TY - JOUR T1 - Evidence for the \(H\) → \({b\overline{b}}\) decay with the ATLAS detector JF - Journal of High Energy Physics N2 - A search for the decay of the Standard Model Higgs boson into a \({b\overline{b}}\) pair when produced in association with a \(W\) or \(Z\) boson is performed with the ATLAS detector. The analysed data, corresponding to an integrated luminosity of 36.1 fb\(^{−1}\), were collected in proton-proton collisions in Run 2 of the Large Hadron Collider at a centre-of-mass energy of 13 TeV. Final states containing zero, one and two charged leptons (electrons or muons) are considered, targeting the decays \(Z\) → \({νν}\), \(W\) → \({ℓν}\) and \(Z\) → \({ℓℓ}\). For a Higgs boson mass of 125 GeV, an excess of events over the expected background from other Standard Model processes is found with an observed significance of 3.5 standard deviations, compared to an expectation of 3.0 standard deviations. This excess provides evidence for the Higgs boson decay into b-quarks and for its production in association with a vector boson. The combination of this result with that of the Run 1 analysis yields a ratio of the measured signal events to the Standard Model expectation equal to 0.90 ± 0.18(stat.)\(^{+0.21}_{−0.19}\)(syst.). Assuming the Standard Model production cross-section, the results are consistent with the value of the Yukawa coupling to \(b\)-quarks in the Standard Model. KW - High energy physics KW - Hadron-Hadron scattering (experiments) KW - Higgs physics Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172216 VL - 24 ER - TY - JOUR T1 - Probing the \(W tb\) vertex structure in \(t\)-channel single-top-quark production and decay in \(pp\) collisions at \(\sqrt{s}\) = 8 TeV with the ATLAS detector JF - Journal of High Energy Physics N2 - To probe the \(W tb\) vertex structure, top-quark and \(W\)-boson polarisation observables are measured from \(t\)-channel single-top-quark events produced in proton-proton collisions at a centre-of-mass energy of 8 TeV. The dataset corresponds to an integrated luminosity of 20.2 fb\(^{−1}\), recorded with the ATLAS detector at the LHC. Selected events contain one isolated electron or muon, large missing transverse momentum and exactly two jets, with one of them identified as likely to contain a \(b\)-hadron. Stringent selection requirements are applied to discriminate \(t\)-channel single-top-quark events from background. The polarisation observables are extracted from asymmetries in angular distributions measured with respect to spin quantisation axes appropriately chosen for the top quark and the \(W\) boson. The asymmetry measurements are performed at parton level by correcting the observed angular distributions for detector effects and hadronisation after subtracting the background contributions. The measured top-quark and \(W\)-boson polarisation values are in agreement with the Standard Model predictions. Limits on the imaginary part of the anomalous coupling \(g_R\) are also set from model independent measurements. KW - High energy physics KW - Hadron-Hadron scattering (experiments) Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173234 VL - 2017 IS - 04 ER - TY - JOUR T1 - Measurement of the \(k_t\) splitting scales in \(Z → ℓℓ\) events in \(pp\) collisions at \(\sqrt{s}=8\) TeV with the ATLAS detector JF - Journal of High Energy Physics N2 - A measurement of the splitting scales occuring in the \(k_t\) jet-clustering algorithm is presented for final states containing a \(Z\) boson. The measurement is done using 20.2 fb\(^{−1}\) of proton-proton collision data collected at a centre-of-mass energy of \(\sqrt{s} = 8\) TeV by the ATLAS experiment at the LHC in 2012. The measurement is based on charged-particle track information, which is measured with excellent precision in the \(p_T\) region relevant for the transition between the perturbative and the non-perturbative regimes. The data distributions are corrected for detector effects, and are found to deviate from state-of-the-art predictions in various regions of the observables. KW - High energy physics KW - Hadron Hadron scattering (experiments) Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173180 VL - 2017 IS - 08 ER - TY - JOUR T1 - Measurements of top-quark pair to \(Z\)-boson cross-section ratios at \(\sqrt{s}\) \(=13 , 8, 7\) TeV with the ATLAS detector JF - Journal of High Energy Physics N2 - Ratios of top-quark pair to \(Z\)-boson cross sections measured from proton-proton collisions at the LHC centre-of-mass energies of \(\sqrt{s}\) = 13 TeV, 8 TeV, and 7 TeV are presented by the ATLAS Collaboration. Single ratios, at a given \(\sqrt{s}\) for the two processes and at different \(\sqrt{s}\) for each process, as well as double ratios of the two processes at different \(\sqrt{s}\), are evaluated. The ratios are constructed using previously published ATLAS measurements of the \({t\overline{t}}\) and \(Z\)-boson production cross sections, corrected to a common phase space where required, and a new analysis of \(Z\) → ℓ\(^+\)ℓ\(^-\) where ℓ = \(e, µ\) at \(\sqrt{s}\) = 13 TeV performed with data collected in 2015 with an integrated luminosity of 3.2 fb\(^−1\). Correlations of systematic uncertainties are taken into account when evaluating the uncertainties in the ratios. The correlation model is also used to evaluate the combined cross section of the \(Z\) → \(e\)\(^+\)\(e\)\(^−\) and the \(Z\) → \(µ\)\(^+\)\(µ\)\(^−\) channels for each \(\sqrt{s}\) value. The results are compared to calculations performed at next-to-next-to-leading-order accuracy using recent sets of parton distribution functions. The data demonstrate significant power to constrain the gluon distribution function for the Bjorken-\(x\) values near 0.1 and the light-quark sea for \(x\) < 0.02. KW - High energy physics KW - Hadron-Hadron scattering (experiments) Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173544 VL - 2017 IS - 02 ER - TY - JOUR T1 - Measurement of the \(ZZ\) production cross section in proton-proton collisions at \(\sqrt{s}\) = 8 TeV using the \(ZZ\) → \(ℓ^−ℓ^+ℓ^{′−}ℓ^{′+}\) and \(ZZ\) → \(ℓ^−ℓ^+{ν\overline{ν}}\) decay channels with the ATLAS detector JF - Journal of High Energy Physics N2 - A measurement of the \(ZZ\) production cross section in the \(ℓ^−ℓ^+ℓ^{′−}ℓ^{′+}\) and \(ℓ^−ℓ^+{ν\overline{ν}}\) channels (ℓ = e, µ) in proton-proton collisions at \(\sqrt{s}\) = 8TeV at the Large Hadron Collider at CERN, using data corresponding to an integrated luminosity of 20.3 fb\(^{−1}\) collected by the ATLAS experiment in 2012 is presented. The fiducial cross sections for \(ZZ\) → \(ℓ^−ℓ^+ℓ^{′−}ℓ^{′+}\) and \(ZZ\) → \(ℓ^−ℓ^+{ν\overline{ν}}\) are measured in selected phase-space regions. The total cross section for \(ZZ\) events produced with both \(Z\) bosons in the mass range 66 to 116GeV is measured from the combination of the two channels to be 7.3 ± 0.4(stat) ± 0.3 (syst)\(^{−0.2}_{−0.1}\) (lumi) pb, which is consistent with the Standard Model prediction of 6.6\(^{+0.7}_{−0.6}\) pb. The differential cross sections in bins of various kinematic variables are presented. The differential event yield as a function of the transverse momentum of the leading \(Z\) boson is used to set limits on anomalous neutral triple gauge boson couplings in \(ZZ\) production. KW - high energy physics KW - Hadron-Hadron scattering (experiments) Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173616 VL - 2017 IS - 99 ER - TY - JOUR T1 - Measurement of the \({t\overline{t}}Z\) and \({t\overline{t}}W\) production cross sections in multilepton final states using 3.2 fb\(^{-1}\) of \(pp\) collisions at \(\sqrt{s}\) = 13 TeV with the ATLAS detector JF - European Physical Journal C N2 - A measurement of the \({t\overline{t}}Z\) and \({t\overline{t}}W\) production cross sections in final states with either two same-charge muons, or three or four leptons (electrons or muons) is presented. The analysis uses a data sample of proton–proton collisions at \(\sqrt{s}\) = 13 TeV recorded with the ATLAS detector at the Large Hadron Collider in 2015, corresponding to a total integrated luminosity of 3.2 fb\(^{−1}\). The inclusive cross sections are extracted using likelihood fits to signal and control regions, resulting in \(\sigma_{{t\overline{t}}Z}\) = 0.9 ± 0.3 pb and \(\sigma_{{t\overline{t}}W}\) = 1.5 ± 0.8 pb, in agreement with the Standard Model predictions. KW - high energy physics KW - experimental physics KW - Hadron-Hadron scattering (experiments) Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173662 VL - 77 IS - 40 ER - TY - JOUR T1 - Studies of \(Zγ\) production in association with a high-mass dijet system in \(pp\) collisions at \(\sqrt{s}\) = 8 TeV with the ATLAS detector JF - Journal of High Energy Physics N2 - The production of a \(Z\) boson and a photon in association with a high-mass dijet system is studied using 20.2 fb\(^{−1}\) of proton-proton collision data at a centre-of-mass energy of \(\sqrt{s}\) = 8 TeV recorded with the ATLAS detector in 2012 at the Large Hadron Collider. Final states with a photon and a Z boson decaying into a pair of either electrons, muons, or neutrinos are analysed. Electroweak and total \(pp\) → \(Zγjj\) cross-sections are extracted in two fiducial regions with different sensitivities to electroweak production processes. Quartic couplings of vector bosons are studied in regions of phase space with an enhanced contribution from pure electroweak production, sensitive to vector-boson scattering processes \(V V → Zγ\). No deviations from Standard Model predictions are observed and constraints are placed on anomalous couplings parameterized by higher-dimensional operators using effective field theory. KW - High energy physics KW - Electroweak interaction KW - Hadron-Hadron scattering (experiments) Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173229 VL - 2017 IS - 07 ER - TY - JOUR A1 - Hoffmann, Angelika A1 - Pfeil, Johannes A1 - Alfonso, Julieta A1 - Kurz, Felix T. A1 - Sahm, Felix A1 - Heiland, Sabine A1 - Monyer, Hannah A1 - Bendszus, Martin A1 - Mueller, Ann-Kristin A1 - Helluy, Xavier A1 - Pham, Mirko T1 - Experimental Cerebral Malaria Spreads along the Rostral Migratory Stream JF - PLoS Pathogens N2 - It is poorly understood how progressive brain swelling in experimental cerebral malaria (ECM) evolves in space and over time, and whether mechanisms of inflammation or microvascular sequestration/obstruction dominate the underlying pathophysiology. We therefore monitored in the Plasmodium berghei ANKA-C57BL/6 murine ECM model, disease manifestation and progression clinically, assessed by the Rapid-Murine-Coma-and-Behavioral-Scale (RMCBS), and by high-resolution in vivo MRI, including sensitive assessment of early blood-brain-barrier-disruption (BBBD), brain edema and microvascular pathology. For histological correlation HE and immunohistochemical staining for microglia and neuroblasts were obtained. Our results demonstrate that BBBD and edema initiated in the olfactory bulb (OB) and spread along the rostral-migratory-stream (RMS) to the subventricular zone of the lateral ventricles, the dorsal-migratory-stream (DMS), and finally to the external capsule (EC) and brainstem (BS). Before clinical symptoms (mean RMCBS = 18.5±1) became evident, a slight, non-significant increase of quantitative T2 and ADC values was observed in OB+RMS. With clinical manifestation (mean RMCBS = 14.2±0.4), T2 and ADC values significantly increased along the OB+RMS (p = 0.049/p = 0.01). Severe ECM (mean RMCBS = 5±2.9) was defined by further spread into more posterior and deeper brain structures until reaching the BS (significant T2 elevation in DMS+EC+BS (p = 0.034)). Quantitative automated histological analyses confirmed microglial activation in areas of BBBD and edema. Activated microglia were closely associated with the RMS and neuroblasts within the RMS were severely misaligned with respect to their physiological linear migration pattern. Microvascular pathology and ischemic brain injury occurred only secondarily, after vasogenic edema formation and were both associated less with clinical severity and the temporal course of ECM. Altogether, we identified a distinct spatiotemporal pattern of microglial activation in ECM involving primarily the OB+RMS axis, a distinct pathway utilized by neuroblasts and immune cells. Our data suggest significant crosstalk between these two cell populations to be operative in deeper brain infiltration and further imply that the manifestation and progression of cerebral malaria may depend on brain areas otherwise serving neurogenesis. KW - experimental cerebral malaria KW - rostral-migratory-stream KW - brain swelling Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167434 VL - 12 IS - 3 ER - TY - JOUR A1 - Kochereshko, Vladimir P. A1 - Durnev, Mikhail V. A1 - Besombes, Lucien A1 - Mariette, Henri A1 - Sapega, Victor F. A1 - Askitopoulos, Alexis A1 - Savenko, Ivan G. A1 - Liew, Timothy C. H. A1 - Shelykh, Ivan A. A1 - Platonov, Alexey V. A1 - Tsintzos, Simeon I. A1 - Hatzopoulos, Z. A1 - Savvidis, Pavlos G. A1 - Kalevich, Vladimir K. A1 - Afanasiev, Mikhail M. A1 - Lukoshkin, Vladimir A. A1 - Schneider, Christian A1 - Amthor, Matthias A1 - Metzger, Christian A1 - Kamp, Martin A1 - Hoefling, Sven A1 - Lagoudakis, Pavlos A1 - Kavokin, Alexey T1 - Lasing in Bose-Fermi mixtures JF - Scientific Reports N2 - Light amplification by stimulated emission of radiation, well-known for revolutionising photonic science, has been realised primarily in fermionic systems including widely applied diode lasers. The prerequisite for fermionic lasing is the inversion of electronic population, which governs the lasing threshold. More recently, bosonic lasers have also been developed based on Bose-Einstein condensates of exciton-polaritons in semiconductor microcavities. These electrically neutral bosons coexist with charged electrons and holes. In the presence of magnetic fields, the charged particles are bound to their cyclotron orbits, while the neutral exciton-polaritons move freely. We demonstrate how magnetic fields affect dramatically the phase diagram of mixed Bose-Fermi systems, switching between fermionic lasing, incoherent emission and bosonic lasing regimes in planar and pillar microcavities with optical and electrical pumping. We collected and analyzed the data taken on pillar and planar microcavity structures at continuous wave and pulsed optical excitation as well as injecting electrons and holes electronically. Our results evidence the transition from a Bose gas to a Fermi liquid mediated by magnetic fields and light-matter coupling. KW - Bose-Fermi KW - magnetic fields KW - Bose gas KW - Fermi liquid KW - light-matter coupling Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-168152 VL - 6 IS - 20091 ER - TY - JOUR T1 - Search for pair production of heavy vector-like quarks decaying to high-\(p_T\) \(W\) bosons and \(b\) quarks in the lepton-plus-jets final state in \(pp\) collisions at \(\sqrt{s}=13\) TeV with the ATLAS detector JF - Journal of High Energy Physics N2 - A search is presented for the pair production of heavy vector-like \(T\) quarks, primarily targeting the \(T\) quark decays to a \(W\) boson and a \(b\)-quark. The search is based on 36.1 fb\(^{−1}\) of \(pp\) collisions at \(\sqrt{s}=13\) TeV recorded in 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. Data are analysed in the lepton-plus-jets final state, including at least one \(b\)-tagged jet and a large-radius jet identified as originating from the hadronic decay of a high-momentum \(W\) boson. No significant deviation from the Standard Model expectation is observed in the reconstructed \(T\) mass distribution. The observed 95% confidence level lower limit on the \(T\) mass are 1350 GeV assuming 100% branching ratio to \(Wb\). In the SU(2) singlet scenario, the lower mass limit is 1170 GeV. This search is also sensitive to a heavy vector-like \(B\) quark decaying to \(Wt\) and other final states. The results are thus reinterpreted to provide a 95% confidence level lower limit on the \(B\) quark mass at 1250 GeV assuming 100% branching ratio to \(Wt\); in the SU(2) singlet scenario, the limit is 1080 GeV. Mass limits on both \(T\) and \(B\) production are also set as a function of the decay branching ratios. The 100% branching ratio limits are found to be applicable to heavy vector-like \(Y\) and \(X\) production that decay to \(Wb\) and \(Wt\), respectively. KW - High energy physics KW - Exotics KW - Hadron-Hadron scattering (experiments) Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172472 VL - 2017 IS - 141 ER -