymere wie 1∞[LnCl3(thz)6]·thz (Ln = La, Ce), dimere Komplexe [Ln2Cl6(thz)8]·3(thz) (Ln = La, Ce, Pr, Nd), [Pr2Cl6(thz)8] sowie monomere Komplexe [LnCl3(thz)4]2·thz (Ln = Sm , Eu , Tb, Ho) erhalten werden. Mittels temperaturabhängiger Pulverdiffraktometrie und in-situ Infra-rotspektroskopie sowie DTA/TG-Messungen konnte exemplarisch an 1∞[LaCl3(thz)6]·thz und [Pr2Cl6(thz)8] gezeigt werden, dass stufenweise thermisch bedingt Thiazolmoleküle aus den Strukturen abgegeben werden bis hin zur Rückbildung des eingesetzten LnCl3. Unter der Vo-raussetzung, dass die flüchtige Komponente Thiazol resorbiert wird, ist daher ein Kreispro-zess denkbar. Ferner konnten zusätzlich wasserhaltige Phasen wie der vierkernige Cluster [Pr4Cl10(OH)2(thz)8(H2O)2] erhalten werden. Durch die Zugabe eines geeigneten Linkermoleküls in das Reaktionssystem aus trivalenten Lanthanidchloriden und Thiazol konnten unter solvothermalen Bedingungen eine Vielzahl an Koordinationspolymeren und Komplexen erhalten werden. Als Linker oder als end-on Ligan-den eigneten sich sowohl eine Reihe an ditopischer Pyridylliganden 4,4'-Biypridin (bipy), 1,2-Di-(4-pyridyl)ethen (dpe), trans-1-(2-Pyridyl)-2-(4-pyridyl)ethylen (tppe), 1,2-Di-(4-pyridyl)ethan (dpa), sowie die Diazine Pyrazin (pyz) und Pyrimidin (pym) oder auch Azole wie 1,2,4-Triazol (tzH) und Pyrazol (pzH). Mittels Einkristallstrukturanalyse und pulverdiffrakto-metrischer Methoden konnten die dreidimensionalen Gerüstverbindungen 3∞[LnCl3(dpa)2]·thz (Ln = Ce - Sm, Gd - Lu), die Schichtstrukturen 2∞[Ln2Cl6(bipy)3(thz)2]·thz (Ln = La, Ce), 2∞[LnCl3(tzH)2(thz)]·thz (Ln = Pr, Sm - Gd) und die strangartigen Koordinationspolymere 1∞[LnCl3(bipy)(thz)2]·thz (Ln = Pr, Nd), 1∞[LnCl3(bipy)(thz)2]·thz (Ln = Sm, Eu - Er, Yb), 1∞[Ln2Cl6(dpe)2(thz)4]·dpe (Ln = Ce, Nd), 1∞[LnCl3(dpe)(thz)2]· 0.5 (dpe) 0.5 (thz) (Ln = Sm, Gd - Dy, Er, Yb), 1∞[HoCl3(dpe)(thz)2]·thz, 1∞[La2Cl6(dpa)(thz)6], 1∞[Pr2Cl6(pyz) (thz)6], 1∞[Ln2Cl6(tzH)4(thz)2] (Ln = Pr, Sm, Gd) sowie die Komplexe [LnCl3(tppe)2(thz)2] (Ln = Nd, Tb, Ho, Er), [Ln2Cl6(pyz)(thz)6]·2(thz) (Ln = Tb, Er), [Ln2Cl6(pym)2(thz)4] (Ln = Tb , Er), [LnCl3(pzH)3(thz)2] (Ln = Pr, Gd) charakterisiert werden.   Ferner konnten die erhaltenen Verbindungen weitestgehend auf ihre photolumineszenz-spektroskopischen sowie thermischen Eigenschaften hin untersucht werden. Außerdem konn-ten auch durch direkte Schwefelkoordination an die Ln3+-Zentren eindimensionale Koordina-tionspolymere 1∞[PrCl2(amt)(py)3] (amt- = 3-Amino-5-mercapto-1,2,4-triazolat), [HNEt3]1∞[LnCl2(amt)2] (Ln = Ho, Er) und Komplexe [LnCl2(Mbim)(py)3]·py (Ln = Y, Er; Mbim = 2-Mercaptobenzimdiazolat) generiert werden N2 - This thesis deals with the structural characterization of 69 novel coordination polymers and complexes synthesized with sulfur containing heterocyclic ligands and trivalent rare earth chlorides. Depending on the ionic radii of the used lanthanide chloride and the amount of the ligand thiazole coordination polymers as 1∞[LnCl3(thz)6]·thz (Ln = La, Ce), dimeric compounds [Ln2Cl6(thz)8]·3(thz) (Ln = La, Ce, Pr, Nd), [Pr2Cl6(thz)8] and monomeric complexes [LnCl3(thz)4]2·thz (Ln = Sm, Eu , Tb, Ho) were derived at room temperature. Using tempera-ture-dependent powder diffraction methods, in-situ IR-spectroscopy and DTA/TG measure-ments it was demonstrated that there is a stepwise, thermal induced release of thiazole molecules out of the structures to back-formation of crystalline lanthanide chloride in the cases of the coordination polymer 1∞[LaCl3(thz)6]·thz and the dimer [Pr2Cl6(thz)8]. This could be a cyclic process requiring the elusive ligand thiazole to be reabsorbed. Furthermore, hy-drous phases were also obtained like the tetranuclear cluster [Pr4Cl10(OH)2(thz)8(H2O)2]. It was possible to generate a series of various coordination polymers and complexes under solvothermal conditions adding suitable linker molecules into the reaction system of lantha-nide chloride and thiazole. Suitable linkers or end-on ligands are a range of ditopic pyridyl ligands like 4,4'-biypridine (bipy), 1,2-di-(4-pyridyl)ethene (dpe), trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene (tppe), 1,2-di-(4-pyridyl)ethane (dpa), diazine as pyrazine (pyz) and pyrimi-dine (pym) as well as azole like 1,2,4-triazole (tzH) and pyrazole (pzH). By single-X-ray struc-ture determination and powder diffraction it was possible to characterize three dimensional networks 3∞[LnCl3(dpa)2]·thz (Ln = Ce - Sm, Gd - Lu), layer structures 2∞[Ln2Cl6(bipy)3(thz)2]·thz (Ln = La, Ce), 2∞[LnCl3(tzH)2(thz)]·thz (Ln = Pr, Sm - Gd) and strand like coordination polymers 1∞[LnCl3(bipy)(thz)2]·thz (Ln = Pr, Nd), 1∞[LnCl3(bipy)(thz)2]·thz (Ln = Sm, Eu - Er, Yb), 1∞[Ln2Cl6(dpe)2(thz)4]·dpe (Ln = Ce, Nd), 1∞[LnCl3(dpe)(thz)2]·0.5 (dpe) 0.5 (thz) (Ln = Sm, Gd - Dy, Er, Yb), 1∞[HoCl3(dpe)(thz)2]·thz, 1∞[La2Cl6(dpa)(thz)6], 1∞[Pr2Cl6(pyz) (thz)6], 1∞[Ln2Cl6(tzH)4(thz)2] (Ln = Pr, Sm, Gd) as well as the complexes [LnCl3(tppe)2(thz)2] (Ln = Nd, Tb, Ho, Er), [Ln2Cl6(pyz)(thz)6]·2(thz) (Ln = Tb, Er), [Ln2Cl6(pym)2(thz)4] (Ln = Tb , Er), [LnCl3(pyr)3(thz)2] (Ln = Pr, Gd). Furthermore, nearly all of the generated structures were investigated with regards to their photoluminescent and thermal properties.   Moreover, one dimensional coordination polymers 1∞[PrCl2(amt)(py)3] (amt- = 3-amino-5-mercapto-1,2,4-triazolate), [HNEt3]1∞[LnCl2(amt)2] (Ln = Ho, Er) and complexes [LnCl2(Mbim)(py)3]·py (Ln = Y, Er; Mbim = 2-mercaptobenzimdiazolate) were obtained by direct coordination of sulfur at Ln3+-centers. KW - Lanthanoide KW - Polymerkomplexe KW - Photolumineszenz KW - Thiolate KW - Thiazole KW - Selten-Erd-Chloride KW - Koordinationspolymere KW - Lumineszenz KW - Thiazol KW - rare earth chlorides KW - coordination polymers KW - luminescence KW - thiazole Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-136218 ER - TY - THES A1 - Würtemberger-Pietsch, Sabrina T1 - Anionic and Neutral Lewis-Base Adducts of Diboron(4) Compounds T1 - Anionische und Neutrale Lewis-Basen Addukte von Diboran(4)-Verbindungen N2 - Anionic Adducts Sp2-sp3 tetraalkoxy diboron compounds have gained attention due to the development of new, synthetically useful catalytic reactions either with or without transition-metals. Lewis-base adducts of the diboron(4) compounds were suggested as possible intermediates in Cu catalyzed borylation reactions some time ago. However, intermolecular adducts of tetraalkoxy diboron compounds have not been studied yet in great detail. In preliminary studies, we have synthesized a series of anionic sp2-sp3 adducts of B2pin2 with alkoxy-groups (L = [OMe]–, [OtBu]–), a phenoxy-group (L = [4-tBuC6H4O]–) and fluoride (L = [F]–, with [nBu4N]+ as the counter ion) as Lewis-bases. Neutral Adducts Since their isolation and characterization, applications of N-heterocyclic carbenes (NHCs) and related molecules, e.g., cyclic alkylaminocarbenes (CAACs) and acyclic diaminocarbenes (aDCs), have grown rapidly. Their use as ligands in homogeneous catalysis and directly in organocatalysis, including recently developed borylation reactions, is now well established. Recently, several examples of ring expansion reactions (RER) involving NHCs were reported to take place at elevated temperatures, involving Be, B, and Si. Furthermore, preliminary studies in the group of Marder et al. showed the presence of neutral sp2-sp3 diboron compounds with B2pin2 and the NHC Cy2Im. In this work, we focused on the synthesis and characterization of further neutral sp2-sp3 as well as sp3-sp3 diboron adducts with B2cat2 and B2neop2 and different NHCs. Whereas the mono-NHC adduct is stable for several hours at temperatures up to 60 °C, the bis-NHC adducts undergo thermally induced rearrangement to form the ring expanded products compound 26 and 27. B2neop2 is much more reactive than B2cat2 giving ring expanded product 29 at room temperature in quantitative yields, demonstrating that NHC ring expansion and B–B bond cleavage can be very facile processes. Whereas the mono-NHC adduct is stable for several hours at temperatures up to 60 °C, the bis-NHC adducts undergo thermally induced rearrangement to form the ring expanded products compound 26 and 27. B2neop2 is much more reactive than B2cat2 giving ring expanded product 29 at room temperature in quantitative yields, demonstrating that NHC ring expansion and B–B bond cleavage can be very facile processes. N2 - Im Rahmen der vorliegenden Arbeit wurde die Synthese und das Reaktionsverhalten Lewis-Säuren/Lewis-Basen-Addukte von Diboran(4)-Verbindungen als Lewis-Säuren untersucht. Als Lewis-Basen dienten zum einem das Fluorid-Ion, zum anderen N-Heterozyklische Carbene. Ein Ziel der vorliegenden Arbeit war somit die Synthese und Charakterisierung anionischer sp2-sp3-Diboran-Verbindungen des Typs [B2(OR)4F][NMe4] (OR2 = Pinakol, Catechol und Neopentyl), die auf ihre Eigenschaft als „Boryl-Übertragungsreagenz“ gegenüber Diazoniumsalzen überprüft wurden. Der zweite Teil der Arbeit untersucht die Reaktion von Diboranen (B2cat2 und B2neop2) mit gesättigten und ungesättigten N-Heterozyklischen Carbenen (NHCs). Die neutralen, einfach- und zweifach-substituierten NHC-Addukte des Typs B2(OR)4•NHC und B2(OR)4•(NHC)2 wurden anschließend auf ihre thermische Stabilität untersucht. Die Ergebnisse dieser Arbeit zeigen zum einem, dass anionische Addukte des Typs [B2(OR)4F][NMe4] 4, 7 und 9 als „Boryl-Übertragungsreagenzien“ eingesetzt werden können. Ferner lassen sich ausgehend von Diboran(4)-Verbindungen durch die Umsetzung mit N Heterozyklischen Carbenen die einfach- und zweifach-substituierten NHC-Addukte B2(OR)4•NHC und B2(OR)4•(NHC)2 synthetisieren. Diese sind zum Teil instabil gegenüber einer Ringerweiterungsreaktion unter Insertion einer Boryleinheit in die C–N-Bindung des Carbens. Untersuchungen an NHC-Addukten von Boranen BR3 und HB(OR)2 zeigen weiterhin, dass die Addukte Ph3B•NHC gegenüber solchen Ringerweiterungen stabil sind. Die Addukte HB(OR)2•NHC sind je nach eingesetztem Carben und Boran entweder stabil oder reagieren unter B–H-Bindungsaktivierung zur Ringerweiterung des Carbens. KW - Addukt KW - Diborane KW - carben KW - Lewis-Base Adducts KW - Diboron(4) Compounds KW - Ring Expansion Reaction Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-136321 ER -