TY - JOUR A1 - Figueiredo, Ludmilla A1 - Krauss, Jochen A1 - Steffan-Dewenter, Ingolf A1 - Cabral, Juliano Sarmento T1 - Understanding extinction debts: spatio-temporal scales, mechanisms and a roadmap for future research JF - Ecography N2 - Extinction debt refers to delayed species extinctions expected as a consequence of ecosystem perturbation. Quantifying such extinctions and investigating long‐term consequences of perturbations has proven challenging, because perturbations are not isolated and occur across various spatial and temporal scales, from local habitat losses to global warming. Additionally, the relative importance of eco‐evolutionary processes varies across scales, because levels of ecological organization, i.e. individuals, (meta)populations and (meta)communities, respond hierarchically to perturbations. To summarize our current knowledge of the scales and mechanisms influencing extinction debts, we reviewed recent empirical, theoretical and methodological studies addressing either the spatio–temporal scales of extinction debts or the eco‐evolutionary mechanisms delaying extinctions. Extinction debts were detected across a range of ecosystems and taxonomic groups, with estimates ranging from 9 to 90% of current species richness. The duration over which debts have been sustained varies from 5 to 570 yr, and projections of the total period required to settle a debt can extend to 1000 yr. Reported causes of delayed extinctions are 1) life‐history traits that prolong individual survival, and 2) population and metapopulation dynamics that maintain populations under deteriorated conditions. Other potential factors that may extend survival time such as microevolutionary dynamics, or delayed extinctions of interaction partners, have rarely been analyzed. Therefore, we propose a roadmap for future research with three key avenues: 1) the microevolutionary dynamics of extinction processes, 2) the disjunctive loss of interacting species and 3) the impact of multiple regimes of perturbation on the payment of debts. For their ability to integrate processes occurring at different levels of ecological organization, we highlight mechanistic simulation models as tools to address these knowledge gaps and to deepen our understanding of extinction dynamics. KW - Anthropocene KW - biotic interaction KW - extinction dynamics KW - mechanistic modelling KW - time lag KW - transient dynamics Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204859 VL - 42 IS - 12 ER - TY - JOUR A1 - Grebinyk, Anna A1 - Prylutska, Svitlana A1 - Buchelnikov, Anatoliy A1 - Tverdokhleb, Nina A1 - Grebinyk, Sergii A1 - Evstigneev, Maxim A1 - Matyshevska, Olga A1 - Cherepanov, Vsevolod A1 - Prylutskyy, Yuriy A1 - Yashchuk, Valeriy A1 - Naumovets, Anton A1 - Ritter, Uwe A1 - Dandekar, Thomas A1 - Frohme, Marcus T1 - C60 fullerene as an effective nanoplatform of alkaloid Berberine delivery into leukemic cells JF - Pharmaceutics N2 - A herbal alkaloid Berberine (Ber), used for centuries in Ayurvedic, Chinese, Middle-Eastern, and native American folk medicines, is nowadays proved to function as a safe anticancer agent. Yet, its poor water solubility, stability, and bioavailability hinder clinical application. In this study, we have explored a nanosized carbon nanoparticle—C60 fullerene (C60)—for optimized Ber delivery into leukemic cells. Water dispersions of noncovalent C60-Ber nanocomplexes in the 1:2, 1:1, and 2:1 molar ratios were prepared. UV–Vis spectroscopy, dynamic light scattering (DLS), and atomic force microscopy (AFM) evidenced a complexation of the Ber cation with the negatively charged C60 molecule. The computer simulation showed that π-stacking dominates in Ber and C\(_{60}\) binding in an aqueous solution. Complexation with C\(_{60}\) was found to promote Ber intracellular uptake. By increasing C\(_{60}\) concentration, the C\(_{60}\)-Ber nanocomplexes exhibited higher antiproliferative potential towards CCRF-CEM cells, in accordance with the following order: free Ber < 1:2 < 1:1 < 2:1 (the most toxic). The activation of caspase 3/7 and accumulation in the sub-G1 phase of CCRF-CEM cells treated with C\(_{60}\)-Ber nanocomplexes evidenced apoptosis induction. Thus, this study indicates that the fast and easy noncovalent complexation of alkaloid Ber with C\(_{60}\) improved its in vitro efficiency against cancer cells. KW - C60 fullerene KW - Berberine KW - noncovalent nanocomplex KW - UV–Vis KW - DLS and AFM measurements KW - drug release KW - leukemic cells KW - uptake KW - cytotoxicity KW - apoptosis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193216 SN - 1999-4923 VL - 11 IS - 11 ER - TY - JOUR A1 - Li, Shan A1 - Li, Xin A1 - Link, Roman A1 - Li, Ren A1 - Deng, Liping A1 - Schuldt, Bernhard A1 - Jiang, Xiaomei A1 - Zhao, Rongjun A1 - Zheng, Jingming A1 - Li, Shuang A1 - Yin, Yafang T1 - Influence of cambial age and axial height on the spatial patterns of xylem traits in Catalpa bungei, a ring-porous tree species native to China JF - Forests N2 - Studying how cambial age and axial height affects wood anatomical traits may improve our understanding of xylem hydraulics, heartwood formation and axial growth. Radial strips were collected from six different heights (0–11.3 m) along the main trunk of three Manchurian catalpa (Catalpa bungei) trees, yielding 88 samples. In total, thirteen wood anatomical vessel and fiber traits were observed usinglight microscopy (LM) and scanning electron microscopy (SEM), and linear models were used to analyse the combined effect of axial height, cambial age and their interaction. Vessel diameter differed by about one order of magnitude between early- and latewood, and increased significantly with both cambial age and axial height in latewood, while it was positively affected by cambial age and independent of height in earlywood. Vertical position further had a positive effect on earlywood vessel density, and negative effects on fibre wall thickness, wall thickness to diameter ratio and length. Cambial age had positive effects on the pit membrane diameter and vessel element length, while the annual diameter growth decreased with both cambial age and axial position. In contrast, early- and latewood fiber diameter were unaffected by both cambial age and axial height. We further observed an increasing amount of tyloses from sapwood to heartwood, accompanied by an increase of warty layers and amorphous deposits on cell walls, bordered pit membranes and pit apertures. This study highlights the significant effects of cambial age and vertical position on xylem anatomical traits, and confirms earlier work that cautions to take into account xylem spatial position when interpreting wood anatomical structures, and thus, xylem hydraulic functioning. KW - wood anatomy KW - vertical and radial variation KW - earlywood KW - latewood KW - growth ring width KW - tyloses KW - pit membrane diameter KW - vessel lumen diameter KW - fibre length Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196297 SN - 1999-4907 VL - 10 IS - 8 ER - TY - JOUR A1 - Beer, Katharina A1 - Schenk, Mariela A1 - Helfrich-Förster, Charlotte A1 - Holzschuh, Andrea T1 - The circadian clock uses different environmental time cues to synchronize emergence and locomotion of the solitary bee Osmia bicornis JF - Scientific Reports N2 - Life on earth adapted to the daily reoccurring changes in environment by evolving an endogenous circadian clock. Although the circadian clock has a crucial impact on survival and behavior of solitary bees, many aspects of solitary bee clock mechanisms remain unknown. Our study is the first to show that the circadian clock governs emergence in Osmia bicornis, a bee species which overwinters as adult inside its cocoon. Therefore, its eclosion from the pupal case is separated by an interjacent diapause from its emergence in spring. We show that this bee species synchronizes its emergence to the morning. The daily rhythms of emergence are triggered by temperature cycles but not by light cycles. In contrast to this, the bee’s daily rhythms in locomotion are synchronized by light cycles. Thus, we show that the circadian clock of O. bicornis is set by either temperature or light, depending on what activity is timed. Light is a valuable cue for setting the circadian clock when bees have left the nest. However, for pre-emerged bees, temperature is the most important cue, which may represent an evolutionary adaptation of the circadian system to the cavity-nesting life style of O. bicornis. KW - Behavioural ecology KW - Evolutionary developmental biology Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-202721 VL - 9 ER - TY - JOUR A1 - Thölken, Clemens A1 - Thamm, Markus A1 - Erbacher, Christoph A1 - Lechner, Marcus T1 - Sequence and structural properties of circular RNAs in the brain of nurse and forager honeybees (Apis mellifera) JF - BMC Genomics N2 - Background The honeybee (Apis mellifera) represents a model organism for social insects displaying behavioral plasticity. This is reflected by an age-dependent task allocation. The most protruding tasks are performed by young nurse bees and older forager bees that take care of the brood inside the hive and collect food from outside the hive, respectively. The molecular mechanism leading to the transition from nurse bees to foragers is currently under intense research. Circular RNAs, however, were not considered in this context so far. As of today, this group of non-coding RNAs was only known to exist in two other insects, Drosophila melanogaster and Bombyx mori. Here we complement the state of circular RNA research with the first characterization in a social insect. Results We identified numerous circular RNAs in the brain of A. mellifera nurse bees and forager bees using RNA-Seq with exonuclease enrichment. Presence and circularity were verified for the most abundant representatives. Back-splicing in honeybee occurs further towards the end of transcripts and in transcripts with a high number of exons. The occurrence of circularized exons is correlated with length and CpG-content of their flanking introns. The latter coincides with increased DNA-methylation in the respective loci. For two prominent circular RNAs the abundance in worker bee brains was quantified in TaqMan assays. In line with previous findings of circular RNAs in Drosophila, circAmrsmep2 accumulates with increasing age of the insect. In contrast, the levels of circAmrad appear age-independent and correlate with the bee's task. Its parental gene is related to amnesia-resistant memory. Conclusions We provide the first characterization of circRNAs in a social insect. Many of the RNAs identified here show homologies to circular RNAs found in Drosophila and Bombyx, indicating that circular RNAs are a common feature among insects. We find that exon circularization is correlated to DNA-methylation at the flanking introns. The levels of circAmrad suggest a task-dependent abundance that is decoupled from age. Moreover, a GO term analysis shows an enrichment of task-related functions. We conclude that circular RNAs could be relevant for task allocation in honeybee and should be investigated further in this context. KW - circRNA KW - circular transcriptome sequencing KW - honeybee KW - brain KW - neuronal KW - Methylation KW - CpG KW - alternative splicing KW - behavioral plasticity Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241302 VL - 20 ER - TY - JOUR A1 - Groll, J A1 - Burdick, J A A1 - Cho, D-W A1 - Derby, B A1 - Gelinsky, M A1 - Heilshorn, S C A1 - Jüngst, T A1 - Malda, J A1 - Mironov, V A A1 - Nakayama, K A1 - Ovsianikov, A A1 - Sun, W A1 - Takeuchi, S A1 - Yoo, J J A1 - Woodfield, T B F T1 - A definition of bioinks and their distinction from biomaterial inks JF - Biofabrication N2 - Biofabrication aims to fabricate biologically functional products through bioprinting or bioassembly (Groll et al 2016 Biofabrication 8 013001). In biofabrication processes, cells are positioned at defined coordinates in three-dimensional space using automated and computer controlled techniques (Moroni et al 2018 Trends Biotechnol. 36 384–402), usually with the aid of biomaterials that are either (i) directly processed with the cells as suspensions/dispersions, (ii) deposited simultaneously in a separate printing process, or (iii) used as a transient support material. Materials that are suited for biofabrication are often referred to as bioinks and have become an important area of research within the field. In view of this special issue on bioinks, we aim herein to briefly summarize the historic evolution of this term within the field of biofabrication. Furthermore, we propose a simple but general definition of bioinks, and clarify its distinction from biomaterial inks. KW - bioink KW - biomaterial ink KW - definition Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-253993 VL - 11 IS - 1 ER - TY - JOUR A1 - Schwedhelm, Ivo A1 - Zdzieblo, Daniela A1 - Appelt-Menzel, Antje A1 - Berger, Constantin A1 - Schmitz, Tobias A1 - Schuldt, Bernhard A1 - Franke, Andre A1 - Müller, Franz-Josef A1 - Pless, Ole A1 - Schwarz, Thomas A1 - Wiedemann, Philipp A1 - Walles, Heike A1 - Hansmann, Jan T1 - Automated real-time monitoring of human pluripotent stem cell aggregation in stirred tank reactors JF - Scientific Reports N2 - The culture of human induced pluripotent stem cells (hiPSCs) at large scale becomes feasible with the aid of scalable suspension setups in continuously stirred tank reactors (CSTRs). Innovative monitoring options and emerging automated process control strategies allow for the necessary highly defined culture conditions. Next to standard process characteristics such as oxygen consumption, pH, and metabolite turnover, a reproducible and steady formation of hiPSC aggregates is vital for process scalability. In this regard, we developed a hiPSC-specific suspension culture unit consisting of a fully monitored CSTR system integrated into a custom-designed and fully automated incubator. As a step towards cost-effective hiPSC suspension culture and to pave the way for flexibility at a large scale, we constructed and utilized tailored miniature CSTRs that are largely made from three-dimensional (3D) printed polylactic acid (PLA) filament, which is a low-cost material used in fused deposition modelling. Further, the monitoring tool for hiPSC suspension cultures utilizes in situ microscopic imaging to visualize hiPSC aggregation in real-time to a statistically significant degree while omitting the need for time-intensive sampling. Suitability of our culture unit, especially concerning the developed hiPSC-specific CSTR system, was proven by demonstrating pluripotency of CSTR-cultured hiPSCs at RNA (including PluriTest) and protein level. KW - Biomedical engineering KW - Stem-cell biotechnology Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-202649 VL - 9 ER - TY - JOUR A1 - Elmaidomy, Abeer H. A1 - Mohammed, Rabab A1 - Hassan, Hossam M. A1 - Owis, Asmaa I. A1 - Rateb, Mostafa E. A1 - Khanfar, Mohammad A. A1 - Krischke, Markus A1 - Mueller, Martin J. A1 - Abdelmohsen, Usama Ramadan T1 - Metabolomic profiling and cytotoxic tetrahydrofurofuran lignans investigations from Premna odorata Blanco JF - Metabolites N2 - Metabolomic profiling of different Premna odorata Blanco (Lamiaceae) organs, bark, wood, young stems, flowers, and fruits dereplicated 20, 20, 10, 20, and 20 compounds, respectively, using LC–HRESIMS. The identified metabolites (1–34) belonged to different chemical classes, including iridoids, flavones, phenyl ethanoids, and lignans. A phytochemical investigation of P. odorata bark afforded one new tetrahydrofurofuran lignan, 4β-hydroxyasarinin 35, along with fourteen known compounds. The structure of the new compound was confirmed using extensive 1D and 2D NMR, and HRESIMS analyses. A cytotoxic investigation of compounds 35–38 against the HL-60, HT-29, and MCF-7 cancer cell lines, using the MTT assay showed that compound 35 had cytotoxic effects against HL-60 and MCF-7 with IC50 values of 2.7 and 4.2 µg/mL, respectively. A pharmacophore map of compounds 35 showed two hydrogen bond acceptor (HBA) aligning the phenoxy oxygen atoms of benzodioxole moieties, two aromatic ring features vectored on the two phenyl rings, one hydrogen bond donor (HBD) feature aligning the central hydroxyl group and thirteen exclusion spheres which limit the boundaries of sterically inaccessible regions of the target’s active site. KW - Premna KW - lignan KW - metabolomic KW - cytotoxic KW - pharmacophore map Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193187 SN - 2218-1989 VL - 9 IS - 10 ER - TY - JOUR A1 - Draganov, Dobrin D. A1 - Santidrian, Antonio F. A1 - Minev, Ivelina A1 - Duong, Nguyen A1 - Kilinc, Mehmet Okyay A1 - Petrov, Ivan A1 - Vyalkova, Anna A1 - Lander, Elliot A1 - Berman, Mark A1 - Minev, Boris A1 - Szalay, Aladar A. T1 - Delivery of oncolytic vaccinia virus by matched allogeneic stem cells overcomes critical innate and adaptive immune barriers JF - Journal of Translational Medicine N2 - Background Previous studies have identified IFNγ as an important early barrier to oncolytic viruses including vaccinia. The existing innate and adaptive immune barriers restricting oncolytic virotherapy, however, can be overcome using autologous or allogeneic mesenchymal stem cells as carrier cells with unique immunosuppressive properties. Methods To test the ability of mesenchymal stem cells to overcome innate and adaptive immune barriers and to successfully deliver oncolytic vaccinia virus to tumor cells, we performed flow cytometry and virus plaque assay analysis of ex vivo co-cultures of stem cells infected with vaccinia virus in the presence of peripheral blood mononuclear cells from healthy donors. Comparative analysis was performed to establish statistically significant correlations and to evaluate the effect of stem cells on the activity of key immune cell populations. Results Here, we demonstrate that adipose-derived stem cells (ADSCs) have the potential to eradicate resistant tumor cells through a combination of potent virus amplification and sensitization of the tumor cells to virus infection. Moreover, the ADSCs demonstrate ability to function as a virus-amplifying Trojan horse in the presence of both autologous and allogeneic human PBMCs, which can be linked to the intrinsic immunosuppressive properties of stem cells and their unique potential to overcome innate and adaptive immune barriers. The clinical application of ready-to-use ex vivo expanded allogeneic stem cell lines, however, appears significantly restricted by patient-specific allogeneic differences associated with the induction of potent anti-stem cell cytotoxic and IFNγ responses. These allogeneic responses originate from both innate (NK)- and adaptive (T)- immune cells and might compromise therapeutic efficacy through direct elimination of the stem cells or the induction of an anti-viral state, which can block the potential of the Trojan horse to amplify and deliver vaccinia virus to the tumor. Conclusions Overall, our findings and data indicate the feasibility to establish simple and informative assays that capture critically important patient-specific differences in the immune responses to the virus and stem cells, which allows for proper patient-stem cell matching and enables the effective use of off-the-shelf allogeneic cell-based delivery platforms, thus providing a more practical and commercially viable alternative to the autologous stem cell approach. KW - vaccinia KW - cancer KW - stem Cells KW - oncolysis KW - oncolytic virus KW - virotherapy KW - immunity KW - immunotherapy Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-226312 SN - 100 VL - 17 ER - TY - JOUR A1 - Duan, Xiaodong A1 - Nagel, Georg A1 - Gao, Shiqiang T1 - Mutated channelrhodopsins with increased sodium and calcium permeability JF - Applied Sciences N2 - (1) Background: After the discovery and application of Chlamydomonas reinhardtii channelrhodopsins, the optogenetic toolbox has been greatly expanded with engineered and newly discovered natural channelrhodopsins. However, channelrhodopsins of higher Ca\(^{2+}\) conductance or more specific ion permeability are in demand. (2) Methods: In this study, we mutated the conserved aspartate of the transmembrane helix 4 (TM4) within Chronos and PsChR and compared them with published ChR2 aspartate mutants. (3) Results: We found that the ChR2 D156H mutant (XXM) showed enhanced Na\(^+\) and Ca\(^{2+}\) conductance, which was not noticed before, while the D156C mutation (XXL) influenced the Na\(^+\) and Ca\(^{2+}\) conductance only slightly. The aspartate to histidine and cysteine mutations of Chronos and PsChR also influenced their photocurrent, ion permeability, kinetics, and light sensitivity. Most interestingly, PsChR D139H showed a much-improved photocurrent, compared to wild type, and even higher Na+ selectivity to H\(^+\) than XXM. PsChR D139H also showed a strongly enhanced Ca\(^{2+}\) conductance, more than two-fold that of the CatCh. (4) Conclusions: We found that mutating the aspartate of the TM4 influences the ion selectivity of channelrhodopsins. With the large photocurrent and enhanced Na\(^+\) selectivity and Ca\(^{2+}\) conductance, XXM and PsChR D139H are promising powerful optogenetic tools, especially for Ca\(^{2+}\) manipulation. KW - optogenetics KW - channelrhodopsins KW - sodium KW - calcium KW - DC gate Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197435 SN - 2076-3417 VL - 9 IS - 4 ER -