TY - JOUR A1 - Hernández, Gonzalo A1 - José Ramírez, María A1 - Minguillón, Jordi A1 - Quiles, Paco A1 - Ruiz de Garibay, Gorka A1 - Aza-Carmona, Miriam A1 - Bogliolo, Massimo A1 - Pujol, Roser A1 - Prados-Carvajal, Rosario A1 - Fernández, Juana A1 - García, Nadia A1 - López, Adrià A1 - Gutiérrez-Enríquez, Sara A1 - Diez, Orland A1 - Benítez, Javier A1 - Salinas, Mónica A1 - Teulé, Alex A1 - Brunet, Joan A1 - Radice, Paolo A1 - Peterlongo, Paolo A1 - Schindler, Detlev A1 - Huertas, Pablo A1 - Puente, Xose S. A1 - Lázaro, Conxi A1 - Àngel Pujana, Miquel A1 - Surrallés, Jordi T1 - Decapping protein EDC4 regulates DNA repair and phenocopies BRCA1 JF - Nature Communications N2 - BRCA1 is a tumor suppressor that regulates DNA repair by homologous recombination. Germline mutations in BRCA1 are associated with increased risk of breast and ovarian cancer and BRCA1 deficient tumors are exquisitely sensitive to poly (ADP-ribose) polymerase (PARP) inhibitors. Therefore, uncovering additional components of this DNA repair pathway is of extreme importance for further understanding cancer development and therapeutic vulnerabilities. Here, we identify EDC4, a known component of processing-bodies and regulator of mRNA decapping, as a member of the BRCA1-BRIP1-TOPBP1 complex. EDC4 plays a key role in homologous recombination by stimulating end resection at double-strand breaks. EDC4 deficiency leads to genome instability and hypersensitivity to DNA interstrand cross-linking drugs and PARP inhibitors. Lack-of-function mutations in EDC4 were detected in BRCA1/2-mutation-negative breast cancer cases, suggesting a role in breast cancer susceptibility. Collectively, this study recognizes EDC4 with a dual role in decapping and DNA repair whose inactivation phenocopies BRCA1 deficiency. KW - cancer KW - double-strand DNA breaks KW - genomic instability KW - RNA metabolism Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-319929 VL - 9 ER - TY - JOUR A1 - Gröbner, Susanne N. A1 - Worst, Barbara C. A1 - Weischenfeldt, Joachim A1 - Buchhalter, Ivo A1 - Kleinheinz, Kortine A1 - Rudneva, Vasilisa A. A1 - Johann, Pascal D. A1 - Balasubramanian, Gnana Prakash A1 - Segura-Wang, Maia A1 - Brabetz, Sebastian A1 - Bender, Sebastian A1 - Hutter, Barbara A1 - Sturm, Dominik A1 - Pfaff, Elke A1 - Hübschmann, Daniel A1 - Zipprich, Gideon A1 - Heinold, Michael A1 - Eils, Jürgen A1 - Lawerenz, Christian A1 - Erkek, Serap A1 - Lambo, Sander A1 - Waszak, Sebastian A1 - Blattmann, Claudia A1 - Borkhardt, Arndt A1 - Kuhlen, Michaela A1 - Eggert, Angelika A1 - Fulda, Simone A1 - Gessler, Manfred A1 - Wegert, Jenny A1 - Kappler, Roland A1 - Baumhoer, Daniel A1 - Stefan, Burdach A1 - Kirschner-Schwabe, Renate A1 - Kontny, Udo A1 - Kulozik, Andreas E. A1 - Lohmann, Dietmar A1 - Hettmer, Simone A1 - Eckert, Cornelia A1 - Bielack, Stefan A1 - Nathrath, Michaela A1 - Niemeyer, Charlotte A1 - Richter, Günther H. A1 - Schulte, Johannes A1 - Siebert, Reiner A1 - Westermann, Frank A1 - Molenaar, Jan J. A1 - Vassal, Gilles A1 - Witt, Hendrik A1 - Burkhardt, Birgit A1 - Kratz, Christian P. A1 - Witt, Olaf A1 - van Tilburg, Cornelis M. A1 - Kramm, Christof M. A1 - Fleischhack, Gudrun A1 - Dirksen, Uta A1 - Rutkowski, Stefan A1 - Frühwald, Michael A1 - Hoff, Katja von A1 - Wolf, Stephan A1 - Klingebeil, Thomas A1 - Koscielniak, Ewa A1 - Landgraf, Pablo A1 - Koster, Jan A1 - Resnick, Adam C. A1 - Zhang, Jinghui A1 - Liu, Yanling A1 - Zhou, Xin A1 - Waanders, Angela J. A1 - Zwijnenburg, Danny A. A1 - Raman, Pichai A1 - Brors, Benedikt A1 - Weber, Ursula D. A1 - Northcott, Paul A. A1 - Pajtler, Kristian W. A1 - Kool, Marcel A1 - Piro, Rosario M. A1 - Korbel, Jan O. A1 - Schlesner, Matthias A1 - Eils, Roland A1 - Jones, David T. W. A1 - Lichter, Peter A1 - Chavez, Lukas A1 - Zapatka, Marc A1 - Pfister, Stefan M. T1 - The landscape of genomic alterations across childhood cancers JF - Nature N2 - Pan-cancer analyses that examine commonalities and differences among various cancer types have emerged as a powerful way to obtain novel insights into cancer biology. Here we present a comprehensive analysis of genetic alterations in a pan-cancer cohort including 961 tumours from children, adolescents, and young adults, comprising 24 distinct molecular types of cancer. Using a standardized workflow, we identified marked differences in terms of mutation frequency and significantly mutated genes in comparison to previously analysed adult cancers. Genetic alterations in 149 putative cancer driver genes separate the tumours into two classes: small mutation and structural/copy-number variant (correlating with germline variants). Structural variants, hyperdiploidy, and chromothripsis are linked to TP53 mutation status and mutational signatures. Our data suggest that 7–8% of the children in this cohort carry an unambiguous predisposing germline variant and that nearly 50% of paediatric neoplasms harbour a potentially druggable event, which is highly relevant for the design of future clinical trials. KW - cancer genomics KW - oncogenesis KW - paediatric cancer KW - predictive markers KW - translational research Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-229579 VL - 555 ER - TY - JOUR A1 - Harnoš, Jakub A1 - Cañizal, Maria Consuelo Alonso A1 - Jurásek, Miroslav A1 - Kumar, Jitender A1 - Holler, Cornelia A1 - Schambony, Alexandra A1 - Hanáková, Kateřina A1 - Bernatík, Ondřej A1 - Zdráhal, Zbynêk A1 - Gömöryová, Kristína A1 - Gybeľ, Tomáš A1 - Radaszkiewicz, Tomasz Witold A1 - Kravec, Marek A1 - Trantírek, Lukáš A1 - Ryneš, Jan A1 - Dave, Zankruti A1 - Fernández-Llamazares, Ana Iris A1 - Vácha, Robert A1 - Tripsianes, Konstantinos A1 - Hoffmann, Carsten A1 - Bryja, Vítězslav T1 - Dishevelled-3 conformation dynamics analyzed by FRET-based biosensors reveals a key role of casein kinase 1 JF - Nature Communications N2 - Dishevelled (DVL) is the key component of the Wnt signaling pathway. Currently, DVL conformational dynamics under native conditions is unknown. To overcome this limitation, we develop the Fluorescein Arsenical Hairpin Binder- (FlAsH-) based FRET in vivo approach to study DVL conformation in living cells. Using this single-cell FRET approach, we demonstrate that (i) Wnt ligands induce open DVL conformation, (ii) DVL variants that are predominantly open, show more even subcellular localization and more efficient membrane recruitment by Frizzled (FZD) and (iii) Casein kinase 1 ɛ (CK1ɛ) has a key regulatory function in DVL conformational dynamics. In silico modeling and in vitro biophysical methods explain how CK1ɛ-specific phosphorylation events control DVL conformations via modulation of the PDZ domain and its interaction with DVL C-terminus. In summary, our study describes an experimental tool for DVL conformational sampling in living cells and elucidates the essential regulatory role of CK1ɛ in DVL conformational dynamics. KW - biological techniques KW - cell signalling KW - phosphorylation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227837 VL - 10 ER - TY - JOUR A1 - Gottschalk, Michael G. A1 - Richter, Jan A1 - Ziegler, Christiane A1 - Schiele, Miriam A. A1 - Mann, Julia A1 - Geiger, Maximilian J. A1 - Schartner, Christoph A1 - Homola, György A. A1 - Alpers, Georg W. A1 - Büchel, Christian A1 - Fehm, Lydia A1 - Fydrich, Thomas A1 - Gerlach, Alexander L. A1 - Gloster, Andrew T. A1 - Helbig-Lang, Sylvia A1 - Kalisch, Raffael A1 - Kircher, Tilo A1 - Lang, Thomas A1 - Lonsdorf, Tina B. A1 - Pané-Farré, Christiane A. A1 - Ströhle, Andreas A1 - Weber, Heike A1 - Zwanzger, Peter A1 - Arolt, Volker A1 - Romanos, Marcel A1 - Wittchen, Hans-Ulrich A1 - Hamm, Alfons A1 - Pauli, Paul A1 - Reif, Andreas A1 - Deckert, Jürgen A1 - Neufang, Susanne A1 - Höfler, Michael A1 - Domschke, Katharina T1 - Orexin in the anxiety spectrum: association of a HCRTR1 polymorphism with panic disorder/agoraphobia, CBT treatment response and fear-related intermediate phenotypes JF - Translational Psychiatry N2 - Preclinical studies point to a pivotal role of the orexin 1 (OX1) receptor in arousal and fear learning and therefore suggest the HCRTR1 gene as a prime candidate in panic disorder (PD) with/without agoraphobia (AG), PD/AG treatment response, and PD/AG-related intermediate phenotypes. Here, a multilevel approach was applied to test the non-synonymous HCRTR1 C/T Ile408Val gene variant (rs2271933) for association with PD/AG in two independent case-control samples (total n = 613 cases, 1839 healthy subjects), as an outcome predictor of a six-weeks exposure-based cognitive behavioral therapy (CBT) in PD/AG patients (n = 189), as well as with respect to agoraphobic cognitions (ACQ) (n = 483 patients, n = 2382 healthy subjects), fMRI alerting network activation in healthy subjects (n = 94), and a behavioral avoidance task in PD/AG pre- and post-CBT (n = 271). The HCRTR1 rs2271933 T allele was associated with PD/AG in both samples independently, and in their meta-analysis (p = 4.2 × 10−7), particularly in the female subsample (p = 9.8 × 10−9). T allele carriers displayed a significantly poorer CBT outcome (e.g., Hamilton anxiety rating scale: p = 7.5 × 10−4). The T allele count was linked to higher ACQ sores in PD/AG and healthy subjects, decreased inferior frontal gyrus and increased locus coeruleus activation in the alerting network. Finally, the T allele count was associated with increased pre-CBT exposure avoidance and autonomic arousal as well as decreased post-CBT improvement. In sum, the present results provide converging evidence for an involvement of HCRTR1 gene variation in the etiology of PD/AG and PD/AG-related traits as well as treatment response to CBT, supporting future therapeutic approaches targeting the orexin-related arousal system. KW - human behaviour KW - molecular neuroscience KW - personalized medicine KW - predictive markers KW - psychiatric disorders Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227479 VL - 9 ER - TY - JOUR A1 - Giampaolo, Sabrina A1 - Wójcik, Gabriela A1 - Klein-Hessling, Stefan A1 - Serfling, Edgar A1 - Patra, Amiya K. T1 - B cell development is critically dependent on NFATc1 activity JF - Cellular & Molecular Immunology N2 - B cell development in bone marrow is a precisely regulated complex process. Through successive stages of differentiation, which are regulated by a multitude of signaling pathways and an array of lineage-specific transcription factors, the common lymphoid progenitors ultimately give rise to mature B cells. Similar to early thymocyte development in the thymus, early B cell development in bone marrow is critically dependent on IL-7 signaling. During this IL-7-dependent stage of differentiation, several transcription factors, such as E2A, EBF1, and Pax5, among others, play indispensable roles in B lineage specification and maintenance. Although recent studies have implicated several other transcription factors in B cell development, the role of NFATc1 in early B cell developmental stages is not known. Here, using multiple gene-manipulated mouse models and applying various experimental methods, we show that NFATc1 activity is vital for early B cell differentiation. Lack of NFATc1 activity in pro-B cells suppresses EBF1 expression, impairs immunoglobulin gene rearrangement, and thereby preBCR formation, resulting in defective B cell development. Overall, deficiency in NFATc1 activity arrested the pro-B cell transition to the pre-B cell stage, leading to severe B cell lymphopenia. Our findings suggest that, along with other transcription factors, NFATc1 is a critical component of the signaling mechanism that facilitates early B cell differentiation. KW - differentiation KW - EBF1 KW - NFATc1 KW - pro-B KW - pre-B Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-233006 VL - 16 ER - TY - JOUR A1 - Letunic, Ivica A1 - Khedkar, Supriya A1 - Bork, Peer T1 - SMART: recent updates, new developments and status in 2020 JF - Nucleic Acids Research N2 - SMART (Simple Modular Architecture Research Tool) is a web resource (https://smart.embl.de) for the identification and annotation of protein domains and the analysis of protein domain architectures. SMART version 9 contains manually curatedmodels formore than 1300 protein domains, with a topical set of 68 new models added since our last update article (1). All the new models are for diverse recombinase families and subfamilies and as a set they provide a comprehensive overview of mobile element recombinases namely transposase, integrase, relaxase, resolvase, cas1 casposase and Xer like cellular recombinase. Further updates include the synchronization of the underlying protein databases with UniProt (2), Ensembl (3) and STRING (4), greatly increasing the total number of annotated domains and other protein features available in architecture analysis mode. Furthermore, SMART's vector-based protein display engine has been extended and updated to use the latest web technologies and the domain architecture analysis components have been optimized to handle the increased number of protein features available. KW - SMART KW - SMART version 9 KW - protein domains KW - protein domain architectures Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-363816 VL - 49 IS - D1 ER - TY - JOUR A1 - Schwab, Andrea A1 - Meeuwsen, Annick A1 - Ehlicke, Franziska A1 - Hansmann, Jan A1 - Mulder, Lars A1 - Smits, Anthal A1 - Walles, Heike A1 - Kock, Linda T1 - Ex vivo culture platform for assessment of cartilage repair treatment strategies JF - ALTEX - Alternatives to animal experimentation N2 - There is a great need for valuable ex vivo models that allow for assessment of cartilage repair strategies to reduce the high number of animal experiments. In this paper we present three studies with our novel ex vivo osteochondral culture platform. It consists of two separated media compartments for cartilage and bone, which better represents the in vivo situation and enables supply of factors pecific to the different needs of bone and cartilage. We investigated whether separation of the cartilage and bone compartments and/or culture media results in the maintenance of viability, structural and functional properties of cartilage tissue. Next, we valuated for how long we can preserve cartilage matrix stability of osteochondral explants during long-term culture over 84 days. Finally, we determined the optimal defect size that does not show spontaneous self-healing in this culture system. It was demonstrated that separated compartments for cartilage and bone in combination with tissue-specific medium allow for long-term culture of osteochondral explants while maintaining cartilage viability, atrix tissue content, structure and mechanical properties for at least 56 days. Furthermore, we could create critical size cartilage defects of different sizes in the model. The osteochondral model represents a valuable preclinical ex vivo tool for studying clinically relevant cartilage therapies, such as cartilage biomaterials, for their regenerative potential, for evaluation of drug and cell therapies, or to study mechanisms of cartilage regeneration. It will undoubtedly reduce the number of animals needed for in vivotesting. KW - ex vivo model KW - osteochondral biopsy KW - cartilage repair KW - critical size defect KW - replacement Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-181665 VL - 34 IS - 2 ER - TY - JOUR A1 - Belic, Stanislav A1 - Page, Lukas A1 - Lazariotou, Maria A1 - Waaga-Gasser, Ana Maria A1 - Dragan, Mariola A1 - Springer, Jan A1 - Loeffler, Juergen A1 - Morton, Charles Oliver A1 - Einsele, Hermann A1 - Ullmann, Andrew J. A1 - Wurster, Sebastian T1 - Comparative Analysis of Inflammatory Cytokine Release and Alveolar Epithelial Barrier Invasion in a Transwell® Bilayer Model of Mucormycosis JF - Frontiers in Microbiology N2 - Understanding the mechanisms of early invasion and epithelial defense in opportunistic mold infections is crucial for the evaluation of diagnostic biomarkers and novel treatment strategies. Recent studies revealed unique characteristics of the immunopathology of mucormycoses. We therefore adapted an alveolar Transwell® A549/HPAEC bilayer model for the assessment of epithelial barrier integrity and cytokine response to Rhizopus arrhizus, Rhizomucor pusillus, and Cunninghamella bertholletiae. Hyphal penetration of the alveolar barrier was validated by 18S ribosomal DNA detection in the endothelial compartment. Addition of dendritic cells (moDCs) to the alveolar compartment led to reduced fungal invasion and strongly enhanced pro-inflammatory cytokine response, whereas epithelial CCL2 and CCL5 release was reduced. Despite their phenotypic heterogeneity, the studied Mucorales species elicited the release of similar cytokine patterns by epithelial and dendritic cells. There were significantly elevated lactate dehydrogenase concentrations in the alveolar compartment and epithelial barrier permeability for dextran blue of different molecular weights in Mucorales-infected samples compared to Aspergillus fumigatus infection. Addition of monocyte-derived dendritic cells further aggravated LDH release and epithelial barrier permeability, highlighting the influence of the inflammatory response in mucormycosis-associated tissue damage. An important focus of this study was the evaluation of the reproducibility of readout parameters in independent experimental runs. Our results revealed consistently low coefficients of variation for cytokine concentrations and transcriptional levels of cytokine genes and cell integrity markers. As additional means of model validation, we confirmed that our bilayer model captures key principles of Mucorales biology such as accelerated growth in a hyperglycemic or ketoacidotic environment or reduced epithelial barrier invasion upon epithelial growth factor receptor blockade by gefitinib. Our findings indicate that the Transwell® bilayer model provides a reliable and reproducible tool for assessing host response in mucormycosis. KW - mucormycosis KW - alveolar epithelium KW - in vitro model KW - cytokines KW - dendritic cells Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-252477 VL - 9 ER - TY - JOUR A1 - Balasubramanian, Srikkanth A1 - Skaf, Joseph A1 - Holzgrabe, Ulrike A1 - Bharti, Richa A1 - Förstner, Konrad U. A1 - Ziebuhr, Wilma A1 - Humeida, Ute H. A1 - Abdelmohsen, Usama R. A1 - Oelschlaeger, Tobias A. T1 - A new bioactive compound from the marine sponge-derived Streptomyces sp. SBT348 inhibits staphylococcal growth and biofilm formation JF - Frontiers in Microbiology N2 - Staphylococcus epidermidis, the common inhabitant of human skin and mucosal surfaces has emerged as an important pathogen in patients carrying surgical implants and medical devices. Entering the body via surgical sites and colonizing the medical devices through formation of multi-layered biofilms leads to refractory and persistent device-related infections (DRIs). Staphylococci organized in biofilms are more tolerant to antibiotics and immune responses, and thus are difficult-to-treat. The consequent morbidity and mortality, and economic losses in health care systems has strongly necessitated the need for development of new anti-bacterial and anti-biofilm-based therapeutics. In this study, we describe the biological activity of a marine sponge-derived Streptomyces sp. SBT348 extract in restraining staphylococcal growth and biofilm formation on polystyrene, glass, medically relevant titan metal, and silicone surfaces. A bioassay-guided fractionation was performed to isolate the active compound (SKC3) from the crude SBT348 extract. Our results demonstrated that SKC3 effectively inhibits the growth (MIC: 31.25 \(\mu\)g/ml) and biofilm formation (sub-MIC range: 1.95-<31.25 \(\mu\)g/ml) of S. epidermidis RP62A in vitro. Chemical characterization of SKC3 by heat and enzyme treatments, and mass spectrometry (HRMS) revealed its heat-stable and non-proteinaceous nature, and high molecular weight (1258.3 Da). Cytotoxicity profiling of SKC3 in vitro on mouse fibroblast (NIH/3T3) and macrophage (J774.1) cell lines, and in vivo on the greater wax moth larvae Galleria mellonella revealed its non-toxic nature at the effective dose. Transcriptome analysis of SKC3 treated S. epidermidis RP62A has further unmasked its negative effect on central metabolism such as carbon flux as well as, amino acid, lipid, and energy metabolism. Taken together, these findings suggest a potential of SKC3 as a putative drug to prevent staphylococcal DRIs. KW - marine sponges KW - Streptomyces KW - Staphylococci KW - device-related infections KW - bioassay-guided fractionation KW - transcriptome Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-221408 VL - 9 ER - TY - JOUR A1 - Baur, Johannes A1 - Otto, Christoph A1 - Steger, Ulrich A1 - Klein-Hessling, Stefan A1 - Muhammad, Khalid A1 - Pusch, Tobias A1 - Murti, Krisna A1 - Wismer, Rhoda A1 - Germer, Christoph-Thomas A1 - Klein, Ingo A1 - Müller, Nora A1 - Serfling, Edgar A1 - Avots, Andris T1 - The transcription factor NFaTc1 supports the rejection of heterotopic heart allografts JF - Frontiers in Immunology N2 - The immune suppressants cyclosporin A (CsA) and tacrolimus (FK506) are used worldwide in transplantation medicine to suppress graft rejection. Both CsA and FK506 inhibit the phosphatase calcineurin (CN) whose activity controls the immune receptor-mediated activation of lymphocytes. Downstream targets of CN in lymphocytes are the nuclear factors of activated T cells (NFATs). We show here that the activity of NFATc1, the most prominent NFAT factor in activated lymphocytes supports the acute rejection of heterotopic heart allografts. While ablation of NFATc1 in T cells prevented graft rejection, ectopic expression of inducible NFATc1/αA isoform led to rejection of heart allografts in recipient mice. Acceptance of transplanted hearts in mice bearing NFATc1-deficient T cells was accompanied by a reduction in number and cytotoxicity of graft infiltrating cells. In CD8\(^+\) T cells, NFATc1 controls numerous intracellular signaling pathways that lead to the metabolic switch to aerobic glycolysis and the expression of numerous lymphokines, chemokines, and their receptors, including Cxcr3 that supports the rejection of allogeneic heart transplants. These findings favors NFATc1 as a molecular target for the development of new strategies to control the cytotoxicity of T cells upon organ transplantation. KW - NFATc1 KW - transplantation KW - heterologous KW - CD8+ T cells KW - ChIPseq KW - metabolism Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-221530 VL - 9 ER - TY - JOUR A1 - Joos, J. P. A1 - Saadatmand, A. R. A1 - Schnabel, C. A1 - Viktorinová, I. A1 - Brand, T. A1 - Kramer, M. A1 - Nattel, S. A1 - Dobrev, D. A1 - Tomancak, P. A1 - Backs, J. A1 - Kleinbongard, P. A1 - Heusch, G. A1 - Lorenz, K. A1 - Koch, E. A1 - Weber, S. A1 - El-Armouche, A. T1 - Ectopic expression of S28A-mutated Histone H3 modulates longevity, stress resistance and cardiac function in Drosophila JF - Scientific Reports N2 - Histone H3 serine 28 (H3S28) phosphorylation and de-repression of polycomb repressive complex (PRC)-mediated gene regulation is linked to stress conditions in mitotic and post-mitotic cells. To better understand the role of H3S28 phosphorylation in vivo, we studied a Drosophila strain with ectopic expression of constitutively-activated H3S28A, which prevents PRC2 binding at H3S28, thus mimicking H3S28 phosphorylation. H3S28A mutants showed prolonged life span and improved resistance against starvation and paraquat-induced oxidative stress. Morphological and functional analysis of heart tubes revealed smaller luminal areas and thicker walls accompanied by moderately improved cardiac function after acute stress induction. Whole-exome deep gene-sequencing from isolated heart tubes revealed phenotype-corresponding changes in longevity-promoting and myotropic genes. We also found changes in genes controlling mitochondrial biogenesis and respiration. Analysis of mitochondrial respiration from whole flies revealed improved efficacy of ATP production with reduced electron transport-chain activity. Finally, we analyzed posttranslational modification of H3S28 in an experimental heart failure model and observed increased H3S28 phosphorylation levels in HF hearts. Our data establish a critical role of H3S28 phosphorylation in vivo for life span, stress resistance, cardiac and mitochondrial function in Drosophila. These findings may pave the way for H3S28 phosphorylation as a putative target to treat stress-related disorders such as heart failure. KW - cardiac hypertrophy KW - epigenetics KW - heart failure Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-323637 VL - 8 ER - TY - JOUR A1 - Knop, Janin A1 - Spilgies, Lisanne M. A1 - Rufli, Stefanie A1 - Reinhart, Ramona A1 - Vasilikos, Lazaros A1 - Yabal, Monica A1 - Owsley, Erika A1 - Jost, Philipp J. A1 - Marsh, Rebecca A. A1 - Wajant, Harald A1 - Robinson, Mark D. A1 - Kaufmann, Thomas A1 - W. Wei-Lynn, Wong T1 - TNFR2 induced priming of the inflammasome leads to a RIPK1-dependent cell death in the absence of XIAP JF - Cell Death & Disease N2 - The pediatric immune deficiency X-linked proliferative disease-2 (XLP-2) is a unique disease, with patients presenting with either hemophagocytic lymphohistiocytosis (HLH) or intestinal bowel disease (IBD). Interestingly, XLP-2 patients display high levels of IL-18 in the serum even while in stable condition, presumably through spontaneous inflammasome activation. Recent data suggests that LPS stimulation can trigger inflammasome activation through a TNFR2/TNF/TNFR1 mediated loop in xiap−/− macrophages. Yet, the direct role TNFR2-specific activation plays in the absence of XIAP is unknown. We found TNFR2-specific activation leads to cell death in xiap−/− myeloid cells, particularly in the absence of the RING domain. RIPK1 kinase activity downstream of TNFR2 resulted in a TNF/TNFR1 cell death, independent of necroptosis. TNFR2-specific activation leads to a similar inflammatory NF-kB driven transcriptional profile as TNFR1 activation with the exception of upregulation of NLRP3 and caspase-11. Activation and upregulation of the canonical inflammasome upon loss of XIAP was mediated by RIPK1 kinase activity and ROS production. While both the inhibition of RIPK1 kinase activity and ROS production reduced cell death, as well as release of IL-1β, the release of IL-18 was not reduced to basal levels. This study supports targeting TNFR2 specifically to reduce IL-18 release in XLP-2 patients and to reduce priming of the inflammasome components. KW - cell death and immune response KW - inflammation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-325946 VL - 10 ER - TY - JOUR A1 - Kraus, Amelie J. A1 - Brink, Benedikt G. A1 - Siegel, T. Nicolai T1 - Efficient and specific oligo-based depletion of rRNA JF - Scientific Reports N2 - In most organisms, ribosomal RNA (rRNA) contributes to >85% of total RNA. Thus, to obtain useful information from RNA-sequencing (RNA-seq) analyses at reasonable sequencing depth, typically, mature polyadenylated transcripts are enriched or rRNA molecules are depleted. Targeted depletion of rRNA is particularly useful when studying transcripts lacking a poly(A) tail, such as some non-coding RNAs (ncRNAs), most bacterial RNAs and partially degraded or immature transcripts. While several commercially available kits allow effective rRNA depletion, their efficiency relies on a high degree of sequence homology between oligonucleotide probes and the target RNA. This restricts the use of such kits to a limited number of organisms with conserved rRNA sequences. In this study we describe the use of biotinylated oligos and streptavidin-coated paramagnetic beads for the efficient and specific depletion of trypanosomal rRNA. Our approach reduces the levels of the most abundant rRNA transcripts to less than 5% with minimal off-target effects. By adjusting the sequence of the oligonucleotide probes, our approach can be used to deplete rRNAs or other abundant transcripts independent of species. Thus, our protocol provides a useful alternative for rRNA removal where enrichment of polyadenylated transcripts is not an option and commercial kits for rRNA are not available. KW - parasite biology KW - RNA sequencing KW - transcriptomics Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224829 VL - 9 ER - TY - JOUR A1 - Kotz, Frederik A1 - Risch, Patrick A1 - Arnold, Karl A1 - Sevim, Semih A1 - Puigmartí-Luis, Josep A1 - Quick, Alexander A1 - Thiel, Michael A1 - Hrynevich, Andrei A1 - Dalton, Paul D. A1 - Helmer, Dorothea A1 - Rapp, Bastian E. T1 - Fabrication of arbitrary three-dimensional suspended hollow microstructures in transparent fused silica glass JF - Nature Communications N2 - Fused silica glass is the preferred material for applications which require long-term chemical and mechanical stability as well as excellent optical properties. The manufacturing of complex hollow microstructures within transparent fused silica glass is of particular interest for, among others, the miniaturization of chemical synthesis towards more versatile, configurable and environmentally friendly flow-through chemistry as well as high-quality optical waveguides or capillaries. However, microstructuring of such complex three-dimensional structures in glass has proven evasive due to its high thermal and chemical stability as well as mechanical hardness. Here we present an approach for the generation of hollow microstructures in fused silica glass with high precision and freedom of three-dimensional designs. The process combines the concept of sacrificial template replication with a room-temperature molding process for fused silica glass. The fabricated glass chips are versatile tools for, among other, the advance of miniaturization in chemical synthesis on chip. KW - chemical engineering KW - fluidics KW - materials for optics Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224787 VL - 10 ER - TY - JOUR A1 - Kim, Bo-Mi A1 - Amores, Angel A1 - Kang, Seunghyun A1 - Ahn, Do-Hwan A1 - Kim, Jin-Hyoung A1 - Kim, Il-Chan A1 - Lee, Jun Hyuck A1 - Lee, Sung Gu A1 - Lee, Hyoungseok A1 - Lee, Jungeun A1 - Kim, Han-Woo A1 - Desvignes, Thomas A1 - Batzel, Peter A1 - Sydes, Jason A1 - Titus, Tom A1 - Wilson, Catherine A. A1 - Catchen, Julian M. A1 - Warren, Wesley C. A1 - Schartl, Manfred A1 - Detrich, H. William III A1 - Postlethwait, John H. A1 - Park, Hyun T1 - Antarctic blackfin icefish genome reveals adaptations to extreme environments JF - Nature Ecology & Evolution N2 - Icefishes (suborder Notothenioidei; family Channichthyidae) are the only vertebrates that lack functional haemoglobin genes and red blood cells. Here, we report a high-quality genome assembly and linkage map for the Antarctic blackfin icefish Chaenocephalus aceratus, highlighting evolved genomic features for its unique physiology. Phylogenomic analysis revealed that Antarctic fish of the teleost suborder Notothenioidei, including icefishes, diverged from the stickleback lineage about 77 million years ago and subsequently evolved cold-adapted phenotypes as the Southern Ocean cooled to sub-zero temperatures. Our results show that genes involved in protection from ice damage, including genes encoding antifreeze glycoprotein and zona pellucida proteins, are highly expanded in the icefish genome. Furthermore, genes that encode enzymes that help to control cellular redox state, including members of the sod3 and nqo1 gene families, are expanded, probably as evolutionary adaptations to the relatively high concentration of oxygen dissolved in cold Antarctic waters. In contrast, some crucial regulators of circadian homeostasis (cry and per genes) are absent from the icefish genome, suggesting compromised control of biological rhythms in the polar light environment. The availability of the icefish genome sequence will accelerate our understanding of adaptation to extreme Antarctic environments. KW - animal physiology KW - evolutionary genetics KW - genomics KW - ichthyology Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-325811 VL - 3 ER - TY - JOUR A1 - Hoernes, Thomas Philipp A1 - Faserl, Klaus A1 - Juen, Michael Andreas A1 - Kremser, Johannes A1 - Gasser, Catherina A1 - Fuchs, Elisabeth A1 - Shi, Xinying A1 - Siewert, Aaron A1 - Lindner, Herbert A1 - Kreutz, Christoph A1 - Micura, Ronald A1 - Joseph, Simpson A1 - Höbartner, Claudia A1 - Westhof, Eric A1 - Hüttenhofer, Alexander A1 - Erlacher, Matthias David T1 - Translation of non-standard codon nucleotides reveals minimal requirements for codon-anticodon interactions JF - Nature Communications N2 - The precise interplay between the mRNA codon and the tRNA anticodon is crucial for ensuring efficient and accurate translation by the ribosome. The insertion of RNA nucleobase derivatives in the mRNA allowed us to modulate the stability of the codon-anticodon interaction in the decoding site of bacterial and eukaryotic ribosomes, allowing an in-depth analysis of codon recognition. We found the hydrogen bond between the N1 of purines and the N3 of pyrimidines to be sufficient for decoding of the first two codon nucleotides, whereas adequate stacking between the RNA bases is critical at the wobble position. Inosine, found in eukaryotic mRNAs, is an important example of destabilization of the codon-anticodon interaction. Whereas single inosines are efficiently translated, multiple inosines, e.g., in the serotonin receptor 5-HT2C mRNA, inhibit translation. Thus, our results indicate that despite the robustness of the decoding process, its tolerance toward the weakening of codon-anticodon interactions is limited. KW - chemical modification KW - nucleic acids KW - ribozymes KW - RNA Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-321067 VL - 9 ER - TY - JOUR A1 - Hommers, L. G. A1 - Richter, J. A1 - Yang, Y. A1 - Raab, A. A1 - Baumann, C. A1 - Lang, K. A1 - Schiele, M. A. A1 - Weber, H. A1 - Wittmann, A. A1 - Wolf, C. A1 - Alpers, G. W. A1 - Arolt, V. A1 - Domschke, K. A1 - Fehm, L. A1 - Fydrich, T. A1 - Gerlach, A. A1 - Gloster, A. T. A1 - Hamm, A. O. A1 - Helbig-Lang, S. A1 - Kircher, T. A1 - Lang, T. A1 - Pané-Farré, C. A. A1 - Pauli, P. A1 - Pfleiderer, B. A1 - Reif, A. A1 - Romanos, M. A1 - Straube, B. A1 - Ströhle, A. A1 - Wittchen, H.-U. A1 - Frantz, S. A1 - Ertl, G. A1 - Lohse, M. J. A1 - Lueken, U. A1 - Deckert, J. T1 - A functional genetic variation of SLC6A2 repressor hsa-miR-579-3p upregulates sympathetic noradrenergic processes of fear and anxiety JF - Translational Psychiatry N2 - Increased sympathetic noradrenergic signaling is crucially involved in fear and anxiety as defensive states. MicroRNAs regulate dynamic gene expression during synaptic plasticity and genetic variation of microRNAs modulating noradrenaline transporter gene (SLC6A2) expression may thus lead to altered central and peripheral processing of fear and anxiety. In silico prediction of microRNA regulation of SLC6A2 was confirmed by luciferase reporter assays and identified hsa-miR-579-3p as a regulating microRNA. The minor (T)-allele of rs2910931 (MAFcases = 0.431, MAFcontrols = 0.368) upstream of MIR579 was associated with panic disorder in patients (pallelic = 0.004, ncases = 506, ncontrols = 506) and with higher trait anxiety in healthy individuals (pASI = 0.029, pACQ = 0.047, n = 3112). Compared to the major (A)-allele, increased promoter activity was observed in luciferase reporter assays in vitro suggesting more effective MIR579 expression and SLC6A2 repression in vivo (p = 0.041). Healthy individuals carrying at least one (T)-allele showed a brain activation pattern suggesting increased defensive responding and sympathetic noradrenergic activation in midbrain and limbic areas during the extinction of conditioned fear. Panic disorder patients carrying two (T)-alleles showed elevated heart rates in an anxiety-provoking behavioral avoidance test (F(2, 270) = 5.47, p = 0.005). Fine-tuning of noradrenaline homeostasis by a MIR579 genetic variation modulated central and peripheral sympathetic noradrenergic activation during fear processing and anxiety. This study opens new perspectives on the role of microRNAs in the etiopathogenesis of anxiety disorders, particularly their cardiovascular symptoms and comorbidities. KW - clinical genetics KW - psychiatric disorders Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-322497 VL - 8 ER - TY - JOUR A1 - Bury, Susanne A1 - Soundararajan, Manonmani A1 - Bharti, Richa A1 - von Bünau, Rudolf A1 - Förstner, Konrad U. A1 - Oelschlaeger, Tobias A. T1 - The probiotic escherichia coli strain Nissle 1917 combats lambdoid bacteriophages stx and lambda JF - Frontiers in Microbiology N2 - Shiga toxin (Stx) producing E. coli (STEC) such as Enterohemorrhagic E. coli (EHEC) are the major cause of foodborne illness in humans. In vitro studies showed the probiotic Escherichia coil strain Nissle 1917 (EcN) to efficiently inhibit the production of Stx. Life threatening EHEC strains as for example the serotype 0104:H4, responsible for the great outbreak in 2011 in Germany, evolutionary developed from certain E. coll strains which got infected by stx2-encoding lambdoid phages turning the E. coil into lysogenic and subsequently Stx producing strains. Since antibiotics induce stx genes and Stx production, EHEC infected persons are not recommended to be treated with antibiotics. Therefore, EcN might be an alternative medication. However, because even commensal E. coli strains might be converted into Stx-producers after becoming host to a stx encoding prophage, we tested EcN for stx-phage genome integration. Our experiments revealed the resistance of EcN toward not only stx-phages but also against lambda-phages. This resistance was not based on the lack of or by mutated phage receptors. Rather it involved the expression of a phage repressor (pr) gene of a defective prophage in EcN which was able to partially protect E. coli K-12 strain MG1655 against stx and lambda phage infection. Furthermore, we observed EcN to inactivate phages and thereby to protect E. coli K-12 strains against infection by stx- as well as lambda-phages. Inactivation of lambda-phages was due to binding of lambda-phages to LamB of EcN whereas inactivation of stx-phages was caused by a thermostable protein of EcN. These properties together with its ability to inhibit Stx production make EcN a good candidate for the prevention of illness caused by EHEC and probably for the treatment of already infected people. KW - probiotic KW - E. coli Nissle 1917 KW - EHEC KW - Shiga toxin producing E. coli KW - stx-phages KW - lambda-phages KW - lambdoid prophage KW - LamB Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-221960 VL - 9 ER - TY - JOUR A1 - Breitinger, Ulrike A1 - Bahnassawy, Lamiaa M. A1 - Janzen, Dieter A1 - Römer, Vera A1 - Becker, Cord-Michael A1 - Villmann, Carmen A1 - Breitinger, Hans-Georg T1 - PKA and PKC modulators affect ion channel function and internalization of recombinant alpha1 and alpha1-beta glycine receptors JF - Frontiers in Molecular Neurosience N2 - Glycine receptors (GlyRs) are important mediators of fast inhibitory neurotransmission in the mammalian central nervous system. Their function is controlled by multiple cellular mechanisms, including intracellular regulatory processes. Modulation of GlyR function by protein kinases has been reported for many cell types, involving different techniques, and often yielding contradictory results. Here, we studied the effects of protein kinase C (PKC) and cAMP-dependent protein kinase A (PKA) on glycine induced currents in HEK293 cells expressing human homomeric \(\alpha\)1 and heteromeric \(\alpha\)1-\(\beta\) GlyRs using whole-cell patch clamp techniques as well as internalization assays. In whole-cell patch-clamp measurements, modulators were applied in the intracellular buffer at concentrations between 0.1 \(\mu\)M and 0.5 \(\mu\)M. EC50 of glycine increased upon application of the protein kinase activators Forskolin and phorbol-12-myristate-13-acetate (PMA) but decreased in the presence of the PKC inhibitor Staurosporine aglycon and the PKA inhibitor H-89. Desensitization of recombinant \(\alpha\)1 receptors was significantly increased in the presence of Forskolin. Staurosporine aglycon, on the other hand decreased desensitization of heteromeric \(\alpha\)1-\(\beta\) GlyRs. The time course of receptor activation was determined for homomeric \(\alpha\)1 receptors and revealed two simultaneous effects: cells showed a decrease of EC50 after 3-6 min of establishing whole-cell configuration. This effect was independent of protein kinase modulators. All modulators of PKA and PKC, however, produced an additional shift of EC50, which overlay and eventually exceeded the cells intrinsic variation of EC50. The effect of kinase activators was abolished if the corresponding inhibitors were co-applied, consistent with PKA and PKC directly mediating the modulation of GlyR function. Direct effects of PKA-and PKC-modulators on receptor expression on transfected HEK cells were monitored within 15 min of drug application, showing a significant increase of receptor internalization with PKA and PKC activators, while the corresponding inhibitors had no significant effect on receptor surface expression or internalization. Our results confirm the observation that phosphorylation via PKA and PKC has a direct effect on the GlyR ion channel complex and plays an important role in the fine-tuning of glycinergic signaling. KW - glycine receptor KW - PKA KW - PKC KW - activators/inhibitors of phosphorylation KW - whole-cell currents KW - modulation kinetics KW - receptor internalization Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-220401 VL - 11 ER - TY - JOUR A1 - Bohmann, Ferdinand O. A1 - Kurka, Natalia A1 - du Mesnil de Rochemont, Richard A1 - Gruber, Katharina A1 - Guenther, Joachim A1 - Rostek, Peter A1 - Rai, Heike A1 - Zickler, Philipp A1 - Ertl, Michael A1 - Berlis, Ansgar A1 - Poli, Sven A1 - Mengel, Annerose A1 - Ringleb, Peter A1 - Nagel, Simon A1 - Pfaff, Johannes A1 - Wollenweber, Frank A. A1 - Kellert, Lars A1 - Herzberg, Moriz A1 - Koehler, Luzie A1 - Haeusler, Karl Georg A1 - Alegiani, Anna A1 - Schubert, Charlotte A1 - Brekenfeld, Caspar A1 - Doppler, Christopher E. J. A1 - Onur, Oezguer A. A1 - Kabbasch, Christoph A1 - Manser, Tanja A1 - Pfeilschifter, Waltraud T1 - Simulation-based training of the rapid evaluation and management of acute stroke (STREAM) — a prospective single-arm multicenter trial JF - Frontiers in Neurology N2 - Introduction: Acute stroke care delivered by interdisciplinary teams is time-sensitive. Simulation-based team training is a promising tool to improve team performance in medical operations. It has the potential to improve process times, team communication, patient safety, and staff satisfaction. We aim to assess whether a multi-level approach consisting of a stringent workflow revision based on peer-to-peer review and 2–3 one-day in situ simulation trainings can improve acute stroke care processing times in high volume neurocenters within a 6 months period. Methods and Analysis: The trial is being carried out in a pre-test-post-test design at 7 tertiary care university hospital neurocenters in Germany. The intervention is directed at the interdisciplinary multiprofessional stroke teams. Before and after the intervention, process times of all direct-to-center stroke patients receiving IV thrombolysis (IVT) and/or endovascular therapy (EVT) will be recorded. The primary outcome measure will be the “door-to-needle” time of all consecutive stroke patients directly admitted to the neurocenters who receive IVT. Secondary outcome measures will be intervention-related process times of the fraction of patients undergoing EVT and effects on team communication, perceived patient safety, and staff satisfaction via a staff questionnaire. Interventions: We are applying a multi-level intervention in cooperation with three “STREAM multipliers” from each center. First step is a central meeting of the multipliers at the sponsor's institution with the purposes of algorithm review in a peer-to-peer process that is recorded in a protocol and an introduction to the principles of simulation training and debriefing as well as crew resource management and team communication. Thereafter, the multipliers cooperate with the stroke team trainers from the sponsor's institution to plan and execute 2–3 one-day simulation courses in situ in the emergency department and CT room of the trial centers whereupon they receive teaching materials to perpetuate the trainings. Clinical Trial Registration: STREAM is a registered trial at https://clinicaltrials.gov/ct2/show/NCT03228251. KW - CRM KW - thrombolysis (tPA) KW - stroke KW - emergency care KW - simulation training Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-369239 SN - 1664-2295 VL - 10 ER -