TY - JOUR A1 - Sommerlandt, F. M. J. A1 - Huber, W. A1 - Spaethe, J. T1 - Social Information in the Stingless Bee, Trigona corvina Cockerell (Hymenoptera: Apidae): The Use of Visual and Olfactory Cues at the Food Site JF - Sociobiology N2 - For social insects, colony performance is largely dependent on the quantity and quality of food intake and thus on the efficiency of its foragers. In addition to innate preferences and previous experience, foragers can use social information to decide when and where to forage. In some stingless bee (Meliponini) species, individual foraging decisions are shown to be influenced by the presence of social information at resource sites. In dual choice tests, we studied whether visual and/or olfactory cues affect individual decision-making in rigona corvina Cockerell and if this information is species-specific. We found that T. corvina foragers possess local enhancement: they are attracted by olfactory and visual cues released by conspecifics but avoid feeders associated with heterospecific individuals of the species Tetragona ziegleri (Friese). Overall, olfactory cues seem to be more important than visual cues, but information by visual cues alone is sufficient for discrimination. KW - visual cues KW - recruitment KW - local enhancement KW - odor marks KW - communication Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-118120 VL - 61 IS - 4 ER - TY - JOUR A1 - Martens, Suzanne A1 - Bensch, Michael A1 - Halder, Sebastian A1 - Hill, Jeremy A1 - Nijboer, Femke A1 - Ramos-Murguialday, Ander A1 - Schoelkopf, Bernhard A1 - Birbaumer, Niels A1 - Gharabaghi, Alireza T1 - Epidural electrocorticography for monitoring of arousal in locked-in state JF - Frontiers in Human Neuroscience N2 - Electroencephalography (EEG) often fails to assess both the level (i.e., arousal) and the content (i.e., awareness) of pathologically altered consciousness in patients without motor responsiveness. This might be related to a decline of awareness, to episodes of low arousal and disturbed sleep patterns, and/or to distorting and attenuating effects of the skull and intermediate tissue on the recorded brain signals. Novel approaches are required to overcome these limitations. We introduced epidural electrocorticography (ECoG) for monitoring of cortical physiology in a late-stage amytrophic lateral sclerosis patient in completely locked-in state (CLIS) Despite long-term application for a period of six months, no implant related complications occurred. Recordings from the left frontal cortex were sufficient to identify three arousal states. Spectral analysis of the intrinsic oscillatory activity enabled us to extract state-dependent dominant frequencies at <4, similar to 7 and similar to 20 Hz, representing sleep-like periods, and phases of low and elevated arousal, respectively. In the absence of other biomarkers, ECoG proved to be a reliable tool for monitoring circadian rhythmicity, i.e., avoiding interference with the patient when he was sleeping and exploiting time windows of responsiveness. Moreover, the effects of interventions addressing the patient's arousal, e.g., amantadine medication, could be evaluated objectively on the basis of physiological markers, even in the absence of behavioral parameters. Epidural ECoG constitutes a feasible trade-off between surgical risk and quality of recorded brain signals to gain information on the patient's present level of arousal. This approach enables us to optimize the timing of interactions and medical interventions, all of which should take place when the patient is in a phase of high arousal. Furthermore, avoiding low responsiveness periods will facilitate measures to implement alternative communication pathways involving brain-computer interfaces (BCI). KW - temporal-lobe epilepsy KW - neuroprosthetic devices KW - brain computer interface KW - event-related potentials KW - intraoperative electrocoicography KW - electrocorticography KW - epidural recording KW - locked-in state KW - coma KW - consciousness KW - paralyzed patients KW - EEG KW - sleep KW - communication KW - frequencies KW - amyotrophic-lateral-sclerosis Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114863 VL - 8 ER -