
 

 

 

Julius-Maximilians-Universität Würzburg 

 

 

 

 

Characterization of virulence-associated traits of 

Escherichia coli bovine mastitis isolates 

 

Doctoral thesis for a doctoral degree 

at the Graduate School of Life Sciences, 

Julius-Maximilians-Universität Würzburg, 

Section: Infection and Immunity 

 

submitted by 

 

Ingmar Zude 

 

from 

 

Hamburg 

 

 

Würzburg 2014 
  



   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Submitted on: …………………………………………………………..…….. 

  Office stamp  

 

Members of the thesis committee: 

 

Chairperson:   Prof. Dr. Thomas Dandekar 

 

Primary Supervisor: Prof. Dr. Ulrich Dobrindt 

 

Supervisor (Second): Prof. Dr. Dr. h. c. mult. Jörg Hacker 

 

Supervisor (Third): Prof. Dr. Eric Oswald 

 

 

 

Date of Public Defense:….…………………………………………….………… 
 

Date of Receipt of Certificates: ………………………………………………. 

  



 

 

 
 

Julius-Maximilians-Universität Würzburg 

 

 

 

Charakterisierung virulenz-assozierter Eigenschaften 

von Escherichia coli Isolaten boviner Mastitis  

 

Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades 
der Graduate School of Life Sciences, 

Julius-Maximilians-Universität Würzburg, 
Bereich: Infektion und Immunität 

 

Vorgelegt von 

 

Ingmar Zude 
 

aus 

 

Hamburg 
 

 

Würzburg 2014 

  



   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eingereicht am: …………………………………………………………… 
    Bürostempel 
 
 

Mitglieder des Promotionskomitees: 
 
 
Vorsitzende/r: Prof. Dr. Thomas Dandekar 
 
 
1. Betreuer: Prof. Dr. Ulrich Dobrindt 
 
 
2. Betreuer: Prof. Dr. Dr. h. c. mult. Jörg Hacker 
 
 
3. Betreuer: Prof. Dr. Eric Oswald 
 
 
 
 
 
 
Tag des Promotionskolloquiums: .………………………………………. 
 
 
Doktorurkunden ausgehändigt am: …………………………………….. 

  



 

 

Affidavit 
 
I hereby confirm that my thesis entitled  ´Characterization of virulence-associated traits of Escherichia 

coli bovine mastitis isolates´ is the result of my own work. I did not receive any help or support from 

commercial consultants. All sources and / or materials applied are listed and specified in the thesis. 

Furthermore, I confirm that this thesis has not yet been submitted as part of another examination 

process neither in identical nor in similar form. 

 
 
 
 
Place, Date     Signature 
 
 
 
 
 
 
 
 
 
 
 
 

Eidesstattliche Erklärung 
 

Hiermit erkläre ich an Eides statt, die Dissertation ´Characterization of virulence-associated traits of 

Escherichia coli bovine mastitis isolates´ eigenständig, d.h. insbesondere selbstständig und ohne Hilfe 

eines kommerziellen Promotionsberaters, angefertigt und keine anderen als die von mir 

angegebenen Quellen und Hilfsmittel verwendet zu haben. 

Ich erkläre außerdem, dass die Dissertation weder in gleicher noch in ähnlicher Form bereits in einem 

anderen Prüfungsverfahren vorgelegen hat. 

 

 

 

 

Ort, Datum     Unterschrift 

  



   

 

Acknowledgement 

This study was carried out in the framework of the DFG research unit FOR 585, at the Institute of 

Molecular Biology of Infectious Diseases at the University of Würzburg, Germany from September 

2008 until September 2010, and continued at the Institute for Hygiene at the University Hospital of 

Münster, Germany from October, 2010 until November, 2013. In this time period, many people 

became apparent as the very best colleagues, supervisors and even friends. It would not have been 

possible to write this doctoral thesis without the help and support of the kind people around me, to 

only some of whom it is possible to give particular mention here. 

Above all, I would like to thank my principal supervisor Prof. Dr. Ulrich Dobrindt for offering me this 

challenging project, his support and patience, not to mention his advice and unsurpassed knowledge 

of microbiology and infectious diseases. I would like to acknowledge Prof. Dr. Dr. h. c. mult. Jörg 

Hacker and Prof. Dr. Eric Oswald for the academic support, the encouragement and for being 

members of my thesis committee. 

Amongst the members in the department of the Graduate School of Life Science, the effort made by 

Dr. Gabriele Blum-Oehler in promoting a stimulating and welcoming academic and social 

environment will stand as an example to those that succeed them. I would like to acknowledge the 

financial, academic and technical support of both the University of Würzburg and University Hospital 

of Münster and its staff. From the Clinic for Ruminants of Ludwig-Maximilians-University Munich, 

that provided raw milk, I would like to thank Dr. med. vet. Wolfram Petzl. Furthermore, I thank Prof. 

Dr. Ynte Shukken, Prof. Dr. Lothar Wieler and Dr. med. vet. Nahum Shpigel for the provision of E. coli 

bovine mastitis isolates and Dr. Angelika Fruth for serotyping. 

The good advice, support and friendship of Roswitha Schiller, Andreas Leimbach, Dr. Jarek Zdziarski 

and Barbara Plaschke, has been invaluable on both academic and personal level, for which I am very 

grateful.  

Special thanks to my family, who gave me the opportunity to study, for all the love and support. 

Last, but by no means least, I would like to thank my fellow doctoral students and colleagues—those 

who have moved on, those in the bogie wheel, and those just beginning—for their support, feedback 

and encouragement throughout, some of whom have already been named. 

For any errors or inadequacies that may remain in this work, of course, the responsibility is entirely 

my own.  

 

No matter how many mistakes you make or how slowly you progress, 

you are still way ahead of everyone who is not trying. 

-Anthony Robbins  



CONTENT  i 

 

TABLE OF CONTENT 

I. SUMMARY ............................................................................................ 1 

I.b.    ZUSAMMENFASSUNG ............................................................................ 3 

II. INTRODUCTION ..................................................................................... 5 

II.1. Epidemiology of bovine mastitis .......................................................................... 5 

II.1.1. Severity and duration .................................................................................................. 5 

II.1.2. Origin of infection ........................................................................................................ 6 

Physiology and Invasion of the Udder ....................................................................................... 6 

II.1.3. Factors increasing mastitis susceptibility ...................................................................... 7 

Environmental or Management factors .................................................................................... 7 

Cow factors ............................................................................................................................... 8 

II.1.4. Host defense mechanisms and pathogen recognition.................................................... 9 

Innate immune response .......................................................................................................... 9 

Specific immune response ...................................................................................................... 10 

Pathogen recognition .............................................................................................................. 12 

II.2. Escherichia coli .................................................................................................. 14 

II.2.2. E. coli genome structure and plasticity ....................................................................... 15 

II.2.3. ExPEC: Commensal E. coli with increased potential to cause extraintestinal disease .... 16 

II.2.4. Virulence factors of mammary pathogenic E. coli ........................................................ 19 

The Type Three Secretion System ETT2 .................................................................................. 20 

Adhesins ................................................................................................................................. 21 

Type 1 fimbriae....................................................................................................................... 21 

Long polar fimbriae ................................................................................................................ 21 

F1C, P and S -fimbriae ............................................................................................................ 22 

F17 fimbriae ........................................................................................................................... 22 

Mat fimbriae .......................................................................................................................... 23 

Curli ........................................................................................................................................ 23 

Afimbrial adhesins .................................................................................................................. 24 

Flagella ................................................................................................................................... 24 

Serum and complement resistance ......................................................................................... 24 

Capsules; K-antigens .............................................................................................................. 24 

Lipopolysaccharides; O-antigens ............................................................................................ 25 

Outer membrane proteins ...................................................................................................... 27 

Iron uptake systems ................................................................................................................ 29 

Toxins ..................................................................................................................................... 30 

Autotransporter proteins ........................................................................................................ 31 

II.2.5. What we know about mammary pathogenic E. coli ..................................................... 32 

II.3. Aims of this study .............................................................................................. 32 

III. MATERIAL ............................................................................................ 34 

III.1. STRAINS ............................................................................................................ 34 



ii  SUMMARY 

 

III.2. OLIGONUCLEOTIDES .......................................................................................... 43 

III.3. CHEMICALS AND ENZYMES ................................................................................ 45 

III.4. MEDIA, AGAR PLATES AND ANTIBIOTICS ............................................................ 45 

III.4.1. Media ........................................................................................................................ 45 

III.4.2. Agar plates ................................................................................................................ 47 

III.4.3. Antibiotics ................................................................................................................. 47 

III.4.4. DNA Markers ............................................................................................................. 47 

III.5. TECHNICAL EQUIPMENT..................................................................................... 48 

III.6. Software ............................................................................................................ 49 

IV. METHODS ............................................................................................. 50 

IV.1. Working with DNA ............................................................................................. 50 

IV.1.1. Isolation of chromosomal DNA ................................................................................... 50 

IV.1.2. Precipitation of DNA with alcohol .............................................................................. 50 

IV.1.3. Determination of nucleic acid concentration and quality ............................................ 50 

IV.1.4. Polymerase chain reaction (PCR) ................................................................................ 51 

IV.1.5. Sequence analysis (Sanger) ........................................................................................ 51 

IV.1.6. Separation of DNA fragments by gel electrophoresis .................................................. 52 

IV.2. Working with RNA ............................................................................................. 52 

IV.2.1. Standard isolation of total RNA with Qiagen RNeasy Kit.............................................. 52 

IV.2.2. Isolation of bacterial total RNA from milk whey .......................................................... 52 

IV.2.3. Isolation of total RNA from bacteria upon cocultivation in cell culture ........................ 53 

IV.2.4. RNA processing and quality control ............................................................................ 54 

DNase treatment and RNA purification ................................................................................... 54 

RNA quality control ................................................................................................................. 54 

IV.2.5. cDNA synthesis by reverse transcription (RT)-PCR ....................................................... 55 

IV.2.6. Quantitative Real-Time PCR ....................................................................................... 55 

IV.3. Transcriptome analysis by DNA-microarrays ...................................................... 56 

Array Layout ........................................................................................................................... 56 

Sample preparation ................................................................................................................ 56 

Array pre-hybridization ........................................................................................................... 58 

Array hybridization ................................................................................................................. 58 

Post-Hybridization washing .................................................................................................... 58 

Array Scanning ........................................................................................................................ 59 

Data analysis ........................................................................................................................... 59 

IV.4. Transcriptome analysis by RNA-Seq ................................................................... 59 

Sample preparation for RNA-Seq ............................................................................................ 60 

cDNA synthesis ....................................................................................................................... 60 

Sequencing ............................................................................................................................. 60 

IV.4.1. Handling of RNA-Seq data .......................................................................................... 61 

rRNA depletion and quality control ......................................................................................... 61 

Read mapping ......................................................................................................................... 61 



CONTENT  iii 

 

Quantification of gene expression – transformation and normalization ................................. 62 

Analysis of differential expression of genes (DEG) .................................................................. 63 

IV.5. MAC-T Cell Culture Experiments ........................................................................ 64 

Conditions ............................................................................................................................... 64 

IV.5.2. Adhesion assay .......................................................................................................... 64 

IV.5.3. Invasion assay ........................................................................................................... 64 

IV.5.4. Statistical analysis ...................................................................................................... 65 

V. RESULTS AND DISCUSSION ................................................................... 66 

V.1. E. coli 1303 and ECC-1470 lack particular genes of virulence associated to mastitis 
isolates ................................................................................................................ 66 

Genome comparison of E. coli 1303 and ECC-1470 .................................................................. 67 

V.2. From raw milk to milk whey ............................................................................... 68 

V.2.1. Why milk is hard to deal with ..................................................................................... 68 

Filtration and centrifugation .................................................................................................. 69 

Non-column based RNA isolation ........................................................................................... 70 

RNA transcript amplification .................................................................................................. 70 

Clarifying solution ................................................................................................................... 70 

V.2.2. Milk whey ................................................................................................................. 72 

V.3. Phenotypic properties of E. coli bovine mastitis isolates ..................................... 72 

V.3.1. E. coli fitness in milk whey ......................................................................................... 72 

Growth of individual mastitis E. coli isolates relative to bovine faecal E. coli isolates ............. 73 

Sensitivity of selected bovine faecal E. coli isolates to milk whey relative to E. coli 1303 ........ 74 

V.3.2. Lactose: A limiting nutrient in mammary secretions? .................................................. 75 

V.3.3. Influence of lactoferrin on E. coli isolates from mastitis and faeces ............................. 76 

V.3.4. Influence of the lingual antimicrobial peptide (LAP) on survival of E. coli isolates from 
mastitis and faeces .................................................................................................... 77 

V.3.5. What can we learn from the phenotypic assays? ........................................................ 79 

Milk whey exhibits antimicrobial effects ................................................................................. 79 

E. coli environmental isolates provide a reservoir of potential mastitic E. coli ........................ 80 

Impact of lactoferrin ............................................................................................................... 80 

Low impact of lactoferrin during initial growth of E. coli ....................................................... 81 

Lactose fermentation: Not the key factor for survival in milk whey ........................................ 82 

Reduced bacterial fitness related to LAP ................................................................................. 83 

E. coli mastitis isolates and most faecal isolates survive physiological LAP concentrations .. 83 

Adaption to an intramammary lifestyle requires resistance to LAP ....................................... 83 

E. coli isolates conferring LAP resistance do not unambiguously thrive in milk whey ............ 84 

Considerations ........................................................................................................................ 85 

V.3.6. Adhesion and invasion of selected mastitis E. coli strains in vitro ................................ 85 

Adhesion to and invasion into bovine mammary gland epithelial cells in vitro ....................... 87 

Different adhesion and invasion properties of E. coli strain 1303 and ECC-1470 ..................... 87 

Milk whey negatively influences bacterial adhesion to mammary gland epithelial cells ......... 88 

V.4. Autotransporter genes in mastitis isolates ......................................................... 89 

Distribution of autotransporter genes among mastitis and bovine faecal isolates .................. 90 

No crucial role of autotransporters in mastitis ........................................................................ 92 



iv  SUMMARY 

 

AT prevalence influenced by phylogeny rather than pathotype classification ......................... 92 

V.5. Differential gene expression of mastitis E. coli 1303 and ECC-1470 in the presence of 
MAC-T epithelial cells in vitro ............................................................................... 94 

Study design appropriate to capture the transcriptomic response to present host cells ......... 95 

V.5.1. Significant changes in the expression pattern ............................................................. 95 

Genes involved in metabolism represent one quarter of all deregulated genes ...................... 96 

Commonly deregulated genes at 1 h and 3 h time in response to mammary gland epithelial 
cells ........................................................................................................................................ 97 

V.5.2. Deregulated bacterial determinants in response to cocultivation with MAC-T cells ..... 100 

Changes in energy metabolism indicating competition for nutrients .................................... 101 

Deregulated genes reflecting anaerobic conditions during cocultivation .............................. 101 

Deregulated genes indicating extracytoplasmic stress .......................................................... 103 

Expression of virulence-associated factors in response to the presence of MAC-T cells ........ 104 

Multidrug tolerance ............................................................................................................. 105 

Fimbrial adhesins and flagella.............................................................................................. 105 

Factors, which could be involved in the persistence of mastitis isolate ECC-1470 ............... 107 

Factors, which could be involved in immune evasion of mastitis isolates ............................ 107 

Valid analyses: misinterpretations and error sources in DNA-microarray analysis ................ 108 

Interpretation of “missing” genes in operons ...................................................................... 108 

Good RNA quality and accurate microarray hybridizations, but bad signals: What happened?
 ............................................................................................................................................. 110 

V.6. RNA-Seq: High throughput E. coli transcriptome sequencing ............................. 112 

V.6.1. Quality of the sequence reads from E. coli transcriptome sequencing......................... 113 

Quality assessment and depletion of sequence reads covering rRNA genes ....................... 113 

V.6.2. Mapping of the sequence reads to the E. coli 1303 and ECC-1470 genome sequences . 115 

Sequencing depth of the cDNA samples ................................................................................ 117 

Effect of non-specific read matches on gene expression levels ............................................. 118 

Including non-specific reads .................................................................................................. 120 

Read distribution, variability and similarity across samples .................................................. 122 

Sample distributions of gene expression levels .................................................................... 122 

V.6.3. Gene expression of E. coli strain 1303 and ECC-1470 in milk whey .............................. 124 

Quantile normalization of original expression values is required for sample comparison ... 125 

V.6.4. Identification of differentially expressed genes in milk whey and milk whey +LPS ...... 127 

Differentially expressed genes in milk whey and milk whey +LPS ......................................... 127 

V.6.5. Commonly deregulated genes in response to milk whey ............................................ 134 

Hierarchical clustering of deregulated genes......................................................................... 134 

Functional classification of deregulated genes ...................................................................... 138 

V.6.6. The transcriptional response to milk whey and milk whey +LPS ................................. 140 

Iron utilization ...................................................................................................................... 140 

Exponential growth ............................................................................................................... 143 

Carbon compound and energy metabolism .......................................................................... 143 

Citrate: a readily available and utilized carbon source in mammary secretions .................. 144 

Amino acid biosynthesis ....................................................................................................... 145 

Sulfate assimilation ............................................................................................................... 147 

Virulence associated factors ................................................................................................. 147 

Expression of bacterial regulators in milk whey and milk whey +LPS .................................... 148 

Stress-related bacterial determinants ................................................................................... 150 

Acid stress ............................................................................................................................ 150 



CONTENT  v 

 

Osmotic stress ...................................................................................................................... 151 

Oxidative stress .................................................................................................................... 152 

Multiple stresses .................................................................................................................. 153 

V.6.7. Remarks on RNA-Seq ................................................................................................ 154 

VI. GENERAL DISCUSSION ........................................................................ 155 

VI.1.1. E. coli 1303 and ECC-1470 lack particular virulence-associated genes.......................... 155 

VI.1.2. Environmental isolates provide a reservoir of potential mammary pathogenic E. coli . 156 

Different outcomes of selected E. coli mastitis and faecal isolates in various phenotypic 
assays ................................................................................................................................... 156 

VI.1.3. Encountering mammary secretions is a critical step to E. coli intramammary colonization 
  ................................................................................................................................ 157 

Stress response plays a vital role for initial survival .............................................................. 158 

VI.1.4. Traits improving bacterial growth in mammary sectretion ......................................... 160 

Iron shortage does not occur to E. coli during first hours in mammary secretion .................. 160 

Citrate utilization might be a key factor to E. coli intramammary fitness .............................. 162 

Role of well-known virulence-associated traits in milk ......................................................... 163 

VI.1.5. E. coli adhesion to cultured mammary gland epithelial cells ....................................... 163 

VI.1.6. E. coli 1303 and ECC-1470 differed in their gene expression profiles in the presence of 
mammary gland epithelial cells ................................................................................. 164 

Competitive growth in presence of mammary gland cells activates stress response ............. 164 

Virulence potential of E. coli strains 1303 and ECC 1470 in the presence of host cells ........... 165 

VI.1.7. Peroration / Epilog .................................................................................................... 166 

VI.2. Outlook ............................................................................................................ 166 

VII. REFERENCES ....................................................................................... 168 

VIII. APPENDIX ........................................................................................... 193 

VIII.1.List of figures and tables .................................................................................... 193 

VIII.2. Transcriptome data .......................................................................................... 195 

VIII.2.1. Transcriptome data of microarray analyses ............................................................... 195 

VIII.2.2. Transcriptome data of RNA-Seq ................................................................................ 214 

VIII.3. Curriculum Vitae ............................................................................................... 215 

Personal Data ........................................................................................................................ 215 

Education .............................................................................................................................. 215 

VIII.4. Publications ...................................................................................................... 216 

Publication ............................................................................................................................ 216 

Presentations ........................................................................................................................ 216 

VIII.5. Abbreviations ................................................................................................... 218 
 





SUMMARY  1 

 

I. SUMMARY 

Bacterial mastitis is caused by invasion of the udder, bacterial multiplication and induction of 

inflammatory responses in the bovine mammary gland. Disease severity and the cause of disease are 

influenced by environmental factors, the cow’s immune response as well as bacterial 

traits. Escherichia coli (E. coli) is one of the main causes of acute bovine mastitis, but although 

pathogenic E. coli strains can be classified into different pathotypes, E. coli causing mastitis cannot 

unambiguously be distinguished from commensal E. coli nor has a common set of virulence factors 

been described for mastitis isolates. This project focussed on the characterization of virulence-

associated traits of E. coli mastitis isolates in comprehensive analyses under conditions either 

mimicking initial pathogenesis or conditions that E. coli mastitis isolates should encounter while 

entering the udder. 

Virulence-associated traits as well as fitness traits of selected bovine mastitis or faecal E. coli strains 

were identified and analyzed in comparative phenotypic assays. Raw milk whey was introduced to 

test bacterial fitness in native mammary secretion known to confer antimicrobial effects. 

Accordingly, E. coli isolates from bovine faeces represented a heterogeneous group of which some 

isolates showed reduced ability to survive in milk whey whereas others phenotypically resembled 

mastitis isolates that represented a homogeneous group in that they showed similar survival and 

growth characteristics in milk whey. In contrast, mastitis isolates did not exhibit such a uniform 

phenotype when challenged with iron shortage, lactose as sole carbon source and lingual 

antimicrobial peptide (LAP) as a main defensin of milk. Reduced bacterial fitness could be related to 

LAP suggesting that bacterial adaptation to an intramammary lifestyle requires resistance to host 

defensins present in mammary secretions, at least LAP. 

E. coli strain 1303 and ECC-1470 lack particular virulence genes associated to mastitis isolates. To find 

out whether differences in gene expression may contribute to the ability of E. coli variants to cause 

mastitis, the transcriptome of E. coli model mastitis isolates 1303 and ECC-1470 were analyzed to 

identify candidate genes involved in bacterium-host interaction, fitness or even pathogenicity during 

bovine mastitis. 

DNA microarray analysis was employed to assess the transcriptional response of E. coli 1303 and 

ECC-1470 upon cocultivation with MAC-T immortalized bovine mammary gland epithelial cells to 

identify candidate genes involved in bacterium-host interaction. Additionally, the cell adhesion and 

invasion ability of E. coli strain 1303 and ECC-1470 was investigated. The transcriptonal response to 

the presence of host cells rather suggested competition for nutrients and oxygen between E. coli and 

MAC-T cells than marked signs of adhesion and invasion. Accordingly, mostly fitness traits that may 

also contribute to efficient colonization of the E. coli primary habitat, the gut, have been utilized by 

the mastitis isolates under these conditions. 



2  SUMMARY 

 

In this study, RNA-Seq was employed to assess the bacterial transcriptional response to milk whey. 

According to our transcriptome data, the lack of positively deregulated and also of true virulence-

associated determinants in both of the mastitis isolates indicated that E. coli might have adapted by 

other means to the udder (or at least mammary secretion) as an inflammatory site. We identified 

traits that promote bacterial growth and survival in milk whey. The ability to utilize citrate promotes 

fitness and survival of E. coli that are thriving in mammary secretions. According to our results, 

lactoferrin has only weak impact on E. coli in mammary secretions. At the same time bacterial 

determinants involved in iron assimilation were negatively regulated, suggesting that, at least during 

the first hours, iron assimilation is not a challenge to E. coli colonizing the mammary gland. It has 

been hypothesized that cellular iron stores cause temporary independency to extracellular accessible 

iron. According to our transcriptome data, this hypothesis was supported and places iron uptake 

systems beyond the speculative importance that has been suggested before, at least during early 

phases of infection. It has also been shown that the ability to resist extracytoplasmic stress, by 

oxidative conditions as well as host defensins, is of substantial importance for bacterial survival in 

mammary secretions. 

In summary, the presented thesis addresses important aspects of host-pathogen interaction and 

bacterial conversion to hostile conditions during colonization of the mastitis inflammatory site, the 

mammary gland. 
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I.b. ZUSAMMENFASSUNG 

Bei der bakteriellen Mastitis handelt es sich um eine Infektion der bovinen Milchdrüse, ausgelöst 

durch Eintritt und Wachstum der Bakterien im Euter der Kuh. Krankheitsverlauf und Ursache werden 

beeinflusst durch Umweltfaktoren, das Immunsystem des Wirtes und die Eigenschaften des 

bakteriellen Erregers. Die Spezies Escherichia coli (E. coli) ist einer der häufigsten Erreger der akuten 

bovinen Mastitis. Generell können pathogene E. coli -Stämme entsprechend ihres Infektionsortes in 

verschiedene Pathotypen klassifiziert werden, die durch eine individuelle Kombination verschiedener 

Virulenzfaktoren gekennzeichnet sind. Eine eindeutige Unterscheidung von E. coli –Mastitiserregern 

und kommensalen E. coli -Stämmen ist bisher nicht beschrieben. Diese Studie befasst sich mit der 

Charakterisierung virulenz-assozierter Eigenschaften von E. coli –Isolaten der bovinen Mastitis. Dazu 

wurden Untersuchungen unter Bedingungen durchgeführt, die denen während der Anfangsphase der 

Mastitis entsprechen.  

Die Virulenz und Fitness-assoziierten Eigenschaften ausgewählter E. coli Mastitis- und Fäkalisolate 

wurden in vergleichenden phenotypischen Assays identifiziert und analysiert. Zur Untersuchung der 

bakteriellen Fitness in Milchdrüsensekreten wurde native Molke mit antimikrobiellen Eigenschaften 

von Rohmilch genutzt. Dabei stellte sich heraus dass E. coli Fäkalisolate eine heterogene Gruppe 

bilden. Innerhalb dieser Gruppe wiesen einige Isolate eine verminderte Überlebensrate auf. Andere 

Fäkalisolate zeigten eine höhere Überlebensrate, ähnlich der Überlebensrate von Mastitiserregern. 

Im Gegensatz zum ihrem grundsätzlich guten  Überleben in Molke zeigten Mastitisisolate keine 

einheitlichen phänotypischen Merkmale bei Wachstum mit 1) Lactose als einziger Kohlenstoffquelle, 

2) Eisenlimitierung, oder 3) unter Einfluss von lingualem antimikrobiellem Peptid (LAP), einem 

bedeutenden Defensin der Wirtsantwort im Euter. Die verminderte Fähigkeit in Milchdrüsensekreten 

zu überleben korrelierte mit der konzentrationsabhängigen Überlebensfähigkeit in Gegenwart von 

LAP. Dies lässt vermuten dass eine Anpassung der Bakterien an die Lebensbedingungen in der 

bovinen Milchdrüse der Resistenz gegenüber Defensinen (u.a. LAP) bedarf. 

Den Mastitis-isolaten E. coli 1303 und ECC-1470 fehlen diverse Virulenzgene die bereits mit Mastitis 

assoziiert werden konnten. Um zu bestimmen ob Unterschiede in der Genexpression beider E. coli 

Isolate dazu beitragen Mastitis auszulösen, wurden Transkriptomanalysen durchgeführt. Dabei 

sollten vor allem Kandidatengene bestimmt werden, die an der Wirt-Pathogen-Interaktion beteiligt 

sind oder zur bakteriellen Fitness oder Virulenz der Erreger beitragen. 

Auf der Basis von DNA Microarrays wurde die Genexpression von E. coli 1303 und ECC-1470 in 

Gegenwart von immortalisierten Zellen des bovinen Milchdrüsenepithels (MAC-T) bestimmt. 

Zusätzlich wurde die Fähigkeit zur Zelladhäsion und Internalisierung beider Isolate untersucht. Die 

bakterielle Transkriptionsantwort in Gegenwart der Wirtszellen ergab, dass Erreger und Wirtszellen 

eher um den Bedarf an Nährstoffen und Sauerstoff konkurrierten, anstatt deutliche Anzeichen der 
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Zelladhäsion oder Invasion zu zeigen. Beide Isolate nutzten vornehmlich Fitnesseigenschaften, die 

auch bei der Besiedlung des Darms als dem primären Habitat von E. coli verwendet werden. 

In dieser Studie wurde außerdem die Genexpression von E. coli 1303 und ECC-1470 in Reaktion auf 

Molke aus Rohmilch mittels Gesamt-Transkriptom-Sequenzierung (RNA Seq) untersucht. Die 

Transkriptomanalyse ergab keine wirklich deregulierten virulenz-assozierten Gene in einer der 

beiden E. coli Mastitis Isolate. Ferner konnten Eigenschaften identifiziert werden, die zum Wachstum 

und Überleben in nativer Molke beitragen. Die Fähigkeit, Citrat zu verwerten, begünstigt das 

erfolgreiche Überleben in Milchdrüsensekten und stellt einen wichtigen Fitnessfaktor dar. Unsere 

Transkriptomdaten bestätigen dass Lactoferrin nur geringen Einfluss auf das Wachstum, von E. coli in 

Milchdrüsensekreten, hat. Die Expression bakterieller Determinanten, die an der Aufnahme von 

Eisen beteiligt sind, wurde herunterreguliert. Dies lässt darauf schließen dass Eisenaufnahme in den 

ersten Stunden der Kolonisierung durch die Erreger keine essentielle Fitnesseigenschaft darstellt. 

Vermutlich reicht die intrazelluläre Menge an Eisen aus, um eine zeitweise Unabhängigkeit von 

extrazellular verfügbarem Eisen zu ermöglichen. Diese These konnte durch unsere 

Transkriptomdaten gestützt werden und stellt eine wichtige Entdeckung in Bezug auf die 

Verfügbarkeit von Eisen während der Kolonisierung der Milchdrüse dar. Unsere Daten zeigen, dass 

die Resistenz gegenüber extrazellulärem Stress durch oxidative Bedingungen und Defensine des 

Wirtes von großer Bedeutung für das bakterielle Überleben in Milchdrüsensekreten ist. 

Die vorliegende Thesis befasst sich mit wichtigen Aspekten der Wirt-Pathogen-Interaktion und der 

Anpassung an die antimikrobiellen Bedingungen während der Kolonisierung der Milchdrüse als Ort 

der Infektion. 
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II. INTRODUCTION 

This study presents the identification and characterization of virulence-associated traits of E. coli 

bovine mastitis isolates.  

II.1. Epidemiology of bovine mastitis 

Bovine mastitis is defined as an inflammation of the mammary gland tissue caused by 

microorganisms, usually bacteria that have overcome the cow´s immune defense. It is induced when 

the pathogens enter the udder, multiply and produce metabolites or toxins that cause harm to the 

mammary gland tissue. Damaged tissue allows for increased vascular permeability. This results in 

altered milk composition accompanied by a reduction in milk yield (Hill, 1994). Both changes may 

differ vastly as their extent depends on the severity of the inflammatory response (Kitchen, 2009; 

Seegers et al., 2003; Pyörälä, 2003), mainly influenced by the causative pathogen (Zadoks et al., 

2011). A broad variety of organisms has been identified as potential mastitis pathogens and is 

distinguished into either major or minor pathogens. The main mastitis-causing pathogens are 

Escherichia coli, Streptococcus uberis and Staphylococcus aureus. These bacteria have been termed 

major pathogens because of their association to clinical mastitis (CM). In contrast, other bacteria may 

be present in the udder and often have an overall beneficial effect by protecting against infection 

caused by major pathogens. These bacteria produce natural anti-bacterial substances or interfere 

with the growth of major pathogens and are thus termed minor pathogens. Because of their complex 

interaction with the mammary gland these minor pathogens can contribute to increased somatic cell 

counts (SCCs) and thus to the incidence of sub-clinical mastitis (SCM), but they usually do not cause 

CM. 

II.1.1. Severity and duration 

The course of mastitis is either acute, i.e. severe and sudden in onset, or chronic, which is defined as 

a long-developing syndrome that worsens over months and results in development of fibrous tissue 

(Gröhn et al., 1990). Usually mastitis is classified according to its pathogenesis in either CM or SCM, 

which is considered the most prevalent form of mastitis (Gianneechini et al., 2002; Akers, 2002).  

CM shows visible signs which are further distinguished in mild and severe signs. Flakes or clots in the 

milk and a discoloration of the teat of the infected udder quarter which may have slight swelling are 

mild signs. Severe signs are abnormal watery secretion as well as a hot and swollen udder. More 

systemic symptoms are fever, rapid pulse, loss of appetite, dehydration, depression and fatal 

consequences. 

On the contrary, SCM is not accompanied with visible signs of an infection and both, milk and udder, 

appear normal although stagnation in milk has been reported (Mungube et al., 2005). Therefore SCM 

can be harder to detect although the SCCs in the milk increase likewise in CM. To date, the SCC 
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proved to be the most useful diagnostic technique to detect the presence and occurrence of bovine 

mastitis and especially for bovine subclinical mastitis (Schukken et al., 2011). 

Generally, bacteria associated to CM have been termed major pathogens (Djabri et al., 2002) 

whereas minor pathogens do not usually cause clinical forms of the disease but are associated to 

SCM due to increased SCCs. These bacteria are meant to be present in the udder and often have an 

overall beneficial effect on protection from infection by major pathogens, due to the production of 

natural anti-bacterial substances, induced leukocytosis and competitive growth with other bacteria 

(Reyher et al., 2012). 

II.1.2. Origin of infection 

Mastitis causing pathogens have been broadly classified into either environmental or contagious 

pathogens (Radostits et al., 2007). 

Contagious pathogens are meant to be intramammary survivors and are spread from cow to cow. 

Environmental pathogens originate from bedding materials, manure and soil and are considered to 

be opportunistic invaders with no specialized survival properties. This view becomes obsolete, when 

taking into account that mastitis causing E. coli, which are considered environmental pathogens, are 

indeed able to persist for prolonged periods within the udder and also cause either chronic or 

recurrent forms of mastitis (Almeida et al., 2011; Döpfer et al., 2001 and 2000). Hence, a spread from 

one host to another due to inappropriate post-milking teat disinfection is most likely. Based on the 

situation that environmental mastitis pathogens are present in the housing and bedding, they can 

easily be transferred during milking or between milkings when the cow is foraging or lying down.  

 Physiology and Invasion of the Udder  

A basic knowledge of the bovine udder anatomy and physiology allows for a better understanding of 

mastitis development (Figure 1). The histologically divided quarters of a bovine udder are composed 

of a teat cistern, gland cistern, milk ducts and surrounding glandular tissue. This secretory tissue 

includes millions of microscopic sacs, designated as alveoli and lined by milk-producing epithelium, 

which is supplied with nutrients by surrounding blood vessels. Muscle cells encircle each alveolus and 

squeeze the milk to the milk ducts and further through the teat canal and duct during milking. In 

between the milkings, milk accumulates in alveolar spaces, milk ducts and gland cistern. 

Bacteria might either invade the udder through lesions, as teat damage is known to increase 

susceptibility of mastitis, or more frequently breach the teat canal in several ways (Schroeder, 2010). 

Between milkings bacteria multiply inside teat duct and are introduced into the gland cistern via the 

teat canal by their motility properties or pressure placed on the teat end caused by physical 

movement of the cow. Another opportunity is that bacteria may be propelled into or through the 

teat canal during machine milking. 
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Figure 1: Scheme of the mammary gland modified from Schroeder, 2010. (A) Teat with gland cistern, 
milk ducts, and secretory glandular tissue. (B) Alveolus encircled by muscle cells and blood vessel. 
 
 

II.1.3. Factors increasing mastitis susceptibility 

The susceptibility to mastitis increases in dependence of various genetic and physiological ´cow 

factors´ as well as environmental factors (Hopster et al., 1998; Waller, 2000). Mastitis is therefore 

designated a multifactorial disease.  

 Environmental or Management factors 

There is rarely an infection known unaffected by the environment. For instance the season affects 

the susceptibility to mastitis and there is consistency in the literature that CM occurs more 

frequently within the winter months (Steeneveld et al., 2008; Olde Riekerink et al., 2007). 

Another factor, that is even more important, is poor hygiene which is directly correlated to infectious 

diseases and increases the risk of mastitis development (Schreiner and Ruegg, 2003). Intensive 

livestock breeding of dairy cattle implies high cow densities per unit and bad ventilation, and also the 

selection of bedding materials may facilitate bacterial growth (Ericsson Unnerstad et al., 2009). Given 

that stables are an environment which promotes bacterial spread, milking equipment might also be 

contaminated itself and enables bacteria to invade the udder (Hovinen and Pyörälä, 2011; Hässig et 

al., 2011). Moreover, dairy cattle suffering from stress generated by inappropriate human handling is 

known to be more susceptible to mastitis (Breuer et al., 2003). As a result it is unquestionable that 

management practices have been associated to CM (Parker et al., 2007; Barnouin et al., 2005; 

Barkema et al., 1999). Accordingly, the management of dairy herds is a comprehensible factor to 

lower the risks and provide more sustainable protection protocols to mastitis. Hence, there are still 

various anthropogenic factors to consider.  
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 Cow factors 

Besides environmental factors there are cow-specific factors to consider. The cow factors are defined 

by the cow´s immune response and genetic makeup and may conclude the cow´s age, SCC, parity, 

lactation stage, nutritional and metabolic status, CM history and genetic resistance. Selective 

breeding, focused on enhanced milk production, causes metabolic stresses relative to an increased 

milk yield and can be correlated to compromised mastitis resistance (Waller, 2000; Seegers et al., 

2003). It is a known fact that cows with high milk yield are more likely to develop CM rather than 

cows with less milk yield (Gröhn et al., 2004). 

Pathogens may infect cows both during the dry period and in lactation. The lactation stage has 

significant impact on the cow´s susceptibility to mastitis (Rinaldi et al., 2008; Mallard et al., 1998; 

Shafer-Weaver et al., 1996). It has been reported that the risk of developing CM is highest in early 

lactation (Steeneveld et al., 2008). Contrary, the risk of SCM increases with days in milk (Busato et al., 

2000). Within the periparturient period of the lactation stage, the cow´s defense mechanisms are 

impaired and therefore the cow is at higher risk of developing mastitis with impact on subsequent 

intramammary infections (Breen et al., 2009; Oliver and Sordillo, 1988; Kehrli et al., 1989). It is known 

that multiparous cows show higher incidence of mastitis (Rajala-Schultz et al., 1999) and there is 

evidence that increasing parity correlates with increased susceptibility (Steeneveld et al., 2008). 

 

Both, environmental and cow factors, are interdependent, whereas the relative impact of each factor 

is considerably influenced by the causative pathogen (Zadoks et al., 2011; Djabri et al., 2002).   
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II.1.4. Host defense mechanisms and pathogen recognition 

The bovine mammary gland is protected by several defense mechanisms at the anatomical and 

cellular level. At the anatomical level the teat end is considered to be the first line of defense against 

invading bacteria that cause mastitis. The sphincter muscles at the end of the teat ducts should be 

tightly closed between milkings and thus inhibit bacterial penetration. The teat canal is lined with a 

waxy antimicrobial coating termed keratin, which functions as a physical barrier for invading bacteria 

(Nickerson, 1987; Treece et al., 1966). Both, dysfunctional sphincter muscles and diminished keratin 

lining of the teat canal have been independently shown to increase the risk bacterial invasion and 

colonization (Lefcourt, 1982; Capuco et al., 1992). 

Bacteria that have overcome the anatomical defense mechanisms are then confronted with the 

bovine immune system. The mammary immune factors have been characterized into cellular and 

soluble components. At the cellular level we know about the functions of leukocytes which can be 

further distinguished into neutrophils, macrophages and lymphocytes. The cellular and soluble 

factors and their biological functions are listed in Table 1 (Sordillo and Streicher, 2002). These 

defense mechanisms are further differentiated into innate immune and specific immune responses. 

 Innate immune response 

The innate immune response is non-specific and rapidly eliminates bacteria before the specific 

immune system is activated. Abnormalities, e.g., changes in the milk composition do not occur. The 

non-specific responses are mediated by the physical barrier of the teat end, macrophages, 

neutrophils, natural killer cells, and particular soluble factors (Sordillo and Streicher, 2002). The 

soluble factors of the innate immune response include the bacteriostatic complement factors 

defensins, lysozyme, lactoferrin and cytokines.  

The complement system represents the first defense line of innate immunity. The function of the 

mammalian complement system is to maintain homeostasis by recognition and removal of damaged 

or modified self-material and pathogenic microbes (Zipfel et al., 2013). However, complement is also 

of importance in the specific immune response. The complement system is composed of plasma 

proteins, which are also present in milk and mainly coat the surface of a pathogen for its recognition 

by cells of the specific immune system. During innate immune response the complement accounts 

for lysis of Gram-negative bacteria. Among these, E. coli has been reported to be sensitive to lysis by 

complement (Korhonen et al., 2000).  

Additionally, the defensins, also referred to as antimicrobial peptides (AMP), are an evolutionarily 

conserved component of the innate immune response. Defensins are diverse oligopeptides (<100 

amino acids), contributing to the antimicrobial action of granulocytes, mucosal and epithelial host 

defense (Ganz, 2003; Peschel and Sahl, 2006). 
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Of the soluble mammary gland defense components lactoferrin is a predisposing antimicrobial 

protein reported to increase in concentration when an inflammation occurs (Sordillo et al., 1987). 

Lactoferrin contributes to neutralization of cytotoxic effects mediated by lipopolysaccharides 

(Pecorini et al., 2010). Moreover, the main function of lactoferrin is to inhibit the growth of certain 

bacteria by binding of iron, an essential factor required for bacterial growth. This growth hindering 

effect of lactoferrin has already been reported for Gram-negative bacteria such as E. coli in ruminants 

(Chaneton et al., 2008; Rainard, 1986).  

Cytokines are immunomodulating molecules that account for cell signaling. They are produced after 

antigen detection by certain cells of the immune system, mainly by leukocytes. The different 

cytokines (e.g. TNFα and IL1β) have a matching cell-surface receptor thus subsequently affecting 

intracellular signaling cascades and consequently mediating alterations of cellular functions. Figure 2 

shows the involvement of the inflammatory cytokines TNFα and IL1β in the immune response on 

putative mammary pathogenic E. coli (Shpigel et al., 2008) as possibly induced by lipid A recognition 

by the TLR4-MD-2 receptor complex (Maeshima and Fernandez, 2013). However, the specific effect 

of a particular cytokine depends on both, the cytokine´s and its receptor´s abundance followed by 

the activated downstream signaling cascade which can vary in different cell types. In general 

cytokines are considered redundant, in that many cytokines appear to share similar functions. These 

might include either direct regulation of genes or regulation by their transcription factors and further 

result in production of other cytokines, receptor expression for other molecules, or suppression of 

their own effect by feedback inhibition. Certain cytokines also participate in the specific immune 

response. 

 Specific immune response 

If the infecting bacteria evade the innate immune response or are not completely eliminated, the 

specific or acquired immune response is triggered.  

In contrast to the innate immune response the specific immune system needs to recognize the 

pathogens by specific antigens and therefore it takes time to be prepared. Once a specific response is 

created, due to the immunological memory, the immunity state is quickly established, intensive and 

enduring when the same antigen is recognized again. This results in a more effective elimination of 

the pathogen. Thereby, the most important soluble effectors of the specific immune response are 

antibodies produced by B lymphocytes after antigen recognition. The advantages of the acquired 

immune response are for example used as basis for vaccination.  

Also in the mammary gland the innate and the acquired immune system are coordinated in synergy 

to prevent mastitis.  
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Table 1: Cellular and soluble defenses of the mammary gland 

Cellular defense factors Biological function Immune system 

Neutrophils Phagocytosis and intracellular killing of bacteria;  
  secretion of antibacterial factors 

innate 

Macrophages Phagocytosis and intracellular killing of bacteria;  
  antigen presentation in conjunction with MHC 

innate & specific 

Natural killer cells Non-immune lymphocytes that secrete antibacterial 
  Proteins upon activation 

innate 

T lymphocytes 
 

 

       CD4C (T helper) 

 

Production of immunoregulatory cytokines following  
  antigen recognition with MHC class II molecules;  
  memory cells following antigen recognition 

specific 

       CD8C (T cytotoxic) Lysis of altered or damaged host cells when complexed  
  with MHC class I molecules;  
  production of cytokines that can down-regulate certain  
  leukocyte functions 

specific 

γδ T lymphocytes Biological role in the mammary gland is speculative specific 

B lymphocytes  
 

       Mature B cells 

 

Display membrane-bound antibody molecules to facilitate  
  antigen presentation;  
  memory cells following antigen interactions 

specific 

       Plasma cell Terminally differentiated B lymphocytes that synthesize 
  and secrete antibody against a specific antigen 

specific 

   

Soluble defense factors Biological function Immune system 

Cytokines Proinflammatory and immunoregulatory factors innate 

Complement Bacteriolytic and/or facilitates phagocytosis innate & specific 

Lysozyme Cleaves carbon bonds and disrupts bacterial cell walls innate 

Lactoferrin 

 

Sequesters iron to prevent bacterial uptake;  
  disrupts bacterial cell wall;  
  regulates mammary leukocyte activity 

innate 

Antibodies  
 

      IgG1 Selectively transported into mammary secretions;  
  opsonizes bacteria to enhance phagocytosis 

innate 

      IgG2 Transported into secretions during neutrophil diapedesis;  
  opsonizes bacteria to enhance phagocytosis 

innate 

      IgA 

 

Associated with the fat portion of milk;  
  does not bind complement or opsonize particles;  
  can cause agglutination, prevent bacterial colonization,  
  and neutralize toxin 

innate 

      IgM 

 

Efficient at complement fixation, opsonization, 
  agglutination and toxin neutralization; 
  only opsonic for neutrophils in presence of complement 

innate 

Table modified from Sordillo and Streicher, 2002   
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 Pathogen recognition 

Rapid pathogen recognition is essential for activation of the innate and the specific immune 

response. Generally, immune cells as well as non-immune cells are able to sense pathogens by 

particular pathogen recognition receptors (PRR). These receptors can be displayed either on the 

surface or intracellularly, and recognize so called pathogen-associated molecular patterns (PAMPs). 

PAMPs are small molecular motifs, which are conserved within a class of microbes such as 

lipoteichoic acids in Gram-positive and LPS in Gram-negative bacteria (Kumar et al., 2011).  

After binding to PAMPs, the PRRs subsequently initiate intracellular signaling cascades or directly 

promote the attachment, ingestion and destruction of the pathogens. Table 2 shows a general view 

of these pathogen recognition receptors. Additionally, two lymphocytes types of the specific immune 

system (also referred to as memory B cells and memory T cells) are able of pathogen recognition 

when sensing a previously encountered antigen allowing for a rapid immune response (Sordillo and 

Streicher, 2002; Sordillo et al., 1997). Of the extracellular PRRs the so called Toll-like receptors (TLRs) 

have a key role in activation of the innate and specific immune response. For instance when a specific 

PAMP such as LPS interacts with its particular TLR it induces, via TNFα, NF-κB signaling and the MAP 

kinase pathway followed by the release of cytokines and elicitors that will pass on the TLR activation 

signal to other immune cells (Doyle and O’Neill, 2006). 

 

Table 2: Pathogen recognition receptors 

Factor Role 

Innate Immunity  

   CD14 
 
 
 

Binds LPS. Membrane version is expressed on several cells including monocytes, macrophages, 
neutrophils, dendritic cells, and B cells. The soluble version may compete with mCD14 for LPS 
and is essential in the activation of non-mCD14 expressing cells, including epithelial and 
endothelial cells, by LPS. 

   PGRP Expressed in differentiated, lactating epithelium where it binds and hydrolyzes peptidoglycans. 

   TLR2 
 
 
 

Recognizes peptidoglycan and LTA from Gram-positive bacteria and lipoarabinomannan from 
mycobacteria. May form a heterodimer with TLR1 to recognize triacylated lipopeptides from 
Gram-negative bacteria and Mycoplasma or with TLR6 to recognize diacylated lipopeptides 
from Gram-positive bacteria and Mycoplasma.  

   TLR3 Detects double-stranded RNA. 

   TLR4 Recognizes LPS of Gram - bacteria, heat-shock proteins, fibrinogen, and polypeptides. 

   TLR5 Recognizes bacterial flagellin. 

   TLR9 Intracellular recognition of CpG-containing oligodeoxynucleotides (ODNs). 

Acquired Immunity  

   Fc Receptor 
 

Expressed on macrophages, neutrophils, and natural killer cells and recognize antibodies of 
infected cells or pathogens. 

Table modified from Aitken et al., 2011 
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The recognition of a presumed mammary pathogenic E. coli (MPEC hereafter) is schematically shown 

in Figure 2. TLR2 and TLR4 are the most significant receptors during bacterial mastitis and are 

primarily activated in response to Gram-positive and Gram-negative infections, respectively (Aitken 

et al., 2011; Günther et al., 2011; Yang et al., 2008; Goldammer et al., 2004).  

Notably, even though both S. aureus and E. coli are able to trigger TLR2 and TLR4, only E. coli is 

capable of inducing NF-κB signaling in mammary gland epithelial cells followed by quick induction of 

TNF-α. It is still not known whether the diminished NF-κB activation potential in immune relevant 

cells is a molecular defect, or depends on virulent traits of the particular pathogen, associated with 

subclinical mastitis. 

Figure 2: Pathophysiological scheme of presumed mammary pathogenic E. coli (MPEC) replicating in 
the mammary alveolar space, modified from Shpigel et al., 2008. LPS/TLR4 signaling on alveolar 
macrophages (MΦ) elicits production of inflammatory cytokines (TNFα and IL1β) and chemokines (KC 
and MIP2), resulting in recruitment of blood neutrophils (PMN) trafficking across the polar alveolar 
epithelium (TJ, tight junction) into the alveolar space. Recruited neutrophils are killing the bacteria by 
phagocytosis and neutrophil extracellular traps (NETs). Bacterial epithelial invasion is abrogated by 
LPS/TLR4 signaling on MΦ possibly mediated by nitric oxide (NO) produced by MΦ and myoepithelial 
cells. Epithelial invasion by bacteria induce epithelial megalocytosis, necrosis and apoptosis. 
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II.2. Escherichia coli 

Escherichia coli (E. coli) represents from an evolutionary point of view a comparably young bacterial 

species linked to the appearance of animals. Usually, a commensal resident of the intestinal 

microflora of warm blooded animals, E. coli can become pathogenic by acquisition of virulence 

factors (VFs) (Hacker et al., 2003). Specific pathotypes of E. coli are defined by successful 

combinations of VFs, often located on pathogenicity islands (PAIs) or smaller inserts. Pathotypes are 

capable of causing a broad spectrum of diseases in healthy individuals (Kaper et al., 2004). Besides 

specific pathotypes (Table 3), the major categories are: intestinal pathogenic E. coli (IPEC), 

extraintestinal E. coli (ExPEC), depending on the site of infection, and commensal E. coli (Dobrindt, 

2005; Köhler and Dobrindt, 2011). Notably, E. coli pathotypes cannot always be unambiguously 

grouped by phylogeny. They often arose in parallel evolution and were spread polyphyletically (Reid 

et al., 2000). E. coli strains can be classified according to their phylogeny into clonal groups (A, B1, B2, 

C-I to C-V, D E and F) and cryptic clades (Clermont et al., 2000 and 2013; Walk et al., 2009). 

Moreover, E. coli strains can be distinguished by their serotype, defined by the combination of their 

surface antigens LPS (O antigen), flagellin (H antigen) and capsule (K antigen) (Kauffmann, 1965). 

Serotyping is an approved diagnostic tool which allows to associate E. coli strains of a specific 

serotype to certain clinical manifestations. However, the classification by serotype does not allow 

conclusions concerning virulence (Jacks and Glantz, 1967). Instead the serotype correlates to the 

strains phylogeny and often provides valuable information on its pathotype (Iguchi et al., 2008). 

Altogether, the different pathotypes, high phylogenetic diversity and various serotypes of E. coli 

result from substantial genome plasticity. 

 

Table 3: Intestinal und extraintestinal Escherichia coli pathotypes. 

Intestinal pathogenic E. coli (IPEC) Extraintestinal pathogenic E. coli (ExPEC) 

Adherent invasive E. coli (AIEC) Avian pathogenic E. coli (APEC) 

Diffusely adherent E. coli (DAEC) Meningitis-associated E. coli (NMEC) 

Enterotoxigenic E. coli (ETEC) Septicemia-associated E. coli (SEPEC) 

Enteropathogenic E. coli (EPEC) Uropathogenic E. coli (UPEC) 

Enteroinvasive E. coli (EIEC) putative  Mammary pathogenic E. coli (MPEC) 

Enteroaggregative E. coli (EAEC) 

Enterohemorrhagic E. coli (EHEC) 
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II.2.2. E. coli genome structure and plasticity 

The E. coli genome is varying from approximately 4.6 to 5.5 × 106 bp in size. It can be distinguished 

into a core genome, present in all E. coli strains, and a strain-specific dispensable genome also 

referred to as flexible gene pool. Obviously, the core genome comprises the so called housekeeping 

genes, encoding for proteins of translation, transcription and replication, as well genes of the basic 

metabolism. Moreover, it can be suggested that some genes of the core genome are important in the 

lifestyle within the gut as the main E. coli habitat. Once estimated with about 3,100 genes, more 

recent calculations report only about 2,000 genes of high homology comprised by the core genome 

of E. coli (Dobrindt et al., 2003; Touchon et al., 2009). On the other hand, the flexible gene pool 

(16,000 genes) accounts for the different genome sizes of E. coli and thereby comprises genes that 

are required for adaptation to often changing environmental conditions provided by the habitat. 

These genes are often localized on mobile genetic elements, such as plasmids, prophages, 

transposons or genomic islands (GEIs). GEIs may serve as integration hotspots for different mobile 

genetic elements. They are discrete genetic units of 10-200 kb, flanked by direct repeats and 

insertion sequences and frequently associated with tRNA-encoding genes. Their GC-content differs 

from that of the core genome. Additionally, GEIs comprise genes coding for integrases and 

transposases, which facilitate the insertion into the chromosome of recipient E. coli strains. If a GEI 

comprises virulence genes and if this GEI is present in the genome of a pathogenic E. coli, but absent 

in non-pathogenic strains, this GEI is referred to as a pathogenicity island (PAI). Both, the core 

genome and the dispensable genome constitute the E. coli pangenome (approximately 18,000 genes) 

(Dobrindt et al., 2003 and 2004; Hacker et al., 1990, 1997 and 2003; Leimbach et al., 2013; Medini et 

al., 2005; Tenaillon et al., 2010, Touchon et al., 2009). 

The substantial genome plasticity makes E. coli a highly versatile species which is able to constantly 

alter its genome content by horizontal gene transfer (HGT) and deletion events in order to provide 

adaptation, fitness and competitiveness to different growth conditions and habitats . 
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II.2.3. ExPEC: Commensal E. coli with increased potential to cause extraintestinal disease 

The acronym ExPEC designates certain E. coli strains that cause extraintestinal infections (EIs). Hence, 

a specific E. coli strain would be defined as ExPEC if it exhibits enhanced virulence in an appropriate 

extraintestinal infection model or if harboring multiple extraintestinal VFs (Table 4). Isolation of an 

E. coli strain from an extraintestinal infection does not per se determine an ExPEC, since also 

commensal strains of E. coli are able to cause EI when the host is compromised. Likewise the specific 

pathotypes of E. coli (Table 3), the major category ExPEC is defined by successful combinations of 

VFs, depending on the number, type and synergistic effect of these VFs (Russo and Johnson, 2000; 

Kaper et al., 2004; Köhler and Dobrindt, 2011). 

 

 

Table 4: ExPEC virulence factors as illustrated by Köhler and Dobrindt, 2011 

Functional category Virulence factor 

Adhesin Type 1 fimbriae (Fim) 

P fimbriae (Pap/Prf) 

S/F1C fimbriae (Sfa/Foc) 

N-Acetyl D-glucosamine-specific fimbriae (Gaf) 

M-agglutinin (Bma) 

bifunctional enterobactin receptor/adhesin (Iha) 

afimbrial adhesin (Afa) 

temperature sensitive hemagglutinin (Tsh) 

Invasin invasion of brain endothelium (IbeA) 

Iron acquisition siderophore receptor IreA 

aerobactin (Iuc) 

yersiniabactin (Ybt) 

salmochelin (Iro) 

periplasmic iron binding protein (SitA) 

Toxins alpha-hemolysin (HlyA) 

cytolethal distending toxin I (CDT 1) 

cytotoxic necrotizing factor 1 (CNF-1) 

colibactin (Clb) 

serine protease autotransporters Sat, Pic 

Protectins group II capsule incl. K1 capsule 

conjugal transfer surface exclusion protein (TraT) 

outer membrane protease T (OmpT) 

increased serum survival (Iss) 

colicin V (Cva) 

Others D-serine deaminase (DsdA) 

maltose and glucose-specific PTS transporter subunit 

flagella 
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It seems clear that the flexible E. coli gene pool serves the purpose to acquire and discard genes as a 

result of selective pressures of the habitat. This opens up a rather new perspective of discriminating 

pathogens from commensals. While IPEC strains can be reliably discriminated from ExPEC or 

commensal E. coli based on genome content and phenotypic traits, an unambiguous distinction 

between ExPEC and commensals proves to be difficult (Leimbach et al., 2013). This is easy to 

understand as ExPEC originate from the microflora of healthy individuals by acquisition of novel 

traits. Or changing the perspective: Commensals constitute as reservoir of E. coli that can become 

ExPEC. 

In terms of commensalism advantageous traits are referred to as colonization and fitness factors, 

whereas traits contributing to pathogenicity have been designated virulence factors (VFs). The 

literature refers to VFs as molecular mechanisms expressed by pathogens enabling them to thrive in 

pathogenesis (Donnenberg, 2002). VFs might facilitate the colonization of a niche in the host (e.g. the 

teat duct or the urinary tract) including the adhesion to host cells or actually mediate 

immunoevasion (evasion of the host's immune response), e.g. by invasion/entry into host cells. They 

might also enable nutrient acquisition from the host or cause inhibition of the host's immune 

response also referred to as immunosuppression. As PAIs may carry multiple virulence-associated 

gene clusters, its acquisition might turn a before benign E. coli strain into a pathogenic one in a single 

step (Dobrindt et al., 2004). 

Anyhow, it is an ongoing discussion whether particular traits should be considered VFs or fitness 

factors depending on their contribution to either one or being involved in both ExPEC virulence and 

commensal fitness. For instance Leimbach et al. exemplified prevalent VFs of ExPEC that are also 

found in commensal E. coli (Table 5). Furthermore, they pointed out that commensal E. coli of 

phylogroups B2 and D resemble typical ExPEC with regard to the prevalence of their virulence- or 

fitness-associated traits. This is supported by data suggesting that extraintestinal virulence emerged 

as a coincidental by-product of commensalism (Le Gall et al., 2007; Tenaillon et al., 2010). And, of 

course, it seems convincing that some of these virulence-associated traits (e.g. adhesins) are 

important not only for pathogens but also for commensals within the gut. The odd situation that 

many previously described virulence-associated traits were announced VFs, although contributing to 

commensalism, may be due to the focus on pathogens in former studies. Notably, in this study the 

traits contributing to bacterial virulence and survival within the bovine udder, which are not known 

to be indispensable for ExPEC virulence, will be announced virulence-associated traits hereafter. 

Nevertheless, there some indications may be helpful to distinguish between ExPEC and commensals: 

Commensals are highly adapted to a particular niche, like a specific gut region. It seems natural that 

characteristics of a rather persistant commensal depend on the site of the habitat, while a transient 

pathogen may be not that well-adapted to this niche (Abraham et al., 2012). The acquisition of novel 
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genes as well as genome reduction, are reflected by variable genome sizes. However, the genome 

size of commensal E. coli has been reported to be usually smaller than that of pathogenic E. coli 

variants (Chaudhuri and Henderson, 2012; Bergthorsson and Ochman, 1995). Another opportunity 

might be the characterization of source-specific alleles (e.g. of iss or genes of extracellular 

polysaccharides) that presumably differ and could improve discrimination of ExPEC and commensal 

E. coli (Johnson et al., 2008a; Duda et al., 2013). As afore mentioned VFs are often localized on PAIs 

or plasmids, some commensals might be distinguished from ExPEC according to their plasmid content 

(Dufour et al., 2011), although mobile elements should not account as unambiguous marker. The pks 

island for example, a designated PAI, was associated with multiple ExPEC-associated virulence genes 

identified in an especially high-virulence subset of phylogroup B2 (Johnson et al., 2008b). The same 

authors found that ExPEC and commensal E. coli differ in their antimicrobial susceptibilities and 

plasmid replicon possession (colicin plasmid) suggesting that in ExPEC, multi drug resistance (MDR) is 

frequently associated with plasmids (Johnson et al., 2012). In summary: We know that improved 

adaptability and competitiveness may promote intestinal colonization as well as extraintestinal 

infection by E. coli (Leimbach et al., 2013). As a consequence extraintestinal virulence and intestinal 

fitness traits overlap. In the era of genomics discrimination of ExPEC and commensal E. coli should be 

further improved by either 1) extended studies on the prevalence of source-specific alleles or 2) 

assessment of gene regulation of the traits involved in both fitness and virulence related processes. 

 

Table 5: Fitness and virulence traits of ExPEC adapted from Leimbach et al., 2013 

Trait Example Role during infection Role during commensalism 
or in secondary habitat 

Adhesins Type 1 fimbriae Adhesion, 
niche tropism, 
biofilm formation 

Adhesion, 
niche tropism, 
biofilm formation 

Siderophore 
            receptors 

Yersiniabactin 
          receptor 
Salmochelin 
          receptor irgA 
homolog 
           adhesin (Iha) 

Iron acquisition, 
adhesion, 
invasion, 
biofilm formation 
 

Iron acquisition, 
adhesion, 
biofilm formation 
 

Extracellular 
    polysaccharides, 
    cellulose, 
    capsule, 
    LPS 

Capsule, cellulose, LPS Serum resistance, 
protection against 
immune response; 
interaction with 
eukaryotic cells 

Protection against 
predation, desiccation, 
intestinal colonization 
 

Toxins α-Hemolysin  Cell/tissue destruction, 
release of nutrients 

Signaling 

Flagella  Motility/chemotaxis Motility/chemotaxis 

Metabolic traits Utilization of D-serine, 
fructooligosaccharides 

Growth advantage, 
niche colonization 

Growth advantage, 
niche colonization 
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II.2.4. Virulence factors of mammary pathogenic E. coli 

This study focuses on virulence-associated traits of E. coli strains capable of causing bovine mastitis. 

Therefore, typical VFs of ExPEC will be discussed in relation to MPEC.  

Figure 3: Scheme of different typical VFs of extraintestinal pathogenic E. coli (ExPEC) in comparison 
to a mammary pathogenic E. coli (MPEC) and its suggested VFs. 
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It was mentioned before (section II.2.2), that alterations of the E. coli genome content due to HGT 

and genome reduction can result in adaptation, improved fitness and competitiveness to different 

growth conditions and niches. Thus, a PAI conferring virulence traits might turn a benign E. coli strain 

into a pathogenic one in a single step (Dobrindt et al., 2004). A study conducted by Dufour et al. 

reports on the presence of GEIs in the bovine mastitis E. coli strain P4. The complete characterization 

of one GEI revealed genes that clearly distinguish E. coli P4 from the E. coli K-12 strain MG1655 and 

which are present in other pathogenic E. coli strains (Dufour et al., 2011). Indeed, knowledge of the 

presence or absence of GEIs or designated PAIs might allow us to distinguish between commensal 

E. coli or such with the ability to cause mammary gland infection (MPEC) as suggested by Shpigel et 

al. (Shpigel et al., 2008). 

 The Type Three Secretion System ETT2 

The E. coli type three secretion system 2 (ETT2)-encoding island is a designated PAI, which is 

distributed among many E. coli (Ren et al., 2004). The 29.9 kb ETT2 PAI was first discovered in the 

genome of EHEC O157:H7 serotype strain EDL933 (Perna et al., 2001) and mainly associated with 

pathogenic E. coli (Makino et al., 2003; Miyazaki et al., 2002). Later, the ETT2 gene cluster was found 

either in total or in part in the majority of E. coli strains. However,  according to its genetic structure 

it seems often to encode a non-functional secretion system (Ren et al., 2004; Perna et al., 2001). The 

intact ETT2 locus encodes for at least 35 genes, including yqe, yge, etr, epr, epa, eiv, etc., which are 

similar to genes included in PAIs of Salmonella (Cheng et al., 2012; Hansen-Wester and Hensel, 2001; 

Blanc-Potard et al., 1999; Galán, 1996). The presence of ETT2 was previously associated with 

bacterial invasion and intracellular survival of MNEC and was therefore believed to be involved in the 

pathogenesis of extraintestinal infection (Yao et al., 2009). In general, the type three secretion 

system (T3SS) is exclusively present in Gram-negative bacteria and is involved in the transport of 

bacterial virulence-associated proteins across the bacterial membranes, but also across the host cell 

barriers directly into the host cell cytoplasm (Cornelis, 2002; Lee, 1997). On the contrary, the specific 

role of the ETT2-encoded proteins and their functions in pathogenesis remains to be investigated in 

detail. Interestingly, a recent study on the prevalence and isoforms of ETT2 revealed a significantly 

higher presence of ETT2 (86 %, n= 92) among E. coli isolates of porcine origin than that (47 %, n= 76) 

of bovine mastitis origin. Even more interesting is the correlation of the presence of the intact ETT2 

in the isolates from cases of porcine edema and/or diarrhea. In contrast, the majority of isolates from 

bovine mastitis carried corrupted EET2 isoforms and showed no distinct association with other VFs, 

e.g., the presence/absence of heat-labile enterotoxin(LT1), heat-stabile enterotoxin(ST2), cytotoxic 

necrotizing factor type 2(CNF2), pili (Tra), catalase-peroxidase(HPI) and hemolysin(Hly) (Cheng et al., 

2012). 
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 Adhesins 

The VFs enabling the bacteria to adhere to host epithelial cells are referred to as adhesins. Adhesins 

can be divided into fimbrial and afimbrial adhesins. Fimbriae (also pili) are thin, rod shaped fibers 

composed of different protein subunits (Sauer et al., 2000; Schilling et al., 2001).  

 Type 1 fimbriae 

The type 1 fimbriae represent the most prevalent fimbrial-type in E. coli and are encoded by the fim 

gene cluster comprising nine fim genes. Among them is fimH which encodes for the adhesion and is 

located at the very tip of the fimbriae. The FimH subunit has been reported to mediate specific 

binding to α-mannoside structures on different animal host epithelial cells (Klemm et al., 1985; 

Johnson, 1991; Pourbakhsh et al., 1997). Additionally, binding to IgA, laminin and also to the CD 11 

and CD 18 complex of leukocytes and macrophages was observed. Interestingly, the comparison of 

fimH genes of E. coli strains from bovine, avian and porcine clinical cases revealed a substantial 

homology (>99%) among fimH genes from the different animal species origins. Moreover, specific 

mutations were found, some of which were present more frequently in bovine or avian or porcine 

strains respectively (Vandemaele et al., 2004). 

 Long polar fimbriae 

The long polar fimbriae (lpf gene cluster) were first discovered in Salmonella typhimurium. The 

designation reflects the observation of long fimbriae inserted at the poles of the bacterium upon 

expression of the fimbrial operon by a non-piliated E. coli strain (Bäumler and Heffron, 1995). Despite 

this, a fimbrial cluster of high sequence similarity to the lpf gene cluster of Salmonella and several 

IPEC strains has been identified in ExPEC. This operon exhibits homology regarding the nucleotide 

sequence and the genetic organization relative to the type I fimbrial gene cluster. Furthermore, the 

ExPEC lpf cluster was reported to be functional and involved in adherence and invasion to kidney 

epithelial cells(Ideses et al., 2005).  

Regarding mastitis, the presence of the lpfA gene was associated with invasion of cultured bovine 

mammary gland epithelial cells by E. coli isolates from both, transient and persistent, mastitis cases 

(Dogan et al., 2012). A recent study determined the lpfA gene as one of the most prevalent VF genes 

detected in E. coli isolates from bovine mastitis (Blum and Leitner, 2013). This study found lpfA 

prevalent in 52 % of the mastitis isolates (n= 63) and 67 % of the environmental isolates (n= 24) 

investigated. Both studies support the idea of long polar fimbriae being an important factor in the 

pathogenesis of mastitis-causing E. coli. However, this is still a matter of speculation and needs to be 

reinforced by in vivo experiments as well as more extended studies on the prevalence of the lpf gene 

cluster. 
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 F1C, P and S -fimbriae 

Also distributed in ExPEC isolates are fimbriae of S-, F1C-, and P-type, which also possess an adhesin 

present at the tip mediating binding to sugar entities of certain host cell receptors (Johnson, 1991). In 

contrast to many other VFs, they are exclusively encoded on the bacteria´s chromosome (Hacker, 

1992).These fimbriae were observed to contribute to the virulence of pathogenic E. coli strains, but 

they are not necessarily sufficient to cause disease (Mobley et al., 1994). However, P-fimbriae 

account for host responses resulting in inflammation (van den Bosch et al., 1993; Bergsten et al., 

2005). The P-fimbriae are encoded by the pap gene cluster and are reported to be less often 

expressed in ExPEC compared to type 1 fimbriae expression (Hacker, 1992). There is evidence that P-

fimbrial adhesins may be associated with the virulence of avian pathogenic E. coli (APEC) 

(Kariyawasam and Nolan, 2011).  

The S fimbriae (encoded by the sfa gene cluster) and F1C fimbriae (encoded by the foc gene cluster) 

are members of the S-fimbriae superfamily of adhesins. S fimbriae mediate agglutination (mannose-

resistant hemagglutination /MRHA) of human erythrocytes. The S and F1C fimbriae show specific 

binding to sialosyl oligosaccharide chains (Ott et al., 1988; Prasadarao et al., 1993). Studies on the 

prevalence of the S fimbriae among ExPEC strains reported greatly varying frequencies of the sfa 

genes reaching from 9.2 to 97 % in APEC strains and 50 to 100 % prevalence in human ExPEC isolates 

(Ewers et al., 2007; Moulin-Schouleur et al., 2006).  

For S- and P-fimbriae, there is a merely slight prevalence (7-8 %, n= 155 and 160) in E. coli bovine 

mastitis isolates from Finland reported (Lehtolainen et al., 2003; Kaipainen et al., 2002). In contrast, a 

more recent study on bovine mastitis isolates found none of the isolates containing genes for F17a-A, 

intimin, P or S fimbriae (Ghanbarpour and Oswald, 2010). Notably, this would lead to the suggestion 

that mastitis pathogenesis does not require these particular adhesins. 

 F17 fimbriae 

F17 fimbriae were mainly reported in pathogenic E. coli strains responsible for diarrhea or septicemia 

in cattle and sheep and more recently associated with APEC (Oswald et al., 1991; Lintermans et al., 

1988; Le Bouguénec and Bertin, 1999; Stordeur et al., 2002). Although F17-positive APEC strains were 

pathogenic for chicken and caused characteristic lesions of avian colibacillosis (Stordeur et al., 2004), 

there is still doubt that the observed contribution is not an effect of other known VFs. F17 fimbrial-

related genes were identified in other ExPEC, e.g. human UPEC and bovine SEPEC isolates (Martin et 

al., 1997; Le Bouguénec and Bertin, 1999) and were also detected in E. coli bovine mastitis isolates 

(20 %, n= 127) (Ghanbarpour and Oswald, 2010). Again, there is a contrast to the Finnish E. coli 

bovine mastitis isolates which showed a slight prevalence of F17 fimbriae (8-9 %, n= 155 and 160) 

(Lehtolainen et al., 2003; Kaipainen et al., 2002).  



INTRODUCTION  23 

 

 Mat fimbriae 

The Mat (meningitis-associated and temperature regulated) fimbriae were originally identified in 

O18:K1:H7 NMEC isolates and are known to be encoded by the mat gene cluster (Pouttu et al., 2001). 

Later, expression of a structurally related fimbria was observed in both pathogenic and non-

pathogenic E. coli strains and thus the name E. coli common pilus (ECP) was introduced (Rendón et 

al., 2007). Nowadays, we know that the mat gene cluster has an identical chromosomal location as 

well as an overall 98% DNA sequence identity across different pathovars and phylogenetic groups of 

E. coli. Therefore the mat gene cluster belongs to the so-called persistent genes that are present in 

nearly all isolates of a species (Touchon et al., 2009; Fang et al., 2005). To date, the Mat fimbriae 

were frequently observed to mediate binding to particular epithelial cells (Rendón et al., 2007; 

Lasaro et al., 2009; Saldaña et al., 2009; Avelino et al., 2010). Just recently EcpD/MatE was presumed 

to be responsible for the attachment to epithelial cells. This suggests the presence of a tip-associated 

adhesin like in case of other fimbrial adhesins (Garnett et al., 2012). Furthermore, Mat fimbriae are 

needed for biofilm formation by NMEC and UPEC (Lehti et al., 2010; Garnett et al., 2012). Given that 

Mat fimbriae are essential for the colonization of infant mice by the probiotic isolate E. coli Nissle 

1917 (Lasaro et al., 2009), the Mat fimbria is considered rather an important colonization factor of 

E. coli than a virulence factor. However, although there is no relation to putative MPEC reported to 

date, the Mat fimbriae could be an advantageous factor in mastitis pathogenesis when facilitate 

binding to mammary epithelial cells. 

 Curli 

Curli are thin, filamentous structures frequently displayed on the surface of ExPEC, which are 

encoded by the csgBAC operon. The adhesive subunit CsgA facilitates binding to serum proteins and 

proteins of the extracellular matrix (e.g. laminin, fibronectin, plasminogen), but also interacts with 

major histocompatibility complex molecules (Olsén et al., 1998 and 1989). E. coli mastitis isolates, 

deprived of mannose-sensitive and mannose-resistant adhesins, were able to produce curli fimbriae 

under aerobic and anaerobic conditions at room and higher temperature, which suggests that these 

adhesins may be involved in the pathogenesis of bovine mastitis (Karczmarczyk et al., 2008). Curli 

expression was detected in 55-57 % of the clinical mastitis isolates tested (Dyer et al., 2007; Olsén et 

al., 1989). However, phenotypic curli expression in clinical isolates did not affect recovery of the 

cows’ milk yield to premastitis production levels. This suggested that the clinical severity of E. coli 

mastitis is more dependent on cow-related factors than on bacterial virulence (Dyer et al., 2007). 

Nevertheless, curli enable bacterial adherence to multiple cell lines, and curli fibers themselves 

interact with many host proteins and are potent inducers of the host inflammatory response 

(Barnhart and Chapman, 2006). The role of curli expression in E. coli pathogenesis during mastitis 

remains yet unclear. 
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 Afimbrial adhesins 

Structures that facilitate binding, but are not assembled into fimbria structures are designated 

afimbrial adhesins. The first reported afimbrial adhesin was that encoded by the afa gene cluster and 

was observed to mediate UPEC binding to epithelial cells of the urinary tract (Labigne-Roussel et al., 

1984). Afa and the closely related adhesins from Dr adhesin superfamily and the mannose resistant 

non-fimbrial hemagglutinin(NFA) are expressed by ExPEC and IPEC from both human and domestic 

animals (Le Bouguénec and Bertin, 1999; Girardeau et al., 2003). Another study suggested Afa to be 

associated with EPEC (Keller et al., 2002), but afa genes were rarely (1 %) detected in E. coli isolates 

from bovine mastitis (Kaipainen et al., 2002). Similarly, other afimbrial adhesins have been associated 

rather with IPEC than ExPEC (e.g. CS6 and CS31A adhesins). The CS31A adhesion for example is 

mainly expressed by pathogenic E. coli strains also producing the F17 fimbriae which were only rarely 

detected (<1 %) in putative MPEC (Ghanbarpour and Oswald, 2010; Kaipainen et al., 2002). 

 Flagella 

The flagella are long surface structures composed of polymerized flagellin subunits encoded by fliC. 

Flagella mediated motility and were shown to affect the pathogenesis of UTI caused by UPEC (Lane et 

al., 2005). Furthermore, flagella were reported to enhance colonization of the urinary tract by UPEC 

and enable ascending infections (Lane et al., 2007). Beside their impact on ExPEC pathogenesis, 

flagella have been associated with invasion into intestinal epithelial cells of domestic animals by IPEC 

(ETEC, EPEC and STEC) (Xu et al., 2013; Duan et al., 2012 and 2013; Girón et al., 2002; Murinda et al., 

2004). Anyhow, flagella might provide the motility required by putative MPEC to ascend the milk 

ducts. Just recently, fliC was for the first time reported in context of mastitis; found to be present in 

80 % of isolates from bovine mastitis (n= 20) (Silva et al., 2013). It has to be further elucidated 

whether fliC is expressed and thus impact mastitis or not. 

  Serum and complement resistance 

E. coli strains that cause extraintestinal infections are challenged with anatomical barriers and early 

stages of host defense (section II.1.4). In order to resist to the host´s complement system during an 

infection bacteria might either utilize polysaccharides (e.g. K-antigens and O-antigens) or proteins 

(e.g. Omp or Iss). Additionally, bacteria have evolved different mechanisms to resist the serum killing 

by defensins (also AMP) (Peschel and Sahl, 2006).  

 Capsules; K-antigens 

In the past, various functions have been assigned to cell coating capsular polysaccharides of different 

bacterial species. These include adhesion, transmission, resistance to innate host defenses, 

resistance to the host's adaptive immune response (e.g. complement-mediated killing) and 

intracellular survival (Roberts, 1996). The capsules or so called K-antigens are known to mediate 
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serum resistance and protection from complement by either inhibition of the complement activation 

cascade or due to steric effects and masking of the cell surface. Either way, the mediated resistance 

is likely to involve a number of cell surface structures which contribute to the overall effect (Burns 

and Hull, 1998 and 1999). 

In general capsules consist of linear polymers of repeating carbohydrate subunits that might also 

comprise an amino acid or lipid component. For E. coli more than 80 different K-antigens were 

determined and distinguished into four groups based on biochemical and genetic data (Whitfield and 

Roberts, 1999). The expression of certain K-antigens (kps genes) in ExPEC is strongly associated with 

particular infections: 

The E. coli K1 antigen (encoded by the neu & kps gene clusters) is reported to be essential for 

intracellular survival and crossing of the blood-brain-barrier and found to be present in most MENEC 

(Kim, 2002 and 2003). Specifically, the K1 antigen affects E. coli-containing vacuoles inside 

endothelial cells and prevents their fusion with lysosomes (Kim et al., 2003). As such, the K1 antigen 

plays a crucial role in meningitis. Another study reported on APEC enabled to escape phagocytosis by 

expression of the K1 antigen, the O78 LPS antigen and P-fimbriae (Mellata et al., 2003). Meanwhile, 

the K1 antigen is known to avoid serum killing by complement inhibition and is a barrier for the 

bacteriophage T7 (Wooster et al., 2006; Scholl et al., 2005). However, rather small frequencies of the 

antigens K1 and K5 in have been reported in UPEC. 1499 E. coli isolates from patients with UTIs have 

been investigated for the presence of K1 antigen and K5 antigen. K1 was detected in 10.5% and K5 in 

6.1% of the strains examined (Nimmich et al., 1985). Neither the K1 antigen nor the K5 antigen was 

detected in any of 273 screened E. coli isolates from bovine mastitis (Kaipainen et al., 2002). 

Besides antigens K1 and K5, the K2 antigen is known to contribute to ExPEC virulence. A study 

reported that expression of the K2 capsule by UPEC isolates accounts for the protection against 

complement-mediated killing and thus affects the pathogenesis of UTIs (Buckles et al., 2009). 

However, the various functions mediated by the K antigens might be advantageous in mastitis 

pathogenesis. 

 Lipopolysaccharides; O-antigens 

The lipopolysaccharides (LPS) are the major component of the outer membrane of Gram-negative 

bacteria comprising three regions (Figure 4): (1) the lipid A (endotoxin), which anchors the LPS in the 

outer membrane, (2) the core oligosaccharide, and (3) the O-antigen or O-polysaccharide (Raetz and 

Whitfield, 2002; Amor et al., 2000). Lipid A is the most conserved part of LPS and is known to be 

recognized by the CD14/TLR4/MD-2 receptor complex on host cells (Raetz and Whitfield, 2002; 

Kawai and Akira, 2010). The O-antigenic polysaccharide (OPS) is highly polymorphic and specific for 

each serotype. For E. coli, more than 180 different O-antigens have been described (Stenutz et al., 

2006). They are considered advantageous in colonizing specific niches and essential for the full 
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function and virulence of bacteria (Moran et al., 2009). Bacteria modify their O-antigens by adding 

positively charged moieties that prevent the electrostatic interaction of defensins with bacterial 

surfaces (Thomassin et al., 2012). Moreover, the surface-displayed LPS accounts for many virulence-

associated properties: Such as resistance to detergents, hydrophobic antibiotics or organic acids 

(Barua et al., 2002), adherence to eukaryotic cells (Jacques, 1996; Cohen et al., 1985) and serum 

resistance due to complement inhibition (Reeves, 1995). Especially the latter is believed to be 

dependent on the O-polysaccharide chain length (Reeves, 1995; Porat et al., 1992).  

Recent studies on the O-antigenic polysaccharide of the bovine mastitis isolate E. coli serotype O174 

suggest different subtypes of the O174 O-antigen. This supports the idea of evolutionary pressure 

due to host-pathogen interactions (Duda et al., 2013). 

Figure 4: Structural organization of LPS (from Maeshima and Fernandez, 2013). The three regions of 
LPS from the bottom: lipid A (chair structure indicates di-glucosamine head group, red circles indicate 
phosphate groups, squiggly lines indicate acyl chains), core sugars and O-antigen, which consists of 
repeating units (denoted in brackets with an “n”) of oligosaccharides. 
 
 
For bovine neutrophils it has been reported that binding of LPS to membrane-bound CD14 causes 

release of TNFα and sepsis (Paape et al., 2003). It is common knowledge that Lipid A as component of 

LPS acts as prototypical endotoxin, because it binds to the CD14/TLR4/MD2 receptor complex, which 

promotes the secretion of pro-inflammatory cytokines in many cell types, but especially in 

macrophages and B cells (Raetz and Whitfield, 2002; Kawai and Akira, 2010). This recognition 

promotes the secretion of pro-inflammatory cytokines in many cell types, but especially in 

macrophages and B cells (see also section  .0.0). The term "LPS challenge" refers to the process of 

exposing a subject to LPS that may act as a toxin and is a proposed method to elicit the immune 
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response within in the udder by LPS induction (Schmitz, 2004; Elazar et al., 2010). In contrast to other 

virulence-associated factors, LPS is supposed to be a key factor of mastitis pathogenesis. It can be 

anticipated that modulation of the highly polymorphic O-antigen might affect both pathogen 

recognition and severity of mastitis pathogenesis and may thus differentiate between putative MPEC 

causing either acute or persistent mastitis. 

 Outer membrane proteins  

Besides the K-antigens and O-antigens mentioned above, certain outer membrane proteins (Omp) 

are known mediate serum resistance: 

 

Iss is a lipoprotein in the outer membrane and is encoded by iss often located on ColV plasmids 

(Chuba et al., 1989). It has been demonstrated that three alleles of iss occur among E. coli isolates 

possibly evolved from a common bor precursor of bacteriophage lambda (Johnson et al., 2008a). Iss 

(Increased serum survival) expression was first associated to confer resistance after the iss gene was 

introduced into an E. coli K-12 strain, and consequently the resistance to bactericidal serum was 

observed to be increased (Binns et al., 1982). It has been supposed that Iss plays a less important role 

for serum resistance than the K1 capsule due to observations made by exposure of E. coli K1 deletion 

mutants compared to iss isogenic mutants (Tivendale et al., 2004). The iss gene is found to be highly 

prevalent in different ExPEC pathogroups. A study reported that 82.7 % of 451 APEC isolates tested 

were iss-positive whereas only a minority (18.3 %) of E. coli isolates from avian faeces was tested 

positive on iss (Rodriguez-Siek et al., 2005). The frequency of iss in APEC compared to the 

environmental isolates (avian faeces) lead to the suggestion that strains in possession of iss are likely 

to become extraintestinal pathogenic.  

Notably, one of the type 3 iss alleles was reported to occur in the genomes of all sequenced ExPEC 

strains (known at the time of publication of the study) on a prophage element. When the distribution 

of all the three iss alleles was examined among 487 E. coli isolates, the iss type 3 gene occurred at a 

high frequency among ExPEC isolates, irrespective of the host source. Moreover, the plasmid-borne 

iss allele (designated type 1) was highly prevalent among APEC and NMEC isolates, but not among 

UPEC isolates (Johnson et al., 2008a). Studies that investigate the prevalence of iss, ignoring host- or 

source-specific alleles, might lead to confusion when trying to correlate the presence of iss to 

particular a pathotype. Possibly for this reason two studies on iss prevalence in E. coli isolates from 

bovine mastitis have inconsistent results: In one study isolates from mastitic cows (n=63) and from 

different places of cowsheds (n=24 environmental isolates) showed 33 % frequency of iss (Blum and 

Leitner, 2013). In another study the iss prevalence was determined to be 16.7 % in the tested E. coli 

isolates (n=144) from bovine mastitis (Suojala et al., 2011). However, both studies claim that Iss was 

among the three most prevalent VFs found in the E. coli isolates from bovine mastitis.  
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OmpA is a structural protein and probably one of the most prevalent proteins of the outer 

membrane of E. coli. It is important for the outer membrane stability and is composed of two 

domains: an N-terminal domain anchored within the outer membrane and a C-terminal domain, 

which is located within the periplasm (Koebnik et al., 2000). It was suggested that OmpA provides 

physical linkage between the outer membrane and the underlying peptidoglycan layer until a more 

specific function of OmpA was observed: E. coli K1 ompA-deletion mutants were significantly more 

sensitive to sodium dodecyl sulfate (SDS), cholate, acidic environment, high osmolarity, and pooled 

human serum. Mutations that caused structural changes to the extracellular loops of OmpA did not 

affect the viability of E. coli, while changes at the OmpA beta-barrel, that provides the structural 

integrity, decreased E. coli resistance to environmental stresses (Wang, 2002). The same study 

showed that ompA mutants survived significantly better within brain microvascular endothelial cells 

than the wild-type strain what anticipates OmpA as major target in mammalian host cell defense. 

However, OmpA expression was observed by both E. coli strains associated with acute and persistent 

bovine mastitis upon cocultivation with primary bovine mammary gland epithelial cells (Dego et al., 

2012). The OmpA expression levels in either acute or persistant isolates were almost equal. 

 

OmpT is another outer membrane protein that provides resistance to defensins by a different 

mechanism. Particularly defensins can be proteolytically degraded and inactivated by surface or 

secreted proteases of the outer membrane such as omptins (Thomassin et al., 2012). The E. coli K-12 

OmpT was reported to efficiently degrade protamine of defensins (Stumpe et al., 1998). Another 

study reported that the EHEC and EPEC OmpT proteins contribute differently to the degradation of 

helical AMPs. Only the EHEC OmpT degraded and inactivated AMPs completely to promote bacterial 

survival, whereas EPEC OmpT poorly degraded the defensins exposed to (Thomassin et al., 2012). 

Given the fact that on the one hand, EHEC and EPEC are two genetically related bacteria and on the 

other hand, both EHEC and EPEC showed similar serum resistance statistics within the study, it was 

suggested that EPEC relies, at least partly, on other mechanisms to resist defensins (Thomassin et al., 

2012). Regarding the advantage of providing serum resistance by E. coli bovine mastitis isolates we 

might have a similar situation.  

 

Also TraT is supposed to be a surface exclusion lipoprotein and facilitates extracellular protease 

activity. The TraT lipoprotein is encoded by the traT gene carried on conjugative plasmids, such R6-5 

or CoIV of E. coli (Binns et al., 1982; Agüero et al., 1984). In particular, the resistance to complement 

is provided by structural and/or functional changes applied the complement proteins and therefore 

inhibition the interactions between complement bacterial surface (Agüero et al., 1984). TraT has 

been considered a virulence marker of ExPEC what is supported by the fact that the traT gene was 
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significantly more prevalent in E. coli isolates carrying certain antibiotic resistance genes (Lee et al., 

2010). In the past, the presence of traT (and also ompA) was correlated to E. coli causing clinical 

mastitis of sows, in comparison to isolates from faeces, suggesting a role in mastitis pathogenesis 

(Gerjets et al., 2011). Moreover, in a study on VFs of E. coli isolates from bovine clinical mastitis, traT 

was found in 37 % of the Finnish isolates tested (n=160) and 41 % of the Israeli isolates tested 

(n=113) (Kaipainen et al., 2002). It was therefore the most prevalent virulence factor identified within 

these two sets of E. coli isolates from bovine clinical mastitis.  

 Iron uptake systems 

Iron is essential for almost every living being and used in oxygen transport and storage, DNA 

synthesis, electron transport chain and peroxide metabolism. Due to the oxic environment, E. coli 

and other bacteria have to take up the merely soluble Fe(III) and then reduce it to Fe(II) which is 

highly soluble. This makes iron a limiting nutritional factor for survival and growth within the host 

niche such as body liquids (e.g. mammary secretions) (Chipperfield and Ratledge, 2000). It can also 

be limited, because of the host response to infection which further reduces the amount of iron 

available by iron-scavenging proteins such as lactoferrin (Latorre et al., 2010). Lactoferrin binds iron 

and makes it unavailable to bacteria (Smith and Schanbacher, 1977). In order to utilize the limited 

iron in the host niche, it has to be acquired by iron uptake systems. One option is to utilize the 

protein-bound iron complexes of the host such as hemoglobin, transferrin and lactoferrin by 

expression of specific receptors (Hanson et al., 1992). Another option is the use of siderophores, 

which compete with host iron-binding proteins.  

The siderophore gene clusters encoding the enzymes for enterobactin (ent) and the ferric di-citrate 

transport system (fec) have a common conserved localization in the E. coli core genome and might be 

found in pathogenic and non-pathogenic E. coli. They are therefore considered important fitness 

traits. Nonetheless, some siderophore gene clusters (e.g. chu, iro, iuc) are specific to genomic 

locations (e.g. pathogenicity islands) and/or isolates (Luck et al., 2001; Torres and Payne, 1997; 

Wyckoff et al., 1998; Bäumler et al., 1996; Dobrindt et al., 2003).  

Recently, the inactivation of the biosynthetic pathways of several siderophores (enterobactin, 

salmochelins and yersiniabactin) abolished the virulence of ExPEC in a mouse sepsis model and 

showed these pathways essential for the survival of ExPEC in vivo (Martin et al., 2013). This might be 

further supported by observations made on phagocytosis and serum susceptibility of E. coli bovine 

mastitis isolates cultured in iron-deplete and iron-replete media. Iron availability during cultivation 

altered the susceptibility of isolates to phagocytosis by neutrophils, but had no effect on the 

susceptibility of isolates to the bactericidal activity of serum (Wise et al., 2002). Therefore, iron 

acquisition of bacteria can be suggested advantageous for survival within milk, especially in presence 

of lactoferrin, and iron uptake systems might contribute to mastitis pathogenesis. 
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 Toxins 

Some E. coli pathotypes are associated with the presence and expression of certain toxins (EHEC: 

Stx1, Stx2, EAST1, EHly1, EHly2; EPEC: EAST1; ETEC: LT-I, LT-II, STa, STb; EAEC: ShET1, Pic, EAST1, Pet; 

UPEC: Sat, CNF-1, α-Hly). Several toxins are typically expressed by ExPEC: 

The cytotoxic necrotizing factor 1 (CNF-1) has been determined to activate RhoA, Rac1, and Cdc42 in 

epithelial cells (Schmidt et al., 1998; Aktories et al., 2000). Rho GTPases are required to maintain the 

function of tight junctions and thus the intestinal epithelial barrier function. Activation of Rac1 and 

Cdc42 exerts barrier-stabilizing effects whereas increased stimulation of RhoA/Rho kinase signaling 

causes intestinal epithelial barrier disruption (Schlegel et al., 2011). Thus, CNF-1 expression is 

advantageous in immunoevasion of E. coli. This might be important during intramammary infections. 

The CNF-1 gene (cnf1), was thought to be highly prevalent within ExPEC and are often associated 

with a pathogenicity island (Andreu et al., 1997). Specifically, this study reported a CNF-1 distribution 

of 44-63 % in E. coli isolates (total n= 150) from prostatitis, pyelonephritis, cystitis and UTI with 

predisposing factors. This is in strong contrast to results of a very recent study that reported CNF-1 

distribution of 0-3 % in isolates (n= 100) from pyelonephritis and cystitis (Tarchouna et al., 2013). 

Concerning bovine mastitis, the cnf1 prevalence was very low (5 %, n= 20) in E. coli isolates from 

mastitis. This suggests no important role for mastitis pathogenesis (Lipman et al., 1995). The 

α-hemolysin (hly) is considered to be an independent predictor of E. coli pathogenicity and belongs 

to the RTX toxin family (Lee et al., 2010). Often located on PAIs or plasmids, the hly gene cluster 

encodes for the toxin biosynthesis and components of its secretion system. The toxin lyzes red blood 

cells by damaging their cell membrane (Holland et al., 1990).The α-hemolysin is also believed to be 

widely distributed among ExPEC isolates. -Hemolysin production was significantly more common in 

ExPEC isolates from neonatal sepsis and meningitis as compared with faecal isolates (Korhonen et al., 

1985). This was further supported by 43-73 % -hemolysin positive E. coli isolates (total n= 150) from 

prostatitis, pyelonephritis, cystitis and UTI with predisposing factors (Andreu et al., 1997). In contrast, 

Tarchouna et al. (2013) detected the hly determinant in 19 % of the tested UPEC isolates (n= 90). For 

ExPEC other than UPEC, a study reported 98 % STEC isolates (n= 400) tested positive for the presence 

of the so-called EHEC hemolysin (Murinda et al., 2004). Among E. coli isolates from bovine mastitis 

(n= 76), 12 % were positive for hlyA (Cheng et al., 2012). Sat, the secreted autotransporter toxin is a 

member of the SPATE (serine protease autotransporters of Enterobacteriaceae) family. Besides 

serine protease activity, Sat causes cytopathic effects on various cell types and is predominantly 

found among UPEC strains (Guyer et al., 2000). Specifically, the active site of Sat is necessary for the 

protease and cytotoxic activities, contraction of the cytoskeleton, and loss of actin filaments in 

cultured bladder and kidney cells (Maroncle et al., 2006). Moreover, Sat was reported to degrade 

specific membrane/cytoskeletal and nucleus-associated proteins. Data on the contribution of Sat to 
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coliform bovine mastitis are not available so far. Likewise Sat, another ExPEC-associated toxin, the 

cytolethal distending toxin (CDT) could not related to mastitis (Fernandes et al., 2011). Above all, the 

toxins, which are not specific for ExPEC (CDT 1, EAST1, LT-I, LT-II, STa, STb, Stx1, Stx2, VT1, VT2) 

occurred in rather low frequencies or were completely absent among the mastitis isolates tested in 

various studies (Fernandes et al., 2011; Lipman et al., 1995; Ghanbarpour and Oswald, 2010; Suojala 

et al., 2011; Murinda et al., 2004; Reichardt and Dobrindt, unpublished data). Notably the 

consistency between the listed studies seems to be highly dependent of the particular origin. 

 Autotransporter proteins 

The toxin Sat is a member of the autotransporter (AT) protein family. AT proteins are surface-

exposed or secreted factors (i.e. Sat) that facilitate various virulence-associated functions to Gram-

negative pathogens. In E. coli, more than 18 different AT proteins have been identified (Zude et al., 

2014). All AT proteins share a characteristic structure consisting of three functional domains: (i) an 

N-terminal signal sequence, which initiates the SecA-dependent transport across the inner 

membrane into the periplasm, (ii) an α- or passenger domain, which encodes for functional traits, 

and (iii) an outer membrane embedded C-terminal β- or translocation domain (Desvaux et al., 2004; 

Benz and Schmidt, 2011). The AT subtype-specific translocation domain appears to be highly 

homologous, whereas ATs show substantial sequence diversity in their passenger domain that 

determines their individual functional properties. These various, often multiple functions were 

reported to contribute to adhesion (Benz and Schmidt, 1989), autoaggregation (Diderichsen, 1980), 

biofilm formation (Danese et al., 2000), haemagglutination, serum resistance (Henderson and 

Nataro, 2001), or exhibit protease activity (Pohlner et al., 1987) or toxin activity (Cover, 1996). In 

former studies these characteristics have been frequently correlated with pathogenesis and 

therefore, an application as biomarkers for individual extraintestinal pathogenic E. coli (ExPEC) or 

intestinal pathogenic E. coli (IPEC) has been proposed. Another study determined the highest 

prevalence of ATs per strain in phylogroup B2 isolates and showed that AT distribution correlates 

rather with phylogenetic lineages than with pathotypes. The AT protein UpaI and its positional 

ortholog EhaC were detected in 93 % of the E. coli strains tested (n= 111). Thus, UpaI is the most 

prevalent AT in E. coli irrespective of pathotype or phylogenetic background and was observed to 

mediate redundant functions in comparison to the ATs characterized within the study (Zude et al., 

2014). Specifically UpaI of UPEC strain 536 is contributing to autoaggregation, biofilm formation, and 

binding to extracellular matrix proteins. The functional redundancy and wide distribution of ATs 

among pathogenic and non-pathogenic E. coli indicates that ATs cannot generally be regarded as 

specific biomarkers and VFs per se. Nevertheless, AT proteins promote colonization of intestinal and 

extraintestinal sites by ExPEC and thus AT expression could be considered advantageous in mastitis 

pathogenesis.  
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II.2.5. What we know about mammary pathogenic E. coli 

Regardless pathogenic E. coli strains can be classified into different pathotypes according to distinct 

diseases (Kaper et al., 2004), E. coli causing mastitis represents itself peculiar. Specific E. coli 

serotypes involved in mastitis could neither be identified by epidemiological studies, nor could a 

common set of VFs be described for mastitis-causing E. coli strains. Furthermore, none of the 

previously studied phylogenetic groups, VFs or antimicrobial resistance traits were associated with 

clinical signs, persistence of intramammary infection or clinical recovery from mastitis (Blum and 

Leitner, 2013; Silva et al., 2013; Cheng et al., 2012; Dogan et al., 2012; Kerro Dego et al., 2012; 

Fernandes et al., 2011; Suojala et al., 2011; Ghanbarpour and Oswald, 2010; Dyer et al., 2007; Wenz 

et al., 2006; Bean et al., 2004; Lehtolainen et al., 2003; Kaipainen et al., 2002; Wise et al., 2002; 

Lipman et al., 1995; Sanchez-Carlo et al., 1984). Instead, it is thought that mastitis-causing E. coli are 

typical commensals (Suojala et al., 2011). However, commensal E. coli group mostly into phylogroup 

A while E. coli strains associated to mastitis are wide spread among different phylogenetic groups. 

Traditionally, the ‘cow factors’ are held responsible for differences in E. coli mastitis severity rather 

than variations in the bacterial set of VFs or their expression profile (Burvenich et al., 2003). In 

contrast to the widely accepted opinion that bacterial VFs are not involved in E. coli mastitis, large 

variations have been observed among field cases of E. coli mastitis in dairy animals. The severity of 

the disease can vary from a mild, self-curing to a fatal septic condition. Several field strains (e.g. P4) 

are highly virulent, and upon experimental infection consistently lead to severe septic mastitis in 

cows. In contrast, others cause mild mastitis and might result in latency or in chronically infected 

dairy animals (Döpfer et al., 1999, 2000 and 2001; Dogan et al., 2006). Nevertheless, in analogy to 

human and avian ExPEC isolates, the high geno- and phenotypic diversity among E. coli mastitis 

isolates may contribute to the variation in aetiopathology. Thus, mastitis-causing E. coli might make 

use of the same strategies used by other ExPEC including adhesion to and invasion into epithelial 

cells, immune evasion, replication, and tissue damage characterized by necrosis and apoptosis of 

epithelial cells. It also has been discussed that bacterial VFs may contribute to the disease (Shpigel et 

al., 2008). However, the different strains carry different sets of virulence genes and the accumulation 

of such traits may increase their virulence potential. 

 

II.3. Aims of this study 

Commensal and pathogenic E. coli variants adapt their gene expression contributing to survival and 

colonization during the transition between the environment and host. In the past, specific gene 

subsets and traits have been correlated with an increased potential of E. coli strains to either cause 

intestinal or extraintestinal diseases in humans and many animal hosts (Leimbach et al., 2013). 

However, to date a marked prevalence of many known virulence-associated genes of ExPEC and IPEC 
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among E. coli mastitis isolates has not been published. This indicates that the E. coli factors and traits 

required for the development of the variant forms of mastitis still remain unexplored or at least 

unidentified. 

This project aimed at the identification and characterization of virulence-associated traits from E. coli 

strains associated to bovine mastitis. Specifically, the E. coli model mastitis isolates 1303 (acute 

mastitis isolate) and ECC-1470 (persistent mastitis isolate) should be comprehensively examined. The 

main aim of this study was to study the distribution and regulation of virulence-associated factors in 

these isolates in order to better understand the molecular basis of pathogenesis during E. coli 

mastitis. For this purpose, transcriptomic analyses of the two mastitis isolates performed under 

different growth conditions should allow to screen for candidate genes involved in bacterium-host 

interaction, fitness or even pathogenicity during bovine mastitis. Specifically, the virulence-

associated gene content of the E. coli mastitis isolates 1303 and ECC-1470 should be assessed based 

on BLAST analyses of their draft genome sequences. A collection of E. coli isolates from bovine 

mastitis or from bovine faeces should be screened by PCR for the prevalence of selected 

autotransporter determinants. 

In order to study fitness traits and gene expression of E. coli mastitis isolates suitable in vitro test 

assays should be established, which mimic the environment and growth conditions in the bovine 

mammary gland in vivo. Fitness traits of selected bovine mastitis and/or faecal E. coli strains should 

be identified and analyzed in comparative phenotypic assays, i.e. the viability and growth under 

different conditions mimicking the environment during initial pathogenesis should be investigated. 

The transcriptional response of the mastitis isolates 1303 and ECC-1470 should be comprehensively 

assessed under growth conditions mimicking the initial stages of bovine mastitis pathogenesis by in 

vitro transcriptome analysis in order to identify (i) candidate genes involved in bacterium-host 

interaction upon cocultivation with MAC-T immortalized bovine mammary gland epithelial cells, (ii) 

candidate genes that enable mastitis isolates to quickly adapt to and survive the antimicrobial 

conditions within bovine native milk whey. 

As a prerequisite to study bacterial gene expression upon growth under in vivo-like conditions, i.e. in 

raw milk whey, protocols for the enrichment of bacterial cells from milk whey and for the purification 

of bacterial RNA from milk whey should be established. 

These data should allow us new insights into bacterial traits, which contribute to the adaptation of 

E. coli to host conditions in the bovine mammary gland and thus, may also contribute to mastitis.  
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III. MATERIAL 

III.1. STRAINS 

All bacterial strains used in this study are listed in Table 6. 

Table 6: Bacterial strains used in this study. 

Strain Source/origin Serotype Reference 

E. coli 1303 

ECC-1470 

UPEC 536 

MG1655 

RZ422 

RZ451 

RZ479 

RZ505 

RZ532 

HK8 

HK24 

RZ454 

20A1 

20A1U 

22A2 

22B2U 

J96 

J96-M1 

AD110 

AC/I 

2980 

E642 

CFT073 

764 

764-2 

E-B35 

7521/94-1 

RZ-436 

RZ-439 

RZ-441 

RZ-443 

RZ-446 

RZ-458 

RZ-468 

RZ-475 

RZ-495 

RZ-500 

RZ-525 

RZ-526 

ECOR 51 

ECOR 52 

ECOR 53 

acute bovine mastitis 

persistant bovine mastitis 

clinical pyelonephritis 

faeces 

clinical pyelonephritis 

clinical pyelonephritis 

clinical pyelonephritis 

clinical pyelonephritis 

clinical pyelonephritis 

sepsis 

sepsis 

clinical pyelonephritis 

faeces 

faeces 

clinical pyelonephritis 

clinical pyelonephritis 

clinical pyelonephritis 

clinical pyelonephritis 

clinical pyelonephritis 

sepsis (avian) 

clinical pyelonephritis 

sepsis 

clinical pyelonephritis 

faeces 

faeces 

clinical pyelonephritis 

clinical pyelonephritis 

clinical pyelonephritis 

clinical pyelonephritis 

clinical pyelonephritis 

clinical pyelonephritis 

clinical pyelonephritis 

clinical pyelonephritis 

clinical pyelonephritis 

clinical pyelonephritis 

clinical pyelonephritis 

clinical pyelonephritis 

clinical pyelonephritis 

clinical pyelonephritis 

faeces 

faeces 

faeces 

 

 

O6:K15:H31 

K-12 

O6:K14:H- 

O6:K+:H31 

O6:K+:H- 

O6:K14:H- 

O6:K-:H31 

- 

- 

O6:K2:H- 

- 

- 

- 

- 

O4:K:H5 

O4:K:H5 

O4:K6 

O78 

O18ac:K5 

- 

O6:K2:H1 

O18:K5:H5/11 

O18:K5:H5/11 

O4:K12:H5 

- 

O6:K13:H1 

O6:K5:H1 

O6:K5:H1 

O6:K5:H- 

O6:K53:H1 

O6:K2:H1 

O6:K5:H1 

O6:K5:H1 

O6:K5:H- 

O6:K5:H1 

O6:K5:H1 

O6:K5:H1 

O25:Hnt 

O25:H1 

O4:H- 

(Petzl et al., 2008) 

(Dogan et al., 2006) 

(Berger et al., 1982) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 
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Strain Source/origin Serotype Reference 

ECOR 54 

ECOR 57 

ECOR 58 

ECOR 60 

ECOR 63 

ECOR 64 

ECOR 65 

2E2U 

3D5 

13A1 

HK54 

BK658 

1G1U 

1H1 

1H1U 

19A1 

1G1 

ECOR 66 

IHE3034 

IHE3036 

IHE3080 

RS218 

RS226 

B13155 

B616 

2E1U 

16A2U 

HK2 

W1825 

4405/1 

S5 

HK1 

HK58 

ECOR 7  

ECOR 62 

8B1 

Ve1140 

B10363 

E351 

F18 

F18Col - 

ECOR 50 

RS176 

Ve239 

ECOR 61 

RZ411 

E457 

1E2 

AE5 

faeces 

faeces 

faeces 

clinical pyelonephritis 

faeces 

clinical pyelonephritis 

faeces 

clinical pyelonephritis 

faeces 

faeces 

sepsis 

neonatal bacterial meningitis 

clinical pyelonephritis 

faeces 

clinical pyelonephritis 

faeces 

faeces 

faeces 

neonatal bacterial meningitis 

neonatal bacterial meningitis 

neonatal bacterial meningitis 

neonatal bacterial meningitis 

neonatal bacterial meningitis 

neonatal bacterial meningitis 

sepsis 

clinical pyelonephritis 

clinical pyelonephritis 

sepsis 

sepsis 

clinical pyelonephritis 

clinical pyelonephritis 

sepsis 

sepsis 

- 

clinical pyelonephritis 

clinical pyelonephritis 

neonatal bacterial meningitis 

neonatal bacterial meningitis blood cult 

sepsis, blood culture 

faeces 

faeces 

clinical pyelonephritis 

neonatal bacterial meningitis 

neonatal bacterial meningitis 

faeces 

clinical pyelonephritis 

sepsis 

faeces 

faeces 

O25:H1 

Ont:Hnt 

O112:H8 

O4:Hnt 

Ont:Hnt 

- 

Ont:H10 

- 

- 

- 

- 

O75:K1:H7 

- 

- 

- 

- 

- 

O4:H40 

O18:K1:H7/9 

O18:H7:K1 

O18:H7:K1 

O18ac:H7:K1 

O18ac:H7:K1 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

O2:H- 

- 

- 

- 

- 

- 

- 

O2:H- 

O7:K1 

- 

O2:H- 

O6:K-:H1 

- 

- 

- 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 
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Strain Source/origin Serotype Reference 

2A1 

2A2 

3B5 

3N1 

3N2 

3N5 

5A1 

8B2 

16A3 

16B1 

A284 

RB9 

HK4 

HK17 

HK19 

ECOR 1 

ECOR 23 

ECOR 25 

ECOR 28 

ECOR 31 

ECOR 32 

ECOR 40 

ECOR 42 

ECOR 48 

A12  

ECOR 56 

ECOR 71 

EDL1284 

76-5 

E2348/69 

179/2 

156A 

37-4 

933W 

86-24 

SF493/89 

3574/92 

2907/97 

5720/96 

3697/97 

ED142 

PIG E57 

Feb 45 

EDL880 

5714/96 

G1253 

147/1 

284/97 

297/87 

faeces 

faeces 

faeces 

faeces 

faeces 

faeces 

faeces 

faeces 

faeces 

faeces 

clinical pyelonephritis 

Sheep pathogen 

sepsis 

sepsis 

sepsis 

faeces 

faeces 

faeces 

faeces 

faeces 

faeces 

clinical pyelonephritis 

faeces 

clinical pyelonephritis 

- 

faeces 

clinical pyelonephritis 

EIEC 

EIEC 

EPEC 

EPEC 

EPEC 

EPEC 

EHEC 

EHEC 

EHEC 

EHEC 

EHEC 

EHEC 

EHEC 

EHEC 

EHEC 

EHEC 

EHEC 

EHEC 

ETEC 

ETEC 

ETEC 

ETEC 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

Ont:Hnt 

O86:H43 

Ont:Hnt 

O104:H- 

O79:H43 

O7:H21 

O7:H- 

Ont:H26 

- 

- 

O6:H1 

O78:H- 

O124:H- 

O143 

O127:H6 

O55:H6 

O55:H6 

O55:H- 

O157:H7 

O157:H7 

O157:H- 

O157:H7 

- 

O26:H11 

- 

O111 

- 

- 

- 

- 

- 

O128:H- 

- 

- 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 
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Strain Source/origin Serotype Reference 

164/82 

117/86 

6061/97 

5080/97 

4104/97 

8574/96 

1639/77 

E1392-75 

278485-2 

VM75688 

350 C1A 

7476 A 

E 34420 A 

Feb 45 

04259-01 

04037-01 

09282-01 

01594-01 

4738/96 

2851/96 

3937/97 

4789/97 

3115/97 

3172/97 

2455/99 

3117/98 

4736/98 

0653/99 

4941/97 

3615/99 

E25/02 

E57 

24059/97 

3229/98 

 

5157/96 

4356/96 

1530/99 

1676/99 

6416/87 

2514/99 

1226/65 

4791/97 

4794/97 

4141/96 

E 20738 A 

312/00 

540/00 

ECA-5019 

ETEC 

ETEC 

EHEC 

EHEC 

EHEC 

EHEC 

EHEC 

ETEC 

ETEC 

ETEC 

ETEC 

ETEC 

ETEC 

EHEC 

EHEC 

EHEC 

EHEC 

EHEC 

EHEC 

EHEC 

EHEC 

EHEC 

EHEC 

EHEC 

EHEC 

EHEC 

EHEC 

EHEC 

EHEC 

EHEC 

EHEC 

EHEC 

EHEC 

EHEC 

EIEC 

EHEC 

EHEC 

EHEC 

EHEC 

EHEC 

EHEC 

EHEC 

EHEC 

EHEC 

EHEC 

ETEC 

EPEC 

chronic bovine mastitis 

chronic bovine mastitis 

- 

- 

O26 

O26 

O26 

O26 

O111:H- 

O6:H16 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

O113 

O103 

O62:H- 

O96:H- 

O128:H2 

O128:H2 

O128:H2 

O128:H- 

O128:H 

O128:Hnt 

Ont:H- (O26) 

O8:H10 

Ont:H19 

O138 

Ont:H10 

O8:H- 

O164 

O26:H11 

O26:H- 

O26:H11 

O26:H11 

O26:H- 

O26:H- 

O26:H11 

O111:H- 

O111:H- 

O111 

- 

Ont:Hnt 

O154:H4 

- 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(IMIB strain collection, Würzburg) 

(Schukken, Y., USA) 
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Strain Source/origin Serotype Reference 

ECA-O157 

ECC-Z 

ECA-727 

ECA-5641 

ECA-5549 

ECA-4789 

ECA-B 

ECA-5614 

ECA-3722 

ECA-4365 

ECA-4302 

ECC-M 

ECA-3471 

ECA-5579 

ECA-5406 

ECA-4707 

ECA-5362 

ECA-5523 

800/12d 

5366a 

5550d 

629/8b 

905/67B 

1223/A 

3290/C 

3290/D 

1223/6C 

3222A 

3222A 

2940C 

2772a 

3242/A 

3238/B+D 

1200/47C 

2906 d 

1111/18a 

1099/3a 

2940/C 

1196/158a 

1173/49A 

1139/6A 

118/12C 

0001/08 

725/07 

362/06 rot 

441/06 

390/06 

000/06 

278/06 

chronic bovine mastitis 

chronic bovine mastitis 

chronic bovine mastitis 

chronic bovine mastitis 

chronic bovine mastitis 

chronic bovine mastitis 

chronic bovine mastitis 

chronic bovine mastitis 

chronic bovine mastitis 

chronic bovine mastitis 

chronic bovine mastitis 

chronic bovine mastitis 

chronic bovine mastitis 

chronic bovine mastitis 

chronic bovine mastitis 

chronic bovine mastitis 

chronic bovine mastitis 

chronic bovine mastitis 

chronic bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis+sepsis) 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

(Dogan et al., 2006) 

(Dogan et al., 2006) 

(Dogan et al., 2006) 

(Schukken, Y., USA) 

(Schukken, Y., USA) 

(Schukken, Y., USA) 

(Dogan et al., 2006) 

(Schukken, Y., USA) 

(Schukken, Y., USA) 

(Schukken, Y., USA) 

(Schukken, Y., USA) 

(Dogan et al., 2006) 

(Schukken, Y., USA) 

(Schukken, Y., USA) 

(Schukken, Y., USA) 

(Schukken, Y., USA) 

(Schukken, Y., USA) 

(Schukken, Y., USA) 

(Schukken, Y., USA) 

(Tiergesundheitsdienst Bayern) 

(Tiergesundheitsdienst Bayern) 

(Tiergesundheitsdienst Bayern) 

(Tiergesundheitsdienst Bayern) 

(Tiergesundheitsdienst Bayern) 

(Tiergesundheitsdienst Bayern) 

(Tiergesundheitsdienst Bayern) 

(Tiergesundheitsdienst Bayern) 

(Tiergesundheitsdienst Bayern) 

(Tiergesundheitsdienst Bayern) 

(Tiergesundheitsdienst Bayern) 

(Tiergesundheitsdienst Bayern) 

(Tiergesundheitsdienst Bayern) 

(Tiergesundheitsdienst Bayern) 

(Tiergesundheitsdienst Bayern) 

(Tiergesundheitsdienst Bayern) 

(Tiergesundheitsdienst Bayern) 

(Tiergesundheitsdienst Bayern) 

(Tiergesundheitsdienst Bayern) 

(Tiergesundheitsdienst Bayern) 

(Tiergesundheitsdienst Bayern) 

(Tiergesundheitsdienst Bayern) 

(Tiergesundheitsdienst Bayern) 

(Tiergesundheitsdienst Bayern) 

(Tiergesundheitsdienst Bayern) 

(Tiergesundheitsdienst Bayern) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 
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Strain Source/origin Serotype Reference 

UVM2 

588/06 

583/06 

500/06 

606/06 

465/06 

477/06 

461/06 

470/06 

22/2007 

75/2007 

95/06 

131/2007 

191/2007 

146/2007 

07-3793 

07-4003 

07-3969 

07-4080 

07-4097 

07-0307-778 

07-0314-305 

07-0509-284 

07-0314-727 

332/07 

263/07 

302/07 

294/07 

333/07 

297/07 

300/07 

5234 

5232 

5228 

5229 

5250 

5251 

5249 

5248 

5243 

5252 

5244 

5246 

5245 

5247 

5225 

5223 

5242 

5241 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

chronic bovine mastitis 

subclinical bovine mastitis 

subclinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical Mastitis 

clinical Mastitis 

clinical Mastitis 

clinical Mastitis 

clinical Mastitis 

clinical Mastitis 

clinical Mastitis 

clinical Mastitis 

clinical Mastitis 

clinical Mastitis 

clinical Mastitis 

clinical Mastitis 

clinical Mastitis 

clinical Mastitis 

clinical Mastitis 

clinical Mastitis 

clinical Mastitis 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

(Petzel, W., Oberschleißheim) 

(Wellnitz, O., Bern) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 
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Strain Source/origin Serotype Reference 

5237 

5241 

5224 

5226 

5239 

5235 

5236 

5238 

5227 

5231 

5233 

5238 

32 

81 

130 

131 

132 

133 

134 

135 

136 

137 

180 

184 

186 

189 

191 

193 

201 

204 

212 

213 

222 

224 

226 

856 

1070 

1080 

1102 

1109 

1111 

1115 

1116 

1121 

1122 

1136 

1176 

1192 

1366 

clinical Mastitis 

clinical Mastitis 

clinical Mastitis 

clinical Mastitis 

clinical Mastitis 

clinical Mastitis 

clinical Mastitis 

clinical Mastitis 

clinical Mastitis 

clinical Mastitis 

clinical Mastitis 

clinical Mastitis 

clinical Mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 
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Strain Source/origin Serotype Reference 

1367 

1436 

1472 

1476 

1477 

1486 

1487 

1493 

1501 

1503 

1504 

2567 

2585 

2606 

2607 

2608 

2609 

2805 

2869 

2873 

2875 

2882 

2907 

2910 

2913 

2914 

2917 

2919 

2922 

2924 

2925 

3243 

3352 

3884 

3887 

3888 

4616 

4618 

4631 

4833 

4841 

4908 

5120 

5121 

5289 

5330 

5335 

5337 

5364 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 
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Strain Source/origin Serotype Reference 

5386 

5415 

5420 

5430 

5432 

5436 

6404 

6433 

2275 

2276 

2278 

2279 

2280 

2281 

2282 

2283 

2284 

2285 

2286 

2287 

2288a 

2288b 

2289 

2292 

2295 

2298 

2299 

2300 

2305 

2306 

2307 

2308 

2309 

2310 

2311 

2312 

2315 

2318 

2319 

2320 

2322 

2323 

2325 

2326 

2327 

2328 

2329 

2330 

2331 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

clinical bovine mastitis 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Wieler, L., Berlin) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 
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Strain Source/origin Serotype Reference 

2332 

2333 

2335 

2338 

2339 

2340 

2341 

2342 

2343 

2344 

2345 

2346 

2350 

2351 

2352 

2353 

2354 

2355 

2356 

2357 

2358 

2359 

2360 

2363 

2364 

2365 

2366 

2367 

2370 

2371 

2372 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

bovine faeces 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

(Petzel, W., Oberschleißheim) 

 
 
 
 
 
 
 
 

III.2. OLIGONUCLEOTIDES 

All oligonucleotides used for PCR, RT-PCR and/or qPCR were purchased from Sigma-Genosys 

(Steinheim, Germany) and Eurofins MWG Operon (Ebersberg, Germany). The sequences and the 

application of all oligonucleotides are listed in Table 7. 
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Table 7: Oligonucleotides used in this study 

Primer Sequence [5´→3´] Application 

GapA_for(756) gttgtcgctgaagcaactgg DNase treatment control; target is gapA 

(Blumer et al., 2005) 

GapA_rev(757) agcgttggaaacgatgtcct DNase treatment control; target is gapA 

(Blumer et al., 2005) 

16SRNA_for aactgagacacggtccagact Control in qRT-PCR; target is 16S rRNA 

16SRNA_rev ttaacgcttgcaccctccgt Control in qRT-PCR; target is 16S rRNA 

27f gagtttgatcctggctca Control in qRT-PCR; target is 16S rRNA 

798r ccagggtatctaatcctgtt Control in qRT-PCR; target is 16S rRNA 

Sf0379 tcagcctgcagattagcgacgt Screening for upaB  

Sr0379 tatgtccggactgcaatggtca Screening for upaB 

F3LC0433 caatgccaatggcgatttcga Screening for upaC 

R3LC0433 ggtcaagctgttcggcgcaacat Screening for upaC 

Sf2276 gctgtcagtttcaaggttgg Screening for upaI 

Sr2276 tcttgccggaacgggagtcat Screening for upaI 

F2LC3703 gggtagtcaatccaatgcaaacggt Screening for upaJ 

R1LC3703 ccagggtatcaacgtccgcgttca Screening for upaJ 

0379cF tgctctagaaggaattgttatggagaatttct

tcatgaaa 

Amplification of upaB from E. coli 536 

0379cR cccaagcttagtcgacaggggaaccgactgct Amplification of upaB from E. coli 536 

0433cF tgctctagaaggaattgttatgcactcctgga

aaaagaaa 

Amplification of upaC from E. coli 536 

0433cR ccgctcgaggcccgtcaaatccttgacgggca Amplification of upaC from E. coli 536 

2276cF tgctctagaaggaattgttatgaatatgcgga

ttatcttt 

Amplification of upaI from E. coli 536 

2276cR cccaagcttcctgataaggcgtttacgccgca Amplification of upaI from E. coli 536 

3703cF tgctctagaaggaattgttatgaacaaaatat

ttaaagtt 

Amplification of upaJ from E. coli 536 

3703cR cccaagctttgctgaatcaccccgtaggcct Amplification of upaJ from E. coli 536 

Fp0379Fless gcggtatcaactacaccggttacattgg Mutagenesis of upaB with FLAG® tag 

Fp0379Rflag cttatcgtcgtcatccttgtaatcgttatcag

cagcgaatgctggtgc 

Mutagenesis of upaB with FLAG® tag 

Fless0433F acgaccgatttagtttggccgtatga Mutagenesis of upaC with FLAG® tag 

Flagprimer433R cttatcgtcgtcatccttgtaatcggtgttgt

catgataccccca 

Mutagenesis of upaC with FLAG® tag 

Fp2276Fless cagggatatgatatcaaagcgagctgtcagg Mutagenesis of upaI with FLAG® tag 

Fp2276Rflag cttatcgtcgtcatccttgtaatcacatgaat

caatgaccgc 

Mutagenesis of upaI with FLAG® tag 

Fp3703Fless gcgcttgatggtggtggggctagcg Mutagenesis of upaJ with FLAG® tag 

Fp3703Rflag cttatcgtcgtcatccttgtaatcggtcgatg

cttgtactccagacg 

Mutagenesis of upaJ with FLAG® tag 

RT_79_F ctccaccatcacagctcaa quantitative RT-PCR of target upaB 

RT_79_R accgccattaacaacaaca quantitative RT-PCR of target upaB 

RT_33_F gttgggtgatgtcgagtt quantitative RT-PCR of target upaC 

RT_33_R ggccggttgaatagaagaat quantitative RT-PCR of target upaC 

RT_76_F ggcgatattgtggtggaag quantitative RT-PCR of target upaI 

RT_76_R aggtggtgaaatcagagag quantitative RT-PCR of target upaI 

RT_03_F agcacaacacaacgcaaaa quantitative RT-PCR of target upaJ 

RT_03_R gcgcctctcccacattat quantitative RT-PCR of target upaJ 
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III.3. CHEMICALS AND ENZYMES 

All chemicals and enzymes used in this study were purchased from the following companies: 

 

AppliChem (Darmstadt, Germany), Carl Roth GmbH (Karlsruhe, Germany), Dianova (Hamburg, 

Germany), Difco (Augsburg, Germany), GE Healthcare/Amersham Biosciences (Freiburg, Germany), 

Gibco (Eggenstein, Germany), Invitrogen (Karlsruhe, Germany), MBI Fermentas (St.Leon-Roth, 

Germany), Merck (Darmstadt, Germany), New England Biolabs (Frankfurt am Main, Germany), Oxoid 

(Wesel, Germany), PAA (Cölbe, Germany), Roche Diagnostics (Mannheim, Germany), Roth (Karlsruhe, 

Germany), Serva and Sigma-Aldrich (Taufkirchen, Germany).  

 

The following commercial kits were used: 

- Plasmid Mini and Midi kit, QIAGEN (Hilden, Germany) 

- QIAquick MinElute PCR purification kit, QIAGEN (Hilden, Germany) 

- QIAquick MinElute Gel extraction kit, QIAGEN (Hilden, Germany) 

- RNeasy kit, QIAGEN (Hilden, Germany) 

- ABI Prism BigDye Terminator Cycle Sequencing Ready Reaction kit, Applied Biosystems (Foster City, 

USA) 

- ECL™ Direct Acid Labeling and Detection System, and ECL™ advance system, 

GE Healthcare/Amersham Biosciences (Freiburg, Germany) 

- OpArray Hybridization Buffer Kit, Operon (Cologne, Germany) 

- Agencourt AMPure XP Kit, Beckman Coulter Genomics (Krefeld, Germany) 

 

III.4. MEDIA, AGAR PLATES AND ANTIBIOTICS 

All media were autoclaved for 20 min at 120 °C, if not stated otherwise. Supplements for media and 

plates were sterile filtered through a 0.22 μm pore filter and added after cooling down the media to 

<50 °C. 

III.4.1. Media 

DMEM High Glucose with L-Glutamine - Dulbecco's Modified Eagle Medium was purchased either 

from Gibco or Lonza. 

 

LB medium (lysogeny broth) (Sambrook et al., 1989): 

10 g Tryptone from casein 

5 g Yeast extract 

5 g NaCl  ad 1 l dH2O 
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M63 minimal medium: 

Ingredient  stock  final concentration for 800 ml 

M63 salts  5x  1x   160 ml 

FeSO4   1 ‰  0.001 ‰  800 μl 

MgSO4   10 %  10 ‰   800 μl 

Thiamin  0.2 %   0.5 ‰   2 ml 

Glucose  20 %   0.4 %   16 ml 

Casamino acids  10 %  1 %   80 ml 

KOH   10 M pH 7    5.2 ml 

 

5 x M63 salts 

(NH4)2SO4 15 mM  8 g 

KH2PO4  100 mM 54.4 g add dH2O up to 800 ml and autoclave 

FeSO4   1 mg / 1 ml in H2O and sterile filtration 

MgSO4   10 g / 100 ml in H2O and autoclaving 

Thiamin  20 mg / 10 ml in H2O and sterile filtration 

Glucose  20 g / 100 ml in H2O and autoclaving 

Casamino acids  10g / 100 ml in H2O and autoclaving 

KOH   10 M in H2O and autoclaving 

 

MM9 minimal medium (Kalinowski et al., 2000):  

Ingredient  stock  final concentration for 1000 ml 

Tris (pH 6.8)  0.5 M  0.05 M   100 ml 

Casamino acids  10 % (w/v) 1 % (w/v)  100 ml  

Glucose  20 % (w/v) 0.4 % (w/v)    20 ml 

MgSO4   1 M     2 mM       2 ml 

CaCl2   1 M  0.1 mM   100 µl 

Thiamine  10 mM  3 µM   300 µl 

10 x MM9 salts       100 ml ad 1 l dH2O; sterile filtered 

KH2PO4    3 g / l  

NaCl    5 g / l 

NH4Cl  10 g / l 

 

Modified for lactose growth curve: No casamino acids and glucose, but 0.2 % lactose (20 ml 20 % w/v 

lactose) 
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Milk whey 

In collaboration with the Clinic for Ruminants of the Ludwig-Maximilians-University Munich 

(Oberschleißheim, Germany), we obtained raw milk from a generally udder healthy cow. After 

milking, raw milk was cooled to 4°C and processed to milk whey. For the preparation of milk whey, 

milk was centrifuged at 38,000 x g and 4°C for 30 min. The fat layer was removed with a spatula and 

the skim milk was decanted into a clean tube. A second centrifugation step followed as described 

above and the translucent supernatant was collected and stored at -80°C until use.  

The described process removes fat, cell debris and partially depletes casein-peptones. 

 

Milk whey from a cow challenged with LPS 

This medium refers to milk whey (see above), but was obtained from a cow, which received an 

infusion of purified E. coli LPS into the udder. The LPS endotoxin binds to the CD14/TLR4/MD2 

receptor complex, which promotes the secretion of pro-inflammatory cytokines in many cell types, 

but especially in macrophages and B cells.  

In immunology, the term "LPS challenge" refers to the process of exposing a subject to an LPS that 

may act as a toxin. For bovine neutrophils it has been reported that binding of LPS to membrane-

bound CD14 causes release of TNFα and sepsis (Paape et al., 2003). Therefore LPS challenge is a 

proposed method to elicit immune response within in the udder. 

III.4.2. Agar plates 

LB agar plates:  LB medium + 1.5 % (w/v) agar (Difco Augsburg, Germany) 

III.4.3. Antibiotics 

The isolates used in this study were not genetically manipulated. Hence, media and plates were not 

supplemented with any antibiotics. Instead, gentamycin (Sigma-Aldrich, Taufkirchen, Germany) was 

used in cell culture experiments to perform the gentamycin protection assay (section IV.5.3). 

III.4.4. DNA Markers 

In order to determine the size of DNA fragments in agarose gels, the “GenerulerTM” 1-kb DNA ladder, 

purchased from MBI Fermentas, was used (Figure 5). 

Figure 5: GenerulerTM, 1-kb DNA ladder 
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III.5. TECHNICAL EQUIPMENT 

Accu-Jet Pro Pipette Controller  BrandTech (Wertheim, Germany) 

AlphaImager 
®
 EP    Alpha Innotech Corp. (Santa Clara, USA) 

Autoclave     Tecnoclav biomedics Laborservice GmbH (Gießen, Germany) 

Bio-Rad C1000 Thermal Cycler  Bio-Rad (Munich, Germany) 

CFX96 RealTime System   Bio-Rad (Munich, Germany) 

Biofuge 13R,    Heraeus Sepatech instruments (Langenselbold, Germany) 

Bio-Rad Imager    Bio-Rad (Munich, Germany) 

Concentrator Plus SpeedVac  Eppendorf (Hamburg, Germany) 

Electrophoresis chambers   Bio-Rad (Munich, Germany) 

Fluostar Omega ELISA Reader  BMG Labtech (Offenburg, Germany) 

Gel documentation system   Intas (Göttingen, Germany) 

Hettich Rotanta 460RS centrifuge  Hettich Lab Technology (Tuttlingen, Germany) 

HiScanSQ NGS Sequencer   Illumina (San Diego, USA). 

Camera, Ixus 500    Canon (Krefeld) 

Refrigerated centrifuge, Megafuge10R Heraeus Sepatech instruments (Langenselbold, Germany) 

Refrigerated benchtop centrifuge, 

MultiNA microchip electropho. System Shimadzu (Duisburg, Germany). 

Lab901 TapeStation for NGS SampleQC Agilent Technologies (Waldbronn, Germany) 

Micropipettes     Eppendorf (Hamburg, Germany) 

Microtiter plates, 96 Well   Sarstedt (Nürnbrecht, Germany) 

Microtiter plates, 96 Well   Greiner (Solingen, Germany) 

Mains unit, Mighty slim
TM

, SX250   Hoefer (San Francisco, USA) 

PCR-Thermocycler, T3    Biometra (Göttingen, Germany) 

Precellys Homogeniser   Peqlab (Erlangen, Germany) 

Pipettes     Eppendorf (Hamburg, Germany) 

     Gilson AG (Mettmenstetten, Switzerland 

Shaking incubators    B. Braun Biotech (Melsungen, Germany) 

     GFL (Burgwedel, Germany) 

     New Brunswick Scientific/ Eppendorf (Hamburg, Germany) 

       Infors-HT (Bottmingen, Switzerland) 

Sequencer     Applied Biosystems (Foster City, USA) 

Sterile work bench    Nuaire (Plymouth, USA) 

Sterile filters, 0.22 μm   Millipore (Schwalbach, Germany) 

Spectrophotometer, ND-1000  Peqlab (Erlangen, Germany) 

Spectrophotometer, ND-2000  Peqlab (Erlangen, Germany) 

Thermo incubator   Liebisch (Bielefeld, Germany) 

     Eppendorf (Hamburg, Germany) 

Thermoshaker incubator   Peqlab (Erlangen, Germany) 

Tabletop centrifuge   Heraeus sepatech instruments (Langenselbold, Germany) 

     Eppendorf (Hamburg, Germany) 

Ultraspec 2100 Pro and 

Ultraspec 3100 Pro 

Spectral Photometer   GE Healthcare (Munich, Germany) 

UV-chamber     Bio-Rad (Munich, Germany) 

Vortexer     GFL (Burgwedel, Germany) 
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Water bath    Memmert (Schwabach, Germany) 

     GFL (Burgwedel, Germany) 

 
 

III.6. Software 

All software, databases and online resources used in this study are listed in Table 8. 

Table 8: Software, databases and online resources 

Resource Application 

Acuity 4.0 software (Molecular Devices, Sunnyvale, USA) Statistical validation and further analysis 

Artemis (Rutherford et al., 2000) Genome annotation 

Artemis Comparison Tool (Carver et al., 2005) Genome comparison 

BBF, β-barrel finder, (Zhai and Saier, 2002) Detection of outer membrane proteins  

BLAST (Altschul et al., 1990; Camacho et al., 2009) Basic Local Alignment Search Tool 

bROC Version 2 (BioFormatix, San Diego, USA) 

(BioFormatix, 2010) 

Discovery of differentially expressed 

genes (DEG) in RNA-Seq experiments 

CFX Manager™ Software Version 3.0  

(Bio-Rad, Munich, Germany) 

Experiment setup and data analysis 

software for CFX96™ 

CLC Genomics Workbench (Aarhus, Denmark) Read mapping and transcriptomic 

analyses 

Cluster 3.0 (Eisen et al., 1998) Hierarchical clustering 

FastQC Version 0.10.1 (Andrews, S.) 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 

Quality control tool for high throughput 

sequence data 

GenePix Pro 6.0 software  

(Molecular Devices, Sunnyvale, USA) 

Scanning of DNA microarrays 

Inkscape Version 0.48.4.1 (Inkscape Community) Vector graphic editing 

jSpecies Version 1.2.1 

(Richter and Rosselló-Móra, 2009; Goris et al., 2007) 

Prokaryotic genome similarity analysis 

Average Nucleotide Identity (ANI) 

MUMmer 3.0 (Kurtz et al., 2004) Genome comparison 

Office2007 Excel software (Microsoft, Redmond, USA) Statistical validation and analysis 

R Version 3.0.1 (R Foundation) http://www.R-project.org Statistical computing and analysis 

SortMeRNA Version 1.8 (Kopylova et al., 2012) Filtering of ribosomal RNAs in 

metatranscriptomic data 

TreeView (Page, 1996) Visualization of hierarchical clustering 
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IV. METHODS 

IV.1. Working with DNA 

Working with DNA required no extraordinary handling. In contrast to RNA work which required 

handling with special care in order to prevent contamination of the RNA samples with exogenous 

RNases.  

IV.1.1. Isolation of chromosomal DNA 

1 ml bacteria from an overnight culture were harvested by 4 min centrifugation at maximum speed in 

a tabletop centrifuge. Followed washing in 1 ml TNE buffer, cells were centrifuged for 4 min and 

resuspended in 270 μl TNE-X buffer. For lysis of the bacteria 30 μl lysozyme (5 mg ml-1) were added 

and samples were incubated for 20 min at 37°C. Subsequently 15 μl of proteinase K (20 mg ml-1) were 

added to the samples which were 2 h incubated at 65°C until. The solution should have become 

clear. The genomic DNA was precipitated by addition of 0.05 vol 5 M NaCl (15 μl) and 500 μl ice-cold 

ethanol and subsequently collected by centrifugation for 15 min. After washing two times with 1 ml 

70% (v/v) ethanol, the DNA pellets were air-dried and redissolved in 100 μl 100 dH2O (Clermont et 

al., 2000). 

TNE    TNE-X 

10 mM Tris   TNE + 1 % Triton X-100 

10 mM NaCl 

10 mM EDTA 

IV.1.2. Precipitation of DNA with alcohol 

The DNA was precipitated with ethanol and isopropanol. 

Precipitation with ethanol was performed with 0.1 volumes 3 M Na-acetate (pH 4.8), which were 

added to the sample followed by the addition of 2.5 volumes ice-cold 100 % (v/v) ethanol. The DNA 

pellet was washed with 70 % (v/v) ethanol, air-dried and resuspended in dH2O. 

Precipitation with isopropanol was performed by addition of 0.7 volumes isopropanol. The samples 

were incubated at -80°C before at least 20 min of centrifugation by 13,000 rpm at 4°C. The DNA 

pellet was washed with 70 % (v/v) ethanol, air-dried and resuspended in dH2O. 

IV.1.3. Determination of nucleic acid concentration and quality 

Nucleic acid concentrations were determined by using the NanoDrop® instrument which measures 

absorption at 260 nm. Absorption of 1.0 corresponds to 50 μg ml-1 double stranded DNA. The sample 

purity of the preparations was determined by measuring the absorption ratio of the respective 

sample. DNA samples were considered sufficiently pure when the ratio A260/A280 was higher than 

1.8, respectively. 
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IV.1.4. Polymerase chain reaction (PCR) 

A PCR-screening for the AT genes upaB, upaC, upaI and upaJ was performed by PCR. The primers 

were designed based on the specific α-domain-encoding nucleotide sequence of the respective 

autotransporter genes. By testing of various primers with chromosomal DNA as template multiple 

PCR products occurred. This problem was solved by selection of primers homologous to gene 

sections with a low prevalence of repetitive sequences and by usage of bacterial lysates as template 

DNA. Screening was performed using the primers listed in Table 7. 

 

The 25 µl screening-PCR mix for one template colony-PCR sample was: 

 

   14 µl H2O 

     5 µl Q-Solution 5×  

  2.5 µl Buffer 

     1 µl MgCl2 [25mM] 

  0.5 µl dNTPs (10µl per dNTP + 60µl H2O) 

  0.5 µl Primer 1 

  0.5 µl Primer 2 

0.15 µl Qiagen™ - TAQ-Polymerase 

      1 µl Template colony-PCR 

 

 

IV.1.5. Sequence analysis (Sanger) 

The nucleotide sequences of bacterial DNA were determined using fluorescent dye terminators 

(ABI prism BigDye terminator kit, Applied Biosystems) at the Institute for Molecular Infection Biology 

(IMIB), University of Würzburg. 

 

The sequencing-PCR mix for one sample was: 

30 ng  PCR product (or: 0.5 μg plasmid DNA) 

1.5 μl  10 pM primer 

2 μl  5 x buffer (kit component) 

2 μl  premix (kit component)  ad 10 μl ABI-H2O 

The thermal cycling profile for the PCR reaction was: 40 cycles of denaturation at 96 °C for 30 s, 

annealing at 60 °C for 15 s, and extension at 60°C for 4 min, followed by final extension at 60 °C for 

2 min. The sequencing products were purified by ethanol precipitation and analyzed in an ABI prism 

sequencer (Perkin Elmer). 

Program: 

1:  94°C      180s 

2:  94°C        30s 

3: Tm°C       60s 

4:  72°C       60s /kb   -> 2  25-35cycles  

5:  72°C       600s 

6:  12°C       hold 
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IV.1.6. Separation of DNA fragments by gel electrophoresis  

DNA fragments were separated on a 0.8 % and 1 % (w/v) agarose gels (1 × TBE buffer with 1 mM 

urea) by horizontal electrophoresis. Afterwards DNA fragments in the gel were stained in an 

ethidium bromide solution (10 g/ml) and the gels were photographed on an UV-transilluminator. 

IV.2. Working with RNA 

The work with RNA required handling with special care in order to prevent contamination of the RNA 

samples with exogenous RNases. Therefore gloves were worn throughout conduction of RNA 

experiments. Furthermore, RNase-free pipette tips and reaction tubes were used. For all buffers and 

solutions, water was treated over night with 0.1 % (v/v) diethylpyrocarbonate (DEPC) at 37 °C and 

autoclaved twice to remove remaining DEPC. For dissolving RNA in water, nuclease free water from 

the kits listed in section III.4. was used. 

IV.2.1. Standard isolation of total RNA with Qiagen RNeasy Kit 

RNA preparation was performed by using the RNeasy Mini kit (Qiagen) following the manufacturer’s 

protocol. All subsequent steps of the RNeasy protocol were performed at room temperature. For 

RNA isolation bacteria were grown at 37 °C in either LB or DMEM medium until the optical density 

(OD600) reached 0.15. For RNA isolation from LB cultures, bacteria were grown without agitation at 

37°C in 25 ml until the OD600 reached 0.6.  

Four ml of the bacteria culture in either LB or DMEM respectively were taken and centrifuged at 

6000 rpm for 5 min. The supernatant was removed and pellets were resuspended in 4 ml of PBS and 

RNAprotect Bacteria Reagent™ (Qiagen) 1:1 (v/v), respectively. Samples were incubated at room 

temperature for 5 min and centrifuged at 6,000 rpm for 10 min. The collected bacterial pellets were 

either stored at -80°C or bacterial RNA was immediately isolated. Following immediate RNA isolation 

bacterial pellets were resuspended thoroughly in 100 μl of lysozyme-containing TE buffer (50 mg/ml) 

and incubated at 37°C for 5 s while vortexing every 2 min. The following steps of the protocol are 

consistent with those of the protocol supplied with the Qiagen RNeasy® Mini Kit. 

IV.2.2. Isolation of bacterial total RNA from milk whey 

Specific treatment allowed isolation of bacterial total RNA from milk whey spiked with E. coli. For this 

purpose 15 ml of prewarmed milk whey, inoculated with 1x109 colony forming units (CFU)/ml, were 

statically incubated for 1 h at 37°C. After cultivation the degradation of transcripts was inhibited by 

addition of two sample volumes of the RNA stabilizing reagent RNAprotect Bacteria 

Reagent™(Qiagen), followed by 5 min incubation at room temperature (15-25°C). Bacteria were 

harvested by centrifugation and the casein-peptone protein content was reduced by three times 

washing with 50 v/v % RNAprotect Bacteria Reagent (PBS). In detail, the reagent-milk whey mixture 

separates into a translucent fluid and precipitated proteins. The fluid supernatant containing the 
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major portion of bacteria was transferred into a new tube and centrifuged at 5,000 x g and 4 °C for 

10 min. The supernatant was then discarded and the pellet was washed with 30 ml 1:1 (v/v) 1 x PBS 

and RNAprotect Bacteria Reagent™ (Qiagen) by centrifugation with the previous settings. The 

obtained bacterial pellets were stored at -80 °C until further RNA isolation using the Qiagen RNeasy® 

Mini Kit. The bacterial pellets were resuspended thoroughly in 100 μl of lysozyme-containing TE 

buffer (50 mg/ml) and incubated at 37 °C for 5 s while vortexing every 2 min. Subsequently the 

manufacturer´s protocol was followed. 

This protocol allowed bacterial RNA isolation from milk whey with sufficient amounts of high 

integrity RNA. 

IV.2.3. Isolation of total RNA from bacteria upon cocultivation in cell culture 

This protocol has been used for the assessment of the bacterial transcriptome upon bacterium-host 

interaction by cocultivation with MAC-T immortalized bovine mammary gland epithelial cells. For this 

purpose the principle of column based RNA isolation utilized by the Qiagen RNeasy® Mini Kit has to 

be considered. Nucleic acids are competitively binding to silica membranes in which the kind of 

nucleic acids binding to silica membranes is mainly influenced by the ratio of sample to salts to 

ethanol. Clogging of the columns and contaminations due to genomic DNA mainly derived from the 

eukaryotes can be prevented by the use of gDNA Eliminator spin columns (Qiagen). This type of 

column, in combination with the optimized chaotropic high-salt buffer, allows efficient removal of 

genomic DNA. 

For total RNA isolation confluent 175-cm2 cell culture flasks with 15 ml DMEM containing 

approximately 1.5 x 107 cells each were inoculated, with a multiplicity of infection (MOI) of 100, from 

bacterial overnight cultures (grown in DMEM). The cocultivation period was either 1 h or 3 h at 37 °C. 

After cocultivation the degradation of transcripts was inhibited by addition of two sample volumes of 

the RNA stabilizing reagent RNAprotect Bacteria Reagent™(Qiagen), followed by 5 min incubation at 

room temperature (15-25 °C). Both, the supernatant cell culture medium DMEM containing 

planktonic bacteria and the MAC-T cells with adhering and invasive bacteria were harvested by 

scratching the cell culture flask with a cell culture spatula. The samples of 15 ml culture (containing 

bacteria and eukaryotic cells) were taken and centrifuged at 6,000 rpm for 5 min. The supernatant 

was removed and pellets were resuspended in 4 ml of PBS and RNAprotect Bacteria Reagent™ 

(Qiagen) 1:1 (v/v), respectively. Samples were incubated at room temperature for 5 min and 

centrifuged at 6000 rpm for 10 min. The collected pellets were either stored at -80 °C or bacterial 

RNA was immediately isolated. Following immediate RNA isolation the pellets were resuspended 

thoroughly in 400 μl of lysozyme-containing TE buffer (50 mg/ml) and incubated at 37 °C for 5 s while 

vortexing every 2 min. The lysate was divided into four subsamples and then passed through a gDNA 
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Eliminator spin column (Qiagen) respectively. The following steps of the protocol were consistent 

with those of the protocol supplied with the Qiagen RNeasy® Mini Kit. 

IV.2.4. RNA processing and quality control 

In order to use isolated RNA as template for further analyses such as qRT-PCR, DNA microarrays and 

RNA-Seq, the total RNA had to be processed to ensure that it meets the requirements in purity and 

integrity. 

 DNase treatment and RNA purification 

Contaminating DNA was removed from total RNA preparations by DNase I digestion. 15 μg RNA in a 

final volume of 85 μl were mixed with 10 μl 10 x DNase I buffer and 10 μl RNasefree DNase I (New 

England Biolabs). Samples were incubated for 1 h at 37 °C, followed by RNA cleanup using the 

RNeasy Mini kit (QIAGEN) according to the manufacturer’s instructions. Therefore, 350 μl RLT buffer 

supplemented with 10 μl ß-mercaptoethanol and 250 μl 100 % (v/v) ethanol were added to the 

DNase-treated RNA samples. Samples were loaded to the supplied purification columns and briefly 

centrifuged. In order to prevent any residual buffer, the columns were transferred to fresh collection 

tubes and washed twice with 500 μl RPE buffer. The purified RNA was then eluted from the column 

in 30 μl nuclease-free water. Elimination of DNA was verified on a CFX96 real-time PCR machine (BIO-

RAD, Munich, Germany) using SSoFast™ EvaGreen® Supermix (BIO-RAD) with the primers listed in 

Table 7. Therefore 2 μl of the DNase-treated RNA were used as a template in a PCR reaction with 

primers binding either within the coding sequence of the gapA or frr gene. The DNase treatment was 

considered successful if no product could be amplified from the RNA samples. Residual DNA was 

removed by repeating this protocol. 

 RNA quality control 

We evaluated the quality of RNA using the RNA integrity number (RIN) as generated by Agilent 

Technologies’ 2100 Expert Software. The RIN allows for an objective and standardized assessment of 

RNA. It is automatically generated and the number takes into account several features commonly 

ascribed to overall RNA quality (Schroeder et al., 2006).  

RNA concentrations were determined using the NanoDrop® instrument, which measures absorption 

at 260 nm. Absorption of 1.0 corresponds to 40 μg ml-1 RNA. The sample purity of the preparations 

was determined by measuring the absorption ratio of the respective sample. For this, RNA samples 

were considered sufficiently pure when the ratio A260/A280 was higher than 2.0. 

The RNA integrity was determined by capillary electrophoresis using either the Agilent 2100 

Bioanalyzer instrument or the Lab901 TapeStation for NGS Sample QC following the supplied 

protocols. RNA integrity values (RIN) > 7.0 were considered to meet the requirements for expression 

analyses (Schroeder et al., 2006; Imbeaud et al., 2005; Wilkes et al., 2010). 



METHODS  55 

 

IV.2.5. cDNA synthesis by reverse transcription (RT)-PCR 

For further analyses the RNA has to be reversely transcribed by a RNA-dependent DNA polymerase in 

order to synthesize cDNA in a subsequent amplification by PCR. For the purpose of cDNA synthesis, 

the Superscript III reverse transcription kit (Invitrogen) was used. 2 μg of total RNA in a final volume 

of 10 μl were mixed with 1 μg of random hexamer primers (Amersham Biosciences). Primer 

annealing was carried out at 65 °C for 5 min. After 5 min cooling, 9 μl of a reverse transcription 

mixture were added to the samples. The RT-PCR-mix for on sample was pipetted as below: 

1 μl 25 mM deoxynucleotide mix 

1 μl 0.1 M dithiothreitol (DTT; kit component) 

4 μl 5 x first strand buffer (kit component) 

1 μl 40 U μl-1 RNase OUT recombinant RNase inhibitor (Invitrogen) 

1 μl 200 U μl-1 Superscript III reverse transcriptase (Kit component) 

The cDNA synthesis was performed at 52 °C for 60 min, followed by heat inactivation of the 

transcriptase at 70 °C for 15 min. 

IV.2.6. Quantitative Real-Time PCR 

The quantitative Real-Time PCR (qRT-PCR) was used to assess gene expression of specific genes. This 

method utilizes PCR to amplify gene transcripts in presence of the SYBR Green I dye (Bio-Rad). 

qRT-PCR detects the amount of product quantitatively and in real time enabled by fluorescent dye 

that intercalates into double stranded DNA and emits signals collected by the optical camera within 

the CFX96 RealTime System (Bio-Rad). The transcript levels were computed by means of cycles 

needed to traverse the fluorescent signal threshold (CT) line by (CFX Manager™ Software, Bio-Rad). 

The primers for the selected genes were designed by the following parameters: product length range 

from 190 to 300 nt; annealing temperature 57 - 59 °C (by either Fast PCR or CLC Workbench -

software) matching at least 90 % amplification efficiency. The cDNA samples derived from the RT-PCR 

were 100-fold diluted in dH2O and the qRT-PCR-mix for one reaction was pipetted as below: 

12.0 μl  cDNA 

12.5 μl  SYBR Green Mix 2 × 

0.25 μl  Primer 1 (10 μmol) 

0.25 μl  Primer 2 (10 μmol) 

The thermal cycler was programmed as follows: 

3 min  95 °C 

30 s  95 °C 

30 s  60 °C – 40 cycles 

20 s  72 °C 

30 s  95 °C – 57 °C (melting curve) 
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All PCR reactions were done in triplicates and primers either for the gene frr (ribosome recycling 

factor) or rrnB (encoding for 16 S RNA) were used as an internal control. 

IV.3. Transcriptome analysis by DNA-microarrays 

Expression profiling is a technique to study the relative amounts of all transcripts at a given time of 

sample collection. It thereby allows monitoring the expression level of every single gene detectable 

by the array with restriction to small RNAs which are lost during total RNA extraction and purification 

by the Qiagen RNeasy Kit. This protocol follows the main protocol established in the working group 

of Dobrindt and colleagues  

 Array Layout 

In order to comprehensively and quantitatively assess the transcriptional response of bacteria upon 

cocultivation with eukaryotic cells by expression profiling, customized oligonucleotide glass 

microarrays (Operon Biotechnologies, Inc.) were employed. A single Operon E. coli Custom 55156017 

array contains 10,816 longmer oligonucleotide probes covering the complete genomes of six E. coli 

strains (6 genomes and four plasmids). 

The number of open reading frames (ORFs) or genes represented is as follows: 

 

4,269 ORFs of non-pathogenic E. coli K-12strain MG1655, 

5,306 ORFs of enterohemorrhagic E. coli O157:H7 strain EDL933, 

5,251 ORFs of enterohemorrhagic E. coli O157:H7 strain Sakai, 

5,366 ORFs of uropathogenic E. coli strain CFT073, 

322 ORFs of uropathogenic E. coli strain 536, 

448 ORFs of uropathogenic E. coli strain UTI89, 

3 genes of EHEC plasmid OSAK1, 

10 genes of EHEC plasmid pO157_Sakai, 

97 genes of EHEC plasmid pO157_EDL933 and UPEC plasmid pUTI89. 

 

In addition, the array comprises also a number of positive and negative controls. Each probe contains 

an amino linker at the 5'- end. Probes are spotted as single spots in 32 blocks (4 columns, 8 rows), 

each block with 18 columns x 19 rows.  

 Sample preparation 

Total RNA samples were prepared from bacteria upon cocultivation with MAC-T immortalized bovine 

mammary gland epithelial cells followed by DNase treatment, as described in sections IV.2.3 and 

IV.2.4. All DNA microarray experiments were done in triplicates including the overnight culture. 
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For cDNA labeling all procedures involving fluorescent dyes had to be done quickly and by avoiding 

exposure to light because of photosensitivity. Reverse transcription was performed using 

SuperScript IIITM reverse transcriptase (Invitrogen) and the fluorescently labeled nucleotides Cy3- 

and Cy5-dCTP (GE Healthcare). All solutions were prepared with DEPC treated water. For primer 

annealing, the annealing mix for one reaction was prepared as below: 

10 μg  total RNA 

1 μg  hexamer oligos 

ad H2O (DEPC treated) to a total volume of 15 μl 

 

The annealing mix was heated for 10 minutes at 70 °C, then cooled down to room temperature for 

5 min followed by brief centrifugation to spin down condensate water. The reaction mix for one 

reaction was prepared as below: 

8 μl  5 x first strand buffer  

4 μl  0.1 x DTT  

4 μl  Nucleotide mastermix 

1 μl  RNaseOut  

1 μl  SuperScript III™ (200 U/μl) 

4 μl  RNase free H2O  

 

22 μl reaction mix and 15 μl annealing mix was immediately pipetted into a 50 μl PCR reaction tube. 

Either 4 μl Cy3- or Cy5-dCTP (1 mM) was added and the total mix of 41 μl was subsequently 

incubated for 1 h at 46 °C. After 25 min, another 1 μl of SuperScript IIITM reverse transcriptase 

(200 U/μl) was added. After incubation the reaction was stopped by addition of 5 μl EDTA (500 mM) 

and 10 μl NaOH (1 M) was added to hydrolyze the RNA following incubation at 65 °C for 15 min. The 

reaction mixture was cooled down to room temperature and 25 μl Tris-HCl (1M, pH 7.5) was added. 

The labeled targets were purified using the Qiaquick PCR Purification Kit (Qiagen) following the 

manufacturer’s instructions with minor changes. Briefly, 5 volumes of PB buffer were added and each 

sample was applied to a Qiaquick column and centrifuged at max speed for 30 s. The column was 

washed with 700 μl PE buffer and dried by centrifugation. cDNA was eluted in 30 μl dH2O and 

collected in a 1.5 ml Eppendorf tube. Of this, 1 μl was taken to control for quality and dye 

incorporation and quantification using the NanoDrop photometer. The remaining labeled cDNA was 

dried using a Concentrator Plus SpeedVac (Eppendorf). The cDNA pellet was resuspended in 2 μl 

dH20. 
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 Array pre-hybridization 

The Array slides were cleaned by compressed air from dust particles and pre-hybridized in pre-

warmed OPArray Pre-Hyb solution at 42 °C for 1 h. During that time Wash Solution 1 was prepared 

by diluting OpArray Wash B 1:40 (v/v) with chromatography grade ROTISOLV® HPLC water (Carl Roth 

GmbH). ROTISOLV® HPLC water was also used for all further wash solutions and array rinsing with 

water (further announced as dH2O). Arrays were washed for 5 min at 20-25 °C and immediately 

rinsed with dH2O for 30 s. This step was repeated twice. The slides were dried in 50 ml Falcon tubes 

with a hole in the bottom by centrifugation at 1200 rpm for 10 min. Residual liquid was removed by 

compressed air. 

 Array hybridization 

The hybridization chamber was rinsed with sterile dH2O and dried thoroughly. In the four corners of 

the chamber, 15 μl of sterile dH2O were added in order to keep the humidity during hybridization 

time. The OpArray was placed into the chamber with the DNA side up (barcode side up) and the 

spotted area was covered with a LifterSlip (Thermo Scientific). Cy5- and Cy3-labelled cDNA targets 

were mixed with 36 μl of OpArray Hyb Buffer, denatured at 65 °C for 5 min and then applied slowly 

to one end of the LifterSlip in order to disperse across the OpArray surface. The hybridization 

chamber was closed and the arrays were incubated in a water bath at 42 °C for 14-16 h. 

 Post-Hybridization washing 

For Post-Hybridization washing the following solutions were prepared: 

Wash Solution 2: 

50 ml  OpArray Wash A 

25 ml  OpArray Wash B 

Bring Wash Solution 2 final volume to 500 ml with sterile dH2O 

Wash Solution 3: 

50 ml  OpArray Wash A 

Bring Wash Solution 3 final volume to 500 ml with sterile dH2O  

Wash Solution 4: 

5 ml  OpArray Wash A 

Bring Wash Solution 4 final volume to 500 ml with sterile dH2O 

After hybridization, the arrays were washed in pre-warmed Wash Solution 2 at 42 °C for 10 min, 

transferred to Wash Solution 3 and shaken for another 10 min at RT. Subsequently, arrays were 

washed twice in Wash Solution 4 at RT for 5 min. Alike in the pre hybridization step, the microarrays 

were dried by centrifugation in 50-ml Falcon tubes for 10 min. The arrays were scanned 

subsequently. 
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 Array Scanning 

After hybridization, the array slides were scanned using a GenePix Model 4000B Microarray Scanner 

(Axon Instruments Inc., Union City, USA) with a resolution of 5 μm pixel size. The excitation 

frequencies of the two lasers were 532 nm and 635 nm, respectively. The gain settings for the 

photomultiplier tubes were adjusted to use the entire dynamic range of the instrument and to get 

comparable fluorescence yields in both channels. Images of Cy3 and Cy5 signals were recorded as 2 

layer 16bit TIFF files and analyzed using the GenePix Pro 6.0 software. 

 Data analysis 

For each experiment, at least three independent hybridizations were performed. Signals of bad 

quality spots were removed when matching any of the following criteria: 

Less than 70 % of foreground pixels were below background intensity plus 2 standard deviations in 

both channels. The signal to noise ratio were below 3 in both channels. The difference between ratio 

of medians and regression ratio exceeded 20 % in one of the channels. The remaining intensities 

were saved as *.gpr type output data files. For statistical validation and further analysis the Acuity 

4.0 software (Molecular Devices, Sunnyvale, USA) was used. For all data, the local background was 

subtracted from the intensity values of each spot on the array and normalized by both linear ratio-

based methods and non-linear lowess including print-tip groups. For statistical significance, the one 

sample t-test was applied and the resulting data set was exported to the Office2007 Excel software 

(Microsoft, Redmond, USA). Mean substance values (<-1 and >1) and a p value of 0.05 were 

employed as cut-off values. Hierarchical clustering of genes for visualization of expression patterns 

was performed with the CLUSTER software (Eisen et al., 1998). The data output was displayed with 

the software TREEVIEW (Eisen et al., 1998). 

For data analysis, a cut-off value of 1.7 was set although the threshold value sometimes referred to 

in literature is twofold (Wildsmith and Elcock, 2001; DeRisi et al., 1997). However, it has been shown 

(Pérez-Amador et al., 2001), that a lower cut-off ranging from 1.4 to 1.74 can be used reliably if the 

results are reproducible in more replicates.  

For the final evaluation of differential gene expression, the obtained expression data were aligned to 

E. coli 1303 and ECC-1470 genome data (A. Leimbach, unpublished data). 

IV.4. Transcriptome analysis by RNA-Seq 

In order to comprehensively and quantitatively assess the transcriptional response of bacteria 

surviving and growing in milk whey we utilized RNA-Seq. RNA-Seq is a technology that makes use of 

next-generation sequencing (NGS) to reveal a whole transcriptome by sequencing of cDNA prepared 

from total cellular RNA. The gene expression can be followed by RNA-Seq to the extent at which the 

corresponding mRNA sequence is retrieved.  
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 Sample preparation for RNA-Seq 

E. coli strains were cultured overnight in LB media at 37 °C with agitation. Bacteria were harvested by 

centrifugation at 5,000 rpm and subsequently washed with PBS. Afterwards 15 ml of prewarmed milk 

whey were inoculated with 1 x 109 CFU/ml of bacteria and statically incubated for 1 h at 37 °C.  

Growth was monitored by determining viable CFU by serial 10-fold dilution of cultures in PBS and 

plating onto LB agar. Plates were incubated overnight at 37 °C before colonies were counted. 

Bacterial total RNA was isolated from E. coli strains, likewise described in section IV.2.2, upon 

cultivation either in milk whey or various media as control. Contaminating DNA was removed from 

total RNA preparations by DNase I digestion to below levels detectable by PCR. Finally, the RNA was 

purified and controlled for quality and integrity as described in section IV.2.4. 

 cDNA synthesis 

The cDNA synthesis was carried out by vertis Biotechnologie AG (Freising, Germany). Briefly, the RNA 

samples were treated with terminator-5′-phosphate-dependent exonuclease (Epicentre 

Biotechnologies) to deplete processed RNAs. TEX degrades RNAs with a 5′ monophosphate (i.e., 

processed transcripts) but not with a 5′ triphosphate or 5′ CAP structure (i.e., primary, unprocessed 

transcripts). Afterwards the RNA samples were fragmented by ultrasound treatment (4-6 pulses of 

30 s at 4 °C). Samples were poly (A)-tailed using poly (A) polymerase and were then treated with 

tobacco acid pyrophosphatase (TAP) (Epicentre Biotechnologies) for 1 h at 37 °C to generate 5'-

monophosphates for linker ligation. After TAP treatment, a RNA oligonucleotide was ligated to the 5'-

monophosphates of the RNA molecules. First-strand cDNA synthesis was performed using an oligo 

(dT)-adapter primer and M-MLV H- reverse transcriptase. The resulting cDNAs were PCR-amplified to 

about 20-30 ng/μl using a high fidelity DNA polymerase (with cycle numbers according to sample 

concentration). The primers used for PCR amplification were designed for TruSeq sequencing 

according to the instructions of Illumina (San Diego, USA). The supplied barcode sequences were 

attached to the 5'-ends of the cDNAs. The cDNAs were purified using the Agencourt AMPure XP kit 

(Beckman Coulter Genomics) and the cDNA pools were analyzed by capillary electrophoresis on a 

MultiNA microchip electrophoresis system (Shimadzu, Duisburg, Germany). 

 Sequencing 

The sequencing of the cDNA pools was carried out at the core facility of LIFA (Leibniz-Institut für 

Arterioskleroseforschung, Münster, Germany). The prepared cDNA pools were sequenced in a 

flowcell on the HiScanSQ (Illumina) with 101 cycles plus 7 cycles index read using the Illumina 

protocol 1.5. The sequences of the obtained sequencing reads were demultiplexed and barcode 

trimmed. 
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IV.4.1. Handling of RNA-Seq data 

  
 rRNA depletion and quality control 

The raw reads of 101 bp of 23S and 16S rRNA were depleted using SortMeRNA 1.8 software with 

settings: r = 0.25, L = 18. The sequence reads were quality controlled with FastQC to assess the 

Sanger variant Phred scores (Figure 24). Phred scores Q assess the reliability of a base call and are 

defined as a property that is logarithmically related to the base calling error probabilities P: 

QSanger = − 10 log10 P 

 

Afterwards, the sequencing data were submitted to the CLC Genomics Workbench v6.0.3 and quality 

trimmed with a cut-off Phred score of 20. Additionally, the sequence reads were truncated from the 

90th base of the sequences and the resulting sequences were filtered by length and sequences short 

than 15 nt were discarded. Detailed quality statistics files were generated and summarized in 

Sequencing QC Reports. 

 Read mapping 

The remaining reads were aligned to the reference sequences using the CLC bio read mapping 

algorithm. The reference sequences for both isolates E. coli 1303 and ECC-1470 were acquired by 454 

Roche sequencing technology (A. Leimbach, unpublished) and the sequence reads of our samples 

have been generated with the Illumina platform. The 'embl' genome data files and 'gene only' 

annotations were used. The number of CDS (coding sequences) and genes (/pseudo genes) 

determined for the E. coli 1303 and the E. coli ECC-1470 genome are as follows: 

 

Acute mastitis isolate Ec 1303  chromosome:  4725 CDS 4903 (74) genes 

                                                             F-plasmid:    120 CDS   122  (2)  genes 

                                                    cryptic plasmid:        6 CDS       6   (?)  genes 

                                                              P1-phage:    120 CDS   124  (1)  genes 

Persistent mastitis isolate ECC-1470   chromosome: 4430 CDS 4582 (42) genes 

                                                                          F-plasmid:    120 CDS   121   (1)  genes 

 

The CLC bio read mapping parameters were set as follows: 

Reads were neither mapped to flanking regions of coding sequences (CDS) such as intergenic regions, 
nor extended annotated gene regions such as flanking upstream or downstream residues. 
 
The minimum length fraction was set to 0.9 which means that at least 90 % of the nucleotides had to 
be aligned to the reference. 
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The minimum similarity fraction specifies how exact the matching part of the read should be. This 
parameter was set to 0.8, and with the setting for the length fraction at 0.9, it means that 90 % of the 
read should have aligned with 80 % similarity in order to include the read. 
 
Strand-specific alignment was selected at forward orientation. This option specifies whether the 
reads were attempted to map only in their forward orientation what is appropriate when a strand-
specific protocol for read generation has been used. It also allowed assignment of the reads to the 
right gene in cases where overlapping genes were located on different strands. 
 
Reads that matched to more distinct places in the reference sequence than the ’Maximum number 
of hits for a read’ set at 10 were not mapped. If a read matches to multiple distinct places, but below 
the specified maximum number, it will be randomly assigned amongst the matching regions. The 
random distribution is weighted proportionally to the number of unique matches to the genes 
normalized by length. The gene that has the highest number of unique matches will thus get a 
greater proportion of the 10 reads.  
 

 

To ensure that genes with no unique matches have a chance of having multi-matches assigned to 

them, 1 will be used instead of 0 (for their count of unique matches). 

Reads mapped to rRNA genes (rrs, rrl and rrf) (Neidhard and Curtiss, 1996) and reads not mapped 

under the mentioned parameters were removed from further analysis. Mapping statistics were 

summarized in a Mapping Report (Table 12 , page 116). 

Mapped reads were visualized and subsequently analyzed using the CLC Genomics Workbench 6.0.3 

and subsequent analyses were performed using either Microsoft Excel 2007 or R version 3.0.1. 

 Quantification of gene expression – transformation and normalization 

Expression values for each gene were estimated by the number of reads that mapped within each 

annotated coding sequence (CDS). In consideration of gene expression being analyzed between 

different RNA-Seq samples the number of gene reads (either total or unique, as stated in the results 

section page 115 to Fehler! Textmarke nicht definiert.) was selected and quantile normalized. In 

quantile normalization, the distribution of read counts per sample (sequencing depth) is matched to 

a reference distribution defined in terms of median counts across the samples to compare (Gupta et 

al., 2012; Bullard et al., 2010). 

While normalized, expression values were log2-transformed to ensure that samples are comparable 

and to remove noise effects: 

Fold Change = log2 ( IA / IB ) 

IA and IB are meant to be the mean expression values measured for group A and group B, 

respectively. RNA-Seq data might contain null values and if not stated otherwise the data were unity 

shifted and log2-transformed: 

Fold Change = log2 [ ( IA +1) / ( IB +1) ] 
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The variability and similarity across samples as well as the distribution of expression measures 

between different genes within a sample were analyzed by expression values which take the gene 

length into account. Therefore the standard reads per kilobase of gene model per million mapped 

reads (RPKM) (Mortazavi et al., 2008) has been proposed as a useful metric that normalizes for 

variation in transcript length and sequence depth. Obtained expression measures were expressed as 

log2-transformed RPKM as they are normally distributed. 

Whenever possible, the total read count of the respective transcript was used as expression measure 

since in most experiments a particular transcript was compared to its corresponding transcript in the 

reference sample. Obviously, the samples were quantile normalized before to define the default 

level. The explicit considerations on when to use what particular metric are discussed in the Results 

section. 

 Analysis of differential expression of genes (DEG) 

Differential expression of genes (DEG) was identified using bootstrapped Receiver Operating 

Characteristic algorithm (bROC). bROC handles the instance of missing replicates by resampling 

(bootstrapping) the expression data to produce a larger number of simulated measurements that 

preserve the statistical properties of the original data. The ROC curve is supposed to be metric that 

ranks truly DEG ahead of non-DEG. This is evaluated by the area under ROC curve (AUC), as well as in 

terms of false discovery curves, depicting the number of false detections encountered while going 

through the list of genes ranked according to the evidence for differential expression (Soneson and 

Delorenzi, 2013). 

The total read count of each gene was determined and both E. coli 1303 and ECC-1470 were treated 

as biological replicates per state/condition. Sample data from both the isolates at the respective 

condition were used for bROC analysis. For DEG discovery two group experiments were performed 

using the bROC algorithm on quantile normalized read counts. Following this, the data were log2 –

transformed and unity shifted (+1) because the data included null values as well. The transformed 

read counts for both isolates in either milk whey or LPS challenged milk whey were compared to the 

transformed read counts measured for incubation in DMEM (or milk whey) in order to determine the 

log2-fold change of expression. Genes with a discrimination score of CONF > 0.95 were considered to 

be differentially expressed.   
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IV.5. MAC-T Cell Culture Experiments 

  
 Conditions  

The MAC-T immortalized bovine mammary gland epithelial cells were grown as described by Huynh 

et al., 1991 with modifications. The MAC-T cells were passed approximately 50 times prior to receipt 

for all assays. Briefly, MAC-T cells were grown on 175-cm2 plastic tissue culture flasks in Dulbecco's 

Modified Eagle Medium (DMEM High Glucose with 4 mM L-glutamine) (Lonza) containing 10 % fetal 

bovine serum (FCS, Cölbe, Germany). During culture, cocultivation and adhesion assays, MAC-T cells 

were incubated at 37 °C in 5 % CO2: 95 % air (v/v). Prior to passage, cells were washed with PBS 

(Gibco). Cells were released from plastic with trypsin solution (5 % trypsin in PBS) for approximately 

10 min at 37 °C until cells were released. Trypsinization was stopped by addition of growth medium 

plus FCS. Cells were not exactly of the same passage for each assay (passage 48 ±2). 

IV.5.2. Adhesion assay 

The adhesive abilities of E. coli model mastitis isolates 1303 and ECC-1470 were comprehensively 

assessed in an adhesion assay (Dogan et al., 2006, modified). The MAC-T cells were seeded in 24-well 

tissue culture plates (Cellstars, Frickenhausen, Germany) and incubated overnight at 37 °C in 5 % CO2: 

95 % air (v/v). Approximately 2 x 105 MAC-T cells were present per well during the adhesion assay. 

The wells were infected with a multiplicity of infection (MOI) of 10. Therefore 2 x 106 bacteria of an 

overnight culture were co-cultivated with the MAC-T cells for 2 h. E. coli strain HB101 was used as a 

negative control. After three washing steps with PBS (pH 7.4), eukaryotic cells were lysed in 1 % 

Triton X-100 for 20 min. Attached bacteria were plated on LB-agar and enumerated following 

overnight incubation at 37 °C. The colonies were counted following overnight incubation. Adhesion 

was determined by the total number of colony-forming units (CFU) recovered per well. Each assay 

was run in triplicate and repeated once. 

IV.5.3. Invasion assay 

In addition to the adhesive abilities of E. coli model mastitis isolates 1303  and ECC-1470 their 

invasive abilities were assessed by the gentamicin protection assay (Dogan et al., 2006, modified). 

Briefly, confluent monolayers of MAC-T cells (2 x 105 cells per well) were seeded in 24-well tissue 

culture plates (Cellstars) and incubated overnight at 37 °C in 5 % CO2: 95 % air (v/v). Cells were 

infected with E. coli at an MOI of 10 as described in the adhesion assay except that after the initial 

2 h infection period, cells were washed three times in PBS and then incubated for another 2 h with 

medium containing 100 mg/ml gentamicin (Sigma Aldrich) to kill any extracellular bacteria. The 

number of invasive bacteria in each well was determined as described above and the total number of 
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CFU recovered per well was expressed as percentage adhesion or invasion of the initial inoculum. 

Each assay was run in triplicate and repeated three times. 

IV.5.4. Statistical analysis 

All assay data were summarized using the mean of three or more replicates per experiment. Raw 

values from each experiment were used as input for the statistical analysis. To determine significant 

differences, between adhesion and inhibited adhesion or invasion of a single strain, the one tailed 

Student´s t-test was performed. Statistical significance was defined at P < 0.001. 

If necessary, the significance between different strains was determined. Considering differences in 

the initial inoculum of the respective strains, an analysis of covariance (One-Way ANCOVA for 

Independent Samples) was performed. The ANCOVA used k = 2 independent samples, where the 

individual samples, (e.g. E. coli strain 1303 and ECC-1470), represent k quantitative or categorical 

levels of the independent variable; DV = the dependent variable of interest; and CV = the 

concomitant variable whose effects one wishes to bring under statistical control (e.g. distinct 

inoculum). Statistical significance was defined at P < 0.001. 
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V. RESULTS AND DISCUSSION 

V.1. E. coli 1303 and ECC-1470 lack particular genes of virulence associated 
to mastitis isolates 

Former studies referred to particular virulence genes (shown in Table 9.) as the most prevalent 

virulence genes of E. coli isolates from either clinical or subclinical bovine mastitis. Thereby the 

frequency and combinations of virulence genes varied greatly among both the different studies and 

the individual isolates investigated. The presence of these particular genes among the genomes of 

E. coli 1303 and ECC-1470 was evaluated (via BLASTn and BLASTp) and indicated in Table 9. In the 

genomes of both the mastitis-causing E. coli strains, particular genes associated with iron acquisition 

and particular fimbriae are not present. Additionally, the genes encoding the heat-stable 

enterotoxins and Shiga toxin as well as the genes encoding for the regulator of the locus of 

enterocyte effacement (LEE) and the K1 antigen are missing in both strains. There are, however, 

many publications on the absence of known virulence-associated genes of ExPEC and IPEC among 

E. coli mastitis isolates. 

Table 9: The virulence factors associated with mastitis present in E. coli 1303 and ECC-1470 

Symbol Presence Trait Reference 

east1 †   heat-stable enterotoxin I Blum & Leitner, 2013 

bor/iss †   increased serum resistance Suojala et al., 2011, Blum and Leitner, 2013 

cs31a      CS31A fimbria Fernandes et al., 2011 

csgA †‡ large subunit of curli fimbriae Silva et al., 2013 

eaeH †‡ effector protein (intimin) Kerro Dego et al., 2012 

f17a      F17A fimbria Ghanbarpour & Oswald, 2010 

fimA †‡ major subunit of the fimbriae type 1 Silva et al., 2013 

fimH †‡ minor component of type 1 fimbria Fernandes et al., 2011 

fliC †‡ flagellin Silva et al., 2013, Kerro Dego et al., 2012 

irp2      iron regulatory protein 2 (yersiniabactin) Suojala et al., 2011 

iucD      siderophore biosynthesis protein (aerobactin) Suojala et al., 2011, Fernandes et al., 2011 

iutA      iron acquisition Kerro Dego et al., 2012 

kpsF      polysialic acid transport protein of K1 antigen Fernandes et al., 2011 

lee      LEE-encoded regulator 

regulator 

Kerro Dego et al., 2012 

lpfA   ‡ long polar fimbriae Blum and Leitner, 2013 Dogan et al., 2012 

ompC †‡ outer membrane porin protein C Kerro Dego et al., 2012 

ompA †‡ predominant cell surface antigen Kerro Dego et al., 2012 

papC      outer membrane usher protein of P fimbria Suojala et al., 2011 Fernandes et al., 2011 

SDH †‡ respiratory chain activity Kerro Dego et al., 2012 

stb      heat-stable enterotoxin II Fernandes et al., 2011 

stx1      Shiga toxin 1 Bean et al., 2004 

tolC †‡ multidrug expulsion(e.g. Hly, bile, fusaric acid) Kerro Dego et al., 2012 

† present in E. coli 1303 

‡ present in ECC-1470 
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Moreover, this indicates that there may be different ways to cause mastitis (Shpigel et al., 2008). A 

remarkable difference, that possibly impacts the outcome of phenotypic assays of the present study, 

is the presence of east1 and iss in E. coli 1303 but not in ECC-1470. Additionally, the ECC-1470 

genome but not that of E. coli 1303 contains the lpfA gene which was associated with adhesion of 

E. coli mastitis isolates (Dogan et al., 2012). A former study reported that lpfA, east1 and iss were the 

three most prevalent virulence factors found in the set of E. coli mastitis isolates analyzed in this 

study (Blum and Leitner, 2013). In summary, E. coli 1303 and ECC-1470 differ in the prevalence and 

combination of virulence genes described in E. coli mastitis isolates.  

 Genome comparison of E. coli 1303 and ECC-1470 

Do the differences in virulence gene content of E. coli strains 1303 and ECC-1470 individually affect 

the fitness and survival of these isolates? To assess their overall genome sequence similarity, despite 

the differences in virulence gene content, the average nucleotide identity (ANI) has been determined 

using the jSpecies software (Richter and Rosselló-Móra, 2009; Goris et al., 2007). Both strains 

exhibited more than 98 % ANI although they were obtained from mastitis cases of different outcome. 

The ANI data are particularly interesting for interstrain comparison, since E. coli strain 1303 and 

ECC-1470 might originate from different environmental habitats (e.g. faeces, soil, herd transmission). 

One should not be deceived by the fact that >98 % ANI suggest a high genome sequence identity, 

species related. Actually, both strains have a similar genome size of approximately 5.0 Mb 

(E. coli 1303: 4,971 CDS) and 4.9 Mb ECC-1470: 4,550 CDS). Moreover, HGT contributed to genome 

plasticity of both strains as indicated by the presence of integrated prophages and an F-plasmid. 

Disregarding mobile elements such as prophages and genomic islands, the P1 bacteriophage plasmid 

and a cryptic plasmid were identified in E. coli strain 1303, but not in isolate ECC-1470 (Leimbach et 

al., unpublished data). Since the genome plasticity of E. coli affects the genome content and confers 

adaptation to different growth conditions and habitats, the 98 % ANI is reflecting similarity and 

marked differences at the same time. In comparison, the ANI of two different Burkholderia 

cenocepacia strains isolated from different habitats (i.e. from a cystic fibrosis patient or from soil) 

was reported to be 99.8 % (Yoder-Himes et al., 2009). Thus, given the fact that E. coli 1303 and 

ECC-1470 are at least able to cause mastitis, the ANI of these two E. coli mastitis strains is quite low. 

To address the question whether de-regulated and phenotypically accessible determinants might 

play a role during host cell contact, adaptation and survival in the presence of host cells or in milk 

whey, the transcriptome of these strains as well as their fitness and competitiveness has been 

studied under suitable conditions.  
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V.2. From raw milk to milk whey  

We aimed at the comprehensive analysis of the transcriptional response of the bovine mastitis 

isolates E. coli 1303 and ECC-1470 under environmental conditions mimicking initial stages of 

pathogenesis. Therefore, we have tried to cultivate the investigated strains in raw milk and then 

isolate RNA from these bacteria grown in raw milk. Additionally, we performed growth and fitness 

assays in milk to identify phenotypic fitness- and virulence properties of mastitis isolates.  

Unfortunately, transcriptome analysis requires isolation of bacterial mRNA from raw milk of mastitic 

cows within minutes. Furthermore, mRNA has a short half-life due to enzymatic degradation which 

results in loss of transcripts. It has been shown that degraded mRNA does not rule out the 

performance of comparative gene expression analysis, as long as the samples being compared are of 

equal quality (Auer et al., 2003; Imbeaud et al., 2005). Another problem is that alterions of gene 

expression levels in response to the handling and processing of the sample, cannot be prevented.  

To minimize such unwanted effects, bacterial RNA can be stabilized and protected against 

degradation by the addition of RNA Protect Bacterial agent (Qiagen) before the bacterial cells are 

lyzed. Assuming that this is not easily applicable in milk, we comprehensively tested different 

experimental setups to establish reliable bacterial gene expression analysis in milk. As a result of the 

studies described in this section, we finally experienced that milk is an inappropriate growth medium 

to analyze either the bacterial transcriptome or phenotypic properties. Instead, we selected raw milk 

whey as a suitable medium mimicking in vivo growth conditions. 

V.2.1. Why milk is hard to deal with 

Understanding the biochemical basics of milk is essential if experiments are planned to be conducted 

in this medium. Milk is an emulsion or colloid of butterfat globules within a water-based fluid. Each 

fat globule is surrounded by a membrane consisting of phospholipids and proteins; these emulsifiers 

keep the individual globules from joining together into noticeable grains of butterfat and also protect 

the globules from the fat-digesting activity of enzymes found in the fluid portion of the milk. In non-

homogenized cow milk, the fat globules have an average diameter of about four micrometers (Jost, 

2000).  

When we conducted first cultivations of E. coli isolates in raw milk, we found that CFU enumerations 

varied greatly. In contrast, fractions of homogenized milk showed consistent CFU counts (data not 

shown). We therefore assumed an accumulation of bacterial cells in fat globules as reported for 

Gram-positive bacteria. It was observed that in raw milk S. aureus formed clusters associated with fat 

globules, while in heat-treated milk (which results in homogenization of milk), bacterial agglutination 

did not occur (O’Flaherty et al., 2005). In this context, immunoglobulins have also been reported 

much earlier to bond bacteria to fat globules (Walstra et al., 1984). In summary, bacterial growth in 

raw milk was not traceable by spectrophotometry or CFU enumeration on agar plates and, therefore, 
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interfered with most phenotypic assays in raw milk. However, we were evaluating the possibility of 

transcriptome analysis in this medium. 

The largest structures in the fluid portion of the milk are casein protein micelles: aggregates of 

several thousand protein molecules, bonded with the help of nanometer-scale particles of calcium 

phosphate. Each micelle is roughly spherical with a diameter of about 0.1 µm. There are four 

different types of casein proteins, and collectively they make up around 80% of the protein in milk, 

by weight. Most of the casein proteins are bound into the micelles (Jost, 2000). Another major 

protein fraction is provided by immunoglobulins. And at least, in case of mastitis, the increased 

amount of up to several millions of somatic cells per milliliter milk contributes to the difficulties 

arising in RNA isolation. 

Altogether, the size, weight and biochemical composition of the raw milk components made it 

impossible to use purchasable RNA isolation kits based on columns as they will be blocked by the 

milk components. It also turned out, that the use of commercial RNA stabilizing products was 

impossible as they cause unmanageable reactions (e.g. denaturation of the casein) and subsequently 

hindered extraction of RNA of sufficient quality in proper time. Consequently, a specific solution to 

rapidly isolate the bacterial mRNA was required. 

In order to isolate bacterial total RNA in appropriate amounts and quality for microbial transcriptome 

analysis, one major problem had to be solved: How to rapidly harvest the bacteria from raw milk 

without a considerable loss of bacteria? Taking the challenge, we were confronted with various 

techniques and auspicious options to overcome the difficulties of bacterial RNA isolation from raw 

milk.  

 Filtration and centrifugation 

Several attempts of filtration and centrifugation were unsuccessful, because of the size and weight of 

casein protein micelles and somatic cells. The filters were blocked by the somatic cells and the 

protein. Fractionated centrifugation was time consuming and could not sufficiently separate bacteria 

from milk protein and somatic cells. In all approaches the fat globules accumulated on top of the 

liquid solution as a viscous phase. This fat layer was easily removable, but enough fat remained to 

interfere with the use of column-based RNA isolation kits. 

Another possible approach was multi-stage filtration. It was assumed to remove somatic cells and 

protein micelles by consecutive filtration stages. Therefore, a vacuum pump together with the 

sequential use of Millipore™ filters made of nylon and hydrophobic PTFE with decreasing pore size 

was used to avoid clotted filter membranes. It turned out that the protein content exceeded the 

filters’ capacity and in consequence increased processing time.  
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 Non-column based RNA isolation 

We tested non-column based RNA isolation protocols in order to standardize RNA isolation for 

mastitis E. coli transcriptome investigation. But even RNA extraction methods based on the “one-step 

phenol-chloroform extraction method for RNA-isolation” (Chomczynski and Sacchi, 2006) failed as 

well as approaches based on salt precipitation like the Biozyme MasterPure™ Purification Kit. 

Accordingly, using commercially available non-column-based RNA purification methods did not allow 

to purify RNA in sufficient amount with high integrity. Alternatively, we evaluated the use of 

magnetic bead-attached E. coli-specific antibodies to enrich bacteria from raw milk. The binding and 

pull down of the bead-bound bacteria, however, took too much time, and bacteria were not 

selectively bound. 

 RNA transcript amplification 

The afore mentioned conventional methods of RNA isolation from raw milk provided mostly bad 

quality RNA but rarely bacterial RNA of sufficient quality in low amounts. It would have been possible 

amplify RNA from low amounts of high integrity RNA using T7-RNA-polymerase based in vitro 

transcription. Notably, this method requires the usage of random primers and thereby bias may 

compromise the quantification of transcripts in transcriptome analysis. 

So far the methodological potential to acquire bacterial RNA has been exploited.  

 Clarifying solution 

We also tried to optimize bacterial RNA isolation from raw milk by “clarifying solution”. This 

approach aimed at a reduced duration time of the bacterial isolation and rapid RNA stabilization 

when added to raw milk. To avoid aggregated casein protein micelles, a chelator was used. Because 

of its role as a chelating agent EDTA has been chosen to sequester metal ions such as Ca2+. Thus, 

EDTA binds Ca2+ ions and prevents that calcium phosphate promotes formation of casein protein 

micelles. Casein protein will then remain in the supernatant during centrifugation. 

Furthermore, to avoid that somatic cells will be pelleted together with bacteria by centrifugation, a 

detergent was added. Triton X-100 is a non-ionic surfactant, which can be used to permeabilize 

eukaryotic cell membranes. As a result, eukaryotic cells will disintegrate and their components 

remain in the supernatant upon centrifugation. Both, EDTA (0.25 M) and Triton X-100 (0.5 % v/v), 

have been combined in the clarifying solution. 

In order to test the clarifying solution, 0.5 volumes were added to raw milk spiked with bacteria (1 x 

107 CFU ml-1) as bacterial counts of mastitis derived milk were reported to range from > 104 CFU ml-1 

to 107 CFU ml-1 (Lues et al., 2010). Bacterial counts were determined by plating on LB-agar plates. 

Although this approach allowed subsequently to isolate bacterial RNA from raw milk, it also resulted 

in a considerable loss of bacteria. This was due to a severe reduction of bacterial survival when raw 
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milk was mixed with the clarifying solution (Figure 6). Control experiments where either raw milk or 

clarifying solution or both was replaced by PBS suggested, that raw milk provides a certain 

antimicrobial effect, but raw milk and clarifying solution that were mixed together completely 

decreased bacteria survival (Figure 6).  

Figure 6: Impact of raw milk or clarifying solution on survival of E. coli strain 1303.  0.5 volumes of 
PBS or clarifying solution were added to 1 volume of raw or PBS spiked with 1 x 107 CFU ml-1 of E. coli 
strain 1303 and incubated for 15 min incubation on ice, before the samples were centrifuged and the 
bacterial count in the pellet was determined.  
 
 

The different components of the clarifying solution were tested for their individual impact on 

bacterial survival (Figure 7). Accordingly, either EDTA or Triton X-100 was added to the raw milk and 

incubated for 15 min on ice.  

Figure 7: Survival of E. coli 1303 in raw milk upon addition of individual components of the clarifying 
solution. 0.5 volumes of EDTA (0.25 M) or Triton X-100 (0.5 % v/v) were added to 1 volume of raw 
milk spiked with 1 x 107 CFU ml-1 of E. coli strain 1303 and incubated for 15 min incubation on ice, 
before the samples were centrifuged and the bacterial count in the pellet was determined.  
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It turned out, that upon addition of EDTA (0.25 M) bacterial survival decreased by 70 %, whereas only 

20 % of the bacteria were killed by addition of Triton X-100 (0.5 % v/v). The addition of EDTA most 

likely interfered with the stability of the Gram-negative cell envelope and thus resulted in increased 

bacterial killing. Even the use of clarifying solutions with decreased concentrations of EDTA and 

Triton X-100 resulted in significant reduction of bacterial counts in raw milk. Consequently, clarifying 

solution was not further used for bacterial isolation from raw milk.  

V.2.2. Milk whey 

It was assumed that for the analysis of E. coli isolates from mastitis and bovine faeces as well as for 

the identification of putative virulence genes the same methodologies should be applied that were 

used to investigate the virulence of other E. coli pathotypes (Shpigel et al., 2008). Unfortunately, 

growth or incubation of bacteria in raw milk resulted in irreproducible data, and hampered bacterial 

isolation and purification of sufficient amounts of pure bacterial RNA. Lacking methods to harvest 

bacteria from raw milk without a considerable loss of bacteria, we looked for a test system which 

approximately corresponds to the infectiologically relevant conditions provided by raw milk. Milk 

whey, defined as the fluid portion of milk remaining after removal of cell debris, casein and fat, 

turned out to fulfill the criteria of mimicking the infectiologically relevant conditions provided by raw 

milk. One exception is, that milk whey lacks the cellular components, e.g. somatic cells found in raw 

milk. Nevertheless, milk whey still contains defensins. As part of the host defense, defensins are 

released by cells of the innate immune system and assist in killing phagocytized bacteria. Usually, 

they are released by neutrophil granulocytes as well as by mucosal and epithelial cells when induced 

upon infection. Some are, however, constantly present in milk (Isobe, Morimoto, et al., 2009; Ganz, 

2003). The replacement of raw milk by milk whey as a growth medium allowed us to assess various 

phenotypic and transcriptomic properties of E. coli isolates from bovine mastitis under conditions 

which mimic growth in raw milk, but circumvent the problems caused by fat, casein or somatic cells. 

 

V.3. Phenotypic properties of E. coli bovine mastitis isolates 

Virulence-associated traits as well as fitness traits of selected bovine mastitis or faecal E. coli strains 

were analyzed and identified in comparative phenotypic assays. For this purpose, we focused on 

comprehensive analyses at conditions either mimicking initial pathogenesis or conditions that E. coli 

mastitis isolates should encounter while entering the udder. 

V.3.1. E. coli fitness in milk whey 

For mastitis E. coli strains it is important to colonize the mammary gland. It has been suggested that 

bacterial multiplication is of high importance for the pathogenesis of E. coli bovine mastitis isolates. 

Rapid metabolical adaptation to mammary secretions subsequently leads to rapid increase of 
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bacteria numbers and elicits disease. Moreover, the severity of clinical mastitis and peak coliform 

counts in mammary secretions are positively correlated (Hogan and Smith, 2003). Before, however, 

mastitis causing E. coli are able to colonize milk ducts and mammary tissue, it is important to survive 

in milk. Bovine raw milk is known to exhibit antimicrobial activity and inhibits growth of E. coli which 

has been associated to the soluble, biologically active components in mammary secretions. These 

components mainly comprise Lingual Antimicrobial Peptide (LAP) and other AMP/defensins, 

lysozyme, lactoferrin and lactoglobulin (Isobe, Nakamura, et al., 2009; Piccinini et al., 1999; Chaneton 

et al., 2008). 

Blum and colleagues observed that E. coli mastitis isolates seemed to better multiply in the udder 

medium. They, however, used pasteurized milk to conduct their assay, so that antibacterial factors 

were probably neutralized (Blum et al., 2008).  

We hypothesized that our native milk whey preserved the antimicrobial effects provided by the 

soluble factors of the innate immune system that are present in raw milk. In order to test the 

bactericidal activity of milk whey, we performed growth experiments and subsequently tested the 

survival of selected strains in different concentrations of milk whey. 

 Growth of individual mastitis E. coli isolates relative to bovine faecal E. coli isolates 

The growth of E. coli isolates from bovine mastitis and bovine faeces in milk whey was 

comprehensively tested. For this purpose, we grew E. coli isolates aerobically in native milk whey at 

37 °C while shaking. The initial inoculum was taken from stationary phase cultures grown in LB 

medium. Growth was monitored by quantification of CFUs on LB agar plates, because the translucent 

milk whey did not allow the measurement of the optical density. The resulting growth curves are 

shown in Figure 8. Each line represents a sigmoidal fit of the corresponding growth data. The growth 

curves of individual E. coli mastitis isolates were similar. In contrast, bovine faecal E. coli isolates 

differed in their ability to grow in milk whey and could be divided into two groups based on their 

growth characteristics. Although comparable inoculi (1 x 108 bacteria) have been used, two groups of 

faecal strains could be distinguished based on their survival in raw milk whey, which differed by two 

orders of magnitude.  

The specific strain designation of the group 2 faecal isolates is indicated by red digits. The faecal 

isolates 2285, 2305, 2308 and 2340 exhibited substantially reduced bacterial numbers, which were 

by two orders of magnitude lower than that of group 1 faecal or mastitis isolates. Faecal isolate 2299 

was also classified as group 2, because it visually showed the same growth characteristic, although its 

colony counts were in between the two groups for the first two hours. 

Together, the fitness of group 2 faecal isolates in milk whey was reduced relative to that of group 1 

faecal isolates, which behaved like mastitis isolates. Selected isolates from the group 2 faecal isolates 

have been introduced in other phenotypic assays and are therein designated in particular. 
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Figure 8: Survival of individual mastitis E. coli or bovine faecal E. coli isolates in milk whey. Growth of 
different mastitis and faecal E. coli isolates was compared in milk whey upon incubation at 37 °C for 
up to 24 h by quantification of CFUs on LB agar plates. Data show CFU averages of at least three 
independent experiments with error bars representing the SD of CFUs for each time point. Error bars 
very close to their correspondent data point might not be visible. Red digits indicate the designation 
of selected faecal isolates. 
 
 

 Sensitivity of selected bovine faecal E. coli isolates to milk whey relative to E. coli 1303 

The survival properties in milk whey of the group 2 faecal isolates 2285, 2305, 2308 and 2340 were 

compared with those of mastitis E. coli strain 1303. For this purpose, we incubated the E. coli isolates 

aerobically in native milk whey at 37 °C without shaking for 10 minutes. Different ratios of native milk 

whey and LB medium (v/v) were used. The batches were inoculated as described before and the 

numbers of surviving bacteria were determined by CFU quantification on LB agar plates. The 

resulting survival characteristics are shown in Figure 9. The survival characteristics of the group 2 

faecal isolates 2285, 2305, 2308 and 2340 were similar. They showed decreased survival abilities up 

to one order of magnitude, depending on increasing milk whey concentration.  

In contrast mastitis E. coli strain 1303 did not differ in its ability to survive in milk whey and showed 

constant CFU counts when growing in up to 50 % milk whey. Regarding the short incubation time and 

the proportions of LB to milk whey, it is less likely that limited nutrients or iron shortage have 
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negatively influenced bacterial survival as both is sufficiently provided during the 10 minutes of 

incubation. 

We conclude that the faecal isolates of group 2 are sensitive to milk whey relative to group 1 faecal 

isolates or mastitis E. coli strain 1303.  

Figure 9: Sensitivity of selected bovine faecal E. coli isolates to milk whey relative to E. coli 1303. 
Survival of the different faecal E. coli isolates and mastitis E. coli strain 1303 was compared in milk 
whey upon incubation at 37 °C for 10 min by CFU quantification on LB agar plates. Data show CFU 
averages of at least three independent experiments with error bars representing the SD of CFU for 
each time point. Error bars very close to their correspondent data point might not be visible. 
 
 

V.3.2. Lactose: A limiting nutrient in mammary secretions? 

Life is strictly dependent on carbon and thus also E. coli has to utilize whatever carbon sources are 

available to fit its needs. In bovine milk, the major carbon source is lactose. Consequently, E. coli 

strains that are able to utilize lactose have a growth advantage in mammary secretions. 

Growth and lactose utilization of E. coli isolates from bovine mastitis and bovine faeces were tested. 

For this purpose, we grew E. coli isolates aerobically in casamino acid- and glucose-deficient MM9 

minimal medium at 37 °C. Lactose was used as the sole carbon source at a concentration of 

0.2 %w/v. The initial inoculum was taken from stationary phase cultures of unmodified MM9 minimal 

medium containing casamino acids and glucose. 

The resulting growth curves are shown in Figure 10. All strains were able to grow reasonably well, 

though the final cell density at OD600 differed from 0.24 to 0.57. Most cultures showed, however, no 

increase in their absorbance values in the first two hours of cultivation, probably due to adaptation 
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to the casamino acid- and glucose-deficient medium. After this lag-phase, growth proceeded 

normally. Interestingly, the group 2 faecal isolates 2299, 2340, 2308 and faecal isolate 2292 exhibited 

reduced fitness in comparison to the remaining faecal isolates, but did not differ from the several 

mastitis E. coli isolates. 

Figure 10: Growth of E. coli isolates on lactose. MM9 medium was supplemented with 0.2 % lactose 
as sole carbon source and strains were grown in aerobic batch cultures at 37 °C while shaking. Data 
points are shown as averages of at least three independent experiments with error bars representing 
the SD of absorbance values for each time point. Error bars very close to their correspondent data 
point might not be visible. Red digits indicate selected faecal isolates. 
 
 

V.3.3. Influence of lactoferrin on E. coli isolates from mastitis and faeces 

Lactoferrin is a major fraction of bovine milk and is known to bind iron, thus making it unavailable to 

bacteria (Clare and Swaisgood, 2000). Bacteriostatic activity of bovine lactoferrin in vitro was first 

observed by Reiter and Oram in 1967. Later, another study observed that lactoferrin had a 

bacteriostatic effect on all mastitis E. coli isolates tested, whereas only a few strains exhibited mild 

growth inhibition (Reiter and Oram, 1967; Rainard, 1986).  

The growth of group 2 faecal isolates 2305 and 2308 relative to mastitis E. coli strains 1303 and 

ECC-1470 was comprehensively tested. For this purpose, we cultivated E. coli isolates aerobically in 
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LB medium with 2 mg ml-1 lactoferrin at 37 °C for 7 hours. The batches were inoculated from 

stationary phase cultures in LB medium with 1 x 108 bacteria. Each strain was tested in duplicate with 

and without lactoferrin and bacterial growth was determined by quantification of CFU on LB agar 

plates. CFU data are shown in Figure 11. Although the standard deviations were quite high, the 

presence of lactoferrin exhibited no significant bacteriostatic effect on neither group 2 faecal isolates 

2305 and 2308 nor mastitis E. coli strains 1303 and ECC-1470.  

Figure 11: Influence of lactoferrin on growth and survival of mastitis E. coli isolates 1303 and 
ECC-1470 relative to milk whey-sensitive faecal E. coli isolates 2305 and 2308. Growth was compared 
in LB supplemented with a final concentration of 2 mg ml-1 lactoferrin upon incubation at 37 °C for 
7 h. Data show CFU averages of two independent experiments with error bars representing the SD. 
 
 

V.3.4. Influence of the lingual antimicrobial peptide (LAP) on survival of E. coli isolates 
from mastitis and faeces 

The lingual antimicrobial peptide (LAP) is a member of the β-defensin family, which belongs to the 

group of antimicrobial peptides (AMP). Schonwetter and colleagues reported LAP expression in 

mammary epithelium in response to mastitis suggesting that LAP plays a role in the innate immune 

response to mastitis. Later, this was corroborated by the presence of functional LAP in bovine milk 

providing antimicrobial activity against E. coli (Schonwetter et al., 1995; Isobe, Nakamura, et al., 

2009). ). In return bacteria have evolved different mechanisms to resist the defensin-dependent 

killing (Peschel and Sahl, 2006). For mastitis E. coli it is important to resist to LAP as a functional 

antimicrobial component of milk. We, therefore, hypothesized that E. coli growing in milk whey 

might also express defensin-resisting mechanisms and are less susceptible to LAP. In order to test this 
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hypothesis we comprehensively investigated the fitness and survival capabilities of individual mastitis 

E. coli isolates relative to bovine faecal E. coli isolates to LAP. E. coli isolates were incubated 

aerobically in LB medium with different concentrations of LAP at 37 °C for 30 minutes. The batches 

were inoculated with stationary phase cultures in LB medium with 1 x 104 bacteria. Bacterial survival 

was determined by quantification of CFU on LB agar plates normalized to the initial inoculum. The 

relative survival of the isolates tested is shown in Figure 12. 

Figure 12: Sensitivity of individual mastitis E. coli isolates relative to bovine faecal E. coli isolates to 
LAP. Survival was compared in LB supplemented with different concentrations of lactoferrin upon 
incubation at 37 °C for 30 min by quantification of CFU on LB agar plates. Data show averages of 
relative survival of at least three independent experiments, normalized to the initial inoculum. Purple 
triangles indicate group 2 faecal isolates. The red star indicates data out of scale. 
 
 
All isolates barely survived LAP concentrations higher than 80 nM. At concentrations below 20 nM 

LAP, relative survival of individual E. coli isolates is differing from 2.4 to 98.6 %. The colony counts of 

mastitis isolate E. coli 1303 exceeded the scale. Thus, E. coli 1303 exhibited the highest survival ability 

in presence of LAP. Additionally, all mastitis and most bovine faecal isolates showed substantial 

higher survival than group 2 faecal isolates 2305, 2308 and 2285 as well as E. coli K-12. In contrast, 

two out of the five group 2 faecal isolates, 2299 and 2340, survived equally relative to the mastitis 

2
3
0
5

2
3
0
8

2
2
8
5

K
1
2

1
3
0
3

2
3
0
1

2
1
8
8

2
1
8
9

1
5
6
2

1
4
7
0

1
3
5
6

2
3
4
0

2
3
4
1

2
3
5
1

2
3
6
7

2
3
3
1

2
2
9
9

00

10

20

30

40

50

60

70

80

90

100

1
0
n
M

4
0
n
M

3
2
0
n
M

conc.
of LAP

K12 1303 1470 1356 2299E. coli K12E. coli K12E. coli K12E. coli K12E. coli K12 E. coli 1303 ECC-1470E. coli K12
mastitis

isolates

fecal

isolates

R
e

la
ti

ve
  s

u
rv

iv
al

 [
%

]
(n

o
rm

al
iz

ed
 t

o
in

o
cu

lu
m

)



RESULTS AND DISCUSSION  79 

 

and the remaining faecal isolates. Together, we demonstrate that the presence of LAP resulted in 

significantly decreased bacterial numbers, though some faecal isolates were substantially more 

susceptible to LAP-mediated killing than all mastitis E. coli isolates and most faecal isolates tested. 

V.3.5. What can we learn from the phenotypic assays? 

E. coli mastitis strains are likely to originate from the faecal flora of the cow. There is evidence that 

their genetic and phenotypic variability is not reflected by E. coli environmental isolates of the cow, 

but might result from adaptation to an intramammary lifestyle (Bradley and Green, 2001; Dogan et 

al., 2006; Radostits et al., 2007; Blum et al., 2008). Metabolic adaptation to growth conditions in 

mammary secretions and the ability to rapidly multiply were suggested to be a prerequisite for E. coli 

bovine mastitis isolates. This is supported by a positive correlation between the severity of clinical 

mastitis and high bacterial counts in mammary secretions (Hogan and Smith, 2003). In the past, 

bactericidal activity and growth inhibition of E. coli by bovine raw milk have been associated to the 

activity of complement (Reiter and Brock, 1975). A broad diversity of biologically active components 

(e.g. macrophages, neutrophils, killer cells, immunoglobulins, complement, defensins, lysozyme, 

lactoferrin, cytokines) contribute to the antimicrobial effects provided by raw milk (Sordillo and 

Streicher, 2002). It is so far still difficult to experimentally determine their individual contribution to 

the overall antimicrobial and bacteriostatic effect, which is greater than the sum of the individual 

contributions due to their synergy. 

 Milk whey exhibits antimicrobial effects 

Mastitis and faecal E. coli isolates exhibited similar growth characteristics when cultivated in LB, but 

exhibited remarkable differences when cultivated in milk whey. We initially hypothesized that our 

native milk whey exhibits, at least in part, the antimicrobial effects of raw milk. We demonstrated 

not only a bacteriostatic but also a bactericidal activity of milk whey, which cannot be related to the 

cellular antimicrobial components, because they are absent in milk whey. The preparation of milk 

whey removed fat, cell debris and even partially depleted casein which is also known to be an 

antimicrobial component (Malkoski et al., 2001). Especially the removal of milk fat avoids binding to 

and bacteriostatic effects that have been associated to milk fat globules (Sánchez-Juanes et al., 2009; 

Schroten et al., 1992) and thus may have biased colony counts and evaluation of antimicrobial effects 

by milk in previous evaluations. 

Accordingly, in introducing milk whey to test the fitness and survival capability of E. coli isolates, we 

enabled comprehensive analyses which can specifically address virulence-associated traits important 

to resist the soluble biologically active components in mammary secretions. These components 

mainly comprise LAP and other AMP/defensins, lysozyme, lactoferrin and lactoglobulin (Isobe, 

Nakamura, et al., 2009; Piccinini et al., 1999; Chaneton et al., 2008).  
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 E. coli environmental isolates provide a reservoir of potential mastitic E. coli  

A previous study reported E. coli mastitis isolates multiply better in milk than most environmental 

E. coli isolates. The authors further identified a subset of environmental isolates with growth rates 

similar to those of mastitic isolates. However, they used pasteurized milk so that antibacterial factors 

were probably neutralized (Blum et al., 2008). Thus, a particular causality remains unclear. 

We focused on the phenotypic characterization of mastitis E. coli isolates relative to isolates from 

bovine faeces of udder-healthy cows. We specifically addressed the question whether mastitis and 

environmental strains differ in their individual fitness traits upon selected conditions mimicking those 

in mammary secretions. On the one hand, we tested bacterial fitness in native milk whey, which we 

found to preserve antimicrobial effects in contrast to pasteurized milk. On the other hand, we 

respectively challenged selected isolates with iron shortage, lactose as sole carbon source and LAP as 

a main defensin of milk. 

We clearly demonstrated that bovine faecal E. coli isolates represent a heterogeneous group of 

which some isolates showed a substantially reduced ability to survive in milk whey whereas others 

reflected the fitness of mastitic isolates that constitute a homogeneous group in that they show 

similar growth characteristics (Figure 8). This corroborates a previous report on growth of mastitis 

E. coli isolates (Blum et al., 2008) and extends the data to a greater number of isolates. In spite of 

what may appear at first glance to simply reinforce the findings of Blum et al., revealed a different 

outcome and added interesting aspects regarding the causality of reduced fitness. 

 Impact of lactoferrin  

Lactoferrin is a predisposing antimicrobial protein of the soluble mammary gland defense 

components reported to increase in concentration in response to endotoxin (Schmitz, 2004; Sordillo 

et al., 1987). Due to its frequently observed growth inhibitory effect, which was suggested to be the 

main function of lactoferrin in previous studies (Chaneton et al., 2008; Chaneton et al., 2011; 

Rainard, 1986), we tested the susceptibility to lactoferrin on individual E. coli faecal isolates which we 

observed to exhibit reduced fitness in milk whey. Our data could neither proof nor deny this 

suggestion. The addition of lactoferrin to milk whey showed no significant bacteriostatic effect on 

either group, the faecal isolates of diminished fitness in milk whey or mastitis E. coli strain 1303 and 

ECC-1470 (Figure 11). We referred this to rather high standard deviations what obviously 

compromised unambiguous monitoring. Furthermore, it can be suggested that either LB is not a 

suitable laboratory medium to assess inhibitory effects of lactoferrin or that the utilized lactoferrin 

was corrupted. The first explanation would be supported by observations from Rainard and 

colleagues, who already emphasized the importance of the growth medium used in the inhibition 

assay. Specifically, lactoferrin was not causing complete bacteriostasis when the growth medium, 

consisting of casamino acids in PBS, was supplemented with 10% (v/v) brain heart infusion broth, 
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even when added in rather high concentrations 1 mg ml-1 (Rainard, 1986). It is, nonetheless, 

remarkable that the tremendously high concentration of 2 mg ml-1 lactoferrin relative to 0.1 mg ml-1 

used by Rainard (1986), had no significant or even a visible effect on bacterial growth (Figure 11). On 

one hand, this might indicate a corrupted enzymatic activity of the lactoferrin used in our assay. On 

the other hand, no iron shortage was indicated by the transcription profiles of E. coli isolates 1303 

and ECC-1470 incubated in milk whey.  

The particular contribution of lactoferrin to E. coli bacteriostasis in mammary secretions needs to be 

further characterized. We hypothesize that lactoferrin might be beneficial in ongoing mastitis, when 

the E. coli intracellular iron stocks are emptied. This might be tested in real-time PCRs on samples 

obtained from E. coli incubation in milk whey for at least two hours, since a previous study 

hypothesized that the initial lag time is needed for depletion of cellular iron (Martin and Imlay, 2011). 

 Low impact of lactoferrin during initial growth of E. coli 

In the present study we aimed for the characterization of virulence-associated traits, which may 

enable mastitis isolates as well as a subset of bovine faecal E. coli to successfully colonize the 

mammary gland and cause disease. When entering the mammary gland, the initial few hours are 

supposed to be most important for the outcome of the disease in that they are critical for bacterial 

survival. In contrast, an increase of lactoferrin gene expression and accumulation of the lactoferrin 

concentration in milk is known to occur rather late (Schmitz, 2004; Chaneton et al., 2008), suggesting 

other main roles of lactoferrin than inhibition of bacterial growth. An early investigation reported 

that high citrate levels during lactation compensate for the bactericidal effect of lactoferrin in milk 

due to the fact that citrate chelates iron thus providing a possibility for the bacteria to take 

advantage of this iron. In dry-periods citrate concentrations decrease and lactoferrin may then be 

responsible for maintaining bacteriostasis (Smith and Schanbacher, 1977). Besides its bactericidal 

effect, lactoferrin confers other properties such as detoxification by sequestering LPS and prevention 

of pro-inflammatory pathway activation by TLR4, sepsis and tissue damage (Latorre et al., 2010; 

Legrand et al., 2004). However, from the mastitis-causing bacteria species Staphylococcus aureus, 

Streptococcus agalactiae, Streptococcus uberis and Escherichia coli the species E. coli has been 

reported to be most susceptible to iron shortage (Rainard, 1986). Since we have not been able to 

detect lactoferrin-mediated bacteriostasis on our strains, this remains to be further investigated. We, 

however, presume that one or more iron uptake systems might enable mastitis-associated E. coli to 

overcome the inhibitory properties of lactoferrin. Notably, several genes associated with iron uptake 

could not be detected in E. coli 1303 and ECC-1470 (Table 9). Apart from that, other iron acquisition 

systems, such as enterobactin, seem to be conserved as it is commonly expressed by Gram-negative 

bacteria isolated from involuted mammary glands during the dry period. It has been shown that 

growth of E. coli was inhibited in mammary secretions by blocking iron uptake with antibodies 
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specific for the enterobactin receptor (Lin et al., 1999) indicating the importance of iron uptake 

systems in the context of mastitis. 

 Lactose fermentation: Not the key factor for survival in milk whey  

It was previously discussed that environmental isolates that exhibited reduced fitness in milk were 

either less resistant to the biologically active components present in milk, or that they were less able 

to utilize the nutrients available in it, or both (Blum et al., 2008). Due to the fact that Blum and 

colleagues utilized pasteurized milk for their growth assay, they concluded that it is unlikely that the 

biologically active components influence bacterial fitness. Hence they proposed that the 

environmental isolates that showed diminished fitness in milk were less well adapted to metabolize 

the available lactose in milk in contrast to glucose in nutrient broth. This might be further supported 

by previous studies, which reported lactose fermenters to reach much higher bacterial counts in milk 

and, moreover, a positive correlation of the growth of a mastitis-associated E. coli strain to the 

percentage of lactose available (Hogan and Smith, 2003; Kornalijnslijper et al., 2003).  

In contrast our findings considerably differed from those mentioned before due to the fact that the 

ability to grow on lactose did not unambiguously divided faecal isolates into one group with reduced 

fitness and into a second one that comprises mastitis isolates (Figure 10). Instead, faecal isolates with 

reduced fitness in milk whey did not differ from mastitis isolates regarding the distribution of the 

phenotypic ability to utilize lactose, though the overall growth performance on lactose greatly 

differed among all isolates tested (Figure 10). Especially, the faecal isolates 2285 and 2305 grew very 

well with lactose as sole carbon source, but showed reduced fitness in milk whey. This indicates that 

there is no direct correlation between multiplication in milk (whey) and a reduced ability to utilize 

lactose as it was suggested by Blum et al. Our finding is further supported by the fact that the general 

ability to use lactose seems to be a prevalent trait of E. coli as reported for disease-associated 

isolates as well as for faecal isolates of avian origin (Rodriguez-Siek et al., 2005). Furthermore, lactose 

is not the sole carbon source in bovine milk, which contains several oligosaccharides comprising 

galactose and glucose, which might be utilized by bacteria (Gopal and Gill, 2000). It is nevertheless of 

little doubt that especially mastitis E. coli which are adapted to an intramammary lifestyle, take 

advantage from using lactose as major carbon source Figure 10. At least, our finding that the faecal 

isolates were sensitive even to small portions of milk whey upon short incubation (Figure 9) indicated 

antimicrobial effects rather than nutrient shortage. Altogether, we report here that the ability to 

utilize lactose might at least promote fitness in milk whey, but is likely to be less important for 

successful mastitis than initially thought. 
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 Reduced bacterial fitness related to LAP 

Previous studies of E. coli growth inhibition in the mammary gland or mammary secretions focused 

on specific host defense mechanisms on the cellular level, but also suggested the action of 

complement, lactoferrin and lysozyme (Rainard and Riollet, 2006; Paape et al., 2003; Sordillo and 

Streicher, 2002). Analysis of bacterial growth depending on the availability of lactose and iron 

suggested nutrient shortage to be a bottle neck for E. coli multiplication (Chaneton et al., 2008; Blum 

et al., 2008; Rainard, 1986). The impact of antimicrobial properties present in mammary secretions is 

nonetheless questionable in that they provide an indispensable barrier effect to bacterial 

multiplication under physiological conditions.  

 E. coli mastitis isolates and most faecal isolates survive physiological LAP concentrations 

In the present study, we focused on the specific antimicrobial effects provided by physiological 

concentrations of LAP. The physiological concentrations of LAP in milk have been recently 

determined to be about 17 nM under udder-healthy conditions and roughly 50 nM when the udder is 

infected with E. coli. Furthermore, a direct correlation between LAP concentration and SSC was 

shown (Kawai et al., 2013). Given the fact that the milk whey, which was utilized in our growth 

assays, derived from an udder-healthy cow we anticipate a similar concentration of LAP. This is in 

accordance with our observation that isolates able to survive LAP concentrations of 20 nM also 

performed well in milk whey. This suggests that fitness of E. coli isolates in raw milk is related to the 

ability to resist LAP.  

LAP is a prominent β-defensins present in mammary secretions and its expression in mammary 

epithelial tissue is up-regulated during mastitis (Swanson et al., 2004). We demonstrated that the 

presence of LAP significantly decreased bacterial numbers (Figure 12). Furthermore, individual faecal 

isolates, which were also less fit in milk whey (Figure 9), were substantially more susceptible to killing 

by LAP than all mastitis E. coli isolates and most faecal isolates (Figure 12). This supports our 

hypothesis that LAP and other antimicrobial peptides are the main bactericidal agents in milk whey.  

 Adaption to an intramammary lifestyle requires resistance to LAP 

Likewise other β-defensins, LAP is assumed to function by binding to the cell membrane, followed by 

the formation of pore-like membrane defects, which promote efflux of essential ions and nutrients 

(Ganz, 2003; Peschel and Sahl, 2006). E. coli, which are about to colonize a new niche like the 

mammary gland have to adapt not only to metabolic changes but also have to counteract defensins. 

Many bacteria evolved efficient countermeasures to confer increased resistance indicating the 

evolutionary pressure to colonize and infect their hosts. This might also include membrane-

associated molecular mechanism to sense defensins and initiate transcription to express, e.g. 

extracellular proteases. The recognition of and resistance to host defensins is of high importance and 
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several studies correlated bacterial colonization to these particular traits. Specifically, defensin-

susceptible mutants of Gram-positive bacteria have been attenuated in different infection models 

(Nizet et al., 2001; Kristian et al., 2003; Weidenmaier et al., 2005). Similarly, defensin-susceptible 

Salmonella mutants were attenuated in two independent studies that reported about the pmr locus, 

which is necessary for LPS modification in defensin resistance, as well as PhoP/Q two component 

system (Gunn et al., 2000; Guina et al., 2000). PhoQ is a sensor kinase important for the pathogenesis 

of a number of Gram-negative bacterial species and via its cognate response regulator PhoP it 

constitutes a signal-transduction cascade that controls inducible resistance to host defensins (Bader 

et al., 2005). E. coli can develop resistance by modification of their O-antigens by adding positively 

charged moieties, thus preventing the electrostatic interaction of defensins with their surfaces. 

Furthermore, extracellular proteases such as OmpT are known to degrade α-helical AMPs thereby 

providing resistance to defensins (Thomassin et al., 2012; Stumpe et al., 1998). Moreover, biofilm, 

which is a common virulence-associated trait of many ExPEC, is also known to provide a generally 

protective coverage to antimicrobial effects including those of defensins (Otto, 2006).  

By identification of E. coli bovine faecal isolates, which are resistant to particular concentrations of 

LAP (Figure 12), we provided evidence for a subset of E. coli strains that could be phenotypically 

more adapted than other environmental strains to an intramammary lifestyle.  

 E. coli isolates conferring LAP resistance do not unambiguously thrive in milk whey 

Interestingly, two out of the five designated group two faecal isolates with reduced fitness in milk 

whey (Figure 9), exhibited equal survival ability to LAP likewise the mastitis E. coli isolates and the 

remaining faecal isolates (Figure 12). Hence, their reduced fitness in milk whey must rely on other 

factors than LAP resistance. A limited ability to utilize lactose was excluded due to the isolates´ 

reasonably well growth in the lactose utilization assay (Figure 10). Furthermore, growth inhibition by 

the bactericidal lactoglobulin can be excluded, because it was shown to inhibit the growth of 

S. aureus and S. uberis, but not of E. coli (Chaneton et al., 2011). It should also be noted that 

resistance to defensins might not be a general molecular mechanism, but can be highly specific to 

the particular defensin. We, therefore, suggest that the reduced fitness of faecal isolates 

unsusceptible to LAP resulted from susceptibility to other milk whey components, which have not 

been assessed such as other defensins present in milk. The contribution of lysozyme to the 

antimicrobial effect of mammary secretions was not evaluated to date whereas its concentration in 

bovine milk is extremely low (130 ng ml-1) when compared to human milk (10 mg ml-1) (Hettinga et 

al., 2011). In contrast, the number of discovered β-defensins is still increasing and to date the 

β-defensin family present in mammary secretions comprises not only LAP, but bovine neutrophil 

β-defensin, tracheal antimicrobial peptide, enteric β-defensin and bovine β-defensin (Kawai et al., 

2013). 
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 Considerations 

It is an ongoing discussion whether a specific set of E. coli constitutes a mammary pathogenic group 

of E. coli or if any E. coli is able to cause mastitis when the determining factors are relying on the 

host. Our data could neither proof nor deny either one of both suggestions. On the one hand, in vitro 

exposure of bacteria to slowly increasing defensin concentrations over several hundred generations 

has been shown to result in reversible physiological adaptation and/or spontaneous, inheritable 

resistance to the peptide used (Peschel and Sahl, 2006). On the other hand, we can only assume how 

fast such adaptations might occur in vivo and how efficient and specific these adaptations might be 

when taking into account that all mentioned defensins present in milk create simultaneous selective 

pressure. Previous studies reported a significant increase of LAP concentrations in response to LPS as 

well to E. coli, when injected into the mammary gland, which remained at high levels for two days 

(Isobe et al., 2009a and 2009b). A comparison of the growth curve regression slopes showed no 

evidence that mastitis E. coli isolates were multiplying significantly faster relative to faecal E. coli 

isolates in milk whey. This suggests that adaptation to mammary secretions is rather inherent than 

an adaption “on the run”. We propose further comprehensive investigations of mastitic E. coli and 

faecal isolates to test whether biofilm formation or susceptibility to further defensins are important 

for growth in mammary secretions.  

V.3.6. Adhesion and invasion of selected mastitis E. coli strains in vitro 

The pathogenesis of E. coli mastitis is assumed to resemble the pathogenesis of urinary tract 

infections in that the infection is also ascending (Kaipainen et al., 2002; Ghanbarpour and Oswald, 

2010). The E. coli isolates causing these infections are commonly classified as ExPEC, which often can 

adhere, invade and persist in host epithelia (e.g. UPEC and MNEC) (Kaper et al., 2004).  

In this study, the cell adhesion and invasion potential of model mastitis isolates, strain 1303 (acute 

mastitis isolate) and ECC-1470 (persistent mastitis isolate), were investigated. Additionally, we tested 

for effects of milk whey on E. coli cell adhesion. We expected results, which might be correlated with 

data from transcriptional analyses during cocultivation of E. coli mastitis isolates in the presence of 

mammary gland epithelial cells (section V.5). For this purpose we performed a cell adhesion assay 

and a gentamycin protection assay in parallel, as described in section IV.5.2 and IV.5.3. To examine 

effects of milk whey on bacterial adhesion to eukaryotic cells, we performed a second adhesion assay 

in parallel where the cell culture medium was in part replaced by milk whey. Different concentrations 

of raw milk whey were tested before and no inhibitory effects on MAC-T cells immortalized 

mammary gland epithelial cells was observed when cultivated in 60 % milk whey : 

40 % cell culture media (v/v) (Figure 13).  

No cytotoxicity was detected with the bacterial multiplicities of infection (MOI) used in the adhesion 

and invasion assays. The strains E. coli MG1655 ΔfimΔflu and S. typhimurium SL1344 were used as 
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controls. All strains were allowed to adhere to MAC-T cells for 2h. The bacterial numbers (colony 

formation units) observed were plotted in relation to the initial inoculum (Figure 14). 

Figure 13: Mammary gland epithelial cells in milk whey. The MAC-T cells were incubated in different 
ratios of sterile milk whey and cell culture media (DMEM high Glucose + 5 % FCS). The percentage of 
milk whey used is indicated in the individual wells (A) and their morphology was examined after20 h 
of incubation (B). MAC-T cells incubated in the presence of > 60 % milk occurred to be hypotonic. 
 
 

Figure 14: Adhesion and invasion of E. coli mastitis isolates to MAC-T mammary gland epithelial cells. 
The strains were allowed to adhere to or invade into MAC-T immortalized mammary gland epithelial 
cells for 2 h. The different assays were conducted in parallel. Data represent relative (i) adhesion 
(hatched) or (ii) adhesion in 60 % milk whey (grey) or iii) invasion (white), normalized respective the 
initial inoculum. Data are the mean ± standard deviation (SD) of at least three independent 
experiments in triplicate wells. Asterisks indicate a statistical significance (*, P < 0.03; **, P < 0.001).  
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 Adhesion to and invasion into bovine mammary gland epithelial cells in vitro 

The data displayed in Figure 14 show a significantly stronger interaction of E. coli strain 1303 and 

ECC-1470 with immortalized bovine mammary gland epithelial cells compared to the control strains 

E. coli MG1655 ΔfimΔflu and S. typhimurium 1344. The comparison of individual strains resulted in a 

wide range of differences between strains and either adhesion or invasion. The negative control 

E. coli K-12 strain MG1655 ΔfimΔflu showed less than 0.5 % adhesion and no significant 

internalization, which was expected. This strain lacks the Ag43 coding gene flu and the type 1 

fimbriae coding genes fimB-H avoiding expression of factors that could contribute to bacterial biofilm 

formation, autoaggregation, and/or adherence (Reidl et al., 2009). The control strain 

S. typhimurium 1344 showed a merely low adhesion rate of 2.22 %, which is in accordance with 

adhesion levels reported for S. typhimurium with respect to the utilized cell model (Gagnon et al., 

2013). The acute mastitis isolate E. coli 1303 showed a three times higher adhesion rate and was also 

2.5 times more invasive than the persistent mastitis isolate ECC-1470. Interestingly, the presence of 

60 % milk whey significantly reduced the adhesion to the mammary gland epithelial cells by 11.8 % 

for E. coli 1303 and 26.6 % for ECC-1470. 

 Different adhesion and invasion properties of E. coli strain 1303 and ECC-1470 

The adhesion of a clinical mastitis isolate (E. coli strain P4) to epithelial cells, from the teat and 

lactiferous sinuses of the udder, was first observed in 1978 by Harper et al.. At this time, the 

adhesion was demonstrated to be fimbria-dependent due to mannose inhibition. Another study 

observed that E. coli clinical mastitis isolates adhered to and invaded into cultured bovine mammary 

gland epithelial cells. Moreover, isolates from persistent intramammary infections with recurrent 

cases of clinical mastitis invaded comparatively faster and in larger numbers than the strains from 

single cases (Döpfer et al., 2000). This was corroborated by another study, which showed that 

persistent E. coli mastitis isolates, amongst others ECC-1470, adhered exhibited similar adhesion 

rates, but invaded more efficiently into mammary gland epithelial cells than transient E. coli mastitis 

isolates (Dogan et al., 2006). 

The results of the present study are in contradiction to this general message. We clearly 

demonstrated a substantially higher adherence and invasiveness of E. coli strain 1303, which has 

been classified as a transient mastitis strain in comparison to the persistent mastitis strain ECC-1470 

(Figure 14). Strain ECC-1470 exhibited a significantly higher invasion rate than E. coli 1303 in relation 

to their respective adhesion capacity (ANCOVA; F1,14= 291.69, P < 0.001, where the initial inoculum 

was included as a covariate). It can be hypothesized that this difference might even increase over 

time and confers a faster internalization of E. coli strain ECC-1470 into mammary gland epithelial cells 

than E. coli strain 1303 what might increase its persistence potential: In particular, the intracellular 

lifestyle and evasion from the host´s immune response. On the other hand, the transient mastitis 
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E. coli isolate 1303 has been shown to adhere and invade mammary gland epithelial cells in 

remarkably greater numbers than persistent mastitis isolate ECC-1470 (Figure 14). This leads to the 

assumption that E. coli strain 1303 expresses traits contributing to adherence and invasion different 

from ECC-1470. Whether these traits are more efficient per se or whether they confer enhanced 

adhesion due to synergistic effects required further verification. 

For mastitis E. coli strains it is important to colonize the mammary gland including the stratified 

epithelia lining the luminal walls of the teat canal and cistern, gland cistern, milk tubules and the 

specialized alveolar epithelium. This requires factors contributing to cell adhesion and invasion 

promoting virulence. Dogan et al. suggested that the phylogenetic group and the presence of long 

polar fimbriae (LpfA) influence the epithelial invasion by persistant E. coli mastitis isolates (Dogan et 

al., 2012). Interestingly, the corresponding gene lpfA is absent in transient E. coli mastitis strain 1303 

(phylogroup A), but present in persistent mastitis strain ECC-1470 (phylogroup B1) (Table 9). Its 

expression was not deregulated in the presence of bovine mammary epithelial cells relative to their 

absence (see section V.5). This suggests that the remarkably higher adhesion rate of E. coli 1303 is 

likely to be due to other factors since lpfA was related to persistent E. coli mastitis isolates such as 

ECC-1470, which exhibited less adhesion (Figure 14). Nevertheless, both strains carry 37 (E. coli 1303) 

to 52 (ECC-1470) genes within their genomes, which encode for fimbrial adhesins or predicted 

fimbrial-like adhesins. 

It is, however, questionable whether cell adhesion occurs in vivo in the lactating cow, because 

several studies reported a reduction of adherence of E. coli but also of Salmonella spp. by whole milk, 

milk fat globules and their components (Sánchez-Juanes et al., 2009; Guri et al., 2012; Schroten et al., 

1992; Atroshi et al., 1983; Harper et al., 1978). 

 Milk whey negatively influences bacterial adhesion to mammary gland epithelial cells 

The cocultivation of E. coli mastitis isolates and mammary gland epithelial cells in presence of milk 

whey was originally considered to allow comprehensive analyses in a setting that, at least partially, 

mimics the environment during initial mastitis pathogenesis. In order to examine effects of milk whey 

on cell adhesion, we performed an adhesion assay where the pure cell culture medium was replaced 

by 60 % milk whey. 

Our data clearly revealed a significantly reduced ability of all bacterial strains tested to adhere to 

cultured mammary gland epithelial cells (Figure 14). This effect was observed to be 2 times stronger 

for strain ECC-1470 than for E. coli 1303 (ANCOVA; F1,14= 2391.32, P < 0.001). It can be presumed that 

the substantially weaker cell adhesion by E. coli ECC-1470 caused by milk whey, might also be 

responsible for this strain’s more efficient invasion potential indicating its intracellular lifestyle. Due 

to our observations in the cell adhesion assay we may hypothesize that i) either milk whey inhibits 

bacterial adhesion to eukaryotic cells or ii) that the number of viable bacteria was decreased, 
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because of AMP interactions. This might subsequently reduce their overall adhesion rate (see also 

section V.3.1).  

On the other hand, the latter hypothesis is unlikely due to the fact that mastitis isolate E. coli 1303 

showed no decreased survival when incubated in up to 50 % milk whey (Figure 9). Moreover, the 

growth characteristics of both mastitis strains E. coli 1303 and ECC-1470 revealed equal fitness when 

grown in milk whey (Figure 8). We, therefore, presume that milk whey directly inhibits bacterial 

adhesion to eukaryotic cells by other mechanisms than antimicrobial ones. This is further 

corroborated by the fact that whole milk has been previously observed to inhibit the adhesion of 

E. coli to cells in vitro (Harper et al., 1978). The molecular mechanism of inhibition of fimbria-

mediated E. coli cell adhesion is thought to be provided by milk fat-globule membrane components 

and glycosphingolipids (Sánchez-Juanes et al., 2009; Schroten et al., 1992; Atroshi et al., 1983). We 

might, however, highlight the fact that cell debris and milk globules were almost completely removed 

from raw milk during processing to milk whey (see section III.4.1) indicating that fat globules are 

unlikely to cause the effect we observed. It is, however, interesting that the inhibitory capacity of 

bacterial cell adhesion is suggested to depend on host species. For example, bovine, goat and human 

milk have been shown to markedly reduce bacterial binding and invasion relative to controls. 

Specifically, the fat globules derived from bovine milk were observed to provide weaker protective 

traits than those derived from goat or human (Guri et al., 2012; Tellez et al., 2012; Schroten et al., 

1992).  

Our results strongly suggest that milk properties conferring protection against bacterial adhesion 

might be also provided by other components in milk. The particular mechanism of the inhibition of 

E. coli adhesion to bovine mammary gland cells in milk whey remains unclear. Thus, an inhibitory 

effect provided by components other than milk fat-globule membrane components and 

glycosphingolipids might contribute to the overall inhibitory effect. Vice versa, particular E. coli 

strains might resist either one of the adhesion inhibitory traits and might thus outcompete strains, 

which are not resistant. It is, however, necessary to comprehensively investigate whether milk fat 

globule components are the only inhibitory agent in E. coli cell adhesion by milk whey while there is 

reason to doubt. We therefore suggest testing of different milk fractions, respectively, in 

comparative cell adhesion assays. 

V.4. Autotransporter genes in mastitis isolates 

A marked prevalence of many known virulence-associated genes of ExPEC and IPEC among E. coli 

mastitis isolates has not yet been published. Instead, E. coli mastitis isolates commonly lack known 

virulence markers (Blum and Leitner, 2013; Silva et al., 2013; Cheng et al., 2012; Dogan et al., 2012; 

Kerro Dego et al., 2012; Fernandes et al., 2011; Suojala et al., 2011; Ghanbarpour and Eric Oswald, 
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2010; Dyer et al., 2007; Wenz et al., 2006; Bean et al., 2004; Lehtolainen et al., 2003; Kaipainen et al., 

2002; Wise et al., 2002; Lipman et al., 1995; Sanchez-Carlo et al., 1984). 

In former studies autotransporter (AT) proteins were repeatedly considered virulence- associated 

factors (Ulett et al., 2007; Allsopp et al., 2010 and 2012; Totsika et al., 2012). The functional 

redundancy and wide distribution of many ATs among pathogenic and non-pathogenic E. coli 

indicates that ATs cannot generally be regarded as specific biomarkers and virulence factors (VFs) per 

se (Zude et al., 2014). Nonetheless, AT proteins promote colonization of intestinal and extraintestinal 

sites by ExPEC and thus AT expression can be considered advantageous in mastitis pathogenesis. 

We, therefore, evaluated the prevalence of selected AT-encoding genes among E. coli isolates from 

bovine mastitis in order to elucidate whether a possible accumulation of AT genes might promote 

colonization of the udder. Furthermore, we extended this evaluation to include E. coli isolates from 

faeces of healthy cows as E. coli is considered an environmental pathogen of mastitis (Radostits et 

al., 2007; Bradley and Green, 2001). Based on differences between E. coli mastitis isolates and such 

from the environment of the cow, it has been suggested that clinical bovine mastitis E. coli isolates 

may form a subset of the environmental E. coli population. Moreover, mastitis isolates seemed to 

better multiply in the udder medium and to evade the host cellular innate immune response. 

Mastitis isolates were also anticipated to be genetically distinct from most environmental strains 

(Blum et al., 2008). Interestingly, the genetic distinction failed in a more recent study of the same 

working group (Blum and Leitner, 2013). However, we were interested in determining whether there 

is a difference in AT prevalence between mastitis and faecal isolates. For this purpose we performed 

a PCR-screening to screen the selected E. coli isolates (Table 6) for the presence of the AT genes 

upaB, upaC, upaI and upaJ. The primers were designed from specific nucleotide sequence sections 

(of the α-domain-encoding region of the respective AT genes,) with a low prevalence of repetitive 

sequences (Table 7). 

Additionally, we tried to elucidate whether the prevalence of the examined ATs in mastitis isolates 

and isolates from bovine faeces would be similar in a strain collection comprising mainly human 

pathogenic isolates (amongst others various IPEC, UPEC, sepsis and faecal isolates; Table 6). 

Therefore, the strain collection of the Institute of Molecular Infection-Microbiology (IMIB) of the 

University of Würzburg was investigated as well which comprises different clinical isolates from 

various non-bovine sources. 

 Distribution of autotransporter genes among mastitis and bovine faecal isolates 

The PCR screening of 218 mastitis isolates and 72 isolates from bovine faeces resulted in the data 

shown in Table 10. Of the 218 mastitis isolates, 65 (29.82 %) had at least one AT gene detected by 

PCR. The most common AT of mastitis, bovine faecal and non-bovine IMIB isolates was upaB, which 

was detected in 55 (25.23 %) of the mastitis isolates. All AT genes were either present alone or in 



RESULTS AND DISCUSSION  91 

 

combination with each other. Although the mastitis, bovine faecal and non-bovine IMIB isolates were 

not of comparable number, the mastitis and bovine faecal isolates did significantly differ in the 

presence of the four AT genes. Between the isolates of the IMIB collection and the bovine faecal 

isolates, the AT genes upaC, upaI and upaJ, but not upaB significantly differed in their prevalence. 

Notably, the prevalence of upaB was exceptional in that it did not differ that much between these 

groups. In general, the prevalence of all four AT genes declined from the IMIB isolates to bovine 

faecal isolates and from bovine faecal isolates to mastitis isolates. 

Table 10: Presence of selected autotransporter genes in bovine mastitis, bovine faecal and other 
non-bovine isolates 

Number of tested isolates   upaB  upaC   upaI   upaJ 

218 mastitis isolates   55 [25.23 %] 15 [  6.88 %] 10 [  4.59 %]   2 [0.92 %] 

  72 bovine faecal isolates   24 [33.33 %] 11 [15.28 %]   8 [11.11 %]   0 [0.00 %] 

183 isolates of IMIB collection   65 [35.52 %] 51 [27.87 %] 51 [27.87 %]   8 [4.37 %] 

Total isolates (473) 144 [30.44 %] 77 [16.28 %] 69 [14.59 %] 10 [2.11 %] 

 

In order to compare these observations with data from an AT gene screening of a strain collection 

with emphasis on the AT distribution in the known major pathotypes, we took advantage of and re-

illustrated data from another screening performed in parallel (Table 11). Notably, these data were 

achieved by an in silico analysis of publicly available complete genome datasets of a comparable 

number of pathogenic and non-pathogenic isolates. Our first observation was the significantly higher 

prevalence of all four AT genes among ExPEC isolates relative to IPEC and non-pathogenic isolates. 

Nevertheless, the presence of these AT genes was still much higher in comparison to the mastitis, 

bovine faecal and non-bovine isolates (Table 10). Of note, the prevalence of upaB was fairly the same 

in the IPEC and non-pathogenic isolates according to the complete genome sequence screening 

(Table 10) and the isolates from bovine faeces and non-bovine isolates of the IMIB collection 

screened by PCR (Table 9).  

Table 11: Distribution of individual AT homologs in relation to pathotype (data from Zude et al., 
2013) 

Number of analyzed genomes  upaB  upaC  upaI  upaJ 

  9 ExPEC isolates   6 [66.66 %]   8 [88.88 %]   7 [77.77 %]   2 [22.22 %] 

52 IPEC isolates 18 [34.62 %] 24 [46.15 %] 11 [21.15 %]   6 [11.54 %] 

50 non-pathogenic isolates 18 [36.00 %] 28 [56.00 %] 13 [26.00 %]   2 [  4.00 %] 

Total isolates (111) 42 [37.84 %] 60 [54.05 %] 31 [27.93 %] 10 [  9.00 %] 
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 No crucial role of autotransporters in mastitis 

The low prevalence of the selected AT genes upaB, upaC, upaI and upaJ among the 218 mastitis 

isolates suggests that they may not play a crucial role for the development of mastitis. Isolates from 

bovine faeces were investigated as well to find out whether mastitis and faecal isolates differ in the 

presence of virulence-associated genes. It has been suggested that mastitis strains originate from the 

faecal flora of the cow (Radostits et al., 2007). Moreover, the genetic as well as phenotypic variability 

of E. coli mastitis isolates seems not to be reflected by E. coli environmental isolates of the cow, but 

might be a product of adaptation to an intramammary lifestyle (Bradley and Green, 2001; Dogan et 

al., 2006; Blum et al., 2008). Our data could neither proof nor refute this suggestion. 

On the one hand, the screened mastitis isolates revealed a significantly lower AT prevalence in 

comparison to the bovine faecal isolate as well as all the different sets of major E. coli pathotypes 

examined. This is in contradiction to the hypothesized accumulation of AT genes, in case of 

advantageous fitness provided by ATs. Hence, the colonization of the udder is likely to rely on other 

factors than ATs.  

On the other hand, we do know that ATs often promote functions which are redundant to other AT 

functions (Zude et al., 2014). Furthermore, the total virulence potential of a pathogen is often 

greater than the sum of the individual contributions of virulence-associated traits, what is most likely 

due to, at least in part, their synergy. Thus, AT proteins might still improve the colonization of 

extraintestinal sites. Additionally, the relatively low frequencies of other virulence-associated factors 

should be considered, which often not exceeding 30 % prevalence of genes as reported in various 

studies of E. coli mastitis, (Blum and Leitner, 2013; Silva et al., 2013; Cheng et al., 2012; Dogan et al., 

2012; Kerro Dego et al., 2012; Fernandes et al., 2011; Suojala et al., 2011; Ghanbarpour and Oswald, 

2010; Dyer et al., 2007; Wenz et al., 2006; Lehtolainen et al., 2003; Kaipainen et al., 2002; Wise et al., 

2002; Lipman et al., 1995; Sanchez-Carlo et al., 1984). It can be concluded that the 29.82 % AT 

prevalence among mastitis isolates may not be neglected, but anticipate ATs to take place in a much 

bigger set of factors that promote a successful colonization of the udder. Nevertheless, an 

application as biomarkers for a presumed MPEC pathotype cannot be proposed for either one of the 

four AT genes. 

 AT prevalence influenced by phylogeny rather than pathotype classification  

The significantly lower prevalence of the three AT genes upaC, upaI and upaJ, but not upaB, among 

the isolate groups shown in Table 10 in comparison to the isolate groups shown in Table 11 seems to 

be inconsistent. Several studies try to explain this kind of discrepancy between studies with either 

different sampling techniques or different assessment methods (Blum and Leitner, 2013; Blum et al., 

2008). In our case, the data set of the present work was achieved by PCR-screening (Table 10) 

whereas the data shown in Table 11 were achieved by an in silico query. Nevertheless, both methods 
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proved to be reliable (Zude et al., 2014; Wells et al., 2009). In the present work, AT gene-specific 

primers were designed and repeatedly proven to be functional in PCR-screenings, leaving no doubt of 

the presence of AT genes as revealed in Table 10. Thus, we might exclude a marked influence by the 

two diverse assessment methods. We rather suggest an influence on AT prevalence caused by the 

strain selection and its implied phylogenetic diversity. This is supported by the general distribution of 

E. coli mastitis and bovine environmental isolates, mainly into the phylogeny groups A and B1 (Blum 

and Leitner, 2013; Ghanbarpour and Oswald, 2010). Another study even reported both persistent 

and transient isolates of E. coli of group A exclusively (Dogan et al., 2006). It is common knowledge 

nowadays that group A comprises mostly commensal E. coli while group B1 constitutes an 

assortment of different pathotypes and commensals. Both phylogeny groups, A and B1, are sister 

taxa of the youngest lineages in E. coli phylogeny whereas the earlier emerged group B2 comprises 

many ExPEC strains (Leimbach et al., 2013; Clermont et al., 2000). Interestingly, the study by Zude et 

al. determined the highest AT prevalence per strain in isolates of phylogroup B2, followed by B1. 

Moreover, it has been shown that AT distribution correlates rather with phylogenetic lineages than 

with pathotypes (Zude et al., 2014). Speaking of E. coli mastitis isolates as a group of ExPEC strains 

that resemble UPEC in pathogenesis and invasive properties (Kaipainen et al., 2002; Dogan et al., 

2006 and 2012), one would expect them to be comprised of group B2 strains. 

To summarize the composition of our datasets: First, the E. coli isolates of bovine mastitis and bovine 

faeces were mainly classified to groups A and B1 (unpublished data). This is in accordance to 

collections of mastitis isolates reported elsewhere (Blum and Leitner, 2013; Ghanbarpour and 

Oswald, 2010; Dogan et al., 2006). Secondly, we included the so-called IMIB collection, which 

includes a broad variety of isolates from various different pathotypes and phylogenetic groups. 

Thirdly, the 111 isolates included into the in silico whole genome sequence screening (Zude et al. 

2013, Table 11) mirror the variety of the E. coli phylogenetic groups. Thus, our data indicate that 

among the E. coli isolates from mastitis and bovine faeces, the phylogroup B2 is underrepresented in 

comparison to the selection of isolates included into the in silico genome sequence analysis (Zude et 

al. 2013). 

 

From our data, it can be concluded that AT proteins are less prevalent among the bovine E. coli 

populations and more specifically, among mastitis isolates. This supports either the idea that ATs do 

not play a crucial role in mastitis. 
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V.5. Differential gene expression of mastitis E. coli 1303 and ECC-1470 in the 
presence of MAC-T epithelial cells in vitro 

In order to investigate aspects of host-pathogen interaction of E. coli 1303 and ECC-1470, in vitro cell 

culture experiments were performed. MAC-T immortalized bovine mammary gland epithelial cells 

were co-cultivated with mastitis E. coli isolate 1303 and ECC-1470, respectively. As a reference, the in 

vitro transcriptome of E. coli 1303 and ECC-1470 grown in cell culture medium without MAC-T cells 

was determined using DNA microarrays. In Figure 15, a schematic overview of the performed 

investigation procedure is given: 

Figure 15: Basic work flow of the DNA microarray analysis performed to analyze the bacterial 
transcriptome. Samples of E. coli 1303 and ECC 1470 were acquired from cultivation at 37°C in 
DMEM in the presence or absence of MAC-T bovine mammary gland epithelial cells, respectively.  
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 Study design appropriate to capture the transcriptomic response to present host cells  

The cocultivation was performed according the culturing conditions described in section IV.2.3 . 

Briefly, approximately 1.5 x 107 MAC-T cells were present per cell culture flask during the 

cocultivation. The wells were infected with a MOI of 100. Therefore 2 x 109 bacteria of an overnight 

culture were co-cultivated with the MAC-T cells for one and three hours, respectively. Thus, bacteria 

had appropriate time to get into direct contact with the epithelial cells as we have also confirmed in 

section V.3.6. Total RNA samples were prepared from planktonic bacteria and bacteria in contact 

with MAC-T cells as described in sections IV.2.3 and IV.2.4. All DNA microarray experiments were 

performed in triplicates including the overnight culture. Comparative gene expression analysis was 

performed by DNA microarray hybridization with cy3- and cy5-labelled cDNA from total RNA extracts 

from E. coli 1303 and ECC-1470 grown in the presence of MAC-T epithelial cells relative to the 

absence of epithelial cells. A customized Operon Array was employed, which contains probe sets for 

all ORFs present in the genomes of E. coli strains MG1655, EDL933, O157:H7 Sakai, CFT073, 536 and 

UTI89. The results of the statistical analyzes were aligned to E. coli 1303 and ECC-1470 genome 

sequence data (Leimbach, unpublished data) and followed by the identification of differentially 

regulated genes at 1 h and 3 h after infection of the cell culture. Gene lists are provided in the 

appendix section in Table 18, Table 25. 

V.5.1. Significant changes in the expression pattern 

The mastitis E. coli strains 1303 and ECC-1470 exhibited differentially regulated genes when 

cultivated in presence of MAC-T bovine epithelial cells. Of approximately 5,155 CDS of E. coli 1303 

and approximately 4,703 CDS of strain ECC-1470, we identified a total of 255 and 300 differentially 

regulated genes, respectively, during three hours cocultivation in the presence of MAC-T epithelial 

cells relative to the absence of epithelial cells. The individual number of up- and down-regulated 

genes at the different time points is shown in Figure 16. E. coli ECC-1470 exhibited a substantially 

higher total number of deregulated genes relative to E. coli 1303 at one hour time point.  

Figure 16: Deregulated genes in E. coli strain 1303 and ECC-1470 during cocultivation with MAC-T 
epithelial cells relative to the absence of epithelial cells. The diagram indicates the numbers of 
significantly up (red) and down (green) regulated genes (P < 0.05).  
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This is indicating a stronger transcriptional response of ECC-1470 to bovine mammary gland epithelial 

cells. Although the same parameters have been applied in all arrays an influence by poor microarray 

hybridizations cannot be excluded completely. The number of up-regulated genes exceeded twofold 

and that of the down-regulated genes exceeded tenfold the number of deregulated genes in E. coli 

1303. At three hours after inoculation, the total number of genes deregulated by ECC-1470 

decreased. At the same time the total number of genes deregulated by E. coli 1303 almost doubled 

upon ongoing cocultivation. Notably, the ratio between up- and down-regulated genes also differed 

considerably between both isolates (Figure 16). 

 Genes involved in metabolism represent one quarter of all deregulated genes  

Differentially regulated genes were categorized according to a functional classification system 

(Hancock and Klemm, 2007) to summarize the main functional categories. As shown in Figure 17, the 

majority of the genes with significant changes during three hours of cocultivation clustered in the 

following functional categories: energy metabolism (22-28 %), proteins involved in intracellular 

transport and binding (11-16 %), cellular processes (9-10 %), DNA binding, replication, repair, 

restriction modification, transcription, RNA processing and degradation (8-10 %), and cell surface-

associated proteins including such involved in transport and binding (7-9 %). 

Figure 17: Functional classification of differentially up-regulated genes of mastitis E. coli 1303 and 
ECC-1470 during 3 h cocultivation in the presence of MAC-T epithelial cells relative to the absence of 
epithelial cells. Each slice of the pie chart represents a major functional group of genes. Numbers 
shown represent the percentage of the functional groups.  
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As in most microarrays, genes coding for hypothetical proteins or genes of unknown function 

accounted for a marked portion (24-27 %) of all differentially regulated genes identified. Genes that 

were functionally classified into the categories “amino acid synthesis” and “mobile genetic elements” 

represent the smallest portions of deregulated genes. At the first glance, bona fide virulence factors 

could not be identified among the significantly deregulated genes, though some genes are virulence-

associated (see page 104). One could hypothesize, that strain ECC-1470 is not as dependent on 

metabolic adaptation as E. coli 1303, but rather deregulated transporters, probably to compensate 

for nutrient shortage due to the lack of other metabolic pathways. To confirm this hypothesis further 

investigation on nutrient utilization properties of both strains are required.  

 Commonly deregulated genes at 1 h and 3 h time in response to mammary gland epithelial 
cells 

A hierarchical cluster analysis of the global transcription profile at one hour and three hours of the 

respective isolate indicated, that E. coli 1303 and ECC-1470 exhibited remarkable differences in their 

gene expression profiles as is shown in Figure 18. Genes that exhibited the same or a similar 

expression pattern were grouped together. The transcriptional response of the bacteria to the 

presence of bovine mammary gland epithelial cells resulted in commonly deregulated genes and, in 

case of E. coli 1303, revealed two subclusters whereas ECC-1470 showed five subclusters. 

In both mastitis isolates, the majority of genes deregulated at either the 1-hour or 3-hour time point 

after inoculation differed in their transcriptional response by distinct expression levels or revealed no 

deregulation. Only a few genes of E. coli strain 1303 were commonly regulated at both time points 

whereas most genes were either regulated after one or three hours, but not at both time points. In 

contrast, E. coli ECC-1470 exhibited a higher number of commonly regulated genes as indicated by 

the bigger clusters. About 50 % of all deregulated genes of strain ECC-1470 were deregulated at one 

hour and also at three hours. A number of mainly down-regulated genes in E. coli ECC-1470 were 

either regulated at one or three hours but not at both time points. Altogether, this illustrates the 

very distinct transcriptional patterns of both strains. In E. coli 1303, the transcriptional patterns after 

one hour or three hours of cocultivation with bovine mammary gland epithelial cells were specific for 

both time points. The total number of deregulated genes almost doubled with ongoing cocultivation. 

In contrast, in strain ECC-1470 nearly half of the deregulated genes were commonly deregulated at 

both time points, indicating that the early and late transcriptional response was not that distinct in 

this strain. The mastitis isolates E. coli 1303 and ECC-1470 differ in their gene expression profiles in 

response to MAC-T cells. Whether this reflects the difference between a transient and a persistent 

lifestyle or whether this is a strain-specific phenomenon needs to be further investigated.  
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Figure 18: Transcriptional response of mastitis E. coli strains 1303 and ECC-1470 upon cocultivation 
with MAC-T cells. The hierarchical cluster plot shows the relative gene expression patterns of both 
strains upon cocultivation with MAC-T epithelial cells relative to the absence of MAC-T cells. Each bar 
represents one gene and its expression level corresponding to the color bar. The datasets for each 
strain and time point are mean values of the expression ratio from at least three independent 
microarray experiments. Genes without statistically significant changes in their expression profile are 
shown in black (P < 0.05).  
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The hierarchical cluster analysis revealed individually and commonly deregulated genes of each 

strain. Particular genes, which were commonly deregulated at both time points, might indicate the 

same bacterial reaction in response to the presence of bovine mammary gland epithelial cells. In 

contrast, individually deregulated genes might indicate strain-specific properties. Genes deregulated 

in both strains and possibly also deregulated within the same time period were examined and 

depicted in a Venn diagram shown in Figure 19. In addition to the visual output of the Venn 

algorithm a corresponding textual output is given in showing which genes in particular were 

deregulated at distinct conditions or were uniquely deregulated in a certain condition (data on 

compact disk: Supplemental Table S1). E. coli strain 1303 exhibited a comparably small number of 

individually deregulated genes after one hour of cocultivation relative to the other samples. 

Interestingly, the Venn diagram revealed 24 genes that were commonly deregulated after one and 

three hours of cocultivation in both strains E. coli 1303 and ECC-1470 and among them various 

regulatory determinants. Additionally, a considerable number of genes were commonly deregulated 

in both strains, but not necessarily at the same time as indicated by the overlapping areas of three 

samples (Figure 19). This suggests that the same processes are affected in both strains though up or 

down regulation in this Venn diagram has to be followed in the textual output in Supplemental Table 

S1 on the compact disk. In Figure 19 it is clearly shown that both strains individually regulated the 

transcription of a high number of genes at particular time points as indicated by the non-overlapping 

areas. These genes might represent strain-specific responses to the presence of bovine mammary 

gland epithelial cells. 

Figure 19: Commonly deregulated genes in bovine mastitis E. coli strains 1303 and ECC-1470 upon 
cocultivation with host cells in vitro. The Venn diagram shows the numbers of significantly 
deregulated genes in E. coli strains 1303 and ECC-1470 during cocultivation with MAC-T epithelial 
cells, relative to the absence of epithelial cells (P < 0.05). The numbers displayed in ellipses indicate 
the number of genes shared between the overlapping areas which represent the time of 
cocultivation and the strain, respectively.  
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It can be hypothesized that at least some of these genes might be involved in the different 

aetiological outcome caused by the transient E. coli strain 1303 relative to persistant strain ECC-1470. 

V.5.2. Deregulated bacterial determinants in response to cocultivation with MAC-T cells 

To better understand which cellular processes of mastitis E. coli 1303 and ECC-1470 were in 

particular reflected by the transcriptional response to the presence of MAC-T cells in vitro, we 

investigated representative deregulated transcriptional units and regulators selected from the Venn 

diagrams textual output (data on compact disk: Supplemental Table S1).The selected bacterial 

determinants and regulators that were deregulated during three hours cocultivation were depicted 

in Figure 20.  

Figure 20: Selected determinants of mastitis E. coli strains 1303 and ECC-1470, which were up-
regulated upon 3 hours of cocultivation with MAC-T cells. Black frames of the Venn diagram depict 
the overlap (number of shared features) of significantly deregulated determinants (blue), 
transcriptional regulators (red) and (green) down-regulated transcriptional regulator (P < 0.05).  
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 Changes in energy metabolism indicating competition for nutrients 

The majority of selected deregulated genes in Figure 20 could be assigned to the category “Energy 

metabolism”. In both strains we identified the menFD-yfbB-menBCE operon which is known to be 

specific to the menaquinone biosynthetic pathway (Dahm et al., 1998). Consequently up-regulated 

men expression suggests a preliminary production of menaquinones (vitamin K2 homologues), which 

can subsequently be used as the electron mediator between enzyme complexes involved in 

anaerobic respiration. Similarly, the expression of malY encoding a bifunctional protein with a 

regulatory and an enzymatic function (Reidl and Boos, 1991) was up-regulated in both strains. MalY 

is involved in the degradation of small carbon molecules and is a regulator of the maltose regulon. 

The transcription factor RbsR ("Ribose Repressor") controls the transcription of the operon involved 

in ribose catabolism and is induced when E. coli is grown in the absence of glucose (Laikova et al., 

2001; Mauzy and Hermodson, 1992). This indicates a competition between E. coli and host cells for 

glucose, which is the main carbon source in the DMEM cell culture medium. Thus, this finding 

supports on the one hand the idea that the bacteria responded to nutrient limitation during the 

cocultivation with MAC-T cells in vitro. On the other hand, rbsR is presumably vital in vivo as well, 

because it is also involved in the utilization of lactose as one of the main carbon sources in mammary 

secretions. 

Apart from commonly up-regulated genes involved in energy metabolism, we evaluated those 

specifically expressed in either E. coli 1303 or ECC-1470. Interestingly, all the identified 

transcriptional units and regulators were involved in (i) carbon utilization under limited glucose 

availability (e.g. the yia and gud operons, the deo operon as well as the regulatory genes galS, deoR 

and ygbI) or (ii) utilization of amino acids as nitrogen source (e.g. arginine utilization by the AST 

pathway including the ast and art transcriptions units). With exception of the AST pathway, which 

was specific to strain ECC-1470, we did not observe any remarkable differences regarding the 

transcription of these genes between both mastitis strains. Accordingly, we demonstrate that three 

hours cocultivation with MAC-T cells resulted in glucose shortage and that E. coli consequently 

switches to other pathways involved in respiration and utilization of carbohydrates. This is further 

reflected by significantly up-regulated genes which are usually expressed under anaerobic conditions. 

 Deregulated genes reflecting anaerobic conditions during cocultivation 

We identified up-regulated determinants and regulators that are functionally related to bacterial 

processes under anaerobic conditions (Figure 20). Of these, some were assigned to anaerobic 

conditions though they are also involved in the energy metabolism. This is exemplified by frd, which 

encodes the fumarate reductase, an enzyme that catalyzes a reaction allowing fumarate to serve as a 

terminal electron acceptor when E. coli is growing under anaerobic conditions (Iverson et al., 1999). 

Thus, the frdABCD transcriptional unit was assigned to anaerobic conditions, but the encoded gene 
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products serve in energy metabolism. Nonetheless, our classification links the function to the 

conditions observed by the bacteria in the presence of MAC-T cells.  

In both strains we identified the hyaABCDEF operon which codes for the E. coli hydrogenase 1 and 

which is induced under anaerobic conditions, but is repressed by nitrate (Richard et al., 1999). 

Interestingly, we identified the transcriptional regulator gene arcA to be up-regulated only in strain 

ECC-1470, but not in E. coli 1303. ArcA is known to antagonize repression of the hydrogenase-1 

operon (hyaABCDEF) under anaerobic conditions (Nesbit et al., 2012). ArcA represent a 

transcriptional response regulator of two-component systems, which serve in bacterial signal 

transduction by sensing and responding to environmental stimuli and facilitate bacterial adaption to 

changing environmental conditions. In E. coli, the quinone-dependent ArcA/B two-component 

system mediates the response to changing respiratory conditions and functions as global 

transcriptional regulator under microaerobic and anaerobic conditions. When activated under 

anaerobic conditions, ArcA regulates the expression of numerous operons involved in respiratory and 

fermentative metabolism. 

Also exclusively up-regulated in E. coli ECC-1470 was the napF operon encoding a ferredoxin-type 

protein. Another study reported a growth defect under anaerobic conditions on glycerol/nitrate 

medium when napF is missing (Brondijk et al., 2002). This suggests that NapF plays a role in energy 

conservation rather than a direct role in nitrate reduction. In this context it was also possible to 

successfully assign the other determinants hyd, hyc, and also hyf, which were significantly up-

regulated in both strains, to anaerobic nitrate respiration. In detail, the hydN-hypF operon is known 

to be maximally transcribed under anaerobic conditions in the presence of formate and is dependent 

on FhlA (Maier et al., 1996). In line with this, hycA which codes for the regulator of the 

transcriptional regulator FhlA was up-regulated as well. HycA controls the expression of several 

genes involved in the formate hydrogen lyase system. The specific regulatory mechanism by HycA is, 

however, unknown. It is known, that HycA expression is activated by formate and may interact 

directly with the FhlA protein and/or prevent the binding of FhlA to activator sequences (Suppmann 

and Sawers, 1994; Sauter et al., 1992; Leonhartsberger et al., 2000; Skibinski et al., 2002). We 

identified the hyf locus (hyfABCDEFGHIJR-focB) to be significantly up-regulated. The hyf locus 

encodes a hydrogenase-4 complex including a potential sigma (54)-dependent transcriptional 

activator HyfR (related to FhlA) and a putative formate transporter, FocB. Hyf expression is induced 

under fermentative conditions by formate at a low pH and FhlA-dependent. Its expression can be 

inhibited by HycA, the negative transcriptional regulator of the formate regulon (Skibinski et al., 

2002). Supported by the notion that NAD-dependent formate dehydrogenases are important in 

prokaryotic anaerobic metabolism (Jormakka et al., 2003), our results clearly demonstrate that 

anaerobic metabolism was vital when the E. coli mastitis strains were co-cultivated with bovine host 
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cells. The comprehensive regulation of hydrogenase-associated genes was further supported by up-

regulation of genes of the nik transcriptional unit encoding proteins essential for hydrogenase 

activity by nickel transport, which is required by E. coli when growing under anaerobic conditions 

(Rowe et al., 2005). 

When it comes to regulators exclusively up-regulated in E. coli strain 1303, there is still little known 

about the regulatory gene abrB except that it might elevate the expression of the AidB CoA 

dehydrogenase when grown under anaerobic conditions. Because abrB mutations were too unstable 

for analyses abrB has not been further studied yet (Volkert et al., 1994). We also identified the well-

examined regulatory gene aer to be up-regulated. Aer represents one of two sensory flavoproteins, 

which mediate the aerotactic response in E. coli. Specifically, the Aer protein senses the oxygen and 

energy state of the cell and mediates tactic responses towards rapidly oxidizable substrates such as 

ribose, galactose, maltose, malate, proline, alanine, glucose, mannitol, mannose, sorbitol, and 

fructose (Bibikov et al., 1997; Horne et al., 2009). Expression of aer by E. coli 1303 can be considered 

useful during mastitis pathogenesis due to the Aer-dependent activation of a number of genes 

involved in anaerobic respiration and the Entner-Doudoroff pathway (Prüss et al., 2003). Thus, 

increased Aer expression might enable quick utilization of available nutrients in mammary secretions.  

 Deregulated genes indicating extracytoplasmic stress 

Another well-represented functional category of deregulated genes in E. coli strains 1303 and 

ECC-1470 represented ”extracytoplasmic stress” (Figure 20). This might result from either shortage 

of essential elements (e.g. sulfur starvation induces expression of the tauABCD operon) or 

inappropriate osmotic conditions, which induce expression of osmoregulatory determinants such as 

ompR and kdpD (van der Ploeg et al., 1996; Jo et al., 1986; Wood, 1999). The sensor kinase KdpD is 

part of the two-component system KdpD/E responsible for signal transduction in osmoregulation 

caused by changes in the intra- and/or extracellular K+ concentration (Wood, 1999). 

In particular, but not exclusively, vis-à-vis extracytoplasmic stress is indicated by up-regulated 

expression of cpxP encoding the regulator of the Cpx response and putative chaperone which is 

involved in resistance to extracytoplasmic stress. Specifically, cpxP transcription is induced by alkaline 

pH (Danese and Silhavy, 1998). This is on the one hand contradicting, because one would expect 

rather acidic than alkaline pH in cell culture resulting in expression of factors to maintain pH 

homeostasis and provide acidic resistance (e.g. gadBC and rutR). This has been shown at least in case 

of E. coli ECC-1470. On the other hand, CpxP overproduction turns off the Cpx response by feedback 

inhibition (Raivio et al., 1999) supporting the notion that protection to alkaline conditions is not 

necessary. Interestingly, the Cpx system is also involved in adhesion and virulence of pathogenic 

E. coli, where cpxP expression is induced upon biofilm formation relative to planktonic growth in 

both exponential and stationary phase. In contrast isogenic cpxP mutants were impaired in biofilm 
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formation (Hung et al., 2001; Otto and Silhavy, 2002; Beloin et al., 2004). Moreover, the Cpx system 

may affect the bacterial ability to survive during or immediately after internalization. Alternatively, 

the invasion efficacy can be altered by transcriptional influence on how ExPEC modulate their surface 

characteristics (Debnath et al., 2013). More specifically, the Cpx system revealed the ability of UPEC 

to modulate P-fimbriae expression (Hernday et al., 2004; Hung et al., 2001; Jones et al., 1997). 

Therefore, it seems obvious, that deregulation of cpxP coding for a regulator of the Cpx response is 

involved in host-pathogen interaction. 

The E. coli strains 13030 and ECC-1470 exhibited a strongly up-regulated expression of oxyR at one 

and three hours after inoculation. OxyR is a major transcriptional regulator for the expression of 

antioxidant genes in response to oxidative stress, in particular at elevated levels of hydrogen 

peroxide (Storz et al., 1990). The OxyR regulon comprises genes involved in peroxide metabolism, 

redox balance and protection against reactive oxygen species (ROS). Additionally, OxyR activates the 

synthesis of the small noncoding RNA oxyS, which regulates about 40 additional gene products (Storz 

et al., 1990; Zheng et al., 2001; Mongkolsuk and Helmann, 2002; Altuvia et al., 1997). The oxyR 

expression is induced during exponential growth by the cAMP-activated Crp protein, which we 

identified to be up-regulated in E. coli ECC-1470 during the three hours cocultivation. In contrast, 

oxyR expression is negatively regulated by RpoS when cells enter stationary phase (González-Flecha 

and Demple, 1997). Notably, E. coli 1303, but not ECC-1470 showed increased transcriptional levels 

of rpoS at three hours cocultivation. Recently, a novel function of OxyR unrelated to oxidative stress 

has been reported: OxyR might operate as regulator of a nitrosative stress regulon under anaerobic 

conditions exhibiting about 60 genes or operons dependent on OxyR under anaerobic conditions 

(Seth et al., 2012). We detected various other genes up-regulated during in vitro cocultivation with 

MAC-T cells, supporting the notion of anaerobic conditions meanwhile. Anyhow, whether OxyR is 

required for protection to either oxidative or nitrosative stress in our experimental setup has not 

been evaluated yet. 

In summary, at least during in vitro cocultivation with MAC-T bovine mammary gland epithelial cells, 

the significantly up-regulated genes in both mastitis strains indicate extracytoplasmic stress. We 

emphasize, that this stress is probably caused by metabolic competition for nutrients and the 

secretion of products of metabolism into the cell culture medium by both, bacteria and host cells. 

 Expression of virulence-associated factors in response to the presence of MAC-T cells 

In addition to up-regulated gene expression reflecting a more indirect response to MAC-T cells by 

adaptation to the changing environmental conditions during cocultivation, we have focused on the 

identification of up-regulated genes coding for virulence-associated factors. We identified two 

virulence-associated regulatory genes (baeS and mlrA) and different genes encoding virulence-

associated factors (Figure 20). 
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 Multidrug tolerance 

The expression of the regulator-encoding gene baeS was up-regulated in both, E. coli 1303 and 

ECC-1470, at one hour as well as at three hours of co-incubation. The proteins BaeS and BaeR 

represent the sensor kinase and response regulator of the E. coli BaeS/R two-component system 

(Nagasawa et al., 1993). Both genes belong to an operon comprising the multidrug resistance gene 

cluster mdtABCD. BaeR binds to and thus stimulates the activity of the mdtA promoter (Baranova and 

Nikaido, 2002). Although we were not able to detect up-regulation of genes of the mdtABCD gene 

cluster, we identified several other genes encoding components of multidrug efflux systems to be up-

regulated in both strains (e.g. mdtG, mdtI, mdtL, (mdt= multi drug transporter)). It has been reported 

, that the overexpression of mdtG (also called yceE) and mdtL (also designated yidY), respectively, in a 

drug-sensitive background resulted in an up to four-fold increase in resistance to various 

antimicrobial agents (mdtL: deoxycholate and fosfomycin; mdtL: chloramphenicol, ethidium bromide 

and TPP) (Nishino and Yamaguchi, 2001). In contrast, mdtI is a yet uncharacterized components 

multidrug efflux transport system. 

 Fimbrial adhesins and flagella 

In both mastitic strains mlrA was up-regulated, encoding the transcriptional regulator MlrA. The 

MerR-like regulator A has been reported to facilitate curli production in an APEC strain and also in 

Salmonella (Brown et al., 2001). In APEC, the mlrA gene is regulated by RpoS, which we determined 

to be slightly up-regulated at three hours of cocultivation in E. coli strain 1303, probably to repress 

oxyR expression while bacterial cells enter the stationary phase. This might also affect the up-

regulation of mlrA, which has been detected after three hours of coincubation in both strains, but 

exclusively at one hour cocultivation in E. coli ECC-1470. Consequently, upcoming enhanced 

expression of RpoS might result in mlrA down-regulation at three hours of cocultivation in E. coli 

strain 1303 and ongoing. 

In contrast to the up-regulation of mlrA expression, we identified repression of genes involved in 

regulation, production and assembly of curli (csgD, csgC and csgF) specifically in strain ECC-1470. 

Curli are encoded by the csg operon and it was previously suggested that these adhesins may be 

involved in the pathogenesis of bovine mastitis (Karczmarczyk et al., 2008). Moreover, curli are 

known to promote bacterial adherence to multiple cell lines. Curli fibers themselves interact with 

many host proteins and are potent inducers of the host inflammatory response (Barnhart and 

Chapman, 2006). Their role in mastitis pathogenesis remains unclear to date. The down-regulation of 

csg gene transcription including that of the transcriptional regulator CsgD in E. coli ECC-1470 after 

three hours coincubation with MAC-T cells is unexpected and differs from the situation in E. coli 

1303. One would hypothesize that curli would be advantageous upon close contact to host cells. On 

the one hand, the down-regulation of curli gene expression in strain ECC-1470 in the presence of 
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cells indicates that there is no more need for curli. It may be that the persistent mastitis isolate 

ECC-1470 adopts upon prolonged coincubation with MAC-T cells to an inconspicuous lifestyle by 

progressive reduction of surface structures that became irrelevant in this advanced stage of 

cocultivation. On the other hand, it can be speculated, that energy became so limited that curli 

production is repressed for energy saving issues.  

Besides the down-regulation of curli genes, we identified the up-regulated genes ECP_2970 (in both 

strains) and Z3599 (only in strain ECC-1470) encoding for components required for the biogenesis of 

fimbriae via the 'chaperone-usher' pathway. Z3599 encodes for YfcS, a fimbrial chaperone first 

identified in E. coli O157:H7 strain EDL933, while ECP_2970 encodes for fimbrial usher protein PixC 

first identified in E. coli 536. Whether common up-regulation of these fimbrial genes results in a 

functional fimbria of mastitic E. coli needs to be verified. 

Another membrane-associated component, which might be involved in host-pathogen-interaction of 

mastitis E. coli, is the flagellum. We found significantly up-regulated gene expression levels (flhB, 

flhE, fliR and motA) in both strains, although not all of them were up-regulated at the same time 

(Figure 20). The fliR transcript was only identified in the early (1 h) transcriptional response of E. coli 

1303 and encodes the flagellar biosynthesis protein FliR. FliR is one of the six integral membrane 

components of the flagellar export apparatus as is FlhB (Minamino and Namba, 2004; Fan et al., 

1997; Kutsukake et al., 1994), which we identified to be up-regulated in both mastitis strains. 

Additionally, we identified motA that along with motB encodes the stator element of the flagellar 

motor complex (Ridgway et al., 1977). Moreover, we found flhE transcript levels to be up-regulated 

in E. coli ECC-1470. flhE, whose gene product may also be involved in the regulation of proton flow 

through the flagellar basal body, forms an operon with flhB and flhA which encode components of 

the flagellar type 3 export apparatus (Lee and Harshey, 2012; Liu and Ochman, 2007). It is, therefore, 

remarkable that although a statistically significant up-regulation of flhE and flhA transcription in 

E. coli 1303 could not be detected, this was the case for fhlB in both strains. This problem will be 

discussed in the next section, but in principal, we can state that we found evidence for the up-

regulation of flagella in response to MAC-T bovine mammary gland epithelial cells. Thus, it can be 

presumed that flagella are involved in adhesion/invasion to mammary epithelial cells. Supporting this 

hypothesis, earlier studies reported that E. coli flagella were required for colonization of the 

gastrointestinal tract, including adhesion and subsequent invasion into intestinal epithelial cells of 

domestic animals (Xu et al., 2013; Duan et al., 2012 and 2013; Girón et al., 2002; Murinda et al., 

2004). Besides the flagella-associated T3SS, we found up-regulated transcript levels of genes of 

another T3SS in E. coli strains 1303 and ECC-1470 during the early phase (1 h) of cocultivation. The 

genes Z4186 and Z4188 encode integral membrane protein-components of the ETT-2 type III 

secretion apparatus also present in E. coli O157:H7 strain EDL933. 
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 Factors, which could be involved in the persistence of mastitis isolate ECC-1470 

Interestingly, we identified the hipA gene to be up-regulated in E. coli ECC-1470. The hipA gene 

encodes the ‘high persistence factor A’, a serine/threonine kinase mediating persistence and 

multidrug tolerance in E. coli. Except for a small fraction of dormant persister cells, E. coli would be 

killed by prolonged inhibition of peptidoglycan synthesis. But persisters are neither more resistant to 

inhibition of peptidoglycan synthesis, nor more likely to persist than normal bacterial cells. The 

molecular mechanism behind HipA-mediated persistence is to respond to the inhibition of the 

peptidoglycan synthesis by antibiotics (e.g. ampicillin) or by metabolic block. Thus, HipA induces 

consequent switching into a persister state of bacterial cell, characterized by growth arrest and 

strongly inhibited translation, transcription and replication (Moyed and Bertrand, 1983; Schumacher 

et al., 2012; Korch and Hill, 2006). Moreover, HipA, together with its antagonist HipB, are encoded by 

two genes organized as a transcriptionally autoregulated operon (hipAB), which constitutes a type II 

toxin-antitoxin locus. Most type II toxin-antitoxin loci are supposed to play a role in persistence and 

many of their mRNAs were significantly increased in persister cells (Germain et al., 2013; Keren et al., 

2004; Shah et al., 2006). When the 11 type II toxin-antitoxin loci of E. coli were progressively deleted, 

a gradual reduction in persistence capability was detected, indicating their importance in E. coli 

persistence (Maisonneuve et al., 2011). We conclude that by monitoring the significantly up-

regulated expression of hipA in response to MAC-T bovine mammary gland epithelial cells, we 

identified a bacterial factor, which, at least in part, contributes to the persistence capability of E. coli 

ECC-1470. 

 Factors, which could be involved in immune evasion of mastitis isolates 

Significant up-regulation of wcaB and ypdI transcript levels was observed for both mastitis strains. 

The protein WcaB is believed to be an acetyl transferase involved in colanic acid synthesis based on 

sequence similarity and its presence in a colanic acid exopolysaccharide biosynthesis operon 

(Stevenson et al., 1996). Moreover, its expression was shown to be up-regulated in sessile bacteria 

relative to planktonic bacteria (Prigent-combaret et al., 1999). The same study reported that in 

addition to wcaB, also the ompC porin and the nickel high-affinity transport system-encoding gene 

nikA were stronger expressed in sessile bacteria. The expression of these genes was also up-

regulated in the mastitis strains 1303 and ECC-1470 after 3 hour cocultivation with MAC-T cells. Like 

WcaB, the membrane lipoprotein YpdI has been shown to play a role in colanic acid synthesis 

(Stevenson et al., 1996), and its gene expression was also up-regulated in both strains. Together with 

the observed extensive induction of gene expression associated with microaerophilic and anaerobic 

conditions, we suggest that many of the initially planktonic bacteria turned into a sessile state and 

within a biofilm or microcolonies or in close contact with eukaryotic cells. Increased expression of 

genes involved in amino acid biosynthesis possibly releases nitrogen limitation or stress response 
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In both strains the expression of the hisLGDCBHAFI and ilvLXG_1G_2MEDA operons was up-

regulated. The encoded gene products are involved in the biosynthesis of histidine, isoleucine and 

valine. It can be hypothesized that histidine, isoleucine and valine, which are glucogenic amino acids, 

might be converted into glucose through gluconeogenesis in order to compensate for the dwindling 

glucose in the cell culture medium due to the eukaryotic cells present.  

We have not specifically evaluated the deregulated operons because they did not reveal any 

remarkably cellular processes which could be associated to the presence of MAC-T bovine mammary 

gland epithelial cells. Other up-regulated genes encode for proteins of arginine ABC transporter (Ast) 

and the arginine succinyltransferase pathway (Art) which is induced by nitrogen limitation and 

enables faster growth with arginine and aspartate (Schneider et al., 1998) or might be associated to 

stress response. A more detailed discussion on arginine metabolic pathways to stress response is 

discussed on page 150. 

 Valid analyses: misinterpretations and error sources in DNA-microarray analysis 

 Interpretation of “missing” genes in operons 

We identified various two-component systems and different deregulated genes organized in operon 

structures. Unfortunately, some genes that were expected to be deregulated have not been 

determined although they belong to the same transcriptional units. Prokaryotic genomes are 

commonly organized in operons, meaning that in these operons several genes are co-transcribed 

resulting in “polycistronic mRNAs”. It is known that a particular gene, which is transcribed as a part of 

a polycistronic transcript under one condition might also be individually transcribed as a single gene 

in another condition (Koide et al., 2009). Accordingly, it can be difficult to identify all members of 

operon structures under a given condition, but other explanations have to be considered as well. 

Alternative explanations for at least some of the non-detected genes are provided below, followed 

by a discussion of these data. 

One possible explanation might be that some gene probes were simply missing on the microarray. 

Individual genes are not represented by corresponding probes, e.g. the fhl operon is not completely 

covered by probes. Although the arrays have been designed to cover the complete genomes of six 

E. coli strains (6 genomes and four plasmids), the individual genome annotations used at the 

production date were not as complete as they may be today. Consequently, this is one reason 

leading to individual “missing” genes.  

Another explanation might be that some of the longmer oligonucleotide probes hybridized less 

properly. This may result in underrepresented signal intensity. Consequently, this adds bias to further 

analyses. The corresponding signal ratios might be excluded in statistical analyses due to repeated 

experiments or did not pass the stringent threshold. We suppose this explanation supported by 

following example: The genes baeS and baeR are part of an operon comprising the multidrug 
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resistance cluster mdtABCD of which we did not identified any gene to be deregulated under the 

conditions tested. Of the BaeSR two-component system, we identified only one encoding gene, baeS. 

According to the literature, baeS codes for the membrane-associated sensor kinase, which usually 

autophosphorylates in response to an environmental signal and transfers a phosphoryl group to the 

response regulator BaeR, which then becomes activated (Nagasawa et al., 1993). At the first glance 

this looks like an incomplete detection of the expression of the genes of this two-component system, 

but it truly is a misinterpretation due to bad signal quality. As a result, these bad quality signals for 

baeR were excluded from further analysis. While the BaeSR two-component system would not be 

functional with baeS expression alone, our assumption is corroborated by the significant up-

regulation of yicO in strain ECC-1470. Expression of yicO is known to be positively regulated by BaeR 

(Baranova and Nikaido, 2002). This means, in consequence, that albeit significant changes in baeR 

transcript levels could not be detected by the microarray hybridization, increased yicO transcription 

indicates the expression of a functional BaeR/S two-component system.Similarly, the curli regulator-

encoding gene csgD and some of the genes included in CsgD-dependent transcriptional units were 

also detected to be deregulated (csgD, csgC and csgF) while others seemed not to be significantly 

deregulated according to the microarray data (csgE, csgG, csgA and csgB). In Figure 21 selected 

transcriptional units regulated by CsgD are shown. It was a general problem to interpret inconsistent 

results from microarray hybridizations, when particular genes were identified to be deregulated, but 

other genes of the same transcriptional unit have not been detected. By assessing the genetic 

organization of the operons and the analysis of corresponding regulons, we could gain sufficient 

information to predict other significantly deregulated genes that further supported our match. In this 

case, we also identified wrbA and yccJ to be deregulated based on DNA-microarray data. In total, we 

were able to identify the determinants and regulators presented in Figure 20 by not only single 

indications, but due to corroborating results of other commonly deregulated genes. 

Figure 21: Schematic overview of selected transcriptional units regulated by CsgD. Genes highlighted 
(yellow) were deregulated during cocultivation upon MAC-T bovine mammary gland epithelial cells 
according to microarray hybridizations. Significantly deregulated transcript levels of genes colored in 
blue could not be detected. Elements are depicted as follows: Activator (magenta), inhibitor 
(orange), repressor (turquoise), small regulatory RNAs (red dashed line).  

CsgD wrbA yccJCsgD

CsgD csgD csgECra csgF csgG

CsgD csgB csgA csgCCpxR
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 Good RNA quality and accurate microarray hybridizations, but bad signals: What happened? 

Competitive DNA microarray hybridization involves numerous working steps accompanied by 

controls to ensure sample quality and attempts to normalize the cDNA amount of the competitive 

samples prior to the hybridization step. Our RNA isolation resulted in sufficient amounts of good 

quality RNA. We confirmed the RNA quality using the RNA integrity number (RIN). RIN values > 7.0 

were considered to meet the requirements for gene expression analyses (Schroeder et al., 2006; 

Imbeaud et al., 2005; Wilkes et al., 2010). RNA concentration and sample purity of the preparations 

were determined using the NanoDrop® instrument and were considered sufficiently pure when the 

ratio A260/A280 was higher than 2.0.  

 

So far, no obvious failures would have influenced competitive DNA microarray hybridizations. But 

what was not taken into account a priori was that total RNA samples were prepared from planktonic 

bacteria and from bacteria, which have been in contact with MAC-T cells as described in sections 

IV.2.3 and IV.2.4. Most of our initial array scans resulted in shifted ratio signals and bad signal-to-

noise ratios. This specific problem was identified to result from eukaryotic total RNA contaminations 

present exclusively in the total RNA samples obtained from cocultivation with host cells, but from 

those cultivations in absence of host cells (Figure 22).  

 

Figure 22: Quality control of bacterial total RNA isolated from E. coli 1303 cultures in the absence of 
host cells (A) relative to E. coli 1303 cultures from cocultivation with host cells (B). The RNA integrity 
curves/electropherograms and gel images are shown. Peaks indicate ribosomal RNA (rRNA) and 
residual eukaryotic rRNA is indicated by red arrows. The RNA integrity was determined by capillary 
electrophoresis using the Agilent 2100 Bioanalyzer instrument (RIN > 7.0). 
 

 

Eukaryotic RNA cannot be completely avoided from RNA preparations with co-cultures of bacteria 

and host cells. As a consequence, the mixture of pro-and eukaryotic RNA negatively affects the 

competitive microarray hybridization. This results in slightly shifted signal ratios when attempting to 
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normalize labeled cDNA amounts of sample and reference sample. In our final microarray 

hybridizations we considered this effect. Nevertheless, we emphasize that this effect, which affected 

the bioinformatical analyses (Figure 15), had a lasting effect on ratio quality and subsequently 

resulted in semi-quantitative analyses. Consequently, we have not elaborated on quantification of 

deregulated gene expression, but made only qualitative statements regarding deregulation of genes. 

For the same reason we made no use of fold-change estimations. Fold change is often used, because 

of its simplicity (e.g. in rankings), but alone does not take into account variance and offers no 

associated level of confidence (Allison et al., 2006).  
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V.6. RNA-Seq: High throughput E. coli transcriptome sequencing 

To comprehensively analyze the transcriptional response of the isolates E. coli 1303 and ECC-1470 in 

a setting mimicking the environment during initial pathogenesis, we cultivated the strains in native 

milk whey. Milk whey contains complement and defensins. As antimicrobial effects of raw milk and 

milk whey were observed, we used DMEM cell culture medium as a reference control mediating no 

antimicrobial effects, but allowing unrestricted bacterial growth. Moreover, the use of DMEM should 

allow comparison of the results of the RNA-Seq approach with those of the microarray-based 

approach to assess putative overlaps with the in vitro transcriptional response in response to 

cocultivation with bovine mammary gland epithelial cells (section V.5). Figure 23 shows the general 

flow chart underlying the RNA-Seq experiment.  

Figure 23: Basic flowchart of the RNA-Seq pipeline used to analyze the bacterial transcriptome in 
response to growth in raw milk whey relative to growth in DMEM. Samples of E. coli 1303 and 
ECC-1470 were taken upon cultivation at 37°C in DMEM, milk whey or milk whey from an udder 
challenged with LPS, respectively.  
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In this approach RNA-Seq was used to study differential gene expression of mastitis isolates 

E. coli 1303 and ECC-1470. The strains (1 x 109 CFU/ml of bacteria) were statically incubated for 1 h at 

37 °C (body temperature) in three different media, respectively: i) milk whey from an udder-healthy 

cow, ii) milk whey from a cow´s udder infused with LPS, and iii) DMEM. Subsequently, RNA 

extraction, purification, mRNA enrichment and conversion to cDNA of the 6 samples, was performed 

before the cDNA libraries were sequenced using a HiScan sequencer (Illumina). 

 

V.6.1. Quality of the sequence reads from E. coli transcriptome sequencing 

The cDNA synthesis was carried out by vertis Biotechnologie AG and the sequencing of the cDNA 

pools was carried out at the core facility of the Leibnitz Institut für Arterioskleroseforschung (LIfA), 

Münster following the Illumina protocol 1.7. The sequences of the sequencing reads obtained were 

demultiplexed and the barcode was trimmed. Per sample, a total of 15.6 to 31.9 million reads 

representing fragments of RNAs were obtained and further processed using the CLC Genomics 

Workbench 6.0.3 for identification of expressed genomic regions based on their read coverage.  

 Quality assessment and depletion of sequence reads covering rRNA genes  

The resulting 101-bp sequence reads of the six cDNA samples were quality controlled with FastQC to 

assess the Sanger variant Phred scores (Figure 24). For example, a Phred score of 20 means that the 

base call is 99% accurate and vice versa a 1% error rate is equal to a Phred score of 20 (-

10 x log 0.01). Figure 24 shows that with increasing read length also the quality of the base call 

decreased. It is clearly visible that the RNA obtained from DMEM resulted in sequence reads with 

higher quality cDNA (Phred score < 20) until bp position 80, while those samples derived from milk 

whey and milk whey challenged with LPS merely reached bp position 70 with a Phred score > 20. This 

suggests that the specialized RNA extraction and purification protocol, required to obtain RNA from 

milk whey, is responsible for the difference in sequence quality. However, consistent sequence 

quality is important for comparative analysis. Consequently Phred scores below 20 (depicted by the 

red area) do not provide high discriminative power among base calls and were excluded. Therefore, 

the sequencing data were submitted to CLC Genomics Workbench 6.0.3 and quality trimmed with a 

cut-off Phred score of 20. Additionally, trimming of the sequence reads included removal of 

sequence beyond 90 bp of the sequences. The resulting sequences were filtered by length and 

sequences shorter than 15 nt were discarded. Assessing the Phred scores in this way guaranteed an 

ample read quality and additionally influenced the read mapping (section V.6.2). 
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Figure 24: Read quality across all bases of the individual sequence reads. Sanger variant Phred scores 
mirror the sequence read quality of the six samples as assessed by FastQC software. The Phred 
scores Q assess the reliability of a base call and are defined as a property that is logarithmically 
related to the base calling error probabilities P. (QSanger = − 10 log10 P).   

Ec 1303 in DMEM Ec 1303 in milk whey +LPS

Ec 1303 in milk whey ECC-1470 in DMEM

ECC-1470 in milk whey +LPS ECC-1470 in milk whey 
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V.6.2. Mapping of the sequence reads to the E. coli 1303 and ECC-1470 genome sequences 

After read length adjustment and quality trimming the reads were mapped. The term mapping refers 

to an alignment of short sequence reads. Usually a reference sequence is used to which the reads 

can be mapped, but reads might also be assembled de novo what refers to the computational 

reconstruction of a longer sequence from smaller sequence reads. Generally mapping assemblies, 

even to rather phylogenetically distant reference genomes, provided more accurate gene expression 

levels and outperformed differential expression inference of de novo assemblies (Vijay et al., 2013). 

The specific reference genome sequences of E. coli isolates 1303 and ECC-1470 (Leimbach 

unpublished data) were used to map the sequence reads of these strains, respectively. Initial 

mappings revealed that up to 63 % of the obtained total reads covered ORFs encoding for rRNA 

genes. As normalization between the different samples by the amount of reads or bases is included 

in downstream data analysis, we filtered the reads covering genes of 16S and 23S rRNA according to 

Kopylova et al., 2012. Following this procedure, between 7.7 and 14.6 million reads were obtained 

per sample for further transcript analysis.  

These remaining high-quality sequence reads of each sample were again submitted to CLC Genomics 

Workbench 6.0.3 and mapped to their respective reference sequence. Reads that were not removed 

by the rRNA read filtering, but which mapped to one of the 22 rRNA genes (rrfABCDEFGH, 

rrlABCDEGH and rrsABCDEGH) were removed manually. The selected read mapping parameters were 

modified to fit the combination of the used cDNA synthesis method, Illumina sequencing protocol 

and prokaryotic reference sequence obtained by 454 sequencing, because most protocols and preset 

mapping parameters are adjusted to handle data obtained from eukaryotic organisms with defined 

and fully annotated reference sequences. The method to obtain the reference genome sequences of 

E. coli 1303 and ECC-1470 and its annotation status at that time greatly influenced the outcome of 

the present analyses. 

Table 12 includes the summarized mapping statistics and Figure 25 shows the match specificity of 

our RNA-Seq data. Sequence reads matching zero (0.0) times failed the mapping parameters (section 

.0.0 mapping) although they can be mapped to the reference sequence. Between 5.0 and 6.8 % of 

the total reads per sample can be referred to as counted reads defining the reads that fit the 

parameters. They can be distinguished into specific and non-specific reads. The vast majority are 

“specific counted reads” which matched to only one position in the reference sequence. In contrast, 

the number of reads, which were equally matched to other positions in the reference sequence, is 

called “non-specific counted reads”. This histogram shown on Figure 25 serves as an example of the 

match specificity acquired for all samples. The match specificity shown in Figure 25 graphically 

exemplifies the number of reads that match, by the chosen parameters, at one or more positions. It 

has been demonstrated that approximately 0.99 - 1.97 million reads could be correctly mapped.   
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Table 12: Summary of mapping statistics from RNA-Seq data 

Sample Total reads 
Reads after rRNA 

read filtering 
Counted reads 

Specific 
counted reads 

Non-specific 
counted reads 

Ec 1303 

DMEM 25,392,624 14,583,645 [57.4%] 1,376,757 [5.4%] 1,256,305 [91.3%] 120,452 [ 8.7%] 

milk whey 31,590,658 11,770,074 [37.3%] 1,567,442 [5.0%] 1,379,462 [88.0%] 187,980 [12.0%] 

milk 
whey +LPS 

30,328,686 11,218,479 [37.0%] 1,969,927 [6.5%] 1,713,996 [87.0%] 255,931 [13.0%] 

ECC-1470 

DMEM 20,405,112 13,007,005 [63.7%] 1,181,715 [5.8%] 1,085,496 [91.9%]   96,219 [ 8.1%] 

milk whey 22,780,194 12,453,415 [54.7%] 1,559,539 [6.8%] 1,405,507 [90.1%] 154,032 [ 9.9%] 

milk 
whey +LPS 

15,543,923 7,703,133 [49.6%]   998,786 [6.4%]   896,847 [89.8%] 101,939 [10.2%] 

                                 % refers to total reads as 100% % refers to counted reads as 100% 

 

Figure 25: Match specificity of sequence reads from cDNA sample “E. coli 1303 cultivated in DMEM”. 
Uncounted reads: The sequence reads matching zero (0.0) times. Specific reads: The sequence reads 
that match one position (1.0) in the reference sequence. Non-specific reads: Sequence reads that 
match equally to more than one position in the reference sequence (2.0 to 8.0 positions).   
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 Sequencing depth of the cDNA samples 

The optimal sequencing depth is varying based on the study´s objective. As we did not intend to 

characterize the full transcriptome including all weakly expressed genes, but to analyze the 

differential expression of genes (DEG), we questioned whether the achieved sequencing depth is 

deep enough.  

In the present analysis, we achieved a 16-fold genome coverage of E. coli 1303 corresponding to a 

per sample average of 328 reads per gene (at 5,155 annotated genes). In case of E. coli ECC-1470 a 

per sample average of 249 reads per gene was achieved corresponding to a 19-fold genome coverage 

(at 4,703 annotated genes). Notably, counted reads have been mapped to annotated genes 

exclusively. 

In order to allow for comparison with other studies, we provided the sequencing depth as sequence 

reads per gene and fold coverage of the coding genome sequences. In contrast to a coverage 

exceeding 10 million reads per sample, when analyzing comprehensive transcriptome profiles, it has 

been reported that 5 to 10 million reads per sample are sufficient for most applications of E. coli 

RNA-Seq (Haas et al., 2012). It has further been reported that 4 million non-rRNA reads were 

sufficient to identify unannotated genes of V. cholerae or that even 30 thousand non-rRNA reads 

allowed for identification of only twofold deregulated genes in E. coli EDL933 (Mandlik et al., 2011; 

Haas et al., 2012).  

In our RNA-Seq experiments, we acquired a sequencing depth of 7.7 to 14.6 million non-rRNA reads 

per sample after filtering (Table 12). Out of these, 9.1 to 17.6 % turned out to be mappable reads 

according to the final mapping parameters. Thus, 0.99 to 1.97 million “counted reads” could be 

correctly mapped providing accuracy and inferential power for the present RNA-Seq-based 

identification of differential gene expression. The achieved sequencing depth is appropriate. 

One may wonder why only 5.0 to 6.8 % of the total reads or 9.1 to 17.6 % of the non-rRNA reads 

were mappable. Why could so many reads not be aligned to the respective reference sequences?  

In fact, a vast number of reads would be mappable and considered “counted reads” upon 

modification of the mapping parameters. Instead, we decided for more stringent parameters in order 

to reduce the proportion of erroneously mapped reads and to identify truly differentially regulated 

genes even if their expression was not markedly deregulated. As discussed earlier, the efficacy of 

extraction and purification of the total bacterial RNA and the quality of cDNA synthesis remain 

variables in transcriptome analyses. They affect the outcome of the RNA-Seq read data quality 

(Figure 24). This causes interference between the sequence identity of the read and the reference 

sequence. In addition, combining different sequencing technologies might considerably affect the 

study by adding bias to the bioinformatical processing during both mapping and read allocation.  
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 Effect of non-specific read matches on gene expression levels 

The extent to which a particular gene is transcribed into mRNA is indicated in expression levels. 

Analog expression data, such as those derived from competitive DNA microarray hybridizations, 

reveal the ration of transcript levels present under the two different conditions compared, whereas 

the expression level derived from RNA-Seq is measured by the number of sequence reads mapped to 

the reference genome of the individual cDNA sample. 

A major issue in selecting the appropriate mapping parameters is whether to include non-specific 

reads in the RNA-Seq analysis or not. Non-specific reads match equally well to more than one 

position on the reference genome sequence. Therefore, taking non-specific reads into account might 

cause serious failure in computation of gene expression levels, but cannot simply be discarded, 

because the expression of the assigned genes will be underestimated or not even be reported (Roy et 

al., 2011). In contrast, including non-specific but possibly mismapped reads would result in an 

overestimation of gene expression levels as well. This raises the question as how to handle non-

specific reads in the present study? 

The sample´s read mappings to the respective reference genome were performed with both i) 

parameters set for including specifically matching reads only and ii) parameters set for including non-

specific reads. The former mapping algorithm (i) discards ambiguously mapped reads and only keeps 

uniquely mapped reads. The latter mapping algorithm (ii) distributes non-specific reads in relative 

proportion according to the number of uniquely mapped reads of the assigned features, normalized 

by feature length. Basically this means that first the expression of each gene is estimated by reads 

that map uniquely and then this information is used to weight the distribution of the non-specific 

reads.  

In order to visualize how this mapping algorithm qualitatively and quantitatively affected the 

computation of expression values, a scatter plot was created for each sample (Figure 26). The scatter 

plots show the reads match specificity by plotting the expression levels (number of total reads 

mapped per feature/gene) of a mapping with only specific reads against the same sample mapped 

with inclusion of non-specific reads. Since the mappings were run on the same data set with the only 

difference being the consideration of non-specific reads, one can focus on the very few features 

influenced by the read distribution. Most genes had close to identical expression values what was 

expected due to the utilization of the same data set. However, some genes in the mappings including 

non-specific reads exhibited much higher expression levels (as indicated by the red spots in Figure 

26). But also the visible portion of outliers is rather small compared to the number of total genes for 

each of the reference genomes (Ec 1303 comprises 5,155 genes; ECC-1470 comprises 4,703 genes).  
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Figure 26: Effect of non-specific read matches on quantification of gene expression levels. Expression 
levels were depicted in scatter plots. Blue spots indicate similar read counts revealing similar 
estimated expression levels and red spots highlight specific outliers between mappings of only 
specific reads relative plotted against mapping including non-specific reads. The scatter plots were 
created from expression data (read counts) of annotated genes. 
 
 
The expression levels of only a few genes (outliers) were vastly increased because of the total 

number of reads assigned including non-specific reads. These genes are suggested to be either 

paralogous genes, pseudogenes instead of highly expressed functional genes or genes containing 

many repeat regions, which are most likely uniquely covered by specific reads. In fact, some of these 

genes have a repeat-rich region (e.g. the rhs genes). Furthermore, some genes are partly covered by 

Ec 1303 in DMEM Ec 1303 in milk whey +LPS

Ec 1303 in milk whey ECC-1470 in DMEM

ECC-1470 in milk whey +LPS ECC-1470 in milk whey 
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higher numbers of non-specific reads due to overlapping regions (e.g. flmC and flmA), which means 

that all reads that map to the flmC gene, also map equally well to the overlapping part of the other 

gene (flmA). 

In bacterial genomes, neighboring genes can often overlap. Therefore, distinguishing the start of one 

transcript from the end of another transcript adds complexity to transcriptome analysis (McClure et 

al., 2013). At least in part, this obstacle was overcome by the utilization of a strand-specific protocol 

for read generation allowing a valid distribution of reads to the overlapping genes through detection 

of overlapping transcripts coded in opposite orientations.  

Another explanation arises from incorrectly sequenced homopolymer stretches, which are common 

artefacts of the 454 sequencing technology (Wolf, 2013), which has been used to generate the 

reference genome sequences of E. coli strains 1303 and ECC-1470 (Leimbach unpublished). In 

contrast, the sequence reads of the RNA-Seq samples were derived from Illumina sequencing 

technology. The reference 454-generated genome sequences were more prone to miss-alignment 

and therefore affected regional read coverage. In contrast, the sequence reads obtained from the 

Illumina platform were not that affected by incorrectly homopolymer sequences. This causes a bias 

during Illumina-read alignment and read allocation to a sequence of 454-origin. Consequently, the 

mapping parameters have to allow for some variability to enable a sufficient coverage at all. 

Generally, this issue resulted in a lower number of total reads mapped, but reads that covered 

intercepted genes due to bad reference sequence quality were then determined non-specific reads 

either. One option to overcome this problem would be to (yet manually) correct the alignment using 

the Illumina data. As this study focused on differential gene expression, this issue has not necessarily 

to be addressed and it has thus not been considered for further analysis in this study. 

 Including non-specific reads 

In all samples, the most outlying gene was flmC, which was not in the range of the plot scale. The 

flmC gene product is known to modulate and start translation of host killing protein FlmA. Assigning a 

great number of non-specific reads to flmC would lead to a marked overestimation of expression and 

thus to an erroneous interpretation. To avoid misinterpretations, the genes whose expression levels 

exhibited a marked alteration upon the inclusion of non-specific read matches have been identified 

and listed according to their presence in each of the samples. Furthermore, the intersections from 

each sample-list containing genes of markedly altered expression levels have been determined. 

Table 13 lists which genes were in each intersection or were unique to a certain sample. The 

enormously high flmC expression level would lead to the expectation that also flmA expression levels 

were high. This was true in all of the six samples tested. In addition, srnB transcription has been 

identified to be up-regulated. snrB is supposed to be a paralogous gene showing similarity to flmC, 

but also to the mokC gene. The latter gene was identified to be markedly expressed only in the 
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ECC-1470 milk whey sample. The genes (srnB, flmC, and mokC) share sufficient sequence similarity to 

allow mismapping of non-specific reads.  

Furthermore, tufA and its duplicate tufB code for elongation factor Tu (EF-Tu) and also showed 

enormously high expression levels. EF-Tu is considered to be the most abundant protein in E. coli 

while being maximally expressed during stress response (Muela et al., 2008). The expression of the 

aforementioned tufA and tufB genes in all samples would add an interesting aspect to the present 

analysis of differential gene expression. They, however, have to be excluded from further analysis 

due to the following reasons: i) any expression measure of a paralogous gene will be biased because 

currently there is no mapping algorithm available that can correctly include sequence data from 

paralogues, and ii) misestimated expression levels can neither allow nor support a reliable 

identification of differential gene expression. 

Table 13: Non-specific read matches which led to markedly altered gene expression levels under 
different growth conditions 

Sample / Intersection Total genes Annotated CDS 

Ec 1303 DMEM 
Ec 1303 milk whey 
Ec 1303 milk whey +LPS 
ECC-1470 DMEM 
ECC-1470 milk whey 
ECC-1470 milk whey +LPS 

5 srnB, tufB, flmA, tufA, flmC 

Ec 1303 DMEM 
Ec 1303 milk whey 
Ec 1303 milk whey +LPS 

3 EPE_c45090, EPE_c23190, EPE_c27300 

ECC-1470 DMEM 
ECC-1470 milk whey 
ECC-1470 milk whey +LPS 

1 ECN_c20070 

Ec 1303 milk whey 
Ec 1303 milk whey +LPS 

6 EPE_c01610, EPE_c28560, EPE_c28550, 
EPE_c28540, EPE_c28530, EPE_c01630 

ECC-1470 DMEM 
ECC-1470 milk whey 

3 ECN_c13870, ECN_c07910, ECN_c07890 

ECC-1470 milk whey 
ECC-1470 milk whey +LPS 

3 ECN_c24260, ECN_c24250, ECN_c24270 

Ec 1303 DMEM 2 tnpA, EPE_109p0260 

Ec 1303 milk whey 6 EPE_c01640, EPE_c16190, EPE_c14090, 
EPE_c13670, EPE_c01650, EPE_c29260 

Ec 1303 milk whey +LPS 2 EPE_c31140, EPE_c31150 

ECC-1470 DMEM 6 EPE_c24260, EPE_c24250, ECN_c11680, 
ECN_c42470, ECN_c12070, EPE_c24270 

ECC-1470 milk whey 2 mokC, ECN_c07900 

ECC-1470 milk whey +LPS 4 ECN_c25580, ECN_07900, ECN_c25590, ydcM 

 

 

Of all CDS that exhibited markedly altered expression levels upon inclusion of non-specific reads 

(Table 13), particular genes might be of interest for our analysis of genes contributing to mastitis. 

Specifically, genes that are present in an intersection of the Venn diagram comprising neither all 
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samples, nor all strain-specific samples (here growth conditions), or are unique to a certain sample. 

Their altered gene expression, even if biased, seemed to be exclusively altered in particular samples 

or under specific conditions mirrored by their allocation to individual intersections. Table 13 

summarizes a selection of genes, which for the above mentioned reasons should be further 

investigated.  

There is, nevertheless, disagreement in the literature on whether to include non-specific reads in the 

RNA-Seq analysis or not. Aiming to discover mastitis-relevant candidate genes by analysis of 

differential gene expression rather than by performing a quantitative global expression analysis, the 

bias does not necessarily compromise our analysis. The consideration of including non-specific reads 

might avoid overlooking certain genes. Hence, we decided that the approximately 8-12 % non-

specific reads per sample (Table 12) should be included into the downstream RNA-Seq analysis. 

 Read distribution, variability and similarity across samples 

The different probe sets had to be examined according to their overall read distribution, variability 

and similarity. Therefore, the original expression values (total reads per gene) had to be transformed 

or normalized in order to allow comparability across samples. 

 Sample distributions of gene expression levels 

When analyzing gene expression values of different genes within a sample, the coding sequence 

(CDS) of all the genes is usually not of the same length. A long transcript is, therefore, expected to be 

covered by more reads than a short transcript of equal expression level. Thus, instead of the original 

expression values (total reads per CDS) the 'reads per kilobase of gene' model (RPKM) was applied, 

which takes the gene length into account (Mortazavi et al., 2008). Additionally, the data were 

log2-transformed in order to remove the expression values´ dependence on the variance of the 

mean. The distributions of the log2(RPKM) expression values for the 5,155 genes of E. coli 1303 and 

4,703 genes of E. coli ECC-1470 defined as annotated CDS are shown in Figure 27. All RPKM 

distributions are approximately normal. A uniform read coverage across the annotated CDS is not 

provided, what is in accordance to previously performed RNA-Seq analyses on both, eukaryotic and 

prokaryotic organisms (Kertesz et al., 2010; Wilhelm et al., 2008; Chaudhuri et al., 2011; Perkins et 

al., 2009). 
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Figure 27: Distribution of expression values for annotated CDS of the genomes of E. coli strains 1303 
and ECC-1470. Histograms display log2-transformed RPKM expression values that show a normal 
distribution in all of the six samples.  
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According to Figure 27, the overall level of gene expression was similar under the different 

conditions (DMEM, milk…etc.), and only a small fraction of CDSs exhibited marked deviations of their 

expression level. For further analyses, the normalization according to sample size was, nevertheless, 

indispensable. 

V.6.3. Gene expression of E. coli strain 1303 and ECC-1470 in milk whey 

From the histograms it cannot unambiguously be observed whether the number of genes that are 

highly or even not expressed under the different growth conditions was similar or not. Thus, a textual 

output was generated with gene expression categorized according to Wickramasinghe et al., 2012.  

Table 14 groups the genes of E. coli strains 1303 and ECC-1470 according to their expression level 

upon growth in DMEM, milk whey and milk whey after LPS challenge. The annotated reference 

genome of E. coli strain 1303 comprises 5,155 CDSs. while the genome of E. coli ECC-1470 includes 

4,703 annotated CDSs. The 22 genes coding for rRNAs were removed from further analyses as stated 

before. Thus, a total of 5,133 annotated CDSs of E. coli strain 1303 and a total of 4,681 annotated 

CDS of strain ECC-1470 remained. For 2.1 to 3.0 % of the annotated CDSs per genome no reads could 

be mapped and they were thus defined as “non-expressed genes”. In summary,  

Table 14 shows that the ratio of the total expressed genes and non-expressed genes between E. coli 

strains 1303 and ECC-1470 was quite similar.  

 
Table 14: Grouping of genes of E. coli strains 1303 and ECC-1470 according to their expression level 
in DMEM, milk whey and milk whey upon LPS challenge. Expression values are indicated as RPKM. 

Category Strain  
Condition 

 
DMEM Milk whey Milk whey +LPS 

Highly expressed genes 
( > 500 RPKM ) 

  Ec 1303    400  
†
[  8.0%]     417  

†
[  8.3%]      372  

†
[  7.4%] 

ECC-1470    427  
†
[  9.3%]     435  

†
[  9.5%]      419  

†
[  9.1%] 

Medium expressed genes 
( ≥ 10 RPKM to 500 RPKM ) 

  Ec 1303 4,089  
†
[81.7%]  3,826  

†
[76.5%]   3,667  

†
[73.3%] 

ECC-1470 3,755  
†
[82.0%]  3,662  

†
[79.9%]   3,626  

†
[79.2%] 

Lowly expressed genes 
( < 10 RPKM ) 

  Ec 1303    644  
†
[12.9%]     890  

†
[17.8%]   1,094  

†
[21.9%] 

ECC-1470    499  
†
[10.9%]     584  

†
[12.7%]      636  

†
[13.9%] 

Total expressed genes 
  Ec 1303 5,003  

*
[97.5%]  4,994  

*
[97.3%]   4,978  

*
[97.0%] 

ECC-1470 4,581  
*
[97.9%]  4,576  

*
[97.8%]   4,560  

*
[97.4%] 

Non-expressed genes 
  Ec 1303    130  

*
[  2.5%]     139  

*
[  2.7%]      155  

*
[  3.0%] 

ECC-1470    100  
*
[  2.1%]     105  

*
[  2.2%]      121  

*
[  2.6%] 

†
 % refers to total expressed genes as 100% 

*
 % refers to total CDS per strain as 100% 

 

Interestingly, E. coli strain 1303 exhibited less highly expressed and less medium expressed genes 

than strain ECC-1470 under all conditions tested. This is even more remarkable, because the 

reference genome of mastitis isolate E. coli 1303 comprises 452 CDS more than E. coli ECC-1470. In 
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return, this reveals an unproportional higher number of highly expressed genes in E. coli ECC-1470 

relative to the genome size. This indicates a stronger transcriptional response of this strain to milk 

whey and milk whey +LPS. In contrast, strain ECC-1470 revealed significantly less weakly expressed 

genes than E. coli 1303 under all growth conditions. In both strains, the number of highly and 

medium expressed genes decreased upon growth in milk whey or milk whey +LPS samples relative to 

growth in DMEM. To the same extent, the fraction of weakly expressed genes increased in milk whey 

and in milk whey +LPS samples relative to the DMEM samples. 

In order to not identify only the genes with the highest expression level in a single sample (data on 

compact disk: Supplemental Tables S2-S7), but to identify differentially expressed genes within 

different samples, the samples needed to be investigated by statistical experiments. As a 

prerequisite, the comparability of the samples had to be ensured. 

 Quantile normalization of original expression values is required for sample comparison 

A different sequencing depth affects the total read count per transcript of a sample. Consequently, 

this will result in inaccurate determination of differentially expressed genes when expression is 

quantified by read counts per transcript. In order to quantitatively and comparatively examine the 

number of reads per CDS in each sample, normalized sets of expression values of the samples were 

required. Therefore, the read counts might be divided by the total number of mapped reads or its 

quantile. In the present study, the data were normalized for sample size by quantile normalization. In 

quantile normalization, the distribution of read counts per sample (sequencing depth) is matched to 

a reference distribution defined in terms of median counts across the samples to compare (Gupta et 

al., 2012; Bullard et al., 2010). As it is assumed that gene expression in both strains may differ under 

the three conditions tested, two-group experiments were conducted (e.g. DMEM IRT milk whey or 

DMEM IRT milk whey +LPS or milk whey IRT milk whey +LPS). Due to the lack of technical replicates 

of RNA-Seq data sets, both strains 1303 and ECC-1470 were considered as biological replicates. The 

Box-Whisker-plot shown in Figure 28 depicts the pairwise distributions of the samples´ expression 

values at different conditions compared to each other. Although the samples´ median values were 

quite similar, their quartiles differed. This indicated a variation across the samples. The same also 

applied to the whiskers outside the upper and lower quartiles; indicating variability. Notably, the 

gene expression data sets of mastitis E. coli strains 1303 and ECC-1470 appeared quite similar in  

value distribution and variation when incubated in DMEM, but exhibited marked differences in the 

variation of values, when cDNA have been investigated which resulted from incubations in milk whey 

or milk whey +LPS.  

While the distributions of RPKM values (Figure 27) were in some degree normalized by the transcript 

size, the non-normalized read count distributions (Figure 28, before normalization) indicated that 

normalization was required before the sample could be compared to each other. Especially the 
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sample representing the gene expression data set of E. coli ECC-1470 upon incubation in 

milk whey +LPS, required normalization. This could also be expected according to the comparably 

low fraction of mappable reads (Table 12), which in turn resulted from poor PHRED scores (Figure 

24). After quantile normalization, none of the normalized sample distributions differed from those of 

the other samples. Consequently, none of the samples had to be excluded and thus comparability 

between samples in statistical experiments was ensured. 

 

Figure 28: Box-Whisker-plot for two-group experiments with data sets from two samples of strain 
E. coli strains 1303 and ECC-1470 at different conditions, respectively. The left column depicts the 
data sets before normalization. The right column depicts the corresponding data sets after 
normalization.   

Before normalization After  quantile normalization
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V.6.4. Identification of differentially expressed genes in milk whey and milk whey +LPS 

For RNA-Seq-based transcriptome analyses the quantification of expression values should be as 

accurate as possible and thus correct mapping of the reads is mandatory. While the RPKM-model 

was utilized to measure expression levels of different genes across different strains and conditions, 

the transcript length is not of importance when testing for differential gene expression. Here, the 

expression of the same gene is compared across samples (i.e. condition or strain), but not compared 

to other genes. Moreover, the RPKM model might result in biased estimates in determining 

differential gene expression across conditions tested due to the small portion of highly-expressed 

genes (Bullard et al., 2010). Thus, the transcript length should not be regarded for differential gene 

expression analysis, and instead of the RPKM-model, the total read count of each transcript/CDS was 

chosen to measure DEG.  

 Differentially expressed genes in milk whey and milk whey +LPS 

Differential gene expression was discovered by performing two-group experiments using the 

bootstrapped Receiver Operating Characteristic algorithm (bROC) on quantile normalized read 

counts. The total read count of each gene was determined and the transcriptome of both 

E. coli strains 1303 and ECC-1470 were treated as biological replicates per state/condition. Sample 

data from both isolates at the corresponding condition were used for bROC analysis. Following this, 

the data were log2 –transformed and unity shifted (+1), because the data included null values as well. 

The transformed read counts for both isolates cultivated in either milk whey or LPS-challenged milk 

whey were compared to the transformed read counts measured upon incubation in DMEM (or milk 

whey) in order to determine the log2-fold change of gene expression. Genes with a discrimination 

score of CONF > 0.95 were considered to be differentially expressed (supplemental Tables S8-S10 on 

compact disc). As depicted in Figure 29, both mastitis E. coli strains 1303 and ECC-1470 exhibited 

deregulated genes when incubated in either milk whey or milk whey from a cow´s udder challenged 

with LPS relative to incubation in DMEM (or milk whey). Individual numbers of up- and down-

regulated genes in both strains at the respective conditions are shown. 

Figure 29: Deregulated genes in both E. coli strains 1303 and ECC-1470 after 1 h incubation at 37°C 
in: i) milk whey relative to DMEM cell culture medium, ii) ) LPS-challenged milk whey relative to 
DMEM cell culture medium, and iii) LPS-challenged milk whey relative to milk whey. The diagram 
shows the numbers of significantly up- (red) and down- (blue) regulated genes (CONF > 0.95).  
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When incubated in milk whey from a cow´s udder challenged with LPS, both mastitis strains 

commonly exhibited an increased number of significantly deregulated genes relative to milk whey 

from an udder-healthy cow or to DMEM cell culture medium. This strongly suggests a specific 

response to components that are present in milk whey after contact to bacterial LPS. 

In order to investigate which genes were deregulated in one condition as well as in another 

condition, the Venn algorithm was utilized. Therefore, the number of differentially expressed genes 

of mastitis strains E. coli 1303 and ECC-1470 at the respective conditions was visualized in a Venn 

diagram shown in Figure 30. A considerable number of genes were commonly deregulated in both 

strains, but not necessarily in response to the same condition as indicated by the overlapping areas 

(intersections) of three samples. Of approximately 5,155 CDS of E. coli 1303 and approximately 4,703 

CDS of ECC-1470, the Venn algorithm identified a total of 88 different genes that were 

simultaneously deregulated in both strains after incubation in either milk whey or milk whey +LPS 

relative to DMEM. The particular intersections demonstrate, however, a transcriptional response by 

the same genes suggesting that the very same processes were affected in both strains though it is 

not possible to follow either up or down regulation in this Venn diagram. 18 genes were deregulated 

in milk whey as well as in milk whey +LPS. The number of genes exclusively deregulated in milk 

whey +LPS relative to DMEM (40 genes) was twofold higher than the number exclusively deregulated 

in milk whey +LPS in reference to DMEM (20 genes). No gene was detected to be uniquely 

deregulated in milk whey +LPS relative to milk whey while 10 genes were also deregulated in either 

milk whey or milk whey +LPS relative to DMEM. It is suggested, that the response to components, 

which are present or increased in milk whey after the cow´s contact to LPS (e.g. defensins or iron-

binding proteins), resulted in a marked response of the gene expression levels in both mastitis E. coli 

strains relative to cell culture medium compared to milk whey without LPS challenge.  

 

Figure 30: Impact of DMEM cell culture medium, 
milk whey or milk whey + LPS on gene expression of 
mastitis E. coli isolates as determined by RNA-Seq. 
The Venn diagram shows the numbers of 
significantly deregulated genes in E. coli strains 
1303 and ECC-1470 upon incubation in milk whey or 
milk whey +LPS in relation to (IRT) DMEM cell 
culture medium/milk whey (CONF > 0.95). The 
numbers displayed in circles indicate the number of 
genes shared between the overlapping areas, which 
represent the sample-specific incubation medium.  
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If only the LPS challenge would have markedly affected deregulation of genes in response to milk 

whey, one would have identified genes deregulated uniquely in milk whey +LPS relative to milk whey 

as well (Figure 30). 

In addition to the visual output of the Venn algorithm, it is also possible to investigate whether the 

88 different genes were up- or down-regulated in milk whey or milk whey +LPS, respectively. 

Therefore, a corresponding textual output is given in Table 15 showing which genes were (i) 

deregulated at distinct conditions or (ii) uniquely deregulated under a certain condition. Significantly 

deregulated genes (CONF >0.95) are listed according to their presence in each of the samples. Their 

corresponding fold log2-fold change is indicated in either red (up-regulated) or blue 

(down-regulated). 

While the Venn diagram’s central intersection Figure 30 revealed only one gene that was diversely 

deregulated between all conditions, it can now be identified as the artJ gene encoding the ABC 

transporter arginine binding protein 1. According to Table 15 the log2-fold change of artJ revealed an 

approximately twofold higher up-regulation in milk whey compared to its up-regulation in milk 

whey +LPS. This is corroborated by the negative ratio of the expression levels in milk whey +LPS in 

relation to milk whey. Besides artJ, nine other genes were repressed in milk whey +LPS relative to 

milk whey only. One of these particular genes was iscR, which was down-regulated not only in milk 

whey +LPS relative to milk whey but also in milk whey +LPS relative to DMEM. The 18 genes 

deregulated in milk whey and milk whey +LPS showed a consistent expression pattern in that they 

were either uniquely up- or down- but not differently regulated. These genes can be considered as 

deregulated in response to components of milk whey rather than components appearing or 

increasing after pathogen recognition. In contrast, eight genes were up-regulated in milk whey 

relative to DMEM, but were down-regulated in milk whey +LPS relative to milk whey. These genes 

are suggested to be especially useful in milk whey, which does not contain any host factors as a 

response to pathogen recognition (e.g. defensins or iron-binding proteins). It can be speculated that 

milk whey from an udder healthy cow still offers sufficient conditions for bacterial multiplication 

while milk whey from a cow´s udder challenged with LPS represents more aggressive growth 

conditions. Consequently, a normal response of the bacteria may be inhibited and instead bacterial 

countermeasure may be induced.  

In summary it can be stated that both mastitis strains commonly deregulated a number of genes 

when they were incubated either in milk whey or in milk whey +LPS. These genes might represent 

specific bacterial responses to milk whey comprising e.g., antimicrobial components and these 

components increased upon LPS challenge. It can be hypothesized that at least some of the 

differentially expressed genes identified might be involved in the pathogenesis caused by the 

transient mastitis strain 1303 and persistent mastitis isolate ECC-1470.  
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Table 15: Deregulated genes of mastitic E. coli in milk whey or milk whey +LPS.  

Sample / Intersection 
 

Gene 
 

             Locus tags 
       Ec 1303 / ECC-1470 

Annotations - Protein product 
 

Fold change 
Sample 1    Sample 2     Sample 3 

Sample 1: milk whey IRT DMEM 
Sample 2: milk whey +LPS IRT 
DMEM; Sample 3: milk 
whey +LPS IRT milk whey 

artJ EPE_c00350 ECN_c44210 ABC transporter arginine-binding protein 1 5.05 2.70 -2.73 

Sample 1: milk whey IRT DMEM 
Sample 2: milk whey +LPS IRT 
DMEM 
 
              18 genes total 

bioB EPE_c01290 ECN_c45060 Biotin synthase -4.09 -4.15 no DE 

citF EPE_c02920 ECN_c00830 citrate lyase,  citrate-ACP transferase (alpha) subunit 3.41 4.71 no DE 

ecnB EPE_c12150 ECN_c10250 entericidin B membrane lipoprotein -2.69 -3.83 no DE 

entC EPE_c03140 ECN_c01060 Isochorismate synthase entC -3.87 -5.41 no DE 

entE EPE_c03130 ECN_c01050 
2, 3-dihydroxybenzoate-AMP  
ligase component of enterobactin synthase complex 

-3.70 -3.69 no DE 

entF EPE_c03210 ECN_c01130 Enterobactin synthase component F -2.93 -2.99 no DE 

fes EPE_c03230 ECN_c01150 enterobactin/ferric enterobactin esterase -3.51 -3.94 no DE 

fhuF EPE_c10050 ECN_c07930 ferric iron reductase involved in ferric hydroximate transport -2.73 -4.39 no DE 

fruK EPE_c33350 ECN_c30700 1-phosphofructokinase -2.45 -2.27 no DE 

glnH EPE_c00890 ECN_c44690 Glutamine-binding periplasmic protein 4.09 3.74 no DE 

glnP EPE_c00900 ECN_c44700 Glutamine transport system permease protein glnP 3.14 3.77 no DE 

gltI EPE_c02530 ECN_c00440 Glutamate/aspartate periplasmic-binding protein 3.08 2.85 no DE 

lipA EPE_c02800 ECN_c00710 Lipoyl synthase 2.48 2.25 no DE 

mntH EPE_c31230 ECN_c28450 manganese/divalent cation transporter -2.73 -3.32 no DE 

nrdH EPE_c28740 ECN_c25760 Hydrogen donor for NrdEF electron transport system -3.43 -5.29 no DE 

rmf EPE_c47870 ECN_c43280 Ribosome modulation factor -3.47 -4.74 no DE 

yhaO EPE_c23830 ECN_c20770 Inner membrane transport protein YhaO -4.43 -4.11 no DE 

yncE EPE_c41690 ECN_c38770 hypothetical protein YncE -3.15 -3.87 no DE 

Indicated “Fold change” refers to bROC analysis log2-fold change (CONF > 0.95). Significantly deregulated genes are indicated red (up) and blue (down). 
Fold change of 1) milk whey IRT DMEM, 2) milk whey +LPS IRT DMEM, or 3) milk whey +LPS IRT milk whey. 
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Sample / Intersection 
 

Gene 
 

             Locus tags 
       Ec 1303 / ECC-1470 

Annotations - Protein product 
 

Fold change 
Sample 1    Sample 2     Sample 3 

Sample 1: milk whey IRT DMEM 
Sample 3: milk whey +LPS IRT 
milk whey 
 
               8 genes total 

argC EPE_c14200 ECN_c12200 N-acetyl-gamma-glutamyl-phosphate reductase 4.39 no DE -3.66 

argI EPE_c11060 ECN_c09170 Ornithine carbamoyltransferase 5.14 no DE -3.39 

cysH EPE_c27860 ECN_c24810 Phosphoadenosine phosphosulfate reductase 3.13 no DE -3.37 

cysJ EPE_c27840 ECN_c24790 Sulfite reductase [NADPH] flavoprotein alpha-component 4.06 no DE -4.42 

cysP EPE_c30910 ECN_c28160 Thiosulfate-binding protein 4.11 no DE -4.25 

cysU EPE_c30920 ECN_c28170 sulfate/thiosulfate transporter subunit 5.52 no DE -4.16 

iaaA EPE_c00710 ECN_c44520 Isoaspartyl peptidase 2.87 no DE -3.08 

ydjN EPE_c38090 ECN_c35610 Uncharacterized symporter ydjN 2.93 no DE -3.31 

Sample 2: milk whey +LPS IRT 
DMEM 
Sample 3: milk whey +LPS IRT 
milk whey 

iscR EPE_c29880 ECN_c27130 DNA-binding transcriptional repressor no DE -4.18 -2.77 

Sample 1: milk whey IRT DMEM 
 
              20 genes total 

argT EPE_c31910 ECN_c29380 lysine/arginine/ornithine transporter subunit 2.83 no DE no DE 

bioF EPE_c01280 ECN_c45050 8-amino-7-oxononanoate synthase -4.02 no DE no DE 

citE EPE_c02910 ECN_c00820 citrate lyase,  citryl-ACP lyase (beta) subunit 4.43 no DE no DE 

citX EPE_c02930 ECN_c00840 Apo-citrate lyase phosphoribosyl-dephospho-CoA transferase 7.57 no DE no DE 

cpxP EPE_c14640 ECN_c12690 
inhibitor of the cpx response 
/ periplasmic adaptor protein 

-2.39 no DE no DE 

cysA EPE_c30940 ECN_c28190 Sulfate/thiosulfate import ATP-binding protein CysA 2.91 no DE no DE 

cysD EPE_c27920 ECN_c24940 Sulfate adenylyltransferase subunit 2 2.58 no DE no DE 

fepA EPE_c03240 ECN_c01160 iron-enterobactin outer membrane transporter -4.05 no DE no DE 

gdhA EPE_c37770 ECN_c35280 NADP-specific glutamate dehydrogenase 2.98 no DE no DE 

hycA EPE_c28210 ECN_c25250 regulator of the transcriptional regulator FhlA 3.51 no DE no DE 

metF EPE_c14370 ECN_c12370 5, 10-methylenetetrahydrofolate reductase 3.61 no DE no DE 

nrdI EPE_c28730 ECN_c25750 flavodoxin required for NrdEF cluster assembly -3.91 no DE no DE 

nuoA EPE_c32130 ECN_c29600 NADH:ubiquinone oxidoreductase,  membrane subunit A 2.55 no DE no DE 

potF EPE_c00410 ECN_c44270 Putrescine-binding periplasmic protein 3.59 no DE no DE 



132  RESULTS AND DISCUSSION 

 

Sample / Intersection 
 

Gene 
 

             Locus tags 
       Ec 1303 / ECC-1470 

Annotations - Protein product 
 

Fold change 
Sample 1    Sample 2     Sample 3 

Sample 1: milk whey IRT DMEM 
 
              20 genes total 

sufA EPE_c39030 ECN_c36060 Fe-S cluster assembly protein -3.35 no DE no DE 

yagU EPE_c06020 ECN_c04360 Inner membrane protein yagU 2.83 no DE no DE 

ygeO EPE_c26830 ECN_c23580 type III secretion apparatus system protein -3.40 no DE no DE 

yjiH EPE_c10630 ECN_c08310 hypothetical protein yjiH 3.59 no DE no DE 

yjjZ EPE_c10040 ECN_c07920 hypothetical protein -4.13 no DE no DE 

ylaC EPE_c04300 ECN_c02670 Inner membrane protein ylaC 3.84 no DE no DE 

Sample 2: milk whey +LPS IRT 
DMEM 
 
              40 genes total 

aceE EPE_c07950 ECN_c06390 pyruvate dehydrogenase, decarboxylase component E1 no DE 1.88 no DE 

argB EPE_c14190 ECN_c12190 Acetylglutamate kinase no DE -2.40 no DE 

artI EPE_c00320 ECN_c44180 Putative ABC transporter arginine-binding protein 2 no DE 2.47 no DE 

cirA EPE_c33480 ECN_c30830 catecholate siderophore receptor CirA,  colicin I receptor no DE -2.42 no DE 

citC EPE_c02890 ECN_c00800 [Citrate [pro-3S]-lyase] ligase no DE 4.04 no DE 

citG EPE_c02940 ECN_c00850 2-(5''-triphosphoribosyl)-3'-dephosphocoenzyme-A synthase no DE 3.70 no DE 

codA EPE_c05470 ECN_c03820 Cytosine deaminase no DE 2.28 no DE 

cutC EPE_c36540 ECN_c34020 Copper homeostasis protein CutC no DE -1.79 no DE 

fecI EPE_c25370 ECN_c08760 
KpLE2 phage-like element 
/ RNA polymerase,  sigma 19 factor 

no DE -3.55 no DE 

fecR EPE_c25380 ECN_c08770 
KpLE2 phage-like element 
/ transmembrane signal transducer for ferric citrate transport 

no DE -2.61 no DE 

fhuA EPE_c07570 ECN_c06030 Ferrichrome-iron receptor no DE -1.85 no DE 

flhC EPE_c36370 ECN_c33850 DNA-binding transcriptional dual regulator with FlhD no DE 2.61 no DE 

frdD EPE_c12110 ECN_c10210 fumarate reductase (anaerobic),  membrane anchor subunit no DE 2.32 no DE 

ftnA EPE_c36250 ECN_c33730 ferritin iron storage protein (cytoplasmic) no DE 3.37 no DE 

glnQ EPE_c00910 ECN_c44710 Glutamine transport ATP-binding protein GlnQ no DE 3.49 no DE 

gpmA EPE_c01510 ECN_c45270 2, 3-bisphosphoglycerate-dependent phosphoglycerate mutase no DE -2.74 no DE 

osmC EPE_c41380 ECN_c38470 
Lipoyl-dependent Cys-based peroxidase,  hydroperoxide 
resistance 

no DE -2.97 no DE 
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Sample / Intersection 
 

Gene 
 

             Locus tags 
       Ec 1303 / ECC-1470 

Annotations - Protein product 
 

Fold change 
Sample 1    Sample 2     Sample 3 

Sample 2: milk whey +LPS IRT 
DMEM 
 
              40 genes total 

pepE EPE_c13530 ECN_c11560 (alpha)-aspartyl dipeptidase no DE 3.07 no DE 

potD EPE_c45310 ECN_c41570 
polyamine transporter subunit 
/ periplasmic-binding component of ABC superfamily 

no DE 2.28 no DE 

ptsG EPE_c45530 ECN_c41790 
fused glucose-specific PTS enzymes: IIB component 
/ IIC component 

no DE 2.34 no DE 

rplB EPE_c21710 ECN_c18670 50S ribosomal subunit protein L2 no DE 3.10 no DE 

rplD EPE_c21690 ECN_c18650 50S ribosomal subunit protein L4 no DE 3.20 no DE 

rplF EPE_c21830 ECN_c18790 50S ribosomal subunit protein L6 no DE 2.48 no DE 

rplI EPE_c11590 ECN_c09700 50S ribosomal protein L9 no DE 2.73 no DE 

rplR EPE_c21840 ECN_c18800 50S ribosomal subunit protein L18 no DE 2.60 no DE 

rplS EPE_c29100 ECN_c26380 50S ribosomal subunit protein L19 no DE 2.67 no DE 

rplV EPE_c21730 ECN_c18690 50S ribosomal subunit protein L22 no DE 2.34 no DE 

rplW EPE_c21700 ECN_c18660 50S ribosomal subunit protein L23 no DE 3.42 no DE 

rpmC EPE_c21760 ECN_c18720 50S ribosomal subunit protein L29 no DE 2.76 no DE 

rpmI EPE_c38220 ECN_c35740 50S ribosomal subunit protein L35 no DE 2.12 no DE 

rpsE EPE_c21850 ECN_c18810 30S ribosomal subunit protein S5 no DE 2.45 no DE 

rpsG EPE_c21450 ECN_c18570 30S ribosomal protein S7 no DE 2.81 no DE 

rpsI EPE_c22600 ECN_c19530 30S ribosomal subunit protein S9 no DE 2.21 no DE 

rpsN EPE_c21810 ECN_c18770 30S ribosomal subunit protein S14 no DE 2.74 no DE 

rpsR EPE_c11600 ECN_c09710 30S ribosomal protein S18 no DE 2.92 no DE 

rpsS EPE_c21720 ECN_c18680 30S ribosomal subunit protein S19 no DE 2.27 no DE 

tsx EPE_c04770 ECN_c03160 nucleoside channel,  receptor of phage T6 and colicin K no DE 2.24 no DE 

ybgE EPE_c01730 ECN_c45470 hypothetical protein ybgE no DE 2.67 no DE 

ydiY EPE_c38160 ECN_c35680 predicted outer membrane protein,  acid-inducible no DE 2.62 no DE 

yjbJ EPE_c13260 ECN_c11260 UPF0337 protein yjbJ no DE -2.60 no DE 

IRT in reference to 
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V.6.5. Commonly deregulated genes in response to milk whey 

Hierarchical clustering of deregulated genes 

In order to identify commonly deregulated genes of both E. coli mastitis strains 1303 and ECC-1470 

when incubated in either milk whey or milk whey +LPS or DMEM, hierarchical cluster analyses of the 

identified deregulated genes were performed. Genes, which exhibited the same or a similar 

expression profile, were grouped together. The significantly deregulated genes after one hour 

incubation in the respective medium differed in their expression levels across both mastitis isolates 

(also visible in Table 15 on page 130). This is indicating a distinct transcriptional response of the two 

different strains. 

The isolates´ transcriptional response to milk whey relative to DMEM resulted in commonly 

deregulated genes and revealed five subclusters shown in Figure 31. Most genes of E. coli strains 

1303 and ECC-1470 were not only commonly, but also evenly regulated after one hour in DMEM. In 

contrast, in milk whey relative to DMEM most deregulated genes showed distinct expression levels 

between isolates although their regulation is following a common underlying trend (up or down).  

Specifically, the first subcluster identified upon growth in milk whey includes down-regulated genes 

involved in iron acquisition (fhuF, entF, mntH, fepA and yncE) and ecnB encoding for the lipoprotein 

entericidin, which plays a role in programmed cell death under high osmolarity conditions. Down-

regulation of iron-associated genes was further supported by the second subcluster of deregulated 

genes include many genes coding for components of the enterobactin synthase complex (entC, entE 

and fes). It is somehow notable but not surprising that entF is allocated to subcluster one whereas 

the fold total expression level is still much higher in comparison to entC and entE.  

Of the three remaining subclusters, two included a majority of up-regulated genes involved in amino 

acid metabolism as well as the inner membrane proteins ylaC and yjiH as well as the genes citE and 

citF whose gene products are required for citrate utilization. Interestingly, potF, which is coding for a 

putrescine-binding periplasmic protein was commonly up-regulated as well. It has been previously 

discussed that amino acid synthesis, especially that of glutamate, and putrescine release are signals 

of hyperosmotic stress (Koegel, 2008). We identified positively deregulated genes associated with 

glutamine/glutamate synthesis as well (glnH, glnP and gltI) corroborating that the common 

deregulation of potF is not a coincidence. The fifth and last subcluster of commonly deregulated 

genes in milk whey relative to DMEM included mainly genes of comparably high expression levels. Of 

these, the most expressed genes were artJ, glnH and metF associated with arginine, glutamate and 

methionine synthesis while expression of gdhA and iaaA was also up-regulated and required for 

amino acid transport and processing. Furthermore, genes whose encoded proteins are involved in 

energy metabolism (lipA) as well as membrane/associated proteins (nuoA, yagU and ydjN) showed a 

common intense expression. 
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Figure 31: Differential expression of E. coli genes in DMEM and milk whey. 
Hierarchical cluster plot showing differentially expressed genes of mastitis E. coli strains 1303 and 
ECC-1470 upon 1 h incubation at 37°C in DMEM cell culture medium in comparison to milk whey 
from an udder-healthy cow. Each bar represents one gene and its normalized expression level is 
colored according to the color bar. The datasets for each strain and condition are obtained from 
bROC analysis to discover differentially expressed genes. Genes with CONF > 0.95 are considered to 
be differentially expressed. 
 
 
While the individual expression levels of commonly deregulated genes differed in milk whey, the 

transcriptional response to milk whey from an LPS-challenged cow was more uniform in both strains 

(Figure 32). The genes deregulated in E. coli strains 1303 and ECC-1470 were not only commonly 

deregulated, but revealed also similar expression levels in both strains when incubated one hour in 

either DMEM or milk whey +LPS. The average expression level of the genes in milk whey +LPS was 

comparably higher relative to that observed in pure milk whey (Figure 31). Commonly deregulated 

genes were allocated to two main clusters and various subclusters.  

0 6489
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Figure 32: Differential expression of E. coli genes in DMEM and milk whey +LPS. 
Hierarchical cluster plot showing differentially expressed genes of mastitis E. coli strains 1303 and 
ECC-1470 upon 1 h incubation at 37°C in DMEM cell culture medium in comparison to milk whey 
from a cow´s udder challenged with LPS. Each bar represents one gene and its normalized expression 
level is colored according to the color bar. The datasets for each strain and condition are obtained 
from bROC analysis to discover differentially expressed genes. Genes with CONF > 0.95 are 
considered to be differentially expressed. 
 
 
Highest expression has been identified within the subclusters comprising genes coding for 

components of the 50S and 30S ribosomal subunits (rpl, rpm and rps). Further commonly 

deregulated genes among these subclusters included the hypothetical protein-encoding gene ydiY 

0 12027
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and the genes aceE, lipA and ptsG required for energy metabolism. Although not really clustered, we 

again identified repression of gene expression associated with amino acid synthesis (argB, artJ, glnH, 

glnP, gltI and pepE).  

Down-regulated genes involved in iron acquisition clustered in the second main cluster (bioB, cirA, 

entE, entF, fecI, fecR, fes, fhuA, fhuF and mntH). In contrast, ftnA encoding a cytoplasmic iron storage 

protein was not commonly down-regulated, but significantly up-regulated. The gene ftnA thereby 

represents the only gene associated to iron processing, that was exclusively up-regulated in milk 

whey +LPS, but not in pure milk whey. The cluster analysis also revealed a common up-regulation of 

genes (citC, citF and citG) involved in citrate utilization. Up-regulation of these genes was already 

identified in milk whey, but clustering occurred only when deregulated milk whey +LPS. 

 

In order to examine whether genes were commonly deregulated in milk whey +LPS relative to milk 

whey, a third heat map depicts the deregulated genes between these two conditions (Figure 33). As 

much as both mastitis isolates displayed distinct transcriptional levels of the deregulated genes when 

incubated in milk whey (Figure 31), the transcriptional pattern of differentially expressed genes 

between milk whey +LPS and milk whey was highly erratic. Nevertheless, the cluster analysis 

revealed two subclusters of commonly deregulated genes depicting the general trend of either up- or 

down-regulation of these genes and whether their expression was comparably high or low. 

The first (blue) subcluster reflects mainly down-regulated genes involved in amino acid synthesis and 

–utilization (Figure 33). Notably, artJ encoding the arginine binding protein 1 was also negatively 

deregulated but was not assigned to the same cluster, but to cluster two instead. This may be due to 

the still much higher expression level in milk whey +LPS than in milk whey despite the -2.7 fold 

change relative to milk whey (also noted in Table 15 on page 130). 

The second cluster shows a down-regulation of the peptidase encoding gene iaaA reflecting catabolic 

amino acid processes. This might vice versa support the notion of enhanced amino acid biosynthesis 

as suggested by increased gene expression of relevant genes. Cluster 2 comprised the DNA-binding 

transcriptional repressor gene iscR but also ydjN coding for an uncharacterized symporter protein. 

Both genes were negatively deregulated.  

The hierarchical cluster analysis of the transcriptional response of E. coli strains 1303 and ECC-1470 

to DMEM, milk whey and milk whey +LPS revealed not only commonly deregulated genes relative to 

DMEM, but also sample-specific differences in gene expression patterns. Deregulated genes that 

were clustered indicate a common deregulation of genes associated with amino acid metabolism and 

iron utilization. 
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Figure 33: Differential expression of E. coli genes in milk whey and milk whey +LPS. 
Hierarchical cluster plot showing differential expression of genes of mastitis E. coli strains 1303 and 
ECC-1470 upon 1 h incubation at 37°C in milk whey from an udder-healthy cow in comparison to milk 
whey from a cow´s udder challenged with LPS. Each bar represents one gene and its normalized 
expression level is coloured according to the colour bar. The datasets for each strain and condition 
are obtained from bROC analysis to discover differentially expressed genes. Genes with CONF > 0.95 
are considered to be differentially expressed. 
 

 

In contrast, genes associated with carbon utilization (e.g. citrate) or energy metabolism, change of 

growth phase (including programmed cell death), as well as genes encoding inner membrane 

proteins and hypothetical proteins have not been grouped together by hierarchical clustering. Genes 

associated with stress response (oxidative, osmotic or acidic), however, clustered together. The 

distinct high expression level of particular commonly deregulated genes (Figure 31, Figure 33) may 

reflect that both strains were not really biological replicates. Individually deregulated genes might 

rather indicate strain-specific properties than a common transcriptional response. Besides their 

distinct genome content, E. coli strains 1303 and ECC-1470 are diverse in that both isolates caused a 

different aetiological outcome of mastitis. It has been shown that they, nevertheless, employ a 

common transcriptional activity in response to milk whey. This has been depicted by the heat maps. 

Genes that were commonly deregulated indicate expression of the same or related cellular processes 

in response to growth in DMEM or milk whey or milk whey +LPS. 

 Functional classification of deregulated genes 

In order to examine what cellular processes were reflected by the transcriptional response to milk 

whey and milk whey +LPS, we evaluated the differentially expressed genes according to their 

7 4835
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functional classification. The deregulated genes were assigned to functional categories (Figure 34) 

based on the Clusters of Orthologous Genes (COG) designations as suggested by (Yoder-Himes et al., 

2009). It is further suggested that the COG categories might reflect bacterial expression patterns in 

response to the environmental or bactericidal conditions in milk whey, or milk whey +LPS to 

countermeasure the cow´s immune response. The biggest fraction of genes deregulated under both 

conditions was assigned to category “Amino acid metabolism and transport” (E). Interestingly, 

differentially expressed genes representing “Translational associated functions” (J) were exclusively 

deregulated upon growth in milk whey +LPS. Besides categories C, G, J, K and M, the amount of 

deregulated genes was always higher when bacteria were incubated in milk whey than in milk 

whey +LPS. Thus, this suggests that bacterial growth in milk whey +LPS required more energy 

production and conversion as well as carbohydrate metabolism and transport than in milk whey. 

 
Figure 34: Functional classification of deregulated genes of E. coli mastitis isolates 1303 and 1470 in 
milk whey and milk whey +LPS. The numbers of genes belonging to the individual COG categories are 
depicted as total number of deregulated genes in the respective experimental set. Grey bars 
represent the total portion of the 88 different deregulated genes as revealed by the Venn diagram 
and may comprise genes deregulated in more than one of the experimental sets. COG designations 
are listed in Table 16. 
 

Table 16: Clusters of Orthologous Genes COG classification 

C Energy production and conversion M Cell wall/membrane/envelop biogenesis 

E Amino acid metabolism and transport O Post-transl. modification, protein turnover, chaperone funct. 

F Nucleotide metabolism and transport P Inorganic ion transport and metabolism 

G Carbohydrate metabolism and transport Q Secondary structure 

H Coenzyme metabolism U Intracellular trafficking and secretion 

J Translation R General functional prediction only 

K Transcription S Function unknown 
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V.6.6. The transcriptional response to milk whey and milk whey +LPS 

Investigating the transcriptional response of mastitis E. coli isolates 1303 and ECC-1470 to milk whey 

and milk whey +LSP one could expect diverse adaptations to the conditions conveyed by these media 

in contrast to a less hostile environment. The functional classification based on COG designations 

defined cellular processes, which were affected by growth under these conditions. However, specific 

cellular processes, which could be interpreted as a response to milk whey or milk whey + LPS, could 

not be revealed by this. In order to gain insight into the particular processes involved, it was 

necessary to categorize the identified deregulated genes according to their biological role. In Table 

17, the genes that were deregulated in milk whey and milk whey +LPS are listed according to (i) their 

gene symbol, (ii) the cellular compartment(s) of the encoded protein and (iii) their molecular 

function. The same color code indicates the assigned categories. The correlation of up- or down-

regulation of the expression of genes with their function and cellular localization made it possible to 

gain a surprisingly detailed view of what actually occurred in the mastitis E. coli isolates 1303 and 

ECC-1470 when grown in milk whey or in milk whey +LSP. 

 Iron utilization 

Bacterial determinants that were categorized to be involved in iron uptake and -utilization 

represented the major fraction of deregulated genes. It has been suggested before, that mastitis 

isolates need to cope with harsh nutritional conditions in mammary secretions like iron shortage 

mediated by lactoferrin (Latorre et al., 2010). Surprisingly, both strains exhibited a marked repression 

of genes involved in iron uptake and utilization (Table 17). Among them, genes of the siderophore 

gene clusters encoding the components of the enterobactin (ent) and the ferric di-citrate transport 

system (fec) as well as siderophore receptor gene cirA were determined. Especially, we identified 

negatively deregulated regulatory determinants of the fec siderophore cluster. fecI encodes a 

specialized sigma factor and fecR is known to encode the regulator of the fec operon (Enz et al., 

1995). Due to our assumption, that iron acquisition might be advantageous for survival and growth in 

mammary secretions, especially in presence of lactoferrin, it was rather surprising to find iron uptake 

systems to be down-regulated in E. coli in milk whey or in milk whey +LPS. Notably, ftnA which 

encodes a ferritin iron storage protein was the only gene associated with iron utilization that was 

positively deregulated in milk whey +LPS, but was not deregulated in milk whey relative to DMEM. At 

least, ftnA expression might indicate an increase in iron scavenging host proteins dissolved in 

mammary secretions when LPS has been sensed. De facto, we state that iron availability did not 

represent a key factor for E. coli mastitis isolates in mammary secretions at this stage. The expression 

of genes involved in iron utilization appeared to be of rather minor importance during the initial 

growth of E. coli than at later stages of infection.   
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Table 17: Functional processes important for growth of E. coli genes in milk whey and milk whey +LPS 
as reflected by differential gene expression relative to growth in DMEM medium 

Gene Annotations - Protein product Category Compartment 1) 2) 3) 

yhaO transport protein Yha, AA/proton symporter amino acid transport inner membrane       

argB acetylglutamate kinase arginine biosynth. cytosol       

argC N-acetyl-gamma-glutamyl-phosphate reductase arginine biosynth. cytosol       

argI ornithine carbamoyltransferase arginine biosynth. cytosol       

argT lysine/arginine/ornithine transporter subunit arginine biosynth. perplasmic space       

artI putative ABC transporter arginine-binding protein 2 arginine biosynth. perplasmic space       

artJ ABC transporter arginine-binding protein 1 arginine biosynth. perplasmic space       

gdhA NADP-specific glutamate dehydrogenase glutamate biosynth. cytosol       

glnQ glutamine transport ATP-binding protein GlnQ glutamine biosynth. inner membrane       

glnP glutamine transport system permease protein glnP glutamine biosynth. inner membrane       

glnH glutamine-binding periplasmic protein glutamine biosynth. perplasmic space       

gltI glutamate/aspartate periplasmic-binding protein glutamine biosynth. perplasmic space       

metF 5, 10-methylenetetrahydrofolate reductase methionine biosynth. cytosol       

iaaA isoaspartyl peptidase peptidase cytosol       

pepE (alpha)-aspartyl dipeptidase peptidase cytosol       

fruK 1-phosphofructokinase energy metabolism cytosol       

gpmA 2, 3-bisphosphoglycerate-dependent phosphoglycerate mutase energy metabolism cytosol       

lipA lipoyl synthase, cofactor of pyruvate dehydrogenase energy metabolism cytosol       

aceE pyruvate dehydrogenase, decarboxylase component E1 energy metabolism cytosol, membrane       

frdD fumarate reductase (anaerobic),  membrane anchor subunit energy metabolism inner membrane       

ptsG 
fused glucose-specific PTS enzymes: IIB component 
/ IIC component 

energy metabolism inner membrane       

nuoA NADH:ubiquinone oxidoreductase,  membrane subunit A energy metabolism inner membrane       

citC [citrate [pro-3S]-lyase] ligase citrate utilization cytosol       

citE citrate lyase,  citryl-ACP lyase (beta) subunit citrate utilization cytosol       

citF citrate lyase,  citrate-ACP transferase (alpha) subunit citrate utilization cytosol       

citG 2-(5''-triphosphoribosyl)-3'-dephosphocoenzyme-A synthase citrate utilization cytosol       

citX apo-citrate lyase phosphoribosyl-dephospho-CoA transferase citrate utilization cytosol       

ygeO type III secretion apparatus system protein virulence associated 
inner membrane, 
outer membrane  

      

tsx nucleoside channel, receptor of phage T6 and colicin K, porine virulence associated 
inner membrane, 
outer membrane  

      

rplB 50S ribosomal subunit protein L2 exponential growth cytosol       

rplD 50S ribosomal subunit protein L4 exponential growth cytosol       

rplF 50S ribosomal subunit protein L6 exponential growth cytosol       

rplI 50S ribosomal protein L9 exponential growth cytosol       

rplR 50S ribosomal subunit protein L18 exponential growth cytosol       

rplS 50S ribosomal subunit protein L19 exponential growth cytosol       

rplV 50S ribosomal subunit protein L22 exponential growth cytosol       

rplW 50S ribosomal subunit protein L23 exponential growth cytosol       

rpmC 50S ribosomal subunit protein L29 exponential growth cytosol       

rpmI 50S ribosomal subunit protein L35 exponential growth cytosol       

rpsE 30S ribosomal subunit protein S5 exponential growth cytosol       

rpsG 30S ribosomal protein S7 exponential growth cytosol       

rpsI 30S ribosomal subunit protein S9 exponential growth cytosol       

rpsN 30S ribosomal subunit protein S14 exponential growth cytosol       

rpsR 30S ribosomal protein S18 exponential growth cytosol       

rpsS 30S ribosomal subunit protein S19 exponential growth cytosol       

Up-regulation (red) or down-regulation (blue) of two-group comparison experiments of deregulated genes                                                   
1) milk whey IRT DMEM, 2) milk whey +LPS IRT DMEM, or 3) milk whey +LPS IRT milk whey. 
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Gene Annotations - Protein product Category Compartment 1) 2) 3) 

entE 2, 3-dihydroxybenzoate-AMP iron acquisition 
inner membrane, 
cytosol, membrane 

      

entE ligase component of enterobactin synthase complex iron acquisition 
inner membrane, 
cytosol, membrane  

      

entF enterobactin synthase component F iron acquisition 
inner membrane, 
cytosol, membrane  

      

fhuF ferric iron reductase involved in ferric hydroximate transport iron acquisition 
 inner membrane, 
cytosol, membrane  

      

bioB biotin synthase iron acquisition cytosol       

bioF 8-amino-7-oxononanoate synthase iron acquisition cytosol       

fecI 
KpLE2 phage-like element 
/ RNA polymerase,  sigma 19 factor 

iron acquisition cytosol       

fes enterobactin/ferric enterobactin esterase iron acquisition cytosol       

sufA Fe-S cluster assembly protein iron acquisition cytosol       

mntH manganese/divalent cation transporter iron acquisition inner membrane       

cirA catecholate siderophore receptor CirA,  colicin I receptor iron acquisition 
inner membrane, 
outer membrane 

      

entC / 
fepF 

isochorismate synthase entC iron acquisition 
inner membrane, 
cytosol, membrane 

      

fepA iron-enterobactin outer membrane transporter iron acquisition outer membrane       

fhuA ferrichrome-iron receptor iron acquisition outer membrane       

fecR 
KpLE2 phage-like element 
/ transmembrane signal transducer for ferric citrate transport 

iron acquisition perplasmic space       

yncE protein YncE involved in iron acquisition iron acquisition perplasmic space       

ftnA ferritin iron storage protein (cytoplasmic) iron storage cytosol       

cpxP 
inhibitor of the cpx response 
/ periplasmic adaptor protein 

REGULATOR 
periplasmic space, 
cytosol 

      

flhC DNA-binding transcriptional dual regulator with FlhD RGEULATOR cytosol       

hycA regulator of the transcriptional regulator FhlA REGULATOR cytosol       

iscR DNA-binding transcriptional repressor of the iron sulfur cluster REGULATOR cytosol       

rmf ribosome modulation factor REGULATOR cytosol       

potF putrescine-binding periplasmic protein stress, multiple 
periplasmic space, 
membrane  

      

potD polyamine transp. Subunit/ binding compon. of ABC superfamily stress, multiple perplasmic space       

ydiY predicted outer membrane protein,  acid-inducible stress, acid outer membrane       

yagU inner membrane protein yagU stress, acid resist inner membrane       

cutC copper homeostasis protein CutC stress, detoxific. cytosol       

yjbJ UPF0337 protein yjbJ stress, osmotic cytosol       

nrdH hydrogen donor for NrdEF electron transport system stress, oxidative cytosol       

nrdI flavodoxin required for NrdEF cluster assembly stress, oxidative cytosol       

osmC lipoyl-dependent Cys-based peroxidase, hydroperoxide resist. stress, oxidative cytosol       

ecnB entericidin B membrane lipoprotein stress, cell death inner membrane       

cysD sulfate adenylyltransferase subunit 2 sulfate assimilation cytosol       

cysH phosphoadenosine phosphosulfate reductase sulfate assimilation cytosol       

cysJ sulfite reductase [NADPH] flavoprotein alpha-component sulfate assimilation cytosol       

cysA sulfate/thiosulfate import ATP-binding protein CysA sulfate assimilation 
cytosol, inner 
membr. 

      

cysU sulfate/thiosulfate transporter subunit sulfate assimilation inner membrane       

cysP thiosulfate-binding protein sulfate assimilation perplasmic space       

codA cytosine deaminase nucleotide synth. cytosol       

yjjZ uncharacterized protein involved in nitrogen metabolism uncharact. protein cytosol       

ybgE hypothetical protein ybgE uncharact. protein inner membrane       

ydjN uncharacterized symporter ydjN uncharact. protein inner membrane       

yjiH hypothetical protein yjiH uncharact. protein inner membrane       

ylaC inner membrane protein ylaC uncharact. protein inner membrane       
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 Exponential growth 

14 genes were allocated to COG category J (translation) and two more genes (rpmC and rpmI) could 

be identified to encode components of ribosomal subunits as well, meaning that they have to be 

assigned to the same functional category. The common positive deregulation of genes (rpl, rpm and 

rps) encoding components of ribosomal subunits indicates a markedly increased translational 

activity. It, therefore, has to be assumed that cultivation in milk whey rather than in DMEM resulted 

in increased growth of both mastitic isolates. One explanation might be that DMEM initially provided 

good nutritional conditions while E. coli that were introduced into milk whey needed more time to 

adapt to the altered nutrient composition and availability. Consequently, this might have caused an 

extended lag-phase relative to that of E. coli grown in DMEM. Another possibility might be that E. coli 

mastitis isolates sense the presence of particular components of milk whey and react in a way trying 

to outrun the antimicrobial conditions by increased growth rates.  

 Carbon compound and energy metabolism  

Increased growth rates are a common and advantageous attribute of ExPEC when new niches have to 

be colonized. It has been suggested that adaptation to new main carbon sources also alters the 

transcriptional profile of carbon metabolism-related genes. The fruK gene represents the only gene 

associated with carbon catabolism, which was negatively deregulated in milk whey or in milk 

whey +LPS relative to DMEM. Specifically, fruK encodes the 1-phosphofructokinase, which is not only 

one of the most important regulatory enzymes of glycolysis, but also essential for the utilization of 

fructose as a carbon source (Buschmeier et al., 1985). It should be noted that glucose and fructose 

phosphotransferase systems (PT-systems) are constitutively expressed in E. coli. The decreased 

expression of fruK suggests that both E. coli mastitis strains have indeed adapted to altered carbon 

sources during 1h of incubation in milk whey where glucose concentrations are substantially lower 

than in DMEM. Additionally, the phosphoglycerate mutase-encoding gene gpmA, which is also 

involved in glycolysis, was down-regulated in milk whey after LPS challenge. On the contrary, other 

genes involved in primary carbon energy metabolism, such as aceE, frdD, lipA and ptsG were 

positively deregulated mainly in milk whey +LPS. A possible explanation may be that these genes 

were required for the utilization of carbon sources that have become available or that were 

preferred in contrast to carbon sources that were diminished. Moreover, it can be speculated that 

E. coli which encountered increased adverse conditions, at least in comparison to growth in DMEM, 

are likely to be in need for more energy to compensate for the adaptation to these conditions and 

the increased transcription. The required energy might be provided by the pyruvate dehydrogenase 

AceE (supported by cofactor lipoate from LipA lipoatesynthase) linking the glycolysis to the citric acid 

cycle and, consequently, releasing energy via NADH. At least nuoA encoding for NADH:ubiquinone 
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oxidoreductase subunit A was positively deregulated in pure milk whey as well and further 

corroborates the impression of enhanced energy metabolic activity. 

 Citrate: a readily available and utilized carbon source in mammary secretions 

Besides deregulated genes of the primary carbon energy metabolism, genes of the cit operon (citM-

citCDEFXG) have been positively deregulated in milk whey and in milk whey +LPS. Increased 

expression of the cit operon, which encodes the citrate lyase complex, implies that its transcription 

enabled utilization of citrate as a carbon source. In the past, different coliform bacteria that cause 

mastitis were characterized by their mobility and their ability to utilize citrate. Accordingly, E. coli was 

supposed to be a citrate-negative microorganism which cannot grow on citrate as the sole carbon 

source (Hogan and Smith, 2003; Hogan et al., 1999). However, citrate-positive E. coli isolates from 

the environment, humans, feral birds, domestic animals and cattle have been reported decades 

before (Ishiguro et al., 1979; Ishiguro et al., 1978). In E. coli, the cit cluster comprises the genes 

encoding the citrate lyase (citDEF), which we found to be up-regulated and citT coding for the 

citrate/succinate antiporter CitT (Figure 35). In contrast to E. coli, other bacteria are able to grow on 

citrate as the sole carbon and energy source (Martín et al., 2004). Because E. coli lacks the genes 

encoding the oxaloacetate decarboxylase, its citrate fermentation is dependent on an oxidizable co-

substrate (Lütgens and Gottschalk, 1980). Lütgens and Gottschalk found that citrate was fermented 

by citrate-positive E. coli if a second substrate, such as glucose, lactose or lactate, was present. 

Knowing that citrate and lactose are abundant in mammary secretions, the deregulation of the cit 

cluster in milk whey and milk whey +LPS reflects a metabolic adaptation to citrate as a substantial 

carbon source in mammary secretions. It is further suggested that the presence of the cit cluster 

enables E. coli to multiply independently from carbon and energy sources other than citrate and 

lactose, thus providing a growth advantage over E. coli that lack the cit cluster.  

It has, nonetheless, to be admitted that neither citA nor citB were deregulated in milk whey or milk 

whey +LPS compared with the DMEM sample, although the cit cluster is known to be regulated by 

the sensor kinase CitA and the response regulator CitB (Bott, 1997). Thus, it is recommended to 

investigate various E. coli isolates, from bovine mastitis and bovine faecal samples, particularly with 

regard to a correlation of the presence and deregulation of the cit cluster with an increased fitness of 

E. coli mastitis isolates. 

Figure 35: E. coli genes required for citrate fermentation. Genes shaded in light gray are those 
present only in the E. coli cit cluster, but not in cit clusters of K. pneumoniae, L. mesenteroides, 
W. paramesenteroides and L. lactis. The citDEF genes, coding for the citrate lyase, are highly 
conserved in the different cit clusters. Modified scheme as published by (Pos et al., 1998).  
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 Amino acid biosynthesis 

As shown in Figure 34, the majority of the genes with significant changes after incubation in milk 

whey and in milk whey +LPS were required for amino acid biosynthesis or -utilization. In contrast to 

the 19 deregulated genes, that have been associated with amino acid biosynthesis, transport and 

metabolism according to the COG classification, four genes of that category were reassigned to other 

processes, because of their biological functions: cysD and cysH were allocated to sulfate assimilation, 

and potD and potF were grouped to stress related determinants. The 15 remaining genes were 

individually assigned to different amino acid pathways  

Arginine biosynthesis: The deregulated genes argB, argC, argI, argJ, argT, artI and artJ reflect 

arginine biosynthesis. Most genes (argC, argI, argJ, argT and artJ) were up-regulated, whereas argB 

was exclusively down-regulated and artI was exclusively up-regulated in milk whey +LPS relative to 

DMEM. Both genes were not deregulated in milk whey compared to DMEM. As mentioned before, 

artJ expression was approximately two-fold increased in milk whey compared to its up-regulation in 

milk whey +LPS (corroborated by its down-regulation in milk whey +LPS relative to milk whey). Thus, 

arginine biosynthesis has clearly been influenced to a greater extend by incubation in milk whey 

while the same influence was apparently abolished, at least altered, in milk whey +LPS. We propose 

that arginine biosynthesis is considered subordinate when mastitic E. coli are forced to cope with the 

conditions in LPS-challenged mammary secretions, in which the concentration of antimicrobial 

components are increased. Nevertheless, genes involved in arginine biosynthesis were deregulated 

in both milk whey and milk whey +LPS, suggesting that the ability to synthesize or acquire arginine in 

milk whey is important. It raises the question what virulence- or fitness-associated function arginine 

biosynthesis may convey during the initial stages of E. coli mastitis? Regarding its role in human 

ExPEC, a previous study on UPEC reported a marked increase in artJ expression when grown in 

human urine. Because arginine concentrations are limited in urine, they emphasized that the ability 

of E. coli to synthesize or acquire arginine is important for virulence in the urinary tract (Russo et al., 

1999). This was supported by the notion that experimentally determined arginine concentrations in 

adult urine ranged from 3.8 to 90 nmol/ml and resulted in reduced growth of E. coli, decreased by 50 

to 90 % of the maximum population density (Russo et al., 1996). Nevertheless, arginine limitation is 

unlikely to occur in mammary secretions. Although the de facto arginine concentration of the milk 

whey used in the present study has not been evaluated, the approximate arginine concentration in 

nonfat milk is about 7.3 µmol / ml according to http://nutritiondata.self.com. Thus, it can be 

assumed that it is 245-fold higher in milk whey than in human urine. Here, a better explanation for 

increased arginine biosynthesis would probably be that arginine is prerequisite for one of the three 

main enzyme-based acid resistance pathways comprising the arginine-decarboxylase pathway (Zhao 

and Houry, 2010). The increased transcription of biosynthetic enzymes providing arginine for further 

http://nutritiondata.self.com/
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utilization in the acid stress response would also be in line with the positively deregulated genes ydiY 

and yagU in milk whey.  

Glutamine / glutamate biosynthesis: 

Besides the arginine-decarboxylase pathway, the glutamine- and lysine-decarboxylase pathways are 

utilized in acid resistance. We found a 3 to 4-fold increase of the transcriptional level of deregulated 

genes involved in glutamine biosynthesis (glnH, glnP, glnQ, gltI and gdhA) in milk whey and in milk 

whey +LPS relative to DMEM. A marked difference between the corresponding expression levels in 

milk whey and milk whey +LPS was not detected. Utilization of glutamine in enzyme-based acid 

resistance pathways is in line with other observations described before. Moreover, E. coli temporarily 

accumulates glutamate, which can be obtained from glutamine, as a compatible solute to outweigh 

the K+-ions influx due to hyperosmotic conditions (Koegel, 2008). This is further in line with the 

positively deregulated expression of gdhA, which is involved in glutamate biosynthesis. Expression of 

gdhA is increased upon hyperosmotic stress when glutamate dehydrogenase encoded by gdhA can 

provide a steady-state to external pH effects. 

 

Increased peptidase activity is reflected by increased transcriptional level of the genes iaaA and 

pepE which both encode peptidases specific for N-terminal aspartic dipeptides. The in vivo 

contribution of the iaaA and pepE gene products to the utilization of N-terminal aspartic peptides is 

unknown, but allowed Salmonella strains not deficient of N-terminal aspartyl hydrolyzing peptidases 

to grow on aspartyl-leucine as a leucine source. Moreover, iaaA represents the first gene of an 

operon that also encodes a putative ATP-binding cassette transporter suggesting that peptide 

catabolism is an additional function of IaaA (Larsen et al., 2001). As the complex nutritional 

conditions in milk whey and in milk whey +LPS remain to be analyzed in detail, we might emphasize 

that the iaaA and pepE gene products contribute to the transport and utilization of aspartic peptides 

in E. coli to enable the utilization of additional sources of amino acids. The idea that E. coli 1303 and 

ECC-1470 have to rely on other amino acid sources in mammary secretions is supported by the 

marked negative deregulation of yhaO in milk whey and in milk whey +LPS. The yhaO gene encodes a 

still uncharacterized member of the STP transporter family, which is located downstream of the tdc 

operon including the gene for the TdcC threonine transporter of the STP family. It can be speculated, 

that the utilization of compounds transported by YhaO, is less beneficial in milk whey than it might 

be in DMEM.  

Altogether we can state, that the deregulated genes that can be correlated with amino acid 

biosynthesis or processing reflect first processes associated to stress response, and secondly an 

adaptation to altered nutritional conditions. Whether the particular transcriptional profiles in milk 

whey and in milk whey +LPS have been influenced by either the inhibitory traits conveyed by milk 
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whey or whether they represent a more general adaptation to the growth medium in terms of 

nutrition and biochemical milieu, needs to be verified. 

 Sulfate assimilation 

Several genes under control of the cysteine regulon were found to be positively deregulated in milk 

whey compared to DMEM, but showed no deregulation in milk whey +LPS relative to DMEM. 

cysAUWcysP codes for a sulfate transporter that belongs to the ATP-Binding Cassette (ABC) 

superfamily of transporters (Wu and Mandrand-Berthelot, 1995). Its expression enables utilization of 

both sulfate and thiosulfate as a sole sulfur source, but does not correspond to the challenges 

provided by milk whey or milk whey +LPS discussed before. Moreover, the expression of the genes 

cysJH was in line with expression of the other deregulated cys genes, though they belong to a 

different transcriptional unit. Expression of cysJH is known to be inhibited by oleanolic and ursolic 

acid which in turn affect the expression of the cysteine regulon and the stress response (Grudniak et 

al., 2011). So far, a possible role in stress response is the only function that can be anticipated in the 

present context. The expression profile of the deregulated cys genes can, nonetheless, not be 

correlated to particular processes other than stress. 

 Virulence associated factors 

Virulence factors could not be identified as to be encoded among the significantly deregulated genes, 

although two genes (ygeO and tsx) with a virulence-associated function appeared to be deregulated. 

The gene ygeO  encodes a type three secretion system (T3SS) apparatus protein, but its gene product 

was also found to be involved in the generation of an E. coli extracellular death factor (EDF) 

(Kolodkin-Gal et al., 2007). Its negative deregulation in milk whey relative to DMEM leads to the 

suggestion that a conversion of EDF release occurred, specifically the MazF-MazE toxin-antitoxin 

system. It will have to be further elucidated what particular role the deregulation of ygeO expression 

plays in this context, especially because the MazF-MazE system causes programmed cell death in 

response to stresses including starvation and antibiotics (Aizenman et al., 1996; Sat et al., 2001). 

The virulence-associated gene tsx was found to be positively deregulated in milk whey +LPS relative 

to DMEM, suggesting a specific bacterial response to compounds increased after LPS challenge. An 

early study reported that tsx encodes a nucleoside channel and functions as a receptor for 

bacteriophages and colicins (Hantke, 1976). The tsx gene product represents a porin protein and 

forms a channel that crosses cellular membrane. The structure, location and distribution on the 

bacterial surface convey different survival strategies to evade immune pressure and to respond to 

antibiotics, which is suggesting a significant role as a pathogenicity effector (Achouak et al., 2001). 

While down-regulation of tsx is not only related to, but also required for iron homeostasis in E. coli 

(Lin et al., 2008), consequences of tsx up-regulation are ill-defined. In addition to the negative 
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deregulation of genes associated with iron assimilation, the tsx down-regulation is in line with the 

finding that iron shortage appears to be no issue for E. coli mastitis strains in milk whey or milk 

whey +LPS. 

 Expression of bacterial regulators in milk whey and milk whey +LPS 

Besides the expression of deregulated determinants, which are grouped together because of either 

biological function or localization in transcriptional units, specific transcriptional regulators were 

deregulated in response to milk whey and milk whey +LPS.  

The cpxP gene product is a highly inducible, negative regulator of the cpx regulon. While 

extracytoplasmic stress is indicated by up-regulated expression of cpxP (Danese and Silhavy, 1998), 

its down-regulation in milk whey might indicate other hostile conditions to the bacterial cell 

envelope. Decreasing CpxP abundance caused has been shown important in Cpx pathway activation 

(Raivio et al., 2000). As CpxP overproduction turns off the cpx response by feedback inhibition (Raivio 

et al., 1999), a cpx response may be induced in turn when cpxP expression is down-regulated. It is 

possible that the Cpx system in E. coli is likewise involved in modulation of cell surface characteristics 

as has been suggested for UPEC strains. There, amongst other functions, the Cpx systems regulates P-

fimbriae expression (Hernday et al., 2004; Hung et al., 2001; Jones et al., 1997). Therefore, 

deregulation of cpxP, as an inducible regulator of the Cpx response, seems to be involved in host-

pathogen interaction although it remains hard to discern its particular contribution to ExPEC 

pathogenicity in general and mastitis in particular. Besides up-regulation of master regulator gene 

flhC required for motility and flagella biogenesis (Stafford et al., 2005; Claret and Hughes, 2002), we 

found no indications for deregulation of cell-surfaces appendages like flagella, pili and fimbria. It can 

be hypothesized that the down-regulation of cpxP in milk whey might be involved in resistance to 

extracytoplasmic stresses (Danese and Silhavy, 1998). Whether the Cpx system regulates expression 

of virulence traits or maintains and modulates the bacterial cell surface in the presence of 

antimicrobial compounds in mammary secretions needs to be elucidated. The Cpx system is at least 

part of a complex network of signaling cascades linked to virulence, various biosynthetic and 

metabolic pathways (Debnath et al., 2013; Hunke et al., 2012; Jung et al., 2012; Buelow and Raivio, 

2010; Gerken et al., 2010; Price and Raivio, 2009; Wolfe et al., 2008; Dorel et al., 2006; Raivio et al., 

2000; Raivio et al., 1999). 

The flhC gene was positively deregulated in milk whey +LPS, but not in milk whey relative to DMEM. 

The FlhC protein is part of the transcriptional dual regulator FlhC-FlhD, which constitutes the master 

regulator of gene expression required for motility and flagella biogenesis (Stafford et al., 2005; Claret 

and Hughes, 2002). Although both traits were discussed to be advantageous for E. coli when passing 

the teat canal as a physical barrier, the genes belonging to the flagellar operons have not been 

detected to be deregulated in E. coli mastitis isolates 1303 and ECC-1470. We might speculate that 
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increased expression of flhC is affecting cell division, biofilm formation and virulence as reported for 

EHEC. In earlier physiological experiments it was confirmed that FlhC reduced the cell division rate, 

the amount of biofilm biomass and pathogenicity in a chicken embryo lethality model (Sule et al., 

2011). The deregulation of flhC as part of the flhDC master operon can, however, be induced in 

response to various stimuli including synthesis of type 1 fimbriae, quorum sensing, high osmolarity 

and catabolic repression (Lehnen et al., 2002; Sperandio et al., 2002; Shin and Park, 1995; Soutourina 

et al., 1999). Our transcriptome analysis could neither confirm nor exclude any of these possibilities. 

Besides flhC, the only positively deregulated regulator-encoding gene was hycA, which was 

exclusively deregulated in milk whey, but not in milk whey +LPS. The hycA gene product is known to 

be the regulator of the transcriptional regulator FhlA. It participates in controlling several genes 

involved in production of the formate hydrogenlyase system. The specific regulative mechanism by 

HycA is unknown. Expression of hycA is activated by formate. HycA may directly interact with the 

FhlA protein and/or prevent the binding of FhlA to activator sequences (Suppmann and Sawers, 

1994; Sauter et al., 1992; Leonhartsberger et al., 2000; Skibinski et al., 2002). Consequently, we 

emphasize that hycA expression of E. coli in mammary secretions might be involved in anaerobic 

respiration. Its regulation target FhlA is required for regulation of expression of the hydN-hypF 

operon, which has been discussed on page 101. 

The DNA-binding transcriptional repressor gene iscR was down-regulated not only in milk whey +LPS 

relative to milk whey, but also in milk whey +LPS relative to DMEM. In particular the “Iron sulfur 

cluster Regulator” is negatively autoregulated and comprises an iron-sulfur cluster that acts as a 

sensor of iron-sulfur cluster assembly (Fleischhacker et al., 2012). In this way, IscR regulates 

expression of more than 40 genes and further expression of operons responsible for a secondary 

pathway of iron-sulfur cluster assembly, iron-sulfur proteins, anaerobic respiration enzymes and also 

biofilm formation (Tokumoto and Takahashi, 2001; Schwartz et al., 2001; Giel et al., 2006; Lee et al., 

2008; Yeo et al., 2006; Wu and Outten, 2009). It has been reported that iscR expression is up-

regulated during biofilm growth of UPEC in urine compared to that during planktonic growth in 

MOPS and urine (Hancock and Klemm, 2007). Considering these functions, it is hard to discern which 

role IscR particularly plays in milk whey +LPS.  

The rmf gene has been negatively deregulated in milk whey samples. This gene does not encode a 

transcriptional regulator, but a “Ribosome modulation factor”. Rmf reversibly converts active 70S 

ribosomes into dimers during the transition from exponential growth to stationary phase. This 

conversion is associated with a decrease in overall translation activity (Wada et al., 1990 and 1995). 

In this analysis, up-regulation of ribosomal subunit genes (rpl, rpm and rps) indicated exponential 

growth in milk whey samples relative to DMEM. Therefore, the decreased transcription rates of rmf 

in milk whey and milk whey +LPs relative to DMEM are in line with this observation. 
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We successfully identified regulator gene codA to be increased in expression in milk whey +LPS in 

comparison to the DMEM samples although no deregulation was determined in milk whey. The codA 

gene is encoding for a cytosine deaminase, which has an enzymatic function in nucleotide and 

nucleoside conversions of the pyrimidine salvage pathway (Ahmad and Pritchard, 1972; de Haan et 

al., 1972). It is known that codA expression is increased by growth on poor nitrogen availability 

(Andersen et al., 1989). The regulation of the codBA operon was more recently described to be 

dependent on the nitrogen assimilation control protein NAC (Muse et al., 2003). However, 

deregulation of the nac gene was not determined in any of the samples investigated in this study. No 

deregulation of nac suggests another reason for codA deregulation, but on the other hand it is ill-

defined whether nac deregulation is required for regulation of codBA expression. Apart from that, 

the codBA operon seems to be regulated as well by the UTP level of the bacterial cell (Turnbough and 

Switzer, 2008). Accordingly, it is difficult to determine exactly which condition led to up-regulation of 

codA expression. Nevertheless, codA up-regulation in the context of LPS-challenged milk whey 

represents an interesting approach to interfere with E. coli growth in udder tissue. In detail, the codA 

gene product is present in prokaryotes, but not in eukaryotes and, thus, CodA may represent a target 

for antimicrobial agents. So far, the cytosine deaminase is being used for suicide gene therapy 

against tumors (Mullen et al., 1992; Austin and Huber, 1993; Dong et al., 1996; Springer and 

Niculescu-Duvaz, 1996). While antibodies against cytosine deaminase are commercially available and 

codA is currently utilized as a negative selection marker for gene disruption in Streptomyces and 

other bacteria (Dubeau et al., 2009), the use of CodA for controlling E. coli mastitis should be 

considered. 

 Stress-related bacterial determinants 

It is postulated that E. coli colonizing the mammary gland, will take advantage of fitness traits, which 

they already possess. It has also been discussed that once present in mammary secretions, E. coli is 

challenged by host factors and altered nutritional conditions that cause stress. Several examples of 

stress response have been observed in our study based on differential expression of particular 

determinants or regulators such as Cpx were discussed in this chapter. Additionally, we successfully 

identified stress-specific determinants that were deregulated as well. 

 Acid stress 

Only two deregulated genes directly associated with stress were up-regulated. In milk whey +LPS it 

was ydiY, which has not been characterized so far. The sequence similarity of hypothetical protein 

YdiY suggests that it is a member of the outer membrane receptor (OMR) family (Zhai and Saier, 

2002). Various virulence-associated determinants appear to be membrane-associated or even 

exposed on the bacterial cell surface. Due to the fact that ydiY was reported as one of two genes, 
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which were induced when E. coli was grown at acidic pH (Stancik et al., 2002), it is likely involved in 

bacterial adaptation by sensing environmental conditions. While acid stress response dependent on 

the ompC and ompF gene products is well described (Pratt et al., 1996; Heyde et al., 2000; Sato et al., 

2000), there is no further information about the biological role of YdiY by today. This and its up-

regulation in response to milk whey +LPS, makes it an interesting candidate that possibly confers 

increased fitness to mastitis and other pathogenic E. coli isolates. We have to admit, however, that 

no deregulation of ompC and ompF could be determined in either E. coli 1303 or ECC-1470 when 

incubated in milk whey or milk whey +LPS, although the presence of these genes in both genomes 

has been confirmed. This is not necessarily a contradiction, because the bacterial stress response 

results from a complex regulatory network allowing the bacteria to fine tune their response to the 

external environment. 

Another gene that could be associated to acid stress and that has been positively deregulated in pure 

milk whey is yagU. Like for ydiY, there is no information about yagU other than that its encoded 

protein comprises a transmembrane region and the gene itself is induced by acidic pH (Kannan et al., 

2008; Hayes et al., 2006). As both ydiA and yagU appear to be up-regulated, in either milk whey or 

milk whey +LPS, it might be interesting to investigate whether the encoded membrane-associated 

proteins confer sensitivity or even resistance to hostile conditions within the mammary gland. On the 

other hand, it has to be admitted that mastitis E. coli, unlike many IPEC, do not have to encounter 

gastric acid or bile salts. 

In contrast to ydiA and yagU, the majority of deregulated genes that could be directly related to 

stress exhibited consequent negative deregulation. Unfortunately we cannot offer an explanation for 

the negative deregulation of cutC in milk whey +LPS. This gene codes for a copper homeostasis 

protein, but there is no information available that connects to detoxification traits advantageous in 

coliform mastitis. 

 Osmotic stress 

Another gene that was negatively deregulated in milk whey +LPS is yjbJ. Under control of the σS 

regulon, its expression is induced under hyperosmotic stress imposed by NaCl under aerobic and 

anaerobic conditions (Weber et al., 2005 and 2006). This seems to be contradictory to the 

consequent up-regulation that was observed for genes of the arginine- and glutamine-decarboxylase 

pathways when incubated in milk whey and milk whey +LPS. Additionally, we did not determine any 

deregulation of rpoS encoding σS. Again, we refer to the fact that E. coli stress response does not rely 

on single determinants, but includes a complex network, which reacts to different stresses. The yjbJ 

gene product has been identified as an appropriate biomarker for matrix-assisted laser desorption 

ionization (MALDI) time-of-flight mass spectrometry (TOF-MS) and, thus, contributes to protein-

taxonomic classification of pathogenic bacteria (Fagerquist et al., 2010). 
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Another osmotic stress-associated gene that we found to be negatively deregulated in milk whey and 

milk whey +LPS, is ecnB, which is part of the entericidin locus of E. coli. While the entericidin A 

lipoprotein EcnA represents the antidote, EcnB is the bacteriolytic entericidin B lipoprotein of EcnAB, 

a linked toxin-antitoxin "addiction module" (Bishop et al., 1998). Together, EcnAB enables regulation 

of bacterial programmed cell death under high osmolarity conditions. The marked down-regulation 

of ecnB in milk whey, relative to DMEM, is once more suggesting that no osmotic stress is about to 

elicit a corresponding response, probably due to the physiologic composition of milk whey itself. 

 Oxidative stress 

It can be anticipated that bacteria approaching mammary secretions are exposed to reactive oxygen 

species (ROS), produced by phagocytes, which directly and indirectly support killing of the 

approaching bacteria (Thannickal and Fanburg, 2000). Moreover, ferrous iron is oxidized by ROS and, 

thus, causes inactivation of iron-cofactored key enzymes in metabolic redox-reactions (Jang and 

Imlay, 2007; Park et al., 2005). Specifically, the E. coli nrdHIEF operon encodes for the alternative 

ribonucleotide reductase NrdEF. The manganese-dependent enzyme NrdEF allows for cell replication 

during iron starvation caused by ROS when the iron-dependent ribonucleotide reductase NrdAB is 

functionally diminished (Martin and Imlay, 2011). We found that nrdH and nrdI, both members of the 

nrdHIEF operon, have been negatively deregulated in milk whey and milk whey +LPS. Specifically, 

nrdH encodes a thiol-based redoxin, which replaces the thioredoxin in ribonucleotide reduction, 

while nrdI encodes the flavodoxin NrdI involved in cofactor maintenance of the ribonucleotide 

reductase (Jordan et al., 1997; Cotruvo and Stubbe, 2008). As the nrdHIEF operon is highly expressed 

during oxidative stress (Monje-Casas et al., 2001; Martin and Imlay, 2011), down-regulation of both 

these genes suggests that no oxidative stress existed in our samples, at least after 1h incubation in 

mammary secretions. This is further corroborated by the negative deregulation of mntH in milk whey 

and milk whey +LPS. Its gene product, the manganese importer MntH, is required by the manganese-

dependent NrdEF. During oxidative stress conditions mntH is strongly induced (Martin and Imlay, 

2011; Kehres et al., 2002). At least, the isogenic mutants of regulatory gene iscR, which we as well 

determined to be down-regulated in milk whey +LPS, have been shown to elicit a decrease in nrdHIEF 

operon transcription (Martin and Imlay, 2011).It has been further suggested that the regulators Fur 

and IscR are opposed regulators for nrdHIEF when oxidative stress mutilates the bacteria. In this 

case, IscR might activate while Fur represses transcription of nrdHIEF. Furthermore, the negative 

deregulation of osmC is in line with the finding of no oxidative stress conditions at 1h in milk 

whey +LPS. The osmC gene product confers peroxidase activity and has been determined sensitive to 

oxidative stress (Lesniak et al., 2003; Conter et al., 2001). We suggest that at least 1h hour after the 

beginning of the incubation in milk whey and milk whey +LPS, the transcriptional response of E. coli 

mastitis strains 1303 or ECC-1470 does not indicate any oxidative stress. Albeit the presence of ROS 
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in milk whey can be anticipated, their concentration may be below the harming threshold. This may 

be due to the fact that milk whey does not comprise any macrophages for ROS production. In this 

case, the negative deregulation of genes associated to oxidative stress can be seen as a feedback 

signal. Thus, it can be concluded that oxidative stress has been overcome by both mastitis strains at 

the very onset of incubation in milk whey.  

 Multiple stresses 

The genes potD and potF belong to the potFGHI operon of the putrescine transport system in E. coli 

(Pistocchi et al., 1993). These genes have been positively deregulated in milk whey and milk 

whey +LPS. Due to the ill-defined relation of putrescine transport, a particular role in putrescine 

catabolism or anabolism is difficult to anticipate. From what is known, putrescine facilitates mRNA 

translation and, thus, contributes to cell viability controlled by Rmf (Terui et al., 2010). Anyhow, the 

Rmf-encoding gene was down-regulated as well in our E. coli transcriptome samples from milk whey 

and milk whey +LPS, the putrescine transport system has also been referred to as a bacterial 

periplasmic transport system. While ribosome modulation occurs in the cytosol, it can be emphasized 

that transcription of the putrescine transport system is more related to another function conferred 

by putrescine. It has been discussed previously, that in addition to amino acid synthesis, the release 

of putrescine is indicating hyperosmotic stress (Koegel, 2008). Furthermore, putrescine is a 

polyamine, which can confer various functions apart from effecting bacterial growth. For example, 

polyamines seem to be involved in the regulation of biofilm development in bacteria (Wortham et 

al., 2007). It is common knowledge that biofilm formation is a protective encasement method to 

shield the bacteria against harsh environmental conditions. This way or another, the identified 

expression of the putrescine transport genes might reflect stress-associated processes in both 

mastitis E. coli strains. A recent study supports that putrescine catabolism is a metabolic response to 

several stresses in E. coli. Among others, nitrogen-limited growth often involves utilization of 

nitrogen sources other than an ammonium salt, such as putrescine or arginine (Schneider et al., 

2013). At least the particular role of polyamines during anaerobic growth is still unknown. 
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V.6.7. Remarks on RNA-Seq 

In the present study we have used high-throughput Illumina sequencing of cDNA, referred to as 

RNA-Seq to comprehensively analyze the transcriptomes of two E. coli isolates from bovine mastitis. 

Previous studies have already proven that RNA-Seq expression measures are highly reproducible by 

qRT-PCR, DNA-microarray and protein expression data obtained by shotgun mass-spectrometry 

(Nookaew et al., 2012; Marioni et al., 2008; Fu et al., 2009). The transcriptome data of the present 

study provided sufficient mRNA expression levels for the successful identification of DEG in mastitic 

E. coli incubated in milk whey to mimic conditions during mastitis infection.  

It should, nevertheless, be noted that serious difficulties might appear when combining different 

sequencing technologies in RNA-Seq-based identification of differentially expressed genes: The 

identification of differentially expressed genes requires high quality genome data and RNA-Seq data, 

since it is well known that accurate mapping is mandatory to estimate gene expression levels 

(Nookaew et al., 2012). From our investigation we can conclude that sequence reads obtained by the 

Illumina platform can hardly be mapped to reference sequences acquired by 454 sequencing 

technology, because the 454 reference sequences are commonly corrupted by incorrect 

homopolymer runs. In consequence, the mapping parameters have to be widened and this 

subsequently affects correct read mapping and inflicts bias to the estimation of expression levels. 

Finally, not only the identification of differentially expressed genes, but the whole transcriptome 

analysis might be biased as well.  

Bottom line, RNA-Seq based transcriptomic is a great advantage in understanding the molecular basis 

of infection and disease caused by E. coli. Furthermore, we hope that the acquired transcriptome 

datasets will be a useful resource to broaden the knowledge of the E. coli research community. 
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VI. GENERAL DISCUSSION 

The present study aimed at the characterization of virulence-associated traits from E. coli model 

mastitis isolates 1303 (acute mastitis) and ECC-1470 (persistent mastitis). It is assumed that 

virulence-associated traits of E. coli mastitis isolates are deregulated during E. coli growth and 

colonization of the bovine udder. Multiple parameters can affect the transcriptional profiles of E. coli 

during adaption. E. coli invading the bovine udder encounter drastically altered environmental 

conditions as well as several host defense mechanisms. Besides the cellular components of the 

immune response, the invading bacteria are challenged by soluble components of the immune 

system. These components mainly comprise numerous defensins, lysozyme, lactoferrin and 

lactoglobulin (Kawai et al., 2013; Piccinini et al., 1999; Chaneton et al., 2008). Moreover, nutritional 

limitations (e.g. iron, nitrogen, carbohydrates etc.) and altered environmental cues, such as oxidative 

agents, osmotic and pH changes, might even challenge the highly versatile E. coli. By facing these 

harsh conditions, E. coli has to successfully sense and quickly adapt. Therefore, E. coli needs to 

respond by appropriate regulation of fitness and virulence-associated traits. 

In order to identify relevant phenotypes or subgroups among the E. coli isolates from mastitis cases 

and from bovine faeces, phenotypic assays have been employed. Additionally, the effect of selected 

milk components was tested. We generated reproducible data by phenotypic assays and 

transcriptome analyses from bacteria incubated in milk whey. Last but not least, the bacterial 

transcriptome in the presence of bovine mammary gland epithelial cells was evaluated. 

VI.1.1. E. coli 1303 and ECC-1470 lack particular virulence-associated genes 

By focusing on two well-known E. coli mastitis strains, E. coli strain 1303 (acute mastitis isolate) and 

ECC-1470 (persistent mastitis isolate), we screened for the presence of virulence factors previously 

associated with mastitis (Table 9). It was found that E. coli 1303 and ECC-1470 differ in their 

individual virulence gene content. Specifically, E. coli 1303 and ECC-1470 lack particular virulence 

genes, which have been correlated with mastitis isolates in previous studies. On the one hand, the 

literature consequently reports rather low frequencies of virulence-associated factors that often do 

not exceed 30 % prevalence (Blum and Leitner, 2013; Silva et al., 2013; Cheng et al., 2012; Dogan et 

al., 2012; Kerro Dego et al., 2012; Fernandes et al., 2011; Suojala et al., 2011; Ghanbarpour and 

Oswald, 2010; Dyer et al., 2007; Wenz et al., 2006; Lehtolainen et al., 2003; Kaipainen et al., 2002; 

Wise et al., 2002; Lipman et al., 1995; Sanchez-Carlo et al., 1984). On the other hand, the total 

virulence potential of a pathogen is often greater than the sum of the individual contributions of 

virulence associated traits. Considering the fact that pathotypes have been defined by the site of 

infection / the niche in which they cause disease, it is widely accepted that virulence and fitness traits 

act synergistically and enable the pathogen to thrive. It can, therefore, be anticipated that the 
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bacterial determinants found to be deregulated in this study belong to a much bigger set of factors 

that promote a successful colonization of the udder. Regarding our transcriptome data from 

incubation in milk whey, the lack of positively deregulated and also of true virulence-associated 

determinants in both of the mastitis isolates indicated that E. coli might have adapted by other 

means to the udder (or at least mammary secretion) as an inflammatory site. We added interesting 

aspects and further knowledge to this topic. 

VI.1.2. Environmental isolates provide a reservoir of potential mammary pathogenic E. coli 

A previous study reported about a subset of environmental isolates, isolated from cows’ 

environment in dairy farms, resembling mastitis isolates according to their growth, but the authors 

used pasteurized milk so that antimicrobial factors were probably neutralized (Blum et al., 2008). 

Thus, a particular causality remains unclear. In the present study, it has been focused on the 

phenotypic characterization of mastitis E. coli isolates relative to isolates from bovine faeces. We 

specifically addressed the question whether mastitis and faecal strains differ in their individual 

fitness traits under selected conditions mimicking those in mammary secretions. Antimicrobial 

factors that E. coli has to encounter during colonization of the udder originate either from blood 

serum or are synthesized in the mammary gland (Sordillo and Streicher, 2002). It is known that all of 

them are heat labile to different degrees and will be inactivated during milk processing, which 

includes severe heat treatment and drying, so that antibacterial factors are probably neutralized or 

confer decreased efficiency (Reiter and Brock, 1975). 

In the present study, native milk whey was prepared from raw whole milk to assess the different 

phenotypic properties and transcriptional changes of selected E. coli isolates upon growth in 

mammary secretions. It has clearly been demonstrated that milk whey exhibits antimicrobial effects 

that are not provided by milk fat compounds or components of the cellular immune response. These 

antimicrobial effects are thought to result from either defensins, lysozyme, lactoferrin and 

lactoglobulin (Kawai et al., 2013; Isobe, Nakamura, et al., 2009; Piccinini et al., 1999; Chaneton et al., 

2008), whereas E. coli revealed to be unsusceptible to lactoglobulin (Chaneton et al., 2011). We also 

challenged selected isolates with iron shortage, lactose as sole carbon source and LAP as a main 

defensin of milk, respectively. 

 Different outcomes of selected E. coli mastitis and faecal isolates in various phenotypic assays  

It has been shown that in terms of fitness in milk whey, E. coli isolates from bovine faeces represent a 

heterogeneous group of which some isolates showed a substantially reduced ability to survive in milk 

whey (group 1), whereas others (group 2) phenotypically resemble mastitis isolates. In contrast, the 

E. coli mastitis isolates represented a phenotypically homogeneous group in that they showed similar 

survival and growth characteristics in milk whey. Interestingly, mastitis isolates did not exhibit such a 
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uniform phenotype in different other phenotypic assays conducted suggesting that these traits other 

than resistance to antimicrobial factors in milk whey are not critical for the establishment of mastitis, 

but they contribute to the overall fitness in milk whey. We clearly demonstrated that faecal isolates 

did not reveal any characterisitic, distinctive features which distinguish them from mastitis isolates 

except the reduced ability of group 1 isolates to survive in milk whey. Neither growth on lactose as 

the sole carbon source, the lactoferrin growth inhibition assay, nor the LAP resistance assay, was able 

to clearly distinguish group 2 isolates from mastitis isolates.  

Following the individual growth characteristics of selected E. coli isolates in milk whey, it became 

obvious that initial survival is more important than growth rates. This can be concluded from the fact 

that the growth curves of mastitis and bovine faecal isolates turned out to resemble each other while 

the initial survival rates considerably differed. Milk whey includes a combination of antimicrobial 

components which may act synergistically or have additive effects. While of the determinants tested, 

LAP as a defensin contributed markedly to decreased bacterial counts, but had only weak effect on 

particular group 2 isolates, it has to be assumed that LAP and other defensins might act in synergy. It 

should be noted that resistance to defensins might be not a general molecular mechanism, but can 

be highly specific to the particular defensin. Besides LAP, there are several other defensins present in 

mammary secretions such as bovine neutrophil β-defensin, tracheal antimicrobial peptide, enteric β-

defensin and bovine β-defensin, while the number of discovered defensins is still increasing (Kawai et 

al., 2013). Their synergistic action in contributing to the total antimicrobial effect of mammary 

secretions can be expected.  

So far, we clearly demonstrated that bovine faecal E. coli isolates represent a heterogeneous group 

of which some isolates showed a substantially reduced ability to survive in mammary secretions 

(group 1), whereas others (group 2) resembled mastitis isolates that constitute a homogeneous 

group regarding their successful survival and growth characteristics in raw milk whey. Our results 

further corroborate the suggestion that some environmental isolates may provide a subgroup of 

E. coli with the potential to thrive in the bovine udder (Blum et al., 2008). Furthermore, we can 

summarize that encountering mammary secretions is a critical step of E. coli intramammary 

colonization. Ongoing bacterial growth and multiplication might be inhibited by components which 

are induced due to host response. Vice versa, bacterial fitness determinants have to be regulated 

during survival in milk whey.  

VI.1.3. Encountering mammary secretions is a critical step to E. coli intramammary 
colonization 

The primary colonization of the host or the inflammatory site in particular is regarded to be a critical 

step of an infection. Before mastitis causing E. coli are able to colonize the milk ducts and mammary 
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tissue, it is first of all important to survive and multiply in mammary secretions, which are known to 

contain antimicrobial compounds.  

In the present study, we clearly demonstrated that milk whey provides antimicrobial effects 

independently from that of milk fat compounds or components of the cellular immune response. The 

bacterial transcriptional response to incubation in milk whey and milk whey +LPS has been assessed 

by RNA-Seq. Both, the total number and the number of exclusively deregulated genes in milk 

whey +LPS were considerably higher than those determined in milk whey in relation to the reference 

sample. Due to increased concentration of antimicrobial factors, because of the LPS challenge, this 

was expected and demonstrated that regulation of bacterial gene expression occurred in response to 

these antimicrobial factors. The identified differentially expressed genes of E. coli strains 1303 and 

ECC-1470 reflected distinct cellular processes including regulatory processes, amino acid biosynthesis 

and utilization, exponential growth, carbon energy metabolism, decreased iron utilization, sulfate 

assimilation, virulence and extracytoplasmic stress. 

 Stress response plays a vital role for initial survival 

Encountering milk whey, the bacteria are challenged by multiple factors that simultaneously exert 

selective pressure. Consequently, E. coli isolates have to induce stress responses. The findings of the 

present study demonstrate regulation on various bacterial stress response genes including the Cpx 

stress response system. The observed deregulation of the expression of the glutamate and arginine 

pathways further corroborates the induction of stress responses upon incubation in milk whey. These 

pathways represent the main enzyme-based acid resistance pathways of ExPEC to compensate for 

acidic pH (Zhao and Houry, 2010).The release of glutamate and putrescine as solutes compensate for 

hyperosmotic stress (Koegel, 2008). The up-regulation of the putrescine transporter gene potF might 

support this suggestion. In line with this, acidic pH can be usually observed during exponential (and 

competitive) growth. We observed acidic pH as well in the presence of bovine mammary gland 

epithelial cells. Furthermore, we identified deregulation of ydiY expression that was reported as one 

of two genes induced when E. coli grows at acidic pH (Stancik et al., 2002). YdiY is likely to be 

involved in survival by sensing environmental conditions. Sensing environmental conditions is a 

prerequisite for pathogenic bacteria, as many of the newly encountered environments or niches 

confer potentially lethal mechanisms and the bacteria have to quickly sense and induce resistance 

against these lethal factors. 

We anticipate that mastitis E. coli isolates modulate their cell surface characteristics by the Cpx 

system in order to improve resistance to extracytoplasmic stress. A similar situation has been 

observed in ExPEC in order to increase fitness and virulence (Debnath et al., 2013).  

Interestingly, all deregulated genes identified, that account for oxidative stress response, were down-

regulated at one hour after inoculation in milk whey and milk whey+LPS. We conclude, that oxidative 
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conditions caused by, e.g. ROS and/or NOS cannot be properly studied in milk whey, because ROS 

and/or iNOS are situationally expressed by cellular components of the host’s immune response, 

which are depleted in milk whey. The obtained growth characteristics revealed similar curve shapes 

that suggest continued bacterial multiplication after the initial time period after inoculation in milk 

whey when defensins seem to be most active.  

On the one hand, it is questionable whether these conclusions on antimicrobial effects in milk whey 

can be simply transferred to the in vivo situation. We emphasize that the causative agents that 

confer antimicrobial effects might constantly be released to different degrees in the mammary gland. 

The release of particular components such as defensins will even be increased (Isobe, Morimoto, et 

al., 2009). In contrast, in milk whey an initial concentration of these antimicrobial agents is provided 

which might be unleashed immediately. Consequently, the antimicrobial activity might be to some 

extent expended and provides a weak or even no further effect.  

Bacterial entry into the udder will immediately elicit a bacterial response depending on the bacterial 

ability to sense the adverse conditions and regulate appropriate fitness traits. It is, therefore, also 

possible that quick adaptation and/or spontaneous, inheritable resistance to antimicrobial agents 

enable unimpeded growth although or even because these agents are further released. Interestingly, 

a previous study demonstrated that E. coli can become spontaneously resistant to AMPs upon in 

vitro exposure to slowly increasing peptide concentrations (Perron et al., 2006). It will be an 

interesting task to follow the bacterial resistance potential to different defensins. Thus far, we have 

not found any evidence for deregulation of genes encoding for extracellular proteases (such as DegP 

or EspP), which constitute obvious bacterial factors, which degrade AMPs. There are several other 

strategies to confer resistance to AMPs besides proteases. These mechanisms are often specific for 

certain peptides, relying on recognition and extracellular capturing or active extrusion of Cationic 

Antimicrobial Peptides (CAMPs) from the bacterial membrane (Peschel and Sahl, 2006). Although 

neither resistance mechanisms nor their deregulation have been determined in the present study, it 

is likely that there is one or more that yet remain unexplored. To which extent such traits will be 

induced by the Cpx stress response system, as it has been reported for Tat-dependent peptidoglycan 

amidases conferring resistance to AMPs in E. coli and Salmonella (Weatherspoon-Griffin et al., 2011), 

remains to be investigated. Against this background, it remains a task to further discern the 

individual contribution of single factors in the milk whey to the total antimicrobial effect of milk 

whey. Together, multiple factors apply simultaneous selective pressure on E. coli initial survival and 

consequent growth. It has been successfully demonstrated for the first time that the initial thriving in 

milk whey represents a critical step in colonizing the bovine udder. 
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VI.1.4. Traits improving bacterial growth in mammary sectretion 

Apart from antimicrobial agents, the limitation of essentials (i.e. by lactoferrin) represents an 

imminent inhibitory factor for bacterial multiplication. 

 Iron shortage does not occur to E. coli during first hours in mammary secretion 

In our lactoferrin growth-inhibition assay, it has been shown that during 7 hours of incubation, 

lactoferrin provides no growth inhibiting effects to E. coli isolates either from mastitis (acute and 

persistent) or bovine faeces. Other studies reported on lactoferrin mediated bacteriostasis after 

markedly longer incubation (Rainard, 1986; Chaneton et al., 2011). Additionally, our transcriptional 

data on E. coli incubation in milk whey and milk whey+LPS indicate rather negative deregulation of 

genes associated with iron assimilation than an increased expression of iron uptake systems. 

Amongst others, genes of the enterobactin iron acquisition system were down-regulated. This is 

somehow surprising, because a previous study reported growth inhibition of E. coli in mammary 

secretions by blocking iron uptake with an antibody specific for the enterobactin receptor (Lin et al., 

1999). This indicates the importance of iron uptake systems in the context of mastitis whereas it can 

be anticipated that other iron uptake or storage properties compensate for the reduced expression 

of enterobactin.  

Furthermore, it has been hypothesized that bacteria approaching mammary secretions are exposed 

to ROS. ROS, produced by phagocytes, directly and indirectly support killing bacteria (Thannickal and 

Fanburg, 2000). Moreover, ferrous iron is oxidized by ROS and, thus, causes inactivation of metabolic 

key enzymes dependent on iron-redox-reactions (Jang and Imlay, 2007; Park et al., 2005). 

Consequently, alternative determinants are required to compensate for that. Vice versa, it can be 

concluded that the down-regulation of determinants that compensate for iron shortage indicates 

sufficient availability of iron. This might be a reasonable explanation for the fact that all differentially 

expressed genes associated with iron assimilation exhibited down-regulation in milk whey and in milk 

whey+LPS. This conclusion is supported by the fact that expression of the alternative ribonucleotide 

reductase NrdEF, which can compensate for the standard ribonucleotide reductase NrdAB during 

iron shortage, was down-regulated. In contrast to the iron-dependent NrdAB, the non-redox enzyme 

NrdEF uses imported manganese to replace iron (Martin and Imlay, 2011). A functional 

ribonucleotide reductase is, however, mandatory for aerobic growth (Jordan et al., 1996). The NrdEF 

supplementary manganese importer MntH can be considered as an indication for iron deficiency and 

it has been down-regulated as well in milk whey. 

Altogether, we conclude that E. coli growth is not impaired by iron shortage in early stages of mastitis 

pathogenesis. Nevertheless, biologically accessible iron might be limited due to lactoferrin. Due to 

the fact that functional iron acquisition systems are considered to be essential in virulence, the 

observed negative deregulation of iron uptake associated genes is surprising. It has been shown 
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previously that iron availability altered the susceptibility of E. coli mastitis isolates to phagocytosis by 

neutrophils, but had no effect on their susceptibility to the bactericidal activity of blood serum (Wise 

et al., 2002). Whether a similar scenario can be assumed for mammary secretions remains yet 

unclear. Our observations suggest that either there is apparently no iron shortage to E. coli in milk 

whey or it confers less impact than initially thought. Especially, rather high concentrations of 

lactoferrin revealed no significant impact on vitality or growth of the isolates tested. These 

observations account for short term incubation in iron-limited media. Martin and colleagues 

reported that the manganese symporter protein MntH, required by NrdAB, failed to be expressed for 

several hours in iron-limited isogenic nrdAB mutants. They concluded that this might be the time 

needed for depletion of E. coli´s cellular iron stores (Martin and Imlay, 2011). 

We have reasons to believe that iron may, however, become limited during later phases of E. coli 

growth in the mammary tissue. In parallel, a recent study reported that the inactivation of the 

biosynthetic pathways of several siderophores (enterobactin, salmochelin and yersiniabactin) 

abolished virulence of ExPEC in a mouse sepsis model indicating that these pathways are essential for 

the survival of ExPEC in vivo (Martin et al., 2013). Thus, we emphasize that expression of genes 

involved in iron assimilation might considerably differ between the initial and ongoing stages of 

mastitis pathogenesis. A first supplementary indication has been described by Lin and colleagues 

who reported that E. coli mastitis isolates share a specific enterochelin-iron retrieval system that 

includes the surface exposed protein FepA. It was expressed on all clinical mastitis isolates tested. A 

FepA-specific vaccine caused immune response in cows and blocked growth of E. coli in synthetic 

medium and dry mammary secretion (Lin et al., 1998 and 1999). Supporting our finding that iron is 

sufficient during initial bacterial growth in milk whey, we observed negative deregulation of the fepA 

gene in milk whey in relation to the DMEM reference sample. The only strictly iron-associated gene 

that was evidently up-regulated in milk whey +LPS, in contrast to the reference samples DMEM and 

milk whey, has been ftnA. The FtnA protein accounts for iron storage and might preserve iron, 

possibly in order to extent the time needed for depletion of E. coli´s cellular iron stores. We suggest 

that down-regulation of genes associated with iron uptake systems, when iron is still accessible or 

sufficient, might save energy costs to the pathogen. It can be anticipated that intramammary E. coli 

will quickly induce the down-regulated determinants that we determined, when iron becomes 

limited in ongoing stages of infection. A confirmation that rather late than early expression of iron 

uptake systems takes place is nonetheless required.  

Together our results changed our view concerning the impact of iron on initial colonization during 

mastitis. It is also conceivable that this model of initial iron independency during transition from the 

environment to the host can be adapted to other ExPEC-caused diseases. 
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 Citrate utilization might be a key factor to E. coli intramammary fitness 

The milk ducts are a physiological environment with loads of antibacterial components and constant 

flow of mammary secretions which requires adhesion capability. From adhesion and invasion assays, 

it is suggested that a rather small portion of bacteria is internalized into the mammary tissue. In 

contrast, a major portion of the bacteria stays and multiplies in the milk ducts and caverns. 

Therefore, successful growth in mammary secretion requires adaptation to the nutritients available 

in milk. It is common knowledge that carbohydrates constitute a main energy source of E. coli. During 

our cocultivation experiments in the presence of host cells, the competition between the host cells 

and the bacteria for glucose and oxygen in the cell culture medium was a dominant feature. In vivo 

host cells are supplied by blood vessels while growing bacteria are initially depending on the 

carbohydrates present in mammary secretion. This suggests that an in vivo competition for nutrients 

is unlikely.  

Citrate and lactose represent the main energy source available in mammary secretions in general. 

Due to the preparation of the milk whey from raw milk, both should have the same carbohydrate 

content. It has been discussed that the ability to utilize citrate might be important for mastitis E. coli 

isolates. Citrate and iron can be imported by the same way via the ferric di-citrate transport system 

(Fec) which we found to be deregulated upon growth in milk whey. By this, high citrate levels can 

compensate for the bactericidal effect of lactoferrin in milk due to the fact that citrate chelates iron 

and can then be taken up by the bacteria. Already imported, citrate becomes a valuable energy 

source, which itself depends on the ability to utilize iron. This trait is mediated by the cit operon. In 

the present study, a strong positive deregulation of the cit operon has been observed when mastitis 

E. coli isolates 1303 and ECC-1470 were incubated in either milk whey or milk whey +LPS. It should be 

noted that normally E. coli cannot grow on citrate as a sole carbon source under aerobic conditions 

and that this phenotypic trait, which has frequently been used to distinguish E. coli from other 

bacterial mastitis isolates (Quandt et al., 2014; Hogan and Smith, 2003; Hogan et al., 1999). However, 

citrate-positive isolates of E. coli from different environments, humans, feral birds, domestic animals 

and, moreover, cattle have been reported decades before (Ishiguro et al., 1979; Ishiguro et al., 1978). 

From the observed deregulation, we conclude that the presence of the cit cluster does enable E. coli 

to multiply independently from carbon and energy sources other than citrate and lactose. Lactose is 

a necessary co-factor for citrate fermentation in E. coli (Lütgens and Gottschalk, 1980). E. coli strains 

that possess the ability to ferment citrate possess a growth advantage relative to E. coli that lack the 

cit cluster, because citrate and lactose are abundant in mammary secretions. This might be 

corroborated by the deregulation observed for genes associated with iron-sulfur cluster biosynthesis, 

which is also mandatory for citrate metabolism. Accordingly, the deregulation of the expression of 

the cit cluster, in milk whey and milk whey+LPS, reflects a metabolic strategy to utilize citrate, which 
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is as a major carbon source in mammary secretions and which might be correlated to increased 

fitness of mastitic E. coli. This trait might also enable mastitic E. coli to outrun many of the host´s 

antibacterial defense measures. Recent in vitro evolution experiments showed that E. coli might gain 

the ability to use abundant citrate in the growth medium after several thousand generations and 

thereby were able to reach a much higher population density in this environment (Quandt et al., 

2014). In summary, we propose that the ability to utilize citrate could represent a critical bacterial 

fitness factor of mastitis isolates required for successful intramammary survival. 

 Role of well-known virulence-associated traits in milk 

In the present study, only a very few genes have been identified to be deregulated upon cultivation 

in milk whey, which could also have a virulence-associated function. These include several outer 

membrane proteins, or proteins associated with the bacterial membrane. Especially those genes that 

encode for protein with a leader sequences required for the Sec-dependent secretion pathway are 

likely to be involved in host-pathogen interaction. Some of them might be therapeutic targets for the 

development of antibiotics or vaccines. The only gene, with a reported virulence-associated function, 

which was positively deregulated in milk whey +LPS, was the tsx gene. Its gene product is a porin that 

is presumably involved in different survival strategies to evade immune pressure and to respond to 

antibiotics. This suggests a significant role as pathogenicity factor (Achouak et al., 2001). The tsx gene 

might be a candidate for further investigation. 

VI.1.5. E. coli adhesion to cultured mammary gland epithelial cells 

This This study clearly demonstrated for the first time that mammary secretions, deficient of cellular 

components and fat, significantly reduced the ability to adhere to mammary gland epithelial cells. 

Given the fact that in vivo adhesion during mastitis is still questionable, the inhibitory effects on 

bacterial adhesion have been almost exclusively related to milk fat (globules) and its components 

(Sánchez-Juanes et al., 2009; Guri et al., 2012; Schroten et al., 1992; Atroshi et al., 1983; Harper et 

al., 1978). In the present study, it has been demonstrated that rather synergistic effects of mammary 

secretion compounds account for the inhibition of bacterial adhesion-inhibition than milk fat alone 

(page 88). 

In order to shed light on which non-cellular components contributed to inhibition of E. coli cell 

adhesion, it was required to test different fractions of whole milk for inhibitory components. 

Assuming that the composition of mammary secretions accounts for growth inhibition, it 

corroborates the hypothesis of the so called “cow factors”. In contrast, distinct growth characteristics 

of mastitis isolates in vitro have been frequently observed (Döpfer et al., 2000; Dogan et al., 2006; 

and the present study). Based on their different adhesion and invasion characteristics, it has been 

hypothesized that E. coli strain 1303 differs from isolate ECC-1470 in either its genome content or the 
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transcriptional activity. Our data indicated that the diverse adhesive properties probably rely on 

other factors than LpfA, which has been formerly presumed to be an important adherence factor 

(Dogan et al., 2012). We found that lpfA has either been missing in genome of Ec 1303 and was not 

expressed in E. coli ECC-1470. Hence, the colonization of the udder is likely to rely on other factors.  

VI.1.6. E. coli 1303 and ECC-1470 differed in their gene expression profiles in the presence 
of mammary gland epithelial cells 

The transient mastitis isolate E. coli 1303 and the persistent mastitis isolate ECC-1470 differed in 

their gene expression profiles in presence of mammary gland epithelial cells (Figure 20). The analysis 

of the bacterial transcriptome under conditions mimicking the presence of udder epithelial cells 

revealed numerous differentially regulated genes relative to the absence of host cells. The identified 

determinants mainly represent cellular processes that indicate competition for nutrients and growth 

under anaerobic or at least oxygen-limited conditions. Nevertheless, the description of deregulated 

gene clusters identified by microarray hybridization requires further confirmation by qRT-PCR. 

 Competitive growth in presence of mammary gland cells activates stress response 

A fraction of the deregulated genes including the Cpx stress response system indicates 

extracytoplasmic stress. Mastitis E. coli isolates may modulate their cell surface characteristics when 

they encounter host contact. In this context, the Cpx system has been recently reported to 

potentiate fitness and virulence of ExPEC (Debnath et al., 2013). In contrast, we could neither identify 

significant deregulation of the csrA gene expression, which is involved in the oxidative stress 

response and host cell invasion (Fields and Thompson, 2008). Instead, expression of the oxyR gene 

was highly up-regulated. OxyR is a major transcriptional regulator required for oxidative stress 

response. It´s up-regulation was accompanied by up-regulation, although not differentially, of crp 

encoding the cyclic AMP receptor protein Crp. On the one hand Crp is involved in catabolite 

repression, meaning that as long glucose is available for E. coli, the metabolic onversion to other 

carbohydrate sources is under repression (Deutscher, 2008). Therefore, transcription of catabolic 

genes involved in energy metabolism is switched on by cAMP-CRP, especially in a setting of 

cocultivation where epithelial cells and bacteria are competing for glucose. On the other hand it has 

also been reported that Crp regulate various virulence genes, such as fim, hly, tib (adherence locus) 

and the pet AT toxin-encoding gene, in different E. coli pathotypes such as ETEC and UPEC (Müller et 

al., 2009; Fuentes et al., 2009; Espert et al., 2011; Rossiter et al., 2011; Kansal et al., 2013; Donovan 

et al., 2013). Furthermore, it is known that rpoS might be involved in Crp response(Fuentes et al., 

2009). Notably, we found the corresponding gene to be deregulated after three hours of 

cocultivation of strain ECC-1470 with MAC-T cells. Due to recent findings (Seth et al., 2012), we 

suggest that this might reflect oxidative or/and nitrosative stress caused by reactive species of either 

one. However, a presumed regulation of catabolite repression should not be excluded. 
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The regulators Cpx, CsrA, OxyR, and RpoS belong to a complex regulatory network that has by today 

not entirely been uncovered. This network comprises cell contact-sensing, signaling cascades and 

regulation of virulence or fitness-associated factors. Whether the up-regulation of members of this 

regulatory network is solely reflecting stress response that promotes adaption and survival of E. coli 

under the novel growth conditions or actively contributes to pathogenesis of E. coli in the mammary 

gland requires further investigation. 

We can conclude that at least during in vitro cocultivation with bovine mammary gland epithelial 

cells, significantly deregulated genes in both mastitic strains indicate the exposure to 

extracytoplasmic stress. This is probably caused by metabolic competition for nutrients and the 

accumulation of metabolic end products of both, bacteria and host cells, in the cell culture medium. 

Whether this kind of competition also occurs in vivo might be questioned, because the mammary 

gland epithelial cells, which are lining the alveolar space, are supplied by surrounding blood vessels. 

Given the fact that mainly genes assigned to energy metabolism differed in their expression between 

the strains, it can be assumed that both strains used different strategies to metabolize under the 

conditions of cocultivation with MAC-T cells.  

 Virulence potential of E. coli strains 1303 and ECC 1470 in the presence of host cells 

We successfully identified common differential down-regulation of genes related to fimbrial adhesins 

and flagella. Up-regulated genes involved in protection against host defenses have been observed in 

both mastitis isolates. Furthermore, a multidrug tolerance system has been up-regulated in both 

strains. But both mastitis strains also revealed differences in virulence-associated gene expression. 

The high persistence factor HipA was up-regulated in E. coli isolate ECC-1470 suggesting a 

contribution to the strain’s persistence abilities. We also found differentially expressed genes 

involved in the regulation of curli fimbriae expression. This may contribute to host-pathogen 

interaction. Further investigations will be necessary to further confirm this correlation between the 

E. coli cell adhesion and/or invasion potential and mastitis pathogenesis. 

We hypothesize that there might be correlation between the ability to efficiently adhere to 

mammary epithelial cells in the presence of milk whey, resistance to the antimicrobial activities of 

milk whey and an increased mastitis virulence potential. This hypothesis is corroborated by our RNA-

Seq-based transcriptome data revealing a marked up-regulation of the expression of determinants 

involved in the adaptation to growth conditions common in mammary secretions. It might therefore 

be promising to perform adhesion assays in the presence of milk whey and test different mastitis 

strains in comparison to faecal isolates.  

Whether the different gene expression profiles of E. coli strains 1303 and ECC-1470 reflect relevant 

geno- and phenotypic differences between the pathogenesis of transient and persistent mastitis 

isolates, or represent strain specific traits, remains to be addressed in the future.  
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VI.1.7. Peroration / Epilog 

Many of the determinants, which we identified to be deregulated under conditions mimicking those 

during initial stages of mastitis can promote the colonization of extraintestinal niches. 

In the past, a putative mammary pathogenic pathotype (MPEC) has been suggested (Shpigel et al., 

2008). Based on the data, which we obtained from our phenotypic and transcriptomic analyses, we 

could rather refuse this suggestion than add further evidence. By employing milk whey and cell 

culture experiments, the ability to mimic the mammary gland as a niche is a great advantage for 

understanding the molecular basis of E. coli mammary gland infections. We observed that the 

deregulated bacterial determinants mostly reflected either metabolic adaptation to altered 

nutritional conditions or adaptation and stress response to environmental conditions. Many of these 

deregulated determinants cannot be suggested to be mastitis-specific, because they did not reveal 

any remarkable processes which could be specifically related to either the interaction with host cells 

or the survival in mammary secretions. Of the determinants that have been differentially expressed 

in response to intramammary-like conditions, only a few may have the potential to be used as 

therapeutic targets for the development of antibiotics or vaccines against mastitis E. coli. Specific 

resistance genes against antimicrobial effects of mammary secretion could not be detected.  

We anticipate that the definition of a “mammary pathogenic E. coli“ pathotype that differens from 

other pathotypes becomes more and more less reasonable. It seems more that mastitis E. coli can 

efficiently sense the presence of particular components of milk whey and respond in a way that they 

trying to outrun the host response by fast growth. 

 

VI.2. Outlook 

In the present study, various determinants involved in adaptation during the transition from the 

environment into the host have been identified by comparative analysis of differentially expressed 

genes. These corresponding genes might be located on mobile genetic elements such as genomic 

islands and prophages that have been recently identified in the genomes of mastitis E. coli strains 

1303 and ECC-1470 (Dobrindt, unpublished data). If so, this may suggest that specific adaptation, 

fitness and competitiveness in the intramammary habitat might select for certain mobile genetic 

elements. Their identification might be useful in therapeutic application and epidemiology. 

Regarding our RNA-Seq analyses, the sequencing reads were only mapped to annotated coding 

sequences. Coding sequences that have not been annotated in the reference genomes, such as 

intercistronic regions, regions coding for transfer-messenger RNA, regulatory RNAs, such 

riboswitches, have not been included into our analysis. 10-fold of the amount of reads mapped in the 

RNA-Seq analysis has not been mapped to the annotated ORFs of our reference genome. Some of 

these reads might align to intergenic regions or coding sequences that were not or not correctly 
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annotated. A mapping to the whole reference genome sequence might represent an exciting task 

also to study differential expression of untranslated coding sequences including regulatory RNAs, 

etc. . Moreover, it would be interesting to perform a comprehensive alignment and clustering of the 

unmapped reads to similar sequences of the E. coli pangenome. Consequently, this might reveal 

either one, i) novel expressed protein-coding sequences, or ii) putative non-coding RNAs. The 

identification of novel non-coding RNAs or riboswitches may be expected. Whether these regulatory 

elements contribute to the bacterial ability to successfully cause mastitis remains yet unrevealed. 

Last but not least, the RNA-Seq data obtained can be used to uncover unknown transcriptional start 

sides as well as antisense transcripts and SNPs in the reference genomes.  

 

Another important task will be to study the in-depth-role of the particular determinants that have 

been deregulated during either cocultivation with mammary gland epithelial cells or in response to 

milk whey. Specifically, the impact of citrate utilization should be addressed in comparative growth 

assays with E. coli isolates from bovine mastitis and bovine faeces. This is even more interesting 

when focusing on comparison to the specific faecal isolates that showed reduced fitness in milk whey 

(section V.3.1).  

 

Mastitis E. coli strains are exposed to selective pressure during growth in the mammary gland. In 

order to identify determinants that are critical for survival in mammary secretions, a transposon 

mutagenesis approach will be performed. Therefore, a mastitis E. coli transposon mutant library in 

will be subjected to prolonged growth in milk whey to allow for the enrichment of mutants with 

improved growth or survival characteristics. As shown in the present study, the antimicrobial effects 

preserved in milk whey represent an obstacle to bacterial survival. This approach might therefore 

help to uncover important functional determinants, novel effectors and regulators that are involved 

in survival in mammary secretions. 
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VIII.2. Transcriptome data 

 

VIII.2.1. Transcriptome data of microarray analyses 

Data derived from differential gene expression profiling of mastitis E. coli 1303 and ECC-1470 in the 

presence of MAC-T epithelial cells in vitro relative to the absence of cells, sorted according to their 

level of expression. 

Table 18: E. coli 1303 up-regulated genes at 1 h cocultivation with MAC-T cells 

Gene Description Ratio p-value 

c3719  Hypothetical protein 5.794 0.000490 
c4838  Hypothetical protein 5.646 0.000450 
hypF carbamoyl phosphate phosphatase for [NiFe] hydrogenases  4.671 0.000638 
metR Transcriptional activator protein metR 4.482 0.002368 
cpsB mannose-1-phosphate guanyltransferase  4.297 0.002090 
yliL hypothetical protein  4.199 0.000296 
oxyR DNA-binding transcriptional dual regulator  3.892 0.001078 
Z4188 type III secretion apparatus protein  3.569 0.001735 
bglF enzyme; Transport of small molecules: Carbohydrates, organic acids, alcohols 3.312 0.001376 
ybaT predicted transporter  3.308 0.004683 
c3354  Hypothetical protein 3.241 0.002973 
yeaJ predicted diguanylate cyclase  3.231 0.002499 
yehV MerR-like regulator A 3.219 0.001612 
pppA putative prepilin peptidase A 3.079 0.002971 
L7078 hypothetical protein 3.046 0.000189 
c4059  Hypothetical protein 3.024 0.000756 
yfaT hypothetical protein  3.011 0.004204 
ECP_3840 putative transposase 2.973 0.000124 
c3873  Putative conserved protein 2.931 0.000001 
ECs3006  putative C4-type zinc finger protein  2.920 0.000050 
hydN formate dehydrogenase-H, [4Fe-4S] ferredoxin subunit  2.859 0.002034 
tauB transport; Transport of small molecules: Amino acids, amines 2.853 0.001307 
c3951  Hypothetical protein 2.848 0.000867 
c1956  Putative outer membrane protein yieC precursor 2.793 0.000054 
yiaY predicted Fe-containing alcohol dehydrogenase  2.763 0.000373 
c3902  Hypothetical protein 2.748 0.000338 
rbn ribonuclease BN  2.736 0.000960 
hycG hydrogenase 3 and formate hydrogenase complex, HycG subunit  2.649 0.002770 
tauA transport; Transport of small molecules: Amino acids, amines 2.532 0.000280 
mdtG predicted drug efflux system  2.433 0.002238 
lldD L-lactate dehydrogenase, FMN-linked  2.427 0.000035 
yigM predicted inner membrane protein  2.410 0.000634 
ycdH predicted oxidoreductase, flavin: NADH component  2.393 0.000652 
caiB crotonobetainyl-CoA: carnitine CoA-transferase  2.345 0.000442 
c1620  Hypothetical protein 2.310 0.000197 
htpX orf; Adaptations, atypical conditions 2.306 0.001447 
c4556 Conserved hypothetical protein 2.250 0.000437 
c0467  Hypothetical protein yaiO 2.233 0.002603 
tsr methyl-accepting chemotaxis protein I, serine sensor receptor  2.231 0.001665 
secA transport; Protein, peptide secretion 2.225 0.000035 
hycH protein required for maturation of hydrogenase 3  2.203 0.004783 
c4942  Hypothetical protein 2.200 0.001512 
c5192 Conserved hypothetical protein 2.171 0.000946 
hycD hydrogenase 3, membrane subunit  2.129 0.000051 
ygjO predicted methyltransferase small domain  2.124 0.000688 
ybhI predicted transporter  2.113 0.002998 
yjgB predicted alcohol dehydrogenase, Zn-dependent and NAD(P)-binding  2.042 0.000792 
c1463  Hypothetical protein 2.010 0.000361 



196  APPENDIX 

 

Gene Description Ratio p-value 

yciG hypothetical protein  1.948 0.004322 
c1589 putative tail component of prophage 1.937 0.003162 
astC succinylornithine transaminase, PLP-dependent  1.920 0.002398 
galS DNA-binding transcriptional repressor  1.918 0.001912 
ygfU Putative purine permease ygfU 1.876 0.000591 
ygeD predicted inner membrane protein  1.855 0.000222 
kdpD fused sensory histidine kinase in two-component regulatory system with KdpE 1.831 0.001854 
ilvL ilvG operon leader peptide  1.830 0.000804 
c0317 Conserved hypothetical protein 1.826 0.000576 
hisF imidazole glycerol phosphate synthase subunit HisF  1.820 0.000268 
Z2343 putative outer membrane protein Lom precursor of prophage CP-933O  1.818 0.001498 
uidC predicted outer membrane porin protein  1.772 0.000168 
fsaB fructose-6-phosphate aldolase 2  1.767 0.002446 
c1989  Putative acid shock protein 1.762 0.001511 
bioB biotin synthase  1.761 0.000023 
umuC DNA polymerase V subunit UmuC  1.746 0.001525 
wcaB Putative colanic acid biosynthesis acetyltransferase wcaB 1.742 0.002575 
gmr modulator of RNase II stability  1.725 0.003046 
yhhW hypothetical protein  1.714 0.000374 
yqhD alcohol dehydrogenase, NAD(P)-dependent  1.686 0.000390 
ybjJ predicted transporter  1.678 0.000529 
cpxP periplasmic protein combats stress  1.667 0.000372 
ytjA hypothetical protein  1.654 0.000358 
c0463  Hypothetical protein 1.645 0.002619 
rbsR DNA-binding transcriptional repressor of ribose metabolism  1.643 0.004083 
ymgE predicted inner membrane protein  1.632 0.000446 
metB cystathionine gamma-synthase  1.617 0.000855 
ompW Outer membrane protein W precursor 1.614 0.000270 
UTI89_C5126 putative tail component of prophage CP-933K 1.601 0.001454 
ycfA hypothetical protein 1.559 0.000382 
Z3309 putative tail fiber protein encoded within prophage CP-933V 1.545 0.000127 
traD DNA binding protein TraD 1.543 0.003224 
yfaZ Hypothetical protein yfaZ precursor 1.516 0.000941 
ECP_4322 multidrug efflux system protein MdtO 1.496 0.003216 
flhB flagellar biosynthesis protein B  1.491 0.000847 
malY bifunctional beta-cystathionase, PLP-dependent/ regulator of maltose regulon  1.486 0.001431 
tauB taurine transporter subunit  1.458 0.000210 
ompN outer membrane pore protein N, non-specific  1.447 0.001406 
c4999  Hypothetical protein 1.446 0.001097 
menD enzyme; Biosynthesis of cofactors, carriers: Menaquinone, ubiquinone 1.433 0.000095 
yraQ predicted permease  1.422 0.000250 
c3166  putative head-tail joining protein of prophage 1.412 0.001365 
aer fused signal transducer for aerotaxis sensory  1.400 0.004466 
aaeX membrane protein of efflux system  1.374 0.000102 
menD 2-succinyl-6-hydroxy-2, 4-cyclohexadiene-1-carboxylate synthase  1.325 0.000397 
fliR Flagellar biosynthetic protein fliR 1.302 0.000315 
c1584 putative tail component of prophage | putative tail component of prophage 1.285 0.004092 
hyfG hydrogenase 4, subunit  1.281 0.002185 
yegS hypothetical protein  1.250 0.001462 
yihQ alpha-glucosidase  1.244 0.000783 
grxA glutaredoxin 1, redox coenzyme for ribonucleotide reductase (RNR1a)  1.232 0.000165 
sbmC DNA gyrase inhibitor  1.230 0.000412 
c0315  Hypothetical protein 1.227 0.000409 
ECP_4339 phosphonates transport ATP-binding protein PhnL 1.224 0.001376 
srlA glucitol/sorbitol-specific enzyme IIC component of PTS  1.219 0.001728 
yohL hypothetical protein  1.194 0.004174 
yiiM hypothetical protein  1.187 0.004260 
nhoA N-hydroxyarylamine O-acetyltransferase  1.183 0.003742 
maeB malic enzyme  1.159 0.004774 
ycdS predicted outer membrane protein  1.157 0.001420 
ybbY predicted uracil/xanthine transporter  1.152 0.000967 
aqpZ aquaporin Z  1.149 0.000040 
yhcM conserved protein with nucleoside triphosphate hydrolase domain  1.147 0.000136 
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Z3626 sucrose specific transcriptional regulator  1.139 0.004344 
ECP_2815 hypothetical protein 1.135 0.000311 
ydcU predicted spermidine/putrescine transporter subunit  1.124 0.002334 
ECP_2970 fimbrial usher protein PixC 1.115 0.001174 
phnE phosphonate/organophosphate ester transporter subunit 1.114 0.002051 
yidL predicted DNA-binding transcriptional regulator  1.109 0.004146 
baeS sensory histidine kinase in two-component regulatory system with BaeR  1.104 0.000079 
ypdI Hypothetical lipoprotein ypdI precursor 1.093 0.000074 
ubiA 4-hydroxybenzoate octaprenyltransferase  1.077 0.000037 
hycC NADH dehydrogenase subunit N  1.077 0.000301 
ECP_0718 hypothetical protein 1.071 0.000450 
ubiF 2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase  1.067 0.000481 
mhpC 2-hydroxy-6-ketonona-2,4-dienedioic acid hydrolase  1.046 0.004197 
c2987  Ethanolamine utilization protein eutS 1.020 0.000077 
ygbF hypothetical protein  1.019 0.000300 
ypdI predicted lipoprotein involved in colanic acid biosynthesis  1.009 0.000313 
ydhP predicted transporter  1.007 0.000092 

 

Table 19: E. coli 1303 down-regulated genes at 1 h cocultivation with MAC-T cells 

Gene Description Ratio p-value 

narZ nitrate reductase 2 (NRZ), alpha subunit  -1.903 0.003663 

ydhY predicted 4Fe-4S ferridoxin-type protein  -1.760 0.002152 

yhhH hypothetical protein  -1.571 0.004907 

Z2101 putative endonuclease encoded within prophage CP-933O  -1.471 0.000275 

Z2118 putative endopeptidase Rz of prophage CP-933O  -1.421 0.004356 

ycfJ hypothetical protein  -1.249 0.001798 

citG triphosphoribosyl-dephospho-CoA transferase  -1.243 0.002905 

ECP_3800 putative regulatory protein -1.224 0.002555 

yjiX hypothetical protein  -1.219 0.002110 

yjiY predicted inner membrane protein  -1.188 0.002450 

cspA major cold shock protein  -1.168 0.003196 

guaD guanine deaminase  -1.148 0.000830 

yohM membrane protein conferring nickel and cobalt resistance  -1.120 0.000324 

yieL predicted xylanase  -1.102 0.002387 

ydhK conserved inner membrane protein  -1.079 0.001907 

sufC cysteine desulfurase ATPase component  -1.004 0.000830 

 

Table 20: E. coli 1303 up-regulated genes at 3 h cocultivation with MAC-T cells 

Gene Description Ratio p-value 

L7057 replication protein 3.044 0.027619 
c4838  Hypothetical protein 3.003 0.023735 
ybhI predicted transporter  2.306 0.007027 
oxyR DNA-binding transcriptional dual regulator  2.218 0.023817 
c3719  Hypothetical protein 2.072 0.042827 
hypF carbamoyl phosphate phosphatase [NiFe] hydrogenases  1.985 0.017999 
bglF enzyme; Transport of small molecules: Carbohydrates, organic acids, alcohols 1.975 0.001430 
UTI89_C2967 bacteriophage V tail protein 1.851 0.012296 
amtB ammonium transporter  1.820 0.020194 
tauB transport; Transport of small molecules: Amino acids, amines 1.733 0.008654 
ydcU predicted spermidine/putrescine transporter subunit  1.649 0.001534 
napA nitrate reductase, periplasmic, large subunit  1.645 0.025310 
gltI glutamate and aspartate transporter subunit  1.640 0.015068 
nuoM NADH dehydrogenase subunit M  1.606 0.007986 
ynfJ putative voltage-gated ClC-type chloride channel ClcB  1.601 0.023349 
ygbI predicted DNA-binding transcriptional regulator  1.585 0.044468 
yfcB hypothetical protein 1.564 0.003798 
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nirB nitrite reductase, large subunit, NAD(P)H-binding  1.549 0.032192 
c4556 Conserved hypothetical protein 1.513 0.012680 
c0317 Conserved hypothetical protein 1.485 0.001379 
c5192 Conserved hypothetical protein 1.483 0.001783 
yjgB predicted alcohol dehydrogenase, Zn-dependent and NAD(P)-binding  1.466 0.000480 
UTI89_C3197 ClpB protein 1.461 0.006134 
yebU Hypothetical protein yebU 1.457 0.042089 
menD enzyme; Biosynthesis of cofactors, carriers: Menaquinone, ubiquinone 1.453 0.007420 
c2130  Hypothetical protein 1.436 0.032182 
yeaG conserved protein with nucleoside triphosphate hydrolase domain  1.433 0.026552 
Z3951 hypothetical protein  1.418 0.049730 
ycjB hypothetical protein 1.416 0.042036 
holE DNA polymerase III, theta subunit  1.413 0.027867 
baeS sensory histidine kinase in two-component regulatory system with BaeR  1.407 0.000517 
uidC predicted outer membrane porin protein  1.398 0.028717 
pabA para-aminobenzoate synthase component II  1.388 0.026282 
tauA transport; Transport of small molecules: Amino acids, amines 1.383 0.021129 
poxB pyruvate dehydrogenase  1.372 0.008276 
cysU sulfate/thiosulfate transporter subunit  1.366 0.032848 
hyfF NADH dehydrogenase subunit N  1.364 0.021507 
ubiF 2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase  1.364 0.010392 
yccJ hypothetical protein  1.363 0.009016 
yhhK hypothetical protein  1.349 0.036169 
adhP enzyme; Energy metabolism, carbon: Anaerobic respiration 1.341 0.043940 
deoB phosphopentomutase  1.332 0.030176 
hemG protoporphyrin oxidase, flavoprotein  1.331 0.023380 
motA flagellar motor protein MotA  1.325 0.037545 
ECP_0962 outer membrane protein A 1.321 0.040723 
paaB predicted multicomponent oxygenase/reductase subunit for phenylacetic acid 

degradation  
1.318 0.016941 

narV nitrate reductase 2 (NRZ), gamma subunit  1.313 0.032679 
yeiM predicted nucleoside transporter  1.306 0.032445 
asnB asparagine synthetase B  1.305 0.039901 
rpoD RNA polymerase sigma factor  1.292 0.034000 
ycdL predicted enzyme  1.292 0.008046 
ybjJ predicted transporter  1.284 0.001312 
ECP_0718 hypothetical protein 1.277 0.013351 
ECP_4773 DNA repair protein RadA 1.274 0.014811 
fbaA fructose-bisphosphate aldolase  1.263 0.039281 
ycdX hypothetical protein  1.257 0.041226 
glgA glycogen synthase  1.244 0.015200 
rpmD 50S ribosomal protein L30  1.242 0.039472 
appB cytochrome bd-II oxidase, subunit II  1.240 0.018357 
yjbO phage shock protein G  1.221 0.027524 
cfa cyclopropane fatty acyl phospholipid synthase unsaturated-phospholipid 

methyltransferase 
1.219 0.033955 

gyrB DNA gyrase subunit B  1.215 0.015575 
feoB ferrous iron transport protein B  1.212 0.031098 
aqpZ aquaporin Z  1.202 0.004755 
hisB imidazole glycerol-phosphate  1.200 0.041844 
ldcC Energy metabolism, carbon: Pyruvate dehydrogenase 1.199 0.035472 
kdpB potassium-transporting ATPase subunit B  1.198 0.021652 
yeaH Hypothetical protein yeaH 1.189 0.025011 
hycG hydrogenase 3 and formate hydrogenase complex, HycG subunit  1.187 0.036814 
Z1099 hypothetical protein  1.180 0.028565 
ompC outer membrane porin protein C  1.177 0.002938 
yqhD alcohol dehydrogenase, NAD(P)-dependent  1.170 0.010367 
ypfG hypothetical protein  1.166 0.027078 
frdA fumarate reductase  1.164 0.010756 
mlrA DNA-binding transcriptional regulator  1.164 0.007277 
dld D-lactate dehydrogenase, FAD-binding, NADH independent  1.163 0.033742 
ygdD conserved inner membrane protein  1.162 0.016316 
hisF imidazole glycerol phosphate synthase subunit HisF  1.158 0.046363 
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ydhQ hypothetical protein  1.156 0.004553 
glgB glycogen branching enzyme  1.154 0.039485 
phoP DNA-binding response regulator in two-component regulatory system with 

PhoQ  
1.154 0.019834 

yrbB hypothetical protein  1.151 0.040928 
insF IS3 element protein InsF 1.150 0.033735 
rpsS 30S ribosomal protein S19  1.150 0.042759 
paaC predicted multicomponent oxygenase/reductase subunit for phenylacetic acid 

degradation  
1.149 0.026871 

psb1 putative regulator of SOS induction 1.148 0.014526 
ygeD predicted inner membrane protein  1.146 0.041707 
insF IS3 element protein InsF 1.144 0.007049 
nhoA N-hydroxyarylamine O-acetyltransferase  1.144 0.045176 
yleB - 1.140 0.027949 
c3164 putative factor; DNA packaging, phage assembly (Phage or Prophage Related) 1.139 0.048254 
ompR osmolarity response regulator  1.136 0.018228 
menD 2-succinyl-6-hydroxy-2, 4-cyclohexadiene-1-carboxylate synthase  1.135 0.001747 
paaE predicted multicomponent oxygenase/reductase subunit for phenylacetic acid 

degradation  
1.132 0.033189 

phnI carbon-phosphorus lyase complex subunit  1.132 0.027304 
lysU lysine tRNA synthetase, inducible  1.131 0.047845 
ECs5484  hypothetical protein  1.126 0.042031 
c3158  putative tail component of prophage 1.123 0.027113 
ilvE branched-chain amino acid aminotransferase  1.120 0.017555 
hybF protein involved with the maturation of hydrogenases 1 and 2  1.117 0.007163 
yeaH hypothetical protein  1.115 0.037149 
insF IS3 element protein InsF 1.114 0.007586 
menE O-succinylbenzoic acid--CoA ligase  1.113 0.025990 
pgi glucose-6-phosphate isomerase  1.112 0.017892 
blc outer membrane lipoprotein (lipocalin)  1.106 0.044586 
abrB AbrB protein (AidB regulator) 1.103 0.004759 
nhoA N-hydroxyarylamine O-acetyltransferase  1.100 0.037641 
nlpE lipoprotein involved with copper homeostasis and adhesion  1.099 0.047162 
c2748  Hypothetical protein 1.098 0.015183 
prlC oligopeptidase A  1.098 0.005893 
deoA thymidine phosphorylase  1.097 0.010418 
Z0970 putative tail component of prophage CP-933K  1.092 0.023533 
dnaJ chaperone Hsp40, co-chaperone with DnaK  1.092 0.017940 
ydfR hypothetical protein 1.091 0.026310 
ygbE conserved inner membrane protein  1.089 0.034185 
yhdY predicted amino-acid transporter subunit  1.087 0.014403 
Z0980 putative tail component of prophage CP-933K  1.086 0.036482 
yehW predicted transporter subunit: membrane component of ABC superfamily  1.084 0.018854 
c4837  Hypothetical protein 1.082 0.039611 
frdB fumarate reductase (anaerobic), Fe-S subunit  1.071 0.028053 
hyaF protein involved in nickel incorporation into hydrogenase-1 proteins  1.070 0.006551 
narH enzyme; Energy metabolism, carbon: Anaerobic respiration 1.068 0.014442 
cpxP periplasmic protein combats stress  1.067 0.006446 
yhbS predicted acyltransferase with acyl-CoA N-acyltransferase domain  1.066 0.036482 
cyoB cytochrome o ubiquinol oxidase subunit I  1.061 0.037608 
menC enzyme; Biosynthesis of cofactors, carriers: Menaquinone, ubiquinone 1.060 0.024643 
yhfG hypothetical protein  1.060 0.035312 
manY mannose-specific enzyme IIC component of PTS  1.059 0.043016 
yhhW hypothetical protein  1.051 0.007211 
ybeX predicted ion transport  1.050 0.004095 
ydhH anhydro-N-acetylmuramic acid kinase  1.050 0.048120 
yedP hypothetical protein  1.050 0.035910 
gadC predicted glutamate:gamma-aminobutyric acid antiporter  1.047 0.035811 
yjbE hypothetical protein  1.044 0.002949 
ymgG hypothetical protein  1.044 0.040853 
gudD (D)-glucarate dehydratase 1  1.043 0.046464 
moeA molybdopterin biosynthesis protein  1.042 0.022639 
lomR Rac prophage; predicted protein, N-ter fragment pseudogene 1.041 0.002790 
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ptsG fused glucose-specific PTS enzymes: IIB  1.041 0.029970 
ECP_0724 hypothetical protein 1.039 0.020607 
astB succinylarginine dihydrolase  1.036 0.015323 
ybhC predicted pectinesterase  1.036 0.023371 
asnA asparagine synthetase AsnA  1.035 0.013957 
fbp fructose-1,6-bisphosphatase  1.035 0.008513 
fimC chaperone, periplasmic  1.035 0.027329 
ybeY hypothetical protein  1.031 0.006340 
sufA iron-sulfur cluster assembly scaffold protein  1.028 0.037932 
gudP predicted D-glucarate transporter  1.027 0.039662 
Z4045 hypothetical protein  1.021 0.040670 
ubiA 4-hydroxybenzoate octaprenyltransferase  1.020 0.000353 
rpmJ 50S ribosomal protein L36  1.018 0.034127 
torY TMAO reductase III (TorYZ), cytochrome c-type subunit  1.018 0.033727 
frdC fumarate reductase subunit C  1.015 0.027717 
yfeH predicted inner membrane protein  1.013 0.015005 
rnr exoribonuclease R, RNase R  1.011 0.023250 
wrbA TrpR binding protein WrbA  1.011 0.018289 
hyaA hydrogenase 1, small subunit  1.007 0.005126 
cadA lysine decarboxylase 1  1.006 0.018937 
rpoS RNA polymerase sigma factor  1.005 0.021264 
c1462  putative factor; DNA packaging, phage assembly (Phage or Prophage Related) 1.004 0.047156 
ldcC positive control 1.004 0.043481 
yggR predicted transporter  1.004 0.026766 
cbpM modulator of CbpA co-chaperone  1.002 0.010852 
ybhQ predicted inner membrane protein  1.001 0.031647 

 

Table 21: E. coli 1303 down-regulated genes at 3 h cocultivation with MAC-T cells 

Gene Description Ratio p-value 

c5000  Hypothetical protein -3.647 0.027907 
Z2101 putative endonuclease encoded within prophage CP-933O  -3.546 0.024686 
yddA fused predicted multidrug transporter subunits  -2.946 0.019734 
torS enzyme; Energy metabolism, carbon: Anaerobic respiration -2.789 0.040084 
yibD predicted glycosyl transferase  -2.384 0.010253 
yjaI Zinc resistance-associated protein precursor -2.383 0.036959 
malF maltose transporter subunit  -2.260 0.006608 
cynT carbonic anhydrase  -2.238 0.039457 
c3219  Hypothetical protein -2.185 0.041744 
yehR hypothetical protein  -2.131 0.013630 
cusC copper/silver efflux system, outer membrane component  -2.084 0.045023 
cspG DNA-binding transcriptional regulator  -2.075 0.038116 
c0670  Hypothetical protein -2.038 0.046628 
yfgI hypothetical protein  -2.026 0.047741 
flgC flagellar basal-body rod protein C  -1.978 0.049963 
ydhI predicted inner membrane protein  -1.860 0.045241 
narY nitrate reductase 2 (NRZ), beta subunit  -1.826 0.047165 
tnaB tryptophan transporter of low affinity  -1.714 0.032191 
sfmA predicted fimbrial-like adhesin protein  -1.697 0.005352 
dos cAMP phosphodiesterase, heme-regulated  -1.673 0.042243 
trpD Anthranilate synthase component II -1.656 0.042104 
ycgF Hypothetical protein ycgF -1.655 0.042258 
ycfJ hypothetical protein  -1.631 0.024190 
yliE conserved inner membrane protein  -1.631 0.034862 
tdcA DNA-binding transcriptional activator  -1.614 0.030906 
mgtA magnesium transporter  -1.610 0.032254 
ybcS DLP12 prophage; predicted lysozyme  -1.599 0.044947 
yhcC predicted Fe-S oxidoreductase  -1.577 0.048241 
torC enzyme; Energy metabolism, carbon: Anaerobic respiration -1.503 0.047567 
yaiS hypothetical protein  -1.464 0.024833 
ytfQ predicted sugar transporter subunit: periplasmic-binding component of ABC -1.459 0.047644 
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superfamily  
yidI predicted inner membrane protein  -1.453 0.034156 
ycaO hypothetical protein  -1.443 0.020393 
c3831  Hypothetical protein -1.415 0.018194 
yoaG hypothetical protein  -1.415 0.044636 
L7046 ORFB of IS911 -1.393 0.021846 
ulaC L-ascorbate-specific enzyme IIA component of PTS  -1.371 0.006725 
suhB inositol monophosphatase  -1.369 0.026031 
c5233  Hypothetical protein -1.362 0.045485 
dgoD galactonate dehydratase  -1.361 0.041268 
yciW predicted oxidoreductase  -1.360 0.001883 
phnH carbon-phosphorus lyase complex subunit  -1.348 0.001862 
emrB multidrug efflux system protein  -1.336 0.019879 
pinR Rac prophage; predicted site-specific recombinase  -1.318 0.040083 
Z1627 hypothetical protein -1.309 0.040993 
yiaM predicted transporter  -1.283 0.035292 
Z4360 hypothetical protein  -1.280 0.030250 
ycdQ predicted glycosyl transferase  -1.277 0.003520 
dinI DNA damage-inducible protein I  -1.273 0.036503 
trbE inner membrane protein TrbE -1.269 0.031204 
narY nitrate reductase 2 (NRZ), beta subunit  -1.264 0.022200 
xdhD fused predicted xanthine/hypoxanthine oxidase:  -1.258 0.029038 
Z2343 putative outer membrane protein Lom precursor of prophage CP-933O  -1.242 0.043015 
yfiP hypothetical protein  -1.242 0.032926 
ydeP predicted oxidoreductase  -1.201 0.024745 
ybdN hypothetical protein  -1.200 0.037550 
yigN DNA recombination protein rmuC -1.194 0.045339 
fadL long-chain fatty acid outer membrane transporter  -1.192 0.009722 
c1824  Hypothetical protein -1.171 0.029865 
yfcT predicted outer membrane export usher protein  -1.157 0.041684 
yhhQ conserved inner membrane protein  -1.156 0.014234 
yeaA hypothetical protein -1.153 0.019970 
ygjJ hypothetical protein  -1.150 0.034512 
ydiR predicted electron transfer flavoprotein, FAD-binding  -1.145 0.029607 
pinQ Qin prophage; predicted site-specific recombinase -1.141 0.023897 
cheR chemotaxis regulator, protein-glutamate methyltransferase  -1.139 0.002576 
ybdL putative aminotransferase  -1.131 0.008954 
yncC predicted DNA-binding transcriptional regulator  -1.130 0.019183 
c2318  Hypothetical protein -1.116 0.012856 
flgN export chaperone for FlgK and FlgL  -1.110 0.036724 
ydiE Hypothetical protein ydiE -1.108 0.012708 
fliS flagellar protein FliS  -1.099 0.003092 
yfeD predicted DNA-binding transcriptional regulator  -1.085 0.045178 
narZ nitrate reductase 2 (NRZ), alpha subunit  -1.084 0.034313 
ybfC hypothetical protein  -1.068 0.003355 
insB CP4-6 prophage; IS1 transposase InsAB' -1.067 0.022609 
tnaA tryptophanase/L-cysteine desulfhydrase, PLP-dependent  -1.064 0.001795 
ypeC hypothetical protein  -1.062 0.045315 
phoA bacterial alkaline phosphatase  -1.023 0.013970 
c4140  Hypothetical protein -1.021 0.002267 
uxaB tagaturonate reductase  -1.019 0.048286 
ygeV predicted DNA-binding transcriptional regulator  -1.017 0.035001 
yedQ predicted diguanylate cyclase  -1.009 0.017396 
ycjQ Hypothetical zinc-type alcohol dehydrogenase-like protein ycjQ -1.008 0.048391 

 

Table 22: ECC-1470 up-regulated genes at 1 h cocultivation with MAC-T cells 

Gene Description Ratio p-value 

L7057 replication protein 6.538 0.000309 
hypF carbamoyl phosphate phosphatase and maturation protein for [NiFe] 

hydrogenases  
5.844 0.000428 
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hycG hydrogenase 3 and formate hydrogenase complex, HycG subunit  5.227 0.000465 
bglF enzyme; Transport of small molecules: Carbohydrates, organic acids, alcohols 4.922 0.000270 
c3719  Hypothetical protein 4.824 0.001407 
metR Transcriptional activator protein metR 4.619 0.000164 
tauB transport; Transport of small molecules: Amino acids, amines 4.244 0.000166 
nfrA bacteriophage N4 receptor, outer membrane subunit  4.192 0.004571 
molR - 4.152 0.008823 
gsp bifunctional glutathionylspermidine amidase/glutathionylspermidine synthetase 4.080 0.002106 
ybaT predicted transporter  3.942 0.002652 
yfaT hypothetical protein  3.889 0.001320 
ygjD Probable O-sialoglycoprotein endopeptidase 3.751 0.004062 
c1620  Hypothetical protein 3.727 0.001073 
oxyR DNA-binding transcriptional dual regulator  3.633 0.004445 
c3354  Hypothetical protein 3.588 0.013434 
yliL hypothetical protein  3.531 0.002085 
c3549  - 3.528 0.017049 
c1584 putative tail component of prophage | putative tail component of prophage 3.510 0.004948 
c3902  Hypothetical protein 3.494 0.005234 
yjgB predicted alcohol dehydrogenase, Zn-dependent and NAD(P)-binding  3.489 0.003475 
ppdA hypothetical protein  3.479 0.003744 
c4942  Hypothetical protein 3.458 0.004752 
ygjO predicted methyltransferase small domain  3.423 0.002768 
c4303  Putative conserved protein 3.407 0.007162 
c1956  Putative outer membrane protein yieC precursor 3.362 0.001255 
yiaY predicted Fe-containing alcohol dehydrogenase  3.325 0.000864 
mdtG predicted drug efflux system  3.323 0.002465 
yehV MerR-like regulator A 3.274 0.018437 
ycdH predicted oxidoreductase, flavin:NADH component  3.218 0.001378 
hydN formate dehydrogenase-H, [4Fe-4S] ferredoxin subunit  3.168 0.005405 
c0703  Hypothetical protein 3.121 0.002688 
c4250  Hypothetical protein 3.032 0.040438 
ECP_3840 putative transposase 3.000 0.001275 
wcaB Putative colanic acid biosynthesis acetyltransferase wcaB 2.919 0.000674 
yiaO Putative ABC transporter periplasmic binding protein yiaO precursor 2.883 0.008031 
Z3309 putative tail fiber protein of prophage CP-933V 2.851 0.004688 
yfaZ Hypothetical protein yfaZ precursor 2.804 0.031826 
UTI89_C5126 putative tail component of prophage CP-933K 2.791 0.002948 
tauA transport; Transport of small molecules: Amino acids, amines 2.785 0.000705 
hycD hydrogenase 3, membrane subunit  2.730 0.009915 
c4059  Hypothetical protein 2.724 0.000994 
ECs3006  putative C4-type zinc finger protein  2.722 0.001439 
Z4188 type III secretion apparatus protein  2.701 0.000710 
ymgE predicted inner membrane protein  2.692 0.000237 
astC succinylornithine transaminase, PLP-dependent  2.644 0.001769 
holE DNA polymerase III, theta subunit  2.626 0.002266 
c3873  Putative conserved protein 2.611 0.018204 
ygeZ dihydropyrimidinase  2.611 0.005451 
ybhI predicted transporter  2.596 0.001574 
c5192 Conserved hypothetical protein 2.537 0.000388 
uidC predicted outer membrane porin protein  2.535 0.001451 
c1463  Hypothetical protein 2.524 0.000459 
c0317 Conserved hypothetical protein 2.519 0.000515 
ycdC predicted DNA-binding transcriptional regulator  2.515 0.001495 
ompN outer membrane pore protein N, non-specific  2.436 0.002921 
yqhD alcohol dehydrogenase, NAD(P)-dependent  2.424 0.000896 
menD enzyme; Biosynthesis of cofactors, carriers: Menaquinone, ubiquinone 2.376 0.003283 
yjfC predicted synthetase/amidase  2.371 0.001891 
caiB crotonobetainyl-CoA:carnitineCoA-transferase  2.354 0.002784 
yhhW hypothetical protein  2.344 0.004952 
ydcU predicted spermidine/putrescine transporter subunit  2.337 0.011795 
c1589 putative tail component of prophage 2.314 0.003065 
menD 2-succinyl-6-hydroxy-2, 4-cyclohexadiene-1-carboxylate synthase  2.280 0.003246 
c4556 Conserved hypothetical protein 2.269 0.002831 



APPENDIX  203 

 

Gene Description Ratio p-value 

L7078 hypothetical protein 2.207 0.041672 
ycfA hypothetical protein 2.152 0.000461 
rbsR DNA-binding transcriptional repressor of ribose metabolism  2.101 0.002637 
ECP_3061 hypothetical protein 2.094 0.008766 
yihQ alpha-glucosidase  2.091 0.005240 
c0784  Hypothetical protein 2.026 0.032363 
glcD glycolate oxidase subunit, FAD-linked  2.008 0.006334 
sgbH 3-keto-L-gulonate 6-phosphate decarboxylase  1.989 0.008983 
baeS sensory histidine kinase in two-component regulatory system with BaeR  1.957 0.001856 
hyfI hydrogenase 4, Fe-S subunit  1.949 0.016407 
hycH protein required for maturation of hydrogenase 3  1.925 0.003074 
ygjG Probable ornithine aminotransferase | Hypothetical protein 1.921 0.000881 
c3164 putative factor; DNA packaging, phage assembly (Phage or Prophage Related) 1.900 0.004407 
c0463  Hypothetical protein 1.885 0.020708 
mdtI multidrug efflux system transporter  1.866 0.006324 
yraQ predicted permease  1.860 0.007672 
c1109  Hypothetical protein 1.851 0.002810 
ygcP predicted anti-terminator regulatory protein  1.831 0.039243 
umuC DNA polymerase V subunit UmuC  1.828 0.027895 
c3166  putative head-tail joining protein of prophage 1.809 0.007384 
yaaI hypothetical protein  1.782 0.002347 
ypdI predicted lipoprotein involved in colanic acid biosynthesis  1.771 0.002269 
cpxP periplasmic protein combats stress  1.770 0.002871 
mlrA DNA-binding transcriptional regulator  1.768 0.000863 
yjbO phage shock protein G  1.764 0.001199 
tauB taurine transporter subunit  1.743 0.000183 
c0467  Hypothetical protein yaiO 1.737 0.003283 
hipA regulator; Murein sacculus, peptidoglycan 1.712 0.016415 
arcA DNA-binding response regulator in two-component regulatory system with ArcB 

or CpxA  
1.695 0.044330 

insF IS3 element protein InsF 1.693 0.046772 
ECP_2815 hypothetical protein 1.691 0.002401 
insF IS3 element protein InsF 1.684 0.022644 
yhaR hypothetical protein  1.682 0.023635 
rbn ribonuclease BN  1.673 0.039971 
yigE hypothetical protein  1.672 0.034821 
lldD L-lactate dehydrogenase, FMN-linked  1.660 0.043321 
yhdX predicted amino-acid transporter subunit  1.653 0.012202 
yidL predicted DNA-binding transcriptional regulator  1.649 0.002750 
kdpD fused sensory histidine kinase in two-component regulatory system with KdpE: 

signal sensing protein  
1.640 0.017473 

yjgH predicted mRNA endoribonuclease  1.640 0.008030 
ilvL ilvG operon leader peptide  1.621 0.019819 
yaaI Hypothetical protein yaaI precursor 1.619 0.048608 
insF IS3 element protein InsF 1.611 0.037185 
klcA KlcA 1.608 0.030307 
ygjQ Hypothetical protein ygjQ 1.606 0.007918 
ypdI Hypothetical lipoprotein ypdI precursor 1.602 0.000014 
ydiY hypothetical protein  1.588 0.005281 
nuoM NADH dehydrogenase subunit M  1.582 0.002840 
flhB flagellar biosynthesis protein B  1.569 0.017055 
potH putrescine transporter subunit: membrane component of ABC superfamily  1.563 0.048324 
hyfG hydrogenase 4, subunit  1.548 0.016458 
hyaA hydrogenase 1, small subunit  1.534 0.005247 
sbmC DNA gyrase inhibitor  1.531 0.023853 
argD bifunctional acetylornithine aminotransferase/ succinyldiaminopimelate 

aminotransferase  
1.524 0.010162 

ECP_2970 fimbrial usher protein PixC 1.519 0.004684 
ybjJ predicted transporter  1.506 0.032003 
Z2371 putative lysozyme R of prophage CP-933R  1.505 0.001012 
mutH DNA mismatch repair protein  1.495 0.040984 
c0315  Hypothetical protein 1.490 0.020204 
nikE ATP-binding protein of nickel transport system  1.488 0.021870 
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malY bifunctional beta-cystathionase, PLP-dependent/ regulator of maltose regulon  1.487 0.000233 
yahC predicted inner membrane protein  1.464 0.000360 
ECP_4322 multidrug efflux system protein MdtO 1.457 0.005585 
ygfU Putative purine permease ygfU 1.456 0.011685 
srmB ATP-dependent RNA helicase  1.445 0.004211 
murI glutamate racemase  1.439 0.024540 
yihM Hypothetical protein yihM 1.435 0.040718 
murI glutamate racemase  1.427 0.025648 
ymgG hypothetical protein  1.423 0.003612 
nhoA N-hydroxyarylamine O-acetyltransferase  1.420 0.003969 
ygeD predicted inner membrane protein  1.419 0.023052 
ubiF 2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase  1.418 0.016729 
yegS hypothetical protein  1.414 0.005603 
artM arginine transporter subunit  1.398 0.006017 
astB succinylarginine dihydrolase  1.385 0.040620 
crp DNA-binding transcriptional dual regulator  1.383 0.018503 
artM transport; Transport of small molecules: Amino acids, amines 1.379 0.003453 
gamW putative factor; Integration, recombination (Phage or Prophage Related) 1.375 0.019589 
yfcS putative fimbrial chaperone  1.369 0.023554 
yciG hypothetical protein  1.361 0.000820 
yfcB hypothetical protein 1.360 0.000657 
insF IS3 element protein InsF 1.352 0.032161 
insF IS3 element protein InsF 1.350 0.029820 
yeiM predicted nucleoside transporter  1.339 0.006366 
lsrC AI2 transporter  1.333 0.003747 
nhoA N-hydroxyarylamine O-acetyltransferase  1.333 0.002624 
c1036  Hypothetical protein 1.332 0.003587 
c2987  Ethanolamine utilization protein eutS 1.326 0.002779 
ymgD hypothetical protein  1.324 0.005204 
ydjR hypothetical protein  1.300 0.007177 
kdpB potassium-transporting ATPase subunit B  1.294 0.004052 
ydeD hypothetical protein  1.293 0.017149 
c2440  Hypothetical protein 1.278 0.002465 
chbA N,N'-diacetylchitobiose-specific enzyme IIA component of PTS  1.275 0.015801 
yohL hypothetical protein  1.264 0.007885 
yebB hypothetical protein  1.263 0.010261 
UTI89_C1520 hypothetical protein 1.258 0.001566 
c5221  Hypothetical protein 1.247 0.000370 
UTI89_C2967 bacteriophage V tail protein 1.246 0.005864 
ydgI predicted arginine/ornithine antiporter transporter  1.244 0.007824 
fixX predicted 4Fe-4S ferredoxin-type protein  1.232 0.000799 
ECs5296  hypothetical protein  1.229 0.017066 
mdtL multidrug efflux system protein  1.228 0.002782 
yebK predicted DNA-binding transcriptional regulator  1.223 0.044433 
flhE hypothetical protein  1.212 0.008942 
Z0415 putative periplasmic binding protein, probable substrate ribose  1.207 0.007037 
ybjG undecaprenyl pyrophosphate phosphatase  1.206 0.039326 
hyfF NADH dehydrogenase subunit N  1.205 0.000394 
yfeW hypothetical protein  1.205 0.012251 
ivbL ilvB operon leader peptide  1.204 0.008047 
rhsD rhsD element protein  1.204 0.013136 
ECs0808  hypothetical protein  1.199 0.028575 
dppC dipeptide transporter  1.199 0.011236 
argB Acetylglutamate kinase 1.179 0.001893 
UTI89_C2969 bacteriophage V tail/DNA circulation protein 1.178 0.003561 
ycjB hypothetical protein 1.178 0.018251 
ssuC alkanesulfonate transporter subunit  1.168 0.046501 
xdhB xanthine dehydrogenase, FAD-binding subunit  1.164 0.041121 
nikB nickel transporter subunit  1.160 0.001111 
yphB hypothetical protein 1.159 0.002899 
yeeF Hypothetical transport protein yeeF 1.150 0.008800 
ybbI putative transcriptional regulator  1.149 0.023045 
traD DNA binding protein TraD 1.148 0.016531 
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citE enzyme; Central intermediary metabolism: Pool, multipurpose conversions 1.137 0.011713 
ddpC D-ala-D-ala transporter subunit  1.136 0.003102 
rluA pseudouridine synthase for 23S rRNA (position 746) and tRNAphe(position 32)  1.135 0.000834 
suhB inositol monophosphatase  1.133 0.003198 
fis DNA-binding protein Fis  1.132 0.029532 
fadH 2,4-dienoyl-CoA reductase, NADH and FMN-linked  1.129 0.003623 
ygfQ predicted transporter  1.126 0.008347 
UTI89_C3197 ClpB protein 1.122 0.002514 
mokB  regulatory peptide  | "toxic polypeptide, small " 1.120 0.020108 
ECs0727  KdpF protein of high-affinity potassium transport system  1.119 0.006816 
ybcC DLP12 prophage; predicted exonuclease  1.117 0.001304 
gpmB phosphoglycerate mutase  1.116 0.010526 
mglB methyl-galactoside transporter subunit  1.113 0.008778 
gatB galactitol-specific enzyme IIB component of PTS  1.111 0.008108 
yhaH predicted inner membrane protein  1.109 0.048315 
yjaB predicted acetyltransferase  1.105 0.001774 
hycC NADH dehydrogenase subunit N  1.103 0.016189 
Z0980 putative tail component of prophage CP-933K  1.095 0.007918 
yeaN predicted transporter  1.094 0.023882 
c4837  Hypothetical protein 1.093 0.004382 
napA nitrate reductase, periplasmic, large subunit  1.092 0.000868 
kefA fused conserved protein  1.083 0.003683 
artP arginine transporter subunit  1.080 0.026064 
Z0976 putative tail component of prophage CP-933K  1.079 0.005703 
eutJ predicted chaperonin, ethanolamine utilization protein  1.079 0.020978 
argD Acetylornithine aminotransferase 1.078 0.005165 
htpX orf; Adaptations, atypical conditions 1.073 0.042162 
cysE Serine acetyltransferase 1.070 0.017315 
Z4186 putative integral membrane protein-component of typeIII secretion apparatus  1.068 0.001604 
nlpE lipoprotein involved with copper homeostasis and adhesion  1.063 0.004385 
yhcM conserved protein with nucleoside triphosphate hydrolase domain  1.062 0.042335 
deoR DNA-binding transcriptional repressor  1.059 0.014503 
aer fused signal transducer for aerotaxis sensory  1.058 0.018864 
lysP lysine transporter  1.058 0.002089 
rffA TDP-4-oxo-6-deoxy-D-glucose transaminase  1.057 0.003916 
potI putrescine transporter subunit: membrane component of ABC superfamily  1.055 0.010077 
yhhX predicted oxidoreductase with NAD(P)-binding Rossmann-fold domain  1.055 0.032840 
moaD molybdopterin synthase, small subunit  1.054 0.007634 
ubiA 4-hydroxybenzoate octaprenyltransferase  1.053 0.002326 
yaeQ hypothetical protein  1.050 0.005008 
suhB inositol monophosphatase  1.049 0.008531 
ypfE predicted carboxysome structural protein with predicted role in ethanol 

utilization  
1.049 0.000463 

fecD KpLE2 phage-like element; iron-dicitrate transporter subunit  1.043 0.009066 
ECP_0718 hypothetical protein 1.036 0.021118 
yeaS neutral amino-acid efflux system  1.034 0.008381 
yehD Hypothetical protein yehD precursor 1.027 0.002433 
c1368 Hypothetical protein | Hypothetical protein 1.026 0.001625 
c1846  Putative conserved protein 1.014 0.012133 
yabI conserved inner membrane protein  1.012 0.017029 
phnO predicted acyltransferase with acyl-CoA N-acyltransferase domain  1.010 0.022996 
mdaB NADPH quinone reductase  1.009 0.014804 

 

Table 23: ECC-1470 down-regulated genes at 1 h cocultivation with MAC-T cells 

Gene Description Ratio p-value 

yjgG hypothetical protein  -4.775 0.010795 
citC citrate lyase synthetase  -4.400 0.035696 
glvB arbutin specific enzyme IIB component of PTS  -3.902 0.007404 
ybiM Hypothetical protein ybiM -3.858 0.003070 
yaiT - -3.733 0.040758 
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ybeQ hypothetical protein  -3.690 0.040218 
ybeR hypothetical protein  -3.529 0.002737 
ydfK Qin prophage; predicted DNA-binding transcriptional regulator  | Rac prophage; 

predicted DNA-binding transcriptional regulator  
-3.352 0.011855 

ygfO predicted transporter  -3.154 0.002954 
c3915  Hypothetical protein -3.116 0.004858 
araD L-ribulose-5-phosphate 4-epimerase  -3.056 0.002394 
yibG hypothetical protein  -2.976 0.039470 
yccE hypothetical protein  -2.906 0.005079 
Z3104 putative endolysin of prophage CP-933U -2.894 0.002457 
citD citrate lyase, acyl carrier (gamma) subunit  -2.869 0.001104 
phnH carbon-phosphorus lyase complex subunit  -2.838 0.025851 
ygeX diaminopropionate ammonia-lyase  -2.745 0.047480 
yadD predicted transposase  -2.713 0.018260 
Z5489 hypothetical protein  -2.615 0.045145 
ycaM predicted transporter  -2.600 0.002487 
ypeA Hypothetical protein ypeA -2.461 0.004545 
rspB predicted oxidoreductase, Zn-dependent and NAD(P)-binding  -2.395 0.013347 
ycaC predicted hydrolase  -2.391 0.001508 
csgF predicted transport protein  -2.356 0.000741 
ydiF fused predicted acetyl-CoA:acetoacetyl-CoA  -2.349 0.005614 
yibJ predicted Rhs-family protein  -2.342 0.008111 
- - -2.314 0.023797 
ygaQ hypothetical protein  -2.294 0.015992 
ydcC hypothetical protein  -2.253 0.020139 
lsrA fused AI2 transporter subunits of ABC superfamily: ATP-binding components  -2.251 0.002760 
yahF predicted acyl-CoA synthetase with NAD(P)-binding domain and succinyl-CoA 

synthetase domain  
-2.232 0.002067 

dgoD galactonate dehydratase  -2.206 0.000475 
ygfK predicted oxidoreductase, Fe-S subunit  -2.164 0.023550 
ygeW hypothetical protein  -2.152 0.040243 
ybiW predicted pyruvate formate lyase  -2.052 0.008228 
stfR Rac prophage; predicted tail fiber protein  -2.031 0.010701 
yddV predicted diguanylate cyclase  -2.025 0.047055 
c1955  6-phospho-beta-glucosidase bglA -1.979 0.019067 
ydhV predicted oxidoreductase  -1.968 0.039711 
arpB - -1.963 0.004391 
fixB predicted electron transfer flavoprotein,  -1.915 0.037769 
c3841  Hypothetical protein -1.881 0.033211 
ycdT predicted diguanylate cyclase  -1.830 0.030914 
yqeJ hypothetical protein  -1.819 0.024178 
ykgB conserved inner membrane protein  -1.810 0.003069 
htrC heat shock protein  -1.808 0.028469 
phnE phosphonate/organophosphate ester transporter pseudogene)  -1.797 0.008906 
bglF fused beta-glucoside-specific PTS enzymes: IIA  -1.789 0.012194 
rbsA fused D-ribose transporter subunits of ABC superfamily: ATP-binding 

components  
-1.781 0.018725 

phnG carbon-phosphorus lyase complex subunit  -1.762 0.040161 
yjcC predicted signal transduction protein (EAL domain containing protein)  -1.757 0.003271 
yjfF predicted sugar transporter subunit: membrane component of ABC superfamily  -1.740 0.008509 
rarA predicted hydrolase  -1.722 0.022445 
c3163  putative tail component of prophage -1.681 0.040005 
ykgK predicted regulator  -1.658 0.025115 
ybfL predicted transposase (pseudogene)  -1.656 0.017117 
citG triphosphoribosyl-dephospho-CoA transferase  -1.645 0.033387 
yedP hypothetical protein yedP -1.639 0.034703 
xdhA xanthine dehydrogenase, molybdenum binding subunit  -1.638 0.015282 
yqeA predicted amino acid kinase  -1.631 0.000686 
yzgL hypothetical protein  -1.621 0.019928 
c0697  - -1.596 0.037141 
yicO predicted xanthine/uracil permease  -1.578 0.012919 
yqeI predicted transcriptional regulator  -1.571 0.000181 
Z3956 hypothetical protein  -1.567 0.025559 
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guaD guanine deaminase  -1.567 0.007993 
hofB conserved protein with nucleoside triphosphate hydrolase domain  -1.560 0.008706 
ygeI hypothetical protein  -1.555 0.004821 
yibI predicted inner membrane protein  -1.535 0.010711 
ylbH conserved protein, rhs-like  -1.529 0.023590 
cusC copper/silver efflux system, outer membrane component  -1.518 0.010628 
recE Exodeoxyribonuclease VIII -1.513 0.000905 
ybfC hypothetical protein  -1.513 0.020506 
- - -1.503 0.042245 
dmsC dimethyl sulfoxide reductase, anaerobic, subunit C  -1.501 0.016040 
lacZ beta-D-galactosidase  -1.491 0.000209 
ygfJ hypothetical protein  -1.491 0.001366 
ydhW hypothetical protein  -1.482 0.011972 
ycbJ hypothetical protein  -1.479 0.006475 
yacH hypothetical protein  -1.467 0.006206 
ybbD hypothetical protein  -1.450 0.030979 
csgD DNA-binding transcriptional activator in two-component regulatory system  -1.420 0.027703 
acs acetyl-coenzyme A synthetase  -1.419 0.018361 
ECs1172  hypothetical protein  -1.413 0.009671 
phnD phosphonate/organophosphate ester transporter subunit  -1.413 0.032096 
ybhP predicted DNase  -1.400 0.008249 
gadE DNA-binding transcriptional activator  -1.394 0.034200 
ycgX hypothetical protein  -1.390 0.016818 
eutG predicted alcohol dehydrogenase in ethanolamine utilization  -1.370 0.007222 
c2118  Putative conserved protein -1.363 0.013760 
ycaP conserved inner membrane protein  -1.358 0.000027 
yqiI hypothetical protein  -1.355 0.031472 
c2257  Hypothetical protein -1.354 0.016817 
ytfA predicted transcriptional regulator  -1.352 0.013852 
ycfT predicted inner membrane protein  -1.341 0.043545 
yeaH Hypothetical protein yeaH -1.328 0.030154 
c0446  Hypothetical protein -1.326 0.032283 
sfmA predicted fimbrial-like adhesin protein  -1.308 0.018815 
hyaD protein involved in processing of HyaA and HyaB proteins  -1.304 0.002184 
yncC predicted DNA-binding transcriptional regulator  -1.304 0.011955 
yfgH predicted outer membrane lipoprotein  -1.290 0.035459 
ybiA hypothetical protein  -1.286 0.017401 
yedK Hypothetical protein yedK -1.269 0.000844 
yehZ Hypothetical protein yehZ precursor -1.265 0.005711 
c1465  putative factor; DNA packaging, phage assembly (Phage or Prophage Related) -1.243 0.041976 
Z1687 hypothetical protein  -1.235 0.000994 
vgrE unknown protein associated with Rhs element  -1.227 0.003164 
tnaC tryptophanase leader peptide  -1.220 0.007233 
yhiX Transcriptional regulator gadX -1.217 0.031439 
gadW DNA-binding transcriptional activator  -1.216 0.021935 
Z5430 hypothetical protein  -1.215 0.023973 
rusA DLP12 prophage; endonuclease RUS  -1.210 0.009166 
ydhY predicted 4Fe-4S ferridoxin-type protein  -1.209 0.009199 
hlyE hemolysin E  -1.207 0.036128 
melA alpha-galactosidase, NAD(P)-binding  -1.202 0.004292 
nirD enzyme; Energy metabolism, carbon: Anaerobic respiration -1.201 0.026541 
ysaB hypothetical protein  -1.192 0.025419 
ydfO Qin prophage; predicted protein  -1.190 0.048916 
yeaH hypothetical protein  -1.184 0.024511 
yadE predicted polysaccharide deacetylase lipoprotein  -1.182 0.042611 
ydiQ hypothetical protein  -1.181 0.019205 
yfeG predicted DNA-binding transcriptional regulator  -1.179 0.018008 
Z5852 hypothetical protein  -1.178 0.033637 
hyfB NADH dehydrogenase subunit N  -1.178 0.034393 
ybhJ Hypothetical protein ybhJ -1.169 0.043826 
yidI predicted inner membrane protein  -1.169 0.000487 
ybcF predicted carbamate kinase  -1.154 0.028872 
yphH predicted DNA-binding transcriptional regulator  -1.153 0.038796 
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yaaJ predicted transporter  -1.151 0.040073 
yhhI predicted transposase  -1.151 0.001580 
melR DNA-binding transcriptional dual regulator  -1.145 0.037517 
ECs5537  hypothetical protein  -1.139 0.021976 
c4010  Hypothetical protein -1.137 0.034508 
crcA palmitoyl transferase for Lipid A  -1.135 0.029276 
ykgC pyridine nucleotide-disulfide oxidoreductase  -1.124 0.006169 
ydaM predicted diguanylate cyclase, GGDEF domain signalling protein  -1.119 0.016123 
c0640  Conserved hypothetical protein -1.117 0.019244 
ygjV conserved inner membrane protein  -1.115 0.004444 
mhpR DNA-binding transcriptional activator, 3HPP-binding  -1.112 0.010268 
ybdM hypothetical protein  -1.112 0.013886 
ydiM predicted transporter  -1.105 0.012265 
yebN conserved inner membrane protein  -1.105 0.034131 
c4175  Conserved hypothetical protein -1.102 0.032028 
ycgF Hypothetical protein ycgF -1.101 0.019561 
ydiL hypothetical protein  -1.094 0.049093 
ybhD predicted DNA-binding transcriptional regulator  -1.090 0.011749 
mhpE 4-hydroxy-2-ketovalerate aldolase  -1.081 0.041483 
yjfM hypothetical protein  -1.070 0.014448 
cbl DNA-binding transcriptional activator of cysteine biosynthesis  -1.069 0.042550 
yddV predicted diguanylate cyclase  -1.067 0.016753 
cysC adenylylsulfate kinase  -1.065 0.049261 
c2220  Hypothetical protein -1.064 0.046919 
dhaR predicted DNA-binding transcriptional regulator, dihydroxyacetone  -1.064 0.040124 
c1185  Hypothetical protein -1.062 0.030081 
eutQ hypothetical protein  -1.058 0.032359 
yciW predicted oxidoreductase  -1.055 0.031997 
c2070  Hypothetical protein -1.050 0.025263 
gadX DNA-binding transcriptional dual regulator  -1.042 0.009075 
yjiN Hypothetical protein yjiN -1.039 0.013456 
ydeJ competence damage-inducible protein A  -1.029 0.031857 
uxaA altronate hydrolase  -1.027 0.030313 
yjiL predicted ATPase, activator of R)-hydroxyglutaryl-CoA dehydratase  -1.025 0.016041 
ydhK conserved inner membrane protein  -1.021 0.002014 
yhiW Hypothetical transcriptional regulator yhiW -1.010 0.010194 
dcuS sensory histidine kinase in two-component regulatory system with DcuR, 

regulator of anaerobic fumarate respiration  
-1.008 0.033020 

wcaL predicted glycosyl transferase  -1.000 0.008156 

 

Table 24: ECC-1470 up-regulated genes at 3 h cocultivation with MAC-T cells 

Gene Description Ratio p-value 

L7057 replication protein 5.790 0.002231 
hypF carbamoyl phosphate phosphatase and maturation protein for [NiFe] 

hydrogenases  
5.457 0.000136 

bglF enzyme; Transport of small molecules: Carbohydrates, organic acids, alcohols 4.821 0.000549 
hycG hydrogenase 3 and formate hydrogenase complex, HycG subunit  4.739 0.001432 
c3719  Hypothetical protein 4.516 0.000504 
metR Transcriptional activator protein metR 4.483 0.000550 
gsp bifunctional glutathionylspermidine amidase/glutathionylspermidine synthetase 4.306 0.000579 
tauB transport; Transport of small molecules: Amino acids, amines 3.965 0.000699 
ygjO predicted methyltransferase small domain  3.727 0.002154 
ygjD Probable O-sialoglycoprotein endopeptidase 3.673 0.002181 
c1620  Hypothetical protein 3.656 0.000051 
yiaY predicted Fe-containing alcohol dehydrogenase  3.582 0.000580 
oxyR DNA-binding transcriptional dual regulator  3.537 0.001237 
molR - 3.535 0.001965 
nfrA bacteriophage N4 receptor, outer membrane subunit  3.530 0.000549 
c4303  Putative conserved protein 3.462 0.000503 
yfaZ Hypothetical protein yfaZ precursor 3.455 0.001876 
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yjgB predicted alcohol dehydrogenase, Zn-dependent and NAD(P)-binding  3.233 0.002593 
c1956  Putative outer membrane protein yieC precursor 3.090 0.000090 
hycD hydrogenase 3, membrane subunit  2.984 0.000592 
ppdA hypothetical protein  2.964 0.000619 
c4942  Hypothetical protein 2.942 0.000048 
c3549  - 2.914 0.000527 
ybhI predicted transporter  2.909 0.005099 
hydN formate dehydrogenase-H, [4Fe-4S] ferredoxin subunit  2.896 0.007841 
c3902  Hypothetical protein 2.869 0.000158 
yehV MerR-like regulator A 2.865 0.025096 
ECP_3840 putative transposase 2.837 0.001371 
uidC predicted outer membrane porin protein  2.835 0.002436 
astC succinylornithine transaminase, PLP-dependent  2.792 0.000176 
tauA transport; Transport of small molecules: Amino acids, amines 2.780 0.002972 
Z3309 putative tail fiber protein of prophage CP-933U 2.692 0.000359 
c1584 putative tail component of prophage 2.637 0.007049 
ybaT predicted transporter  2.605 0.006390 
menD enzyme; Biosynthesis of cofactors, carriers: Menaquinone, ubiquinone 2.555 0.001016 
ECs3006  putative C4-type zinc finger protein  2.547 0.000432 
c3873  Putative conserved protein 2.542 0.006465 
caiB crotonobetainyl-CoA:carnitineCoA-transferase  2.539 0.001708 
c0703  Hypothetical protein 2.506 0.001508 
holE DNA polymerase III, theta subunit  2.471 0.001682 
ycdH predicted oxidoreductase, flavin:NADH component  2.421 0.000258 
yliL hypothetical protein  2.356 0.013033 
c3354  Hypothetical protein 2.317 0.002785 
c5192 Conserved hypothetical protein 2.314 0.002924 
c4059  Hypothetical protein 2.303 0.001040 
menD 2-succinyl-6-hydroxy-2, 4-cyclohexadiene-1-carboxylate synthase  2.299 0.001156 
c0317 Conserved hypothetical protein 2.262 0.008413 
c1463  Hypothetical protein 2.248 0.000672 
yqhD alcohol dehydrogenase, NAD(P)-dependent  2.216 0.000985 
yfaT hypothetical protein  2.185 0.003653 
mdtG predicted drug efflux system  2.147 0.010446 
ycdC predicted DNA-binding transcriptional regulator  2.145 0.003293 
ompN outer membrane pore protein N, non-specific  2.112 0.010365 
c0463  Hypothetical protein 2.092 0.010073 
UTI89_C5126 putative tail component of prophage CP-933K 2.084 0.001359 
yiaO Putative ABC transporter periplasmic binding protein yiaO precursor 2.082 0.010065 
c1589 putative tail component of prophage 2.060 0.007499 
ybbW predicted allantoin transporter  2.042 0.015666 
yraQ predicted permease  2.027 0.003642 
hycH protein required for maturation of hydrogenase 3  2.009 0.000028 
ydcU predicted spermidine/putrescine transporter subunit  1.999 0.007402 
c4556 Conserved hypothetical protein 1.968 0.005309 
nuoM NADH dehydrogenase subunit M  1.941 0.006237 
L7078 hypothetical protein 1.915 0.021250 
ymgE predicted inner membrane protein  1.884 0.000866 
c3166  putative head-tail joining protein of prophage 1.871 0.004055 
wcaB Putative colanic acid biosynthesis acetyltransferase wcaB 1.866 0.001338 
baeS sensory histidine kinase in two-component regulatory system with BaeR  1.854 0.004573 
yjbO phage shock protein G  1.801 0.002748 
cadB predicted lysine/cadaverine transporter  1.796 0.047206 
ypdI predicted lipoprotein involved in colanic acid biosynthesis  1.790 0.007311 
c2440  Hypothetical protein 1.774 0.005553 
flhB flagellar biosynthesis protein B  1.771 0.001443 
cpsB mannose-1-phosphate guanyltransferase  1.762 0.009126 
mlrA DNA-binding transcriptional regulator  1.762 0.006350 
lldD L-lactate dehydrogenase, FMN-linked  1.761 0.002179 
srmB ATP-dependent RNA helicase  1.743 0.000091 
ybjJ predicted transporter  1.743 0.006605 
c1036  Hypothetical protein 1.742 0.002821 
yjfC predicted synthetase/amidase  1.729 0.004470 
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hyfI hydrogenase 4, Fe-S subunit  1.718 0.000613 
torC enzyme; Energy metabolism, carbon: Anaerobic respiration 1.716 0.009041 
yihQ alpha-glucosidase  1.711 0.006721 
klcA KlcA 1.705 0.024550 
insF IS3 element protein InsF 1.692 0.009986 
ycfA hypothetical protein 1.686 0.000897 
c0467  Hypothetical protein yaiO 1.668 0.002921 
fdhF formate dehydrogenase-H, selenopolypeptide subunit  1.668 0.010215 
hycF formate hydrogenlyase complex iron-sulfur protein  1.642 0.018023 
sgbH 3-keto-L-gulonate 6-phosphate decarboxylase  1.637 0.016103 
yjaB predicted acetyltransferase  1.607 0.009422 
mdtI multidrug efflux system transporter  1.588 0.008813 
arcA DNA-binding response regulator in two-component regulatory system with ArcB 

or CpxA  
1.581 0.000107 

yegS hypothetical protein  1.580 0.005754 
yhhW hypothetical protein  1.559 0.008664 
fadA 3-ketoacyl-CoA thiolase 1.546 0.015743 
hyaA hydrogenase 1, small subunit  1.542 0.007352 
nhoA N-hydroxyarylamine O-acetyltransferase  1.539 0.009754 
insF IS3 element protein InsF 1.530 0.001892 
hycC NADH dehydrogenase subunit N  1.522 0.003785 
potH putrescine transporter subunit: membrane component of ABC superfamily  1.522 0.015898 
insF IS3 element protein InsF 1.515 0.007252 
mglB methyl-galactoside transporter subunit  1.501 0.006562 
yhcM conserved protein with nucleoside triphosphate hydrolase domain  1.500 0.010056 
hyfF NADH dehydrogenase subunit N  1.499 0.016042 
yehD Hypothetical protein yehD precursor 1.492 0.017652 
pflB pyruvate formate lyase I  1.491 0.005179 
c2092  Hypothetical protein 1.490 0.026718 
yidL predicted DNA-binding transcriptional regulator  1.482 0.011844 
c5302  Hypothetical protein 1.478 0.005414 
rbn ribonuclease BN  1.478 0.012602 
Z0980 putative tail component of prophage CP-933K  1.467 0.012893 
rbsR DNA-binding transcriptional repressor of ribose metabolism  1.452 0.013740 
insF IS3 element protein InsF 1.445 0.010733 
ypfE predicted carboxysome structural protein with predicted role in ethanol 

utilization  
1.444 0.012797 

gadC predicted glutamate:gamma-aminobutyric acid antiporter  1.429 0.004421 
ygjQ Hypothetical protein ygjQ 1.427 0.007707 
glcD glycolate oxidase subunit, FAD-linked  1.405 0.002116 
c0784  Hypothetical protein 1.391 0.001195 
ompW Outer membrane protein W precursor 1.388 0.000607 
yhhK hypothetical protein  1.380 0.005911 
hipA regulator; Murein sacculus, peptidoglycan 1.378 0.027696 
insF IS3 element protein InsF 1.376 0.006192 
ygfQ predicted transporter  1.367 0.010043 
malY bifunctional beta-cystathionase, PLP-dependent/ regulator of maltose regulon  1.363 0.001670 
kdpD fused sensory histidine kinase in two-component regulatory system with KdpE: 

signal sensing protein  
1.358 0.000920 

hycE hydrogenase 3, large subunit  1.353 0.001815 
crp DNA-binding transcriptional dual regulator  1.352 0.000107 
ydiY hypothetical protein  1.348 0.004095 
gadB glutamate decarboxylase B, PLP-dependent  1.336 0.002298 
glnP glutamine ABC transporter permease protein  1.333 0.024318 
ddpC D-ala-D-ala transporter subunit  1.332 0.022925 
Z3082 putative tail fiber component L of prophage CP-933U 1.332 0.010098 
yfeW hypothetical protein  1.322 0.006524 
nhoA N-hydroxyarylamine O-acetyltransferase  1.317 0.008270 
cusS sensory histidine kinase in two-component regulatory system with CusR, senses 

copper ions  
1.308 0.033305 

napA nitrate reductase, periplasmic, large subunit  1.308 0.011477 
menE O-succinylbenzoic acid--CoA ligase  1.304 0.016058 
yjiH Hypothetical protein yjiH 1.297 0.017380 
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metE 5-methyltetrahydropteroyltriglutamate-- homocysteine methyltransferase  1.295 0.004490 
ybhM conserved inner membrane protein  1.270 0.017594 
ECP_2970 fimbrial usher protein PixC 1.269 0.001881 
ypdI Hypothetical lipoprotein ypdI precursor 1.266 0.001286 
bcsE hypothetical protein  1.262 0.008006 
mdtL multidrug efflux system protein  1.255 0.009388 
citE enzyme; Central intermediary metabolism: Pool, multipurpose conversions 1.254 0.014851 
ycjB hypothetical protein 1.254 0.005623 
gamW putative factor; Integration, recombination (Phage or Prophage Related) 1.247 0.008788 
ygeD predicted inner membrane protein  1.247 0.001942 
Z3143 hypothetical protein  1.240 0.015019 
yihM Hypothetical protein yihM 1.238 0.025905 
nikE ATP-binding protein of nickel transport system  1.234 0.010987 
malG maltose transporter subunit  1.233 0.012644 
ulaA ascorbate-specific PTS system enzyme IIC  1.224 0.012695 
Z4186 putative integral membrane protein-component of typeIII secretion apparatus  1.216 0.005120 
c3663  Hypothetical protein 1.215 0.016870 
gltD glutamate synthase, 4Fe-4S protein, small subunit  1.215 0.025390 
deoR DNA-binding transcriptional repressor  1.209 0.001210 
sbmC DNA gyrase inhibitor  1.208 0.006187 
yfeU Protein yfeU 1.207 0.008644 
gatB galactitol-specific enzyme IIB component of PTS  1.205 0.012821 
c4837  Hypothetical protein 1.203 0.003203 
umuC DNA polymerase V subunit UmuC  1.200 0.016061 
ECs1173  hypothetical protein  1.199 0.004441 
tauB taurine transporter subunit  1.197 0.003452 
ccmD cytochrome c biogenesis protein  1.196 0.007642 
ilvC enzyme; Amino acid biosynthesis: Isoleucine, Valine 1.195 0.022177 
ivbL ilvB operon leader peptide  1.192 0.003412 
c3164 putative factor; DNA packaging, phage assembly (Phage or Prophage Related) 1.186 0.005155 
nikB nickel transporter subunit  1.179 0.013204 
argD bifunctional acetylornithine aminotransferase/ succinyldiaminopimelate 

aminotransferase  
1.175 0.035302 

argB Acetylglutamate kinase 1.164 0.009083 
hdeD HdeD protein 1.164 0.003032 
rluA pseudouridine synthase for 23S rRNA (position 746) and tRNAphe(position 32)  1.146 0.005095 
yeiM predicted nucleoside transporter  1.144 0.029193 
astB succinylarginine dihydrolase  1.142 0.015883 
yabI conserved inner membrane protein  1.135 0.024346 
yjgH predicted mRNA endoribonuclease  1.135 0.021796 
hisD Histidinol dehydrogenase 1.129 0.002684 
yjbG hypothetical protein  1.126 0.009933 
- positive control stringency: 90% identity to oligo b2965 1.124 0.002593 
yohL hypothetical protein  1.122 0.004686 
cysU sulfate/thiosulfate transporter subunit  1.120 0.019483 
yghD Putative general secretion pathway protein M-type yghD 1.120 0.018123 
galE UDP-galactose-4-epimerase  1.116 0.002901 
ymgG hypothetical protein  1.112 0.009072 
UTI89_C1520 hypothetical protein 1.110 0.001982 
yhdX predicted amino-acid transporter subunit  1.108 0.003997 
ybjH hypothetical protein  1.104 0.027399 
c4868  Hypothetical protein 1.102 0.003302 
cysE Serine acetyltransferase 1.097 0.004214 
dppC dipeptide transporter  1.096 0.019518 
ubiF 2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase  1.096 0.014956 
hyfG hydrogenase 4, subunit  1.094 0.003590 
yeaJ predicted diguanylate cyclase  1.085 0.005876 
ycjX conserved protein with nucleoside triphosphate hydrolase domain  1.083 0.011332 
yedF hypothetical protein  1.079 0.008902 
UTI89_C3197 ClpB protein 1.075 0.001114 
ECs5296  hypothetical protein  1.074 0.018692 
torY TMAO reductase III (TorYZ), cytochrome c-type subunit  1.074 0.012790 
htrG predicted signal transduction protein (SH3 domain)  1.073 0.003127 
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speC ornithine decarboxylase, constitutive  1.073 0.008918 
ycaI conserved inner membrane protein  1.073 0.002607 
ccmF - 1.071 0.047346 
hisF imidazole glycerol phosphate synthase subunit HisF  1.059 0.019141 
ybbI putative transcriptional regulator  1.050 0.022351 
rhaT L-rhamnose:proton symporter  1.048 0.012595 
c0315  Hypothetical protein 1.047 0.001187 
rhsA_B rhsA element core protein RshA  | rhsB element core protein RshB  1.047 0.012295 
yjiS hypothetical protein  1.047 0.021365 
hycA regulator of the transcriptional regulator FhlA  1.046 0.023478 
UTI89_C2967 bacteriophage V tail protein 1.034 0.004356 
yhaR hypothetical protein  1.032 0.016815 
narV nitrate reductase 2 (NRZ), gamma subunit  1.030 0.022004 
hdeB protein hdeB precursor (10K-L protein) 1.029 0.029747 
menC enzyme; Biosynthesis of cofactors, carriers: Menaquinone, ubiquinone 1.028 0.021598 
msrA methionine sulfoxide reductase A  1.027 0.011569 
ygfU Putative purine permease ygfU 1.027 0.005518 
hisF imidazole glycerol phosphate synthase subunit HisF  1.026 0.000399 
c2748  Hypothetical protein 1.023 0.009643 
c3404  Hypothetical protein 1.023 0.020023 
fadH 2,4-dienoyl-CoA reductase, NADH and FMN-linked  1.019 0.011222 
lsrC AI2 transporter  1.018 0.009215 
flhE hypothetical protein  1.012 0.010775 
gadA glutamate decarboxylase A, PLP-dependent  1.012 0.032270 
c5221  Hypothetical protein 1.010 0.003017 
phnI carbon-phosphorus lyase complex subunit  1.010 0.019953 
yegH fused predicted membrane protein/predicted membrane protein  1.009 0.014991 
Z0961 putative endopeptidase protein Rz of prophage CP-933K  1.008 0.013013 
yhhX predicted oxidoreductase with NAD(P)-binding Rossmann-fold domain  1.007 0.002372 

 

Table 25: ECC-1470 down-regulated genes at 3 h cocultivation with MAC-T cells 

Gene Description Ratio p-value 

ybiM Hypothetical protein ybiM -4.300 0.012010 
yjgG_2 hypothetical protein  -4.082 0.009680 
citD citrate lyase, acyl carrier (gamma) subunit  -4.070 0.013448 
Z3104 putative endolysin of prophage CP-933U -4.034 0.009911 
araD L-ribulose-5-phosphate 4-epimerase  -3.976 0.007142 
tnaC tryptophanase leader peptide  -3.824 0.025220 
yccE hypothetical protein  -3.643 0.003228 
yibJ predicted Rhs-family protein  -3.626 0.006475 
htrE predicted outer membrane usher protein  -3.227 0.030739 
yahF predicted acyl-CoA synthetase with NAD(P)-binding domain and succinyl-CoA 

synthetase domain  
-3.063 0.016091 

cusC copper/silver efflux system, outer membrane component  -2.928 0.017598 
phnH carbon-phosphorus lyase complex subunit  -2.848 0.027044 
ycgX hypothetical protein  -2.807 0.026261 
ybeQ hypothetical protein  -2.785 0.036663 
yadD predicted transposase  -2.609 0.006534 
ycaM predicted transporter  -2.601 0.010163 
tfaQ Qin prophage; predicted tail fibre assembly protein -2.445 0.004050 
tdcE pyruvate formate-lyase 4/2-ketobutyrate formate-lyase  -2.326 0.049898 
dgoD galactonate dehydratase  -2.245 0.001587 
lsrA fused AI2 transporter subunits of ABC superfamily: ATP-binding components  -2.218 0.001154 
ybbD hypothetical protein  -2.192 0.026042 
csgC predicted curli production protein  -2.163 0.015114 
lamB maltoporin precursor  -2.037 0.039822 
ydiF fused predicted acetyl-CoA:acetoacetyl-CoA  -1.990 0.006219 
Z2118 putative endopeptidase Rz of prophage CP-933O  -1.898 0.009605 
yncK - -1.871 0.029613 
ybcM DLP12 prophage; predicted DNA-binding transcriptional regulator  -1.870 0.014808 
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c3104  Hypothetical protein -1.846 0.034249 
dmsC dimethyl sulfoxide reductase, anaerobic, subunit C  -1.842 0.004755 
molR - -1.836 0.001920 
rbsA fused D-ribose transporter subunits of ABC superfamily: ATP-binding 

components  
-1.809 0.045647 

ydhV predicted oxidoreductase  -1.743 0.038687 
ykgK predicted regulator  -1.739 0.013657 
hofB conserved protein with nucleoside triphosphate hydrolase domain  -1.725 0.009491 
Z1879 putative envelope protein of prophage CP-933X  -1.695 0.002700 
ydhW hypothetical protein  -1.688 0.037369 
ydhK conserved inner membrane protein  -1.688 0.012888 
argI ornithine carbamoyltransferase 1  -1.647 0.015689 
yqeJ hypothetical protein  -1.621 0.024657 
phnE phosphonate/organophosphate ester transporter pseudogene)  -1.620 0.029698 
c1893  Hypothetical protein -1.620 0.004923 
guaD guanine deaminase  -1.604 0.021913 
alx predicted inner membrane protein, part of terminus  -1.593 0.017622 
ybbS DNA-binding transcriptional activator of the allD operon  -1.583 0.017958 
fdnH formate dehydrogenase-N, Fe-S (beta) subunit, nitrate-inducible  -1.571 0.040879 
yeaT predicted DNA-binding transcriptional regulator  -1.562 0.012233 
yqeA predicted amino acid kinase  -1.557 0.023517 
ydfO Qin prophage; predicted protein  -1.552 0.007130 
ybcF predicted carbamate kinase  -1.525 0.040903 
ECs4865  hypothetical protein  -1.510 0.030855 
ycaC predicted hydrolase  -1.486 0.000411 
c1465  putative factor; DNA packaging, phage assembly (Phage or Prophage Related) -1.471 0.001336 
htrC heat shock protein  -1.468 0.003033 
ycaI hypothetical protein  -1.452 0.020957 
cynT carbonic anhydrase  -1.443 0.030744 
dgoA 2-dehydro-3-deoxy-6-phosphogalactonate aldolase  -1.441 0.024391 
aaeA p-hydroxybenzoic acid efflux system component  -1.441 0.008529 
Z2145 putative tail component of prophage CP-933O  -1.428 0.006892 
uidR DNA-binding transcriptional repressor  -1.428 0.033644 
ybhD predicted DNA-binding transcriptional regulator  -1.421 0.017823 
ydhY predicted 4Fe-4S ferridoxin-type protein  -1.414 0.006821 
bglH carbohydrate-specific outer membrane porin, cryptic  -1.402 0.038043 
potE putrescine/proton symporter:  -1.400 0.034283 
mtlR DNA-binding repressor  -1.374 0.029068 
ymgB hypothetical protein  -1.366 0.041345 
ybfC hypothetical protein  -1.366 0.004805 
eutG predicted alcohol dehydrogenase in ethanolamine utilization  -1.349 0.004543 
ydiP predicted DNA-binding transcriptional regulator  -1.338 0.029553 
chbF cryptic phospho-beta-glucosidase, NAD(P)-binding  -1.337 0.000827 
sbp sulfate transporter subunit  -1.336 0.002818 
ytfA predicted transcriptional regulator  -1.333 0.019656 
dmsB dimethyl sulfoxide reductase, anaerobic, subunit B  -1.314 0.002435 
yiaW hypothetical protein  -1.300 0.012544 
lysA diaminopimelate decarboxylase, PLP-binding  -1.275 0.018981 
fumC fumarate hydratase  -1.267 0.047930 
ybeF predicted DNA-binding transcriptional regulator  -1.256 0.012955 
ydcP predicted peptidase  -1.254 0.015597 
ybfL predicted transposase (pseudogene)  -1.238 0.029371 
c2235  Conserved hypothetical protein -1.222 0.013779 
c1936  - -1.220 0.048299 
c1138  Hypothetical protein -1.214 0.031859 
bglG transcriptional antiterminator of the bgl operon  -1.210 0.033472 
glvG predicted 6-phospho-beta-glucosidase pseudogene)  -1.204 0.010783 
aegA fused predicted oxidoreductase: FeS binding  -1.200 0.001871 
c3702  Hypothetical protein -1.188 0.027166 
ycaL predicted peptidase with chaperone function  -1.187 0.008718 
ylbH conserved protein, rhs-like  -1.182 0.017094 
ECs2713  hypothetical protein  -1.171 0.014653 
yhaR TdcF protein -1.167 0.015581 
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glpT sn-glycerol-3-phosphate transporter  -1.160 0.027285 
Z0722 hypothetical protein  -1.156 0.007267 
glcC DNA-binding transcriptional dual regulator, glycolate-binding  -1.152 0.008660 
hyaD protein involved in processing of HyaA and HyaB proteins  -1.146 0.000404 
pheM phenylalanyl-tRNA synthetase operon leader peptide  -1.144 0.018139 
c0690  Hypothetical protein ybdN -1.137 0.043568 
ybcL DLP12 prophage; predicted kinase inhibitor  -1.136 0.040394 
prpR DNA-binding transcriptional activator  -1.136 0.031221 
cpxP periplasmic protein combats stress  -1.132 0.009376 
dos cAMP phosphodiesterase, heme-regulated  -1.130 0.014659 
ybhJ Hypothetical protein ybhJ -1.129 0.003394 
sprT hypothetical protein  -1.129 0.000123 
yfaZ predicted outer membrane porin protein  -1.127 0.049902 
ycjD hypothetical protein  -1.123 0.030185 
edd phosphogluconate dehydratase  -1.115 0.016328 
yhhI predicted transposase  -1.110 0.018119 
Z2208 hypothetical protein  -1.105 0.040136 
yfgH predicted outer membrane lipoprotein  -1.104 0.017593 
astA arginine succinyltransferase  -1.104 0.009231 
rus endodeoxyribonuclease RUS (Holliday junction resolvase) of prophage CP-933X  -1.101 0.017612 
creD inner membrane protein  -1.100 0.005758 
yadL predicted fimbrial-like adhesin protein  -1.097 0.001078 
yobD Hypothetical protein yobD -1.091 0.012583 
ibpB heat shock chaperone  -1.085 0.028868 
Z5924 hypothetical protein  -1.084 0.003007 
rusA DLP12 prophage; endonuclease RUS  -1.083 0.022880 
melA alpha-galactosidase, NAD(P)-binding  -1.078 0.003420 
yciW predicted oxidoreductase  -1.072 0.006564 
ylcE DLP12 prophage; predicted protein  -1.069 0.001720 
recE Exodeoxyribonuclease VIII -1.069 0.032374 
c5065  Hypothetical protein -1.067 0.031807 
c2318  Hypothetical protein -1.065 0.007308 
ECs2770  hypothetical protein  -1.058 0.021718 
yidP predicted DNA-binding transcriptional regulator  -1.046 0.021587 
pflD predicted formate acetyltransferase 2 (pyruvate formate lyase II)  -1.046 0.032995 
paaJ acetyl-CoA acetyltransferase  -1.043 0.031153 
ybiU hypothetical protein  -1.037 0.016855 
yjgI predicted oxidoreductase with NAD(P)-binding Rossmann-fold domain  -1.034 0.019497 
ytfE predicted regulator of cell morphogenesis and cell wall metabolism  -1.032 0.041299 
ybiA hypothetical protein  -1.029 0.017831 
ybdM hypothetical protein  -1.025 0.003990 
Z0964 putative DNA packaging protein of prophage CP-933K  -1.016 0.030727 
thiH thiamine biosynthesis protein ThiH  -1.005 0.000352 
ccmB heme exporter subunit  -1.005 0.018704 
yieK hypothetical protein  -1.002 0.010502 

 

 

VIII.2.2. Transcriptome data of RNA-Seq 

Data derived from differential gene expression profiling of mastitis E. coli 1303 and ECC-1470 

cultivated in DMEM, milk whey and LPS challenged milk whey, respectively, sorted according to their 

level of expression. Data are presented on compact disk: 

Supplemental Tables S2 – S7:  Expression values of the individual samples from RNA-Seq 

Supplemental Tables S8 – S10:  Differential expression of genes from RNA-Seq by bROC algorithm  
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VIII.5. Abbreviations 

μg  microgram 

μl  microliter 

μM  micromolar 

μm  micrometer 

A  adenine 

Amp  ampicillin 

bp  base pairs 

BSA  bovine serum albumin 

C  cytosine 

CFU  colony forming unit 

DE  differential expression 

DEPC  diethyl pyrocarbinate 

DNA  deoxyribonucleic acid 

DNase  deoxyribonuclease 

EAEC  enteroaggregative E. coli 

Ec  Escherichia coli 

EDTA  ethylendiamintertraacetat 

e.g.  exempli gratia (for example) 

EHEC  enterohemorrhagic E. coli 

EIEC  enteroinvasive E. coli 

EPEC  enteropathogenic E. coli 

et al.  et altera (and others) 

ETEC  enterotoxigenic E. coli 

EtOH  ethanol 

ExPEC  extraintestinal pathogenic E. coli 

g  gram 

G  guanine 

GEI  genomic island 

h  hour 

IL  Interleukin 

IPEC  intestinal pathogenic E. coli 

kb  kilo bases 

Km  kanamycin 

l  liter 

LB  lysogeny broth 

LPS  lipopolysaccharide acid 

mg  milligram 

min  minute 

ml  milliliter 

mm  millimeter 

mM  millimolar 

ng  nanogramm 

NO  nitric oxide 

nt  nucleotides 

OD  optical density 

ORF  open reading frame 

PAI  pathogenicity island 

PBS  phosphate buffered saline 

PCR  polymerase chain reaction 

RNA  ribonucleic acid 

RNase  ribonuclease 

rpm  rounds per minute 

RT  reverse transcription 

RT-PCR reverse transcription PCR 

SD  standard deviation 

SDS  sodium dodecyl sulfate 

sec  second 

SEM  standard error of the mean 

SNP  single nucleotide polymorphism 

ß-ME  beta-mercaptoethanol 

T  thymine 

TAE  Tris-acetate-EDTA 

TLR4  toll like receptor 4 

UPEC  uropathogenic E. coli 

UTI  urinary tract infection 

wt  wild type 
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