TY - JOUR A1 - Paakkari, P. A1 - Paakkari, I. A1 - Vonhof, S. A1 - Feuerstein, G. A1 - Sirén, Anna-Leena T1 - Dermorphin analog Tyr-D-Arg\(^2\)-Phe-sarcosine-induces opioid analgesia and respiratory stimulation - the role of Mu\(_1\)- receptors? N2 - Tyr-o-Arg\(^2\)-Phe-sarcosine\(^4\) (TAPS), a mu-selective tetrapeptide analog of dermorphin, induced sustained antinociception and stimulated ventilatory minute volume (MV) at the doses of 3 to 100 pmol i.c.v. The doses of 30 and 100 pmol i.c.v. induced catalepsy. The effect of TAPS on MV was in negative correlation with the dose and the maximal response was achieved by the lowest (3 pmol) dose (+63 ± 23%, P < .05). Morphine, an agonist at both mu\(_1\) and mu\(_2\) sites, at a dose of 150 nmol i.c.v. (equianalgetic to 100 pmol of TAPS decreased the MV by 30%, due to a decrease in ventilatory tidal volume. The antinociceptive effect of TAPS was antagonized by naloxone and the mu, receptor antagonist, naloxonazine. Naloxonazine also attenuated the catalepsy produced by 1 00 pmol of TAPS i.c. v. and the respiratory Stimulation produced by 3 pmol of TAPS i.c.v. Pretreatment with 30 pmol of TAPS antagonized the respiratory depression induced by the mu opioid agonist dermorphin (changes in MV after dermorphin alone at 1 or 3 nmol were -22 ± 1 0% and -60 ± 9% and, after pretreatment with TAPS, +44 ± 11 % and -18 ± 5%, respectively). After combined pretreatment with naloxonazine and TAPS, 1 nmol of dermorphin had no significant effect on ventilation. In contrast, pretreatment with a low respiratory stimulant dose (10 pmol i.c.v.) of dermorphin did not modify the effect of 1 nmol of dermorphin. ln conclusion, the antinociceptive, cataleptic and respiratory stimulant effects of TAPS appear to be a related to its agonist action at the mu, opioid receptors. TAPS did not induce respiratory depression (a mu\(_2\) opioid effect) but antagonized the respiratory depressant effect of another mu agonist. Thus, in vivo TAPS appears to act as a mu\(_2\) receptor antagonist. KW - Neurobiologie Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-62984 ER - TY - JOUR A1 - Xu, K. A1 - Näveri, L. A1 - Frerichs, K. A1 - Hallenbeck, J. M. A1 - Feuerstein, G. A1 - Davis, J. N. A1 - Sirén, Anna-Leena T1 - Extracellular catecholamine levels in rat hippocampus after a selective alpha2-adrenoceptor antagonist or a selective dopamnie uptake inhibitor: Evidence for dopamine release from local dopaminergic nerve terminals N2 - The effect of 6-chloro-2,3,4,5-tetrahydro-3-methyi-1-H-3-benzazepine (SKF 86466), a selectlve nonimldazoline alpha-2 adrenoceptor antagonlst, on hippocampal re1ease of norepinephrine and dopamlne in conscious rats was lnvestigated by /n vlvo mlcrodialysis and high-pressure liquid chromatography. Additionally, extracellular concentrations of hippocampal dopamine (DA) and norepinephrtne (NE), durtng Infusion of selective monoamine uptake Inhibitors, were determined in freely moving rats. The basal concentration of NE in the dialysate was 4.9 ± 0.3 pg/20 pl. lntravenous admlnistratlon of 5 or 10 mgJkg of SKF 86466 was associated wlth a transierlt inc:rease (30 min) of 2-fold (12 ± 1 pg/20 ,d; p < .05) and 8-fold (39 ± 3 pg/20 pl; p < .05), respectlvely, in dlalysate NE, whereas a 1-mgfkg dose had no effect. DA was not detected in basal dlalysates, but after the adminlstratlon of 5 or 10 mgJkg of SKF 86466, 3.9 ± 0.4 and 6.4 ± 0.6 pg/20 pl, respectlvely, was present in the dialysates. The rnaxlmum increase in dialysate DA was reached 60 to 90 min after SKF 86466. The DA was not derived from plasma because plasma NE was elevated after the 5 mgJkg dose of SKF 86466 whereas no plasma DA was detected. ln order to determlne whether DA was present in noradrenergic nerve termlnals, the dopamine ß-hydroxylase Inhibitor SKF 1 02698 was administered (50 mgJkg i.p.). The Inhibitor decreased dialysate NE but DA was stin not detected in the dialysate. When SKF 86466 (5 mgJkg t.v.) was adminlstered 4 hr after SKF 102698, DA appeared in the dialysate but there was no lncrease in dialysate NE. Administration through the dialysis probe of the DA uptake Inhibitor, GBR-12909 (0.1 and 1 pM), dose-dependently lnaeased DA Ieveis to 5.7 ± 1.2 and 9.6 ± 2.8 pg/20 pl, respectively. GBR-12909 had no effect on hippocampal NE. Desipramine (5 and 10 pM) lncreased dose-dependently dialysate NE and lncreased DA concentrations to detectable Ieveis (2.7 ± 0.5 and 3.5 ± 0.7 pg/20 ,d, respectively). These results suggest that the a/pha-2 adrenoceptors modulate both NE and DA release in the rat hlppocampus and that DA detected in the hlppocampal dialysate might be released from dopaminergic neurons. KW - Neurobiologie Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-62997 ER - TY - JOUR A1 - Sirèn, Anna-Leena A1 - Liu, Y. A1 - Feuerstein, G. A1 - Hallenbeck, JM T1 - Increased release of tumor necrosis factor alpha into the cerebrospinal fluid and peripheral circulation of aged rats N2 - Background and Purpose: We earlier reported that risk factors for stroke prepare brain stem tissue for a modified Shwartzman reaction, incIuding the development of ischemia and hemorrhage and the production of tumor necrosis factor-a, after a provocative dose of lipopolysaccharide. In the present study, we sought to determine whether blood and central nervous system cells of rats with the stroke risk factor of advanced age produce more proinflammatory and prothrombotic media tors than do those of young rats of the same strain. Methods: Levels of tumor necrosis factor-a and platelet activating factor in the cerebrospinal fluid and tumor necrosis factor-a in the serum of 2-year-old and 16-week-old Sprague-Dawley rats were monitored before and after challenge with lipopolysaccharide. Results: No consistent tumor necrosis factor-a activity was found in the cerebrospinal fluid or blood of control animals. Intravenous administration of lipopolysaccharide (1.8 mg/kg) increased serum tumor necrosis factor-a levels but had no effect on tumor necrosis factor-a in the cerebrospinal fluid. Serum tumor necrosis factor-a increased much more in aged rats than in young rats. When lipopolysaccharide was injected intracerebroventricularly, tumor necrosis factor-a activity in cerebrospinal fluid increased significantly more in old rats than in young rats. Baseline levels of platelet activating factor in cerebrospinal fluid were significantly higher in old rats than in young rats, and the levels increased to a greater degree in aged rats on stimulation. Conclusions: Rats with the stroke risk factor of advanced age respond to lipopolysaccharide with a more exuberant production of tumor necrosis factor-a and platelet activating factor than young rats of the same strain. These findings are consistent with our working hypothesis that perivascular cells are capable of exaggerated signaling of endothelium through cytokines such as tumor necrosis factor-a in animals with stroke risk factors. The effect of such signaling might be to prepare the endothelium of the local vascular segment for thrombosis or hemorrhage in accord with the local Shwartzman reaction paradigm. KW - Gehirn KW - Durchblutung KW - lipopolysaccharides KW - platelet activating factor KW - tumor necrosis factor KW - rats Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-47997 ER - TY - JOUR A1 - Feuerstein, G. A1 - Sirén, Anna-Leena A1 - Goldstein, DS A1 - Johnson, AK A1 - Zerbe, RL T1 - The effect of morphine on the hemodynamic and neuroendocrine responses to hemorrhagic shock in conscious rats N2 - We have previously reported that analgesic doses of morphine accelerate mortality of rats exposed to hemorrhage (Feuerstein and Siren: Circ Shock 19:293-300, 1986). To study the potential mechanisms involved in this phenomenon, rats were chronically implanted with catheters in the femoral vessels and morphine (1.5 or 5 mg/kg) was administered 30 min or 24 hr after bleeding (8.5 mll300 g over 5 min) while arterial blood pressure and heart rate were continuously monitored. Furthermore, the effect of morphine (5 mg/kg) on cardiac output (CO) response to hemorrhage was studied in rats chronically equipped with a mini thermistor for CO monitoring by a thermodilution technique. In addition, plasma catecholamines (HPLC), plasma renin activity (PRA, RIA), vasopressin (RIA), pH, and blood gases were also determined. Morphine administration 30 min after hemorrhage produced a pressor response and tachycardia which were in marked contrast to its depressor effect in intact rats. Morphine elevated PRA and epinephrine but not vasopressin, while blood pH and gases showed no consistent change as compared to salinetreated hemorrhaged rats. Morphine given after the bleeding resulted in enhanced cardiac depression in response to a second bleed of 2 m1l300 g. Our data suggest that activation of pressor mechanisms by morphine during hypovolemic hypotension might enhance vasoconstriction in essential organs, depress cardiac function, and further reduce effective tissue perfusion. KW - Medizin KW - hemorrhagic shock KW - opiates KW - catecholamlnes KW - renin KW - vasopressin Y1 - 1989 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-49033 ER - TY - JOUR A1 - Hallenbeck, JM A1 - Dutka, AJ A1 - Kochanek, PM A1 - Sirén, Anna-Leena A1 - Pezeskpour, GH A1 - Feuerstein, G. T1 - Stroke risk factors prepare rat brainstem tissues for a modified localized Shwartzman reaction N2 - Stroke risk factors such as hypertension, diabetes, advanced age, and genetic predisposition to stroke were demonstrated to prepare rat brainstem tissues for a modified local Shwartzman reaction. A single intracisternal injection of endotoxin provoked the reaction, and affected rats manifested neurologie deficits accompanied by pathologie lesions. Brainstem infarcts developed in only a small proportion of rats without recognized risk factors after intracisternal injection of endotoxin. Thus, stroke risk factors, whieh are ordinarily regarded as operating through acceleration of atherosclerosis, may predispose to brain ischemia by local effects on brain mierocirculation such as those thought to underlie preparation of a tissue for the local Shwartzman reaction. KW - Gehirn KW - Durchblutung Y1 - 1988 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-47971 ER - TY - JOUR A1 - Feuerstein, G. A1 - Sirén, Anna-Leena T1 - Cardiovascular effects of enkephalins N2 - Enkephalins and their receptors are found in neurons and nerve terminals known to be involved in central cardiovascular control as well as the peripheral sympathetic and parasympathetic systems. Enkephalins and opioid receptors were also iden tified in the heart, kidneys, and blood vessels. The enkephalins interact with several specific receptors, of which p, 0, and K have been best characterized. Enkephalins administered to humans or animals produce cardiovascular effects which depend on the spedes, route of administration, anesthesia, and the selectivity for receptor subtype. While little information exists on the role of enkephalins in normal cardiovascular control, current data suggest that enkephalins might have a role in cardiovascular stress responses such os in shock and trauma. KW - Medizin Y1 - 1987 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-49048 ER - TY - JOUR A1 - Feuerstein, G. A1 - Sirén, Anna-Leena T1 - Effect of naloxone and morphine on survival of conscious rats after hemorrhage N2 - The endogenous opioid system has been reported to depress the cardiovascular system during shock states, since naloxone, a potent opiate antagonist, enhances recovery of hemodynamic variables in various shock states. However, the effect of naloxone on long-term survival of experimental animals exposed to hypovolemic hypotension is not clear. The present studies tested the capacity of various doses of naloxone to protect conscious rats from mortality following various bleeding paradigms. In addition, the effect of morphine on survival of rats exposed to hemorrhage was also examined. In the six different experimental protocols tested, naloxone treatments failed to improve short- or long-term survival; in fact, naloxone treatment reduced short-term survival in two of the experimental protocols. Morphine injection, however, enhanced the mortality of rats exposed to hemorrhage in a dose-dependent manner. It is concluded that while opiates administered exogenously decrease survival after acute bleeding, naloxone has no protective action in such states and, like morphine, it may decrease survival in some situations. KW - Medizin KW - shock KW - opioid peptides KW - hypovolemic hypotension Y1 - 1986 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-48669 ER - TY - JOUR A1 - Frerichs, K. A1 - Sirèn, Anna-Leena A1 - Feuerstein, G. A1 - Hallenbeck, JM T1 - The onset of postischemic hypoperfusion in rats is precipitous and may be controlled by local neurons N2 - Background and Purpose: Reperfusion following transient global cerebral ischemia is characterized by an initial hyperemic phase, which precedes hypo perfusion. The pathogenesis of these flow derangements remains obscure. Our study investigates the dynamics of postischemic cerebral blood flow changes, with particular attention to the role of local neurons. Metho(Js: We assessed local cortical blood flow continuously by laser Doppler flowmetry to permit observation of any rapid flow changes after forebrain ischemia induced by four-vessel occlusion for 20 minutes in rats. To investigate the role of local cortical neurons in the regulation of any blood flow fluctuations, five rats received intracortical microinjections of a neurotoxin (10 p,g ibotenic acid in 1 p,1; 1.5-mm-depth parietal cortex) 24 hours before ischemia to induce selective and localized neuronal depletion in an area corresponding to the sampie volume of the laser Doppler probe (1 mm3 ). Local cerebral blood flow was measured within the injection site and at an adjacent control site. Results: Ischemia was followed by marked hyperemia (235 ±23% of control, n =7), followed by secondary hypoperfusion (45±3% of control, n=7). The transition from hyperemia to hypoperfusioo occurred not gradually but precipitously (maximal slope of flow decay: 66±6%/min; n=7). In ibotenic acid-injected rats, hyperemia was preserved at the injection site, but the sudden decline of blood flow was abolished (maximal slope of flow decay: 5±3%/min compared with 53±8%/min at the control site; n=5, p