TY - THES A1 - Winnerlein, Martin T1 - Molecular Beam Epitaxy and Characterization of the Magnetic Topological Insulator (V,Bi,Sb)\(_2\)Te\(_3\) T1 - Molekularstrahlepitaxie und Charakterisierung des magnetischen topologischen Isolators (V,Bi,Sb)\(_2\)Te\(_3\) N2 - The subject of this thesis is the fabrication and characterization of magnetic topological insulator layers of (V,Bi,Sb)\(_2\)Te\(_3\) exhibiting the quantum anomalous Hall effect. A major task was the experimental realization of the quantum anomalous Hall effect, which is only observed in layers with very specific structural, electronic and magnetic properties. These properties and their influence on the quantum anomalous Hall effect are analyzed in detail. First, the optimal conditions for the growth of pure Bi\(_2\)Te\(_3\) and Sb\(_2\)Te\(_3\) crystal layers and the resulting structural quality are studied. The crystalline quality of Bi\(_2\)Te\(_3\) improves significantly at higher growth temperatures resulting in a small mosaicity-tilt and reduced twinning defects. The optimal growth temperature is determined as 260\(^{\circ}\)C, low enough to avoid desorption while maintaining a high crystalline quality. The crystalline quality of Sb\(_2\)Te\(_3\) is less dependent on the growth temperature. Temperatures below 230\(^{\circ}\)C are necessary to avoid significant material desorption, though. Especially for the nucleation on Si(111)-H, a low sticking coefficient is observed preventing the coalescence of islands into a homogeneous layer. The influence of the substrate type, miscut and annealing sequence on the growth of Bi\(_2\)Te\(_3\) layers is investigated. The alignment of the layer changes depending on the miscut angle and annealing sequence: Typically, layer planes align parallel to the Si(111) planes. This can enhance the twin suppression due to transfer of the stacking order from the substrate to the layer at step edges, but results in a step bunched layer morphology. For specific substrate preparations, however, the layer planes are observed to align parallel to the surface plane. This alignment avoids displacement at the step edges, which would cause anti-phase domains. This results in narrow Bragg peaks in XRD rocking curve scans due to long-range order in the absence of anti-phase domains. Furthermore, the use of rough Fe:InP(111):B substrates leads to a strong reduction of twinning defects and a significantly reduced mosaicity-twist due to the smaller lattice mismatch. Next, the magnetically doped mixed compound V\(_z\)(Bi\(_{1−x}\)Sb\(_x\))\(_{2−z}\)Te\(_3\) is studied in order to realize the quantum anomalous Hall effect. The addition of V and Bi to Sb\(_2\)Te\(_3\) leads to efficient nucleation on the Si(111)-H surface and a closed, homogeneous layer. Magneto-transport measurements of layers reveal a finite anomalous Hall resistivity significantly below the von Klitzing constant. The observation of the quantum anomalous Hall effect requires the complete suppression of parasitic bulklike conduction due to defect induced carriers. This can be achieved by optimizing the thickness, composition and growth conditions of the layers. The growth temperature is observed to strongly influence the structural quality. Elevated temperatures result in bigger islands, improved crystallographic orientation and reduced twinning. On the other hand, desorption of primarily Sb is observed, affecting the thickness, composition and reproducibility of the layers. At 190\(^{\circ}\)C, desorption is avoided enabling precise control of layer thickness and composition of the quaternary compound while maintaining a high structural quality. It is especially important to optimize the Bi/Sb ratio in the (V,Bi,Sb)\(_2\)Te\(_3\) layers, since by alloying n-type Bi\(_2\)Te\(_3\) and p-type Sb\(_2\)Te\(_3\) charge neutrality is achieved at a specific mixing ratio. This is necessary to shift the Fermi level into the magnetic exchange gap and fully suppress the bulk conduction. The Sb content x furthermore influences the in-plane lattice constant a significantly. This is utilized to accurately determine x even for thin films below 10 nm thickness required for the quantum anomalous Hall effect. Furthermore, x strongly influences the surface morphology: with increasing x the island size decreases and the RMS roughness increases by up to a factor of 4 between x = 0 and x = 1. A series of samples with x varied between 0.56-0.95 is grown, while carefully maintaining a constant thickness of 9 nm and a doping concentration of 2 at.% V. Magneto-transport measurements reveal the charge neutral point around x = 0.86 at 4.2 K. The maximum of the anomalous Hall resistivity of 0.44 h/e\(^2\) is observed at x = 0.77 close to charge neutrality. Reducing the measurement temperature to 50 mK significantly increases the anomalous Hall resistivity. Several samples in a narrow range of x between 0.76-0.79 show the quantum anomalous Hall effect with the Hall resistivity reaching the von Klitzing constant and a vanishing longitudinal resistivity. Having realized the quantum anomalous Hall effect as the first group in Europe, this breakthrough enabled us to study the electronic and magnetic properties of the samples in close collaborations with other groups. In collaboration with the Physikalisch-Technische Bundesanstalt high-precision measurements were conducted with detailed error analysis yielding a relative de- viation from the von Klitzing constant of (0.17 \(\pm\) 0.25) * 10\(^{−6}\). This is published as the smallest, most precise value at that time, proving the high quality of the provided samples. This result paves the way for the application of magnetic topological insulators as zero-field resistance standards. Non-local magneto-transport measurements were conducted at 15 mK in close collaboration with the transport group in EP3. The results prove that transport happens through chiral edge channels. The detailed analysis of small anomalies in transport measurements reveals instabilities in the magnetic phase even at 15 mK. Their time dependent nature indicates the presence of superparamagnetic contributions in the nominally ferromagnetic phase. Next, the influence of the capping layer and the substrate type on structural properties and the impact on the quantum anomalous Hall effect is investigated. To this end, a layer was grown on a semi-insulating Fe:InP(111)B substrate using the previously optimized growth conditions. The crystalline quality is improved significantly with the mosaicity twist reduced from 5.4\(^{\circ}\) to 1.0\(^{\circ}\). Furthermore, a layer without protective capping layer was grown on Si and studied after providing sufficient time for degradation. The uncapped layer on Si shows perfect quantization, while the layer on InP deviates by about 5%. This may be caused by the higher crystalline quality, but variations in e.g. Sb content cannot be ruled out as the cause. Overall, the quantum anomalous Hall effect seems robust against changes in substrate and capping layer with only little deviations. Furthermore, the dependence of the quantum anomalous Hall effect on the thickness of the layers is investigated. Between 5-8 nm thickness the material typically transitions from a 2D topological insulator with hybridized top and bottom surface states to a 3D topological insulator. A set of samples with 6 nm, 8 nm, and 9 nm thickness exhibits the quantum anomalous Hall effect, while 5 nm and 15 nm thick layers show significant bulk contributions. The analysis of the longitudinal and Hall conductivity during the reversal of magnetization reveals distinct differences between different thicknesses. The 6 nm thick layer shows scaling consistent with the integer quantum Hall effect, while the 9 nm thick layer shows scaling expected for the topological surface states of a 3D topological insulator. The unique scaling of the 9 nm thick layer is of particular interest as it may be a result of axion electrodynamics in a 3D topological insulator. Subsequently, the influence of V doping on the structural and magnetic properties of the host material is studied systematically. Similarly to Bi alloying, increased V doping seems to flatten the layer surface significantly. With increasing V content, Te bonding partners are observed to increase simultaneously in a 2:3 ratio as expected for V incorporation on group-V sites. The linear contraction of the in-plane and out-of-plane lattice constants with increasing V doping is quantitatively consistent with the incorporation of V\(^{3+}\) ions, possibly mixed with V\(^{4+}\) ions, at the group-V sites. This is consistent with SQUID measurements showing a magnetization of 1.3 \(\mu_B\) per V ion. Finally, magnetically doped topological insulator heterostructures are fabricated and studied in magneto-transport. Trilayer heterostructures with a non-magnetic (Bi,Sb)\(_2\)Te\(_3\) layer sandwiched between two magnetically doped layers are predicted to host the axion insulator state if the two magnetic layers are decoupled and in antiparallel configuration. Magneto-transport measurements of such a trilayer heterostructure with 7 nm undoped (Bi,Sb)\(_2\)Te\(_3\) between 2 nm thick layers doped with 1.5 at.% V exhibit a zero Hall plateau representing an insulating state. Similar results in the literature were interpreted as axion insulator state, but in the absence of a measurement showing the antiparallel magnetic orientation other explanations for the insulating state cannot be ruled out. Furthermore, heterostructures including a 2 nm thin, highly V doped layer region show an anomalous Hall effect of opposite sign compared to previous samples. A dependency on the thickness and position of the doped layer region is observed, which indicates that scattering at the interfaces causes contributions to the anomalous Hall effect of opposite sign compared to bulk scattering effects. Many interesting phenomena in quantum anomalous Hall insulators as well as axion insulators are still not unambiguously observed. This includes Majorana bound states in quantum anomalous Hall insulator/superconductor hybrid systems and the topological magneto-electric effect in axion insulators. The limited observation temperature of the quantum anomalous Hall effect of below 1 K could be increased in 3D topological insulator/magnetic insulator heterostructures which utilize the magnetic proximity effect. The main achievement of this thesis is the reproducible growth and characterization of (V,Bi,Sb)2Te3 layers exhibiting the quantum anomalous Hall effect. The detailed study of the structural requirements of the quantum anomalous Hall effect and the observation of the unique axionic scaling behavior in 3D magnetic topological insulator layers leads to a better understanding of the nature of this new quantum state. The high-precision measurements of the quantum anomalous Hall effect reporting the smallest deviation from the von Klitzing constant are an important step towards the realization of a zero-field quantum resistance standard. N2 - Das Thema dieser Arbeit ist die Herstellung und Charakterisierung von Schichten des magnetischen topologischen Isolators (V,Bi,Sb)\(_2\)Te\(_3\), die den Quanten anomalen Hall-Effekt zeigen. Die Hauptaufgabe war die experimentelle Realisierung des Quanten anomalen Hall-Effekts, welcher nur in Schichten mit bestimmten strukturellen, elektronischen und magnetischen Eigenschaften beobachtet wird. Diese Eigenschaften wurden ermittelt und ihr Einfluss genau analysiert. Als Erstes wurden die optimalen Bedingungen für das Wachstum von reinen Bi\(_2\)Te\(_3\) und Sb\(_2\)Te\(_3\) Kristallschichten und die resultierende strukturelle Qualität untersucht. Die kristalline Qualität von Bi\(_2\)Te\(_3\) verbessert sich signifikant bei hohen Wachstumstemperaturen, welche die Neigung der Domänen verringern und Zwillingsdefekte reduzieren. Als optimale Wachstumstemperatur wurde 260\(^{\circ}\)C ermittelt, ausreichend niedrig um Desorption zu vermeiden während eine hohe Kristallqualität erhalten bleibt. Die Wachstumstemperatur von Sb\(_2\)Te\(_3\) hat einen geringeren Einfluss auf die Kristallqualität. Temperaturen unter 230\(^{\circ}\)C sind allerdings nötig um erhebliche Desorption zu vermeiden. Ein geringer Haftkoeffizient wurde besonders bei der Nukleation auf der Si(111)-H Oberfläche beobachtet und verhindert das Zusammenwachsen von Inseln zu einer homogenen Schicht. Der Einfluss des Substrattyps, der Fehlorientierung der Oberfläche und der Ausheizsequenz auf das Wachstum von Bi\(_2\)Te\(_3\) Schichten wurde untersucht. Die Ausrichtung der Schicht ändert sich je nach Winkel der Fehlorientierung und der Ausheilsequenz: Typischerweise orientieren sich die Ebenen der Schicht parallel zu den Si(111) Ebenen, was aufgrund des Transfers der Stapelfolge vom Substrat zur Schicht an den Stufenkanten die Unterdrückung von Zwillingsdefekte verbessert. Andererseits führt diese Orientierung zu Anti-Phasen-Domänen durch die Verschiebung an den Stufenkanten und zu einer gestuften Oberflächenmorphologie. Für bestimmte Substratpräparationen richtet sich die Schicht jedoch parallel zur Oberfläche aus. Diese Orientierung verhindert Verschiebungen an Stufenkanten und damit Anti-Phasen-Domänen. Dies führt aufgrund der langreichweitigen Ordnung zu sehr schmalen Bragg-Reflexen in XRD rocking curve Diffraktogrammen. Weiterhin führen raue Fe:InP(111):B Substrate zu einer starken Unterdrückung von Zwillingsdefekten und aufgrund der besseren Gitteranpassung zu einer deutlich verringerten Verdrehung der Domänen. Als Nächstes wurde das magnetisch dotierte V\(_z\)(Bi\(_{1−x}\)Sb\(_x\))\(_{2−z}\)Te\(_3\) untersucht mit dem Ziel den Quanten anomalen Hall-Effekt zu realisieren. Die Zugabe von V und Bi zu Sb\(_2\)Te\(_3\) führt zu einer effizienten Nukleation auf der Si(111)-H Oberfläche und einer geschlossenen, homogenen Schicht. Magnetotransport Messungen der Schichten ergeben einen messbaren anomalen Hall-Widerstand deutlich unter der von-Klitzing-Konstanten. Die Beobachtung des Quanten anomalen Hall-Effekts setzt eine vollständige Unterdrückung der defekt-induzierten, parasitären Leitfähigkeit im Inneren der Schicht voraus. Dies kann durch die Optimierung der Dicke, Zusammensetzung und Wachstumsbedingungen der Schicht erreicht werden. Beobachtungen zeigen, dass die Wachstumstemperatur die strukturelle Qualität stark beeinflusst. Erhöhte Temperaturen erzielen größere Inseln, eine verbesserte kristalline Orientierung und weniger Zwillingsdefekte. Andererseits wird Desorption von überwiegend Sb beobachtet, was sich auf die Dicke, Zusammensetzung und Reproduzierbarkeit der Schichten auswirkt. Bei 190\(^{\circ}\)C kann Desorption vermieden werden, was eine präzise Kontrolle über Schichtdicke und Zusammensetzung des quaternären Verbunds ermöglicht, während eine hohe strukturelle Qualität erhalten bleibt. Es ist besonders wichtig das Bi/Sb Verhältnis zu optimieren, da durch das Legieren des n-Typ Bi\(_2\)Te\(_3\) mit dem p-Typ Sb\(_2\)Te\(_3\) bei einem bestimmten Verhältnis Ladungsneutralität erzielt wird. Dies ist nötig um die Leitung im Inneren der Schicht vollständig zu unterdrücken und die Fermikante in die magnetische Austauschlücke zu schieben. Der Sb Gehalt x beeinflusst außerdem die Gitterkonstante a in der Ebene deutlich, im Gegensatz zur Gitterkonstante c in Wachstumsrichtung. Mit Hilfe dieses Zusammenhangs kann x selbst in dünnen Schichten unter 10 nm Dicke, wie sie für den Quantum anomalen Hall-Effekt benötigt werden, genau bestimmt werden. Der Sb Gehalt x beeinflusst weiterhin die Oberflächenmorphologie deutlich: mit steigenden x verringert sich die Inselgröße und die RMS Rauigkeit wächst um bis zu einem Faktor 4 zwischen x = 0 und x = 1. Eine Probenserie mit x zwischen 0,56−0,95 wurde hergestellt, wobei darauf geachtet wurde eine konstante Dicke von 9 nm und eine Dotierkonzentration von 2 at.% V beizubehalten. Magnetotransport Messungen bei 4,2K zeigen Ladungsneutra- lität bei x = 0,86. Der maximale anomale Hall-Widerstand von 0,44 h/e\(^2\) wird bei x = 0,77 nahe der Ladungsneutralität beobachtet. Wird die Messtemperatur auf 50 mK reduziert, steigt der anomale Hall-Widerstand signifikant an. Mehrere Proben mit x in einem schmalen Bereich von 0,76−0,79 zeigen den Quanten anomalen Hall-Effekt mit einem Hall-Widerstand, der die von-Klitzing-Konstante erreicht, und verschwindendem longitudinalen Widerstand. Die Realisierung des Quantum anomalen Hall-Effekts als erste Gruppe in Europa ermöglichte es uns die elektrischen und magnetischen Eigenschaften der Proben in Zusammenarbeit mit anderen Gruppen zu untersuchen. In Kollaboration mit der Physikalisch-Technische Bundesanstalt wurden Hochpräzisionsmessungen mit detaillierter Fehleranalyse durchgeführt und eine relative Abweichung von der von-Klitzing-Konstante von (0,17\(\pm\)0,25)*10\(^{−6}\) erzielt. Dieser Wert wurde als kleinster und genauester Wert publiziert, was die hohe Qualität der zur Verfügung gestellten Proben zeigt. Dieses Ergebnis ebnet den Weg für die Anwendung von magnetischen topologischen Isolatoren als Widerstand Standards ohne Magnetfeld. In enger Zusammenarbeit mit der Transport Gruppe in der EP3 wurden nichtlokale Magnetotransport Messungen bei 15mK durchgeführt. Das Ergebnis beweist, dass Transport durch chirale Randkanäle erfolgt. Die detaillierte Analyse kleiner Anomalien in Transport Messungen offenbart Instabilitäten in der magnetischen Phase selbst bei 15 mK. Der zeitabhängige Charakter dieser Anomalien weist auf superparamagnetische Anteile in der nominell ferromagnetischen Phase hin. Als nächstes wurde der Einfluss der Deckschicht und des Substrattyps auf die strukturellen Eigenschaften und die Auswirkungen auf den Quanten anomalen Hall-Effekt untersucht. Dazu wurde eine Schicht auf halbisolierendem Fe:InP(111)B Substrat unter den zuvor optimierten Wachstumsbedingungen gewachsen. Dies führt zu einer deutlich erhöhten kristallinen Qualität mit einem verringerten Verdrehungswinkel von 5,4\(^{\circ}\) auf 1,0\(^{\circ}\). Weiterhin wurde eine Schicht ohne schützende Deckschicht auf Si gewachsen und, nachdem ausreichend Zeit für mögliche Degradation vergangen war, gemessen. Die Schicht auf Si ohne Deckschicht zeigt perfekte Quantisierung, während die Schicht auf InP eine Abweichung von etwa 5% aufweist. Ursache könnte die höhere kristalline Qualität sein, Variationen in z.B. Sb Gehalt könnten jedoch auch eine Rolle spielen. Insgesamt scheint der Quanten anomale Hall-Effekt robust gegenüber Änderungen des Substrats und der Deckschicht zu sein. Des Weiteren wurde die Abhängigkeit des Quanten anomalen Hall-Effekts von der Schichtdicke untersucht. Zwischen 5−8 nm Dicke wechselt das Material typischerweise von einem 2D topologischen Isolator mit hybridisierten oberen und unteren Oberflächenzustand zu einem 3D topologischen Isolator. Eine Probenreihe mit 6 nm, 8 nm und 9 nm Schichtdicke zeigt den Quanten anomalen Hall- Effekt, während 5 nm und 15 nm dicke Schichten deutliche Beiträge aus dem Volumen haben. Die Analyse der longitudinalen- und Hall-Leitfähigkeit während der Umkehrung der Magnetisierung offenbart eindeutige Unterschiede. Die 6 nm dicke Schicht zeigt ein Skalierungsverhalten konsistent mit dem ganzzahligen Quanten- Hall-Effekt, die 9 nm dicke Schicht dagegen zeigt das erwartete Skalierungsverhalten für die topologischen Oberflächenzustände eines 3D topologischen Isolators. Das besondere Skalierungsverhalten der 9 nm dicken Schicht ist von besonderem Interesse, da es der axionischen Elektrodynamik in einem 3D topologischen Isolator entspringen könnte. Anschließend wird der Einfluss von V Dotierung auf die strukturellen und magnetischen Eigenschaften der Schichten systematisch untersucht. Ähnlich wie das Legieren mit Bi, scheint V Dotieren die Oberfläche deutlich zu glätten. Mit steigenden V Gehalt erhöht sich die Zahl der Te Bindungspartner simultan im 2:3 Verhältnis, wie erwartet für den Einbau von V auf Gruppe-V Plätzen. Die lineare Kontraktion der Gitterkonstanten in der Ebene und senkrecht dazu mit steigender V Dotierung ist quantitativ konsistent mit dem Einbau von V\(^{3+}\) Ionen, möglicherweise gemischt mit V\(^{4+}\) Ionen, auf Gruppe-V Plätzen. Dies ist konsistent mit SQUID Messungen die eine Magnetisierung von 1,3 \(\mu_B\) pro V Ion zeigen. Schließlich werden magnetisch dotierte topologische Isolator Heterostrukturen hergestellt und in Magnetotransport Messungen charakterisiert. Der Axion-Isolator Zustand wurde in dreischichtigen Heterostrukturen mit einer nichtmagnetischen (Bi,Sb)\(_2\)Te\(_3\) Lage zwischen zwei magnetischen Schichten vorhergesagt, falls die beiden magnetischen Lagen entkoppelt sind und in antiparalleler Ausrichtung vorliegen. Magnetotransport Messungen solcher dreischichtigen Heterostrukturen mit 7 nm undotiertem (Bi,Sb)\(_2\)Te\(_3\) zwischen jeweils 2 nm dicken dotierten Schichten mit 1,5 at.% V zeigen ein Null Hall-Plateau, das einen isolierenden Zustand repräsentiert. Ähnliche Ergebnisse in der Literatur wurden als Axion-Isolator Zustand interpretiert, jedoch können andere Erklärungen ohne eine direkten Messung der antiparallelen magnetischen Orientierung nicht ausgeschlossen werden. Weiterhin zeigen Heterostrukturen mit einer 2 nm dünnen, hoch V dotierten Schicht einen anomalen Hall-Effekt mit entgegengesetzten Vorzeichen im Vergleich zu vorhergehenden Proben. Die Abhängigkeit von der Dicke und Position dieser Schicht könnte darauf hindeuten, dass Streuprozesse an den Grenzflächen einen Beitrag zum anomalen Hall-Effekt entgegengesetzt zu den Volumenstreuprozessen verursachen. Viele interessante Phänomene in Quanten anomalen Hall Isolatoren sowie Axion- Isolatoren sind noch nicht eindeutig beobachtet worden. Dies schließt gebundene Majorana-Zustände in Quanten anomalen Hall Isolator/Supraleiter Hybridsystemen und den topologischen magneto-elektrischen Effekt in Axion-Isolatoren ein. Die limitierte Beobachtungstemperatur des Quanten anomalen Hall-Effekts von unter 1 K könnte in Heterostrukturen aus 3D topologischen Isolator und magnetischen Isolator Schichten welche den magnetischen Proximity-Effekt nutzen erhöht werden. Das wichtigste Ergebnis dieser Arbeit ist das reproduzierbare Wachstum und die Charakterisierung von (V,Bi,Sb)\(_2\)Te\(_3\) Schichten die den Quanten anomalen Hall-Effekt zeigen. Die detaillierte Untersuchung der strukturellen Voraussetzungen und die Beobachtung des besonderen axionischen Skalierungsverhaltens in 3D magnetischen Isolatorschichten führt zu einem besseren Verständnis dieses neuen Quantenzustands. Die Hochpräzisionsmessungen des Quanten anomalen Hall-Effekts mit der geringsten Abweichung von der von-Klitzing-Konstanten sind ein wichtiger Schritt zur Realisierung eines Widerstand-Standards basierend auf Quantisierung ohne magnetischem Feld. KW - Bismutverbindungen KW - Topologischer Isolator KW - Molekularstrahlepitaxie KW - Quanten anomalen Hall-Effekt KW - Quantum anomalous Hall effect Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-211666 ER - TY - THES A1 - Vogt, Matthias Guido T1 - Elektronische Eigenschaften von Wabengittern mit starker Spin-Bahn-Kopplung T1 - Electronic Properties of honeycomb lattices with strong spin-orbit coupling N2 - Im Rahmen dieser Arbeit wurden die elektronischen Eigenschaften von Graphen auf Metalloberflächen mittels Rastertunnelmikroskopie und Quasiteilcheninterferenz (englisch quasiparticle interference, QPI)-Messungen untersucht. Durch das Verwenden schwerer Substrate sollte die Spin-Bahn-Wechselwirkung des Graphen verstärkt werden und damit eine Bandlücke am K-Punkt der Bandstruktur mittels QPI beobachtet werden. Um das Messen von QPI auf Graphen zu testen, wurde auf der Oberfläche eines SiC(0001)-Kristalls durch Erhitzen Graphen erzeugt und mit dem Rastertunnelmikroskop untersucht. Dieses System wurde schon ausführlich in der Literatur beschrieben und bereits bekannte QPI-Messungen von Streuringen, die auf den Dirac-Kegeln des Graphen am K-Punkt basieren, konnte ich auf gr/SiC(0001) in guter Qualität erfolgreich reproduzieren. Anschließend wurde Graphen nach einem wohlbekannten Verfahren durch Aufbringen von Ethylen auf ein erhitztes Ir(111)-Substrat erzeugt. Dieses gr/Ir(111)-System diente auch als Grundlage für Interkalationsversuche von Bismut (gr/Bi/Ir(111)) und Gadolinium (gr/Gd/Ir(111)) zwischen das Graphen und das Substrat. Auf gr/Bi/Ir(111) wurde ein schon aus der Literatur bekanntes Netzwerk aus Versetzungslinien beobachtet, dem zusätzlich eine Temperaturabhängigkeit nachgewiesen werden konnte. Beim Versuch, Gadolinium zu interkalieren, wurden zwei verschieden Oberflächenstrukturen beobachtet, die auf eine unterschiedlich Anordnung bzw. Menge des interkalierten Gadoliniums zurückzuführen sein könnten. Auf keinem dieser drei Systeme konnten allerdings Streuringe mittels QPI beobachtet werden. Als Vorbereitung der Interkalation von Gadolinium wurden dessen Wachstum und magnetische Eigenschaften auf einem W(110)-Kristall untersucht. Dabei konnte eine aus der Literatur bekannte temperaturabhängige Austauschaufspaltung reproduziert werden. Darüber hinaus konnten sechs verschieden magnetische Domänen beobachtet werden. Zusätzlich sind auf der Oberfläche magnetische Streifen auszumachen, die möglicherweise auf einer Spinspirale basieren. Als Grundlage für die mögliche zukünftige Erzeugung Graphen-artiger Molekülgitter wurde das Wachstum von H-TBTQ und Me-TBTQ auf Ag(111) untersucht. Die Moleküle richten sich dabei nach der Oberflächenstruktur des Silber aus und bilden längliche Inseln, deren Kanten in drei Vorzugsrichtungen verlaufen. Auf H-TBTQ wurde zudem eine zweite, Windmühlen-artige Ausrichtung der Moleküle auf der Oberfläche beobachtet. Auf den mit den Molekülen bedeckten Stellen der Oberfläche wurde eine Verschiebung des Ag-Oberflächenzustands beobachtet, die mit einem Ladungstransfer vom Ag(111)-Substrat auf die TBTQ-Moleküle zu erklären sein könnte. N2 - In this thesis, the electronic properties of graphene on metal surfaces were investigated by scanning tunneling microscopy and quasiparticle interference (QPI) measurements. In order to enhance the spin orbital interaction of the graphene and possibly observe a band gap at the K-point of the band structure via QPI, substrates with heavy atoms were used. To test the ability to measure QPI on graphene, graphene was produced on the surface of a SiC(0001) crystal by heating and examined with a scanning tunneling microscope. This system has already been described in detail in the literature and I was able to successfully reproduce QPI measurements of clearly recognizable scattering rings, which are due to the Dirac cones of the graphene at the K-point Afterwards, graphene was produced by a well-known process by applying ethylene to a heated Ir(111) substrate. This gr/Ir(111) system also served as a basis for intercalation experiments of bismuth (gr/Bi/Ir(111)) and gadolinium (gr/Gd/Ir(111)) between the graphene and the substrate. On gr/Bi/Ir(111), a network of dislocation lines known from literature was observed, which also showed a temperature dependence. In the attempt to intercalate gadolinium, two different surface structures were observed which could be due to a different arrangement or quantity of the intercalated gadolinium. However, on none of these three systems scattering rings were observed by QPI. In preparation for the intercalation of gadolinium, its growth and magnetic properties were investigated on a W(110) substrate. A temperature-dependent exchange splitting of the surface density of states known from the literature could be reproduced. In addition, six different magnetic domains and magnetic stripes were observed on the surface, which may be based on a spin spiral. The growth of H-TBTQ and Me-TBTQ on Ag(111) was investigated as a basis for a possible subsequent generation of graphene-like molecular lattices in the future. The molecules are aligned to the surface structure of the silver and form elongated islands with edges in three preferred directions. H-TBTQ also appeared in a second, windmilllike orientation of the molecules on the surface. A shift of the Ag surface state was observed on the surface areas covered by the molecules, which might be explained by a charge transfer from the Ag(111) substrate to the TBTQ molecules. KW - Spin-Bahn-Wechselwirkung KW - Graphen KW - Rastertunnelmikroskopie KW - Wabengitter KW - Tribenzotriquinacen KW - Quasiteilcheninterferenz Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207506 ER - TY - THES A1 - Anneser, Katrin T1 - Elektrochemische Doppelschichtkondensatoren zur Stabilisierung fluktuierender photovoltaischer Leistung T1 - Electric double layer capacitors for stabilizing intermittent photovoltaic power N2 - Der Ausbau der regenerativen Energiequellen führt vermehrt zu unvorhersehbaren Schwankungen der erzeugten Leistung, da Windkraft und Photovoltaik von natürlichen Bedingungen abhängen. Gerade Kurzzeitfluktuationen im Sekunden- bis Minutenbereich, die bei Solarzellen durch die Verschattung von vorüberziehenden Wolken zustande kommen, wird bislang wenig Beachtung geschenkt. Kurzzeitspeicher müssen eine hohe Zyklenstabilität aufweisen, um zur Glättung dieser Leistungsfluktuationen in Frage zu kommen. Im Rahmen der vorliegenden Dissertation wurden elektrochemische Doppelschichtkondensatoren für die Kopplung mit Siliziumsolarzellen und organischen Solarmodulen mit Hilfe von Simulationen und Messungen untersucht. Zusätzlich wurden grundlegende Fragestellungen zur Prozessierung und Alterung von Doppelschichtkondensatoren im Hinblick auf ein in der Literatur bereits diskutiertes System betrachtet, das beide Komponenten in einem Bauteil integriert - den sogenannten photocapacitor. Um die Druckbarkeit des gesamten elektrochemischen Doppelschichtkondensators zu ermöglichen, wurde der konventionell verwendete Flüssigelektrolyt durch einen Polymer-Gel-Elektrolyten auf Basis von Polyvinylalkohol und einer Säure ersetzt. Durch eine Verbesserung der Prozessierung konnte ein größerer Anteil der spezifischen Fläche der porösen Kohlenstoffelektroden vom Elektrolyten benetzt und somit zur Speicherung genutzt werden. Die Untersuchungen zeigen, dass mit Polymer-Gel-Elektrolyten ähnliche Kapazitäten erreicht werden wie mit Flüssigelektrolyten. Im Hinblick auf die Anwendung im gekoppelten System muss der elektrochemische Doppelschichtkondensator den gleichen Umweltbedingungen hinsichtlich Temperatur und Luftfeuchte standhalten wie die Solarzelle. Hierzu wurden umfangreiche Alterungstests durchgeführt und festgestellt, dass die Kapazität zwar bei Austrocknung des wasserhaltigen Polymer-Gel-Elektrolyten sinkt, bei einer Wiederbefeuchtung aber auch eine Regeneration des Speichers erfolgt. Zur passenden Auslegung des elektrochemischen Doppelschichtkondensators wurde eine detaillierte Analyse der Leistungsfluktuationen durchgeführt, die mit einem eigens entwickelten MPP-Messgerät an organischen Solarmodulen gemessen wurden. Anhand der Daten wurde analysiert, welche Energiemengen für welche Zeit im Kurzzeitspeicher zwischengespeichert werden müssen, um eine effiziente Glättung der ins Netz einzuspeisenden Leistung zu erreichen. Aus der Statistik der Fluktuationen wurde eine Kapazität berechnet, die als Richtwert in die Simulationen einging und dann mit anderen Kapazitäten verglichen wurde. Neben einem idealen MPP-Tracking für verschiedene Arten von Solarzellen und Beleuchtungsprofilen konnte die Simulation auch die Kopplung aus Solarzelle und elektrochemischem Doppelschichtkondensator mit zwei verschiedenen Betriebsstrategien nachbilden. Zum einen wurde ein fester Lastwiderstand genutzt, zum anderen eine Zielspannung für den Kurzzeitspeicher und somit auch die Solarzelle vorgegeben und der Lastwiderstand variabel so angepasst, dass die Zielspannung gehalten wird. Beide Betriebsmethoden haben einen Energieverlust gegenüber der MPP-getrackten Solarzelle zu verzeichnen, führen aber zu einer Glättung der Leistung des gekoppelten Systems. Die Simulation konnte für Siliziumsolarzellen mit einem Demonstratorversuch im Labor und für organische Solarzellen unter realen Bedingungen validiert werden. Insgesamt ergibt sich eine vielversprechende Glättung der Leistungsfluktuationen von Solarzellen durch den Einsatz von elektrochemischen Doppelschichtkondensatoren. N2 - The increased usage of regenerative energy sources leads to more unpredictable fluctuations in power output, as wind power and photovoltaics depend on natural conditions. Especially short-term fluctuations in the range of seconds to minutes, which occur in solar cells due to the shading by passing clouds, have received little attention so far. Corresponding short-term storage units that can be used to smooth these power fluctuations must have a high cycle stability. In the scope of this thesis the suitability of electrochemical double layer capacitors for coupling with silicon solar cells and organic solar modules was investigated with simulations and measurements. Processing methods and aging of electrochemical double layer capacitors in respect to an integrated system consisting of both components - already discussed in the literature as the so-called photocapacitor - were considered. As the liquid electrolyte was replaced by a polymer gel electrolyte based on polyvinyl alcohol and an acid in order to enable printability of the entire electrochemical double-layer capacitor. An increase of the capacitance to the level of the capacitance for electrodes with liquid electrolytes was achieved by improved processing in which a larger proportion of the specific area of the porous carbon electrodes could be wetted by the electrolyte and thus used for storage. In the application as coupled system the electrochemical double-layer capacitor must withstand the same environmental conditions with regard to temperature and humidity as the solar cell. Extensive aging tests were carried out and it was found that, although the capacitance decreases when the water-containing polymer gel electrolyte dries out, remoistening also regenerates the storage capacitance. A detailed analysis of the power fluctuations, which were measured under real conditions with small organic solar modules using a specially developed MPP measuring device, was carried out to determine the appropriate characteristics of the electrochemical double layer capacitor. Using a mathematically smoothed mean curve, it was determined which amounts of energy have to be stored in the short-term storage device for which time in order to achieve the smoothed curve. From the statistics of the fluctuations a capacitance could be calculated which was used as a guide value in the simulations and could then be compared to the impact of other capacities. In addition to ideal MPP tracking for different types of solar cells and lighting profiles, the simulation was also able to model the coupling of solar cell and electrochemical double layer capacitor with two different operating strategies. On the one hand a fixed load resistance was used, on the other hand a target voltage for the short-term storage device and thus also for the solar cell was specified. The load resistance was variably adapted so that the target voltage was reached. Both operating methods show an energy loss compared to the MPP tracked solar cell without storage component, but lead to smoothing of the power output of the coupled system. The simulation could be validated for silicon solar cells with a demonstrator test in the laboratory and for organic solar cells on the external test setup under real conditions. Overall, the use of electrochemical double layer capacitors results in a promising smoothing of the power fluctuations of solar cells. KW - Energie KW - Photovoltaik KW - Energiespeicher Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-199339 ER - TY - THES A1 - Halbig, Benedikt T1 - Surface Raman Spectroscopy on Ordered Metal Adsorbates on Semiconductor Substrates and Thin Intermetallic Films T1 - Oberflächen-Raman-Spektroskopie an geordneten Metalladsorbaten auf Halbleitersubstraten und dünnen intermetallischen Filmen N2 - Surface systems attract great scientific attention due to novel and exotic properties. The atomically structured surfaces lead to a reduced dimensionality which alters electronic correlations, vibrational properties, and their impact on each other. The emerging physical phenomena are not observed for related bulk materials. In this thesis, ordered (sub)monolayers of metal atoms (Au and Sn) on semiconductor substrates (Si(111) and Ge(111)) and ultrathin intermetallic films (CePt5 and LaPt5) on metal substrate (Pt(111)) are investigated by polarized in situ surface Raman spectroscopy. The surface Raman spectra exhibit features of specific elementary excitations like surface phonons and electronic excitations, which are suitable to gain fundamental insights into the surface systems. The Au-induced surface reconstructions (5x2) and (r3xr3) constitute quasi-one- and two-dimensional Au structures on the Si(111) substrate, respectively. The new reconstruction-related Raman peaks are analyzed with respect to their polarization and temperature behavior. The Raman results are combined with firstprinciples calculations to decide between different proposed structural models. The Au-(5x2)/Si(111) reconstruction is best described by the model of Kwon and Kang, while for Au-(r3xr3)/Si(111) the conjugate honeycomb-chained-trimer model is favored. The Sn-induced reconstructions with 1/3 monolayer on Ge(111) and Si(111) are investigated to reveal their extraordinary temperature behavior. Specific surface phonon modes are identified that are predicted within the dynamical fluctuation model. Contrary to Sn/Si(111), the corresponding vibrational mode of Sn/Ge(111) exhibits a nearly harmonic character. The reversible structural phase transition of Sn/Ge(111) from (r3xr3) to (3x3) is observed, while no phase transition is apparent for Sn/Si(111). Moreover, Raman spectra of the closely related systems Sn-(2r3x2r3)/Si(111) and thin films of a-Sn as well as the clean semiconductor surfaces Si(111)-(7x7) and Ge(111)-c(2x8) are evaluated and compared. The CePt5/Pt(111) system hosts 4f electrons whose energy levels are modified by the crystal field and are relevant for a description of the observed Kondo physics. In contrast, isostructural LaPt5/Pt(111) has no 4f electrons. For CePt5/Pt(111), distinct Raman features due to electronic Raman scattering can be unambiguously related to transitions between the crystal-field states which are depth-dependent. This assignment is supported by comparison to LaPt5/Pt(111) and group theoretical considerations. Furthermore, the vibrational properties of CePt5 and LaPt5 reveal interesting similarities but also striking differences like an unusual temperature shift of a vibration mode of CePt5, which is related to the influence of 4f electrons. N2 - Oberflächensysteme sind durch ihre neuartigen Eigenschaften von großem wissenschaftlichen Interesse. Die reduzierten Dimensionen atomar-strukturierter Oberflächen ändern elektronische Korrelationen, vibronische Eigenschaften und deren gegenseitige Beeinflussung. Entsprechende physikalische Phänomene sind für Volumensysteme unbekannt. In dieser Arbeit werden geordnete Monolagen von Metallatomen (Au und Sn) auf Halbleitersubstraten (Si(111) und Ge(111)) und dünne intermetallische Filme (CePt5 und LaPt5) auf metallischem Substrat (Pt(111)) durch polarisierte in situ Oberflächen-Raman-Spektroskopie untersucht. Die OberflächenRaman-Spektren zeigen spezielle elementare Anregungen, wie Oberflächenphononen und elektronische Anregungen, die fundamentale Einsichten gewähren. Die Au-induzierten Oberflächenrekonstruktionen (5x2) und (w3xw3) bilden jeweils quasi-ein- und zwei-dimensionale Au-Strukturen auf Si(111). Die entstehenden rekonstruktionsbedingten Raman-Peaks werden hinsichtlich ihres Polarisations- und Temperaturverhaltens untersucht. Die Kombination der Raman-Ergebnisse mit firstprinciples-Berechnungen ermöglicht die Unterscheidung zwischen vorgeschlagenen Strukturmodellen. Au-(5x2)/Si(111) wird am besten durch das Modell von Kwon und Kang beschrieben, während für Au-(w3xw3)/Si(111) das conjugate honeycombchained-trimer-Modell bevorzugt wird. Die Sn-induzierten Rekonstruktionen mit 1/3 Monolage auf Ge(111) und Si(111) werden aufgrund ihres außergewöhnlichen Temperaturverhaltens untersucht. Die durch das dynamical fluctuation-Modell vorhergesagten spezifischen Oberflächenphononen werden identifiziert, wobei die entsprechende Vibrationsmode von Sn/Ge(111), im Gegensatz zu Sn/Si(111), nahezu harmonischen Charakter zeigt. Der umkehrbare strukturelle Phasenübergang von (w3xw3) zu (3x3) wird für Sn/Ge(111), jedoch nicht für Sn/Si(111), beobachtet. Außerdem werden Sn-(2w3x2w3)/Si(111) und dünne a-Sn-Filme sowie Si(111)-(7x7) und Ge(111)-c(2x8) untersucht und verglichen. CePt5/Pt(111) enthält 4f-Elektronen, deren Energieniveaus sich durch das Kristallfeld ändern und die zur Beschreibung der Kondo-Physik nötig sind. Strukturgleiches LaPt5/Pt(111) hat hingegen keine 4f-Elektronen. Für CePt5/Pt(111) werden spezifische Raman-Signaturen durch elektronische Raman-Streuung eindeutig identifiziert und Übergängen zwischen tiefenabhängigen Kristallfeldzuständen zugeordnet. Der Vergleich mit LaPt5/Pt(111) und Gruppentheorie stützt die Zuordnung. Die vibronischen Eigenschaften von CePt5 and LaPt5 zeigen neben Gemeinsamkeiten auch Unterschiede wie anormale Temperaturverschiebungen einer CePt5-Vibrationsmode, die auf Wechselwirkungen mit 4f-Elektronen zurückgehen. KW - Raman-Spektroskopie KW - Oberflächenphysik KW - Oberflächenphonon KW - Kristallfeld KW - Surface Raman spectroscopy KW - Ordered metal adsorbates on semiconductor surfaces KW - Thin intermetallic films Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-181385 ER - TY - THES A1 - Schlereth, Raimund T1 - New techniques and improvements in the MBE growth of Hg-containing narrow gap semiconductors T1 - Neue Techniken und Verbesserung des MBE Wachstums Hg-haltiger Halbleiter mit schmaler Bandlücke N2 - The subject of this thesis is the growth of Hg\(_{1-x}\)Cd\(_2\)Te layers via molecular beam epitaxy (MBE). This material system gives rise to a number of extraordinary physical phenomena related to its electronic band structure and therefore is of fundamental interest in research. The main results can be divided into three main areas, the implementation of a temperature measurement system based on band edge thermometry (BET), improvements of CdTe virtual substrate growth and the investigation of Hg\(_{1-x}\)Cd\(_2\)Te for different compositions. N2 - Gegenstand dieser Arbeit ist das Wachstum von Hg\(_{1-x}\)Cd\(_2\)Te-Schichten mittels Molekularstrahlepitaxie (MBE). Die elektronische Bandstruktur dieses Materials führt zu einer Reihe außergewöhnlicher physikalischer Phänomene. Es ist daher für die Forschung von grundlegendem Interesse. Die Ergebnisse lassen sich in drei Hauptbereiche unterteilen: die Implementierung eines Temperaturmessgeräts basierend auf dem Prinzip der Bandkantenthermometrie (BET), die Verbesserung des Wachstums von virtuellen CdTe-Substraten und die Untersuchung von Hg\(_{1-x}\)Cd\(_2\)Te-Schichten für verschiedene Materialkonzentrationen. KW - Halbleiter KW - Band edge thermometry KW - Molekularstrahlepitaxie KW - Molecular Beam Epitaxy KW - Semiconductor Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200790 ER - TY - THES A1 - Langer, Fabian T1 - Wachstum und Charakterisierung von 1,0 eV GaInNAs-Halbleitern für die Anwendung in Mehrfachsolarzellen T1 - Growth and characterization of 1.0 eV GaInNAs-semiconductors for the application in multi-junction solar cells N2 - Im Rahmen dieser Arbeit wurden GaInP/GaAs/GaInNAs 3J-Mehrfachsolarzellen in einem MBE/MOVPE-Hybridprozess hergestellt und untersucht. Der verwendete Hybridprozess, bei dem nur die GaInNAs-Teilsolarzelle mittels MBE hergestellt wird, kombiniert diese beiden Technologien und setzt sie entsprechend ihrer jeweiligen Vorteile ein. Die gezeigten Ergebnisse bestätigen grundsätzlich die Machbarkeit des Hybridprozesses, denn eine Degradation des mittels MBE hergestellten GaInNAs-Materials durch die Atmosphäre im MOVPE-Reaktor konnte nicht festgestellt werden. Dieses Resultat wurde von im Hybridprozess hergestellten 3J-Mehrfachsolarzellen, die GaInNAs-Teilsolarzellen enthalten, bekräftigt. Die offene Klemmspannung einer gezeigten Solarzelle erreichte bereits 2,59 V (AM1.5d) bzw. 2,48 V (AM0) und liegt damit jeweils über einer als Referenz hergestellten 2J-Mehrfachsolarzelle ohne GaInNAs. Die mittlere interne Quanteneffizienz der enthaltenen GaInNAs-Teilsolarzelle liegt bei 79 %. Die Berechnungen auf Grundlage dieser Effizienz unter Beleuchtung mit AM1.5d und unter Beleuchtung mit AM0 zeigten, dass nicht die enthaltene GaInNAs-Teilsolarzelle Strom limitierend wirkt, sondern die mittels MOVPE gewachsene GaInP-Teilsolarzelle. Die experimentell bestimmte Kurzschlussstromdichte der hergestellten Mehrfachsolarzelle ist wegen dieser Limitierung etwas geringer als die der 2J-Referenzsolarzelle. Der MOVPE-Überwachsvorgang bietet zwar noch weiteres Verbesserungspotential, aber es ist naheliegend, dass der Anwachsvorgang auf dem MBE-Material soweit optimiert werden kann, dass die aufgewachsenen GaInP- und GaAs-Schichten frei von Degradation bleiben. Damit bietet der Hybridprozess perspektivisch das Potential günstigere Produktionskosten in der Epitaxie von Mehrfachsolarzellen mit verdünnten Nitriden zu erreichen als es ausschließlich mittels MBE möglich ist. Im Vorfeld zur Herstellung der 3J-Mehrfachsolarzellen wurden umfassende Optimierungsarbeiten des MBE-Prozesses zur Herstellung der GaInNAs-Teilsolarzelle durchgeführt. So wurde insbesondere festgestellt, dass das As/III-Verhältnis während dem Wachstum einen entscheidenden Einfluss auf die elektrisch aktive Dotierung des GaInNAs-Materials besitzt. Die elektrisch aktive Dotierung wiederum beeinflusst sehr stark die Ausdehnung der Raumladungszone in den als p-i-n-Struktur hergestellten GaInNAs-Solarzellen und hat damit einen direkten Einfluss auf deren Stromerzeugung. In der Tendenz zeigte sich eine Zunahme der Stromerzeugung der GaInNAs-Teilsolarzellen bei einer gleichzeitigen Abnahme ihrer offenen Klemmspannung, sobald das As/III-Verhältnis während des Wachstums reduziert wurde. Durch eine sehr exakte Kalibration des As/III-Verhältnisses konnte ein bestmöglicher Kompromiss zwischen offener Klemmspannung und Stromerzeugung gefunden werden. Eine gezeigte GaInNAs-Einfachsolarzelle erreichte eine mittlere interne Quanteneffizienz von 88 % und eine offene Klemmspannung von 341 mV (AM1.5d) bzw. 351 mV (AM0). Berechnungen auf Grundlage der Quanteneffizienz ergaben, dass diese Solarzelle integriert in eine 3J-Mehrfachsolarzelle unter dem Beleuchtungsspektrum AM1.5g eine Stromdichte von 14,2 mA/cm^2 und unter AM0 von 17,6 mA/cm^2 erzeugen würde. Diese Stromdichten sind so hoch, dass diese GaInNAs-Solarzelle die Stromproduktion der GaInP- und GaAs-Teilsolarzellen in einer gängigen Mehrfachsolarzelle erreicht und keine Ladungsträgerverluste auftreten würden. Aufgrund ihrer höheren offenen Klemmspannung gegenüber einer Ge-Teilsolarzelle bietet diese GaInNAs-Teilsolarzelle das Potential die Effizienz der Mehrfachsolarzelle zu steigern. Messungen der Dotierkonzentration in der GaInNAs-Schicht dieser Solarzelle ergaben extrem geringe Werte im Bereich von 1x10^14 1/cm^3 bis 1x10^15 1/cm^3 (p-Leitung). In Ergänzung zu den Optimierungen des As/III-Verhältnisses konnte gezeigt werden, dass sich ein Übergang von p- zu n-Leitung im GaInNAs mit der Verringerung des As/III-Verhältnisses erzeugen lässt. Nahe des Übergangsbereiches wurden sehr geringe Dotierungen erreicht, die sich durch eine hohe Stromproduktion aufgrund der Ausbildung einer extrem breiten Verarmungszone gezeigt haben. Durch eine reduzierte offene Klemmspannung der bei relativ geringen As/III-Verhältnissen hergestellten Solarzellen mit n-leitendem GaInNAs konnte auf das Vorhandensein von elektrisch aktiven Defekten geschlossen werden. Generell konnten die gemessenen elektrisch aktiven Dotierkonzentrationen im Bereich von üblicherweise 10^16 1/cm^3 mit hoher Wahrscheinlichkeit auf elektrisch aktive Kristalldefekte im GaInNAs zurückgeführt werden. Eine Kontamination des Materials mit Kohlenstoffatomen in dieser Größenordnung wurde ausgeschlossen. N2 - In scope of this work GaInP/GaAs/GaInNAs 3J multi-junction solar cells have been produced by a MBE/MOVPE hybrid process and were investigated. The applied hybrid process, which only produces the GaInNAs sub cell by means of MBE, combines both technologies and uses them according to their advantages. The shown results confirm the feasibility of the hybrid process in principle, because a degradation of the GaInNAs material grown by MBE could not be found. This result was reconfirmed by 3J multi-junction solar cells, which contain GaInNAs sub cells. The open circuit voltage of one shown solar cell already reached 2.59 V (AM1.5d) and 2.48 V (AM0), respecitvely and outperformed in terms of voltage a produced 2J multi-junction solar cell without GaInNAs. The averaged internal quantum efficiency of the included GaInNAs sub cell reached 79 \%. The calculations based on this efficiency under illumantion with AM1.5d and under illumination with AM0 showed that not the included GaInNAs sub cell is limiting the current but the by means of MOVPE grown GaInP sub cell. The short current density under experimental conditions is somewhat lower than the one of the 2J reference solar cell due to this limitation. The MOVPE overgrowth indeed offers further potential for optimization, however, it is plausible that the initial growth procedure running on the MBE material can be optimized far enough to the point that the overgrown GaInP and GaAs layer remain degradation free. Thereby, the hybrid process offers perspectively the potential to reach lower production costs in the epitaxy of multi-junction solar cells including diluted nitrides as it is possible with the MBE method only. \newline Previous to the production of the 3J multi-junction solar cells comprehensive optimizations of the MBE process to produce the GaInNAs sub cell have been performed. First and foremost it was found that the As/III ratio during the growth has a critical influence on the electrical active doping of the GaInNAs material. However, the electrical active doping affects the extension of the depletion layer in the as p-i-n structure produced GaInNAs solar cells very strongly, which is directly related to their current generation. In general it was found that the increase of the current generation of the GaInNAs sub cell comes along with a decrease of its open circuit voltage as soon as the As/III ratio during the growth was lowered. Due to a very precise calibration of the As/III ratio a best possible compromise between the open circuit voltage and the current generation was found. A shown GaInNAs single-junction solar cell reached an averaged internal quantum efficiency of 88 \% and an open circuit voltage of 341 mV (AM1.5d) and 351 mV (AM0), respectively. Calculations based on the quantum efficiency showed that this solar cell integrated in a 3J multi-junction solar cell would produce a current density of 14.2 mA/cm$^{2}$ under the illumination spectrum AM1.5g and a current density of 17.6 mA/cm$^{2}$ under AM0. With such high current densities the GaInNAs solar cell reaches the current generation of the GaInP and GaAs sub cells in a current multi-junction solar cell and no charge carrier loss would occur. Due to its increased open circuit voltage, compared to a Ge sub cell, this GaInNAs sub cell indeed offers the potential to increase the efficiency of the multi-junction solar cell. Doping concentration measurements of the GaInNAs layer showed extremly low doping densities in the range between 1x10$^{14}$ 1/cm$^{3}$ and 1x10$^{15}$ 1/cm$^{3}$ (p-conductivity). In addition to the optimization of the As/III ratio we were able to show that a transition of p- to n-type conductivity of the GaInNAs material by reducing the As/III ratio can be induced. Close to the transition region a very low doping was achieved indicated by a high current generation due to the formation of an extreme broad depletion zone. Finding that the open circuit voltage of solar cells with n-type GaInNAs produced with relatively low As/III ratios is reduced, proved the existance of electrical active defects. So we can state, that the measured electrical active doping concentration in the range of typically 1x10$^{16}$ 1/cm$^{3}$ can be traced back to electrical active crystal defects in the GaInNAs layers with high probability. A contamination of the material with carbon atoms in this range was excluded. \newline KW - Mehrfach-Solarzelle KW - Molekularstrahlepitaxie KW - dilute nitride KW - GaInNAs Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200881 ER - TY - THES A1 - Gabel, Judith T1 - Interface Engineering of Functional Oxides: A Photoemission Study T1 - Kontrollierte Manipulation der Grenzflächen in funktionellen oxidischen Heterostrukturen: Eine Photoemissionsstudie N2 - Due to their complex chemical structure transition metal oxides display many fascinating properties which conventional semiconductors lack. For this reason transition metal oxides hold a lot of promise for novel electronic functionalities. Just as in conventional semiconductor heterostructures, the interfaces between different materials play a key role in oxide electronics. The textbook example is the (001) interface between the band insulators LaAlO\(_3\) and SrTiO\(_3\) at which a two-dimensional electron system (2DES) forms. In order to utilize such a 2DES in prospective electronic devices, it is vital that the electronic properties of the interface can be controlled and manipulated at will. Employing photoelectron spectroscopy as well as electronic transport measurements, this thesis examines how such interface engineering can be realized in the case of the LaAlO\(_3\)/SrTiO\(_3\) heterostructure: By photoemission we manage to unambiguously distinguish the different mechanisms by which SrTiO\(_3\) can be doped with electrons. An electronic reconstruction is identified as the driving mechanism to render stoichiometric LaAlO\(_3\)/SrTiO\(_3\) interfaces metallic. The doping of the LaAlO\(_3\)/SrTiO\(_3\) heterointerface can furthermore be finely adjusted by changing the oxygen vacancy \(V_{\mathrm{O}}\) concentration in the heterostructure. Combining intense x-ray irradiation with oxygen dosing, we even achieve control over the \(V_{\mathrm{O}}\) concentration and, consequently, the doping in the photoemission experiment itself. Exploiting this method, we investigate how the band diagram of SrTiO\(_3\)-based heterostructures changes as a function of the \(V_{\mathrm{O}}\) concentration and temperature by hard x-ray photoemission spectroscopy. With the band bending in the SrTiO\(_3\) substrate changing as a function of the \(V_{\mathrm{O}}\) concentration, the interfacial band alignment is found to vary as well. The relative permittivity of the SrTiO\(_3\) substrate and, in particular, its dependence on temperature and electric field is identified as one of the essential parameters determining the electronic interface properties. That is also why the sample temperature affects the charge carrier distribution. The mobile charge carriers are shown to shift toward the SrTiO\(_3\) bulk when the sample temperature is lowered. This effect is, however, only pronounced if the total charge carrier concentration is small. At high charge carrier concentrations the charge carriers are always confined to the interface, independent of the sample temperature. The dependence of the electronic interface properties on the \(V_{\mathrm{O}}\) concentration is also investigated by a complementary method, viz. by electronic transport measurements. These experiments confirm that the mobile charge carrier concentration increases concomitantly to the \(V_{\mathrm{O}}\) concentration. The mobility of the charge carriers changes as well depending on the \(V_{\mathrm{O}}\) concentration. Comparing spectroscopy and transport results, we are able to draw conclusions about the processes limiting the mobility in electronic transport. We furthermore build a memristor device from our LaAlO\(_3\)/SrTiO\(_3\) heterostructures and demonstrate how interface engineering is used in practice in such novel electronic applications. This thesis furthermore investigates how the electronic structure of the 2DES is affected by the interface topology: We show that, akin to the (001) LaAlO\(_3\)/SrTiO\(_3\) heterointerface, an electronic reconstruction also renders the (111) interface between LaAlO\(_3\) and SrTiO\(_3\) metallic. The change in interface topology becomes evident in the Fermi surface of the buried 2DES which is probed by soft x-ray photoemission. Based on the asymmetry in the Fermi surface, we estimate the extension of the conductive layer in the (111)-oriented LaAlO\(_3\)/SrTiO\(_3\) heterostructure. The spectral function measured furthermore identifies the charge carriers at the interface as large polarons. N2 - Aufgrund ihrer komplexen chemischen Struktur weisen Übergangsmetalloxide viele faszinierende Eigenschaften auf, die konventionelle Halbleitermaterialien entbehren und die Potenzial für neuartige elektronische Funktionalitäten bergen. Genauso wie in konventionellen Halbleiterstrukturen kommt dabei den Grenzflächen zwischen den Materialien besondere Bedeutung zu. In der Oxid-Elektronik ist ein Paradebeispiel hierfür die (001)-Grenzfläche zwischen den Bandisolatoren LaAlO\(_3\) und SrTiO\(_3\), an der sich ein zweidimensionales Elektronensystem (2DES) ausbildet. Um solche Elektronensysteme zukünftig in elektronischen Anwendungen zu nutzen, ist es jedoch unabdingbar, dass die elektronischen Eigenschaften der Grenzfläche gezielt kontrolliert und manipuliert werden können. Mittels Photoelektronenspektroskopie sowie Transportmessungen untersucht diese Arbeit am Beispiel der LaAlO\(_3\)/SrTiO\(_3\)-Grenzfläche, wie eine derartige Kontrolle realisiert werden kann. Mithilfe von Photoemissionsexperimenten gelingt es, verschiedene Mechanismen zu unterscheiden, mit denen SrTiO\(_3\) dotiert werden kann. In stöchiometrischen LaAlO\(_3\)/SrTiO\(_3\)-Heterostrukturen kann so die elektronische Rekonstruktion als treibender Mechanismus identifiziert werden, der zur Ausbildung der leitfähigen Grenzschicht führt. Die Dotierung der LaAlO\(_3\)/SrTiO\(_3\)-Heterostruktur kann weiterhin auch durch die kontrollierte Erzeugung von Sauerstofffehlstellen \(V_{\mathrm{O}}\) gezielt gesteuert werden. Die \(V_{\mathrm{O}}\)-Konzentration kann sogar während der Photoemissionsexperimente zielgerichtet variiert werden, wenn die Bestrahlung mit intensivem Röntgenlicht mit einer Sauerstoffbehandlung kombiniert wird. Diese Methode nutzen wir in Folge aus, um in Photoemissionsmessungen mit harter Röntgenstrahlung systematisch zu untersuchen, wie sich das Banddiagramm von SrTiO\(_3\)-basierten Heterostrukturen als Funktion der \(V_{\mathrm{O}}\)-Konzentration und Temperatur ändert. Wir zeigen, dass sich parallel zur Bandverbiegung im SrTiO\(_3\)-Substrat auch die Bandanordnung an der Grenzfläche als Funktion der \(V_{\mathrm{O}}\)-Konzentration ändert. Dabei stellt sich heraus, dass die dielektrische Funktion des SrTiO\(_3\)-Substrats - insbesondere durch ihre starke Abhängigkeit vom elektrischen Feld und Temperatur - maßgeblich die elektronischen Eigenschaften der Grenzfläche bestimmt. Aus diesem Grund hat die Temperatur der Probe Einfluss auf die Ladungsträgerverteilung. Die mobilen Ladungsträger verschieben sich weg von der Grenzfläche tiefer in das Substrat, je niedriger die Temperatur gewählt wird. Dieser Effekt ist jedoch nur bei niedriger Dotierung zu beobachten. Bei hoher Dotierung ist das zweidimensionale Elektronensystem unabhängig von der Temperatur nahe der Grenzfläche lokalisiert. Die Abhängigkeit der elektronischen Eigenschaften von der \(V_{\mathrm{O}}\)-Konzentration wird auch komplementär im elektronischen Transport untersucht. Auch hier steigt die Ladungsträgerdichte simultan zur \(V_{\mathrm{O}}\)-Konzentration. Zugleich ändert sich auch die Mobilität der Ladungsträger. Der direkte Vergleich von Spektroskopie- und Transportmessungen erlaubt Rückschlüsse auf die Prozesse, die die Ladungsträgermobilität begrenzen. Am Beispiel eines LaAlO\(_3\)/SrTiO\(_3\)-basierten Memristors wird darüber hinaus praktisch demonstriert, wie die Kontrolle über die Grenzfläche in neuartigen elektronischen Anwendungen tatsächlich eingesetzt werden kann. Ferner untersucht diese Arbeit, wie die Topologie der Grenzfläche die elektronische Struktur des 2DES beeinflusst: Wir weisen nach, dass analog zur (001)-Grenzfläche auch die (111)-Grenzfläche zwischen LaAlO\(_3\) und SrTiO\(_3\) durch eine elektronische Rekonstruktion dotiert wird. Die Änderung in der Grenzflächentopologie zeigt sich deutlich in der Fermifläche des vergrabenen 2DES, die mittels resonanter Photoemission untersucht wird. Anhand der Asymmetrie der Fermifläche wird überdies die Ausdehnung des Elektronensystems abgeschätzt, wohingegen die Spektralfunktion Hinweise auf die Elektron-Phonon-Kopplung an der Grenzfläche liefert. KW - Übergangsmetalloxide KW - Grenzfläche KW - Strontiumtitanat KW - Heterostruktur KW - Röntgen-Photoelektronenspektroskopie KW - oxide heterostructure KW - interface conductivity KW - oxygen vacancies KW - LaAlO3/SrTiO3 KW - hard x-ray photoemission KW - soft x-ray photoemission Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-192275 ER - TY - THES A1 - Knapp, Alexander Gerhard T1 - Resonant Spin Flip Raman-Spectroscopy of Electrons and Manganese-Ions in the n-doped Diluted Magnetic Semiconductor (Zn,Mn)Se:Cl T1 - Resonante Spin Flip Ramanspektroskopie von Elektronen und Manganionen im n-dotierten verdünnt magnetischen Halbleiter (Zn,Mn)Se:Cl N2 - Main focus of the present dissertation was to gain new insight about the interaction between magnetic ions and the conduction band of diluted magnetic semiconductors. This interaction in magnetic semiconductors with carrier concentrations near the metal-insulator transition (MIT) in an external magnetic field is barely researched. Hence, n-doped Zn1−xMnxSe:Cl samples were studied. Resonant Raman spectroscopy was employed at an external magnetic field between 1T and 7T and a temperature of 1.5K. The resulting magnetization of the material amplifies the splitting of states with opposite spins both in the valence and the conduction band. This is known as the "giant-Zeeman-effect". In this thesis, the resonance of the electron spin flip process, i.e. the enhancement of the signal depending on the excitation energy, was used as an indicator to determine the density of states of the charge carriers. The measured resonance profiles of each sample showed a structure, which consist of two partially overlapping Gaussian curves. The analysis of the Gaussian curves revealed that their respective maxima are separated independent of the magnetic field strenght by about 5 meV, which matches the binding energy of the donor bound exciton (D0, X). A widening of the full width at half maximum of the resonance profile was observed with increasing magnetic field. A detailed analysis of this behavior showed that the donor bound exciton spin flip resonance primarily accounts for the widening for all samples with doping concentrations below the metal insulator transition. A model was proposed for the interpretation of this observation. This is based on the fundamental assumptions of a spatially random distribution of the manganese ions on the group-II sublattice of the ZnSe crystal and the finite extension of the excitons. Thus, each exciton covers an individual quantity of manganese ions, which manifest as a local manganese concentration. This local manganese concentration is normally distributed for a set of excitons and hence, the evaluation of the distribution allows the determination of exciton radii Two trends were identified for the (D0, X) radii. The radius of the bound exciton decreases with increasing carrier concentration as well as with increasing manganese concentration. The determination of the (D0, X) radii by the use of resonant spin flip Raman spectroscopy and also the observation of the behavior of the (D0, X) radius depending on the carrier concentration, was achieved for the first time. For all samples with carrier concentrations below the metal-insulator transition, the obtained (X0) radii are up to a factor of 5.9 larger than the respective (D0, X) radii. This observation is explained by the unbound character of the (X0). For the first time, such an observation could be made by Raman spectroscopy.Beside the resonance studies, the shape of the Raman signal of the electron spin flip was analyzed. Thereby an obvious asymmetry of the signal, with a clear flank to lower Raman shifts, was observed. This asymmetry is most pronounced, when the spin flip process is excited near the (D0, X) resonance. To explain this observation, a theoretical model was introduced in this thesis. Based on the asymmetry of the resonantly excited spin flip signal, it was possible to estimate the (D0, X) radii, too. At external magnetic fields between 1.25T and 7T, the obtained radii lie between 2.38nm and 2.75nm. Additionally, the asymmetry of the electron spin flip signal was observed at different excitation energies. Here it is striking that the asymmetry vanishes with increasing excitation energy. At the highest excitation energy, where the electron spin flip was still detectable, the estimated radius of the exciton is 3.92nm. Beside the observations on the electron spin flip, the resonance behavior of the spin flip processes in the d-shell of the incorporated Mn ions was studied in this thesis. This was performed for the direct Mn spin flip process as well as for the sum process of the longitudinal optical phonon with the Mn spin flip. For the Stokes and anti-Stokes direct spin flip process and for the Stokes sum process, each the resonance curve is described by considering only one resonance mechanism. In contrast, resonance for the sum process in which an anti-Stokes Mn spin flip is involved, consists of two partially overlapping resonances due to different mechanisms. A detailed analysis of this resonance profile showed that for (Zn,Mn)Se at the chosen experimental parameters, an incoming and outgoing resonance can be achieved, separated by a few meV. Hereby, at a specific excitation energy range and a high excitation power, it was possible to achieve an inversion of the anti-Stokes to Stokes intensity, because only the anti-Stokes Mn spin flip process was enhanced resonantly. N2 - Ziel der Dissertation war das Erlangen neuer Erkenntnisse zur Wechselwirkung der magnetischen Ionen und des Leitungsbandes von verdünnten magnetischen Halbleitern. Diese Interaktion bei magnetischen Halbleitern mit Ladungsträgerkonzentration nahe des Metall-Isolator Übergangs (metal-insulator transition MIT) in externen Magnetfeldern ist bisher kaum erforscht. Daher wurden Untersuchung n-dotierte Zn1−xMnxSe:Cl untersucht. Als Analysetechnik wurde die resonante Spin Flip Raman-Spektroskopie bei einem externen Magnetfeld zwischen 1T und 7T und einer Temperatur von 1,5 K angewandt. Durch die entstehende Magnetisierung des Materials werden die Aufspaltungen der Zustände mit entgegengesetzten Spins sowohl im Valenz- als auch im Leitungsband verstärkt. Dies ist als "giant-Zeeman effect" bekannt. In dieser Arbeit wurde die Resonanz des Spin Flip Prozesses, d.h. die Signalerhöhung in Abhängigkeit der Anregungsenergie, als Indikator zur Bestimmung der Ladungsträgerzustandsdichte genutzt. Die gemessenen Resonanzprofile aller Proben zeigten dabei eine Struktur, welche aus sich zwei teilweise überlagernden Gaußkurven bestand. Mit steigendem Magnetfeld wurde eine deutliche Zunahme der Halbwertsbreite der Resonanzprofile beobachtet. Die detaillierte Analyse dieses Verhaltens zeigte, dass für alle Proben mit einer Dotierung unterhalb des Metall-Isolator-Übergangs, die Verbreiterung primär auf den Donor gebundenen Exzitonen Anteil der Resonanzkurve entfällt. Zur Deutung dieser Beobachtung wurde ein Modell entwickelt. Dieses beruht auf der grundlegenden Annahme einer räumlich statistisch Verteilung der Mangan-Ionen auf dem Gruppe-II Untergitter des ZnSe Kristalls, sowie der endlichen Ausdehnung der Exzitonen. Somit erfasst jedes einzelne Exziton eine individuelle Anzahl von Mangan-Ionen, was sich als lokale Mangankonzentration manifestiert. Diese lokale Mangankonzentration normalverteilt für ein Set von Exzitonen und deren Auswertung erlauben einen Rückschluss auf die Radien der Exzitonen. Zwei Trends für die (D0, X) Radien konnten identifiziert werden. Sowohl mit steigender Ladungsträgerkonzentration als auch mit steigendem Mangangehalt nimmt der Radius der gebundenen Exzitonen ab. Es gelangte erstmalig die Bestimmung der (D0, X) Radien mittels resonanter Spin Flip Raman-Spektroskopie und die Beobachtung des Verhaltens der (D0, X) Radien in Abhängigkeit der Ladungsträgerkonzentration. Die ermittelten (X0) Radien sind für die Proben mit Ladungsträgerkonzentrationen unterhalb des Metall-Isolator-Übergangs im Vergleich zu den (D0, X) Radien um einen Faktor von bis zu 5,9 größer. Diese Beobachtung lässt sich durch den ungebundenen Charakter der (X0) erklären. Aufgrund dessen erfasst ein (X0) während seiner Lebenszeit im Vergleich zu einem (D0, X) einen räumlich ausgedehnteren Bereich des Kristalls. Hierdurch konnte erstmalig mittels Raman-Spektroskopie solch eine Beobachtung gemacht werden. Neben den Resonanzuntersuchungen des elektronischen Spin Flips wurde dessen Preakform im Ramanspektrum analysiert. Dabei wurde eine deutliche Asymmetrie des Signals beobachtet, sichtbar als Flanke zu niedrigeren Raman- Verschiebungen. Zur Erklärung dieser Beobachtungen kann ebenfalls das eingeführte Modell angewandt werden. Anhand der Asymmetrie des resonant angeregten Spin Flip Signals konnten hiermit die Radien der (D0, X) bestimmt werden. Zusätzlich wurde die Asymmetrie bei unterschiedlichen Anregungsenergien sichtbar. Hierbei fiel auf, dass diese mit steigender Anregungsenergie abnimmt. Desweiteren wurde zusätzlich zu den Beobachtungen des elektronischen Spin Flips, das Resonanzverhalten des Spin Flips der einzelnen Mn-Ionen in dieser Arbeit untersucht. Dies wurde sowohl für den direkten Mn Spin Flip Prozess, als auch den Summenprozesses aus einem longitudinal optischen Phonon und einem Mn Spin Flip durchgeführt. Jeweils eine Resonanz wurde sowohl für die direkten Stokes und anti-Stokes Prozesse, als auch für den Stokes Summenprozess beobachtet. Im Gegensatz hierzu besteht das Resonanzprofil des Summenprozesses, bei dem ein Anti-Stokes Mn Spin Flip involviert ist, aus zwei sich überlappenden Resonanzanteile. Eine genaue Analyse dieses Resonanzprofils ergab, dass es bei (Zn,Mn)Se und den gewählten experimentellen Parametern möglich ist, sowohl eine eingehende als auch eine ausgehende Resonanz für diesen Summenprozess mit einer Energiedifferenz von wenigen meV zu erhalten. Die zusätzlich auftretende eingehende Resonanz konnte dabei dem optischen Übergang von dem mj = 1/2 Valenzband- zum mj = -1/2 Leitungsbandzustand zugeordnet werden. Die daraufhin folgende Anregung eines LO Phonons führt zu einer Reduzierung der Energie des gestreuten Photons. Dies erzeugt die beobachtete Überlagerung der Resonanzen, gemessen in der Energie der gestreuten Photonen. Hierdurch war es möglich, bei geeigneter Anregungsenergie und hoher Anregungsleistung eine Inversion der Anti-Stokes zu Stokes Intensität zu beobachten, da die eingehende Resonanz in diesem Fall nur für den Anti-Stokes Mn Spin Flip auftrat KW - Raman-Spektroskopie KW - Wide-gap-Halbleiter KW - n-Halbleiter KW - Spin flip KW - Zinkselenid KW - verdünnt magnetische Halbleiter KW - diluted magnetic Semiconductor Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-186099 ER - TY - THES A1 - Ames, Christopher T1 - Molecular Beam Epitaxy of 2D and 3D HgTe, a Topological Insulator T1 - Molekularstrahlepitaxie von 2D und 3D HgTe, ein topologischer Isolator N2 - In the present thesis the MBE growth and sample characterization of HgTe structures is investigated and discussed. Due to the first experimental discovery of the quantum Spin Hall effect (QSHE) in HgTe quantum wells, this material system attains a huge interest in the spintronics society. Because of the long history of growing Hg-based heterostructures here at the Experimentelle Physik III in Würzburg, there are very good requirements to analyze this material system more precisely and in new directions. Since in former days only doped HgTe quantum wells were grown, this thesis deals with the MBE growth in the (001) direction of undoped HgTe quantum wells, surface located quantum wells and three dimensional bulk layers. All Hg-based layers were grown on CdTe substrates which generate strain in the layer stack and provide therefore new physical effects. In the same time, the (001) CdTe growth was investigated on n-doped (001) GaAs:Si because the Japanese supplier of CdTe substrates had a supply bottleneck due to the Tohoku earthquake and its aftermath in 2011. After a short introduction of the material system, the experimental techniques were demonstrated and explained explicitly. After that, the experimental part of this thesis is displayed. So, the investigation of the (001) CdTe growth on (001) GaAs:Si is discussed in chapter 4. Firstly, the surface preparation of GaAs:Si by oxide desorption is explored and analyzed. Here, rapid thermal desorption of the GaAs oxide with following cool down in Zn atmosphere provides the best results for the CdTe due to small holes at the surface, while e.g. an atomic flat GaAs buffer deteriorates the CdTe growth quality. The following ZnTe layer supplies the (001) growth direction of the CdTe and exhibits best end results of the CdTe for 30 seconds growth time at a flux ratio of Zn/Te ~ 1/1.2. Without this ZnTe layer, CdTe will grow in the (111) direction. However, the main investigation is here the optimization of the MBE growth of CdTe. The substrate temperature, Cd/Te flux ratio and the growth time has to be adjusted systematically. Therefore, a complex growth process is developed and established. This optimized CdTe growth process results in a RMS roughness of around 2.5 nm and a FWHM value of the HRXRD w-scan of 150 arcsec. Compared to the literature, there is no lower FWHM value traceable for this growth direction. Furthermore, etch pit density measurements show that the surface crystallinity is matchable with the commercial CdTe substrates (around 1x10^4 cm^(-2)). However, this whole process is not completely perfect and offers still room for improvements. The growth of undoped HgTe quantum wells was also a new direction in research in contrast to the previous n-doped grown HgTe quantum wells. Here in chapter 5, the goal of very low carrier densities was achieved and therefore it is now possible to do transport experiments in the n - and p - region by tuning the gate voltage. To achieve this high sample quality, very precise growth of symmetric HgTe QWs and their HRXRD characterization is examined. Here, the quantum well thickness can now determined accurate to under 0.3 nm. Furthermore, the transport analysis of different quantum well thicknesses shows that the carrier density and mobility increase with rising HgTe layer thickness. However, it is found out that the band gap of the HgTe QW closes indirectly at a thickness of 11.6 nm. This is caused by the tensile strained growth on CdTe substrates. Moreover, surface quantum wells are studied. These quantum wells exhibit no or a very thin HgCdTe cap. Though, oxidization and contamination of the surface reduces here the carrier mobility immensely and a HgCdTe layer of around 5 nm provides the pleasing results for transport experiments with superconductors connected to the topological insulator [119]. A completely new achievement is the realization of MBE growth of HgTe quantum wells on CdTe/GaAs:Si substrates. This is attended by the optimization of the CdTe growth on GaAs:Si. It exposes that HgTe quantum wells grown in-situ on optimized CdTe/GaAs:Si show very nice transport data with clear Hall plateaus, SdH oscillations, low carrier densities and carrier mobilities up to 500 000 cm^2/Vs. Furthermore, a new oxide etching process is developed and analyzed which should serve as an alternative to the standard HCl process which generates volcano defects at some time. However, during the testing time the result does not differ in Nomarski, HRXRD, AFM and transport measurements. Here, long-time tests or etching and mounting in nitrogen atmosphere may provide new elaborate results. The main focus of this thesis is on the MBE growth and standard characterization of HgTe bulk layers and is discussed in chapter 6. Due to the tensile strained growth on lattice mismatched CdTe, HgTe bulk opens up a band gap of around 22 meV at the G-point and exhibits therefore its topological surface states. The analysis of surface condition, roughness, crystalline quality, carrier density and mobility via Nomarski, AFM, XPS, HRXRD and transport measurements is therefore included in this work. Layer thickness dependence of carrier density and mobility is identified for bulk layer grown directly on CdTe substrates. So, there is no clear correlation visible between HgTe layer thickness and carrier density or mobility. So, the carrier density is almost constant around 1x10^11 cm^(-2) at 0 V gate voltage. The carrier mobility of these bulk samples however scatters between 5 000 and 60 000 cm^2/Vs almost randomly. Further experiments should be made for a clearer understanding and therefore the avoidance of unusable bad samples.But, other topological insulator materials show much higher carrier densities and lower mobility values. For example, Bi2Se3 exhibits just density values around 1019 cm^(-2) and mobility values clearly below 5000 cm2/Vs. The carrier density however depends much on lithography and surface treatment after growth. Furthermore, the relaxation behavior and critical thickness of HgTe grown on CdTe is determined and is in very good agreement with theoretical prediction (d_c = 155 nm). The embedding of the HgTe bulk layer between HgCdTe layers created a further huge improvement. Similar to the quantum well structures the carrier mobility increases immensely while the carrier density levels at around 1x10^11 cm^(-2) at 0 V gate voltage as well. Additionally, the relaxation behavior and critical thickness of these barrier layers has to be determined. HgCdTe grown on commercial CdTe shows a behavior as predicted except the critical thickness which is slightly higher than expected (d_c = 850 nm). Otherwise, the relaxation of HgCdTe grown on CdTe/GaAs:Si occurs in two parts. The layer is fully strained up to 250 nm. Between 250 nm and 725 nm the HgCdTe film starts to relax randomly up to 10 %. The relaxation behavior for thicknesses larger than 725 nm occurs than linearly to the inverse layer thickness. A explanation is given due to rough interface conditions and crystalline defects of the CdTe/GaAs:Si compared to the commercial CdTe substrate. HRXRD and AFM data support this statement. Another point is that the HgCdTe barriers protect the active HgTe layer and because of the high carrier mobilities the Hall measurements provide new transport data which have to be interpreted more in detail in the future. In addition, HgTe bulk samples show very interesting transport data by gating the sample from the top and the back. It is now possible to manipulate the carrier densities of the top and bottom surface states almost separately. The back gate consisting of the n-doped GaAs substrate and the thick insulating CdTe buffer can tune the carrier density for Delta(n) ~ 3x10^11 cm^(-2). This is sufficient to tune the Fermi energy from the p-type into the n-type region [138]. In this thesis it is shown that strained HgTe bulk layers exhibit superior transport data by embedding between HgCdTe barrier layers. The n-doped GaAs can here serve as a back gate. Furthermore, MBE growth of high crystalline, undoped HgTe quantum wells shows also new and extended transport output. Finally, it is notable that due to the investigated CdTe growth on GaAs the Hg-based heterostructure MBE growth is partially independent from commercial suppliers. N2 - In der vorliegenden Dissertation wurde das MBE-Wachstum von HgTe Strukturen erforscht und die anschließende Probencharakterisierung durchgeführt und diskutiert. Durch die erste experimentelle Entdeckung des Quanten-Spin-Hall-Effekts (QSHE) in HgTe Quantentrögen hat dieses Materialsystem großes Interesse im Gebiet der Spintronics erfahren. Aufgrund der langen Wachstumshistorie von quecksilberbasierenden Heterostrukturen am Lehrstuhl Experimentelle Physik III der Universität Würzburg sind die Voraussetzungen ausgesprochen gut, um dieses Materialsystem sehr ausführlich und auch in neue Richtungen hin zu untersuchen. Da vor dieser Doktorarbeit fast ausschließlich dotierte HgTe Quantentröge auf verschiedenen Substratorientierungen gewachsen wurden, beschäftigte sich diese Dissertation nun mit dem MBE-Wachstum von undotierten HgTe Quantentrögen, oberflächennahen Quantentrögen und dreidimensionalen Volumenkristallen. Alle quecksilberbasierenden Schichten wurden hierzu auf CdTe Substraten gewachsen, welche tensile Verspannung in den Schichten erzeugten und lieferten daher neue physikalische Effekte. In der selben Zeit wurde weiterhin das Wachstum von (001) CdTe auf n-dotiertem (001) GaAs:Si erforscht, da der japanische Zulieferer der CdTe Substrate eine Lieferengpass hatte aufgrund des Tohoku Erdbebens und seinen verheerenden Folgen im Jahr 2011. Die Erforschung des MBE-Wachstums von (001) CdTe auf (001) GaAs:Si wird im Kapitel 4 behandelt. Zuerst wurde hier die Oberflächenvorbereitung des GaAs:Si Substrates durch thermische Desorption untersucht und ausgewertet. Es stellte sich heraus, dass schnelle, thermische Desorption des GaAs - Oxides mit anschließendem Abkühlen in Zn Atmosphäre die besten Ergebnisse für das spätere CdTe durch kleine Löcher an der Oberfläche liefert, während zum Beispiel ein glatter GaAs Puffer das CdTe Wachstum verschlechtert. Der folgende ZnTe Film verschafft die gewünschte (001) Wachstumsrichtung für CdTe und weist bei 30 Sekunden Wachstumszeit bei einem Flussverhältnis von Zn/Te ~ 1/1.2 die besten Endergebnisse für CdTe auf. Jedoch war die Haupterneuerung hier die Optimierung des CdTe Wachstums. Dafür wurde ein komplexer Wachstumsprozess entwickelt und etabliert. Dieser optimierte CdTe Wachstumsprozess lieferte Ergebnisse von einer RMS Rauigkeit von ungefähr 2.5 nm und FWHMWerte der HRXRD w-Scans von 150 arcsec. Die Defektätzdichte-Messung zeigte weiterhin, dass die Oberflächenkristallinität vergleichbar mit kommerziell erwerbbaren CdTe Substraten ist (um 1x10^4 cm^(-2)). Des Weiteren ist kein niedrigerer Wert für die Halbwertsbreite des w-Scans in der Literatur für diese Wachstumsrichtung aufgeführt. Dies spiricht ebenfalls für die hohe Qualität der Schichten. Jedoch ist dieser Wachstumsprozess noch nicht endgültig ausgereift und bietet weiterhin noch Platz für Verbesserungen. Das Wachstum von undotierten HgTe Quantentrögen war ebenso eine neue Forschungsrichtung im Gegensatz zu den dotierten HgTe Quantentrögen, die in der Vergangenheit gewachsen wurden. Das Ziel hierbei, die Ladungsträgerdichte zu verringern, wurde erreicht und daher ist es nun möglich, Transportexperimente sowohl im n- als auch im p-Regime durchzuführen, indem eine Gatespannung angelegt wird. Des Weiteren experimentierten andere Arbeitsgruppen mit diesen Quantentrögen, bei denen die Fermi Energie in der Bandlücke liegt [143]. Außerdem wurde das sehr präzise MBE Wachstum anhand von symmetrischen HgTe Quantentrögen und ihren HRXRD Charakterisierungen behandelt. Daher kann nun die Quantentrogdicke präzise auf 0,3 nm angegeben werden. Die Transportergebnisse von verschieden dicken Quantentrögen zeigten, dass die Ladungsträgerdichte und Beweglichkeit mit steigender HgTe Schichtdicke zunimmt. Jedoch wurde auch herausgefunden, dass sich die Bandlücke von HgTe Quantentrögen indirekt bei einer Dicke von 11.6 nm schließt. Dies wird durch das verspannte Wachstum auf CdTe Substraten verursacht. Überdies wurden oberflächennahe Quantentröge untersucht. Diese Quantentröge besitzen keine oder nur eine sehr dünne HgCdTe Deckschicht. Allerdings verringerte Oxidation und Oberflächenverschmutzung hier die Ladungsträgerbeweglichkeit dramatisch und eine HgCdTe Schicht von ungefähr 5 nm lieferte ansprechende Transportergebnisse für Supraleiter, die den topologischen Isolator kontaktieren. Eine komplett neue Errungenschaft war die Realisierung, via MBE, HgTe Quantentröge auf CdTe/GaAs:Si Substrate zu wachsen. Dies ging einher mit der Optimierung des CdTe Wachstums auf GaAs:Si. Es zeigte sich, dass HgTe Quantentröge, die in-situ auf optimierten CdTe/GaAs:Si gewachsen wurden, sehr schöne Transportergebnisse mit deutlichen Hall Quantisierungen, SdH Oszillationen, niedrigen Ladungsträgerdichten und Beweglichkeiten bis zu 500 000 cm^2/Vs erreichen. Des Weiteren wurde ein neues Oxidätzverfahren entwickelt und untersucht, welches als Alternative zum Standard-HCl-Prozess dienen sollte, da dieses manchmal vulkan-artige Defekte hervorruft. Jedoch ergab sich kein Unterschied in den Nomarski, HRXRD, AFM und Transportexperimenten. Hier könnten vielleicht Langzeittests oder Ätzen und Befestigen in Stickstoffatmosphäre neue, gewinnbringende Ergbnisse aufzeigen. Der Hauptfokus dieser Doktorarbeit lag auf dem MBE Wachstum und der Standardcharakterisierung von HgTe Volumenkristallen und wurde in Kapitel 6 diskutiert. Durch das tensil verpannte Wachstum auf CdTe entsteht für HgTe als Volumenkristall eine Bandlücke von ungefähr 22 meV am G Punkt und zeigt somit seine topologischen Oberflächenzustände. Die Analyse der Oberfächenbeschaffenheit, der Rauigkeit, der kristallinen Qualität, der Ladungsdrägerdichte und Beweglichkeit mit Hilfe von Nomarski, AFM, XPS, HRXRD und Transportmessungen ist in dieser Arbeit anzutreffen. Außerdem wurde die Schichtdickenabhängigkeit von Ladungsträgerdichte und Beweglichkeit von HgTe Volumenkristallen, die direkt auf CdTe Substraten gewachsen wurden, ermittelt worden. So erhöhte sich durchschnittlich die Dichte und Beweglichkeit mit zunehmender HgTe Schichtdicke, aber die Beweglichkeit ging selten über μ ~ 40 000 cm^2/Vs hinaus. Die Ladungsträgerdichte n hing jedoch sehr von der Litographie und der Behandlung der Oberfläche nach dem Wachstum ab. Des Weiteren wurde das Relaxationsverhalten und die kritische Dicke bestimmt, welches sehr gut mit den theoretischen Vorhersagen übereinstimmt (dc = 155 nm). Das Einbetten des HgTe Volumenkristalls in HgCdTe Schichten brachte eine weitere große Verbesserung mit sich. Ähnlich wie bei den Quantentrögen erhörte sich die Beweglichkeit μ immens, während sich die Ladungsträgerdichte bei ungefähr 1x10^11 cm^(-2) einpendelte. Zusätzlich wurde auch hier das Relaxationsverhalten und die kritische Schichtdicke dieser Barrierenschichten ermittelt. HgCdTe, gewachsen auf kommerziellen CdTe Substraten, zeigte ein Verhalten ähnlich zu dem Erwarteten mit der Ausnahme, dass die kritische Schichtdicke leicht höher ist als die Vorhergesagte (dc = 850 nm). Auf der anderen Seite findet die Relaxation von HgCdTe auf CdTe/GaAs:Si zweigeteilt ab. Bis 250 nm ist die Schicht noch voll verspannt. Zwischen 250 nm und 725 nm beginnt die HgCdTe Schicht willkürlich bis zu 10 % zu relaxieren. Das Relaxationsverhalten für Dicken über 725 nm findet dann wieder linear zur invers aufgetragenen Schichtdicke statt. Eine Erklärung wurde durch das raue Interface der Schichten und der Defekte im Kristall von CdTe/GaAs:Si gegeben, im Vergleich zu den kommerziellen CdTe Substraten. HRXRD und AFM Ergebnisse belegten diese Aussage. Die HgCdTe Barrieren schützen die aktive HgTe Schicht und daher liegen nach Hall Messungen aufgrund der hohen Ladungsträgerbeweglichkeiten neue Transportergbnisse vor, welche in der Zukunft ausführlicher interpretiert werden müssen. Darüber hinaus zeigten HgTe Volumenkristalle neue, interessante Transportergebnisse durch das gleichzeitige Benutzen eines Top- und Backgates. Es ist nun möglich, die Ladungsträger der oberen und unteren Oberflächenzustände nahezu getrennt zu verändern und zu ermitteln. Das Backgate, bestehend aus dem n-dotierten GaAs:Si Substrate und dem dicken isolierenden CdTe Puffer, kann die Ladungsträgerdichte um ungefähr Delta(n) ~ 3x10^11 cm^(-2) varieren. Das ist ausreichend, um die Fermi Energie vom p- in den n-Bereich einzustellen [138]. In dieser Dissertation wurde also gezeigt, dass verspannte HgTe Volumenkristalle durch das Einbetten in HgCdTe Barrieren neue Transportergebnisse liefern. Das n-dotierte GaAs konnte hierbei als Backgate genutzt werden. Des Weiteren zeigte das MBE Wachstum von hochkristallinen , undotiereten HgTe Quantentrögen ebenso neue und erweiterte Transportergebnisse. Zuletzt ist es bemerkenswert, dass durch das erforschte CdTe Wachstum auf GaAs das MBE Wachstum von quecksilberbasierenden Heterostrukturen auf CdTe Substraten teilweise unabhänigig ist von kommerziellen Zulieferbetrieben. KW - Quecksilbertellurid KW - Topologischer Isolator KW - MBE KW - HgTe KW - topological insulator KW - Molekularstrahlepitaxie Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151136 ER - TY - THES A1 - Carinci, Flavio T1 - Quantitative Characterization of Lung Tissue Using Proton MRI T1 - Quantitative Charakterisierung des Lungengewebes mithilfe von Proton-MRT N2 - The focus of the work concerned the development of a series of MRI techniques that were specifically designed and optimized to obtain quantitative and spatially resolved information about characteristic parameters of the lung. Three image acquisition techniques were developed. Each of them allows to quantify a different parameter of relevant diagnostic interest for the lung, as further described below: 1) The blood volume fraction, which represents the amount of lung water in the intravascular compartment expressed as a fraction of the total lung water. This parameter is related to lung perfusion. 2) The magnetization relaxation time T\(_2\) und T� *\(_2\) , which represents the component of T\(_2\) associated with the diffusion of water molecules through the internal magnetic field gradients of the lung. Because the amplitude of these internal gradients is related to the alveolar size, T\(_2\) und T� *\(_2\) can be used to obtain information about the microstructure of the lung. 3) The broadening of the NMR spectral line of the lung. This parameter depends on lung inflation and on the concentration of oxygen in the alveoli. For this reason, the spectral line broadening can be regarded as a fingerprint for lung inflation; furthermore, in combination with oxygen enhancement, it provides a measure for lung ventilation. N2 - Die Magnetresonanztomographie (MRT) stellt ein einzigartiges Verfahren im Bereich der diagnostischen Bildgebung dar, da sie es ermöglicht, eine Vielzahl an diagnostischen Informationen ohne die Verwendung von ionisierenden Strahlen zu erhalten. Die Anwendung von MRT in der Lunge erlaubt es, räumlich aufgelöste Bildinformationen über Morphologie, Funktionalität sowie über die Mikrostruktur des Lungengewebes zu erhalten und diese miteinander zu kombinieren. Für die Diagnose und Charakterisierung von Lungenkrankheiten sind diese Informationen von höchstem Interesse. Die Lungenbildgebung stellt jedoch einen herausfordernden Bereich der MRT dar. Dies liegt in der niedrigen Protondichte des Lungenparenchyms begründet sowie in den relativ kurzen Transversal- Relaxationszeiten T\(_2\) und T� *\(_2\) , die sowohl die Bildau� ösung als auch das Signal-zu-Rausch Verhältnis beeinträchtigen. Des Weiteren benötigen die vielfältigen Ursachen von physiologischer Bewegung, welche die Atmung, den Herzschlag und den Blut� uss in den Lungengefasen umfassen, die Anwendung von schnellen sowie relativ bewegungsunemp� ndlichen Aufnahmeverfahren, um Risiken von Bildartefakten zu verringern. Aus diesen Gründen werden Computertomographie (CT) und Nuklearmedizin nach wie vor als Goldstandardverfahren gehandhabt, um räumlich aufgelöste Bildinformationen sowohl über die Morphologie als auch die Funktionalität der Lunge zu erhalten. Dennoch stellt die Lungen- MRT aufgrund ihrer Flexibilität sowohl eine vielversprechende Alternative zu den anderen Bildgebungsverfahren als auch eine mögliche Quelle zusätzlicher diagnostischer Informationen dar. ... KW - Lung KW - MRI KW - Kernspintomografie KW - Lunge Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151189 ER -