TY - THES A1 - Königbauer, Martina T1 - Adaptives Referenzmodell für hybrides Projektmanagement T1 - Adaptive reference model for hybrid project management N2 - Das Management von Projekten, welche sowohl einmalige und interdisziplinäre Aufgabenstellungen als auch individuelle Rahmenbedingungen und Einschränkungen umfassen, stellt eine anspruchsvolle Aufgabe dar. Es gibt einige standardisierte Vorgehensmodelle, die einen organisatorischen Rahmen aus Phasen, Prozessen, Rollen und anzuwendenden Methoden anbieten. Traditionellen Vorgehensmodellen wird in der Regel gefolgt, wenn die zu erzielenden Ergebnisse und der Ablauf eines Projektes auf Basis der zur Verfügung stehenden Informationen geplant werden können. Agile Vorgehensmodelle werden vorranging genutzt, wenn keine ausreichenden Informationen zur Verfügung stehen, um eine vollständige Planung aufzusetzen. Ihr Fokus liegt darauf, flexibel auf sich ändernde Anforderungen einzugehen. Im direkten Austausch mit Kunden werden in meist mehreren aufeinander folgenden Zyklen Zwischenergebnisse bewertet und darauf basierend die jeweils nächsten Entwicklungsschritte geplant und umgesetzt. Hybride Vorgehensmodelle werden genutzt, wenn Methoden aus mehreren unterschiedlichen Vorgehensmodellen erforderlich sind, um ein Projekt zu bearbeiten. Die Bedeutung hybrider Vorgehensmodelle hat über die Jahre immer weiter zugenommen. Ihr besonderer Nutzen liegt darin, dass die Methodenauswahl auf den individuellen Kontext eines Projektes angepasst werden kann. Da es in der Praxis aber eine sehr große Anzahl an Methoden gibt, ist die Auswahl der zum Kontext passenden und deren Kombination zu einem individuellen Vorgehensmodell selbst für Experten/-innen eine Herausforderung. Die Forschungsergebnisse der vorliegenden Arbeit zeigen, dass es bisher auch kein Schema zur Unterstützung dieses Prozesses gab. Um diese Forschungslücke zu schließen, wurde ein adaptives Referenzmodell für hybrides Projektmanagement (ARHP) entwickelt. Der wissenschaftliche Beitrag besteht zum einen in der Entwicklung eines Ablaufs zur Selektion und Kombination von zum Kontext passenden Methoden und zum anderen in der Umsetzung des Ablaufs als semi-automatisches Werkzeug. Referenzmodellnutzer/-innen können darin ihren individuellen Projektkontext durch die Auswahl zutreffender Kriterien (sogenannter Parameterausprägungen) erfassen. Das ARHP bietet ihnen dann ein Vorgehensmodell an, welches aus miteinander anwendbaren und verknüpfbaren Methoden besteht. Da in der Projektmanagement Community häufig schnelle Entscheidungen für ein geeignetes Vorgehensmodell erforderlich sind und selbst Experten/-innen nicht alle Methoden kennen, wird der Nutzen der ''digitalen Beratung'', die das semi-automatische ARHP bietet, als hoch eingestuft. Sowohl die für die Erfassung des Kontextes erforderlichen Parameter als auch die Methoden mit der höchsten Praxisrelevanz, wurden anhand einer umfangreichen Umfrage erforscht. Ihr wissenschaftlicher Beitrag besteht unter anderem in der erstmaligen Erfassung von Begründungen für die Verwendung von Methoden im Rahmen individueller, hybrider Vorgehensmodelle. Zudem erlauben die gesammelten Daten einen direkten Vergleich der Methodennutzung in funktionierenden und nicht funktionierenden hybriden Vorgehensmodellen. Mit der so vorhandenen Datengrundlage wird in drei Design Science Research Zyklen ein Algorithmus entwickelt, der den Adaptionsmechanismus des ARHP bildet. Die Evaluation des ARHP erfolgt anhand des entwickelten semi-automatischen Prototypen unter Einbeziehung von Projektmanagementexperten/-innen. Ausführungen zur Pflege des ARHP können als Handlungsanleitung für Referenzmodellkonstrukteure/-innen verstanden werden. Sie bilden den letzten Teil der Arbeit und zeigen, wie das ARHP kontinuierlich weiterentwickelt werden kann. Zudem wird ein Ausblick darauf gegeben, um welche Themen das ARHP im Rahmen weiterführender Forschung erweitert werden kann. Dabei handelt es sich zum Beispiel um eine noch stärkere Automatisierung und Empfehlungen für das Change Management, welche beide bereits in Vorbereitung sind. N2 - The importance of hybrid process models has continued to grow over the years. Their particular benefit lies in the fact that the selection of methods can be adapted to the individual context of a project. However, since there is a very large number of methods in practice, selecting the ones that fit the context and combining them to form an individual process model is a challenge even for experts.The research results of the present work show that until now there has also been no procedure to support this process. To close this research gap, an adaptive reference model for hybrid project management (ARHP) has been developed. The scientific contribution consists on the one hand in the development of a process for the selection and combination of methods suitable for the context and on the other hand in the implementation of the process as a semi-automatic tool. Users of the reference model can enter their individual project context by selecting appropriate criteria (so-called parameter values). The ARHP then offers them a process model consisting of methods that can be used and linked with each other. T3 - Würzburger Beiträge zur Leistungsbewertung Verteilter Systeme - 01/21 KW - Projektmanagement KW - Referenzmodell KW - Vorgehensmodell KW - SIMOC KW - Elementaggregation über dynamische Terme Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-247519 SN - 1432-8801 ER - TY - THES A1 - Moldovan, Christian T1 - Performance Modeling of Mobile Video Streaming T1 - Leistungsmodellierung von mobilem Videostreaming N2 - In the past two decades, there has been a trend to move from traditional television to Internet-based video services. With video streaming becoming one of the most popular applications in the Internet and the current state of the art in media consumption, quality expectations of consumers are increasing. Low quality videos are no longer considered acceptable in contrast to some years ago due to the increased sizes and resolution of devices. If the high expectations of the users are not met and a video is delivered in poor quality, they often abandon the service. Therefore, Internet Service Providers (ISPs) and video service providers are facing the challenge of providing seamless multimedia delivery in high quality. Currently, during peak hours, video streaming causes almost 58\% of the downstream traffic on the Internet. With higher mobile bandwidth, mobile video streaming has also become commonplace. According to the 2019 Cisco Visual Networking Index, in 2022 79% of mobile traffic will be video traffic and, according to Ericsson, by 2025 video is forecasted to make up 76% of total Internet traffic. Ericsson further predicts that in 2024 over 1.4 billion devices will be subscribed to 5G, which will offer a downlink data rate of 100 Mbit/s in dense urban environments. One of the most important goals of ISPs and video service providers is for their users to have a high Quality of Experience (QoE). The QoE describes the degree of delight or annoyance a user experiences when using a service or application. In video streaming the QoE depends on how seamless a video is played and whether there are stalling events or quality degradations. These characteristics of a transmitted video are described as the application layer Quality of Service (QoS). In general, the QoS is defined as "the totality of characteristics of a telecommunications service that bear on its ability to satisfy stated and implied needs of the user of the service" by the ITU. The network layer QoS describes the performance of the network and is decisive for the application layer QoS. In Internet video, typically a buffer is used to store downloaded video segments to compensate for network fluctuations. If the buffer runs empty, stalling occurs. If the available bandwidth decreases temporarily, the video can still be played out from the buffer without interruption. There are different policies and parameters that determine how large the buffer is, at what buffer level to start the video, and at what buffer level to resume playout after stalling. These have to be finely tuned to achieve the highest QoE for the user. If the bandwidth decreases for a longer time period, a limited buffer will deplete and stalling can not be avoided. An important research question is how to configure the buffer optimally for different users and situations. In this work, we tackle this question using analytic models and measurement studies. With HTTP Adaptive Streaming (HAS), the video players have the capability to adapt the video bit rate at the client side according to the available network capacity. This way the depletion of the video buffer and thus stalling can be avoided. In HAS, the quality in which the video is played and the number of quality switches also has an impact on the QoE. Thus, an important problem is the adaptation of video streaming so that these parameters are optimized. In a shared WiFi multiple video users share a single bottleneck link and compete for bandwidth. In such a scenario, it is important that resources are allocated to users in a way that all can have a similar QoE. In this work, we therefore investigate the possible fairness gain when moving from network fairness towards application-layer QoS fairness. In mobile scenarios, the energy and data consumption of the user device are limited resources and they must be managed besides the QoE. Therefore, it is also necessary, to investigate solutions, that conserve these resources in mobile devices. But how can resources be conserved without sacrificing application layer QoS? As an example for such a solution, this work presents a new probabilistic adaptation algorithm that uses abandonment statistics for ts decision making, aiming at minimizing the resource consumption while maintaining high QoS. With current protocol developments such as 5G, bandwidths are increasing, latencies are decreasing and networks are becoming more stable, leading to higher QoS. This allows for new real time data intensive applications such as cloud gaming, virtual reality and augmented reality applications to become feasible on mobile devices which pose completely new research questions. The high energy consumption of such applications still remains an issue as the energy capacity of devices is currently not increasing as quickly as the available data rates. In this work we compare the optimal performance of different strategies for adaptive 360-degree video streaming. N2 - In den vergangenen zwei Jahrzehnten gab es einen starken Trend weg vom traditionellen Fernsehen hin zum Videostreaming über das Internet. Dabei macht Videostreaming zurzeit den größten Anteil des gesamten Internetverkehrs aus. Beim Herunterladen eines Internetvideos wird das Video vor dem Ausspielen in einem Puffer beim Client zwischengespeichert, um Netzfluktuationen zu kompensieren. Leert sich der Puffer, so muss das Video stoppen (Stalling), um Daten nachzuladen. Um dies zu verhindern, müssen Pufferstrategien und -Parameter optimal an Nutzerszenarien angepasst sein. Mit diesem Problem beschäftigen wir uns im ersten Kapitel dieser Arbeit unter Anwendung von Wartschlangenmodelle, numerische Simulationen und Messstudien. Zur Bewertung der Güte eines Videostreams nutzen wir ein Modell, das auf subjektiven Studien basiert. Mit HTTP Adaptive Streaming hat der Videoplayer die Fähigkeit, Videosegmente in einer an die Bandbreite angepasster Bitrate und somit auch angepasster Qualität anzufordern. Somit kann die Leerung des Puffers gebremst und Stalling verhindert werden. Allerdings hat neben Stalling auch die Videoqualität und die Anzahl der Qualitätswechsel Auswirkungen auf die Zufriedenheit der Zuschauer. Inwiefern diese Parameter optimiert werden können, untersuchen wir im zweiten Kapitel mit Hilfe von linearen und quadratischen Programmen sowie einem Warteschlangenmodell. Hierbei untersuchen wie auch die Fairness in Netzen mit mehreren Nutzern und 360-Grad Videos. Im dritten Kapitel untersuchen wir Möglichkeiten, Videostreaming ressourcenschonender zu gestalten. Hierzu untersuchen wir in einer Feldstudie die Möglichkeit Caches an WiFi-Hotspots einzusetzen und somit redundanten Verkehr zu reduzieren. Wir untersuchen das Verhalten von mobilen Videonutzern, indem wir eine Nutzerstudie auswerten. Außerdem stellen wir einen neuen Adaptionsalgorithmus vor, der abhängig vom Nutzerverhalten den Datenverbrauch und Stromverbrauch des Videostreams reduziert. T3 - Würzburger Beiträge zur Leistungsbewertung Verteilter Systeme - 01/20 KW - Videoübertragung KW - Quality of Experience KW - Dienstgüte KW - Leistungsbewertung KW - Mathematisches Modell KW - video streaming KW - performance modeling KW - optimization Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228715 SN - 1432-8801 ER -