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Mit jedem Schritt, den wir vorwärts machen, mit jedem Problem, das wir lösen, entdecken wir nicht nur 
neue und ungelöste Probleme, sondern wir entdecken auch, dass dort, wo wir auf festem und sicherem 

Boden zu stehen glaubten, in Wahrheit alles unsicherer und im Schwanken begriffen ist. 

Karl R. Popper 

  



VI 

 

  



VII 

ACKNOWLEDGEMENTS 

 First I want to thank my PhD supervisors, Prof. Dr. Christopher Conrad (Würzburg) and Prof. Dr. 

Ulrich Michel (Heidelberg), for supervising this thesis and the helpful discussions. I am grateful that 

I was given the opportunity to work at the Department of Remote Sensing in Würzburg, and that I 

was given the ability to do research on my dissertation in the context of international research 

projects. Further, I express my gratitude to Prof. Dr. Stefan Dech (DLR/DFD), who was supportive 

of my work, and also to Prof. Dr. Roland Baumhauer (Würzburg). 

 My special thanks goes to Dr. Grégory Duveiller from the JRC in Ispra, Italy. The many discussions 

we had via E-mail, phone, and in Edinburgh, helped me a lot to get things in the right direction. 

Thank you, Grégory, for bringing your broad perspective, profound insight, and your support. 

 My deep gratitude also goes to Gunther Schorcht for guiding and mentoring me through this 3-years 

lasting adventure, for the many discussions and his frequent feedback regarding the content of this 

thesis. His advice, critical questions, and patience in explaining me programming-related issues 

improved my work a lot. Thank you, Gunther! 

 What would these 3 years have been without my fellow colleagues! I want to thank all of them for the 

unforgettable time we shared in the office, and that we spent in Würzburg. I also want to thank Dr. 

Hooman Latifi and Dr. Martin Wegmann for their advice in solving R-specific problems and their 

helpful comments on my work and manuscripts. Acknowledgements are also given to the student 

assistants Peter Zellner and Moritz Rudloff. I will not forget to express my gratitude to the brave 

colleagues who enjoyed proofreading and commenting on the beta-versions of my thesis chapters: 

Sebastian, Sarah, and Gunther. 

 I am very grateful to the German National Academic Foundation (Studienstiftung des deutschen 

Volkes) for funding this thesis by way of a PhD grant. 

 This dissertation has been carried out in the framework of several projects: I would like to thank Dr. 

Ralf Peveling and Benjamin Mohr from the Deutsche Gesellschaft für Internationale 

Zusammenarbeit (GIZ) for supporting the field studies in Middle Asia, which were conducted in the 

scope of the EEWA project. Thanks to this project I had the chance to conduct my research in 

Uzbekistan and Kazakhstan, where I spent an important amount of time to collect field data. Further, 

this thesis was conducted in the framework of the CAWA project. I am grateful to Dr. John Lamers 

(ZEF, Bonn) for enabling me to get in touch with the German-Uzbek Khorezm-Project and to spend 

some informative weeks in Urgench. I thank all my friends and colleagues in Karakalpakstan (Murat, 

Dawlet, Mukhabat, Mamanbek) and Kyzyl Orda (Marat), for their patience and their endurance. 

 I am also grateful to my parents (Karin and Franz) and to my brother Mario, for their motivation and 

love. Last but not least I want to thank Elisabeth, for her love, patience, and her mental support. 

Most of this work could not have been possible without the appropriate data. The RapidEye data was provided by RESA, which 

is hosted by the German Aerospace Agency (DLR). The SPOT imagery was provided through Planet Action (SPOT Image). The 

help from T. Hermosilla and L.A. Ruiz from CGAT (Geoenvironmental Mapping and Remote Sensing) research group, 

Department of Cartographic Engineering, Geodesy and Photogrammetry of the Universidad Politécnica de Valéncia, in using 

their software FETEX 2.0 is also acknowledged. Geospatial data used to create some of the maps in this thesis (e.g. rivers, lakes, 

country borders, irrigated areas) where made available by the CAWA and German-Uzbek Khorezm projects.  



VIII 

 

ABSTRACT 

Agriculture is mankind’s primary source of food production and plays the key role for cereal supply 

to humanity. One of the future challenges will be to feed a constantly growing population, which is 

expected to reach more than nine billion by 2050. The potential to expand cropland is limited, and 

enhancing agricultural production efficiency is one important means to meet the future food demand. 

Hence, there is an increasing demand for dependable, accurate and comprehensive agricultural 

intelligence on crop production. The value of satellite earth observation (EO) data for agricultural 

monitoring is well recognized. One fundamental requirement for agricultural monitoring is routinely 

updated information on crop acreage and the spatial distribution of crops. With the technical 

advancement of satellite sensor systems, imagery with higher temporal and finer spatial resolution 

became available. The classification of such multi-temporal data sets is an effective and accurate means 

to produce crop maps, but methods must be developed that can handle such large and complex data 

sets. Furthermore, to properly use satellite EO for agricultural production monitoring a high temporal 

revisit frequency over vast geographic areas is often necessary. However, this often limits the spatial 

resolution that can be used. The challenge of discriminating pixels that correspond to a particular crop 

type, a prerequisite for crop specific agricultural monitoring, remains daunting when the signal encoded 

in pixels stems from several land uses (mixed pixels), e.g. over heterogeneous landscapes where 

individual fields are often smaller than individual pixels.  

The main purposes of the presented study were (i) to assess the influence of input dimensionality 

and feature selection on classification accuracy and uncertainty in object-based crop classification, (ii) 

to evaluate if combining classifier algorithms can improve the quality of crop maps (e.g. classification 

accuracy), (iii) to assess the spatial resolution requirements for crop identification via image 

classification. 

Reporting on the map quality is traditionally done with measures that stem from the confusion 

matrix based on the hard classification result. Yet, these measures do not consider the spatial variation 

of errors in maps. Measures of classification uncertainty can be used for this purpose, but they have 

attained only little attention in remote sensing studies. Classifier algorithms like the support vector 

machine (SVM) can estimate class memberships (the so called soft output) for each classified pixel or 

object. Based on these estimations, measures of classification uncertainty can be calculated, but it has 

not been analysed in detail, yet, if these are reliable in predicting the spatial distribution of errors in 

maps. In this study, SVM was applied for the classification of agricultural crops in irrigated landscapes 

in Middle Asia at the object-level. Five different categories of features were calculated from RapidEye 

time series data as classification input. The reliability of classification uncertainty measures like entropy, 

derived from the soft output of SVM, with regard to predicting the spatial distribution of error was 

evaluated. Further, the impact of the type and dimensionality of the input data on classification 

uncertainty was analysed. The results revealed that SMVs applied to the five feature categories 

separately performed different in classifying different types of crops. Incorporating all five categories of 

features by concatenating them into one stacked vector did not lead to an increase in accuracy, and 

partly reduced the model performance most obviously because of the Hughes phenomena. Yet, applying 

the random forest (RF) algorithm to select a subset of features led to an increase of classification 

accuracy of the SVM. The feature group with red edge-based indices was the most important for general 

crop classification, and the red edge NDVI had an outstanding importance for classifying crops. Two 

measures of uncertainty were calculated based on the soft output from SVM: maximum a-posteriori 

probability and alpha quadratic entropy. Irrespective of the measure used, the results indicate a decline 

in classification uncertainty when a dimensionality reduction was performed. The two uncertainty 

measures were found to be reliable indicators to predict errors in maps. Correctly classified test cases 
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were associated with low uncertainty, whilst incorrectly test cases tended to be associated with higher 

uncertainty. 

The issue of combining the results of different classifier algorithms in order to increase classification 

accuracy was addressed. First, the SVM was compared with two other non-parametric classifier 

algorithms: multilayer perceptron neural network (MLP) and RF. Despite their comparatively high 

classification performance, each of the tested classifier algorithms tended to make errors in different 

parts of the input space, e.g. performed different in classifying crops. Hence, a combination of the 

complementary outputs was envisaged. To this end, a classifier combination scheme was proposed, 

which is based on existing algebraic operators. It combines the outputs of different classifier algorithms 

at the per-case (e.g. pixel or object) basis. The per-case class membership estimations of each classifier 

algorithm were compared, and the reliability of each classifier algorithm with respect to classifying a 

specific crop class was assessed based on the confusion matrix. In doing so, less reliable classifier 

algorithms were excluded at the per-class basis before the final combination. Emphasis was put on 

evaluating the selected classification algorithms under limiting conditions by applying them to small 

input datasets and to reduced training sample sets, respectively. Further, the applicability to datasets 

from another year was demonstrated to assess temporal transferability. Although the single classifier 

algorithms performed well in all test sites, the classifier combination scheme provided consistently 

higher classification accuracies over all test sites and in different years, respectively. This makes this 

approach distinct from the single classifier algorithms, which performed different and showed a higher 

variability in class-wise accuracies. Further, the proposed classifier combination scheme performed 

better when using small training set sizes or when applied to small input datasets, respectively. 

A framework was proposed to quantitatively define pixel size requirements for crop identification via 

image classification. That framework is based on simulating how agricultural landscapes, and more 

specifically the fields covered by one crop of interest, are seen by instruments with increasingly coarser 

resolving power. The concept of crop specific pixel purity, defined as the degree of homogeneity of the 

signal encoded in a pixel with respect to the target crop type, is used to analyse how mixed the pixels can 

be (as they become coarser) without undermining their capacity to describe the desired surface 

properties (e.g. to distinguish crop classes via supervised or unsupervised image classification). This tool 

can be modulated using different parameterizations to explore trade-offs between pixel size and pixel 

purity when addressing the question of crop identification. Inputs to the experiments were eight multi-

temporal images from the RapidEye sensor. Simulated pixel sizes ranged from 13 m to 747.5 m, in 

increments of 6.5 m. Constraining parameters for crop identification were defined by setting thresholds 

for classification accuracy and uncertainty. Results over irrigated agricultural landscapes in Middle Asia 

demonstrate that the task of finding the optimum pixel size did not have a “one-size-fits-all” solution. 

The resulting values for pixel size and purity that were suitable for crop identification proved to be 

specific to a given landscape, and for each crop they differed across different landscapes. Over the same 

time series, different crops were not identifiable simultaneously in the season and these requirements 

further changed over the years, reflecting the different agro-ecological conditions the investigated crops 

were growing in. Results further indicate that map quality (e.g. classification accuracy) was not 

homogeneously distributed in a landscape, but that it depended on the spatial structures and the pixel 

size, respectively. The proposed framework is generic and can be applied to any agricultural landscape, 

thereby potentially serving to guide recommendations for designing dedicated EO missions that can 

satisfy the requirements in terms of pixel size to identify and discriminate crop types. 

Regarding the operationalization of EO-based techniques for agricultural monitoring and its 

application to a broader range of agricultural landscapes, it can be noted that, despite the high 

performance of existing methods (e.g. classifier algorithms), transferability and stability of such 

methods remain one important research issue. This means that methods developed and tested in one 

place might not necessarily be portable to another place or over several years, respectively. Specifically 
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in Middle Asia, which was selected as study region in this thesis, classifier combination makes sense due 

to its easy implementation and because it enhanced classification accuracy for classes with insufficient 

training samples. This observation makes it interesting for operational contexts and when field reference 

data availability is limited. Similar to the transferability of methods, the application of only one certain 

kind of EO data (e.g. with one specific pixel size) over different landscapes needs to be revisited and the 

synergistic use of multi-scale data, e.g. combining remote sensing imagery of both fine and coarse spatial 

resolution, should be fostered. The necessity to predict and control the effects of spatial and temporal 

scale on crop classification is recognized here as a major goal to achieve in EO-based agricultural 

monitoring. 
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ZUSAMMENFASSUNG 

Landwirtschaftlicher Ackerbau spielt heute eine Schlüsselrolle bei der Nahrungsmittelversorgung 

der Menschheit. Eine der zukünftigen Herausforderungen wird die Ernährung der stetig wachsenden 

Erdbevölkerung sein, welche bis zum Jahr 2050 auf neun Milliarden Menschen anwachsen wird. Das 

Potential zur Ausdehnung von Ackerland ist jedoch begrenzt, so dass die Steigerung der 

landwirtschaftlichen Produktionseffizienz ein wichtiges Mittel ist, um den künftigen 

Nahrungsmittelbedarf zu decken. Daher gibt es einen zunehmenden Bedarf an belastbaren, genauen 

und umfassenden Informationen über die Agrarproduktion. Der Nutzen der Satellitenbild-

Fernerkundung ist in diesem Kontext mittlerweile anerkannt. Eine wichtige Voraussetzung für das 

Agrarmonitoring sind aktuelle Informationen über die Fläche sowie die räumliche Verteilung von 

Anbaukulturen. Durch die technologische Entwicklung steht heute eine Vielfalt an 

Satellitenbildsystemen mit immer höherer räumlicher und zeitlicher Auflösung zur Verfügung. Die 

Klassifikation solcher hochaufgelösten, multi-temporalen Datensätze stellt eine bewährte Methode dar, 

um Karten der agrarischen Landnutzung zu erstellen und die benötigten Informationen zu erhalten. 

Jedoch müssen die dabei verwendeten Methoden auf die sehr komplexen Eingangsdaten anwendbar 

sein. Zudem benötigt man zur Modellierung der Agrarproduktion oft eine hohe Aufnahmefrequenz bei 

gleichzeitig großer räumlicher Abdeckung. Diese Voraussetzungen schränken jedoch aus technischen 

Gründen oftmals die zur Verfügung stehenden Pixelgrößen ein, da Sensoren, welche diese 

Voraussetzungen erfüllen, in der Regel eine gröbere räumliche Auflösung haben. Die Unterscheidung 

von Pixeln unterschiedlicher Landnutzung als eine Voraussetzung für feldfrucht-spezifisches 

Agrarmonitoring kann dann erschwert sein, wenn Satellitenbilder über heterogenen Landschaften 

aufgezeichnet werden. In solchen Fällen kann das im Pixel kodierte Signal von mehreren Nutzungstypen 

stammen (Mischpixel), was zur Zunahme von Klassifikationsfehlern führen kann. 

Hauptgegenstände dieser Studie sind: (i) die Untersuchung des Einflusses der Größe sowie der Art 

der Eingangsdaten auf die Klassifikationsgenauigkeit und die Klassifikationsunsicherheit in der objekt-

basierten Landnutzungsklassifikation; (ii) die Kombination von Klassifikationsalgorithmen zur 

Steigerung der Klassifikationsgenauigkeit; (iii) die Untersuchung des Einflusses der Pixelgröße auf die 

agrarische Landnutzungsklassifikation. 

Die Genauigkeit einer Klassifikation wird im Allgemeinen mit Hilfe von Gütemaßen ermittelt, welche 

auf der Konfusionsmatrix basieren. Jedoch berücksichtigen diese Maße nicht die räumliche Variabilität 

von Klassifikationsfehlern in einer Karte. Maße der Klassifikationsunsicherheit können für diesen 

Zweck verwendet werden, allerdings ist deren Anwendung in der Fernerkundung bislang nur selten 

untersucht worden. Klassifikationsalgorithmen wie das Stützvektorverfahren können für jedes Pixel 

oder Objekt klassenweise Abschätzungen der Klassenzugehörigkeit berechnen, aus welchen dann Maße 

der Klassifikationsunsicherheit (z.B. Entropie) berechnet werden können. Jedoch wurde noch nicht 

hinreichend untersucht, ob die damit gewonnenen Informationen zur Abschätzung der räumlichen 

Verteilung von Klassifikationsfehlern in Karten zuverlässig sind. In dieser Studie wurde das 

Stützvektorverfahren verwendet, um die agrarische Landnutzung in bewässerten Agrarlandschaften 

Zentralasiens zu klassifizieren. Fünf Kategorien von Eingangsdaten wurden aus Aufnahmen des 

RapidEye Systems berechnet und als Grundlage für die agrarische Landnutzungsklassifikation 

verwendet. Es wurde untersucht, ob Maße der Klassifikationsunsicherheit, welche auf den pixel- bzw. 

objektweisen Abschätzungen der Klassenzugehörigkeit durch das Stützvektorverfahren basieren, die 

räumliche Verteilung von Klassifikationsfehlern in Landnutzungskarten zuverlässig schätzen können. 

Weiterhin wurde der Einfluss sowohl der Art als auch der Größe der Eingangsdaten auf die 

Klassifikationsunsicherheit untersucht. Die Ergebnisse der Untersuchung weisen darauf hin, dass sich 

sowohl die getrennte als auch die kombinierte Verwendung der fünf Eingangsdatenkategorien 

unterschiedlich zur Klassifikation verschiedener Landnutzungsklassen eignen. Die kombinierte 
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Verwendung aller fünf Kategorien führte zum Teil zu einer Reduktion der Klassifikationsgenauigkeit, 

was wahrscheinlich auf das Hughes-Phänomen zurückzuführen ist. Durch die Verwendung des 

„Random Forest“ Verfahrens zur Selektion geeigneter Eingangsdaten konnte die Klassifikations-

genauigkeit des Stützvektorverfahrens gesteigert werden. Eingangsdaten basierend auf dem 

sogenannten „Red Edge“ Kanal des RapidEye Systems waren zur Klassifikation von Feldfrüchten am 

wichtigsten, insbesondere der „Red Edge NDVI“. Zwei Maße der Klassifikationsunsicherheit wurden 

berechnet: die maximale a-posteriori Klassifikationswahrscheinlichkeit und die Alpha-Quadrat 

Entropie. Die Ergebnisse weisen darauf hin, dass diese beiden Maße verlässliche Prädiktoren für die 

räumliche Verteilung von Klassifikationsfehlern sind. Korrekt klassifizierte Testfelder waren durch 

geringe Klassifikationsunsicherheit und inkorrekt klassifizierte Testfelder in der Regel durch hohe 

Klassifikationsunsicherheit charakterisiert. 

Es wurde untersucht, ob die Kombination mehrerer Klassifikationsalgorithmen zu einer Steigerung 

der Klassifikationsgenauigkeit führt. Zunächst wurde das Stützvektorverfahren mit anderen nicht-

parametrischen Verfahren (neuronalen Netzwerken und Random Forest) verglichen. Obwohl die 

getesteten Klassifikationsalgorithmen gute Gesamt-Klassifikationsgenauigkeiten erzielten, bestanden 

große Unterschiede in den klassenweisen Genauigkeiten. Daher wurde ein Verfahren entwickelt, um die 

teilweise komplementären Ergebnisse unterschiedlicher Klassifikationsalgorithmen zu kombinieren. 

Dieses Verfahren basiert auf der Erweiterung algebraischer Kombinationsoperatoren und kombiniert 

die Ergebnisse verschiedener Klassifikationsalgorithmen basierend auf den pixel- bzw. objektweisen 

Abschätzungen der Klassenzugehörigkeit. Zudem wurde jeder Klassifikationsalgorithmus klassenweise 

bewertet, basierend auf Maßen der Konfusionsmatrix. So konnten Klassifikationsalgorithmen für 

diejenigen Klassen von der Kombination ausgeschlossen werden, für deren klassenweisen 

Genauigkeiten bestimmte Kriterien nicht erfüllt wurden. Das vorgestellte Verfahren wurde mit den 

Ergebnissen der einzelnen Klassifikationsalgorithmen verglichen. Zudem wurde auf räumliche und 

zeitliche Übertragbarkeit hin getestet und der Einfluss der Auswahl von Trainingsdaten wurde 

untersucht. Obwohl die einzelnen Klassifikationsalgorithmen genaue Ergebnisse erzielten, konnte das 

vorgestellte Kombinationsverfahren in allen Gebieten und über mehrere Jahre bessere Ergebnisse mit 

geringerer Variabilität erzielen. Zudem konnte das Verfahren auch dann genauere Ergebnisse liefern, 

wenn nur wenige Trainingsdaten oder Eingangsdaten zur Verfügung standen. 

In dieser Studie wurde eine Methodik entwickelt, um quantitativ die maximal tolerierbaren 

Pixelgrößen für die agrarische Landnutzungsklassifikation zu bestimmen. Diese Methodik kann 

verwendet werden, um den kombinierten Effekt von Pixelgröße und Pixelreinheit im Kontext der 

Feldfruchtidentifikation mittels überwachter Klassifikation zu untersuchen. Die feldfruchtspezifische 

Pixelreinheit (definiert als der Grad der Homogenität des in Pixeln kodierten Signals) wurde verwendet 

um zu untersuchen, wie inhomogen die in gröberen Bildpixeln gespeicherte Information sein darf, um 

unterschiedliche Anbaukulturen mittels überwachter und unüberwachter Klassifikation unterscheiden 

zu können. Als Eingangsdaten für die Untersuchung wurden Bilder des RapidEye Systems verwendet. 

Es wurden Bildgrößen zwischen 13 m und 747.5 m in Schritten von 6.5 m simuliert. Als limitierende 

Faktoren für die Klassifikation wurden unterschiedliche Schwellenwerte für Maße der 

Klassifikationsgenauigkeit und Klassifikationsunsicherheit berücksichtigt. Die Ergebnisse zeigen, dass 

die Werte für tolerierbare Pixelgrößen und Pixelreinheiten sowohl landschafts- als auch 

feldfruchtspezifisch waren. Zudem konnten Feldfrüchte nicht simultan innerhalb der 

Wachstumsperiode identifiziert werden und die Voraussetzungen änderten sich in verschiedenen 

Jahren, was wahrscheinlich auf die unterschiedlichen agro-ökologischen Bedingungen in den 

untersuchten Landschaften zurückgeführt werden kann. Die Ergebnisse zeigen, dass Klassifikationsgüte 

in Karten räumlich ungleich verteilt war und von den räumlichen Strukturen bzw. von der Wahl der 

räumlichen Auflösung abhing. Die vorgestellte Methodik kann auch in anderen Agrarlandschaften 
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getestet werden. Des Weiteren kann die Eignung bestehender bzw. die Entwicklung künftiger 

Satellitenbildmissionen unterstützt werden. 

In Hinblick auf die Nutzung von Satellitenbild-Fernerkundung für Agrarmonitoring und deren 

Anwendung in einer Vielfalt von Agrarlandschaften kann festgestellt werden, dass die räumliche 

Übertragbarkeit von Methoden und die Stabilität der Ergebnisse (z.B. gleichbleibend hohe 

Klassifikationsgenauigkeiten) weiterhin einen wichtigen Forschungsgegenstand darstellen. So konnte 

in dieser Studie gezeigt werden, dass herkömmliche Methoden zur Landnutzungsklassifikation bzw. 

Aussagen zu optimalen Pixelgrößen nicht in allen Fällen auf andere Regionen oder über mehrere Jahre 

übertragbar sind. In Zentralasien, welches die Fokusregion dieser Studie ist, zeigte sich, dass die 

Kombination verschiedener Klassifikationsalgorithmen sinnvoll ist, da die Klassifikationsgenauigkeit 

bei Klassen mit nur einer geringen Anzahl von Trainingsgebieten gesteigert werden konnte. Dies macht 

die Anwendung dieses Verfahrens im operationellen Kontext interessant. Die Eignung eines einzigen 

Satellitenbildsystems (mit einer bestimmten Pixelgröße) für die agrarische Landnutzungsklassifikation 

in mehreren Agrarlandschaften muss in Frage gestellt werden und die synergistische Nutzung von Daten 

unterschiedlicher räumlicher Auflösung sollte vorangetrieben werden. Dabei ist die Untersuchung des 

kombinierten Einflusses der räumlichen und zeitlichen Auflösung auf die agrarische Landnutzungs-

klassifikation von großer Bedeutung für das erdbeobachtungsgestützte Agrarmonitoring. 
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2 INTRODUCTION  

1.1. Agriculture in the global perspective 

Since its “invention” during the Neolithic revolution approximately 10,000 years ago agriculture 

became mankind’s primary source of food production and today plays the key role for cereal supply to 

humanity (Nentwig, 2005). A rather small number of the crops that have been cultivated by human 

mankind constitute about 75 % of the calories that humans consume: rice, maize, soy, and wheat (Lobell 

et al., 2011). Today, agriculture (crops and pasture) covers approximately 40 % of the earths´ ice-free 

surface (Ramankutty et al., 2008). The conversion of 15 million km2 natural land surfaces for human 

use, in particular cropland (Monfreda et al., 2008) became a force of global significance (Foley et al., 

2005). 

One of the future challenges will be to feed a constantly growing population, which is expected to 

reach more than 9 billion by 2050 (UN, 2003). The FAO estimates that by 2030 12 % of the developing 

country population (more than 800 million people) will still be living in regions with low levels of food 

consumption (FAO, 2006). The prediction of the global increase of agricultural production demand by 

2050 sums up to 60 %, and the strongest increase in demand for crops is expected to occur in developing 

countries (77 %) (Alexandratos and Bruinsma, 2012). This will lead to an increasing demand for food, 

which only can be met by boosting agricultural production (Foley et al., 2011). 

Critically the potential to expand cropland is limited. Although agricultural production, expressed as 

yield of major crop groups (cereals, oilseeds, fruits, and vegetables) has almost doubled between 1985 

and 2005, agricultural land increased by less than 10 % (FAO, 2013a; Foley et al., 2011). Because of the 

spatial (physical) limits of arable land it was technological advances like fertilization, chemical pest 

control, and partly irrigation that achieved this gain in agricultural production (Gleick, 2003). For 

instance the “Green Revolution” could enhance global crop production by a factor of two between the 

mid-1950s and the mid-1990s and average yields of wheat, maize, and rice doubled in this time span 

(Lobell et al., 2011). Although these technological developments provided an effective means to assure 

food security to the constantly growing human population, they have also had significant ecological 

impacts (Foley et al., 2005). They are one of the driving forces in the loss of biological diversity through 

land transformation (Chapin et al., 2000).  

Against the background of continuing population growth and limited potential to enlarge suitable 

cropland, irrigation is suspected to become an increasingly important means to enhance the world´s 

food supply (Wichelns and Oster, 2006). Irrigated agriculture is a major component of the total 

agriculture (Howell, 2001). Developing countries alone account for three quarters of the global irrigated 

area (Bruinsma, 2003). Although irrigated land in these countries covers only approximately one fifth 

of the world´s total arable land it accounts for 30 to 40 % of the global crop production, and almost 60 % 

of the global cereal production (Bruinsma, 2003). Yet, it is also agriculture’s largest user of freshwater: 

more than 70 % of the freshwater resources are withdrawn for irrigation alone (Bastiaanssen et al., 2000; 

Sauer et al., 2010). 

Changes in the climate system can further exaggerate the future pressure on the freshwater resources 

(Pachauri and Reisinger, 2008). Agriculture will be impacted by climate change through reshaping the 

pattern of water availability and increasing the frequency of extreme weather events that disrupt 

agricultural production (e.g. droughts). This will offset the observed increase in average yield and change 

the pattern of crop production in some regions of the world (Godfray et al., 2010). Water requirements 

in most of the global irrigated areas will increase (Döll, 2002). Whilst changes in precipitation pattern 

and intensity will impact rain fed agriculture, increasing temperatures are melting mountain glaciers 

which supply water for irrigation agriculture (Justice and Becker-Reshef, 2007). The positive crop yield 

trends observed between 1980 and 2008 for maize, wheat, and soy slowed in Asia, and only yield trends 

for rice sped up, most of which can be attributed to increasing temperatures (Lobell et al., 2011). This 
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together with rising cost of fertilizers will aggravate the ability of some (and most likely the poorest) 

countries to satisfy the increasing food demand of a growing population in the future. These trends will 

contribute to continuing uncertainty in food supply, with the associated tensions reflected in market 

food prices (Justice and Becker-Reshef, 2007). Extensification of agricultural land use to enhance global 

food production and to meet the future food demand might not be the best option, but rather 

agriculture´s footprint must decrease while increasing the cropping efficiency (Foley et al., 2011). An 

increase of approximately 30 % in production of major cereals like wheat, maize, and rice is possible in 

the next decades but needs considerable changes in nutrient and water management (Mueller et al., 

2012), and intensification is the preferred means (Foley et al., 2011). One solution for mitigating these 

issues is restructuring agricultural systems, and remote sensing bares a great potential for this task 

(Bastiaanssen and Bos, 1999; Bastiaanssen et al., 2000; Conrad et al., 2007; Eckhardt et al., 1990; 

Ozdogan et al., 2010; Wesseling and Feddes, 2006). Thus, increased attention should be given to putting 

in place reliable agricultural production monitoring (APM) systems (Atzberger, 2013; Béquignon et al., 

2010). 

1.2. Remote sensing-based agricultural monitoring 

The global trends described above suggest an increasing demand for dependable, accurate and 

comprehensive agricultural intelligence on crop production. APM can support decision-making and 

prioritization efforts towards ameliorating vulnerable parts of agricultural systems. Remote sensing is a 

valuable input for APM because it provides variables that are strongly linked with the two main 

components of crop production, namely crop acreage and yield, in a spatially explicit and temporally 

frequent manner (Justice and Becker-Reshef, 2007). The value of earth observation (EO) data in 

environmental (Barrett and Curtis, 1992) and agricultural monitoring is well recognized (Justice and 

Becker-Reshef, 2007) and a variety of methods have been developed in the last decades to provide 

agricultural production related statistics (Carfagna and Gallego, 2005; Gallego et al., 1993). However, 

spatially explicit monitoring of agricultural production requires routinely updated information on the 

total surface under cultivation, and sometimes the spatial distribution of crops as input (Atzberger, 

2013; Justice and Becker-Reshef, 2007; Ozdogan et al., 2010). This underlines the need for developing 

accurate and effective methods to map and monitor the distribution of agricultural lands and crop types 

(crop mapping). 

1.2.1. Cropland mapping and monitoring – Opportunities and challenges 

The principal technique to identify and map crops is image classification with one of the many 

available classifier concepts (Tso and Mather, 2009). Yet, the classification of crops has become a 

challenging issue, due to the recent advances in remote sensor technology: nowadays a huge amount of 

data (optical, radar, hyper-spectral) with ever finer pixel sizes (e.g. RapidEye 6.5 m), radiometric 

resolutions (e.g. 12–16-bit), and frequent revisit times (e.g. 3–5 days) was made available to the research 

community to meet the demand for EO data at the appropriate spatial resolution and at critical times 

during the growing season (see appendix A.1 for an overview of sensors used in crop mapping). It was 

demonstrated in many studies that multi-temporal data could significantly improve crop classification 

accuracy. More details including references are given in the following sections, but although such kind 

of data is preferable to classify crops, it may also undermine the ability of a classifier algorithm to 

perform accurately and they may even fail with large, high-dimensional data sets and only limited 

amount of training data (Pal and Foody, 2010; Waske et al., 2010). Data sets of some recent and future 

sensor systems (e.g. Sentinel-2, TerraSAR-X) will become even more complex. Hence, one of the main 

challenges for the operationalization of EO-based crop mapping is the development of methods that can 
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handle such kind of data because errors in crop maps can impact outputs from spatial models (Canters, 

1997; Doraiswamy et al., 2004; Stehman and Milliken, 2007). Consequently, these methods must be 

accurate, applicable over various agro-ecological landscapes, and also transferable among the years in 

order to be of value in an operational context. 

Another difficulty lies in the requirements in terms of revisit times and geographical coverage, which 

is confronted with inherent limitations of remote sensing systems. As was already mentioned, cropland 

mapping and monitoring (hereafter called CMM) is a fundamental input to agricultural monitoring. Yet, 

the term crop mapping can have different meanings depending on what specific application is 

considered. Some applications require delineating accurately where all crops (and perhaps all other land 

uses) are located over the entire area of interest, e.g. to produce accurate crop specific masks or to make 

crop acreage estimations by counting the classified pixels´ surface (Gallego, 2004). Crop monitoring 

typically requires information over large geographic extents in order to provide information at regional 

or global scales1 (Wardlow and Egbert, 2008). However, this often leads to a spatial resolution that is 

coarser than desired, because sensor systems that fulfil this requirement typically have coarser pixel 

sizes, e.g. the Moderate-Resolution Imaging Spectroradiometer (MODIS) with 250 m (see appendix 

A.1). Crop mapping at these scales suffers from this compromise when applied to heterogeneous agro-

ecological landscapes around the world, because crop identification in a pixel then relies on a signal that 

may be composed of reflected radiation coming from different adjacent land uses, thus diluting the 

information content regarding the target crop (mixed pixels). Consequently, at coarser scales it is 

probably not possible to make an exhaustive classification of all land uses (or crop types) with the 

required standard of accuracy. The extent to which crop specific monitoring with coarser EO data is 

possible was shown to depend on the landscape structure (Duveiller and Defourny, 2010), but no such 

framework exists to assess EO data requirements over different agricultural landscapes for crop 

classification. As can be seen from Figure 1-1 coarser EO supports (5 km–500 m) provide more 

fundamental information like agricultural state or cropland area, rather than crop specific information. 

Although coarser observation supports are sufficient to meet the information needs in agricultural 

monitoring (e.g. large geographical coverage and high observation frequency), this is also the scale at 

which most of the enhancements are needed (Justice and Becker-Reshef, 2007): specifically there is a 

need to foster and improve the knowledge about the possibilities and limitations to identify crops in 

coarser pixels (see question marks in Figure 1-1), as a prerequisite for crop specific monitoring.  

The necessity to handle complex data sets for accurate crop mapping, plus the aforementioned 

limitations when using coarse EO data drive the motivation of this thesis: (i) to improve crop 

classification at the per-field scale and (ii) the identification of EO data requirements for an effective 

crop identification over heterogeneous agro-ecological landscapes. In the following sections, recent 

operational APM systems will be presented. Then, major technological trends and research needs 

related to CMM will be highlighted. This discussion will primarily focus on two aspects: methods for 

crop classification to create accurate crop masks and regional crop mapping, respectively. Having 

clarified the research needs, the scope and the specific objectives of this thesis will be highlighted at the 

end of the introduction chapter. 

                                                      
1: Throughout this thesis regional scale refers to the extent of the geographic coverage, e.g. national or sub-national, preferably 
with an administrative delineation in order to link results to official statistics. Local scale means that the geographic extent is a 
small area and the elementary unit of interest is a single field. 
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Figure 1-1: Applications related to agricultural monitoring. The emphasized domain (dashed contour), “Cropland 
mapping and monitoring”, relates to this thesis. Precision agriculture is not shown here. Question marks indicate 
were further research is needed with regard to crop identification for crop specific agricultural monitoring with 
coarser EO data. Partly adapted from Justice and Becker-Reshef (2007). 

1.2.2. Existing operational agricultural monitoring systems 

Summarizing the work from Justice and Becker-Reshef (2007) there are three main functional 

components belonging to a comprehensive operational system for APM: 

 Mapping and monitoring of changes in distribution of cropland area (cropped area and crop 

type distribution) and the associated cropping systems. 

 Monitoring of agricultural production (yield). 

 Early warning of shortfalls and famine.  

Similar, in his review Atzberger (2013) counts crop mapping and acreage estimation as one of the 

major applications of remote sensing in agriculture (next to monitoring production, stress, crop 

phenology, and land use change). Also precision agriculture should be mentioned, which provides 

information for variable management practices within a field (Seelan et al., 2003). Over the last decades 

several operational or quasi-operational agricultural monitoring systems were developed at a regional 

scale that use EO data and provide CMM applications. One of these is the Agricultural Resource 

Inventory Through Aerospace Remote Sensing (AgRISTARS) or the pioneering Large Area Crop 

Inventory Experiment (LACIE) in the United States (U.S.) (Bailey and Boryan, 2010; Erickson, 1984). 

Today the National Agricultural Statistical Service (NASS) program provides frequently updated crop 

area estimates in the U.S. In Europe the Monitoring Agricultural Resources (MARS) of the Joint 

Research Centre (JRC) was initiated to foster the application of EO for the collection of agricultural 

production statistics (van Diepen and Boogaard, 2009). 
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One particular focus of these programs is mapping the extent of croplands (Bailey and Boryan, 2010; 

Gallego, 1999), crop type mapping, and monitoring of crop production and condition (Justice and 

Becker-Reshef, 2007). Yield forecasting and climate change related vulnerability analysis and resilience 

of crop production systems is one crucial element of MARS (www.mars.jrc.ec.europa.eu/mars, last 

accessed 16-Jun 2013). Another monitoring program is the China Crop Watch System (CCWS) at the 

Institute of Remote Sensing Applications of the Chinese Academy of Sciences 

(www.cropwatch.com.cn/en, last accessed 16-Jun 2013). Other national monitoring systems can be 

found in Brazil, India, and Russia. The Global Agriculture Monitoring (GLAM) Project, a joint initiative 

of the National Aeronautics and Space Administration (NASA) and other U.S. organizations goes beyond 

national or supranational scale to global information retrieval on cropland distribution, yield 

forecasting, and crop growth monitoring, and is the only operational provider of agricultural 

information at global scale (Becker-Reshef et al., 2010). The European EO program Copernicus, 

previously known as Global Monitoring for Environment and Security (GMES), is coordinated and 

managed by the European Commission. It provides, among others, the Corine Land Cover (CLC) 

inventory. The CLC land cover legend includes various agricultural land use classes 

(www.land.copernicus.eu/pan-european, last accessed 16-Jun 2013). Through its global land service, 

which is built on the BioPar component of the FP7 Geoland2 project, it also provides global biophysical 

parameters in near real time since 2009 (www.copernicus.eu, last accessed 16-Jun 2013). All these 

projects underline the relevance of EO data as part of agricultural monitoring systems, but specifically 

the integration of EO data into agricultural monitoring systems of developing countries still must be 

fostered (Justice and Becker-Reshef, 2007). Existing global systems like GLAM use coarse resolution 

EO data (250 m–1,000 m) (Becker-Reshef et al., 2010). Yet, information at this scale derived from 

coarser resolution EO data might not be suited for crop specific applications over heterogeneous 

landscapes (see Figure 1-1) such as they can be found in many agricultural regions in the world, and EO 

products used in such monitoring applications may have to be calibrated to local conditions (Fritsch et 

al., 2012). 

1.2.3. Status of agricultural monitoring in Middle Asia 

Away from the high level of technology and operational abilities of agricultural monitoring concepts 

in Europa or North America, the situation in Middle Asia2 is entirely different. It belongs to the source 

areas of recent crops like melons or apples (Nentwig, 2005) and is one of the world’s core regions of 

irrigation, with a strong focus on mono cropping of cotton and wheat (Lal et al., 2007). After the collapse 

of the Soviet Union in the 1990s the five independent republics in Middle Asia have faced the significant 

loss of management capacities (Cai et al., 2003). The former commonly managed water resources 

became transboundary and one of the most conflict-prone resources in the region (Glantz, 2005; 

Micklin, 2002). This dependence on shared resources, redrawn national borders (that do not fully take 

into account cultural legacies), the associated loss of the Soviet controlled economical compensation 

mechanisms, and the economies and infrastructure that were skewed to monoculture cotton production 

aggravated tensions between the countries after 1991 (McKinney, 2004; Micklin, 2002). The ability of 

the republics to maintain the irrigation infrastructure and to monitor agricultural production has been 

hampered or this even became impossible. Consequently, water control and distribution, which are 

critical to face the increasing food demand of the growing population in this region (Asian Development 

Bank, 2012; UNDP, 2005) through a deteriorating water supply system, are at risk (Cai et al., 2003). 

                                                      
2: The terms “Middle Asia” and “Central Asia” are frequently used synonymous. Referring to Cowan (2007) the term Middle Asia 
is preferred in this study because it refers to Kazakhstan, Turkmenistan, Uzbekistan, Tajikistan and Kyrgyzstan collectively, and 
avoids the ambiguity with the term Central Asia. The latter includes other countries of the former UdSSR, parts of China and 
Mongolia, and areas of the former Soviet/Chinese border, which are not in the scope of this thesis. 
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Although an operational agricultural monitoring system in Middle Asia has not been established yet 

to fully compensate for the disruption of the formerly Soviet controlled land management, attempts 

were made by the foundation of the Interstate Coordination Water Commission (ICWC) or the 

International Fund for the Aral Sea (IFAS) (McKinney, 2004), however without operational EO 

components. Land and water resource management in Middle Asia faces both, inconsistency of 

information, as well as inadequate and inappropriate tools for analysis, especially at the superordinate 

irrigation system and watershed level (Chemin et al., 2004). This procedure is time consuming, and 

limited for a long-term crop mapping, not to speak of regular crop growth monitoring or early warning 

applications. National states in Middle Asia do not have the financial capacities to maintain expensive 

transboundary agricultural monitoring systems. Reliable crop maps, the prerequisite for APM, are still 

lacking in the majority of regions.  

The use of EO data in conjunction with geographical information systems (GIS) can be of significant 

importance to improve this situation as it is a reliable and increasingly inexpensive means to map and 

monitor land and water resources (Atzberger, 2013; Bastiaanssen and Harshadeep, 2005). The value of 

remote sensing in agricultural monitoring context has been recognized in Middle Asia (Chemin et al., 

2004; Conrad et al., 2007, 2010, 2011a; Conrad et al., 2013; El-Magd and Tanton, 2003; Kariyeva and 

van Leeuwen, 2012; Löw et al., 2012; Machwitz et al., 2010; Schorcht et al., 2012) and other parts of Asia 

(Bastiaanssen and Harshadeep, 2005). First attempts to implement monitoring networks at regional 

and international scale in Middle Asia exist: the German-Uzbek Khorezm Project 

(www.zef.de/khorezm.0.html, last accessed 16-Jun 2013) was dedicated to improving the economic 

efficiency and ecological sustainability of the agricultural sector, but was spatially restricted to the 

Khorezm region in Uzbekistan. The project Central Asian Water (CAWA) was launched in 2008 and is 

funded by the German Federal Foreign Office (www.cawa-project.net, last accessed 16-Jun 2013). It is 

part of the German water initiative for Central Asia (the so-called “Berlin Process”) and intends to 

contribute to a sound scientific and a reliable regional data basis for the development of sustainable 

water management strategies in Middle Asia, and further aims to provide some agriculture related 

baseline information (e.g. land use maps, agricultural leaf area index). However, initializing an 

operational application for Middle Asia is still at its beginning, and (more technically spoken) the 

requirements for the kind of EO data that is needed to do accurate and operational crop mapping has 

not been systematically explored, yet. This underlines the need to investigate classification techniques 

and the EO data requirements for crop mapping in Middle Asia, which was selected as the study region 

in this thesis. 

1.3. Recent trends in crop mapping and research motivation 

1.3.1. Creating accurate crop masks 

The development of concepts for (crop-) classification is a challenging and on-going topic in remote 

sensing, scientifically driven by recent technological advances and a growing demand for operational 

remote sensing systems in support of environmental issues and the application of international 

agreements (Brachet, 2004; Peter, 2004; Rosenqvist et al., 2003). A variety of methods is employed to 

produce accurate maps (Lu and Weng, 2007), including the use of non-parametric classifier algorithms 

that are not constrained to assumptions like parametric distributions of the input data (Brown et al., 

2013; Conrad et al., 2011b; Loosvelt et al. 2012a; Mathur and Foody, 2008), object-based rather than 

pixel-based approaches (Baatz and Schäpe, 2000; Conrad et al., 2010; Duro et al., 2012; Lobo et al., 

1996; Peña-Barragán et al., 2011; Schorcht et al., 2012; Turker and Ozdarici, 2011; de Wit and Clevers, 

2004), or fusion of multi-source data (Blaes et al., 2005; McNairn et al., 2009; Solberg et al., 1994; 
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Waske and Benediktsson, 2007). So called machine learning algorithms (Witten and Frank, 2005) like 

random forest (RF) (Breiman, 2001) and support vector machine (SVM) (Burges, 1998; Cortes and 

Vapnik, 1995; Vapnik, 1998) are increasingly used in crop classification due to their high classification 

performance on many types of input data (optical, radar, hyper spectral) and their general superiority 

in applications with high dimensional data sets (Foody and Mathur, 2004; Loosvelt et al., 2012a; Mathur 

and Foody, 2008; Waske and Benediktsson, 2007; Waske and Braun, 2009; Waske et al., 2010). 

It was shown that by adding more acquisition dates the different periods in the growing season can 

be accurately captured (e.g. the different sowing and harvesting dates among crops) and usually 

classification accuracy is high or enhanced compared to mono-temporal data sets, respectively (Brown 

et al., 2013; Conrad et al., 2011a; Murakami et al., 2001; Sakamoto et al., 2010; Serra and Pons, 2008; 

Simonneaux et al., 2008; Wardlow and Egbert, 2008; Wardlow et al., 2007). There is evidence that 

employing time series of multi-spectral, radar, or a combination of both bare great potential in crop 

mapping (Blaes et al., 2005; Conrad et al., 2013; McNairn et al., 2002, 2009; Van Niel and Mcvicar, 

2004; Waske and Benediktsson, 2007). However, these new datasets become increasingly more 

complex, due to the ever-finer pixel sizes (e.g. RapidEye with 6.5 m), acquisition frequencies, and 

enhanced radiometric resolutions (e.g. 16-bit). Employing complex multi temporal data sets from 

different data sources (e.g. spectral and textural) is becoming a key aspect in crop mapping because it 

was shown to enhance classification accuracy (Balaguer et al., 2010; Berberoglu et al., 2000; Rodriguez-

Galiano et al., 2012a). However, adding this amount of information comes at the expense of increasing 

the complexity of the data set, and can even have negative effects on the performance of classifier 

algorithms like SVM (Melgani and Bruzzone, 2004; Pal and Foody, 2010; Waske et al., 2010) or RF 

(Rodriguez-Galiano et al., 2012a). 

Different kind of classifier algorithms might not perform equally well for all classes considered, or 

make errors in different parts of the feature space, e.g. perform complementary for different classes 

(Benediktsson et al., 2007; Foody et al., 2007; Waske and Benediktsson, 2007). Circumventing this issue 

by classifier combination was shown to overcome constraints of individual classifiers and has given 

promising results (Benediktsson and Kanellopoulos, 1999; Benediktsson and Swain, 1992; Benediktsson 

et al., 2007; Gonçalves, 2011; Licciardi et al., 2009; Liu et al., 2004; Waske and Benediktsson, 2007; 

Waske et al., 2010; Zhang, 2010). Yet, only few applications of classifier combination exist in multi-

temporal time-series applications (Benediktsson and Kanellopoulos, 1999; Briem et al., 2002), and even 

fewer that dedicate this technology explicitly for multi-temporal crop mapping (Jeon and Landgrebe, 

1999; Waske and Benediktsson, 2007; Waske and van der Linden, 2008). The estimates of class 

memberships from classifier algorithms, also referred to as the “soft output” of a classifier (Foody, 2000; 

Giacco et al., 2010) is a valuable source of information on the spatial distribution of classification 

uncertainty in maps (Foody and Atkinson, 2002) and the foundation of classifier combination (Bloch, 

1996; Kittler et al., 1998). However, the so-called predictive strength of an algorithm, e.g. its capability 

to produce soft outputs that can be used to correctly predict the spatial distribution of classification error 

in maps, has attained little attention (Brown et al., 2009; Giacco et al., 2010; Loosvelt et al., 2012a). 

Compared with the efforts to produce accurate maps or enhance classification accuracy, considerable 

less attention has been drawn to the assessment of classification uncertainty. Yet, attempts to derive and 

use classification uncertainty measures to evaluate the spatial quality of maps were shown to be 

promising and an informative supplement to traditional accuracy metrics from the confusion matrix 

(Brown et al., 2009; Foody, 2008; Giacco et al., 2010; Loosvelt et al., 2012a), although there is further 

need of research, in particular (i) concerning the evaluation of the predictive strength of soft outputs 

from different classifier algorithms, and (ii) the influence of feature space size on spatial uncertainty in 

crop maps. Existing studies rather focus on “hard” classification accuracy metrics like overall accuracy 

(OA) or Cohen´s kappa (Cohen, 1960). 
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Concluding, best opportunities to handle complex multi-temporal data sets can be expected by 

combining the strength of advanced concepts like classifier combination and the object-based 

approaches. However, such approaches must be transferable to sites with different spatial 

characteristics and over several years, in order to be suitable for operational crop mapping. This presents 

some difficulties, which pose a further need for research and that drive the motivation of this thesis:  

 Crops can be difficult to distinguish because of the differences in environmental conditions, 

spectral similarities, and different management practices at small scales (seeding and 

harvesting times, spatially varying complex multi-seasonal signatures). These are the main 

limitations that forces multi-temporal approaches. However, the high dimensionality of multi-

temporal datasets requires techniques that can handle huge input spaces. 

 Classifier combination is a promising and proven means, but the predictive strength of the soft 

outputs from different classifier algorithms, which are the input to classifier combination, has 

only attained little attention. 

 It might be useful to add multi-temporal data of different kind as classification input (spectral, 

textural, geostatistical), but it is not known beforehand which kind of data is needed to classify 

specific types of crops, and at which time during the growing season the features are needed to 

effectively distinguish specific crops in a specific environment. 

 The influence of input data on spatial classification uncertainty is not well understood, and 

specifically there are only few studies that exploited the reliability of uncertainty measures from 

SVM with regard to correctly predicting the spatial distribution of classification error. 

 Methods developed in one place might not be portable from site to site in order to guarantee the 

spatial transferability of the method and comparability of the results (e.g. not robust in terms of 

classification accuracy). Ground truth data is often limited and methods must be developed that 

can cope with unbalanced and small training data sets. 

1.3.2. Regional crop mapping 

Whilst methods for crop mapping at the local scale (e.g. object-based approaches) suffices for 

understanding complex cropping patterns, smallholder environments and local applications, they will 

not always be suited for regional or even global agricultural monitoring, e.g. when crop specific 

monitoring is required (Figure 1-1). For applications at regional to global scales, there is an extra 

requirement of having a large swath to have a wide geographic coverage. Yet, the identification of crops 

in coarser EO supports might be hampered due to mixed pixels. Further, the spatial resolution 

requirements for an effective crop identification will vary as a function of field size and pattern, and 

mapping cropland will be specifically difficult in fragmented and very complex agricultural landscapes. 

Although high-resolution3 instruments can provide sufficient spatial detail to resolve the spatial 

frequencies of fragmented agricultural landscapes, they can fail to follow the temporal development of 

land surface characteristics (crop growth or phenology) and to overcome the observation limitations due 

to cloud cover or extensive haze. It is technical reasons that cause an intrinsic trade-off between spatial 

and temporal resolution: the information that can be recorded, processed and stored by the instruments 

is limited (Schowengerdt, 2007). High spatial resolution imagery (e.g. 2.5–60 m) comes to the expense 

of low revisit frequency (e.g. Landsat-5 Thematic Mapper (TM): 16 days), whilst high frequent revisit 

                                                      
3: The convention of what is high and low resolution frequently becomes “outdated” due to continued technological advancements 
with instruments with higher (finer) resolutions. In this thesis instruments with resolutions lower (coarser) than 250 m (MODIS) 
will be considered “low”, and instruments with resolutions higher (finer) than 250 m as “high”. 
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times (1–3 days) until recently was only possible using instruments with coarse spatial resolution (e.g. 

MODIS: 250–1,000 m)4. For applications at regional to global scales, there is an extra requirement of 

having a large swath to have a wide geographic coverage. Up to now, a good candidate to satisfy these 

requirements has been Advanced Wide Field Sensor (AWiFS), which has been used to generate the 

Cropland Data Layer products in the U.S. (Johnson and Mueller, 2010). Undoubtedly, the new and 

upcoming satellite EO systems, such as RapidEye, Landsat-8 and Sentinel-2, provide new opportunities 

for crop mapping. Although they will not entirely satisfy those for crop growth monitoring, which 

requires higher temporal resolution (Duveiller et al., 2013), they should be well adapted for the purpose 

of operational crop mapping over a wide scale. However, they might be limited in providing such 

frequent observations over large geographic extents because of their small observation footprints, and 

financial costs for delivering such imagery will restrict their usage in developing countries. 

Consequently, coarser spatial resolution data such as MODIS or the Medium Resolution Imaging 

Spectrometer (MERIS) should not be discarded. Not only they provided added information with the 

higher revisit frequency, but also they will retain much importance as a source of long-term historical 

record, which the new systems won’t achieve for decades to come. Deriving archives where crop specific 

time series have been identified for the past years can be very valuable for agricultural monitoring 

(Brown et al., 2013; Duveiller et al., 2012), or to analyse past changes in crop production (Fritsch, 2013) 

or land use (Conrad et al., 2011a), as it can be used to understand the past behaviour of agricultural 

systems and thereby infer changes in productivity or resilience against increasingly variable climatic 

conditions (Justice and Becker-Reshef, 2007). To extract such information (either from archive images 

or from new images in an operational context, given what is currently available) requires performing 

crop identification based on coarse spatial supports. 

The necessity for a continued exploitation of coarser spatial resolution data, plus the growing interest 

in exploiting multi-scale data synergistically, drive the reasoning for exploring the spatial resolution 

requirements for the specific task of crop mapping in this thesis. Defining suitable pixel sizes for remote 

sensing applications has a long tradition of research (Wu and Li, 2009). Attempts to define the spatial 

resolution requirements can be found for land cover classification (Atkinson and Curran, 1997; Ju et al., 

2005; Marceau et al., 1994a; Woodcock and Strahler, 1987), crop growth monitoring (Duveiller and 

Defourny, 2010), or quantitative remote sensing (McCabe and Wood, 2006; Nijland et al., 2009; 

Sepulcre-Cantó et al., 2010; Tarnavsky et al., 2008), but only a few explicitly address this issue in the 

context of CMM (McCloy and Bøcher, 2007; Ozdogan and Woodcock, 2006; Turker and Ozdarici, 2011). 

Furthermore, Ozdogan and Woodcock (2006) and Duveiller and Defourny ( 2010) illustrate how, for a 

given application like crop area estimation, the spatial resolution requirement (e.g. in terms of a 

maximum tolerable pixel size) differs considerably over different landscapes. 

But what type of remote sensing data should be used as classification input for proper crop 

identification? In general smaller pixels are preferred to assure a good delineation of individual fields in 

heterogeneous agricultural landscapes with highly variable spatial crop pattern and to reduce the 

amount of mixed pixels, but increasing the spatial resolution may lead to oversampling, resulting in 

increased within-feature or class variability. Better classification accuracies may be attained using 

coarser pixel sizes (McCloy and Bøcher, 2007), but selecting too coarse pixels can deteriorate the quality 

of the classification due to mixed pixels when the heterogeneity of the land cover class in one pixel 

increases (Hsieh et al., 2001; Smith et al., 2003). 

  

                                                      
4: More details on sensor systems commonly used in crop mapping applicatiosn is given in appendix A.1. 
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One example demonstrates this: Figure 1-2 shows two datasets, high-resolution RapidEye and low-

resolution MODIS. In the left-hand image, which is a subset of the right-hand image, the structures of 

the fields and even inter-field roads and irrigation canals can be made out. Non-agricultural land cover 

can be distinguished from agricultural land use, and even single buildings of a nearby village can be 

discerned visually. In the right-hand image the total extent of the irrigation system can be made out, 

and even large-scale structures like the irrigation canals or the river can be identified, but the structures 

of the fields and a fine distinction between cultivated and non-agricultural land is not possible. 

Nevertheless the literature reports comparatively high classification accuracies for crop classification in 

Middle Asia using both, high- and low-resolution images (Conrad et al., 2011a, 2011b). But what is the 

cost in terms of area estimation accuracy when using “accurate” but coarse maps to estimate the area of 

a given crop in fragmented landscapes like in Figure 1-2? What is the maximum tolerable pixel size for 

a given application, e.g. identification of a specific crop? What exactly is the loss of information when 

using coarser satellite images? 

 
Figure 1-2: Agricultural landscape in Khorezm, Uzbekistan as seen by two different instruments: (left) RapidEye 
with a nominal ground sampling distance (GSD) of 6.5 m, (right) MODIS with a nominal GSD of 250 m. The small 
image on the right shows the same extent depicted in the left image but as seen by MODIS (NASA). 

To put this into context with CMM: The choice of an appropriate spatial resolution for crop 

identification is not trivial and multiple challenges arise when using coarser pixel sizes, some of which 

are still not fully explored in remote sensing research and that further drive the motivation of this thesis: 

 Mixed pixels become more abundant when pixel sizes coarsen, and pixels suitable for training a 

classifier algorithm become less abundant, but few studies exist to link this with landscape 

characteristics and quantify the degree of mixing ( “pixel purity”) when using coarser images, 

and the implications for crop classification. 

 A single best pixel size for a given application does not exist. Furthermore, for a given 

application like crop area estimation, the spatial resolution requirement (e.g. in terms of a 

maximum tolerable pixel size) differs considerably over different landscapes. What is less 

investigated in remote sensing applications is in how far different classes (e.g. different types of 

crops) display individuality regarding the spatial resolution requirement over one particular 

landscape, and how the requirements for one specific crop type vary over different landscapes. 



12 INTRODUCTION  

 There is a lack in knowledge if EO data requirements (in terms of pixel sizes) change along the 

growing season (e.g. as a function of the number of acquisitions), and how this influences 

possible early detection applications. 

 Little research has been carried out to explore EO data requirements for crop mapping in agro-

ecological landscapes in Middle Asia, which is a prerequisite for implementing operational EO-

based crop mapping and crop specific agricultural monitoring. 

1.4. Scope and objectives of the thesis 

Considering the principal research needs that were highlighted above, this thesis proposes a research 

framework that addresses the key issues in CMM that were detailed in the sections above, and more 

specifically focuses on: 

 Improving crop classification at the per-field scale and providing information on the spatial 

distribution of classification uncertainty with the aim of creating accurate and crop specific 

masks. The challenge here is contributing to methods that can handle high-dimensional data 

sets from high-resolution time series data. Since techniques that combine different classifier 

algorithms seems worthwhile, this thesis focuses on concepts that combine the strengths of 

different classifier algorithms and adopts methods for assessing their reliability for the classifier 

combination process. Further, the transferability of these techniques among different sites and 

years, respectively, and their utility under limiting conditions in order to be suitable for potential 

future operational applications will be evaluated. 

 Exploring the EO data requirements for an effective crop identification over heterogeneous 

agro-ecological landscapes. More specifically, the major challenge can be seen in the way how 

to define region specific EO data requirements (e.g. in terms of suitable pixel sizes) for crop 

identification in coarser pixels, as a prerequisite for crop specific monitoring at the regional scale 

which typically is done with such coarse resolution systems. Research here needs to address the 

technical implementation of a framework that quantified these requirements. Further, such a 

framework can allow for a fine-tuning of the EO data acquisition strategies and aid in designing 

EO-based crop mapping and crop specific agricultural monitoring systems. 

Based on these principal research needs and motivations, the overarching objective of this thesis can 

be formulated as follows: 

To develop concepts and techniques for remote sensing-based agricultural crop classification at the 

per-field scale and a framework to quantitatively define region specific requirements for accurate crop 

identification that can serve as input for crop specific monitoring. 

The following specific research questions are investigated to contribute to this overall objective: 

 What is the influence of feature selection on accuracy and classification uncertainty in object-

based crop classification? In the interest of using crop maps as input to spatially explicit models, 

it is of interest to explore the spatial distribution of classification error (e.g. classification 

uncertainty) in the maps, and to explore the influence of feature input size and acquisition dates 

on the classification uncertainty inherit to the output. For some classifier algorithms like SVM 

there still exist no study to assess the influence of feature selection on spatial uncertainty in crop 

classification. The potential usefulness and interpretation of uncertainty measures from SVM is 

provided, and a contribution to a better understanding of the relationship between uncertainty 

measures derived from the SVM and the hard result accuracies (from the confusion matrix) is 

envisaged. 
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 How do different classifier algorithms perform in crop classification using multi-spectral time 

series data at the object-level, and can combining classifier algorithms improve the overall 

quality of crop masks? Taking advantage of combining the strength of different classifier 

algorithms can be reasoned with their different performance in classifying certain crops. In 

particular when there is high disagreement among the single classifier algorithms, this could 

lead to a loss of valuable information. The membership estimations (soft output) from different 

classifier algorithms, which is the input to classifier combination, might not be equally reliable, 

but this should be considered in the classifier combination process. In this regard classifier 

combination should have the ability to select the most reliable classifier algorithms for each class 

investigated. To be suitable for application in crop mapping, such an approach must be 

transferable among the sites, consistently result in high classification accuracies, be 

transferrable to other years, and applicable under limiting conditions (e.g. when only few 

training data is available). 

 What is the spatial resolution requirement for crop identification via image classification, in 

particular minimum and coarsest acceptable pixel sizes, and how do these requirements 

change over different landscapes? Although the answer to this question seems to be simple and 

just a relation between field size and pixel size, seeking the appropriate pixel size is far from 

being a trivial task. From a practical point of view it is of interest to find the maximum tolerable 

pixel size for a given application since coarser images potentially bare attributes that makes 

them interesting for operational crop specific monitoring (spatial coverage, revisit time, and low 

financial costs). A framework will be proposed that quantifies, based on user defined 

constraints, the region specific EO data requirements for crop identification. 

1.5. Structure of the thesis 

Chapters 2 and 3 summarize information on the study sites, satellite data and the main pre-

processing steps involved. Each methodological chapter of this thesis, chapters 4–6 (Figure 1-3), is 

introduced by providing the state-of-the-art in the corresponding field of research, stating its research 

goals, and by outlining its relationships with the other chapters as well as the research questions stated 

before in the introductory chapter. This thesis is structured as follows: 

 Chapter 2 gives a brief description of the four study sites selected in this thesis. The final choice 

of the study sites was reasoned with geostatistical indicators from the semivariogram, as well as 

the diversity of crops, management practices, field pattern, and access to the study site and 

satellite data availability. 

 Chapter 3 summarizes the pre-processing of the satellite data. Relevant data sources (e.g. 

remote sensing imagery, ground reference data, cropping calendars) are listed. A brief 

description of the atmospheric and geometric correction of the satellite data is given. The image 

segmentation procedure for the generation of the field masks is detailed. 

 Chapter 4 explores the influence of feature selection on classification uncertainty and 

accuracy. This chapter directly answers the first research question and addresses the problem 

of feature selection and its influence on spatial classification uncertainty in supervised image 

classification using SVM. An intentionally huge input set of multi-seasonal spectral and 

geostatistical features is calculated to analyse the relative contribution of different feature types 

to crop classification and to find optimal feature compositions to distinguish crop classes. The 

potential value of spatial classification uncertainty measures derived from SVM is evaluated, 
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and the causes for the spatial distribution of uncertainty in maps, e.g. due to environmental 

factors, are discussed. 

 Chapter 5 responds directly to the second research question by comparing different classifier 

algorithms for crop classification at the field level and by addressing the issue of classifier 

combination and evaluating the transferability of methods among the test sites. In this regard, 

the outputs of classifier algorithms are combined at the decision level to take advantage of 

several classifier architectures and to improve classification accuracy. This chapter provides an 

extension of known algebraic operators by taking into consideration the reliability of different 

classifier algorithms for each class investigated. The impact of classifier combination on 

classification uncertainty is analysed, and the applicability of the investigated classifier 

algorithms is evaluated under limiting conditions (e.g. training data and input data scarcity). 

 Chapter 6 is devoted to the issue of crop mapping at the regional scale by analysing the effect 

of pixel size on crop identification. A framework is proposed to define the EO data requirements 

for an effective crop identification. This will be done by simulating how agricultural landscapes, 

and more specifically the fields covered by a crop of interest, are seen by instruments with 

increasingly coarser resolving power, based on a generic point spread function that is scaled to 

coarser pixel sizes. The concept of crop specific pixel purity is used to analyse how mixed the 

pixels can be (as they become coarser), without undermining their capacity to describe the 

desired surface properties. The framework lays the technical foundation of a processing chain 

to retrieve site-specific EO data requirements for crop mapping at the regional scale. 

The main findings and synthesis of the results are summarized and discussed in the conclusion 

chapter at the end of this thesis. The discussions and concluding remarks will point on the capabilities 

and pathways for future research tasks in the context EO-based crop mapping and agricultural 

monitoring. 

 
Figure 1-3: Overview of the methodological components of this study and their interactions (arrows). The main 
methodological approaches, corresponding to the objectives of this thesis, are shown in white boxes with dashed 
contours. 



 

Chapter 2 

DESCRIPTION OF THE STUDY AREA 

Abstract 

Middle Asia exhibits vast irrigated systems whose origin can be traced back over several millennia. Because of 

the arid climate agriculture is restricted to irrigation that is practiced along the two major rivers Amu Darya and 

Syr Darya. Today this region is known for mono cropping of cotton, wheat, and partly rice, which are cultivated 

on vast agricultural systems that were excessively expanded during the Soviet era since the 1960s. After 

independence, parts of the irrigation system have undergone dramatic changes, caused by mismanagement, 

water scarcity, and soil salinization, resulting in widespread land abandonment and degradation processes. In 

this thesis four sites of 30×30 km were selected from different parts of this irrigation system in order to perform 

the experiments. The choice of the particular sites was oriented toward fragmented landscapes that represent (i) 

different spatial patterns of agricultural production systems in Middle Asia, composed by varying field sizes and 

spatial configurations of fields, (ii) both lowland and mountainous regions, and (iii) different management 

practices (crop types, levels of mechanization, different and partly state-imposed crop rotation systems). 

Geostatistics were used to quantify the landscapes characteristics, e.g. the spatial field pattern, and to test if the 

subsets that were chosen are large enough to characterize the spatial structures of the corresponding landscapes 

they cover. 

2.  
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2.1. Agriculture in Middle Asia – History and recent challenges 

Middle Asia belongs to the source areas of recent crops (e.g. melons, apples) (Nentwig, 2005) and is 

one of the world’s core regions of irrigation. It is a primarily arid region in the centre of the Eurasian 

continent, characterized by diverse physiographic conditions ranging from semi-arid and arid desert 

areas to steppe and mountainous regions. Because of the aridity, agriculture in the catchment is 

dependent on irrigation, so it is concentrated within a dense irrigation network that stretches up to 

several kilometres on both sites of the two major rivers in Middle Asia, the Amu Darya and Syr Darya 

(in ancient times called Oxus and Jaxartes, respectively). Both rivers drain into the Aral Sea (Figure 2-1). 

The drainage basin of the Aral Sea is estimated approximately 1.8 million km2 (Micklin, 2007). 

 
Figure 2-1: Main irrigated areas in Middle Asia. Red rectangles indicate the footprints (each 30×30 km) of the 
satellite images in the four study sites that were selected in this thesis. 

Today Middle Asia is known as a region of mono cropping for cotton and wheat (Lal et al., 2007). It 

exhibits vast agricultural systems (Figure 2-1), whose origin can be traced back over several millennia 

(Boroffka et al., 2006; Oberhänsli et al., 2007). However, both the recent extent and configuration of 

the irrigation infrastructure stem from its extension that began in the 1930s and its excessive 

development during the Soviet era between the 1960s and 1980s (Saiko and Zonn, 2000). The “Virgin 

Lands” program of Nikita Khrushchev in the 1960s resulted in the transformation of 36 million ha 

steppe land into cropland (Douglas, 1962). Expansion of irrigated agriculture (especially due to cotton 

production) in the second half of the 20th century under the aegis of the Soviet leaders was able to 

enhance the employment opportunities and increase income (Qadir et al., 2009), and made irrigated 

agriculture in Middle Asia a mainstay for their national economies. 

The total area of irrigated land in the Aral Sea basin increased from 5.4 million ha (1950) to around 

8 million ha in the 1990s (Saiko and Zonn, 2000). Today Middle Asia exhibits 9.1 million ha of irrigated 

land (FAO, 2013b). Until the second half of the 20th century agricultural extension had only a limited 

impact on the environment (Micklin, 1988), but the 70 % increase in irrigated area after the 1970s was 

not without negative environmental implications (Saiko and Zonn, 2000). Unsustainable withdrawal of 

water from the two major rivers and inefficient water use led to a drastically decrease of the inflow of 



18 DESCRIPTION OF THE STUDY AREA 

the rivers into the Aral Sea. Inflow was reduced from 55 km3 before 1950 to less than 10 km3 between 

2001–2005, and the Aral lost more than 90 % of its pre-1960 volume (Micklin, 2007). The exposed 

seabed (called Aralkum) became the major source of salt and dust storms in Middle Asia, and complex 

land cover change has further led to widespread environmental implications and water quality 

deterioration in the adjacent regions (Glantz, 2009; Kotte et al., 2012; Löw et al., 2013b, 2012; Micklin, 

2007, 2010). 

Today, agriculture in Middle Asia faces a variety of challenges, which are briefly described in the 

following5. Covering more than 4 million km2 the five ex-Soviet countries Kazakhstan, Kyrgyzstan, 

Tajikistan, Turkmenistan, and Uzbekistan today are home to more than 55 million people (FAO, 2013b), 

from which a large fraction (22 million) depends on irrigated agriculture for their livelihoods (Qadir et 

al., 2009). A major part of the economic output of Uzbekistan, Tajikistan, and Kyrgyzstan is derived 

from (predominantly irrigated) agriculture (Bucknall et al., 2003). Resource sharing in Middle Asia is 

complicated due to several factors: dependence on shared but transboundary resources, redrawn 

national borders (that do not fully take into account cultural legacies), proceeding infrastructure 

deterioration (that was skewed to cotton monoculture production), and the loss of the centrally managed 

Soviet economy and compensation mechanisms. The three downstream countries (Uzbekistan, 

Turkmenistan, and Kazakhstan) are the main freshwater consumers in the Aral Sea basin and use water 

in the summer season for irrigation. They suffer land degradation and water quality deterioration (Qadir 

et al., 2009). Some downstream parts of the irrigation system suffer continuously decreasing 

agricultural production because of deteriorating water supply (JICA et al., 2010). On the upstream site, 

water resources are mainly generated in the energy-poor yet water-rich mountainous regions in 

Tajikistan and Kyrgyzstan (Sapper et al., 2007), which use water for hydropower production in the 

winter season. Hostile reactions from downstream countries on planned or existing dam projects in the 

upstream countries (e.g. the Rogun dam in Tajikistan) underline this conflict-laden situation. As 

reminded by (Lioubimtseva and Henebry, 2009) the core regional problem in Middle Asia is not a 

general lack of water resources, but the way they are managed and distributed: it is rather an issue of 

ineffective water management systems and lacking coordination among the irrigation systems. For 

instance it is estimated that Middle Asia  loses 1.7 billion U.S. dollar per year caused by poor water 

management that lowers agricultural yields (UNDP, 2005).  

Meanwhile Middle Asia experienced significant increases in population size (with average annual 

growth rates of 1–2 % in all Middle Asia  countries except of Kazakhstan), which puts additional pressure 

on food production and water resources for irrigation (Asian Development Bank, 2012; Cai et al., 2003; 

UNDP, 2005). Following the disintegration of the Soviet Union in 1991 agricultural yields declined in 

Middle Asia  by 20–30 % in the last decade, with a loss of agricultural production from salinization alone 

estimated at 2 billion U.S dollar (UNDP, 2008). 

On top of this, climate change will affect future water availability and food production in Middle Asia: 

precipitation will most probably slightly decrease by 2050 with a daily rate of approximately 1mm/day 

(Lioubimtseva and Henebry, 2009). Temperature will most probably increase by 3–5 °C by 2080, 

especially in summer and fall, which will be accompanied with a further increase in aridity and 

increasing water demand for irrigation (Lioubimtseva and Henebry, 2009), see Figure 2-2. Climate 

change will affect the agricultural production by shifting the spatial and temporal pattern of irrigation 

water availability. Melting of the glaciers in the mountainous areas, e.g. in Pamir and Tian-Shan is 

projected to increase (Glantz, 2005; Lioubimtseva and Henebry, 2009). Since the freshwater resources 

in Middle Asia are mainly generated in the mountain glaciers, the melting of the ice and snow packs will 

initially translate into additional runoffs from the Amu Darya and Syr Darya for a few decades. 

                                                      
5: The interested reader is referred to Bucknall et al. (2003), Glantz (2005), Harris (2010), Létolle and Mainguet (1996), Martius 
et al. (2012), and Sapper et al. (2007) for more detailed information on this subject. 
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Ultimately this will be followed by a reduction of the flow after the glaciers have disappeared (Glantz, 

2005), and the loss of glacier volume, depending on their location, is predicted to amount 32–73 % until 

2050 (Giese and Sehring, 2007). Critically there remain uncertainties in the scenarios for predicting the 

future climate trends (Mannig et al., 2013; Siegfried et al., 2012). In this regard, climate change can be 

seen as an additional (potential) threat to the existing vulnerability of the irrigation system in Middle 

Asia by reducing the region´s future water supply. 

 
Figure 2-2: Change in the mean annual temperatures over Central Asia during the 20th Century, adapted from 
Lioubimtseva and Henebry (2009). 

2.2. Test site description 

Four distinct sites of 30×30 km within the irrigated land of Middle Asia were selected for 

implementation of the methodology of this thesis (Figure 2-1)6. Three sites belong to Uzbekistan: 

Khorezm (KHO), Karakalpakstan (KKP), and Fergana Valley (FER). One site belongs to Kazakhstan: 

Kyzyl Orda (KYZ). The choice of the particular study sites was oriented toward fragmented landscapes 

that represent (i) different spatial patterns of agricultural production systems in Middle Asia, composed 

by varying field sizes and spatial configurations of fields, (ii) both lowland and mountainous regions, 

and (iii) different management practices (crop types, levels of mechanization, different and partly state-

imposed crop rotation systems). In this regard, accessibility, permissions, and satellite data availability 

also influenced the choice of these four regions. In the following a brief description of the four selected 

test sites is given, thereby focusing on major physio-geographical and agricultural characteristics 

(climate, soils and vegetation). Table 2-1 summarizes the main characteristics of the test sites. 

The first site (Figure 2-1) is located in the Khorezm region (KHO) in the north-western part of 

Uzbekistan, approximately 120 a.s.l. It is located between the deserts Kara-Kum and Kyzyl-Kum, 

approximately 250 km south from the former shoreline of the Aral Sea in Uzbekistan. Climate is arid 

with 119 mm precipitation per year (Table 2-1) that mostly falls in winter, and monthly evaporation 

exceeds precipitation. Natural vegetation cover in the test site is sparse. Near the Amu Darya remnants 

of the formerly wide spread Tugai vegetation can be found, and reeds (e.g. Phragmites australis), cattail 

(Typha angustiflora) and rushes can grow where ground water levels are sufficiently high. Soils in KHO 

are classified as Calcaric Gleysols and partly Calcaric Fluvisols, according to the FAO-UNESCO Soil Map 

of the World7. The strong influence of groundwater, caused by inefficient irrigation management, and 

the proximity to the Amu Darya, lead to high salt dynamics and secondary soil salinization, and severe 

degradation of the irrigated land is reported to occur in Khorezm (Ibrakhimov et al., 2007). Cotton (e.g. 

                                                      
6 : All test sites are focus regions of the German-Uzbek Khorezm-Project, the CAWA-Project, and the GIZ EEWA-Project. 

7: Source: http://www.fao.org/nr/land/soils/digital-soil-map-of-the-world/en/ (last accessed 03-Feb 2013). The soil type was 
downloaded as ESRI shapefile and overlain with the study sites to estimate the fractional soil type cover within the four sites. 
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Gossipum hirsutum), winter wheat (Triticum aestivum), and rice (e.g. Oryza sativa) fields dominate 

the agricultural landscape (Ibrakhimov et al., 2007). Beside these, fruit trees, sorghum, and maize are 

cultivated. Small garden and household plots, so-called Tamorkas, can be found but are excluded from 

the later analysis. A dense network of irrigation and drainage canals demark the fields (Conrad et al., 

2007). The agricultural landscape appears fragmented due to a comparatively high diversity of crops, 

although partly crops are grown on adjacent, regular shaped fields that together exceed up to 25 ha 

(Conrad et al., 2011a). Among the four test sites KHO exhibits the second largest fields (mean field size 

is 4.31 ha)8 and the cover fraction (𝐶𝑓) defined as the share of agricultural fields in the landscape, is the 

largest among all sites (0.59). 

Table 2-1: Characteristics of the four study sites. Max 𝐷𝑐 is the maximum of mean length scale of the normalized 
vegetation index (NDVI) by Rouse et al. (1974) along the season in [m]9. Total number of fields, field sizes, 𝐷𝑐, and 
𝐶𝑓 are based on own calculations based on segmented image objects, see section 3.4. 

Study 

site 

Scene 

center 

[Lat/Lon] 

Annual means of 

temperature [°C] and 

precipitation [mm] 

Total 

number of 

fields 

Mean / 

standard 

deviation field 

size [ha] 

Median 

field size 

[ha] 

𝑪𝒇 Max 𝑫𝒄 

KHO 
60°69E 

41°53N 

13.1 / 119 

(Meteo Station: Urgench)10 
22,247 4.31 ± 2.07 3.21 0.59 2268 

KKP 
59°33E 

42°42´N 

10.4 / 106 

(Meteo Station: Cimbaj) 
21,205 2.19 ± 1.86 1.71 0.32 2811 

KYZ 
64°55E 

44°58N 

9.8 / 149 

(Meteo Station: Kyzyl Orda) 
14,561 2.45 ± 1.62 2.14 0.25 1719 

FER 
71°45E 

40°32N 

13.7 / 177 

(Meteo Station: Fergana) 
12,670 6.74 ± 2.25 5.47 0.57 2405 

        

 

The second site is situated in the autonomous republic of Karakalpakstan (KKP), in the north-

western part of Uzbekistan (Figure 2-1). It is located in the lowest reaches of the Amu Darya, 

approximately 80 km south to the former Aral Sea shoreline, approximately 60 m a.s.l. Climate is arid, 

with 106 mm annual precipitation (Table 2-1) with peaks in early spring and winter, out of the main 

vegetation period. Major soil types found in this site are Eutric and Calcaric Gleysols. The natural 

phanerophyte vegetation in KKP comprises open and dense shrublands (e.g. Tamarix sp., Haloxylon 

persicum and Haloxylon aphyllum, Calligonum sp.), and reed areas (e.g. Phragmites australis). The 

only surface inflow of water into KKP, as is in KHO, is from the Amu Darya. Discharge varies 

significantly from year to year in the downstream site, introducing high uncertainties in water 

availability and causing severe drought, e.g. in 2000 and 2001 (JICA et al., 2010). The last decades have 

witnessed dramatic changes of land use, resulting in widespread land abandonment caused by declining 

water availability, secondary soil salinization, and proceeding desertification. In 2011 more than 50 % of 

the agricultural fields in the test site were temporally or permanently fallow (see section 4.3.6), or 

characterized by shrub encroachment and other land degradation related phenomena (Beyer, 2012). 

Major crops in KKP are cotton, winter wheat, and rice. Other crops like maize, sorghum, watermelons, 

fruit trees, and alfalfa are cultivated. Identical crop types partly are grown on 2–3 adjacent fields, but 

the crop pattern in KKP is heterogeneous. Although crop rotation practices were introduced in KKP 

                                                      
8: Mean and median field sizes were calculated in ArcGIS, see chapter 3. 

9: Garrigues et al. (2006a) used the mean length scale to quantify the spatial heterogeneity in an agricultural landscape. It is 
defined as the square root of the SV integral range. Here the maximum value of the (dimensionless) mean length scale in the 
season is taken to quantify if the scene is large enough to characterize the spatial structure in the scene, as proposed by Garrigues 
et al. (2006a). 

10: Meteorological data was taken from climate diagrams, downloaded from www.klimadiagramme.de (last accessed: 20-Jul 2013), 
data from station “Urgench” is provided by the ClimWat data base of FAO (Munoz and Grieser, 2006). 
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already in the Soviet era they went out of practice, due to limited supply of water, lack of seeds and 

knowledge, or replacement of fodder crops with wheat to increase food production (JICA et al., 2010). 

Regular shaped fields dominate the KKP landscape in the southwest, whilst in the north-eastern 

direction the landscape becomes increasingly more fragmented with smaller and more irregular shaped 

fields. 

The third site (Figure 2-1) is located in the Kyzyl Orda oblast11 (KYZ) in southern Kazakhstan, and 

was chosen to have an example with more regular shaped field structures. The site is located 115 m a.s.l 

in the flat lowland region at the lower reach of the Syr Darya, approximately 350 km east to the former 

Aral Sea shoreline. Climate is arid and continental, with 149 mm annual precipitation (Table 2-1) that 

mainly falls in the spring and late autumn season. Eutric Fluvisols dominate the soil cover, partly 

interspersed with Eutric Gleysols and Eutric Histosols. Next to natural riverine vegetation near the Syr 

Darya open shrublands and patches of reed areas dominate the landscape in KYZ. Only two crops are 

dominating the agricultural landscape: rice and alfalfa. Beneath them the Kyzyl Orda oblast is known 

for its melon production, but melons are absent in the selected test site. Nowadays a crop rotation system 

is applied in KYZ, where rice and alfalfa are combined in a distinct pattern: after two years of rice 

cultivation the fields are left fallow and legume crops, in particular alfalfa, is grown for up to three 

consecutive years. Then other crops (wheat, vegetables) are grown for two other consecutive years before 

rice is cultivated again. This rotation pattern is mandatory in Kyzyl Orda oblast since 2009 and is 

intended for soil fertility conservation and regeneration, although still not applied region wide (personal 

communication Dr. Ulikbanuli Nurlibai, vice-director of the Rice Institute in Kyzyl Orda). Large and 

regular shaped agricultural fields of approximately 2–3 ha each characterize the landscape, e.g. the same 

crop is grown on adjacent fields, which together exceed the area of between 500×500 m and 

1,000×1,000 m (25–100 ha). The fields that are aggregated to blocks together make up a relatively small 

proportion of the total test site area (𝐶𝑓 = 0.25). From the four test sites KYZ is the most regular in terms 

of the field structure (size, shape, arrangement) and cropping pattern (e.g. high spatial aggregation of 

few crop types). The remaining areas between these blocks are filled with sparse shrublands and, to a 

lesser extent, reed areas. 

The fourth site (Figure 2-1) is located in the Fergana Valley (FER), in the eastern part of Uzbekistan. 

It is situated in the intermountain basin between the foothills of the Tian-Shan Mountain in the north, 

and the Gissar-Allay in the south. It is the only mountainous site and situated in the upstream region of 

the Syr Darya. The central part of the FER test site is flat and approximately 450 m a.s.l. Rivers deposit 

sediments (deposits of gravel) thereby forming deltas in the valley. In the FER site Calcaric Gleysols 

cover a major part, partly interspersed with Gleyic Solonchaks and Calcic Xerosols. Climate in FER is 

arid continental, with an average annual temperature of 13.7 °C and 177 mm annual precipitation (Table 

2-1). However up to 60–70 % of the precipitation falls outside the main vegetation period (Hakimov et 

al., 2007). Fergana Valley is one of the most fertile agricultural regions in Middle Asia, with a strong 

focus on cotton, winter wheat, and fruit trees. Comparatively large and regular shaped fields, and a 

variety of crops including cotton, rice, maize, watermelon, sunflowers, alfalfa, winter wheat, and fruit 

trees, characterize agricultural production in Fergana Valley. Like in KKP and KHO, the production of 

cotton (Gossypium hirsutum L.) and the staple winter wheat (Triticum aestivum L.) is under “state-

order”, hence the annual cultivation area for cotton is state determined. Rice in Fergana Valley is mainly 

cropped for private demands and income. FER and KHO have similar landscape characteristics, but 

different cropping pattern. The mean field sizes in FER and KHO are largest among the four sites 

(6.74 and 4.31 ha, respectively). 𝐶𝑓 in FER is 0.57. 

                                                      
11: The term “oblast“ (Russian) describes an administrative territorial division in countries of the former Soviet Union. The next 
subordinate administrative unit is the „Rayon“. 
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Figure 2-3 shows the crop calendar for the major crops. This calendar details the average information 

of regular crop stages in the four test sites, although the exact timing of planting, sowing, and harvesting 

can differ due to factors related to water availability, management practices, or farmer’s decisions. In all 

sites the main part of the growing period is within the low precipitation period. In general, the growing 

season is between April and October. Onset of green (start of season) is earlier within the year in FER 

than in the three downstream sites (Bohovic et al., 2011). 

 

 
Figure 2-3: Cropping calendar of major crops in the four test sites. Note: “n.a.” means that no data is available, but 
the crop is present in the test site selected for this study. Swg = sowing time, Har = Harvest time. Source: GIZ, 
German-Uzbek Khorezm-Project, CAWA project, Rice Institute in Kyzyl Orda (Kazakhstan), and JICA et al. (2010). 

In the following a short description of the main characteristics of the crops found in the test sites is 

given: 

 Alfalfa, which is used as fodder, is characterized by several cutting operations within the growing 

period, which results in heterogeneous pattern and indistinct NDVI profiles (Conrad et al., 

2013), with high spatial and temporal variability of its dense canopy and crown structure within 

a year.  

 Winter wheat is sown from end of August and beginning of October, and harvested between end 

of May and beginning of June. In KHO, KKP, and FER a second crop is sometimes grown on the 

same field after winter wheat was harvested (intra-annual crop rotation), for instance the second 

crop can be sorghum, maize, or rice.  

 Cotton is grown in KHO and KKP and seeded in April and April–May, respectively. Harvest of 

cotton begins in end of August and beginning of September.  

 Rice is grown in all test sites expect for FER, and is seeded from April–March. If rice is cultivated 

in a sequence with winter wheat in one year in the same field (crop rotation), then seeding time 

of rice is a couple of weeks later than on rice fields without rotation (Conrad, 2006). 

 Maize and sorghum are sown in April, and harvest is between August–September. They are 

partly cultivated on the same field. 
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 Fallow fields can be found in all four sites. In the KYZ site fields are intentionally left fallow for 

2–3 years after rice cultivation, for soil regeneration purposes. In the Uzbek sites however this 

can also be a result of temporal water shortage or land abandonment, especially in KKP and 

KHO. 

The four test sites are subsets of larger agricultural landscapes, which means that more than the 

aforementioned crops can be found in the corresponding region, e.g. melons are cultivated in Kyzyl 

Orda, but absent in the test site KYZ in 2011. Also smaller horticultural plots or private gardens (e.g. 

Tamorkas) provide a wide range of agricultural and horticultural products: vegetables and fruits that 

were not classified in this thesis because of limited access and the relatively small size and amount of 

the corresponding field plots, respectively (e.g. potatoes, tomatoes, beans, sunflower, carrot, grapes, and 

others). 

2.3. Geostatistical characterization of the test sites 

Geostatistical experiments12 were conducted to answer the following questions concerning the 

landscape structure in the test sites: (i) what are the differences in spatial structures (agricultural fields) 

across the studied landscapes with respect to agricultural fields? (ii) Are the selected image subsets large 

enough to fully characterize the spatial surface heterogeneity (i.e. variance of the remote sensing image)? 

Answering both questions is of particular importance for an understanding of the impact of landscape 

characteristics on crop monitoring with coarser pixel sizes, which will be recalled in chapter 6. Details 

on the characteristics and pre-processing of the satellite images, which are used to perform the 

geostatistical experiments, are given in chapter 3 of this thesis. 

2.3.1. What are the differences in spatial structures across the studied 

landscapes? 

One approach to answer this question is using geostatistical indicators to quantify the landscape 

heterogeneity. Applications of geostatistics to quantify landscape heterogeneity and to characterize the 

spatial variability of vegetation amount over a scene can be found in Duveiller and Defourny (2010), 

Garrigues et al. (2006a), and Ozdogan and Woodcock (2006), and for characterizing the temporal 

evolution of landscape heterogeneity along the season in Garrigues et al. (2008a). Semivariograms (SV) 

were shown to provide comprehensive characterization of image spatial structures (Curran, 1988; 

Garrigues et al., 2006a). To quantify the heterogeneity of the test sites SVs were calculated for the field 

masks that were generated of each study site (see section 3.4). These masks take on the value of “1” if 

the location is cultivated, and “0” otherwise (Figure 2-4). A classical SV estimator was applied to all 

image pixels in these binary masks: 

𝛾(ℎ) =  
1

2𝑁(ℎ)
∑ [𝑧(𝑥𝑖) − 𝑧(𝑥𝑖 ∗ ℎ)]2𝑁(ℎ)

𝑖=1                        Eq. 2-1 

where 𝑧(𝑥𝑖) represents the value of the variable at the location 𝑥𝑖, ℎ the separation (the so-called lag, 

given in the measurement unit of the analysis, e.g. in km) between elements in a given direction, and 

𝑁(ℎ) the number of data pairs occurring at locations 𝑥𝑖 and 𝑥𝑖 ∗ ℎ. An experimental SV is obtained by 

computing the mean variance of the variable under consideration obtained from pairs of points that are 

separated by an increasing distance, the so-called lag. The 𝑧(𝑥𝑖) in the formula above is used here to 

                                                      
12: Geostatistics were calculated in the software package gstat (Pebesma and Graeler, 2013) in the freely available software 
environment R (R Development Core Team, 2012). 
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represent an indicator function, which takes on the value of “1” if the location 𝑥 that is cultivated is 

present and “0” otherwise (Collins and Woodcock, 1999; Ozdogan and Woodcock, 2006). Following this 

idea the area of cultivated lands is defined as all points for which 𝑧(𝑥𝑖) = 1. In this study omni-

directional SV were calculated, which means that they were computed by pooling together all directions. 

The SV describes the degree of spatial dependence of a regionalized variable. The two most 

commonly used parameters from the SV are the sill (𝛾𝑟) and the SV range. The former is the overall 

variance of the image and is defined as the maximum level of the SV. The latter is the distance to 𝛾𝑟 (e.g. 

the lag distance in km at which the SV reaches its maximum value, the sill) (Curran, 1988). The sill 

parameters is related to the proportion of agricultural fields that covers an image, and the range to the 

size and shape of the fields (Ozdogan and Woodcock, 2006). Assuming that the variable has a second-

order stationarity, the SV will reach its maximum (e.g. a “stable” value, the sill 𝛾𝑟) at a given lag (the 

range). 𝛾𝑟
 is equal to the variance of the variable over the entire scene. These two parameters were used 

to quantify the landscape heterogeneity (Figure 2-4). 

Some of the differences of the test sites already become evident from their SV (Figure 2-4). In KHO 

the rise of the SV is very steep at comparatively small lags, and reaches 𝛾𝑟
 at the highest value of all sites. 

KHO has the highest 𝐶𝑓 value (0.59) and the highest standard deviation of field sizes (±2.07 ha) that 

almost exceed the mean field size. This indicates a large amount of small scale and irregular structures 

(fields), despite the large mean field size. The SV reaches 𝛾𝑟
 at 9–10 km. The SV in KKP rises in a similar 

fashion like in KHO, but stabilizes in a shorter range of approximately 5–6 km. This indicates, similar 

to KHO, the presence of smaller-scale structures and more irregular shaped fields. In KYZ the rise of the 

SV is the lowest, and the overall variance is low as compared with the other sites. This indicates the 

presence of large and regular structures (e.g. the regular and aggregated field complexes that are clearly 

spatially separated from each other). The semivariance 𝛾̂ decreases after it reaches 𝛾𝑟
 in approximately 

5.2 km distance, which is called the hole-effect semivariogram (Pyrcz and Deutsch, 2003). This 

indicates that the studied variable has a periodic spatial behaviour. Critically this hole-effect is not 

completely registered by the corresponding SV graph due to the fact that the analysis radius distance 

used to compute the SV is not sufficient to capture the complete periodic spatial pattern defined by the 

larger distance of the field blocks. The SV of the FER test site looks similar to the SV of the KHO site, 

and it also reaches 𝛾𝑟
 in the range of approximately 9 km, but rises more slowly. FER exhibits large 

objects (6.74 ha on average) that are arranged in a much more regular pattern than in KHO. In FER the 

SV reaches 𝛾𝑟
 in comparatively high ranges. This indicates the presence of large objects (fields). 
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Figure 2-4: Subsets (6.5×6.5 km) of the satellite imagery and crop masks illustrating the typical cropping patterns 
within the four test sites. The imagery is displayed using a near-infrared-green-blue band combination of the 
RapidEye sensor. Contrast is adjusted to each band separately. The corresponding experimental semivariograms 
are shown right to the binary masks. 
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2.3.2. Are the image subsets large enough to characterize the spatial 

surface heterogeneity? 

Having characterized the general landscape structure of the four tests sites with help of SV that were 

calculated on the field masks, the second question is answered by calculating experimental SV for the 

NDVI from the RapidEye image stacks (see section 3.1 for more information on the RapidEye images) 

over each site and eight acquisition dates, respectively. 

An exponential model was fitted over each of the eight experimental SV curves (Figure 2-5). None of 

the SV exhibit nugget effects, which is an indication that the spatial variations at small scales (Curran, 

1988), e.g. smaller than the GSD of the RapidEye sensor (6.5 m) in the test sites, are small relative to 

environmental variations, and can be neglected (Garrigues et al., 2008b). All SV show a quick rise and 

a stabilization of the semivariances within 10 km distance. From the modelled SV the sills 𝛾𝑟
 (overall 

spatial variability of the image) were calculated (Figure 2-5). In all study sites the SVs reach their 𝛾𝑟
 

below a distance of 30 km (corresponding to the test site size), which indicates that the images can be 

considered large enough to characterize the spatial structure within the landscape they cover (Guissard 

et al., 2004). Interestingly the pattern of the SV in KYZ becomes periodic between June–August, which 

reflects the repetitive pattern of blocks of fields in that site (Figure 2-4). The SV reach 𝛾𝑟
 at larger lags, 

showing some further spatial dependency up to 5–6 km after which 𝛾𝑟
 is reached. This larger range could 

indicate the approximate scale in which growing conditions (e.g. management practices, water 

availability, soil properties) are similar. The SV of the field masks in FER and KHO exhibit a similar 

behaviour, indicating a comparable spatial field structure, but the trajectories of their NDVI sills differ 

distinctly (Figure 2-5). 

  

Figure 2-5: Left: Experimental semivariograms of NDVI for each acquisition date over the KYZ test site (left). The 
y-axis shows the NDVI semivariance, the x-axis shows the lag distance [m]. Right: Temporal trajectory of the spatial 

variability of the time series quantified by the semivariogram sill 𝛾̂𝑟
 for the test sites. 

In a second experiment, the mean length scale 𝐷𝑐  of Garrigues et al. (2006a) was computed from 

these SV. This parameter 𝐷𝑐  was shown to be suitable to assess if an image is large enough to characterize 

the spatial structures within the landscape: Garrigues et al. (2006a) propose that an image is large 

enough if the integral range of the SV is smaller than 5 % of the image surface. Hence, the corresponding 

𝐷𝑐  for a 30×30 km image must be below 6.7 km. To test if this hypothesis is fulfilled the maximum of all 

𝐷𝑐  values for the NDVI along the season was calculated, and the subsets were considered large enough 

(Table 2-1). The results of the experiments in this section confirm that the four image subsets can be 

considered adequate in size to characterize and quantify the different spatial structures in the landscapes 

they cover. 
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Chapter 3 

DATA PRE-PROCESSING 

Abstract 

This chapter summarizes the main pre-processing steps of the satellite imagery, starting with the geometric and 

atmospheric correction. Multispectral time series from the German RapidEye mission with five reflectance bands 

were available over the four test sites. Atmospheric correction was done with the ATCOR module. SPOT-5 images 

were the input for object-oriented image segmentation to retrieve the agricultural field boundaries, since no 

cadastre information was available for the test sites. A three-level segmentation approach was implemented using 

the eCognition Developer 8.7, 64-bit software from Trimble. The quality of the segmented objects was evaluated 

using an empirical discrepancy method. Then a comprehensive set of features was calculated at the object level 

for each acquisition date, which were used as input to the classification experiments. Particular focus was on 

features that are based on RapidEye´s red edge canal and on the use of multi-temporal geostatistical features 

from each objects semivariogram. 

3.  
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3.1. Satellite Data 

For this study, multispectral data from the RapidEye system (Tyc et al., 2005) was available for the 

four study sites. The German RapidEye satellites, launched in 2008, represent the first fleet of multi-

spectral satellites operationally providing the red edge spectrum and observations with high temporal 

and spatial resolution for agricultural monitoring applications (Tyc et al., 2005). A constellation of five 

identically constructed satellites sample the earth surface with swath of 77 km and an at-nadir revisit 

time of 5.5 days, using a multi-spectral push-broom imager (RapidEye AG, 2012). The images have a 

nominal GSD of 6.5 m at nadir with five spectral bands: blue (440–510 nm), green (520–590 nm), red 

(630–685 nm), red edge (690–730 nm), and near-infrared (NIR) (760–850 nm). The signal is encoded 

in 16-bit unsigned integers. RapidEye offers a product resampled to 5 m (L3A product), however because 

of potential distortions in the radiometric signal this product was not considered in this thesis. The 

wavelength between the visible red and the near infrared, the so-called red edge spectrum is particularly 

focused on, which is one peculiarity of the RapidEye system. Because of its sensitivity with regard to the 

chlorophyll content of plants, it can be used for identifying vegetation stress or crop nutrition diagnostic 

(Eitel et al., 2007). RapidEye has successfully been used to characterize land surface phenology and for 

multi temporal crop classification (Conrad et al., 2013; Ehammer et al., 2010; Löw et al., 2012, 2013a; 

Schorcht et al., 2012; Schuster et al., 2012).  

Table 3-1 shows the number and year of level 1B products, which were already radiometric and sensor 

corrected by the vendor. Satellite imagery of the different study sites was acquired from the RapidEye 

satellites in 2009 (KHO), 2010 (KHO), 2011 (KKP, KYZ, FER), and 2012 (FER). Images completely 

covering the 30×30 km study sites were selected for eight dates within the growing period, each based 

on the pre-study of each site´s crop calendar (see section 2.2). This ensured to include key growth stages 

between early spring in March and early fall in October.  

Level 1B data from SPOT-5 (Système Pour l’Observation de la Terre) of the French space agency 

CNES (Centre national d’études spatiales) was used to derive the field boundaries by image 

segmentation. SPOT-5 is a push-broom scanner that operates since May 2002. Its sensor consists of an 

array of CCDs (charge-coupled device) that are arranged along a vertical line to the satellite orbit track 

(Richards and Jia, 2005). Three types of instruments are installed on SPOT-5: the High Geometric 

Resolution (HRG), the High-Resolution Stereoscopic imaging (HRS), and the VEGETATION 

instrument. HRG has the ability of panchromatic (P) and multispectral (XS) recording (SPOT IMAGE, 

2012). The images, acquired in 2006 (KHO) and 2007 (KYZ), have one band with a GSD of 2.5 m (P) 

and four XS bands with a GSD of 10 m (Table 3-1). 

Clouds and cloud shadows present in the Khorezm image acquired on 2–Jun 2009 were filled with 

spectral information from scenes recorded two days before (31–May 2009). Further, some acquisition 

dates in Table 3-1 are composed of two scenes, acquired at different dates, in order to achieve full 

coverage for the study site:  KKP (2011): 07–Jun and 16–Jun, FER (2011): 23–Jun and 24–Jun, KHO 

(2009): 20–Sep and 22–Sep, and KHO (2010): 01–Oct and 03–Oct. All other scenes were cloud free or 

could be covered with one image. 
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Table 3-1: Overview of the sensor configurations and image acquisition dates of RapidEye and SPOT-5. 

Study 

site 
Acquisition date Year 

Spectral bands and 

spectral range [nm] 
GSD 

Bit 

depth 

RapidEye 

KKP 04-Apr, 08-May, 07/16-Jun, 14-Jul, 27-

Jul, 13-Aug, 28-Aug, and 09-Oct 

2011 

1: Blue (440–510) 

2: Green (520–590) 

3: Red (630–685) 

4: Red edge (690–730) 

5: NIR (760–850) 

Bands 1–5: 

6.5 m 
16-bit 

KYZ 09-May, 09-Jun, 03-Jul, 25-Jul, 01-Aug, 

17-Aug, 28-Aug, and 24-Sep 

2011 

FER 08-Apr, 13-May, 31-May, 23/24-Jun, 29-

Jul, 07-Aug, 08-Sep, and 27-Sep 

2011 

FER 15-Apr, 23-May, 01-Jun, 17-Jun, 02-Jul, 

01-Aug, 01-Sep, 02-Oct 

2012 

KHO 31-May/02-Jun, 14-Jul, 01-Aug, 13-Aug, 

08-Sep, 20/22-Sep, 03-Oct, 13-Oct 

2009 

KHO 16-Apr, 25-Apr, 13-May, 13-Jun, 04-Jul, 

23-Jul, 01-Aug, 01/03-Oct 

2010 
   

SPOT-5 

KHO 19-Jun and 22-Jun 2006 1: Panchromatic (480–710) 

2: Green (500–590) 

3: Red (610–680) 

4: NIR (780–890) 

5: SWIR (1,580–1,750) 

Band 1: 

2.5 m 

 

Bands 2–5: 

10 m 

8-bit 

 

KYZ 04-Jun, 18-Jun, and 31-Jul 2007 

3.2. Reference database from ground surveys 

A GIS database was generated that contained information on infrastructure, soil types, and 

administrative boundaries as vector, and high-resolution satellite data from SPOT-5 and ALOS PRISM. 

This information aided in correctly identifying the actual positions of agricultural fields during the field 

campaigns, which was controlled by the Global Positioning System (GPS) with an approximated location 

of less than 2–3 m.  

Ground reference data for the training and testing stage of the classification experiments in this 

thesis was acquired during extensive field surveys in the study sites: a two-time random sampling was 

performed in KKP, KHO, and FER because of the presence of crop rotations: multiple cropping (growing 

sequentially two or more crops in the same field within a single growing season) is sometimes practiced, 

typically starting with winter wheat and following with another crop. Because of the absence of rotations 

in KYZ a one-time random sampling was performed in this site. KYZ was visited in the summer season 

in 2011. In KKP (2011) and KHO (2009) the random sampling was conducted in the spring season 

(April–May) and before harvest in the summer seasons. In KKP and KHO the same fields were visited 

in the spring and summer seasons, respectively. 

During the spring sampling period only winter crops (winter wheat) were sampled that were in the 

stage of growing (stem elongation and shoot development), whilst all other fields were fresh ploughed 

or fallow, except for alfalfa fields that were already in the growing stage. In the summer season the same 

fields were visited again to check if a second crop was cultivated on the corresponding winter wheat field 

(crop rotation). In addition, several other fields were visited in the summer season. At the time of the 

field visits in summer, crops were in the final stages of their growing season, and fruits were partly fully 

developed (e.g. melons or fruit trees). In FER only one field sampling in the summer season was 
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performed (for logistical reasons), and crop rotations were identified afterwards by checking the fields´ 

NDVI signatures on-screen. During the field sampling the crop type, phenological stage, field 

homogeneity, and crop height was recorded at each visited field and geo-located with a GPS-handheld 

from Trimble. At each site several hundreds of reference plots (agricultural fields) were visited and geo-

located. Figure 3-1 shows examples of crops found in the study sites. In KYZ two stages of alfalfa can be 

distinguished: one year old alfalfa fields (hereafter this class will be called alfalfa-1y) characterized by 

high amounts of weed flora, and 2–3 year old fields (hereafter called alfalfa-3y) that are mainly 

composed of alfalfa. In the latter case the weed flora cannot compete with the alfalfa after the first year 

and several cutting operations (harvests), and the temporal signature of 2–3 year old fields become very 

distinct from the 1-year-old fields. Sorghum and maize, which partly are grown at the same field in KHO 

and KKP and were merged to one class: sorghum/maize. 

 

 
(a) Fallow field 

 
(b) Melons 

 
(c) Rice 

(d) Alfalfa-3y 
 

(e) Cotton 
 

(f) Winter wheat (harvested) 

 
(g) Fruit trees 

 
(h) Sorghum/maize 

 
(i) Alfalfa-1y 

Figure 3-1: Major crop types in the four study sites that were classified in this study (line by line from left to right): 
fallow field in KYZ, melons in KYZ, rice field in KYZ, three year old alfalfa field in KYZ, cotton field in KKP, harvested 
winter wheat field in KKP, fruit (apple) trees in KKP, sorghum in KKP, and one year old alfalfa in KYZ. 
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Table 3-2: Classification scheme for crops in the study sites. “x” indicates that the class was not included in the 
legend. The crop map in KHO for the year 2010 was taken from Conrad et al. (2011b). 

Class name KHO 2009 KKP 2011 KYZ 2011 FER 2011 FER 2012 

Cotton 113 46 X 120 110 

Rice 70 118 116 x X 

Fallow 75 122 115 29 38 

Fruit trees 65 x X 77 18 

Sorghum/maize 70 21 X x X 

Winter wheat 34 137 28 55 24 

Winter wheat - other 103 21 X 128 108 

Alfalfa-1y x 36 117 x X 

Alfalfa-3y x x 29 x X 

Melons x 25 X x X 

Total number of classes 7 8 5 5 5 

Total number of samples 530 526 405 409 298 

 

Statistical tests for accuracy assume a random distribution of the samples from the total population 

(Jones and Vaughan, 2010). In general training and validation data sets can be generated in different 

sampling strategies e.g. simple random sampling, clustered and systematic sampling, stratified random 

sampling, or sometime transect-wise sampling (Jones and Vaughan, 2010; McCoy, 2005). In simple 

random sampling each sample has an equal chance to be selected without operator bias and gives 

theoretically statistically optimal results (Jones and Vaughan, 2010), but at the expense of under-

sampling of small classes, whilst the systematic approach selects samples with an equal interval over the 

test sites (McCoy, 2005). Random sampling might be prohibitive due to physically restricted access to 

all locations in the test sites and might have to be relaxed in some cases (Foody, 2002). Stratified random 

sampling combines a-priori knowledge about the test site, for instance pre-existing land cover maps or 

environmental conditions, and combines it with the simple random sampling within each of the a-priori 

defined categories (Congalton and Green, 2009), which can be defined by cluster analysis or existing 

land use maps (Conrad et al., 2010). It reduces the chance of small categories to be under-sampled, 

whilst clustered sampling may reduce field work time and be preferred for pragmatically reasons (Jones 

and Vaughan, 2010). Not only does the sampling design has an impact on the classification accuracy 

(Plourde and Congalton, 2003) but also the reference unit (e.g. pixel, aggregates of pixel, or objects) can 

impact the result, but a universally best solution does not exist (Stehman and Wickham, 2011; Stuart et 

al., 2008). The initially targeted stratified random sampling scheme had to be relaxed for several 

reasons, e.g. access to fields was partly restricted because of private ownership, flooded canals without 

crossings, or bad road conditions. Spatial distribution of the sample sites is shown in Figure 3-2. 

 

 
Figure 3-2: Location of the sampling sites in (from left to right) KHO, KKP, KYZ, and FER. Each site is 30×30 km. 
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Because of insufficient field samples for some of the classes in KHO, additional samples were selected 

from very high resolution Quickbird time series data (Conrad et al., 2013). Additional samples could be 

extracted based on sub-field segmentation techniques using NDVI time-series, thereby splitting existing 

objects according to the similarity of NDVI profiles (Schorcht et al., 2012). The resulting number of field 

samples and the classes included in the legends are summarized in Table 3-2. Outliers in the reference 

database were deleted based on visual inspection of NDVI temporal profiles from RapidEye time series, 

resulting in 298–530 samples in the sites. The final number of the reference fields was variable among 

the different crop types and study sites, causing the number of samples per crop to vary between 18 and 

137. The field sampling was conducted at the per-field level with preference towards homogeneous fields 

(one cop per field, homogeneous growing state). 

3.3. Satellite imagery pre-processing 

Before the image classification, geometrical and atmospheric pre-processing of RapidEye data was 

performed (Figure 3-3). Agricultural fields were derived by segmentation of SPOT and RapidEye data. 

The quality of the segments will be evaluated with an empirical discrepancy method. 

Geometrical and atmospheric correction  

Geometrical errors in satellite images are due to earth rotation skew, panoramic distortion, pixel size 

distortions, and variations in platform speed and elevation (Richards and Jia, 2005). The vendor 

corrects these errors prior to the image delivery, which is generally denoted as “Level 1B” product. These 

level 1B products then need to be transferred to a common reference projection system and 

geocorrected. The SPOT-5 scenes have been geocorrected in ERDAS Imagine using ground control 

points (GCP) that were collected and located in the study sites (GCPf), and then projected to Universal 

Transverse Mercator (UTM), WGS-84 datum. Then each RapidEye scene was co-registered and 

corrected to the SPOT-5 reference scenes with the ERDAS AutoSync module (ERDAS, 2010) which 

automatically generates hundreds of ground control points (GCPaut) per image pair and conducts the 

resampling. In KKP and FER, where no SPOT images were available, one RapidEye image that was 

formerly geocorrected by using GCPf was taken as the master scene for the remainder RapidEye images. 

For the image-to-image registration, GCPaut were used to calculate the transfer functions between 

the RapidEye scenes and the geocorrected master images. During the image-to-image processing the 

RapidEye time series data was transferred into the corresponding zone of the UTM: UTM 40N (KKP), 

UTM 41N (KHO, KYZ), and UTM 42N (FER). Selecting a nearest neighbour routine, with a polynomial 

model (2nd degree) resulted in sub-pixel accuracies for all scenes, e.g. the root mean square errors 

(RMSE) was ≤ 0.9 RapidEye pixels, which is considered of minor impact for the experiments in this 

thesis. An additional ortho-rectification, which can be done with a digital elevation model, was not 

performed because of the overall flat terrain of the study sites. 

Atmospheric correction and radiometric calibration was performed to obtain top of canopy 

reflectance (TOC) from at-aperture radiance. Because several factors affect the at-satellite radiance, 

such as atmospheric absorption and scattering by gaseous and particle components, it is worthwhile to 

perform an absolute atmospheric correction in most remote sensing applications (Song et al., 2001). 

Atmospheric correction was done using the ATCOR-2 module for flat terrain, version 7.1 for IDL, which 

is based on the MODTRAN radiative transfer code (Richter, 2011). Model parameters included a mid-

latitude summer rural atmosphere model with scene visibilities set between 10 and 50 km. Scene 

visibilities were calculated automatically in ATCOR-2. The default value of the adjacency range in 

ATCOR-2, which accounts for the influence of neighbouring background effects, e.g. atmospheric 
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scattering of radiance between adjacent fields of different reflectance, which is scattered into the view 

direction (Richter, 2011), was left unchanged (1.0 km). Only for some scenes these values were adjusted 

to 0.5 km in order to have better results from the atmospheric correction. 

 
Figure 3-3: Schematic overview of the pre-processing. 

 

3.4. Field parcel delimitation by image segmentation 

3.4.1. Algorithm description 

The agricultural fields were extracted using object-based image segmentation and supervised 

classification to identify the target (field vs. non-field). The multi-resolution and spectral difference 

segmentation algorithms, which are included in the 64-bit version of the commercial software 

eCognition Developer 8.7 (Trimble Germany GmbH, 2011), were used. This approach is based on the 

Fractal Net Evolution Approach (FNEA) segmentation algorithm from Baatz and Schäpe (2000). In this 

bottom-up process spatially adjacent and spectrally similar pixels are aggregated together in image 

objects. This region-growing algorithm seeks an optimal solution after a series of iterations: as the 

objects grow a decision whether to merge adjacent objects or not is done based on minimizing the 

average heterogeneity of the pixels within the objects. This is accomplished by calculating a variance-

covariance matrix of all spectral bands or indices of the input used to separate the image objects. 

Adjoining objects are fused if the spectral heterogeneity of the object resulting from the fusion does not 

exceed a certain threshold, which determines the maximum heterogeneity. Consequently the so-called 

scale parameter greatly influences the size of the resulting objects. Other user defined parameters affect 

the object growing, e.g. colour, smoothness, compactness, and shape (Benz et al., 2004; Trimble 

Germany GmbH, 2011). 

For KHO and KYZ, SPOT-5 data recorded in spring of 2006 and 2007, respectively, were used for 

segmentation. SPOT-5 multi-spectral XS bands were pan-sharpened with the P-band to a spatial 

resolution of 2.5 m using a high pass filter algorithm (Pohl and van Genderen, 1998) implemented in 

ERDAS Imagine. The five pan-sharpened XS bands and a variance texture image (size: 5×5 pixels) were 

used as input. Agricultural fields in KKP and FER were delineated following the same approach but 
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based on RapidEye 6.5 m images because no SPOT images were available for this study. The 

characteristics of the fields differ from site to site, e.g. in terms of field sizes and intra-field heterogeneity. 

Hence, for each site different segmentation parameters (scale, colour, shape, smoothness, compactness, 

and band weights) have been tested. Segmentation and generation of a field mask were done in several 

consecutive steps, which were designed as a hierarchical framework (Figure 3-4). In particular the scale 

parameter was focused, which has the largest influence on the segmentation. The characteristics of the 

objects, e.g. their size that is controlled by this scale parameter, can have an impact on the classification 

accuracy (Myint et al., 2011). The selection of the optimal numerical values for the parameters was 

guided by an iterative “trial-and-error” procedure as no ready-to-use accuracy assessment method is 

implemented in eCognition. In an initial step the image was over-segmented using a scale parameter of 

5 to have objects that are smaller than the fields (level 1), thereby creating objects that are sufficiently 

small to fit to the field borders of larger fields. A merging process by segmenting with a higher scale 

factor (20–35) created the smaller fields and some of the larger fields (level 2). Then, adjacent objects 

from level 2, which have similar spectral properties, were merged on basis of their spectral similarity, 

below a given threshold and allowed for defining the larger fields (level 3). This 3-level procedure gave 

better results over the four study sites than an initially tested two-level approach, in that level 2 was 

skipped.  

 

 
A (unsegmented raw image) 

 
B (Level 1) 

 
C (Level 2) 

 
D (Level 3) 

Figure 3-4: Exemplary output of the object-oriented image segmentation using a mid-spring SPOT-5 image in KYZ 
(red, green and near-infrared bands): A) portion of the SPOT-5 image (2.5 m pan-sharpened), B) over-segmented 
output at level 1 to create small objects that fit to the field borders, C) output at level 2 with a larger scale level to 
create objects that are approximate the size of the real field borders, and D) the output of level 3 after spectral 
similarity merging of adjacent objects to eliminate with-in field patches from level 2.  
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In doing so the object's size is no longer limited by a single static segmentation scale parameter, 

which is a particular weakness of using only one hierarchy level for segmentation with eCognition, and 

both large and small fields can be delineated simultaneously in a same landscape. Strictly speaking the 

segmentation approach used in this study results in clustering of adjacent pixels of similar spectral 

characteristics, which might differ from “real” field borders. Objects containing less than 20 pixels were 

not considered for classification to assure that sufficient pixels are contained for calculating the objects 

spectral mean values and geostatistics (section 3.4.3). 

3.4.2. Evaluation of segmentation quality 

An empirical discrepancy method was applied to measure the quality of the segmented objects (Ortiz 

and Oliver, 2006; Zhang, 1996). This was accomplished by assessing the similarity of the outputs from 

the image segmentation (section 3.4.1) with 400 randomly distributed reference polygons that were 

digitized on-screen. The reference polygons represent fields from all studied crop types. The following 

characteristics were used to assess the similarity between reference and the corresponding segmented 

object: shape area, shape perimeter, and shape index13. The resulting average discrepancies between 

reference and segmented fields, indicated by these three characteristics, were: 16.5 % (KHO), 9.0 % 

(KKP), 5.6 % (KYZ), and 4.7 % (FER). The fields in KHO were derived in a previous study by Conrad et 

al. (2010). Although their approach only slightly differs from the one chosen in this thesis, the quality of 

the segmentation in KHO differs considerably from the other three sites. Hence, a cadastre database 

with on-screen digitized fields was used instead that was available through the Khorezm-Project. No 

such kind of cadastre database was available in the other sites. 

3.4.3. Calculation of object features 

Since the objective of chapters 4 and 5 is object-based image classification, a variety of features were 

computed as input to the classification. Features at the object level have an advantage over pixel-based 

features because they suffer less from the pixel heterogeneity or reflectance variability within 

agricultural fields, e.g. by calculating the mean or standard deviation of reflectance values of pixels 

belonging to one object (Blaschke, 2010). After the segmentation a variety of features like the pixel 

reflectance values, textural information, object features or neighbourhood relationships can be utilized. 

A set of 71 spectral and geostatistical features was calculated for each field and acquisition date, 

respectively that can be categorized into five groups (here denoted with letters A–E, see Table 3-3). The 

choice of the features was oriented toward their usefulness for land use classification as reported in the 

literature (Balaguer et al., 2010; Glenn et al., 2008; Peña-Barragán et al., 2011; Rodriguez-Galiano et 

al., 2012a). More detailed descriptions and applications of the selected features in remote sensing are 

given in the references in Table 3-3. The feature groups are briefly characterized in the following. 

  

                                                      
13: S𝑖 = P𝑖/ (4 ∗ (√A𝑖)), where S𝑖 is the shape index, P𝑖 the shape perimeter, and A𝑖 the shape area (Neubert et al., 2006). Further 

details about assessing image segmentation quality can be found in Neubert et al. (2008). 
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Group A: RapidEye bands 

The first group contains the reflectance information from the five RapidEye bands (Tyc et al., 2005), 

see Table 3-3 for details. 

Group B: Spectral indices 

A total of 13 broadband spectral indices were computed for each object. Such vegetation indices (VI) 

are able to enhance spectral features and to reduce background effects, e.g. the soil reflectance. They 

characterize the spectral properties of the vegetation and plant canopy and can be directly estimated by 

satellite sensors (Glenn et al., 2008; Jones and Vaughan, 2010). 

This group includes some ratio VIs, e.g. the Ratio Vegetation Index (RVI) (Jordan, 1969) or the NDVI 

(Rouse et al., 1974), which are based on the red and NIR part of the spectrum and one of the most often 

used index in remote sensing-based vegetation studies. These indices are characterized by a constant 

vegetation amount that diverge from the origin in the red–NIR space and increase at different slopes 

(Jones and Vaughan, 2010). Further, some alternative formulations of the basic NDVI are included, like 

the Green-NDVI (GNDVI) where green is substituted for red to improve the sensitivity when dense 

vegetation with high leaf area index (LAI) is sensed (Jones and Vaughan, 2010). Another type of 

modifications aims to reduce the influence of atmospheric effect, e.g. the Atmospherically Resistant 

Vegetation Index (ARVI) (Kaufman et al., 1992) or the Enhanced Vegetation Index (EVI) that takes into 

account the effect of atmospheric aerosols by adding the blue spectrum which is more affected by 

scattering (Huete et al., 2002).  

Another group of VIs aims at reducing soil background effects, e.g. the Difference VI (DVI) 

(Richardson and Everitt, 1992). Those VIs are sometimes referred to as orthogonal indices, as they do 

not converge on the origin of the red-NIR space and stay parallel to the soil line (Huete, 1988). Hybrid 

VIs combine characteristics of ratio and orthogonal VIs, e.g. the Soil Adjusted VI (SAVI) from Huete 

(1988) that corrects the effect of soil background and aims a positive intercept of the soil line relating to 

zero vegetation cover. The SAVI is more closely related to LAI over a wide range of soil reflectance than 

NDVI (Jones and Vaughan, 2010). 

Group C: Red edge indices 

The indices in group-C focus on the red edge spectrum (approximately 680 nm to 740 nm), which is 

one peculiarity of the RapidEye instrument. Because of its sensitivity with regard to the chlorophyll 

content of plants, it is used for identifying vegetation stress or crop nutrition diagnostic (Eitel et al., 

2007). The red edge refers to the reflectance rise between red and NIR, caused by strong chlorophyll 

absorption (low reflectance in the red spectrum) and high reflectance in the NIR spectrum because of 

internal leaf scattering (Jones and Vaughan, 2010). These attributes make information from the red 

edge spectrum of great value for vegetation status and crop differentiation. For instance Schuster et al. 

(2012) found an increase in classification accuracy when incorporating red edge from RapidEye into the 

input data in SVM classification, when substituting red edge for NIR in the NDVI formula in a mono-

temporal application. 

In this study several VIs from group-B were re-calculated based on the information of the red edge 

band by substituting the red or NIR canal, see Table 3-3. In a similar fashion Ehammer et al. (2010) 

proposed two indices based on red edge (the Red Edge Ratio Indices (RRI) 1 and 2), and showed the 

superiority of red edge for statistical derivation of biophysical parameters (e.g. LAI).  
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Group D: Curvature indices 

Group-D comprises features describing the curve properties between red and NIR utilizing the angle 

and Euclidian distances between red, red edge and NIR. These experimental indices have potentials for 

differentiation of dense vegetation canopies, where other VIs often shows saturation effects (Conrad et 

al., 2012). Another application of these curvature VIs is given in Löw et al. (2012). 

Group E: Geostatistical and GLCM texture measures 

Group-E consists of features derived from each objects semivariogram (SV) (Balaguer et al., 2010) 

or grey-level co-occurrence (GLCM) matrix (Haralick et al., 1973). Several researchers (Balaguer et al., 

2010; Berberoglu et al., 2000; Chica-Olmo and Abarca-Hernandez, 2000; Lloyd et al., 2004; Rodriguez-

Galiano et al., 2012a) demonstrate the general usefulness of geostatistical or GLCM texture measures in 

remote sensing-based classification of land cover. The SV quantifies the spatial associations of the values 

of a variable, and measures the degree of spatial correlation between different pixels in an object (Ruiz 

et al., 2011). Whilst SV estimators have successfully been used in pixel-based approaches using moving 

windows (Buddenbaum et al., 2005; Chica-Olmo and Abarca-Hernandez, 2000), object-based 

approaches are less exploited. For instance Berberoglu et al. (2000) used semivariances as additional 

input in a pixel-based classification that was converted into the object level via majority vote. Rather 

than using raw SV values, which might be redundant or lacking interpretability, Balaguer et al. (2010) 

proposed a rigorous object-based approach that included several features that were extracted from the 

objects SV. 

In this study omni-directional SVs were calculated for each object and along the season, respectively. 

Thus, only pixels inside a field were considered. From each object´s SV 11 features were calculated using 

the software FETEX 2.0 (Ruiz et al., 2011). The features are fully described in Balaguer et al. (2010), 

formulas are given in Table 3-3. The SV were calculated for NIR reflectance values. 

Image texture measures from the GLCM, proposed by Haralick et al. (1973), are also called co-

occurrence or second order measures and characterize the relative frequencies between two pixel 

brightness values linked by a spatial relation (Clausi, 2002). Such measures are widely used in land 

cover classification (Beekhuizen and Clarke, 2010; Rodriguez-Galiano et al., 2012a). However, there is 

evidence that many of the measures are correlated (Clausi, 2002), and their calculation is 

computationally demanding. Therefore only one measure of object textural information based upon the 

GLCM, namely the variance, is included in group-E (among other possible measures like homogeneity, 

contrast, dissimilarity, second moment, or entropy), and was also calculated in FETEX 2.0.  
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Table 3-3: Spectral and textural features explored in this study. Formulae show the RapidEye bands used for 
calculation of the indices. References and/or applications for the indices are given. 

Group 
Feature 
number 

Index VI adapted to RapidEye Reference 

A 
1–5 Reflectance values of 

bands of RapidEye 
𝑅𝐸1, 𝑅𝐸2, 𝑅𝐸3, 𝑅𝐸4, 𝑅𝐸5 Tyc et al. 

(2005) 

B 

6 Greenness Index (GI) 𝑅𝐸2/𝑅𝐸3 - 

7 Ratio Vegetation Index 
(RVI) 

𝑅𝐸5/𝑅𝐸3 Jordan 
(1969) 

8 Blue-Green Ratio Index 
(BGI) 

𝑅𝐸1/𝑅𝐸2 - 

9 Red-Green Ratio Index 
(RGI) 

𝑅𝐸3/𝑅𝐸2 - 

10 Difference Vegetation 
Index (DVI) 

𝑅𝐸5 − 𝑅𝐸3 Richardson 
and Everitt 
(1992) 

11 Normalized Difference 
VI (NDVI) 

(𝑅𝐸5 − 𝑅𝐸3)/(𝑅𝐸5 + 𝑅𝐸3) Rouse et al. 
(1974) 

12 Green NDVI (GNDVI) (𝑅𝐸5 − 𝑅𝐸2)/(𝑅𝐸5 + 𝑅𝐸2) Gitelson et 
al. (1996) 

13 Green Vegetation Index 
(VIgreen) 

(𝑅𝐸2 − 𝑅𝐸3)/(𝑅𝐸2 + 𝑅𝐸3) Gitelson et 
al. (2002) 

14 Soil adjusted Vegetation 
Index (SAVI)a 

(1 + 𝑅) ∗ (𝑅𝐸5 − 𝑅𝐸3)

𝑅𝐸5 + 𝑅𝐸3 + 𝑅
 

Huete 
(1988) 

15 Enhanced Vegetation 
Index (EVI)b 2.5 ∗

(𝑅𝐸5 − 𝑅𝐸3)

𝑅𝐸5 + 𝑐1 + (𝐿 ∗ 𝑅𝐸3 − 𝑐2 ∗ 𝑅𝐸1)
 

Huete et al. 
(2002) 

16 Atmospherically 
Resistant Vegetation 
Index (ARVI)c 

(𝑅𝐸5 − 𝑟𝑏)/(𝑅𝐸5 ∗ 𝑟𝑏) Kaufman et 
al. (1992) 

17 Renormalized Difference 
Vegetation Index (RDVI) 

𝑅𝐸5 − 𝑅𝐸3

√𝑅𝐸5 + 𝑅𝐸3
 

Roujean 
and Breon 
(1995) 

18 Modified Simple Ratio 
(MSR) 

(𝑅𝐸5/𝑅𝐸3) − 1)

((
𝑅𝐸5
𝑅𝐸3

)
2

) + 1

 
Chen 
(1996) 

C 

19 Red edge NDVI (RNDVI) (𝑅𝐸5 − 𝑅𝐸4)/(𝑅𝐸5 + 𝑅𝐸4) Vina and 
Gitelson 
(2005) 

20 Green-Red edge NDVI 
(GRNDVI) 

(𝑅𝐸4 − 𝑅𝐸2)/(𝑅𝐸4 + 𝑅𝐸2) Löw et al. 
(2012) 

21 Red edge -RED NDVI 
(REDNDVI) 

(𝑅𝐸4 − 𝑅𝐸3)/(𝑅𝐸4 + 𝑅𝐸3) - 

22 Modified Chlorophyll 
Absorption Ratio Index 
(MCARI) 

((𝑅𝐸4 − 𝑅𝐸3) − (0.2 ∗ (𝑅𝐸4 − 𝑅𝐸2))) ∗ (𝑅𝐸4/𝑅𝐸3) Daughtry 
et al. 
(2000) 

23 Transformed CARI 
(TCARI) 

3 ∗ (((𝑅𝐸4 − 𝑅𝐸3) − (0.2 ∗ (𝑅𝐸4 − 𝑅𝐸2)))
∗ (𝑅𝐸4/𝑅𝐸3)) 

Haboudane 
et al. 
(2002) 

24 Triangular Vegetation 
Index (TVI) 

0.5 ∗ (120 ∗ (𝑅𝐸4 − 𝑅𝐸2) − 200 ∗ (𝑅𝐸3 − 𝑅𝐸2)) Broge and 
Leblanc 
(2000) 

25 Red edge Ratio 1 (RRI1) 𝑅𝐸5/𝑅𝐸4 Ehammer 
et al. 
(2010) 26 Red edge Ratio 2 (RRI2) 𝑅𝐸4/𝑅𝐸3 

Table is continued on the next page 
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D 

27 Red edge Length (REL) √(𝑅𝐸5 − 𝑅𝐸4)^2 ∗ (𝑑_𝑅𝐸5_𝑅𝐸4)^2 * 

√(𝑅𝐸4 − 𝑅𝐸3)^2 ∗ (𝑑_𝑅𝐸3_𝑅𝐸4)^2) 

Conrad et 
al. (2012) 

28 Relative Red edge 
Length (RREL) 

𝑅𝐸𝐿

√(𝑅𝐸5 − 𝑅𝐸3)^2 ∗ (𝑑_𝑅𝐸3_𝑅𝐸5^2)
 

29 Red edge Curvature 
(CUR)d 

(𝑅𝐸5 − 𝑅𝐸4)
(𝑑_𝑅𝐸5_𝑅𝐸4)

−
(𝑅𝐸4 − 𝑅𝐸3)
𝑑_𝑅𝐸3_𝑅𝐸4)

𝑑_𝑅𝐸3_𝑅𝐸5
 

E 

30 Ratio variance at the first 
lag (RVF) 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝛾̂
1

 

Balaguer et 
al. (2010) 

31 Ratio between 
semivariance at second 
and first lag (RSF) 

𝛾̂
2

𝛾̂
1

 

32 First derivative near 
origin (FDO) 

𝛾̂
2

− 𝛾̂
1

ℎ
 

33 Second derivative at 
third lag (SDT) 

𝛾̂
4

− 2𝛾̂
3

+ 𝛾̂
2

ℎ2  

34 First maximum lag value 
(FML) max_1 

35 Mean of SV values up to 
first maximum (MFM) 

1

𝑚𝑎𝑥 _1
∑ 𝛾̂

𝑖

𝑚𝑎𝑥 _1

𝑖=1

 

36 Variance of SV values up 
to first maximum (VFM) 

1

𝑚𝑎𝑥 _1
∑ (𝛾̂

𝑖
− 𝛾̂

𝑚𝑎𝑥 _1
𝑚𝑒𝑎𝑛

)
2

𝑚𝑎𝑥 _1

𝑖=1

 

37 Difference between 
MFM and semivariance 
at first lag (DMF) 

𝛾̂
𝑚𝑎𝑥 _1
𝑚𝑒𝑎𝑛

−  𝛾̂
1
 

38 Ratio between 
semivariance at first 
local maximum and 
mean SV values up to 
this maximum (RMM) 

𝛾̂
𝑚𝑎𝑥_1

𝛾̂
𝑚𝑎𝑥 _1
𝑚𝑒𝑎𝑛  

39 2nd order difference 
between 1st lag and 1st 
maximum (SDF) 

𝛾̂max _1 −  2𝛾̂𝑚𝑎𝑥 _1
2

+  𝛾̂1 

40 Area between SV values 
in the first lag and the SV 
function until 1st 
maximum (AFM) 

ℎ

2
(𝛾̂

1
+ 2 ( ∑ 𝛾̂

𝑖

𝑚𝑎𝑥 _1−1

𝑖=2

) + 𝛾̂
max _1

)

− (𝛾̂
1

(ℎmax _1 − ℎ1)) 

41 Local variance (VAR), 
moving window 𝛿𝑖

2 =  ∑ 𝑃𝑖,𝑗

𝑁−1

𝑖,𝑗=0
(𝑖 − 𝜇𝑖)2 

𝛿𝑗
2 =  ∑ 𝑃𝑖,𝑗

𝑁−1

𝑖,𝑗=0
(𝑗 − 𝜇𝑗)

2
 

Woodcock 
and 
Harward 
(1992), 
Haralick et 
al. (1973) 

Notes: 
 

Mean and standard deviation were calculated for features 1–29 and 41 for each acquisition date and object, 

respectively. One SV derived statistic (features 30–40) was calculated per object and acquisition date, 

respectively. In total 568 features were calculated for each object (71 features times 8 acquisition dates) 
 

RE1 = RapidEye blue band (440–510 nm) 

RE2 = RapidEye green band (520–590 nm) 

RE3 = RapidEye red band (630–685 nm) 

RE4 = RapidEye red edge band (690–730 nm) 

RE5 = RapidEye NIR band (760–850 nm) 
a L= 0.5 (soil adjustment factor for SAVI) 
b L=1, c1=6.0, c2=7.5, coefficients for MODIS EVI were taken 
c rb = RE3-(RE1-RE3), =1 
d d_RE5_RE4, d_RE3_RE4: distances between RE5 and RE4, and RE3 and RE4, respectively. Distances were 
calculated between the corresponding centre wavelengths of bands [µm], and the distance between NIR (RE5) 
and red (RE3) was normalized to 1. 

  



  

 

Chapter 4 

IMPACT OF FEATURE SELECTION ON THE 

SPATIAL UNCERTAINTY AND ACCURACY OF 

PER-FIELD CROP CLASSIFICATION USING 

SUPPORT VECTOR MACHINES14 

Abstract 

Remote sensing derived crop maps are frequently being used in spatially explicit agricultural production models, 

e.g. yield or water use, or up-scaling methods. The map quality is crucial and influences the model outputs. 

Traditional measures to assess the classification accuracy of such maps stem from the confusion matrix and do 

not consider the spatial variation of error. However, measures of classification uncertainty that can be used for 

this purpose attained much less attention in remote sensing studies although they are informative supplements to 

the traditional accuracy assessments. Classifiers algorithms like the support vector machine (SVM) can estimate 

class memberships for each classified pixel or object (soft output). From these estimates, uncertainty measures 

can be derived. Hence, the major goal of this chapter is to assess the value of classification uncertainty measures 

derived from SVM with regard to predicting the spatial distribution of error in the maps (the so-called predictive 

strength), and to evaluate the impact of the kind of features and feature space size on the classification uncertainty 

of SVM. The SVM is applied for the classification of agricultural crops in irrigated landscapes in Middle Asia at 

the object-level. Five types of features, defined in chapter 3, were calculated from the RapidEye time series data 

as input to the classification. The experimental results revealed that SMVs applied to the five groups separately 

performed different in classifying different types of crops. Incorporating all five groups of features into a multi-

type data set by concatenating them into one stacked vector did not lead to an increase in accuracy, and partly 

reduced the model performance most obviously because of the Hughes phenomena. Yet, applying the random 

forest (RF) algorithm to select a subset of features led to an increase of more than 4 % classification accuracy of 

the SVM. Overall the SVM applied to a subset of input features from all five groups composed of the most 

informative features resulted in highest accuracies. The feature group with red edge-based indices was the most 

important for general crop classification, and the red edge NDVI had an outstanding importance for classifying 

crops. Further, the RF variable importance tool was employed to define and extract different feature subspaces 

from the multi-type data set, which followed different rationales: these subspaces were oriented toward practical 

considerations, e.g. computation time (or efficiency), classification accuracy, and the use of few acquisition dates. 

The relationship between the hard result accuracy and the soft output from the SVM is investigated by employing 

two measures of uncertainty, the maximum a-posteriori probability and the alpha quadratic entropy. The 

experimental results indicate a decline in classification uncertainty when a dimensionality reduction is 

performed, and that the uncertainty of correctly classified test cases decreases.  

                                                      
14: Adapted from: Löw, F., Michel, U., Dech, S., and Conrad, C. (2013a). Impact of feature selection on the accuracy and spatial 
uncertainty of per-field crop classification using Support Vector Machines. ISPRS Journal of Photogrammetry and Remote 
Sensing 85, 102-119. 
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4.1. Background 

This chapter addresses the first out of the three research questions, which was formulated in the 

introduction, namely analysing the impact of feature space size on classification uncertainty, and the 

relative contribution of different types of features in crop classification. Crop identification via 

supervised image classification provides important baseline information for numerous agricultural 

decision support and monitoring applications. The quality of the crop maps is crucial when taken as 

input to crop water use calculations (Stehman and Milliken, 2007), area estimation (Canters, 1997; 

Gallego, 2004), or crop specific yield estimation (Doraiswamy et al., 2004). Yet, whilst the traditional 

way to assess map quality is via the confusion matrix (Congalton, 1991), some applications might require 

information on the spatial distribution of classification uncertainty in the maps in addition (Foody, 

2002). Knowledge on the spatial variability classification uncertainty might perhaps be used to help re-

direct fieldwork to refine the classification, to mask out regions of high uncertainty from later modelling, 

or filter undesirable pixels from algorithm training (Gonçalves et al., 2009). 

Classification uncertainty can be defined as a quantitative measure of doubt or mistrust in the class 

allocation of a classifier algorithm at the per-case basis (pixel or object), and can be used as an indicator 

of the spatial distribution of classification error in maps (Foody, 2002)15. Information on the spatial 

distribution of classification uncertainty in maps can be generated by modelling estimates of class 

membership at the per-case basis (per pixel or per object). Such membership estimates are usually 

provided as a vector that contains an estimation of the membership degree of a classified pixel or object 

to the classes under investigation, also called the soft output of a classifier (Giacco et al., 2010). Many 

parametric and non-parametric classifiers can generate such membership estimates, but the way these 

are calculated differs from algorithm to algorithm. Membership estimates have been evaluated for a 

series of algorithms, e.g. RF (Loosvelt et al., 2012a), maximum likelihood classifier (MLC) (Foody, 

1995a), or artificial neural networks (ANN) (Brown et al., 2009). For SVM this is explained in more 

detail in section 4.2.4 of this chapter, and for RF and ANN in section 5.2.2 of this thesis. In contrast to 

the accuracy measures derived from the confusion matrix, which apply to the hard result when a pixel 

or object is associated with one single class, membership estimates do provide spatially explicit 

information on the strength of class membership at the pixel or object level. Measures of classification 

uncertainty like entropy can be calculated from each of these membership vectors, and be used to 

indicate a doubt or mistrust on a per-case basis of belonging to the categories of the classes investigated. 

They can help to better understand the allocation of local error in maps, which may be much larger than 

reported by the confusion matrix or by intermediate approaches like spatially constrained confusion 

matrices (Foody, 2005). Measures of uncertainty such as membership estimations of MLC (Foody et al., 

1992), Shannon entropy (Foody, 1995a; Maselli et al., 1994), or the magnitude of activation levels in the 

output layer of ANN as a measure of class membership (Foody, 1996a) were used on a per-pixel basis to 

indicate the uncertainty of the class allocation. Existing research demonstrates that lower levels of 

classification uncertainty are associated with higher classification accuracies, which was shown for 

decision tree classifiers (DT) (Colditz et al., 2011; Liu et al., 2004; McIver and Friedl, 2001), RF (Loosvelt 

et al., 2012a), or ANN (Brown et al., 2009). These studies demonstrated the so-called predictive strength 

of these algorithm with regard to correctly predicting the spatial distribution of classification error 

(classification uncertainty), and demonstrated that such uncertainty measures can be a useful 

supplement to traditional accuracy metrics. 

                                                      
15: Here the term uncertainty referes to the membership estimations from classifier algorithms for each classified case (pixel or 
object) with regard to each class investigated. For example, in remote sensing, land cover is often classified using hard 
classification (in which each pixel or object is allocated to only one out of several classes). Yet, each hard class allocation is made 
with some ambiguity, which can be expressed as a probability (Foody and Atkinson, 2002). In the literature the term uncertainty 
itself is not consistently defined or used, see discussion in Foody and Atkinson (2002).  
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The spatial pattern of uncertainty can be non-stationary (Comber et al., 2012), and not uniformly 

distributed over a map, but rather correlated with the boundaries of classes (Liu et al., 2004), e.g. mixed 

pixels (Loosvelt et al., 2012b) or different land cover types (Liu et al., 2004). Many more factors can 

affect the spatial variation classification uncertainty, which can be related to landscape characteristics 

(patch sizes, elevation, slope) and land use type (Steele et al., 1998), reference data density, reliability 

and spatial composition (Comber et al., 2012; Yu et al., 2008), membership of pixels or objects to classes, 

or object features16 and algorithm performance. Steele et al. (1998) point out that on a larger scale there 

may even be responses to shifts in climate conditions. 

A variety of algorithms have been employed to map crops, and to model classification uncertainty. 

More recent non-parametric classifier algorithms like RF have successfully been applied for crop 

classification and where shown to provide results that are more accurately than conventional classifiers 

like parametric MLC or DT (Waske and Braun, 2009). In addition they provide meaningful information 

on classification uncertainty that can be used to evaluate spatial variability of map quality and to indicate 

the location of classification error in the maps (Loosvelt et al., 2012b). Another non-parametric classifier 

algorithm is SVM (Cortes and Vapnik, 1995), a well-established machine learning technique that has not 

only given promising accuracies in crop classification (Foody and Mathur, 2004; Mathur and Foody, 

2008), but also was shown to give membership estimations that can be interpreted as estimates of the 

membership degrees to the different classes (Giacco et al., 2010). Like RF or ANN, the SVM is not 

constrained to assumptions concerning the statistical frequency distribution of the input data, and can 

perform well with only small training sets even if high dimensional data is classified. In remote sensing 

applications SVM were shown to perform more accurately than other classifiers in land cover (Huang et 

al., 2002a) and crop classification (Waske and Benediktsson, 2007). The libsvm approach of Chang and 

Lin (2011) for training of a SVM is a fast and easy-to-use implementation of the most popular SVM 

formulations (see more details on the different SVM strategies in appendix A.2). Another feature that is 

of relevance for this study includes the computation of decision and probability values for class 

predictions (Wu et al., 2004), based on Platt´s posterior probabilities (Platt, 2000). This makes it an 

interesting approach for modelling spatial uncertainty in classification tasks. 

Although attempts to derive uncertainty measures from SVM-based classifiers are promising (Foody, 

2008; Giacco et al., 2010), there is further need of research, in particular (i) concerning the evaluation 

of the predictive strength of uncertainty measures from SVM, and (ii) the influence of feature space size 

on the spatial uncertainty in crop maps. Concerning the first issue, there exist no studies on the 

relationship of soft outputs from SVM (and specifically from libsvm) and the hard result accuracy (e.g. 

from the confusion matrix). Although it was shown that SVM can generate a soft output, it was hardly 

analysed how uncertainty measures derived from this soft output of SVM relate to the “hard” accuracy, 

e.g. the strength of such uncertainty measures in predicting classification error in the maps has attained 

only little attention (Giacco et al., 2010). Second, it is argued that SVM is resistant against the 

dimensionality of the input feature space and classifies well even with small training sets (Cortes and 

Vapnik, 1995), which was demonstrated in Foody and Mathur (2006). Yet, existing studies point to a 

possible impact of feature space size on the classification accuracy (Pal and Foody, 2010; Waske et al., 

2010). There is still no study showing the impact of feature space size on classification uncertainty in 

the context of SVM classification, like it was demonstrated for the RF (Loosvelt et al., 2012a). 

                                                      
16: Following Kuncheva (2004), objects (here: on-screen digitized or segmented objects representing agricultural fields) are 
described by certain characteristics called “features”. The features might be qualitative or quantitative (here based on EO imagery), 
calculated as means or standard deviations of reflectance values from pixels within each object. The pattern recognition techniques 
applied in this study operate with these numerical feature values, which are arranged as an n-dimensional vector: 𝑥 =
 [𝑥1, … 𝑥𝑛]𝑇  ∈  ℜ𝑛. ℜ𝑛 is called the feature space, each axis corresponding to a physical feature. The information to design a 

classifier is usually in the form of a labelled data set 𝑍 = {𝑧1, …  𝑧𝑁}, 𝑧𝑗 ∈ ℜ𝑛, where the class label of 𝑧𝑗  is denoted by 𝑙(𝑧𝑗) ∈ Ω, j =

1, … , N, assigned by a classifier function: 𝐷: ℜ𝑛 → Ω. More details can be found in Kuncheva (2004). 
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Concerning the input data for crop classification, studies discuss the application of SVM in mono-

temporal (Mathur and Foody, 2008), hyper-spectral (Pal and Foody, 2010), or multi-sensor approaches 

that combine optical and radar data (Waske and Benediktsson, 2007). Multi-temporal radar images 

(Tan et al., 2007; Waske and Benediktsson, 2007) and MODIS time series (Carrão et al., 2008; Shao 

and Lunetta, 2012) have been accurately classified using SVM. Recent technological advances like the 

multispectral RapidEye system (Tyc et al., 2005) allow for monitoring crop growth and classification of 

crop types at the field level using its better spatial resolution and frequent revisit times. However against 

the backdrop of recent findings on the influence of huge feature space sizes on the performance of SVM 

(Pal and Foody, 2010; Waske et al., 2010), and due to the potential high dimensionality of such high-

resolution multi-temporal data sets, limitations to the efficiency and accuracy of the classification using 

SVM may be experienced. One reason is that with a limited number of training data the classification 

accuracy can degrade when the number of features increase, also known as Hughes effect (Hughes, 

1968). It would therefore be beneficial to evaluate the impact of the feature space size on SVM accuracy 

and further develop strategies to reduce the number of features, by only withholding those features or 

acquisition dates, respectively with highest impact on the classification result. Further a reduction of 

feature space size may even reduce the uncertainty of the resulting maps, and speed up computation 

time. Critically, knowing the most suitable set of features is not possible beforehand, and most often 

exploited post-classification (Carrão et al., 2008; Hüttich et al., 2009; Peña-Barragán et al., 2011; 

Rodriguez-Galiano et al., 2012a). In this study the RF algorithm was chosen as the feature selection 

strategy. RF is an increasingly used statistical method introduced by Breiman (2001). RF used as a 

classifier gives very accurate results in crop mapping applications (Loosvelt et al., 2012b; Waske and 

Braun, 2009). In addition, it computes a feature importance score that can be used to select and reduce 

variables (Hüttich et al., 2009; Loosvelt et al., 2012a; Rodriguez-Galiano et al., 2012a), which makes it 

very interesting in multi-source studies where data dimensionality is very high. It was demonstrated 

that RF could compete with other feature selection algorithms in selecting the most important features 

for another classifier, which was shown to enhance classification accuracy (Pal and Foody, 2010). 

Concluding from the discussion above, there is still a gap in understanding the interplay between 

feature space size and the predictive strength of uncertainty measures derived from SVM, in particular 

concerning the widely used libsvm approach. This study strives to fill this gap by analysing the influence 

of feature space size on SVM performance in the context of object-based crop classification with multi-

date optical satellite data. The feature importance score tool of the RF algorithm was chosen as feature 

selection strategy. Specifically the effect of feature selection on classification uncertainty is focused on. 

Four distinct irrigated sites in Middle Asia were chosen to evaluate the generalizability of the findings 

within a broader range of irrigated landscapes. 

The overall objective of this study can be split in a series of partial objectives, defined as follows: 

 Increasing the knowledge if the incorporation of different spectral and geostatistical features 

enhances classification accuracy, and how different feature groups contribute to crop 

classification. 

 Determining and selecting the most informative features for the classification of crops using the 

RF as feature selection strategy, and a comparison of the RF feature selection strategy with the 

principal component analysis (PCA) as an alternative means to reduce the feature space size. 

 Assessing the sensitivity of libsvm toward high dimensional multi-seasonal data sets, and 

specifically the effect of feature space size reduction on the spatial uncertainty in crop maps 

derived from the SVM classifier. 
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 Evaluating the relationship of soft outputs from libsvm with the hard result accuracy (e.g. the 

predictive strength) to assess if uncertainty measures from libsvm can be used to indicate 

spatial distribution of error in maps. 

4.2. Data and Methods 

In the following, dimensionality reduction strategies will be highlighted with emphasize on the PCA 

and the RF method, which will be compared. Then the classifier concepts used in the experiments will 

be highlighted, and the metrics used to evaluate classifier performance and uncertainty will be 

summarized. A brief description of the derivation of uncertainty measures from SVM will be given and 

finally the experimental setup will be presented. 

4.2.1. Dimensionality reduction and feature selection 

Dimensionality reduction is a commonly recommended pre-processing step when complex and high-

dimensional data sets like hyper-spectral data is used as classification input (Benediktsson et al., 2007). 

In particular parametric algorithms that assume a Gaussian distribution (e.g. MLC) can suffer from 

small ratios of trainings set size to the number of features, as it will not be able to correctly estimate the 

first- and second-order statistics, i.e. covariance and mean (Tadjudin and Landgrebe, 1999). The Hughes 

phenomenon has been observed in many remote sensing studies on classification using different 

parametric and non-parametric algorithms (Lu et al., 2007; Pal and Foody, 2010). This effect can lead 

to decreasing generalization performance of the algorithms as the number of input variables, sometimes 

highly correlated, increases. A number of strategies can be employed to counter the negative effects of 

the Hughes phenomena: increasing the training set size, using classifiers that are insensitive to huge 

data spaces, or dimensionality reduction. Because increasing the training set size can be prohibitive (due 

to financial reasons or constrained physical access to the study site), and there is evidence in the 

literature that even non-parametric classifier algorithms can be sensitive to the Hughes effect, the latter 

strategy is focused in the following. 

The issue of dimensionality reduction is commonly addressed in hyper-spectral applications (Chan 

et al., 2008; Licciardi et al., 2009; Melgani and Bruzzone, 2004; Pal and Foody, 2010), however multi-

temporal datasets can exhibit significant temporal autocorrelation, and it has been shown that feature 

space size in multi-spectral time series can have negative effects on the classification accuracy (DeFries 

et al., 1995). In particular the incorporation of multi-seasonal geostatistical, curvature and spectral 

indices that is proposed in this study may imply a large increase in the dimensionality and complexity 

of the datasets being used (e.g. hundreds of variables), and this large volume of data can exceed the 

ability of the algorithm to accurately deal with it. Adding more information may be useful for the 

classification process, e.g. the distinction of specific classes (Rodriguez-Galiano et al., 2012a), but in 

general it is not known beforehand which type of information is needed to most accurately classify a 

specific crop category (Peña-Barragán et al., 2011). Beneath possible positive effects on the classifier 

performance (accuracy), performing feature selection is an interesting means to deepen the 

understanding of which input features are the most suitable for specific applications. For instance 

Rodriguez-Galiano et al. (2012a) incorporated up to 330 variables from multi seasonal spectral and 

geostatistical functions to assess the performance of Breiman´s RF classifier, and Peña-Barragán et al. 

(2011) employed 336 multi seasonal spectral, textural and other object features using a DT classifier. 

Gessner et al. (2013) employed RF to assess the importance of features for regression applications. 
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The aim here is to purposefully provide a large number of features and to select the most informative 

variables for crop classification. In doing so feature selection helps to increase accuracy by alleviating 

the effect of high dimensionality, to identify the most informative features, to speed up processing time, 

and to enhance the generalization capability of the algorithm. Dimensionality reduction is achieved 

either by (i) combining features to find a data space with lower dimensionality for representing the data 

while satisfying a given criterion, called feature extraction, or (ii) reducing the dimensionality of the 

input data by selecting a subset of relevant features (e.g. for classification), called feature selection. Both 

aim at retaining the most relevant representation of the input data in a lower-dimensional space. One 

basic example for the former is calculating VIs from spectral reflectance information, like the NDVI. 

Unsupervised feature extraction algorithms work without additional training and seek to find a data 

space with lower dimensionality for representing the data while satisfying a given criterion, not class 

discrimination as in supervised feature selection. The PCA, sometimes referred to as eigenvector, 

Karhunen-Loeve, or Hotelling transformation, considers second-order statistics and aims to de-

correlate variables of a given pixel or object vector. It belongs to the multivariate statistical techniques 

that seek to select uncorrelated linear combinations of variables. This is done by a coordinate 

transforming the original input data into an uncorrelated space where most of the data variance is 

contained along the first axis, the principal components which maximize the variance represented by 

each component (Richards and Jia, 2005). The transformation consists of three steps and is based on 

the image-specific variance-covariance matrix 𝑐𝑜𝑣 of the input data (Tso and Mather, 2009). 𝑐𝑜𝑣 is 

calculated by  

𝑐𝑜𝑣 =
∑ (𝑥𝑖−𝑚)∗(𝑥𝑖−𝑚)𝑇𝑁

𝑖=1

𝑁−1
                         Eq. 4-1 

where 𝑥𝑖 is the individual pixel or object vector, 𝑁 the total number of pixel or object vectors, and 𝑚 

the mean pixel or object vector of a pixel or object 𝑥𝑖: 

𝑚 =
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1                          Eq. 4-2 

The eigenvectors and eigenvalues of 𝑐𝑜𝑣 are extracted by solving equation: 

(𝑐𝑜𝑣 − 𝜆𝑗𝐼) ∗ 𝐺𝑗 = 0                         Eq. 4-3 

where 𝐺𝑗 = (𝑔1, 𝑔2, … , 𝑔𝑘)𝑇 is the eigenvector corresponding to the eigenvalue 𝜆𝑗, 𝑘 number of feature 

space dimensions, and 𝐼 the identity matrix. The new coordinate system is finally computed using the 

normalized eigenvectors of 𝑐𝑜𝑣 and each value of 𝑥 is then projected into the coordinate system (Tso 

and Mather, 2009). 

For the latter strategy for dimensional reduction, namely feature selection, there exist different 

methodological approaches, most typically divided into three categories (Blum and Langley, 1997): 

filters (e.g. PCA), wrappers (e.g. recursive feature elimination for SVM (SVM-RFE) by Guyon et al. 

(2002)), and embedded approaches that fully integrate feature selection and classifier design together17. 

Filters are independent from the classifier design, and feature selection is performed before the 

classification. Wrapper methods on the other site search an optimal subset of features for a given 

classifier based on criteria that express the accuracy or generalization capability of the considered 

classifier. The wrapper algorithm need not be the same as the classifier. Finally the embedded methods 

are a class of feature selection strategy where feature selection and classification design are fully 

integrated together (Bazi and Melgani, 2006), e.g. in the RF framework. In general filters and embedded 

                                                      
17: A more detailed survey of different feature selection strategies can be found in Guyon and Elisseeff (2003). 
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approaches are computationally efficient and frequently used for feature ranking (Blum and Langley, 

1997). Wrappers in turn evaluate features by performing internal classifications with a given test 

algorithm. Wrappers are attractive because they evaluate features with respect to an inductive algorithm 

and the resulting feature subset might be better suited to this algorithm, and ultimately achieve better 

accuracies. But there is controversy in this issue, as feature selection methods independent from the 

classifier can result in even better accuracies (Bazi and Melgani, 2006; Pal and Foody, 2010). 

Different feature selection strategies will result in different feature subsets, and there exist SVM 

specific algorithms like the SVM-RFE, a wrapper approach specifically developed for SVM. Its ranking 

is based on the objective function ‖𝑤‖2/2 (see appendix A.2) as a feature-ranking criterion to produce a 

list of features ordered by apparent discriminatory ability (Guyon et al., 2002). However, Pal and Foody 

(2010) demonstrate the influence of different feature selection algorithms (among them the RF and 

SVM-RFE) on the performance of SVM in pixel-based classification of hyper-spectral data. They 

demonstrated that, for a wide range of different training set and feat space sizes, applying different 

feature selection methods does not necessarily result in significant differences in SVM classification 

performance, and the resulting feature sets that yielded highest accuracies do not significantly differ in 

size (number of features), albeit different kind of features are selected. The use of feature selection 

methods that are independent from the SVM are frequently reported (Fassnacht et al., 2012) and can 

even result in better accuracies than methods that exploit criteria intrinsically related to the SVM 

classifier properties, e.g. SVM-RFE (Bazi and Melgani, 2006; Pal and Foody, 2010). Further, the 

problem of hyper-parameter selection in conjunction with feature selection when using SVM-RFE 

remains an issue (Guyon et al., 2002). 

Among the more recent non-parametric algorithms that can be used as embedded strategy in feature 

selection are DT (Peña-Barragán et al., 2011), bagged trees (BT) (Prasad et al., 2006), or RF (Rodriguez-

Galiano et al., 2012a). The RF can be used to select a smaller subset of features from a huge input data 

space that can result in equal (Chan et al., 2008) or improved classification accuracy of another classifier 

(Löw et al., 2013a; Pal and Foody, 2010). In this regard an important feature of the RF is the calculation 

of predictor variable or feature importance ranking (Breiman, 2001). A more detailed description of the 

RF algorithm can be found in appendix A.2. Several measures for feature importance with RF exist: (i) 

counting the frequency that each feature is selected during the tree-building process by all 𝑛 trees in the 

ensemble, and (ii) the permutation importance is calculated as the difference in prediction accuracy 

before and after randomly permuting each of the 𝑓 features while keeping all other features unchanged 

and running all trees on the out-of-bag (OOB) sample again. The result is a decrease of accuracy as a 

consequence of the permutation process. For each tree the votes for the correct class in the changed data 

set (without the permuted 𝑓th feature) is counted, and this number is subtracted from the number of 

votes for the correct class from the unchanged data set. This value is averaged over all trees in the 

ensemble to generate the raw importance score for a given feature, hereafter denoted 𝐼𝑓. A scaled version 

of 𝐼𝑓, the so-called 𝑍-score can be derived from this number by normalizing 𝐼𝑓  by its standard error, 

which can be used to assign an importance level to the features and to generate a ranked list of the 

features (Breiman, 2001); iii) the Gini importance is calculated as mean improvement in the Gini gain 

splitting criterion, which is produced by each feature over all 𝑛 trees. 

4.2.2. Classifier description and parameter tuning 

In the following, the SVM and the RF algorithms are briefly described with focus on their 

implementation and parameterization. A more detailed description on the algorithms including a brief 

review on their application in remote sensing studies is given in appendix A.2. 
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The implementation of SVM in the package e1071 (Meyer et al., 2012) in R provides an interface to 

the libsvm approach from Chang and Lin (2011). SVM is based on the notion of separating classes in a 

higher dimensional features space by fitting on optimal separating hyper-plane (OSH) between them, 

focusing on those training samples that lie at the edge of the class distributions, the so-called support 

vectors (Foody and Mathur, 2004). Multi-class problems are solved using the one-against-one (OAO) 

voting approach. The multi-class problem is split into 𝑛(𝑛 − 1)/2  binary classification problems (where 

𝑛 = number of classes) and finally the outputs from the individually trained binary classifiers are 

combined by a majority voting strategy (Hsu and Lin, 2002). The seconds approach, one-against-all 

(OAA) splits the multi-class problem into 𝑛 individual cases (where each single class competes against 

the rest). Training of the SVM includes choosing the kernel parameter 𝛾 (“gamma” in e1071) and the 

regularization parameter 𝐶 (termed “cost” in e1071), which are sometimes referred to as hyper-

parameters, where 𝛾 determines the width of the kernel, and 𝐶 controls the penalty associated with 

misclassified training samples. Both have an impact on the classification accuracy (Burges, 1998), 

although SVM were also shown to be partly robust to changes in 𝐶 (Belousov et al., 2002). Taking larger 

and larger values for 𝐶 increases the magnitude of penalties that are associated with training samples 

on the wrong site of the hyper-plane, but can result in a model over-fitted to the training data and limit 

generalization capability (Belousov et al., 2002; Foody and Mathur, 2006). Tuning of the hyper-

parameters 𝐶 and 𝛾 was done using a systematic grid search in 2-D space that is spanned by 𝛾 and 𝐶. 

The range of 𝛾 was [0.00125, 2], the range of 𝐶 was finally set to [1, 200], after a wider range of values 

tested did not achieve higher accuracies, but taking a smaller range of 𝐶 resulted in much shorter 

training times. The widely used radial basis function (RBF) kernel was selected in this study, since linear 

or polynomial kernels were tested but resulted in lower accuracies (not reported here). It was reported 

that the accuracy of SVM with RBF kernel can degrade if the input data is not normalized (Ali and Smith-

Miles, 2006), e.g. attributes with large original scale can bias the solution. Hence, the data space was 

normalized to a common scale [0, 1]. 

The implementation of Breiman´s RF in the randomForest package in the R programming 

environment was used for variable selection in this study (Breiman, 2001). Two free parameters can be 

optimized in the RF. The number of trees 𝑇 at which an optimal accuracy level is achieved varies with 

the number of samples and features, and with the variability of feature values. The number of trees that 

usually achieves good results and therefore is considered adequate is 500 (Gislason et al., 2006), but a 

smaller number leads to faster computation and can suffice if the OOB error converges (see section 

5.2.1). The second free parameter relevant for accurate classifications is the number of features 𝑚𝑡𝑟𝑦 to 

split the nodes (Breiman and Cutler, 2007). As is considered adequate in literature (for categorical 

classification) the number of features at each node was set to the square root of the total number of input 

features, √𝑓, where 𝑓 is the number of predictor variables (features) within a dataset (Gislason et al., 

2006). 

4.2.3. Measures of accuracy and uncertainty 

For the classification evaluation, a set of accuracy metrics was employed to evaluate the performance 

of the SVMs on the subspaces resulting from the RF feature selection. Accuracy metrics were derived 

from the confusion matrix to assess the accuracy of the hard results (class labels) of the SVMs 

(Congalton, 1991): overall classification accuracy (OA), defined as the total proportion of correctly 

classified fields per total number of test fields, is one of the most common measures of classification 

performance in remote sensing (Foody, 2002).  
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A class-wise measure of accuracy (CAi), the 𝐹𝛽-measure of Van Rijsbergen (1979), was employed for 

each class 𝑖 under investigation, defined as as 

𝐶𝐴𝑖 = 𝐹𝛽 =  (1 + 𝛽2) 
𝑝𝑟𝑖∗𝑡𝑝𝑖

𝛽2∗𝑝𝑟𝑖+𝑡𝑝𝑖
                        Eq. 4-4 

where 𝑡𝑝𝑖  is the true positive rate (TPR) which gives the proportion of samples classified into class 𝑖 

among all samples which truly have class 𝑖, and 𝑝𝑟𝑖  the precision which gives the proportion of samples 

which truly have class 𝑖 among all samples which were classified as class 𝑖. The fomer determined the 

error of omission (false exclusion), the latter the error of commission (false inclusion). The traditional 

𝐹𝛽-measure, which was used in this study, gives equal importance to 𝑡𝑝𝑖  and 𝑝𝑟𝑖  (𝛽 = 1), and is 

sometimes referred to as 𝐹1 measure. All 𝐶𝐴𝑖  may be averaged to get the average class-wise accuracy 

(AA): 

𝐴𝐴 = ∑ 𝐶𝐴𝑖
𝑛
𝑖=1                          Eq. 4-5 

Cohen´s kappa is another measure that takes into account agreement occurring by chance (Cohen, 

1960). It is defined as 

𝑘 =  
𝑝𝑟𝑜 − 𝑝𝑟𝑒

1 − 𝑝𝑟𝑒
                         Eq. 4-6 

where  𝑝𝑟𝑒 is the proportion agreement expected by chance, and  𝑝𝑟𝑜 the proportion that was observed 

by agreement. A perfect agreement between all observations and predictions results in 𝑘 = 1. If there is 

no agreement except by chance then 𝑘 = 0. 

Several measures of uncertainty can be employed to assess the influence of feature reduction on the 

spatial classification uncertainty and for comparison of the feature selection strategies. Depending on 

the algorithm used for classification different approaches exist to model or generate information on the 

uncertainty in classification (Breiman, 2001; Foody, 1995a, 1996a; Foody et al., 1992; Giacco et al., 2010; 

Maselli et al., 1994). Beneath the final class label, algorithms like SVM can compute, for each classified 

object or pixel 𝓍, a soft output (Giacco et al. 2010) that provides an estimation of the membership 

degrees of 𝓍 to the investigated classes. This soft output is in the form of a vector, which contains the 

class membership estimations associated with 𝓍: 

𝑝𝑟(𝓍) = {𝑝𝑟1(𝑥), 𝑝𝑟2(𝑥), … , 𝑝𝑟𝑖(𝑥), … , 𝑝𝑟𝑛(𝑥)}                     Eq. 4-7 

where  𝑝𝑟𝑖(𝑥) is the membership degree of a pixel or field 𝓍 to class i, and 𝑛 the number of classes. 

Each of the elements in 𝑝𝑟(𝓍) can be interpreted as a degree of belief or probability that a case 𝓍 actually 

belongs to a class 𝑖. These probability estimates generally take their values in a closed interval (e.g. 

 𝑝𝑟𝑖(𝑥) ∈  [0,1]). The maximum value in 𝑝𝑟(𝓍), hereafter denoted 𝑝𝑟𝑚𝑎𝑥(𝓍), belongs to the class that is 

usually taken as final class when the soft results are transformed into a hard one, e.g. the final class 

𝐶𝑓𝑖𝑛(𝑥) that is most likely to occur: 

𝐶𝑓𝑖𝑛(𝑥) = 𝑎𝑟𝑔 𝑚𝑎𝑥(𝑝𝑟(𝓍))                         Eq. 4-8 

From the probability vector 𝑝𝑟(𝓍) the following uncertainty measure can be calculated for 𝑥 as 

𝐸 = 1 − 𝑝𝑟𝑚𝑎𝑥(𝓍)                         Eq. 4-9 

𝐸 is an expression of the strength of the class assignment and can be used to quantify map 

uncertainty. A potential disadvantage of 𝐸 is that it fails to capture the entire distribution of probabilities 
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in 𝑝𝑟(𝓍), and thus is limited in giving information of possible confusion with other classes. Let in a 

hypothetical four-class example the first element in 𝑝𝑟(𝓍) be 0.51 (here giving 51 % probability that a 

class is correctly classified). 𝑝𝑟𝑚𝑎𝑥(𝓍), which is 0.51, does not take into account the subsequent ranked 

probabilities in 𝑝𝑟(𝓍) which could be 0.20, 0.15, and 0.14 for the second, third, and fourth class, 

respectively, resulting in limited doubt about the final class allocation. However the probability of the 

second element in 𝑝𝑟(𝓍) could be 0.49. In the latter case the secondary ranked class has a probability 

that is very close to 𝑝𝑟𝑚𝑎𝑥(𝓍) and there is considerable doubt about the final class allocation. A solution 

to handle this is using measures of entropy, which take into account all elements in 𝑝𝑟(𝓍). Among the 

most-widely used uncertainty measures in remote sensing applications that summarizes all information 

contained in 𝑝𝑟(𝓍) is the Shannon entropy (Brown et al., 2009; Maselli et al., 1994; Zhu, 1997), 

originating from information theory (Shannon, 1948). The Shannon entropy 𝐻 can be calculated from 

𝑝𝑟(𝓍) for each classified pixel or object 𝑥 as: 

𝐻(𝑥) = − ∑ 𝑝𝑟(𝑥𝑖)𝑛
𝑖=1 𝑙𝑜𝑔2𝑝𝑟(𝑥𝑖)                    Eq. 4-10 

where 𝐻(𝑥) is the entropy of 𝑥, 𝑛 the number of classes, and 𝑝𝑟𝑖(𝑥) the probability of occurrence of 

class 𝑖. 𝐻(𝑥) can assume values in the interval [0,log2n], and is therefore dependent on the number of 

classes 𝑛 used, a field or pixel with a maximum value of 𝑝𝑟𝑚𝑎𝑥(𝓍) has an entropy equal to zero. The ratio 

of the observed to the maximum possible entropy may be used to compare uncertainties from maps with 

different number of classes (Maselli et al., 1994). It is calculated as: 

𝐻𝑟𝑒𝑙(𝑥) =  
𝐻(𝑥) 

𝐻𝑚𝑎𝑥(𝑥)
∗ 100                      Eq. 4-11 

where 𝐻𝑚𝑎𝑥(𝑥) is the maximum possible value of 𝐻(𝑥) (when all 𝑝𝑟𝑖(𝑥) = 1/𝑛 ). 𝐻𝑟𝑒𝑙(𝑥) will reach 

zero if an object is found to have maximum probability of belonging to one class (𝑝𝑟𝑚𝑎𝑥(𝓍) = 100 %) and 

reaches its maximum level if 𝑝𝑟𝑖(𝑥) of each classes is partitioned evenly between the classes (e.g.  𝑝𝑟𝑖(𝑥) = 

0.25 for each of four possible classes). The advantage of 𝐻𝑟𝑒𝑙(𝑥) is that it captures the entire distribution 

of the probabilities within each element in 𝑝𝑟(𝓍), and takes into account the differences between the 

maximum and all subsequent ranked probabilities of the classes within the vector. 

The α-quadratic entropy (Pal and Bezdek, 1994), also termed alpha score, is another measure of 

uncertainty and is defined as 

𝐻∝(𝑥) =  
1

𝑛∗(2−2∝)
   ∗     ∑ 𝑝𝑟𝑖

∝(𝑥)𝑛
𝑖=1 (1 − 𝑝𝑟𝑖(𝑥) )∝                   Eq. 4-12 

where 𝑝𝑟(𝓍) is the vector that contains the soft outputs, 𝑛 the number of classes, and α an exponent 

that determines the behaviour of 𝐻𝛼(𝑥). The advantage of this measure is that it summarizes all the 

information contained in 𝑝𝑟(𝓍) and commits the probabilities of the other classes in the uncertainty 

evaluation. Further it has a higher sensitivity as compared with the Shannon entropy 𝐻(𝑥) when the 

components of 𝑝𝑟(𝓍) change. When values of α increase from 0 to 1, 𝐻𝛼(𝑥) will become more and more 

selective if the components in 𝑝𝑟(𝓍) tend toward equalization. In this study α = 0.5 was chosen. The 

ratio of the observed to the maximum possible 𝐻𝛼(𝑥) was calculated to normalize 𝐻𝛼(𝑥) to the same 

scale as 𝐸, [0, 1], hereafter denoted 𝐻∝𝑟𝑒𝑙. If a field is found to have maximum probability of belonging 

to one class (𝑝𝑟𝑚𝑎𝑥(𝓍) = 1) then 𝐻∝𝑟𝑒𝑙 will reach zero, and if each element in 𝑝𝑟(𝑥)  is partitioned evenly 

(e.g. 𝑝𝑟𝑖(𝑥) = 0.25 for each of four possible classes) then 𝐻∝𝑟𝑒𝑙 will reach one. In this case the 

identification performance of the classifier with respect to different crops is low, resulting in higher 

classification uncertainty, e.g. because of heterogeneous fields, the presence of subfields, etc. 

Figure 4-1 shows the influence of 𝛼 on 𝐻𝛼(𝑥). The uncertainty measure becomes very selective as 𝛼 

increases from 0 to 1. Critically with 𝛼 close to zero 𝐻𝛼(𝑥) will be close to one and thus the same degree 
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of uncertainty, so the uncertainty measure is not sensitive to changes in the elements within 𝑝𝑟(𝓍). The 

lower the value of 𝛼 the more selective becomes 𝐻𝛼(𝑥) when 𝑝𝑟𝑖(𝑥) deviates from zero or one. Hence, a 

value of 𝛼 = 0.5 was chosen as a good trade-off between these two extremes. Finally, two measures of 

uncertainty were chosen for the experiments: 𝐸 that was calculated from the maximum value in 𝑝𝑟(𝓍), 

and 𝐻∝𝑟𝑒𝑙 that was calculated by including all elements in 𝑝𝑟(𝓍). 

 

Figure 4-1: Influence of 𝛼 on 𝐻𝛼(𝑥) of a pixel or object in a hypothetical two-class problem. The x-axis shows the 
probability 𝑝𝑟𝑖(𝑥) of one class, scaled to [0,1]. 

4.2.4. Derivation of uncertainty measures from libsvm 

For the SVM there has been considerable research to extend the two commonly used architectures, 

OAO and OAA, to retrieve and to use multi-class soft outputs (Foody, 2008; Giacco et al., 2010; Waske 

and Benediktsson, 2007; Wu et al., 2004). The standard formulation of a SVM that adapts the OAO 

strategy does not provide estimations of class memberships. One example for deriving soft outputs from 

SVM that employs the OAO approach can be found in Hastie and Tibshirani (1998). Giacco et al. (2010) 

provides an example to extend SVM to produce multiclass soft outputs based on the statistical Bradley-

Terry model and pairwise coupling (Hastie and Tibshirani, 1998).  

libsvm by Chang and Lin (2011) can produce a soft output 𝑝𝑟(𝓍) next to the hard class label. libsvm 

employs the OAO strategy and builds 𝑛(𝑛 − 1)/2 binary SVMs, where 𝑛 is the number of classes. Each 

of these binary SVMs separates two classes and computes, for each sample 𝑥, a distance that this sample 

has to the OSH. The class probability is then calculated from these 𝑛(𝑛 − 1)/2 distances using an 

improved implementation (Lin et al., 2007) of Platt’s a posteriori probabilities (Platt, 2000) where a 

sigmoid function is fitted to the decision values 𝑓𝑗(𝑥) of each of the binary SVM classifiers. The soft 

output of each binary SVM classifier is then combined as proposed in Wu et al. (2004). Further 

information on producing soft outputs with libsvm can be found in Karatzoglou et al. (2006). 

4.2.5. Selection of feature subspaces 

In this study SVM classifications using feature subspaces of different sizes were undertaken in which 

the dimensionality of the input data set was varied. This was done by incrementally adding features in 

order suggested by the ranked feature list generated with the RF, where the importance of the features 

is assessed by means of the MDA. The feature were added in groups of fifteen, beginning with the 10 

most important features from the ranked list, then continuing with the second 25 most important and 

so on. OA and two uncertainty metrics, 𝐸 and 𝐻𝛼𝑟𝑒𝑙 were computed to evaluate the classification result 
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at each incremental step. Beyond this a more detailed evaluation of classification accuracy and 

uncertainty was restricted to four specific SVM classifications representing feature subspaces with 

distinct properties that might be defined for practical considerations, similar to the experimental 

analysis of uncertainty for other classifier algorithms (Foody, 1995a; Loosvelt et al., 2012a; McIver and 

Friedl, 2001): 

 𝐹𝑆1: SVM applied to all features. The features from the five groups (see chapter 3) were 

concatenated into one stacked vector before the SVM classification, without feature selection. 

 𝐹𝑆2: SVM applied to the subset of the features that yielded the highest OA. The features were 

ranked according to the RF importance score 𝐼𝑓  of each feature on each acquisition date. The 

features were then removed from the concatenated stacked vector according to their importance 

score. In doing so the removed features were not necessarily the same for all acquisition dates. 

For each classification the OA statistic was calculated, and finally the SVM with the optimal 

feature subspace that achieved highest OA was selected. 

 𝐹𝑆3: SVM applied to as few features as possible that resulted in OAs that are not substantially 

lower than the 𝐹𝑆2 (e.g. more than 5 % deviation), and still reach the commonly recommended 

accuracy of 85 % (Anderson et al., 1976). It has to be noted that in remote sensing studies no 

clearly defined levels for the evaluation of classification accuracy exists (Foody, 2002). This 

strategy aims at further reducing the number of features, but maintaining a classification 

accuracy that is non-inferior to that derived from the 𝐹𝑆2 strategy. The reason to do so is that 

features selection can have positive impacts beyond accuracy, e.g. reduced computation time or 

data storage requirements (Bazi and Melgani, 2006; Pal and Foody, 2010). 

 𝐹𝑆4: From a pragmatic point of view selecting only relevant acquisition dates can be 

advantageous both for financial and computational reasons. Selecting “optimal” acquisition 

dates is not straightforward and most often based on previous empirical analysis of the impact 

of varying acquisition date compositions on classification accuracy (Murakami et al., 2001; Van 

Niel and Mcvicar, 2004; Peña-Barragán et al., 2011). Critically, a few acquisition dates can 

suffice to fulfil a certain level of accuracy, or adding more and more dates does not significantly 

improve the classification accuracy beyond a certain level (Murakami et al., 2001; Van Niel and 

Mcvicar, 2004). Here it is proposed to adapt and further develop the idea of Loosvelt et al. 

(2012a) and to define the relative importance of the acquisition dates by computing the average 

importance score 𝐼𝑡,𝑎𝑣𝑔 of all features within each single time step. This procedure yields a 

ranked list of acquisition dates, starting with the most important date, from which single dates 

are subsequently removed in order of increasing importance until a certain threshold of 

classification accuracy is achieved (e.g. 85 %). In doing so only the most important acquisition 

dates are withheld and classified with the SVM.  

To enhance the reliability of the experiments each classification with SVM was repeated 50 times 

using different training and testing sets, respectively, by means of a repeated random subsampling. 

Finally the accuracy metrics and uncertainty measures defined above were averaged over the 50 model 

runs for each feature subspace that was classified. 
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4.3. Results and discussion 

In the following sections the results from the experiments are given. First the classification 

performance of the five feature groups is compared separately. Afterwards the feature groups are 

concatenated into one stacked vector and classifier performance is compared using the total data set, 

before and after dimensionality reduction. Second the results of the classifications of the different 

feature subspaces (𝐹𝑆1−4) defined above for the SVM are detailed. Third the effect of feature selection 

on spatial classification uncertainty is illustrated, and the causes for the spatial distribution pattern of 

uncertainty are discussed. 

4.3.1. Classification of spectral and spatial features 

The first experiment is based on the combination of the information from the five feature groups that 

were defined in chapter 3. First, each group is classified separately with the SVM. In the second 

experiment all features were concatenated into one stacked vector, and then the RF based variable 

importance analysis is performed with ten repetitions, and the SVM that yielded highest accuracy (𝐹𝑆2, 

see section 4.2.5) was selected. For the sake of clarity only the RF feature importance score and the PCA 

are compared for the dimensionality reduction, but theoretically a variety of feature selection methods 

could be tested instead, like the sequential forward floating selection (SFFS) (Pudil et al., 1994), steepest 

ascent (SA) techniques (Serpico and Bruzzone, 2001), or kernel-PCA-based techniques (Fauvel et al., 

2008). 

The results are summarized in Table 4-1 – Table 4-4. As can be seen from these tables, there was no 

clear “winner”, e.g. feature groups A–D gave complementary results, however using geostatistical 

features (group E) gave the least accurate results. When the feature groups were concatenated into one 

stacked vector (column “All combined” in Table 4-1 – Table 4-4), the overall classification accuracy 

decreased in three sites (except for KHO) as compared with the best result from the SVM classifications 

based on the single feature groups. Yet, when the RF-based feature selection was performed on this 

stacked vector, the SVM classification on this feature selected input set outperformed all other feature 

groups in terms of OA, Cohen´s 𝑘, and AA (column “𝐹𝑆2” in Table 4-1 – Table 4-4). The better 

classification accuracy was achieved with fewer features than 568, partly less than 15 % of the total 

feature set: KHO: 85, KKP: 100, KYZ: 145, respectively, and FER: 115. The classification performance 

on the non-reduced input in KYZ and FER were already at a comparatively high level, and the differences 

after feature selection were less pronounced. An interesting feature is that CAi of sorghum/maize in KKP 

was 60 % after feature selection applied to the data set with all features (but 0% for the single feature 

groups). Further, winter wheat fields tended to be classified more accurately when applying the SVM 

after the dimensionality reduction in KKP and KHO. These results implicate that there is 

complementary information in the five feature groups. In Table 4-1 – Table 4-4 it can be seen that the 

classes for which each feature group performs best were complementary. For instance, in KHO group-C 

features performed best for cotton, sorghum/maize, fruit trees, and wheat-other, whilst group-A 

features were better for fallow fields, winter wheat, and rice. Similar, in KYZ features from group-C were 

best in distinguishing winter wheat fields, whilst group-A features perform better for fallow fields (Table 

4-3). Making use of the complementary information in the different groups had advantages and gave 

more stable results (e.g. increased accuracies for most crop classes), and all of the classes were better 

classified than the worst case of the single feature groups. This indicates that the SVM actually could 

make use of the complementary information of the single feature groups, and providing the input data 

with all 568 features in combination with a feature selection strategy yielded best results. In general 

terms this effect was less pronounced in KYZ and FER, with only 5 classes. 
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Table 4-1: Summary of class-wise (CAi), average class-wise (AA) and overall accuracies (OA) [%] on the test set for 
the SVM classification in KHO. The Kappa coefficient of variation 𝑘 is also given. The crop classes include cotton 
(C), fallow (FA), rice (R), sorghum/maize (S), fruit trees (F), winter wheat (W), and wheat-other (WO). 

 Group A Group B Group C Group D Group E All combined 𝑭𝑺𝟐 

OA 86.03 79.21 84.87 84.39 63.60 87.65 91.02 

AA 78.55 64.10 74.78 70.43 44.51 74.54 84.03 

𝑘 82.74 74.19 81.39 80.66 54.42 82.80 89.20 

No. features 80 208 128 48 104 568 85 

C 91.67 85.00 93.68 89.44 75.54 90.50 93.99 

FA 92.68 87.89 89.61 87.84 78.83 95.70 98.06 

R 71.08 58.24 63.91 69.85 21.77 71.40 75.00 

S 29.64 0.00 29.26 0.00 0.00 9.00 36.39 

F 90.02 84.41 90.95 90.37 72.11 87.20 90.66 

W 87.97 47.76 65.56 66.14 0.00 85.70 100.00 

WO 86.78 85.40 90.51 89.36 63.31 91.30 94.15 

Table 4-2: Summary of class-wise (CAi), average class-wise (AA) and overall accuracies (OA) [%] on the test set for 
the SVM classification in KKP. The Kappa coefficient of variation 𝑘 is also given. The crop classes include cotton (C), 
fallow (FA), rice (R), sorghum/maize (S), alfalfa-1y (A1), melons (M), winter wheat (W), and wheat-other (WO). 

 Group A Group B Group C Group D Group E All combined 𝑭𝑺𝟐 

OA 88.74 84.98 89.49 89.88 63.08 89.02 93.33 

AA 70.00 63.20 73.66 74.64 40.11 78.57 86.41 

𝑘 85.62 80.81 86.60 87.11 50.14 84.70 92.3 

No. features 80 208 128 48 104 568 100.00 

A1 94.98 81.99 97.52 94.51 66.53 100.00 100.00 

C 81.42 86.64 87.09 87.44 57.28 76.60 93.60 

FA 87.62 82.10 91.06 91.06 47.71 86.00 93.20 

M 52.81 26.54 53.19 57.54 0.00 57.10 84.20 

R 94.63 94.05 91.56 93.55 83.17 94.40 94.40 

S 0.00 0.00 0.00 0.00 0.00 30.80 60.00 

W 96.62 92.86 97.34 96.86 66.17 97.20 98.90 

WO 51.90 41.43 71.48 76.14 0.00 54.50 75.00 

Table 4-3: Summary of class-wise (CAi), average class-wise (AA) and overall accuracies (OA) [%] on the test set for 
the SVM classification in KYZ. The Kappa coefficient of variation 𝑘 is also given. The crop classes include fallow 
(FA), rice (R), alfalfa-1y (A1), alfalfa-3y (A3), and winter wheat (W). 

 Group A Group B Group C Group D Group E All combined 𝑭𝑺𝟐 

OA 92.86 92.01 91.06 92.19 82.59 91.51 94.23 

AA 77.23 72.78 75.95 68.27 54.56 70.98 87.20 

𝑘 86.36 84.76 83.01 85.06 66.40 87.00 89.90 

No. features 80 208 128 48 104 568 145 

FA 89.24 81.01 72.75 82.27 52.38 74.80 83.00 

R 80.72 83.07 80.82 82.62 64.69 99.60 99.80 

A1 78.41 76.68 77.35 76.75 60.64 76.90 92.50 

A3 99.66 99.62 98.97 99.70 95.09 83.60 90.70 

W 38.11 23.52 49.83 0.00 0.00 20.00 70.00 
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Table 4-4: Summary of class-wise (CAi), average class-wise (AA) and overall accuracies (OA) [%] on the test set for 
the SVM classification in FER. The Kappa coefficient of variation 𝑘 is also given. The crop classes include cotton (C), 
fallow (FA), fruit trees (F), winter wheat (W), and wheat-other (WO). 

 Group A Group B Group C Group D Group E All combined 𝑭𝑺𝟐 

OA 93.51 94.22 91.59 93.96 76.27 91.41 94.60 

AA 90.62 89.03 87.63 83.55 82.50 92.00 92.44 

𝑘 91.67 92.67 88.99 92.30 66.31 90.10 93.60 

No. features 80 208 128 48 104 568 115 

C 96.97 97.57 96.62 96.88 88.81 100.00 100.00 

FA 93.24 93.24 84.96 93.25 0.00 96.00 96.00 

F 95.78 94.52 93.72 92.68 66.41 85.70 92.00 

W 74.60 78.00 60.70 80.98 0.00 85.70 80.00 

WO 92.50 93.67 91.97 93.90 78.66 92.60 94.20 

 

In Table 4-5 the SVM is compared to the MLC, which assumes Gaussian distribution in the data, and 

to the RF as classifier algorithm. Further, the RF-based feature selection was confronted with another 

strategy for feature reduction, the PCA. The RF is assumed resistant to the input space size, and 

therefore was directly applied to the non-reduced data set18. In all sites, the SVM that was applied to the 

dimensionality-reduced data sets outperformed the MLC and RF, respectively. Considering PCA, the 

feature reduction that retained 85 % of the variance in the principal components (PC) achieved the best 

results for SVM. The number of transformed features retained was: 19 (KYZ), 18 (FER), 22 (KKP), and 

18 (KHO) (not shown in Table 4-5). 

Those PCs that accounted for 95 % of the variance in the input data achieved best classification 

accuracies with MLC. The number of transformed features (the number of PCs retained) that 

corresponds to 95 % of the total variance criterion was (not shown in Table 4-5): 53 (KYZ), 75 (KKP), 49 

(KHO), and 48 (FER).  

In all sites except for FER did the RF-based feature selection yield higher accuracies than the PCA 

when using the MLC or SVM as classifier algorithm. Another interesting aspect revealed in Table 4-5 is 

the variability of the results among the test sites, e.g. the absolute difference of OA was lowest for the 

SVM after the RF feature selection was applied (3.58), as contrasted with the MLC (17.50) or the RF 

(5.33). Overall, the SVM (after feature selection) outperformed the RF and the MLC as classifier 

algorithms. The RF-based feature selection strategy had a better ability to select relevant features for 

higher classification accuracies than the PCA. Both classifier algorithms (MLC and SVM) showed a 

susceptibility to a huge input space, and could benefit from dimensionality reduction. 

Table 4-5: Overall accuracies [%] using different classifier algorithms, and the SVM on the dimensionality reduced 
input data. RF and PCA were tested for feature reduction. Lowercase abbreviations “_PCA95/85” and “_RF” 
indicate the selected feature reduction method. 

 MLC MLC_PCA95 MLC_RF RF SVM SVM_PCA95 SVM_PCA85 SVM_RF 

KHO 58.24 75.00 77.65 89.50 87.65 80.85 87.76 91.02 

KKP 53.93 73.01 77.30 89.02 89.02 87.69 88.09 93.33 

KYZ 66.41 85.42 87.06 92.71 91.49 88.94 91.95 94.23 

FER 71.43 88.46 84.87 94.35 91.41 90.38 92.94 94.60 

Abs. difference 17.50 15.45 9.76 5.33 3.84 9.53 5.18 3.58 

 

  

                                                      
18 : This assumption is confirmed with experimental evidence presented in chapter 5. 
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4.3.2. Feature importance  

This section details the composition of features that achieved the peak accuracy, corresponding to 

the 𝐹𝑆2 subspace (see section 4.2.5). From Figure 4-2 some general trends in the importance pattern 

can be revealed. The predictive capacity of the feature groups (here indicated by the number of features 

used) varied as a function of time. Spectral features from group B and C dominated over all time steps 

and in all sites, but its relative importance is highest during the two peaks in spring and late summer in 

KKP, KHO, and FER. More than 50 % of the top-ranked features defined in May and the beginning of 

September were the most used in KKP and KHO. This bi-modal distribution reflects the dominating 

presence of crop rotations in KKP and KHO, and their absence in KYZ where features contribute almost 

equally over all time steps with slightly more features in the first half of the growing period. Group C 

features contribute the highest portion in the critical time steps in KHO and KKP over the growing 

season, whilst the influence of the other groups dominates in the other time steps. For instance, 

geostatistical features (group E) were used the most between 14–Jul and 13–Aug in KKP and KHO. 

Geostatistics appear to have higher importance around mid to late summer, when crops reached the 

final stages of crop development in the flowering stage, although their importance was not obvious in 

FER. In contrast, the relative importance of all groups was more equalized in KYZ for all time steps. 

The range of the median NDVI values of all agricultural fields per acquisition date showed important 

variations through the vegetation period (Figure 4-2, dashed line). The difference of NDVI reflects the 

phenological variability of the crops in the test sites, and the presence of winter and summer crops. For 

instance the difference of crop median NDVI values was maximum in spring in KHO and FER 

(maximum of greenness of winter crops and bare soils of summer crops), and late summer (maximum 

greenness of summer crops). In spring, as winter crops were in growing stage, the fields started to 

differentiate from the bare soil fields of the summer crops, and difference of NDVI increased. At that 

time the variation in crop phenology was high and geostatistical features became more important, albeit 

they still played a minor role as compared with other groups. The relatively high importance of spring 

acquisition dates in May (KHO and FER) and early July (KKP) was indicated by the higher number of 

features used. The difference was minimum when winter and summer crops were still bare soil (April), 

in between the vegetation peaks of winter and summer crops (June–July), and after harvest. This 

pattern was less pronounced in KYZ, where winter crops were absent and the NDVI difference was 

lowest in April (bare soil) and September (after harvest). 
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Figure 4-2: Group wise number of top ranked features per acquisition date used in the SVM model based on the 
𝑭𝑺𝟐 feature subset. The x-axis shows the acquisition date of the corresponding satellite images. The range of median 
NDVI values for all crop classes is shown as a dashed line. 

There is indication that the relative importance of the acquisition dates reflects this pattern, e.g. when 

NDVI difference is higher the acquisition dates tends to be more important. Pronounced rates of change 

in the NDVI difference are observed in between the two peaks of winter and summer crops (except for 

KYZ) when crop state changes rapidly. Group-C features, which contain red edge information, were 

found to be most prominent in all experiments. In particular they strongly influenced the success of RF 

when NDVI difference was highest. This indicates the predictive strength of the red edge canal in 

discriminating crops during the critical phases of the growing period. The relative importance of 

geostatistics tends to be highest in the period of rapidly changing crop stages after winter crops have 

been harvested and before the summer peak. This points to the advantage of geostatistical features over 

the spectral indices when seasonal state differences between the crop types. 

The MDA measure from the RF, here denote as 𝐼𝑓, is used to assess the relative importance of 

variables. After reducing the number of features, according to the targets defined above for the 

subspaces 𝐹𝑆2−4, the relative contribution (expressed as number of features) of the five feature groups 

A-E was analysed for 𝐹𝑆2 and 𝐹𝑆3 (Figure 4-3), as in these subspaces the number of feature types 

retained differs, whilst in 𝐹𝑆1 and 𝐹𝑆4 always 71 different feature types per acquisition date are present. 

When looking at the proportions of features from the groups that contribute to the  𝐹𝑆2 and 𝐹𝑆3, one 

striking characteristic is the general dominance of vegetation indices that contain red edge information 

in all study sites (group-C).  
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Figure 4-3: Relative contribution of the feature groups in the 𝐹𝑆2 (left) and 𝐹𝑆3 (right) models, expressed in terms 
of the percentage of the total number of features in 𝐹𝑆2 and 𝐹𝑆3, respectively, irrespective of the vegetation season. 

Interestingly when using the  𝐹𝑆3  instead of  𝐹𝑆2  subspace the relative contribution of group B and 

group C almost reversed, except for in KHO. Geostatistics from group E tend to be irrelevant, most 

obviously because of the relatively homogeneous nature of the objects (crop fields). Assuming that 

averaging the importance scores of all features within a group gives an indication of the relative 

importance of this group, 𝐼𝑔,𝑎𝑣𝑔, a ranking of the groups was established (Table 4-6). In the majority of 

cases group C has a larger relative importance than the rest of the groups, and group D tends to be the 

second most important. This is also striking because the absolute number of feature types in group C is 

smaller (8) than in group B (13). Critically the standard deviations of 𝐼𝑔,𝑎𝑣𝑔 reveal a partial overlap in 

importance in some of the groups, so this figure rather gives a rough approximation of “group 

performance”. 

Table 4-6: Mean importance score averaged over all features within a group (𝐼𝑔,𝑎𝑣𝑔) and standard deviation of 𝐼𝑔,𝑎𝑣𝑔. 

 KHO KYZ 

Group 𝑭𝑺𝟏 𝑭𝑺𝟐 𝑭𝑺𝟑 𝑭𝑺𝟒 𝑭𝑺𝟏 𝑭𝑺𝟐 𝑭𝑺𝟑 𝑭𝑺𝟒 

A 
0.07 ± 

0.03 

0.12 ± 

0.01 

0.22 ± 

0.01 

0.09 ± 

0.03 

0.07 ± 

0.04 

0.12 ± 

0.02 

0.13 ± 

0.01 

0.07 ± 

0.03 

B 
0.10 ± 

0.04 

0.09 ± 

0.06 

0.33 ± 

0.06 

0.10 ± 

0.03 

0.04 ± 

0.03 

0.09 ± 

0.03 

0.10 ± 

0.02 

0.04 ± 

0.02 

C 
0.10 ± 

0.05 

0.11 ± 

0.02 

0.46 ± 

0.02 

0.11 ± 

0.02 

0.05 ± 

0.03 

0.12 ± 

0.04 

0.14 ± 

0.04 

0.05 ± 

0.02 

D 
0.09 ± 

0.03 

0.12 ± 

0.05 

0.34 ± 

0.04 

0.09 ± 

0.06 

0.05 ± 

0.03 

0.11 ± 

0.03 

0.13 ± 

0.02 

0.09 ± 

0.02 

E 
0.06 ± 

0.04 

0.09 ± 

0.04 

0.30 ± 

0.03 

0.06 ± 

0.02 

0.03 ± 

0.03 

0.09 ± 

0.01 

0.09 ± 

0.01 

0.05 ± 

0.04 

 KKP FER 

Group 𝑭𝑺𝟏 𝑭𝑺𝟐 𝑭𝑺𝟑 𝑭𝑺𝟒 𝑭𝑺𝟏 𝑭𝑺𝟐 𝑭𝑺𝟑 𝑭𝑺𝟒 

A 
0.07 ± 

0.04 

0.17 ± 

0.04 

0.17 ± 

0.04 

0.08 ± 

0.04 

0.04 ± 

0.03 

0.15 ± 

0.03 

0.18 ± 

0.03 

0.05 ± 

0.03 

B 
0.08 ± 

0.03 

0.19 ± 

0.02 

0.19 ± 

0.02 

0.10 ± 

0.03 

0.06 ± 

0.04 

0.16 ± 

0.04 

0.17 ± 

0.04 

0.08 ± 

0.03 

C 
0.10 ± 

0.04 

0.23 ± 

0.04 

0.23 ± 

0.05 

0.12 ± 

0.04 

0.06 ± 

0.03 

0.14 ± 

0.03 

0.18 ± 

0.02 

0.09 ± 

0.04 

D 
0.09 ± 

0.03 

0.18 ± 

0.03 

0.18 ± 

0.03 

0.12 ± 

0.04 

0.08 ± 

0.04 

0.14 ± 

0.02 

0.16 ± 

0.02 

0.07 ± 

0.06 

E 
0.03 ± 

0.02 

0.13 ± 

0.01 

0.16 ± 

0.01 

0.03 ± 

0.02 

0.03 ± 

0.03 

0.15 ± 

0.02 

0.17 ± 

0.02 

0.03 ± 

0.02 
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Figure 4-4 shows the relative importance of the five feature groups in the 𝐹𝑆2 subspaces with regard 

to the individual crop categories, irrespective of the vegetation season. In general terms, it can be seen 

from this figure that group C (red edge features) affects the classification the most, indicated by the 

overall high mean group variable importance (𝐼𝑔,𝑎𝑣𝑔). This confirms the general relevance of the red edge 

spectrum in land cover classification (Schuster et al., 2012). Group A, B and D tend to be the second 

most important groups. Curvature indices defined in group D were decisive in the classification of 

melons in KKP, sorghum/maize in KHO, alfalfa-3y in KYZ, and fruit trees in FER. Geostatistics from 

group E tend to be irrelevant, most obviously because of the relatively homogeneous nature of the 

objects (crop fields). Yet, they were important for classifying cotton in KHO and fallow fields in KYZ. 

The relatively coarse resolution of the input data, and the relatively small field sizes (as compared with 

field sizes reported in Europe or the U.S., e.g. in Wardlow et al. (2007)) could be one reason, because 

the spatial extent of within field heterogeneity might be smaller than the pixel size. 

 
  

  

  

 

Figure 4-4: Mean relative importance of feature groups (𝐼𝑔,𝑎𝑣𝑔) considering the 𝐹𝑆2 subspace, per crop type. 

The analysis of the ten most informative features is shown in Figure 4-5. The importance score 

reveals that the composition of feature types differs among the four sites. Interestingly, variants of the 

NDVI, like REDNDVI or GRNDVI occurred as the most important predictors for crop types over two or 

more acquisition dates (e.g. GRNDVI in KYZ was ranked the most important feature in three acquisition 

dates). In general approximately 50 % of the 10 most important features are group C features. In three 

sites a feature from group C was ranked the most important, e.g. REDNDVI and GRNDVI. Most of the 

features are mean values, only in KYZ and KHO standard deviation values from group D were important. 

The acquisition dates of the single features reflect the average importance 𝐼𝑡,𝑎𝑣𝑔, shown in Figure 4-8. 

These findings offer positive perspectives towards the upcoming Sentinel-3 mission and its utility in 
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crop mapping, because it will be equipped with two bands covering the red edge spectrum, and its high 

repetition rate is suitable for multi-seasonal crop mapping (Donlon et al., 2012). These findings, strictly 

speaking, do not necessarily mean that the same order relation of variable importance exists for the 

SVM, but it gives insights into the relative importance of different types of features for crop classification 

in the RF OOB context. 

 

  

  

Figure 4-5: Mean relative importance of the 10 most important features. Error bars indicate standard deviation of 

the variable score (as mean decrease accuracy) over the 10 model runs. “t1–t8” in the feature names indicate the 
acquisition date, abbreviations of the variables are explained in chapter 3. 

4.3.3. Principal components for detecting highly correlated features 

PCA was performed using the software package FactoMinerR (Husson et al., 2013) in R in order to 

group and interpret the redundancies between the different features and feature groups, respectively. 

After computation of the PCA over the complete set of features most of the variability in the data is 

concentrated in the first few components. For better understanding of the redundancies the data was 

visualized on the first two principal component (PC) factor-planes. The results shown in Figure 4-6 

indicate a strong, albeit heterogeneous grouping tendency, which indicates that the clustered features 

provide similar, correlated information. Features located in a symmetrical position of the PCA planes 

are highly correlated. For instance when looking at the correlation structure between the feature groups 

in KHO, group A features on the one, and group E features on the other site tend to be less correlated, 

whilst there is a strong correlation between group B and C features. 

Looking at the individual features allows for a more detailed assessment. In general the positions of 

the ten most important features (Figure 4-5) in the PC factor planes (Figure 4-6) tend to be dispersed 

over the total PC factor plane space. A small grouping tendency is noticed among a few features, which 

means that these groups provide similar information. For instance in KHO this is the case of the group 

of features “t1_bgi_mean” and “t1_redndvi”, both of them being calculated at the same acquisition date. 

Another group of features is that composed of “t3_redndvi_mean” and “t4_b4_mean”, both of them 

being red edge features calculated in the same part of the growing season. Similar in FER the features 

“t7_arvi_mean”, “t7_redndvi_mean”, and “t7_rri1_mean” form a group of correlated features from the 
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same acquisition date. Concluding, the RF tends to select both, highly and lowly correlated features. For 

instance “t3_redndvi_mean” was the most important feature in KHO and highly correlated with a 

couple of other features, which were not automatically selected as most important too. The following 

features were the five most correlated with “t3_redndvi_mean” (not shown in Figure 4-6), but they were 

not among the 85 features defined in 𝐹𝑆2 (Table 4-7) that achieved highest SVM classification accuracy: 

“t4_redndvi_mean”, “t3_len_stddev”, “t4_vigreen_stddev”, “t3_var_stddev”, and “t6_rlen_mean”. 

Consequently, strong correlations were not the motive behind feature selection. 

 

  

  

Figure 4-6: Projection of the 568 proposed features in principal component planes. Letters A–E correspond to the 
five feature groups. Black triangles indicate the position of the ten most important features, numbers from 1 to 10 
correspond to their position in the feature ranking list (Figure 4-5), with “1” being the most important feature. 

4.3.4. Influence of dimensionality reduction on classification accuracy 

It was shown that feature selection after concatenating all feature groups improves classification 

performance, and the composition of features that yielded the highest classification accuracy with SVM 

was presented. Here the influence of feature selection on the classifier performance is explored in more 

detail, focusing on the four specific subsets (𝐹𝑆1−4 subspaces) defined in section 4.2.5. A strong influence 

of the feature selection procedure on SVM performance can be observed (Figure 4-7), e.g. classification 

KHO KKP 

KYZ FER 
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accuracy and uncertainty by the SVMs varied as a function of the number of features. In general terms, 

OA tended to increase with increasing number of features until a peak, which gave rise to the definition 

of the 𝐹𝑆2 subspace. In KYZ and FER the accuracy rose to a peak at 145 features (94.23 %) and 115 

features (94.60 %), respectively, and then declined and stabilized with the addition of more features. 

The largest difference between the peak accuracies and that obtained using all features was 2.74 % and 

3.19 % for KYZ and FER, respectively. The average standard deviation of the accuracies over the 50 

model runs was below ± 1 % in all sites (Figure 4-7). Similar trends were observed for KKP and KHO, 

but the decrease in accuracy with increasing number of features is more pronounced. Classification 

accuracy declined with the addition of further features after peak accuracies of 93.33 % (100 features) 

and 91.02 % (85 features) in KKP and KHO, respectively. Differences between peak accuracies and that 

obtained using all features were 4.31 % (KKP) and 3.37 % (KHO) (Table 4-7). These results indicate a 

negative effect of the dimensionality of the feature space (Hughes effect) and is in unison with recent 

studies on that phenomenon using hyper-spectral data and SVM classification (Pal and Foody, 2010; 

Waske et al., 2010). 

  

 
 

  

 
Figure 4-7: Overall accuracy [%] (left) and median uncertainty of the test fields (right) achieved by 50 model runs 
of SVM using different input features suggested by the RF feature score. Dotted lines indicate the standard deviation 
of overall accuracy and alpha quadratic entropy, respectively, over 50 model runs. 

Having established that the accuracies vary as a function of the number of features used, the four 

feature subspaces defined above were evaluated in more detail. Table 4-7 summarizes the accuracy 

statistics, computational time, architecture complexity, and dimensionality for the SVMs. Most notably 
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in all sites the feature selection was able to produce more accurate maps as compared with the regular 

SVM using all features (𝐹𝑆1), and 𝐹𝑆2 was the most accurate and 𝐹𝑆4 the least accurate. In all sites except 

for KYZ 55 feature would suffice to derive classifications that fulfil the targets defined for the 𝐹𝑆3 

subspace (see section 4.2.5), which provided additional advantages in terms of computation time and 

architecture complexity (e.g. fewer support vectors), respectively. Only for the KYZ site this would have 

to be relaxed to 70 features. 

Selecting 𝐹𝑆2 resulted in highest values for all evaluation measures from the confusion matrix, which 

indicates a better transferability and stability of this feature selection strategy among the four test sites, 

although it still relied on a considerable number of features (between 85 and 145). There are two possible 

explanations for the relatively high number of features needed: first there is a high degree of redundancy 

present in the total of 568 features (see section 4.3.3), which could diminish the contribution of the 

single features to the crop characterization. In this respect the RF might not optimally order the features 

on the rate of convergence of the classification performance, and 𝐹𝑆3 might theoretically be composed 

of even less features when using an alternative feature selection algorithm. Further, this study did not 

seek to realize the fastest possible convergence toward highest accuracies, and choosing another feature 

selection strategy suitable for SVM in combination with a much smaller input feature space might suffice 

to achieve sufficiently high accuracies, as was shown by Carrão et al. (2008) and Pal and Foody (2010). 

Concerning the class-wise accuracies (CAi), their lower bounds increased when using 𝐹𝑆2 compared 

to the other SVMs. Although the OA of the other SVMs compared to 𝐹𝑆2 were relatively high, there was 

a higher discrepancy between the lower bounds of CAi, partly reaching 9 %. This indicates that these 

models failed to attain similar high accuracies for all crop classes. This difference is most pronounced in 

KKP and KHO, where this can be attributed to the failure of these SVMs to correctly classify the class 

sorghum/maize, and in KYZ the class fallow, which was substantially confused with alfalfa fields (alfalfa-

1y and alfalfa-3y). 

Table 4-7: Summary of overall classification accuracy (OA), class wise accuracy (CAi), and Cohen´s 𝑘 for the SVMs 
over 50 model runs. For CAi the range of for all classes in the study site is shown. “Feature types” refer to the 71 
different types of features defined in chapter 3. 

Site 
Sub-

space 

OA 

SVM 

OA 

RF 

CAi 

SVM 

𝑘 

SVM 

Dimen-

sion 

Feature 

types 

Number 

of SVs 

Training 

time 

SVM 

[sec] 

Variable 

score 

calculation 

time RF 

[sec] 

Variable 

score 

calculation 

time BT 

[sec] 

KHO 

𝐹𝑆1 87.65 

89.5 

[9,95.7] 82.8 584 71 189 989 

31 39 
𝐹𝑆2 91.02 [36.3,100] 89.2 85 38 134 124 

𝐹𝑆3 89.37 [25.5,97.8] 87.3 55 31 112 97 

𝐹𝑆4 85.04 [9,95.8] 78.4 284 71 179 367 

KKP 

𝐹𝑆1 89.02 

89.0 

[30.8,100] 85.2 584 71 251 1,821 

42 60 
𝐹𝑆2 93.33 [60,100] 91.0 100 47 195 248 

𝐹𝑆3 91.43 [30.8,97.8] 89.2 55 40 161 172 

𝐹𝑆4 86.09 [40,100] 82.6 213 71 211 731 

KYZ 

𝐹𝑆1 91.49 

92.7 

[20,99.6] 85.7 584 71 412 1,856 

58 72 
𝐹𝑆2 94.23 [70,99.8] 89.9 145 52 191 256 

𝐹𝑆3 92.36 [55.6,99.6] 87.0 70 33 138 112 

𝐹𝑆4 87.81 [9,98.6] 74.7 71 71 141 711 

FER 

𝐹𝑆1 91.41 

94.3 

[80,96] 89.6 584 71 153 635 

19 28 
𝐹𝑆2 94.60 [85.7,100] 92.7 115 37 99 83 

𝐹𝑆3 92.78 [66.7,96] 90.9 55 25 74 63 

𝐹𝑆4 85.25 [42.1,87.8] 86.6 213 71 138 209 
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Notably none of the eight acquisition dates was dismissed after feature selection in 𝐹𝑆2 or 𝐹𝑆3, e.g. 

features from all of the eight acquisition dates were retained. This challenges previous suggestions of 

selecting few optimum acquisition dates for optimal crop classifications (Murakami et al., 2001; Van 

Niel and Mcvicar, 2004). Critically the underlying premise of 𝐹𝑆1−3 was that multi-date data is available 

(e.g. in all three models features from all eight acquisition dates were being used). It might be feasible, 

however, to assess if relatively few acquisition dates are sufficient to fulfil certain requirements for crop 

mapping. The relative importance of the features as derived by the feature importance ranking from the 

OOB method under the RF provides insights on what features are most useful with respect to classifying 

crops. In this study the importance score was used to evaluate the relative importance of the acquisition 

dates, and then to maintain only the most relevant dates for classification (see definition of the 𝐹𝑆4 

subspace section 4.2.5). According to the average importance 𝐼𝑓,𝑎𝑣𝑔 of the dates, a ranked list can be 

derived that shows their relative contribution to the SVM classification. In general terms, the importance 

of the acquisition dates is smaller than the importance of the feature groups, indicated by the smaller 

scores. This is because the importance scores of the groups partly consider the input data after feature 

selection that withholds only the most important features. Hence, eliminating one feature group leads 

to a more pronounced impact than removing an acquisition date that contains all features, irrespective 

of their importance. 

The SVM was then trained based upon the date-reduced feature space (𝐹𝑆4), and OA was calculated. 

Figure 4-8 shows the effect of removing images in order of decreasing importance of each acquisition 

date (𝐼𝑡,𝑎𝑣𝑔). After a slight increase of OA in all sites there is a drop in accuracy that was most pronounced 

in KHO and KKP when removing more than 4–5 images, whilst in KYZ there was almost no significant 

effect on OA. In KHO images in the beginning of June and August / September are sufficient to achieve 

accuracies of more than 85.0 %. These four acquisition dates correspond well with the results from 

Conrad et al. (2013). In their experiment, Conrad et al. (2013) tested each possible combination of 

acquisition dates in KHO using the same satellite images as in this study, and exploited the best 

performing combination of dates for object-based crop classification using RF. Being much more 

intensive from the computational point of view these experiments resulted in similar OA when using 

four instead of eight acquisitions (84.8 %). In FER and KKP 85.0 % OA was achieved when only three 

dates were retained. The preference of acquisition dates in spring and summer, respectively reflect the 

presence of crop rotations and the necessity to have images at these critical periods for accurate crop 

mapping in all sites except for KYZ, where one early summer scene sufficed to classify all crops in the 

site with sufficient accuracy, and where crop rotations were totally absent. Figure 4-8 reveals that the 

time of acquisition of the most important dates reflected the presence of crop rotations in the study sites, 

and also coincides with the importance pattern shown in Figure 4-2. The highest ranked dates were: 31–

May (KHO), 09–May (KKP), 9–Jun (KYZ), and 13–May (FER). The higher importance of features from 

late spring to early summer seasons nicely reflect the observed high variance in NDVI values (Figure 

4-2) at the time when crops start to differentiate.  
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Figure 4-8: Overall accuracy as a function of removing acquisition dates in order of their decreasing average 
importance scores  𝐼𝑡,𝑎𝑣𝑔 (A). The average importance scores 𝐼𝑡,𝑎𝑣𝑔 of each acquisition date (shown on the y-axis) 

are given for each site. Dark grey bars indicate the acquisitions actually used in 𝐹𝑆4 to achieve more than 85 % OA. 

The accuracy of the SVM was further compared with the accuracy of the RF algorithm. The maximum 

achieved accuracy of the RF is presented in Table 4-7. The RF was only slightly affected by the feature 

space size, as compared with the SVM, so it could be applied to the total data set. Although operating at 

a comparatively high level of accuracy, the RF was generally outperformed by the SVM applied to the 

𝐹𝑆2 subspace. The difference between RF and SVM was the most pronounced in KKP (4.33 % on 

average). Another positive aspect of feature selection is reducing computational demand. Computation 

time was calculated for each experiment using a PC with 2 CPUs (each 2.7 GHz) and 8 GB RAM. After 

feature selection the time for model building was reduced (Table 4-7), and the architecture complexity 

of the resulting SVMs decreased, e.g. fewer support vectors were needed. The built-in variable selection 

of the RF, although iterated 10 times, only needed 19–58 seconds to generate a ranked feature score list. 

Another tree-based method that can be used to assess the feature importance, namely BT, needed 28–

72 seconds (Table 4-7). Using a feature selection strategy before the SVM classification resulted in an 

improvement in processing time, when applied to the data set used in this study. 

4.3.5. Impact of feature selection on classification uncertainty 

Having analysed the impact of feature selection on classification accuracy, the performance of the 

SVMs were then compared by looking at their soft outputs that were computed on the independent test 

sets, which were not used for training. Classification uncertainty in the final crop maps, as quantified by 

the median 𝐻∝𝑟𝑒𝑙 of the test samples behave similar to OA, but with fewer fluctuations (Figure 4-7): first 

the uncertainty decreases when adding more features until it reaches a minimum, where the highest 

proportion of fields is classified with low uncertainty, and thereafter increases again with the addition 

of more features. The uncertainty values of KKP and KHO on the one site, and KYZ and FER on the 

other site are in the same order of magnitude.  
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One peculiar distinction is that the lowest values of uncertainty are achieved with fewer features than 

necessary to achieve the peak accuracy (𝐹𝑆2): 40 features in KKP and KHO (corresponding to OA of 

90.0 % and 83.1 %, respectively), and 85 features in KYZ and FER, respectively (corresponding to OA of 

92.8 % and 92.5 %, respectively). Being less accurate than 𝐹𝑆2 these SVMs classified crops with less 

uncertainty, albeit this was more pronounced in KKP and KHO. Two aspects can explain this: the feature 

subspace 𝐹𝑆2, which achieved peak accuracy, might still contain some highly correlated features since 

the RF does not necessarily eliminated correlated features first. In this regard even further reducing the 

input space size (𝐹𝑆3), albeit at the expense of the accuracy, and might lead to more confident results, 

indicated by decreasing uncertainty. This is similar to findings of Loosvelt et al. (2012a), who found 

decreasing map uncertainties as a result of feature reduction, albeit at the expense of decreasing 

accuracies. Second, when further reducing the feature space size, the proportion of incorrectly classified 

pixels increases (because OA decreases, see Figure 4-7). However, the uncertainty of these incorrectly 

classified cases was also found to decrease, which might explain the general decrease of 𝐻∝𝑟𝑒𝑙 over the 

total image. Consequently an increase in the number of incorrectly classified fields could lead to a further 

decrease in uncertainty as long as the incorrectly classified fields are associated with lower uncertainties, 

in particular in KKP and KHO. This is why 𝐹𝑆3 was associated with lower uncertainties than 𝐹𝑆2 in KKP 

and KHO (Figure 4-7). In FER and KYZ however this phenomena was less pronounced and 𝐹𝑆3 is 

associated with higher uncertainties than 𝐹𝑆2. 

This demonstrates how feature selection can have positive effects beyond increasing accuracy by 

decreasing classification uncertainty, and that crop maps with higher confidence (e.g. reduced 

uncertainty) can be produced if a certain drop in accuracy can be tolerated, which further supports the 

definition of 𝐹𝑆3. 

To get an idea of the predictive strength of the SVMs a simple test can be computed to assess if the 

correctly classified cases are characterized by low uncertainty values, and vice-versa. If this assumption 

holds true the uncertainty values of correctly classified cases should be equal to or lower than the 

uncertainty values of the misclassified cases (Zhu, 1997). To this end empirical frequency distribution 

of 𝐸 and 𝐻∝𝑟𝑒𝑙 were calculated for correctly and incorrectly classified test fields (Figure 4-9 and Figure 

4-10). The shape of these distributions gives an indication for the reliability of the classifier algorithm 

in predicting the spatial distribution or error (predictive strength) and the quality of the crop maps, as 

was proposed and demonstrated for boosted DT by McIver and Friedl (2001) and exemplarily shown 

for pixel-based RF classification in Loosvelt et al. (2012a). It is evident that correctly classified cases 

tend to display relatively low values of 𝐸 and 𝐻∝𝑟𝑒𝑙, respectively. Critically, the degree to which this is 

the case differs from site to site and from subspace to subspace, respectively.  

In general this confirms the high prediction strength of the SVMs over all sites. As the dimensionality 

of the feature space decreased, a larger proportion of correct predictions were made with lower 

uncertainty, e.g. lower values of 𝐸 and of 𝐻∝𝑟𝑒𝑙. In general the SVMs applied to 𝐹𝑆1 and 𝐹𝑆4 had the 

lowest prediction strength. The feature reduction in KYZ only slightly affected the shape of the 

distributions of 𝐸 and 𝐻∝𝑟𝑒𝑙 for correctly classified fields, although the frequency of fields lying within 

the interval [0,0.2] of 𝐹𝑆2 was highest. This indicates that the SVM model in KYZ and, to a lesser extent, 

FER already produce results with low classification uncertainty, without further potential for significant 

improvements. In KKP and KHO the SVM of 𝐹𝑆2 showed the highest frequency peak in that interval for 

𝐸. Looking at the frequency distributions of 𝐸 an exponential decrease toward higher 𝐸 values can be 

found. This trend is less pronounced when looking at 𝐻∝𝑟𝑒𝑙: in KHO the frequency distribution peaks 

within the [0.2,0.4] interval for all reduced subspaces. Further 𝐻∝𝑟𝑒𝑙 seems to be the stricter measure 

of uncertainty as the frequencies are more balanced among all intervals, in contrast to the peaks of 𝐸 in 

the [0,0.2] interval. 
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Incorrectly classified cases mostly had moderate (KKP) or high (KHO) uncertainties, which mean 

that if the SVM voted for an incorrect class, the prediction was uncertain due to confusion between other 

classes. Critically the shape of the distribution of misclassified cases in FER and KYZ was found to be 

different. In KYZ and FER the misallocated cases lie in the lower intervals of both, 𝐸 and 𝐻∝𝑟𝑒𝑙. This 

confirms that the classification errors in these sites are confident misallocations, in which the fields were 

allocated to the wrong class but with little classification uncertainty. For instance from the misclassified 

cases in KYZ more than 70 % occurred in the [0,0.2] interval of 𝐸, and more than 50 % in the [0,0.2] 

interval of 𝐻∝𝑟𝑒𝑙, irrespective of the model used. The majority of these cases were fallow fields being 

misallocated to both of the two alfalfa classes (not shown here). It is assumed that the presence of mixed 

fields (e.g. alfalfa and other herbaceous vegetation) can result in misallocations in KYZ.  

Based on these results it can be concluded that correct predictions in all sites and using all models 

are confident and with limited confusion with other classes (e.g. low 𝐻∝𝑟𝑒𝑙 values). The 𝐹𝑆2 showed 

lower uncertainties in all sites, indicated by a shift of the frequency of correct predictions toward lower 

values of 𝐸 and 𝐻∝𝑟𝑒𝑙, respectively.  These results indicate that feature reduction is able to provide more 

confident crop maps, and to increase the number of cases (fields) that were classified with low 

uncertainty. It would have been expected that incorrect cases were classified with high uncertainties, yet 

this was not the case in FER and KYZ where errors were confident misallocations, irrespective of the 

feature subspace considered: in these cases the SVM had little doubt about the class allocation, albeit 

the wrong class was chosen. 
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Figure 4-9: Distributions of 𝐸 for correctly (left column) and incorrectly (right column) classified test fields as 
resulted from classifying the 𝐹𝑆1−4 subspaces, calculated over 50 model runs. The x-axis shows intervals of 𝐸, the y-
axis the percentage of test fields within the interval. 
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Figure 4-10: Distributions of 𝐻∝𝑟𝑒𝑙 for correctly (left column) and incorrectly (right column) classified test fields as 
resulted from classifying the 𝐹𝑆1−4 subspaces, calculated over 50 model runs. The x-axis shows intervals of 𝐻∝𝑟𝑒𝑙, 
the y-axis the percentage of test fields within the interval. 
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The results shown in Figure 4-9 and Figure 4-10 are summarized in Table 4-8, by the median 

uncertainty values (𝐸 and 𝐻𝛼𝑟𝑒𝑙) for correctly and incorrectly classified test fields, respectively. Based 

on this, it can be concluded that correct predictions by 𝐹𝑆1−4 were made with limited doubts about the 

prediction and confusion with other crops was of minor importance, as indicated by low median values 

of 𝐸 and 𝐻∝𝑟𝑒𝑙, respectively. Lowest uncertainties were found for the correct predictions for 𝐹𝑆2 in all 

sites, and highest uncertainties were associated with 𝐹𝑆1.  

Table 4-8: Median maximum probability (𝐸) and median alpha quadratic entropy (𝐻∝𝑟𝑒𝑙) of correct and incorrect 
classified test fields, as results from the four feature subspaces. 

  𝑭𝑺𝟏  𝑭𝑺𝟐  𝑭𝑺𝟑  𝑭𝑺𝟒  

Site Measure Correct Incorrect Correct Incorrect Correct Incorrect Correct Incorrect 

KHO 
𝐸 0.26 0.75 0.15 0.71 0.16 0.68 0.18 0.67 

𝐻∝𝑟𝑒𝑙 0.41 0.55 0.27 0.36 0.28 0.34 0.31 0.32 

KKP 
𝐸 0.17 0.46 0.12 0.46 0.13 0.46 0.14 0.42 

𝐻∝𝑟𝑒𝑙 0.40 0.72 0.22 0.67 0.23 0.64 0.24 0.59 

KYZ 
𝐸 0.09 0.13 0.08 0.11 0.09 0.12 0.11 0.12 

𝐻∝𝑟𝑒𝑙 0.18 0.24 0.13 0.19 0.16 0.22 0.15 0.21 

FER 
𝐸 0.13 0.20 0.12 0.19 0.13 0.18 0.22 0.23 

𝐻∝𝑟𝑒𝑙 0.35 0.54 0.25 0.28 0.29 0.31 0.40 0.42 

 

In contrast to this, incorrect predictions were made with moderate values of 𝐸 and 𝐻∝𝑟𝑒𝑙, 

respectively, and with relatively low uncertainties in KYZ and FER (see discussion above). In general the 

uncertainty decreases from 𝐹𝑆1 to 𝐹𝑆4, which means that incorrect predictions are characterized with 

lowest uncertainties in 𝐹𝑆4. In KYZ and FER the characteristics of incorrect predictions is different, and 

the incorrect predictions made by 𝐹𝑆2 tends to be the least uncertain. The characteristics of the incorrect 

predictions made by 𝐹𝑆4 tend to be somewhat in between 𝐹𝑆2 and 𝐹𝑆3. These results confirm the earlier 

findings from the analysis of the uncertainty distributions and could explain why Figure 4-7 reveals a 

further decrease in classification uncertainty of the test fields in KHO and KKP when using fewer 

features than in 𝐹𝑆2, as discussed above. 

Another investigation was undertaken by evaluating the uncertainty of the whole image, e.g. all 

classified fields in the produced maps. The class-specific uncertainties by means of 𝐸 and 𝐻∝𝑟𝑒𝑙 show 

distinct differences (Table 4-9). In general terms 𝐹𝑆1 was outperformed by all other SVMs, indicating 

the benefits of feature selection irrespective of the final SVM chosen. Further the class-wise 

uncertainties among the four subspaces were complementary and, depending on the target class of a 

given application, an appropriate subspace might be selected. For instance all SVMs showed high values 

of 𝐸 and 𝐻∝𝑟𝑒𝑙, respectively for melons and sorghum/maize, irrespective of the subspace chosen for 

classification. By contrast rice and winter wheat was correctly allocated with low uncertainty using any 

of the subspaces. On the other site the uncertainty in allocating cotton fields was reduced after feature 

selection in KHO and KKP. 

In KHO the 𝐹𝑆4 achieved the best results (e.g. most classes with lowest uncertainty) when looking at 

𝐸 and the second best when taking 𝐻∝𝑟𝑒𝑙 into account. Interestingly when using only few acquisition 

dates (𝐹𝑆4) the classification uncertainty quantified by 𝐻∝𝑟𝑒𝑙 for crop rotations tends to be higher in 

KKP and FER, although the most critical acquisition dates were maintained (Figure 4-8). This indicates 

the complexity of the class wheat-other, and highly varying crop schedules could be the reason for the 

demand of more acquisition dates to achieve lower uncertainties. 
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Table 4-9: Median values of 𝐸 (A) and 𝐻∝𝑟𝑒𝑙 (B) of the four feature subspaces and for each of the investigated crop 
classes separately. The crop classes include cotton (C), fallow (FA), rice (R), sorghum/maize (S), alfalfa-1y (A1), 
alfalfa-3y (A3), melons (M), fruit trees (F), winter wheat (W), and wheat-other (WO). 

A: median 𝑬 

 Subspace C FA R S A1 A3 M F W WO 

K
H

O
 

𝐹𝑆1 0.40 0.36 0.50 0.64    0.41 0.48 0.25 

𝐹𝑆2 0.21 0.29 0.47 0.62    0.39 0.44 0.24 

𝐹𝑆3 0.19 0.28 0.45 0.55    0.38 0.43 0.24 

𝐹𝑆4 0.17 0.27 0.42 0.40    0.38 0.42 0.23 

K
K

P
 

𝐹𝑆1 0.28 0.21 0.06 0.59 0.55  0.58  0.09 0.56 

𝐹𝑆2 0.31 0.20 0.07 0.62 0.56  0.55  0.10 0.52 

𝐹𝑆3 0.25 0.23 0.05 0.56 0.09  0.55  0.09 0.53 

𝐹𝑆4 0.30 0.21 0.09 0.54 0.53  0.50  0.11 0.51 

K
Y

Z
 

𝐹𝑆1  0.31 0.02  0.35 0.35   0.42  

𝐹𝑆2  0.31 0.02  0.33 0.32   0.44  

𝐹𝑆3  0.29 0.01  0.32 0.28   0.39  

𝐹𝑆4  0.26 0.02  0.26 0.30   0.48  

F
E

R
 

𝐹𝑆1 0.04 0.32      0.15 0.29 0.04 

𝐹𝑆2 0.05 0.29      0.14 0.26 0.07 

𝐹𝑆3 0.03 0.36      0.15 0.31 0.10 

𝐹𝑆4 0.10 0.31      0.29 0.52 0.17 

 

B: median 𝑯∝𝒓𝒆𝒍 

 Subspace C FA R S A1 A3 M F W WO 

K
H

O
 

𝐹𝑆1 0.63 0.61 0.70 0.80    0.63 0.73 0.44 

𝐹𝑆2 0.48 0.54 0.56 0.65    0.53 0.51 0.48 

𝐹𝑆3 0.41 0.53 0.61 0.64    0.54 0.59 0.44 

𝐹𝑆4 0.37 0.51 0.64 0.78    0.60 0.66 0.41 

K
K

P
 

𝐹𝑆1 0.88 0.48 0.24 0.87 0.86  0.90  0.34 0.67 

𝐹𝑆2 0.46 0.39 0.16 0.78 0.79  0.72  0.16 0.68 

𝐹𝑆3 0.43 0.43 0.12 0.78 0.77  0.77  0.21 0.75 

𝐹𝑆4 0.46 0.40 0.21 0.75 0.72  0.71  0.24 0.74 

K
Y

Z
 

𝐹𝑆1  0.53 0.03  0.52 0.53   0.66  

𝐹𝑆2  0.47 0.04  0.44 0.43   0.47  

𝐹𝑆3  0.53 0.03  0.52 0.48   0.70  

𝐹𝑆4  0.48 0.02  0.50 0.48   0.73  

F
E

R
 

𝐹𝑆1 0.10 0.62      0.32 0.51 0.11 

𝐹𝑆2 0.13 0.39      0.29 0.38 0.15 

𝐹𝑆3 0.11 0.66      0.33 0.55 0.25 

𝐹𝑆4 0.26 0.52      0.51 0.69 0.34 

4.3.6. Crop pattern and area statistics in the study sites 

The spatial crop pattern in the four sites is revealed in the crop maps in Figure 4-11, the crop acreages 

are shown in Figure 4-12. In general the spatial pattern that was detailed in section 2.2 is revealed in 

these maps. The most prominent feature in all sites is the dominance of relatively few crops: cotton 

and/or winter wheat (KKP, KHO, FER), and rice (KYZ). For instance, cotton and wheat-other fields 

share more than 60 % of the total cropped area in KHO and FER, whilst in KKP more than 40 % of the 

fields are fallow. In contrast, the KYZ landscape is dominated by rice fields (more than 50 % coverage), 

which form large clusters of 25–100 ha, but winter wheat fields share less than 1 % of the area. Although 

the highest crop diversity can be found in KKP, the highest proportion of fallow fields characterizes this 

site. This is a result of low water availability and bad environmental conditions, e.g. soil salinization 
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(JICA et al., 2010), whilst in KYZ the high proportion of fallow fields is part of the management strategy 

where alfalfa (alfalfa-1y and alfalfa-3y) is cultivated in order to preserve or regenerate soil fertility (see 

section 2.2). The relatively high share of cotton in all sites except for KYZ reflects the overall importance 

of cotton as the dominant export commodity in Uzbekistan. 

In the KHO landscape cotton and wheat-other fields share more than 60 % of the cultivated area. 

They are scattered throughout the region, whilst larger and more homogeneous areas of rice areas (8 %) 

are located in a narrow stripe next to the Amu Darya or along the major irrigation canals and small lakes, 

possibly due to relatively good water availability (Conrad et al., 2011a). Clusters of fallow fields are 

concentrated within a narrow corridor in the western part of the test site, where fields are marginal and 

soils sandy (Conrad et al., 2010). Sorghum/maize, fallow fields, or winter wheat without rotation 

together share 10 %. 

 
Figure 4-11: Crop maps from the SVM classification based on the 𝐹𝑆2 feature subset. Each site is 30×30 km. 
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In KKP there is a spatial trend in northern and north-eastern direction, which is characterized by 

increasing fraction of fallow fields in the landscape. This is due to the limited water supply and 

availability when moving northwards from the intake point in the south. Rice fields are preferably 

located among the main irrigation canals that spread northwards. Winter wheat and fallow fields 

dominate the northern half of the site, whilst rice, cotton, and to a lesser degree, melons and alfalfa-1y 

fields dominate the south. The intensity and diversity of land use was highest in the south of the 

irrigation system, where partly rotations with winter wheat were found. This pattern reflects the 

decreasing water supply to the north (JICA et al., 2010). 

FER is dominated by cotton and winter wheat fields with crop rotation, which are heterogeneously 

distributed in the site. To the southeast fruit trees and winter wheat fields without rotation dominate on 

the ascending slopes of the Fergana Valley. 

A cautious note must be given concerning the area estimates: Figure 4-12 reveals that over the 50 

model runs some of the classes exhibit marked deviations from the mean, e.g. fallow fields in KHO. The 

results from the RF differ in some cases, but given the overlap of the standard deviations there remains 

uncertainty. 

  

  

  

 

Figure 4-12: Crop acreages in hectares for the four study sites, resulting from the SVM applied to the 𝐹𝑆2 subspace. 
RF-based crop acreages are given for comparison, error bars indicate the standard deviation of the area estimation 
over the 50 model runs. 
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4.3.7. Classification uncertainty pattern in the study sites 

The spatial representation of the classification uncertainty as quantified by 𝐻∝𝑟𝑒𝑙 is shown in Figure 

4-13. The map can be used to allocate and discuss the causes of possible errors in the map. There are 

different and distinct spatial patterns among the four sites: KYZ is characterized by a chessboard like 

pattern of high and low 𝐻∝𝑟𝑒𝑙 values, which reflects the cropping pattern in the study region, where rice 

fields are cultivated on adjacent fields (see section 2.2) and classified with lowest 𝐻∝𝑟𝑒𝑙 values. There 

was more confusion among the fallow fields and alfalfa-1y, which results in higher uncertainties in 

clusters composed of these two classes. Alfalfa-3y is generally allocated with less uncertainty than 

alfalfa-1y, caused by the distinct temporal profiles of the homogeneous fields. 

 
Figure 4-13: Classification uncertainty maps from the SVM applied to the 𝐹𝑆2 subspace. The maps display 𝐻∝𝑟𝑒𝑙. 
Each site is 30×30 km. “A” and “B” indicate locations of sample photos from rice fields, shown in Figure 4-14. 

In contrast to KYZ the pattern of 𝐻∝𝑟𝑒𝑙 in KHO and KKP is more diffuse, where low uncertainties are 

mainly associated with sorghum/maize or melon fields. Despite the heterogeneous pattern of 

uncertainty there are spatial trends of declining 𝐻∝𝑟𝑒𝑙 values. In KKP this trend is visible and goes in 

north-eastern direction when moving northwards from the intake points in the south where water is 
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distributed into the irrigation system in KKP. In this region, the least irrigation water, which is 

discharged in the south, reaches the fields, and which makes this region the most drought affected in 

the Karakalpakstan region (JICA et al., 2010). The more regular shaped fields in the southern half of the 

site are characterized by low uncertainties and are located among the large irrigation canals that run 

from south to north. In KHO the uncertainties tend to increase in south-western direction toward the 

desert fringe, where water availability and supply was shown to be suboptimal (Conrad et al., 2007). 

These parts of the irrigation system are only under irrigation in years of high water availability (Conrad 

et al., 2013), and land degradation advances (Dubovyk et al., 2012). The spatial trends indicate locations 

in the map in which the classifier is unable to provide accurate discrimination, e.g. the class 

identification performance of the algorithm is low. Both sites have almost twice as many classes and are 

located in the downstream locations of the Amu Darya, where land degradation as a result of unreliable 

availability of irrigation water is widely reported. 

It is assumed, but not proven quantitatively in this study, that these spatial trends are caused by 

declining water availability, resulting in reduced biomass production, and ultimately a flattening of the 

temporal profiles (e.g. NDVI) which can lead to increasing confusion in class allocation. As an example, 

Figure 4-14 shows the NDVI temporal profiles of all rice fields in KKP. Fields classified with high 

uncertainties are obviously characterized by low biomass production, as indicated by the flattening of 

the NDVI profiles. The typical negative NDVI values which indicate the field leaching at the beginning 

of the growing period is absent when uncertainties raise above 0.2. Exemplary photographs from two 

rice fields in KKP demonstrate how reduced water availability results in increased uncertainty values 

(Figure 4-14 A and B). 

 

(A) 

 

(B) 

 

                   (C) 

 

Figure 4-14: Exemplary photographs were taken from two different rice fields on 27-Jul 2011, which were classified 
correctly as rice, but with different values of 𝐻∝𝑟𝑒𝑙: 0.25 (A) and 0.72 (B). Median NDVI profiles of all fields in KKP 
classified as rice are shown in (C). Different line types indicate different levels of uncertainty.  
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Figure 4-15 shows the NDVI profiles of fallow fields. Here high uncertainties are indicated by more 

irregular NDVI profiles and increased biomass production. The latter can be explained with higher 

surface heterogeneity and biomass production when high amounts of weed flora or reeds grow within 

the fallow fields. This contrasts the flat profiles of fallow, ploughed fields with flat NDVI profiles, and 

results in disturbed spectral information of such fields, which most likely increases classification 

uncertainty. In FER the pattern of uncertainty is more random, with a cluster of higher uncertainty in 

the south-eastern part. This coincides with the preferred cultivation of fruit trees and winter wheat on 

the gently ascending hill slopes, which were classified with higher uncertainty compared to the other 

crops. FER is located in the upstream region of the Syr Darya and is characterized by relatively high 

water availability, as is KYZ located in the mid region of the Syr Darya. In both sites only five crops are 

cultivated, and class allocation is assumed to be less uncertain.  

 
Figure 4-15: Median NDVI profiles of all fields in KKP classified as fallow. Different line types indicate different 
levels of uncertainty. 

As can be seen from these observations, the spatial pattern of uncertainty can be explained by means 

of some observable spatial phenomena. In all study sites no significant correlation between field sizes 

and 𝐻∝𝑟𝑒𝑙 was detected (all correlation coefficients r2 < 0.0031), whereas for instance Yu et al. (2008) 

found a positive relation of classification uncertainty and larger object sizes in vegetation mapping, 

where objects of smaller size occurred in areas of spectrally heterogeneous areas and were classified with 

higher uncertainty. Water availability seems to be one explanatory factor, but further research on this 

issue is needed. 

4.4. Conclusions 

This study put emphasis on the issue of spatial classification uncertainty in the context of SVM 

classification, which has attained only few attention, yet. Although crop classification with SVM has been 

shown to be advantageous in comparison to other classifiers a potential disadvantage is the feature space 

size and the effect of feature reduction on SVM classification using multispectral time series data has 

attained little attention. This study provided experimental evidence that SVM is affected by the feature 

space size. In particular reducing the feature space size decreased classification uncertainty and saved 

computation time. In comparison, the performance of the RF was not affected by the feature space size 

and performed almost equally well. Recent technological advances like RapidEye combine both, high 

spatial resolution and frequent revisit time, which is well suited for crop identification. However the 

high dimensionality of such multi-temporal datasets can be a potential problem (Hughes phenomena). 

The presented work revealed that SVMs appeared as a computationally effective and very accurate 
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means for agricultural crop identification. As it is unknown beforehand which features are useful for 

crop mapping, an intentional very large input space was provided in this study by calculating a variety 

of spectral and geostatistical indices. The RF variable importance score is a powerful tool (and 

computationally light) to explore the best acquisition date combination. The different feature types 

provided diverse information and different acquisitions contribute unequally to the classification of the 

various crop classes. Hence, the different information sources were not necessarily equally reliable. One 

specific feature or feature group can be more applicable to describe one specific class but not be 

appropriate for another class. Consequently the use of different type of information as well as the 

integration of multi-seasonal data sets is valuable. This statement was confirmed by the results of the 

presented applications. 

It is concluded that RF selected subsets featuring predictor variables containing red edge information 

from the RapidEye sensor, acquired early and late summer, and can be suggested for timely-efficient, 

accurate classification of crops in the study sites. It was demonstrated that using only a few instead of 

all acquisition dates sufficed to achieve accuracies better than the oft-recommended target accuracy of 

85 %. The choice of the most important acquisition dates was oriented by the average importance score 

of all features at a date, and reflected the cropping pattern of the study sites (e.g. the presence or absence 

of crop rotations). Further it was shown that feature reduction resulted in reduced map uncertainties in 

all study sites, and that the SVM that used fewer features than the best performing SVM resulted in 

reduced uncertainties for many crops, despite a small drop in accuracy. 

The approach presented in this study is easy to implement and computationally light, so its 

transferability to other (and potentially larger) sites would be possible. A potential disadvantage of the 

proposed approach can be the computation time of the huge data set, in particular the geostatistical 

indices that were shown to be of subordinate importance. A recommendation for large scale 

applications, e.g. regional crop mapping, could be a pre-selection of small area subsets and the definition 

of the best performing features for crop classification, based on the methodology proposed in this 

manuscript applied to these subsets, and before calculating this selected feature subset over the total 

region. A similar attempt is recently being implemented in the context of the CAWA project, in which 

this study was carried out, for regional crop mapping in irrigated agricultural landscapes in Middle Asia. 

Further the proposed feature groups could also be applied to another classifier like DT or RF, possibly 

further reducing computation time. 

This study demonstrates that the uncertainty measures derived from the SVM are informative and 

useful to characterize the spatial map quality. Two uncertainty measures, 𝐸 and 𝐻∝𝑟𝑒𝑙, were computed 

from the soft output of SVM and were evaluated with respect to their ability to correctly quantify 

classification uncertainty and consequently to predict classification error in maps (the predictive 

strength). It was shown that both measures performed well but different in the four sites. Yet, because 

𝐻∝𝑟𝑒𝑙 summarizes the information of the entire membership estimations in 𝑝(𝑥), it is to be preferred. 

Another advantage of 𝐻∝𝑟𝑒𝑙 is that its behaviour can be controlled by the parameter 𝛼. The uncertainty 

maps allowed an interpretation of the causes of the observed spatial pattern of classification uncertainty 

by environmental factors. This information might be used in agricultural resource management as an 

additional means to identify water stressed areas in an irrigated agricultural environment, or to improve 

the reliability of modelling results and backward-tracing regions in crop maps with erroneous class 

allocations. 

 

 



  

 

Chapter 5 

A COMPARISON OF MACHINE LEARNING 

ALGORITHMS AND CLASSIFIER 

COMBINATION FOR OBJECT-BASED CROP 

CLASSIFICATION19 

Abstract 

This chapter deals with the comparison of different classifier algorithms for crop classification. The issue of 

combining the results of different classifiers to increase classification accuracy is also addressed. Specifically the 

support vector machine (SVM) approach employed in chapter 4 is compared with two other non-parametric 

classifier algorithms, the multilayer perceptron neural network (MLP), and the random forest (RF). Despite their 

comparatively high classification performance, each of the tested classifier algorithms tended to make errors in 

different parts of the input space, e.g. performed different in classifying crops. Hence, a combination of the 

complementary outputs was envisaged. To this end, a classifier combination scheme is proposed, based on and 

extending existing algebraic operators. It combines the outputs of different classifier algorithms at the per-case 

basis, based on their membership estimations, and assesses the reliability of a classifier with respect to classifying 

crop classes before the final combination, thereby excluding less reliable classifier algorithms at the per-class 

basis before the final combination. The experimental setup aims at comparing the proposed classifier combination 

scheme with its standalone classifier algorithms and other existing algebraic operators, respectively. Further, 

emphasis is put on evaluating the tested classification approaches under limiting conditions by applying the 

classifier algorithms to small input data sets and to reduced training sample sets, respectively. Further, the 

applicability to datasets from another year is demonstrated to assess the temporal transferability of the tested 

approaches. Although the single classifier algorithms perform well in all sites, this research demonstrates that the 

classifier combination scheme provides consistently high accuracies over the four landscapes and over different 

years, respectively. This makes this approach distinct from the single classifier algorithms, which perform 

different over the four landscapes and show grater variability in class-wise accuracies. Further, the classifier 

combination scheme performs better when using very small training set sizes and very small input data sizes, 

respectively. The selection of a classifier algorithm is further oriented by a desire to generate information on 

classification uncertainty and to indicate the spatial variation in classification quality in maps. Hence, the 

strengths of the tested classifier algorithms and the classifier combination, respectively in providing such spatially 

explicit information on classification uncertainty was evaluated, and it was found that the classifier combination 

provided the least uncertain results. 

  

                                                      
19: Adapted from: Löw, F., Schorcht, G., Michel, U., Dech, S., & Conrad, C. (2012). Per-field crop classification in irrigated 
agricultural regions in Middle Asia using random forest and support vector machine ensemble. Proceedings of SPIE 8538. 
Edinburgh, UK. 
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5.1. Background 

In the previous chapter the SVM was introduced as an effective and accurate means to classify crops 

at the object level. The algorithm was applied to different subsets of a redundant input space that 

contained multi-temporal spectral, textural, and geostatistical features. Particular attention was paid to 

the impact of feature selection on both spatial uncertainty and model prediction accuracy, respectively. 

It was demonstrated that one specific classifier algorithm like SVM cannot perform equally well on 

classifying all crop classes investigated, irrespective of the features selected. Chapter 5 addresses the 

second out of the three research questions that was formulated in the introduction, namely comparing 

different classifier algorithms for crop classification, and to evaluate if combining the results from 

different kind of classifier algorithms can enhance classification accuracy. Emphasis is put on evaluating 

the transferability and stability of the tested approaches among different agricultural landscapes and 

different years, and their performance under limiting conditions (e.g. training data scarcity and small 

input data sizes). Finally, it will be evaluated how uncertainty information computed from the soft 

outputs of the tested classifier algorithms relates to the hard result accuracy.  

Whilst there is consensus that object-based classification approaches are in general more accurate 

than pixel-based, a single “best” classifier algorithm seems not to exist, e.g. no clear recommendation 

for a specific algorithm can be given when looking at several comparative studies (Gislason et al., 2006; 

Huang et al., 2002a; Pal and Mather, 2005; Pal, 2005). Despite the general high performance of recent 

machine learning algorithms (see appendix A.2), each of these classifier algorithms has its own 

advantages and disadvantages, and it might not be possible to identify the most suitable algorithm to 

classify a specific class or all classes in advance (Foody et al., 2007), and one classifier algorithm might 

perform different over different landscapes. Capitalizing the strengths of several algorithms can 

overcome the constraints of individual classifiers and enhance classification accuracy (Benediktsson et 

al., 2007). Classifier combination has received considerable attention in the past decades and is 

becoming an established pattern recognition technique (Benediktsson et al., 2007; Kittler et al., 1998; 

Kuncheva, 2004; Zhang, 2010). Combining the results of different classifier algorithms is sometimes 

referred to as “classifier ensembles” (Kittler et al., 1998). 

The underlying precondition for classifier combination is that different classifier algorithms are 

accurate but perform unequal, e.g. produce errors in different parts of the feature space and perform 

different in classifying specific classes (Jain et al., 2000; Liu et al., 2004). In this way the combination 

of results from different classifier algorithms aims to make a better decision than taking only one source 

into account, thereby reducing the classification uncertainty of the final output (Bloch (1996), citing 

Bloch and Maître (1994)). One central issue in classifier combination is the way the different 

classification outputs are combined. This is done post-classification, either by aggregating the soft 

outputs or the class labels (the so-called hard outputs) from different classifier algorithms and then by 

applying a suitable combination rule (operators) to achieve a consensus decision (Kittler et al., 1998). 

The soft outputs are modelled in different ways, depending on the algorithm (see section 4.2.4 for SVM), 

e.g. as posterior probabilities, membership degrees, based on Bayesian theory or as fuzzy sets (Bloch, 

1996). Various classifier combination schemes have been developed and it has been experimentally 

demonstrated that some of these techniques can consistently outperform a single best classifier 

(Benediktsson and Kanellopoulos, 1999; Kuncheva, 2004; Waske and Benediktsson, 2007), and that 

they are useful when classifying multi-source or multi-temporal remote sensing data (Benediktsson and 

Kanellopoulos, 1999; Briem et al., 2002; Jeon and Landgrebe, 1999; Solberg et al., 1994). There exist 

two broad strategies to generate such ensembles of classifiers: (i) combining the results from variants of 

the same classifier algorithm, or (ii) considering the combination of the results from multiple classifier 

algorithms.  
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The first strategy can be realized by modifying the input data (training data or input features). 

Iteratively resampling (or rather: reweighting) the training data by boosting strategies (Freund and 

Schapire, 1996) or bootstrap aggregating (bagging) of Breiman (1996) are well established ensemble 

strategies of this type. Random feature selection (RFS) is another concept for generating variants of a 

classifier, for instance Waske et al. (2010) performed RFS in SVM-based classifier ensemble by 

randomly choosing and classifying subsets of the feature space with SVM. The results were finally 

combined with another SVM applied on the rule images of the results. RF is another well-known 

machine learning technique, which combines bagging and RFS strategies (Breiman, 2001) and was 

shown to have good performances in crop classification (Pal, 2005; Waske and Braun, 2009). 

The second strategy is to combine the outputs from different independent classifier algorithms using 

multi-classifier systems (MCS), which have been introduced in remote sensing applications to overcome 

the constraints of individual algorithms. By combining two or more independent classifier algorithms 

and performing classification separately on the input data different outputs are created and combined 

after classifying the input data separately (Steele, 2000; Waske and Benediktsson, 2007). For instance, 

Benediktsson and Kanellopoulos (1999) combined neural networks and statistical modelling to classify 

multi-source data. 

The combination of outputs from different classifier algorithms, using either of the two 

aforementioned strategies, can be done by a diversity of methods, including averaging the predictions, 

statistical methods, majority voting strategies, weighted majority voting for boosting techniques, or 

fuzzy-logic-based methods if the classifier outputs are interpreted as fuzzy membership values (Bloch, 

1996). Another powerful approach is combining the outputs of different classifier algorithms with 

another, independent classifier algorithm that is trained on the soft outputs of the different classifier 

algorithms (Waske and Benediktsson, 2007; Wolpert, 1992). A more general introduction to classifier 

combination and its application can be found in Benediktsson et al. (2007), Jain et al. (2000), Kuncheva 

(2002, 2004), and Bloch (1996) gives an overview of advanced fusion operators. 

Different classifier algorithms have been tested for classifier combination. To have an example 

Giacco et al. (2010) combined the results from different SVM architectures and self-organizing feature 

maps (SOMs). Although the increase in accuracy was only up to 1 %, it has to be noted that the individual 

classifier algorithms already performed with accuracies of more than 90% and the class-wise 

improvement can be in the order of several percent increase. Benediktsson and Kanellopoulos (1999) 

combined neural network and statistical classifiers, where in conflicting situations, e.g. when classifiers 

disagree, another neural network classifier was used to assign the final class. Jeon and Landgrebe (1999) 

give an example for multi-temporal classification: they proposed two strategies to combine the results 

from multi-temporal classifiers applied to Landsat TM data that achieved 10 % increase in OA. Liu et al. 

(2004) combined the results from a tree structured and a neural network classifier (ARTMAP). Doan 

and Foody (2007) tested four approaches to combine two neural network and one statistical classifier 

algorithm and achieved improvements in OA of up to 4.45 %. Many of these concepts were developed 

based on hyper-spectral image data (Licciardi et al., 2009), but the fusion of different type of data 

(Benediktsson and Kanellopoulos, 1999; Briem et al., 2002; Waske and Benediktsson, 2007) and multi-

temporal datasets (Bruzzone et al., 1999; Doan and Foody, 2007; Udelhoven et al., 2009) also gave 

convincingly results. Waske et al. (2010) proposed the combination of SVMs that were trained on 

different, randomly selected feature subspaces, which yielded an improvement of more than 5 % 

classification accuracy, depending on the training set size. An even more noteworthy result in that study 

was the class-wise improvement of accuracy that was more than 10 % for some classes, as compared with 

a regular SVM. Although the concept of classifier combination in remote sensing is attracting more and 

more attention it has to be noted that increasing classification accuracy is not granted (Foody et al., 

2007), or might be statistically marginal (Giacco et al., 2010). 
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The classifier combination scheme (hereafter called: CCS) that is proposed in this thesis is designed 

in a generalizable fashion so that a combination of two or more classifier algorithms is possible, as long 

as the algorithms are capable of computing membership estimations (soft outputs) at the per-case level. 

The performance of the CCS is investigated and compared with other classifier algorithms and existing 

combination operators. Three classifier algorithms, RF, SVM, and multilayer perceptron neural network 

(MLP) were selected for the experiments in this study because of their general good performance in crop 

classification and because they have different technical properties (more details are given in appendix 

A.2): 

 They are all non-parametric, that means that they are not constrained to assumptions like 

parametric distributions of the input data. 

 RF and SVM appear effective when only few training samples for heterogeneous classes are 

available (Shao and Lunetta, 2012; Waske and Braun, 2009; Waske et al., 2010). 

 The OAO strategy of SVM results in a larger number of classifiers, but therefore the classification 

problem is divided into many binary classifications (two classes) that are much simpler to solve. 

 RF permutes the training data randomly and reduces correlation between the unpruned trees 

in the ensemble, which makes RF potentially robust toward redundancy in the input space. 

 They follow different strategies, e.g. SVM implements structural risk minimization (SRM), the 

neural network classifier implements empirical risk minimization (ERM), see appendix A.2. 

The overall objective of this research is to compare the performance of different classifier concepts 

under varying conditions and to compare the results with the CCS. This overall objective can be split in 

a series of partial objectives, defined as follows: 

 Increasing the knowledge of the suitability of different classifier algorithms to correctly predict 

the classification uncertainty in maps, and consequently to use them in classifier combination. 

 Evaluating the stability and spatial transferability of the selected classifier algorithms and the 

CCS by applying it to the four test sites with different field sizes and comparing the performance 

for another year, respectively. 

 Investigating the applicability of the selected classifier algorithms and the CCS with reduced 

training sample sizes and small input data sets, respectively. 

In the following, some background information on how soft outputs can be modelled by different 

classifiers is given and the parameterization (parameter tuning) of the selected classifier algorithms is 

highlighted. After a description of the CCS, it is implemented in realistic conditions and applied to EO 

data over the four test sites (the same data as described in chapter 3). The results are compared with the 

individual classifier algorithms. Emphasis is also put on comparing the accuracy of the CCS with existing 

combination operators, and the impact of classifier combination on the spatial distribution of 

uncertainty in the maps, respectively. 
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5.2. Methods 

5.2.1. Classifier algorithms and parameter tuning 

Configuring the classifier algorithm includes finding adequate values for the so-called free 

parameters (see section 4.2.2) that can have a considerable influence on the learning of an algorithm, 

and finally on the generalizability of the resulting classifier model. Depending on the algorithm there 

can be several free parameters that have to be configured. One straightforward way to optimize these 

parameters, even though not efficient in all cases, is parameter tuning. During tuning a range of values 

for one or more parameters is permuted and the accuracy of the classifier is tested. The final choice 

values of the parameters are oriented toward high performance of the model, e.g. the resulting model 

accuracy. This is done by a repeated 𝑙-fold cross-validation on the training set, 𝑙 being the number of 

folds. In cross-validation, the training set is partitioned into 𝑙 subsets of approximately equal size. 

Sequentially one subset is tested using the classifier trained on the remaining 𝑙 − 1 subsets. Thus, each 

instance of the whole training set is predicted once so the cross-validation accuracy is the percentage of 

data that are correctly classified. This process ensures that all subsamples are used as parts of the 

training and testing sets. Results for each of the 𝑙 folds are then combined and the model with the highest 

average accuracy is selected. Examples of using cross-validation in remote sensing can be found in 

Brenning (2009), Friedl et al. (1999), and Huang et al. (2002a). In this study cross-validation for 

parameter tuning is performed with 𝑙 = 5 folds. Stretching the data range can be another useful pre-

processing step, when attributes with large original scale bias the solution, which can lead to degrading 

accuracies, e.g. in SVM classification (Ali and Smith-Miles, 2006). Hence, the data range of all input 

features was stretched into [0,1]. 

Random forest 

The implementation of Breiman´s RF (Breiman, 2001) in the randomForest package (Liaw, 2013) 

in R (R Development Core Team, 2012) was used for the experiments. As was discussed in section 4.2.2, 

two free parameters can be optimized: the number of trees in the ensemble and the number of features 

𝑚𝑡𝑟𝑦 to split the nodes in the trees (Breiman and Cutler, 2007). As is considered adequate in literature 

(for categorical classification) the number of features at each node was set to the square root of the total 

number of input features, √𝑓, where 𝑓 is the number of predictor variables (features) within a dataset 

(Gislason et al., 2006). The final number of trees was set to a relatively high number of 300 for each 

study site, in order to allow for convergence of the OOB error statistic (see Figure 5-1). In this figure it 

can be seen that adding more than 300 trees, irrespective of the number of random features (𝑚𝑡𝑟𝑦) at 

each split node tested, does not affect the error rates, neither measured from the OOB, nor from an 

independent test set. 
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Figure 5-1: Impact of number of trees in the ensemble on OOB and test set error rates, for different numbers of 
random features (𝑚𝑡𝑟𝑦) at each split node tested. 

Support vector machine 

The implementation of SVM in the package e1071 (Meyer et al., 2012) in R provides an interface to 

the libsvm library from Chang and Lin (2011). Training of the SVM includes choosing adequate values 

for the kernel parameter 𝛾 and the regularization parameter 𝐶 (see section 4.2.2 for further details). Two 

different kinds of SVMs were considered: classification with a linear SVM (SVM_L, without kernel 

transformation, see appendix A.2) and classification with a nonlinear SVM based on the widely known 

RBF kernel (SVM_R). For both SVMs, 𝐶 must be tested, and for the SVM_R adequate values for 𝛾 must 

be determined in addition. Tuning 𝐶 and 𝛾 was done using a systematic grid search in 2-D space that is 

spanned by 𝛾 and C. The range of 𝛾 was [0.00125, 2], the range of 𝐶 was finally set to [1, 200]. While 

some studies employ a grid search similar to that described before (Foody and Mathur, 2006; Shao and 

Lunetta, 2012; Waske et al., 2010), others used fixed parameter values while testing different input space 

sizes (Pal and Foody, 2010). The range of 𝛾 was [0.00125,2], the range of 𝐶 was finally set to [1,200]. 

Multilayer perceptron neural network 

In MLP classification the most critical parameter is the number of hidden layer nodes, which has a 

significant impact on the classifier performance, e.g. selecting too many nodes will cause over-fitting of 

the model to the training set and reduce the generalizability of the model, while too few nodes cannot 

identify the internal structure of the input data. If the learning rate is too low the model might end up 

finding a local minimum instead of the global minimum (Kavzoglu and Mather, 2003), which results in 

a loss of its so-called generalization ability, e.g. to classify data correctly that was not used in the training 

stage (Atkinson and Tatnall, 1997). In this thesis three parameters were tuned: the number of hidden 

layer nodes, the learning rate, and momentum. Following the recommendations of Kavzoglu (2001) the 

learning rate was chosen between 0.1 and 0.2, and the momentum factor between 0.5 and 0.6, the 

learning rates a set of discrete values {0.1, 0.125, 0.15, 0.175, 0.2} was tested, and for the momentum the 

set {0.5, 0.525, 0.55, 0.575, 0.6} was tested. The number of hidden layers was set to one, and the number 

of hidden layer nodes examined was in a range of [𝑛, √𝑛 + 𝑓], where 𝑛 is the number of classes, and 𝑓 the 

number of input features, an approach also used by Hu and Weng (2009). The number of iterations 

determines the ability of the MLP to model the complex input data, however increasing the number of 

iterations can also decrease the ability of the model to classify the unseen data correctly (Atkinson and 

Tatnall, 1997). After some trials the number of iterations was set to 200 to reduce the risk of over-fitting. 

The number of output nodes corresponds to the number of classes 𝑛, the number of input nodes 

correspond to the number of input features 𝑓. 
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Feature selection 

As was demonstrated in chapter 4 the performance of classifier algorithms can be negatively affected 

by a huge input space that contains redundant information. Hence, the RF was used again as feature 

selection strategy and several classifications were performed by incrementally adding features to the 

single classifiers in order suggested by the RF feature score. This was done in groups of fifteen, beginning 

with the 10 most important features from the ranked list. The RF, each of the SVMs, and the MLP models 

were finally built on the reduced feature subsets that yielded the highest OA. 

5.2.2. Classifier combination scheme 

In the following the CCS is describe in more detail. Emphasize is put on modelling the soft output 

from different classifier algorithms, as these are the input to the classifier combination. Finally the 

combination operator that is proposed in this study is described. Figure 5-2 illustrates the processing 

steps involved in the proposed CCS, which may guide the reader throughout the following descriptions. 

After the calculation of the input features from the RapidEye time series the information was aggregated 

to a stacked vector, containing all 568 multi-temporal features described in chapter 3. A feature 

reduction is then performed for each classifier algorithm separately, based on the RF feature importance 

score, and the final outputs of each classifier algorithm tested (class labels and soft output for each 

classified object) are combined according to the combination operator defined for the CCS. 

 
Figure 5-2: Schematic diagram of the CCS proposed in this thesis. “Distance to OSH”, “Activation levels”, and 
“Number of trees” refer to the soft outputs computed from the corresponding classifier algorithm, and is explained 
in the next section. 

Modelling soft outputs from different classifier algorithms 

Many parametric and non-parametric classifier algorithm can generate a soft output (e.g. 

estimations of class memberships) that allow for a quantification of the classification uncertainty, but 

the way this soft output is modelled depends on the classifier algorithm. In RF classification the soft 

output is calculated as frequencies of observed class values occurring at the leaves of the trees within the 

forest: 

𝑝𝑟𝑖(𝑥)  =  
𝑇(𝑖)

𝑇
                         Eq. 5-1 

where 𝑝𝑟𝑖(𝑥) is the estimated posterior probability for class 𝑖, 𝑇(𝑖) is the number of trees voting for 

one class 𝑖, and 𝑇 the number of trees in the ensemble.  
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Despite its simple computation the evaluation of spatial uncertainty information computed from the 

soft output of RF has not been fully evaluated in remote sensing applications yet, e.g. the strength of the 

estimated class probabilities of RF in predicting classification uncertainty (Loosvelt et al., 2012a). 

In SVM classification a post-processing method for mapping the soft outputs of a single SVM into 

posterior probabilities has been proposed by Platt (2000) and improved by Lin et al. (2007), who’s SVM 

implementation can be found in their libsvm library that is used in this study. More details on this issue 

were given in section 4.2.4 of this thesis. 

The output of neural network classifiers can be softened in order to output, for each classified case 

𝑥, an activation level for each of the classes investigated (Foody, 2000), see appendix A.2 for further 

details. The magnitude of activation levels may be used to indicate the strength of membership that may 

be associated with a particular class allocation (Foody, 1996a), although this information is not a direct 

measures of posterior probability but rather a “by-product” of the algorithm (Brown et al., 2009). MLP 

provides an activation level 𝑎𝑗 of each class at the per-case basis. The transformation of this information 

to a hard result is accomplished by assigning each case to the class with the highest activation level. 𝑎𝑗 

may additionally be used to produce soft labels. In this study all 𝑎𝑗 are normalized to a common scale 

[0,1], so that all 𝑎𝑗 for a case 𝑥 sum to one. It is assumed that a large activation level has a larger 

probability of correct class allocation (Foody, 1996a, 2000; Gong et al., 1996). Brown et al. (2009) and 

Hu and Weng (2009) used the soft output from neural network classifiers, e.g. maps of activation levels 

to quantify the classification uncertainty at the pixel-level. Critically, the predictive strength of the soft 

outputs from neural network classifiers has attained only few attention in the literature (Brown et al., 

2009), hence it will be evaluated before considering MLP for its application in the classifier combination. 

Measures of classification uncertainty 

As was already detailed in section 4.2.3, measures of classification uncertainty like entropy can be 

computed from soft outputs of classifier algorithms. Here it is considered that several classifier 

algorithms 𝑚 assign membership estimations to a classified case 𝑥. Let for a given data set consider 𝑛 

classes using 𝑗 different classifier algorithms. For each case 𝓍 (agricultural field or pixel) a classifier 

algorithm 𝑗 calculates a soft output in form of a vector that contains the estimated membership 

probabilities that 𝓍 is classified into a class 𝑖, 

𝑝𝑟𝑗(𝓍) = {𝑝𝑟𝑗,1(𝑥), 𝑝𝑟𝑗,2(𝑥), … , 𝑝𝑟𝑗,𝑖(𝑥), … , 𝑝𝑟𝑗,𝑛(𝑥)}  , 𝑖 = 1 … 𝑛, 𝑗 = 1 … , 𝑚                  Eq. 5-2 

where 𝑝𝑟𝑗,𝑖(𝑥) is the estimated membership degree of 𝓍 to class 𝑖, according to a classifier 𝑗, and 𝑛 the 

number of classes. Each element 𝑝𝑟𝑗,𝑖(𝓍) in 𝑝𝑟𝑗(𝓍) is a class membership estimation by 𝑗, e.g. that 𝓍 

actually belongs to a class 𝑖. The elements in 𝑝𝑟𝑗(𝓍) generally take their values in a closed interval, e.g. 

𝑝𝑟𝑗,𝑖(𝑥) ∈  [0,1], thereby adding up to 1, and are the input in classifier combination or decision fusion 

methods (Bloch, 1996; Kuncheva, 2002, 2004).  
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As was demonstrated in section 4.3, the higher these values, the more likely does 𝑥 belong to class 𝑖. 

Low values indicate a dubious result that might occur in the presence of mixed pixels, or be related to 

sub-pixel cover proportions (Foody, 1996b) or heterogeneous classes. When 𝑚 classifiers are used to 

classify 𝑥, then 𝑚 vectors 𝑝𝑟𝑗(𝓍) are calculated for each 𝑥: 

{𝑝𝑟1(𝓍), 𝑝𝑟2(𝓍), 𝑝𝑟𝑗(𝓍), … , 𝑝𝑟𝑚(𝓍)}.                       Eq. 5-3 

For each 𝑝𝑟𝑗(𝓍) a measure of uncertainty can be calculated. In this study, 𝐸𝑗 was selected to evaluate 

classification uncertainty. 

Combination rule 

There exist a variety of methods to combine the outputs of individually trained classifier algorithms, 

e.g. from simple algebraic operators (Kittler et al., 1998) to more sophisticated fuzzy rules like context 

dependent operators (Bloch, 1996) or Dempster-Shafer techniques that consider the reliability of each 

source (Bloch, 1996; Kittler et al., 1998). Whilst some combining rules, e.g. the majority vote, operates 

on the class labels of the algorithms (the hard output), the soft output of classifier algorithms can be 

combined using rules like the algebraic 𝑆𝑈𝑀, 𝑀𝐼𝑁, and 𝑀𝐴𝑋 operators or the product, median, or mean 

rules (Policar, 2006). Those and other rules are detailed and compared for classification in Kittler et al. 

(1998),  Kuncheva (2002), and Policar (2006). 

Combination rules based on algebraic operators were shown to be very effective and accurate (Kittler 

et al., 1998). In general, these operators are not trainable (Policar, 2006), as they do combine the soft 

outputs using more or less simple algebraic expressions, e.g. the maximum value out of all elements in 

𝑝𝑟𝑗(𝓍). Consequently the training and parameter tuning effort is focussed on the single classifier 

algorithms, whilst the combination operators apply to their outputs. In general, for a classifier 𝑗 the final 

class 𝑖 becomes the class with the largest support 𝜇𝑗(𝓍), after one of the aforementioned rules is applied 

to summarize the membership probability estimations (Benediktsson et al., 2007; Policar, 2006): 

𝜇𝑗(𝓍) =  𝑎𝑟𝑔 𝑚𝑎𝑥{𝑝𝑟𝑗,𝑖(𝓍)}  , 𝑖 ∈ [1, 𝑛].                      Eq. 5-4 

The final class support can be computed with one of the widely known combination rules, e.g. the 

𝑀𝐴𝑋 rule (Kittler et al., 1998) by determining the highest support among all 𝑚 classifier algorithms: 

𝐶𝑓𝑖𝑛 = 𝑎𝑟𝑔 𝑚𝑎𝑥 {𝜇𝑗(𝓍)}  , 𝑗 ∈ [1, 𝑚].                       Eq. 5-5 

The 𝑆𝑈𝑀 rule applies a maximum value selector to the averaged soft outputs of each class, thereby 

averaging the potential variability of the per-class soft outputs (Policar, 2006). A potential drawback of 

such algebraic operators is that they do not explicitly take into account the reliability of the classifier 

algorithms, e.g. their performance with regard to classifying a particular class 𝑖. An extended 

combination rule is proposed here that quantifies the reliability of each classifier algorithm with respect 

to classifying a specific class 𝑖, quantified by CAi from the confusion matrix, and excludes it from the 

classifier combination if a certain criteria is not fulfilled (see below). The results will be compared with 

two existing algebraic operators (𝑆𝑈𝑀 and 𝑀𝐴𝑋). 

The proposed combination rule works as follows: for each unseen (unclassified) case 𝑥 a given 

classifier algorithm 𝑗 calculates a soft output vector 𝑝𝑟𝑗(𝓍) and suggests a hard class label (𝑖) assignment. 

As was already mentioned, the combination rule is based on the per-case estimations of class 

memberships, e.g. the decision on the final class is made for each pixel or object. Yet, each classifier 
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algorithm´s reliability is assessed before the final combination by its class-wise accuracies CAi. For a 

given class 𝑖 the classifier 𝑗 with highest CAi is selected first, and only the classifier algorithm whose CAi 

does not differ more than 5 % from this best classifier was combined (a range of thresholds was tested 

but 5 % achieved reasonable results: 1 %, 2 %, 10 %, 15 %, and 20 %). This results in 𝑚̇ classifiers that can 

compete (𝑚̇ being at least 1 classifier that can compete for a class 𝑖). This was done because a classifier 

algorithm 𝑗 might be reliable for one specific class, but unreliable for another class (see results in section 

5.3.2 and 5.3.3). A classifier algorithm is reliable if its class-wise accuracy does not deviate more than 

5 % from the single best classifier´s CAi. As a result from this, the number of classes 𝑛 for which one 

classier algorithm j can compete becomes 𝑛̅ ⊆ 𝑛. The final class 𝑖 then becomes the class with the largest 

support 𝜇̅𝑗(𝓍): 

𝜇̅𝑗(𝓍) =  𝑎𝑟𝑔 𝑚𝑎𝑥 {𝑝𝑟𝑗,𝑖(𝓍)}  , 𝑖 ∈ [1, 𝑛̅].                      Eq. 5-6 

The final combination rule is rather intuitive and assigns the final class to 𝓍 by the classifier 𝑗 with 

the largest support 𝜇̅𝑗(𝓍): 

𝐶𝑓𝑖𝑛(𝑥) =  𝑎𝑟𝑔 𝑚𝑎𝑥 {𝜇̅𝑗(𝓍)}   , 𝑗 ∈ [1, 𝑚].                      Eq. 5-7 

𝐸𝑗 can be computed for each classified case 𝑥 as an uncertainty measure (see section 4.2.3), but is 

defined here as: 

𝐸𝑗 = 1 − 𝜇̅𝑗(𝓍),                        Eq. 5-8 

with 𝜇̅𝑗(𝓍) being the largest support in Eq. 5-7. In the following, 𝐸𝑗 as defined in Eq. 5-8 will be used 

to assess the spatial uncertainty of the CCS, whilst 𝐸𝑗 as defined in 4.2.3 (e.g. computed considering all 

elements in the soft outputs of each classifier algorithm) will be used to evaluate classification 

uncertainty of the single classifier algorithms. 

5.3. Experimental results 

In this section experimental results from the selected classifier algorithms and the CCS are presented 

and confronted with two additional combination operators, 𝑆𝑈𝑀 and the 𝑀𝐴𝑋, that were shown to be a 

suitable combination rule in classifier combination (Kittler and Alkoot, 2003; Kittler et al., 1998). The 

impact of feature selection on classification accuracy is briefly discussed. An evaluation of the soft 

outputs, computed on the test sets, is also given to evaluate their potential usefulness with regard to 

classifier combination, similar to the tests in section 4.3.5. 

5.3.1. Impact of feature selection on classification accuracy 

As already discussed in chapter 4 different classes might require different types of input features to 

have an accurate result. As it is unknown in beforehand which type of features are suitable, the input 

data set used in chapter 4 is used again as input. Yet, given the possible negative impacts of the feature 

space size on the classifier performance (see section 4.3), a feature reduction based on the RF is 

performed for each classifier separately. 

Figure 5-3 plots OA of the classifier algorithms (RF, SVM_R, SVM_L, and MLP) as a function of the 

number of selected features. In all sites the number of features influences the classification accuracy, 

but the magnitude of this impact differs. Among the classifier algorithms the RF is the least affected. 
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The accuracy of RF reached a peak accuracy after approximately 40-70 features were added and then 

stabilized at this high level with quite low fluctuations of ± 1 %, in all test sites. This demonstrates the 

superiority of the RF in handling huge input spaces that contain redundant information (see section 

4.3.3). The MLP showed similar patterns in all sites expect for KHO, where accuracy decreases after 

adding 40-50 features. In all sites the accuracies of SVM_L tended to be lower than the SVM_R. In FER 

and KYZ the accuracy of SVM_L increased with the addition of features up to a certain level between 

235 and 265 features, and stabilized thenceforward. Interestingly in all sites the accuracies of the SVMs 

tended to converge when more and more feature are added. Similar to the SVMs the accuracy of the 

MLP stabilized in KKP and FER at comparatively high levels after an initial number of features was 

added. 

 

  

  

 

Figure 5-3: Overall accuracy (y-axis) as a function of the number of features (x-axis), obtained on the test set by the 
four different classifier algorithms considered (RF, SVM_L, SVM_R, MLP). Note: in chapter 4 the experiments 
were repeated 50 times, hence the results here deviate from the results shown in chapter 4. 

5.3.2. Evaluation of classifier uncertainty 

As was already mentioned at the beginning of this chapter, different classifier algorithms might 

assign different levels of uncertainty to their final class decisions. This poses the risk that overly 

optimistic estimations outperform other classifier algorithm during the classifier combination process. 

In order to test this, and to limit a possible influence of overly optimistic classifier algorithms in the 

classifier combination, two tests were undertaken before the final classifier combination. First, the 

frequency distributions of correctly and incorrectly classified testing cases lying within intervals that 

were defined on the magnitude of the 𝐸𝑗 values are tested, as was done in section 4.3.5 for the SVM, to 

assess if the uncertainty measures can be indicative of correct classifications. The shape of these 

distributions gives an indication for the reliability of the classification and the potential usefulness of 

uncertainty measures to indicate correct or incorrect class allocations in the final map. In a second test 

the frequency distributions of uncertainty measures for all classified fields were evaluated. 
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Frequency distributions of test cases 

From the frequency distributions (Figure 5-4) it is evident that correctly classified test cases tend to 

display relatively low 𝐸𝑗 values. In all sites their frequency peaks within the lowest interval [0.0, 0.2]. 

This is followed by a decrease toward higher uncertainty values. This confirms the high prediction 

strength of the four classifiers over all sites, although it has to be noted that the RF has the highest 

prediction strength among all algorithms. More than 85 % of the correctly classified test fields (by the 

RF) are lying within the interval [0.0, 0.2], and only a very limited fraction of the correctly classified 

pixels was associated with the three lower intervals of 𝐸𝑗 values above 0.2.  

 

  

  

  

  

 

Figure 5-4: Frequency distribution [%] of 𝐸𝑗 for the correct (left column) and incorrect (right column) classified test 

cases (fields) as resulted from the single classifier algorithms over the four test sites. 

For the incorrectly classified test cases the pattern is different. 𝐸𝑗 tends to increase toward higher 

values in KKP and KHO only. This indicates that incorrect predictions were made with higher 

uncertainties, and the prediction was uncertain due to confusion between other classes. Yet, the shape 
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of the distribution of misclassified cases in FER and KYZ was found to be different (similar to the results 

in section 4.3.5). Here the misallocated cases lie in the lower intervals of 𝐸𝑗. This confirms that the errors 

in these sites are confident misallocations, in which the fields were allocated to the wrong class but with 

little classification uncertainty, e.g. there was little confusion between crop types. An explanation for 

this could be the presence of relatively few classes in FER and KYZ (five), compared with KKP and KHO 

(eight and seven, respectively). For instance from the misclassified cases by the SVM_R in KYZ more 

than 70 % occurred in the [0.0, 0.2] interval of 𝐸𝑗. Based on this results it can be concluded that correct 

predictions in all sites were made with limited confusion with other classes. Incorrect classifications 

were made with moderate or low values of 𝐸𝑗 in KKP and KHO. The RF outperformed the other classifier 

algorithms with regard to the predictive strength, e.g. the RF tended to better associate correct class 

predictions with lower uncertainties. From the two SVMs considered the SVM_R assigned higher 

portions of correct predictions in the lower uncertainty intervals and assigned higher uncertainty to 

incorrectly classified cases in KHO and FER. 

Frequency distributions of uncertainty from all classified fields 

In a second experiment the uncertainty of the produced crop maps was evaluated. Figure 5-5 

exemplarily shows the cumulative relative frequency distribution of 𝐸𝑗 for all classified fields in FER 

(class-by-class). These curves give an indication of how uncertainty is distributed among the crop classes 

in the final map and for each classifier algorithm investigated. 
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Figure 5-5: Cumulative relative frequency distributions of classified fields in FER, class by class, as a function of 𝐸𝑗  
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Looking at the curves in Figure 5-5 it can be concluded that the RF assigned 𝐸𝑗 values of less than 0.2 

to almost 80 % of all classified cotton fields in FER. On contrast more than 50 % of fields classified as 

fallow had 𝐸𝑗 values of more than 0.4, which indicates that there was more confusion with other classes. 

The shape of the distributions of SVM_R and SVM_L differed only slightly, however the SVM_L results 

tended to be more uncertain, reflected in the curves of fallow fields and winter wheat. From the curves 

it can be seen that the MLP had the least classification uncertainty of all classifier algorithms concerning 

cotton and wheat-other, the two dominating classes in FER. Compared with the other classifier 

algorithms the MLP also tended to assign lower uncertainty values to fruit trees. The MLP tended to 

have the most cases with zero uncertainty (e.g. cases where there is no confusion with other classes, 

resulting in 𝐸𝑗 = 0), e.g. reflected by the steep curves of cotton and wheat-other at lower uncertainty 

values. Further, the membership values were allocated in a different way as compared with the other 

classifier algorithms, e.g. a majority of the cases were allocated within a narrow range of uncertainty 

values (approximately between 0 and 0.8, whilst for the SVM_R some cases had uncertainty values 

higher than 0.90. In summary the MLP assigned the lowest classification uncertainty to the results in 

FER, and RF tended to assign the second lowest uncertainty values.  
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Figure 5-6: Cumulative relative frequency distributions of classified fields in KKP, class by class, as a function of 𝐸𝑗. 

To exploit the uncertainty of a map with more classes the cumulative relative frequencies were 

computed for KKP (Figure 5-6). Similar to FER the MLP in KKP exhibited a different behaviour with 

respect to the other classifier algorithms: MLP assigned almost no cases with uncertainty values higher 

than 0.8, with a strong accumulation of cases classified with low uncertainty (e.g. 𝐸𝑗 < 0.4), and the 

range of classification uncertainty is larger for the remainder classifier algorithms. Recalling Figure 5-4 

it seems that the uncertainty values of the MLP could be too optimistic in KKP, because RF and SVM_R 
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can better associate correct predictions with lower uncertainty values than the MLP. Looking at the 

curves in Figure 5-6 it can be concluded that the class allocations of alfalfa-1y, sorghum/maize, melons, 

and wheat-other were characterized by the highest classification uncertainty, reflected in the high 

proportion of cases with uncertainty values above a threshold of 0.5 (specifically for the RF and 

SVM_R), where most of the corresponding curves rose quickly (expect for the MLP). This fits well to the 

fact that alfalfa in general has a very indistinct temporal growth pattern (due to the multiple and 

irregular cutting operations within the growing period, see section 2.2). From all curves it can be 

concluded that winter wheat, rice, cotton, and fallow fields are classified with lowest uncertainty. 

SVM_R produced maps with lower classification uncertainty than SVM_L, specifically for the classes 

sorghum/maize, melons, and wheat-other. 

5.3.3. Evaluation of classification accuracy 

Performance of the single classifier algorithms 

In this section the results of the single classifier algorithms, RF, SVM, and MLP are presented. 

Having performed the feature reduction for each algorithm separately, the classification performances 

were compared (Table 5-1). In this table the class-wise accuracies achieved on the test sets reveal the 

complementary behaviour of the classifier algorithms, which makes them so interesting in the context 

of classifier combination. As an example, this diametrical behaviour was evident in the KKP landscape 

where the MLP algorithm was better to accurately classify wheat-other (CAi = 75.0 %), as compared with 

the SVM (CAi = 66.6%), but the SVM produced better results for sorghum/maize (CAi = 60.0 %), as 

compared with 46.1 % when using the MLP. In the FER landscape the RF could best assign the class 

winter wheat, and was more accurate (> 5.0 %) then the next best classifier for this class, the MLP. SVM 

could best assign fallow fields, and the MLP was the most accurate algorithm in correctly assigning 

wheat-other fields. Comparing Figure 5-3 and Table 5-1 it can be seen that after a feature reduction was 

performed the SVM_R could outperform the RF in all sites, although this difference was less evident in 

KYZ and FER. Comparing SVM_R and the MLP after the feature reduction, it became evident that the 

former performs more accurate, expect for in FER, although the differences were marginal. The higher 

accuracies for the KYZ and FER sites can be attributed to the smaller number of classes and, in KYZ, 

well-managed fields resulting in more homogeneous structures in this data set. 

Final choice of classifier algorithms for classifier combination 

The choice of the final classifier algorithms to be used in the CCS can be reasoned as follows: given 

that the SVM_R performed best in all sites, the RF best assigned low classification uncertainty to 

correctly classified test cases, the MLP created the maps with the least uncertainty, and because SVM_R 

performed better in assigning low classification uncertainty to correctly classified test cases than SVM_L 

(Figure 5-4), the SVM_L was discarded and the remainder three algorithms were selected in the CCS. 

In the next section it will be assessed if these differences can be used to achieve better classification 

performances. Remembering the rules of the CCS defined in section 5.2.2, and when looking at Table 

5-1, obviously there was no clear “winner” expect for the SVM_R, which was allowed to compete for all 

classes in KYZ (because it performed the most accurate for the classes), and for most of the classes in 

FER, KYZ and KHO. Interesting in the context of uncertainty evaluation and classifier combination is 

that the MLP algorithm in FER only achieved best accuracies for one class (wheat-other), and achieved 

lowest OA. Yet, from the frequency distributions of the classified fields (Figure 5-5) this was not obvious 

because the MLP assigned more fields to low levels of uncertainty than the RF or SVM_R. This is similar 
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to KKP, where MLP only performed best for three classes (Table 5-1). Most probably the membership 

estimations (soft output) from the MLP are, to a certain degree, optimistically biased, as they did not in 

any case reflect the accuracy statistics calculated from the independent test set (Table 5-1). In this regard 

the strength of the proposed CCS becomes obvious because it can exclude those classifier algorithms 

from the classifier combination for those classes they erroneously classify, but with little uncertainty. 

Table 5-1: Average class-wise (AA), class-wise (CAi), and overall accuracies (OA) of the single classifier algorithms 
on the test set. The crop classes include cotton (C), fallow (FA), rice (R), sorghum/maize (S), alfalfa-1y (A1), alfalfa-
3y (A3), melons (M), fruit trees (F), winter wheat (W), and wheat-other (WO). 

F
E

R
 

Class RF SVM_R MLP  

K
H

O
 

Class RF SVM_R MLP 

C 100.0 100.0 99.1  C 87.8 93.9 89.8 

FA 94.7 96.0 94.7  FA 100.0 98.0 97.6 

F 84.6 92.0 91.2  R 82.7 74.9 74.6 

W 88.8 80.0 83.3  S 9.0 36.3 9.0 

WO 94.3 94.2 95.0  F 91.7 90.6 90.5 

AA 92.5 92.4 92.7  W 100.0 100.0 81.8 

OA 94.3 94.5 94.2  WO 94.0 94.1 93.7 

      AA 79.4 84.0 75.4 

K
K

P
 

Class RF SVM_R MLP  OA 89.4 90.4 88.6 

A1 72.7 100.0 100.0       

C 75.8 93.6 93.8       

FA 87.1 93.2 86.9  

K
Y

Z
 

Class RF SVM_R MLP 

M 66.6 84.2 71.4  A1 84.6 92.5 81.2 

R 100.0 94.4 97.2  A3 85.7 90.7 87.3 

S 22.2 60.0 46.1  FA 76.2 83.0 74.0 

W 94.5 98.9 97.7  R 99.6 99.8 99.6 

WO 57.1 66.6 75.0  W 9.0 70.0 42.1 

AA 72.0 86.3 83.5  AA 69.2 87.2 76.8 

OA 88.0 93.6 92.4  OA 92.7 93.5 92.1 

Performance of the classifier combination scheme (CCS) 

Table 5-2 shows the OA of the classifier combination schemes tested, and compares them with the 

OA of the individual classifier algorithms. The RF achieved OA between 88.0 % and 94.3 %, the SVM_R 

achieved OA between 90.4 % and 94.5 %, and the MLP between 88.6 and 94.2%. Although the overall 

classification accuracy is comparable high, the classifier algorithms showed a certain degree of 

disagreement (Table 5-2) regarding the final class decisions, e.g. they disagreed for some cases and gave 

different results. The predictions of the single classifier algorithms agreed in 65.7 %–87.1 % of all 

classified cases, whereas in sites with more classes the disagreement was higher. Disagreement for cases 

that were classified with low certainty (𝐸𝑗 < 0.2) only occurred in less than 4% of all classified cases (not 

shown in Table 5-2), indicating the high reliability of the classifier algorithms as stand-alone methods 

for crop classification in the test sites. High-level agreement among the individual classifier algorithms, 

e.g. when the same prediction was made with 𝐸𝑗 < 0.2, was found for 49 % (KHO), 40 % (KKP), 64 % 

(KYZ), and 75 % (FER) of all classified cases (not shown in Table 5-2). This emphasizes the difference 

between test sites with many classes (KKP and KHO) and test sites with fewer classes (KYZ and FER). 

Another important point is the observed improvement in OA after the CCS was applied (Table 5-2). This 

improvement was most pronounced in KHO, and the second most in FER with only five classes. The 

CCS gave less evident results in KYZ, also with five classes. Accuracies of the CCS ranged between 93.9 % 

and 96.1 % in the test sites, achieving the lowest range of OA over all sites, compared with the single 

classifier algorithms (2.2 %). This indicates a better stability of the results and transferability of the CCS 

compared to the single classifier algorithms, irrespective of the number of classes. Further, the CCS 

outperformed the two other classifier combination rules, based on the 𝑀𝐼𝑁 and 𝑆𝑈𝑀 operators, 

respectively, most obvious because it considers the reliability of the single classifier algorithms. 
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Table 5-2: Overall accuracies [%] of the individual classifier algorithms and the classifier combination schemes 
tested. “Agreement” is the percentage of fields for which all three classifier algorithms classified the same class. The 
difference in overall accuracies between the CCS and the single best classifier algorithm is given below. 

Test site / 

Methods 
KHO KKP KYZ FER Range Combination rule 

Single classifier algorithms: 

RF 89.4 88.0 92.7 94.3 6.3 

 MLP 88.6 92.4 92.1 94.2 5.6 

SVM_R 90.4 93.6 93.5 94.5 4.1 

Agreement [%] 71.3 65.7 79.0 87.1 - - 

Classifier combination schemes: 

All classifiers 

89.4 92.8 93.2 94.0 4.6 𝑀𝐼𝑁 operator 

93.4 92.4 92.3 94.7 2.4 𝑆𝑈𝑀 operator 

94.4 94.6 93.9 96.1 2.2 CCS 

Difference between CCS and 

single best classifier algorithm 
4.0 1.0 0.4 1.6 - - 

 

The relative importance of each classifier algorithm in the CCS was assessed by computing the 

magnitude that each considered classifier algorithm assigned the final class label (Table 5-3). The RF 

won the most cases in KHO and FER. This might at first glance contradict the general superiority of the 

SVM_R when regarding the classification performance (e.g. in terms of OA) that is summarized in Table 

5-2. For instance, in KHO the SVM_R assigned the final class label to only 39.4 % of the fields, and RF 

more than 41 %. But the RF was able to provide more confident outputs than the SVM_R (e.g. with lower 

classification uncertainty), as indicated by the frequency distributions of 𝐸𝑗 on the test cases (Figure 

5-4). To conclude this, although the SVM_R achieved higher OA than the RF or the MLP, it was the RF 

that had the least doubt about its predicted classes. A similar behaviour was observed in FER, although 

the differences in OA were less evident. RF assigned the most classes and SVM_R the least. In KKP the 

percentages of fields won by the classifier algorithms reflect the order relation of classification OA. The 

MLP never assigned the most cases in any study site, but more than RF in KKP and KYZ, and more than 

SVM_R in FER. 

Table 5-3: Percentage of fields whose class was assigned by the classifier algorithms under consideration. 

 Study site 

Classifier 
algorithm 

KHO KKP KYZ FER 

RF 41.2 18.4 18.4 50.2 

SVM_R 39.4 55.5 55.5 23.7 

MLP 19.4 26.1 26.1 26.1 

     

As was demonstrated in Table 5-2, in some test sites the OA achieved by the CCS was only marginally 

better than the single best classifier algorithm, but the increase in terms of user´s and producer´s 

accuracy from the confusion matrix (Congalton, 1991) was high for some classes (Figure 5-7). The 

differences between the CCS and the single classifier algorithms tended to the positive in most cases, 

while some classes showed almost no differences, such as rice in KYZ or fallow in KHO. In KYZ the CCS 

performed markedly better in classifying the class winter wheat, thus outperforming any single classifier 

algorithm. This also applies for sorghum/maize in KHO and melons in KKP. 

Interestingly the improvements in user´s and producer´s accuracies were more pronounced for 

classes with fewer training samples (compare Table 3-2 in section 3.2): sorghum/maize and winter-

wheat in KHO, melons, alfalfa-1y, and sorghum/maize in KKP, winter wheat in KYZ and FER. An 

exception of this effect can be found for wheat-other in KKP. This finding is important in practice: a 
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large test set through field sampling in Middle Asia can be prohibitive to assemble for logistical (access 

to fields) or financial reasons, which might reduce the generalization ability of the individual classifier 

models when classifying unseen cases. The positive gain in class accuracy after the classifier combination 

could compensate for limited availability of training data for such classes, e.g. sorghum/maize or 

melons. In their investigation, Waske et al. (2010) found that the class-wise increase in accuracy in a 

SVM-based classifier ensemble depended on the number of training pixels per class, where the highest 

gain was achieved when fewer pixels were taken for training, which is in line with the findings of this 

study. 

 

 

 

  

 

Figure 5-7: Bar plots showing the differences between the user´s and producer´s accuracies [%] achieved by the 
CSS and the single classifier algorithms tested in the four test sites. Positive values indicate that the CCS 
outperformed the corresponding classifier algorithm, e.g. in KYZ the user´s accuracy of the CCS for class fallow was 
6.5% higher than the user´s accuracy of SVM for that class. 
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5.3.4. Impact of classifier combination on classification uncertainty 

Having compared the classification accuracy of the single classifier algorithms with different 

classifier combination schemes, the classification uncertainty after classifier combination was assessed 

and compared with the single classifier algorithms. Emphasis here is put on two aspects of classification 

uncertainty: (i) the ability to correctly predict classification error in the maps (the predictive strength), 

and (ii) the spatial distribution of classification uncertainty in the crop maps.  

Impact on the predictive strength 

To analyse the former aspect, the mean uncertainty for each class, quantified by 𝐸𝑗, was calculated 

on the independent test set. The class-wise accuracy CAi, which gives the proportion of test fields per 

class correctly allocated, was then compared with the class-wise uncertainty by calculating the RMSE 

between these two measures. This approach was employed for ANN by Brown et al. (2009) to test for 

the relationship between classification uncertainty and classification accuracy. In this regard, low RMSE 

values would indicate that low classification uncertainty values correlate with high classification 

accuracy values (class-by-class). In doing so the RMSE can be used to assess which classifier algorithm 

better predicts classification error and if the CCS could even increase the predictive strength, compared 

to the single classifier algorithms. Table 5-4 reveals that the CCS had the smallest RMSE values. This 

indicates that the uncertainty information from the CCS was a more effective predictor of the per-field 

uncertainty for all classes, as compared with the single classifier algorithms. RMSE values ranged from 

0.133–0.240, with the lowest average RMSE value over all sites achieved by the CCS (0.175). 

Table 5-4: RMSE of class-wise uncertainty (𝐸𝑗) and class-wise accuracy (CAi). “Mean” is the average of the RMSE 

values over all sites achieved by one method. 

 Study site  

Method KHO KKP KYZ FER Mean 

RF 0.270 0.244 0.342 0.157 0.253 

SVM_R 0.309 0.296 0.393 0.196 0.299 

MLP 0.301 0.270 0.137 0.106 0.203 

CCS 0.207 0.240 0.136 0.133 0.175 

 

Figure 5-8 shows the relative change of the proportions of correctly classified test cases lying within 

intervals that were defined on the magnitude of 𝐸𝑗. It is evident that correctly classified cases displayed 

a positive shift toward lower uncertainty after the CCS was applied. This confirms the higher prediction 

strength of the CCS over all test sites. For instance, in KYZ the proportion of correctly classified test 

cases in the interval [0.0, 0.2] increased up to 20 %, as compared with the MLP. Concerning the correct 

predictions more than 90 % of the fields were lying within the interval [0.0, 0.2] after the classifier 

combination, compared to 85 % before the classifier combination (for the RF). The highest positive gain 

in prediction strength was observed in KYZ and FER. 
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Figure 5-8: Bar plots showing the change of the proportions [%] of correctly classified test cases lying in intervals 
of 𝐸j after the application of the CCS. 

Impact on the spatial variability of uncertainty 

As reminded by Bloch (1996), citing from Bloch and Maître (1994), one advantage of combining 

information from different sources can be reducing uncertainty in the final decision. In the context of 

classifier combination this can be resumed to reducing spatial classification uncertainty. To test for a 

possible reduction of uncertainty, and to assess where in the final maps uncertainty was reduced, 𝐸𝑗 for 

each classified field was plotted in a map (Figure 5-9). In this figure, the corresponding uncertainty maps 

of the classifier algorithms and the CCS in KKP and KYZ, respectively is illustrated. It can be seen that 

the application of the CCS levelled out the contrasted spatial differences in classification uncertainty, 

which resulted from the single classifier algorithms in KKP, and that the spatial uncertainty trend 

described in section 4.3.7 became less obvious after the classifier combination (right most image in 

Figure 5-9 for the KKP landscape). In KYZ however, the blocky pattern of uncertainty, which traces the 

aggregation of rice and fallow fields, still existed after application of the CCS. 

 
Figure 5-9: Spatial distribution of uncertainty output of the individual classifier algorithms and the CCS in KKP (top 
row) and FER (bottom row). Uncertainty is quantified by 𝐸𝑗, which was used in the best performing CCS.  
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This reduction of uncertainty was further quantified by plotting experimental SV of 𝐸𝑗 for each study 

site. In section 4.3.7 this pattern was already detailed, and its causes and relationship with 

environmental conditions was discussed. Here the focus rather lies on the change of the pattern itself as 

a result of the classifier combination. To this end, the SV sills (𝛾𝑟) were calculated for the uncertainty 

maps produced by each classifier algorithm and the CCS, respectively (Figure 5-10). Here 𝛾𝑟 describes 

the overall variance of classification uncertainty, quantified by 𝐸𝑗. In all sites the classifier combination 

resulted in a decrease of the 𝛾𝑟 values. This observed decrease in spatial variability after the classifier 

combination, quantified by 𝛾𝑟, is an indication of the decrease in spatial heterogeneity of the observed 

parameter (Garrigues et al., 2006a). The classification uncertainty resulting from the classifier 

combination was more homogeneously distributed. In this regard the decreasing value of 𝛾𝑟 

characterizes the loss of spatial variability or more precisely the loss of variability in classification 

uncertainty, after the CCS was applied in the test sites. 

 

Figure 5-10: Semivariogram sill 𝛾̂𝑟 from exponential semivariograms of classification uncertainty maps (quantified 
by 𝐸𝑗) from the single classifier algorithms and the CCS. 

5.3.5. Stability and temporal transferability 

Transferability is one important aspect with regard to operational applications, e.g. the results 

delivered by an approach to classify crops should be comparable over different landscapes and years, 

e.g. produce maps with comparatively high classification accuracies. Another issue that is important for 

operational application is stability. This means that the classification approach should be resistant to 

the variability in the training and test sets, which might be critical in object-based approaches when only 

few reference fields are available for some classes. Hence, the experiments were repeated 20 times, and 

OA statistics were averaged over the 20 model runs. This resulted in 20 different randomly split training 

and test sets, and allowed to examine the stability of the tested classifier algorithms in response to 

different training data sets. Further, the experiments were repeated on a second dataset in the FER 

landscape for 2012. Each classification was performed using the corresponding classifier algorithms and 

combination rules described in section 5.2.2.  

Noteworthy the high performance of the CCS could be reproduced over all sites (compare with Table 

5-2), and the range of OA among all test sites was lowest when using the CCS (3.6 %), which indicates 

its better spatial and temporal transferability (over the test sites and years, respectively) compared to 

the single classifier algorithms. Among the single classifier algorithms the RF had the lowest resulting 

range of OA over all test sites (4.5 %). The results in Table 5-5 reveal that the CCS still outperformed all 

other classifier algorithms. Critically the order relation of the accuracies tended to be stable, e.g. the 

SVM_R still outperformed all other classifier algorithms (expect for KYZ, where the MLP performs 

slightly better on average), and the proposed CCS performed better than the 𝑀𝐼𝑁 or 𝑀𝐴𝑋 operators, 
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respectively after 20 trials. The classification accuracy of the FER test site was comparable in both years 

with slightly better values in 2012. One reason could be that the 2012 data set contains a scene from 

beginning of July, which might be an important state in crop development when different types of crops 

differentiate, and hence might support the separation of crop classes. 

Table 5-5: Average overall accuracies [%] of the single classifier algorithms and the classifier combination over 20 
trials. Difference is given between the CCS and the single best classifier algorithm. The range of OA statistics 
resulting from one classifier algorithm over all test sites and years is given. 

Test site / 

Classifier 

algorithm 

KHO 

2009 

KKP 

2011 

KYZ 

2011 

FER 

2011 

FER 

2012 
Range Combination rule 

RF 89.8 89.9 92.6 92.9 94.3 4.5 

No classifier combination MLP 87.7 91.7 92.8 93.5 94.5 6.8 

SVM_R 89.8 92.3 92.7 94.1 94.7 4.9 

All classifiers 

91.5 92.5 93.0 94.5 95.2 3.7 𝑀𝐼𝑁 operator 

91.2 93.7 93.0 94.5 95.2 4.0 𝑆𝑈𝑀 operator 

92.1 93.9 93.8 94.9 95.7 3.6 CCS 

Difference 2.3 1.6 1.0 0.8 1.0 - - 

5.3.6. Application under limiting conditions 

For operational applications, it is also important that a classifier algorithm is applicable under 

limiting conditions, e.g. when only few training data or acquisition dates are available. Hence, limiting 

conditions were “simulated” by (i) decreasing the training sample and (ii) selecting small feature sets as 

input data. To this end, training sets with different numbers of samples were generated by randomly 

selecting reduced versions of the original training set (per crop class): 100 %, 80 %, 60 %, 40 %, and 20 %. 

Further, much smaller sets of features were calculated for the acquisition dates, hereafter referred to as 

FS1–6: FS1) RapidEye bands (5 bands times 8 dates = 40 features), FS2) REDNDVI and GRNDVI (16 

features), FS3) NDVI and EVI (16 features), FS4) RapidEye bands plus NDVI and EVI combined (56 

features), FS5) RapidEye bands plus REDNDVI and GRNDVI combined (56 features), and FS6) all 

indices and RapidEye bands combined (72 features). The experiments were repeated 20 times over all 

study sites, and the accuracy measures were averaged over the 20 model runs. 

Figure 5-11 shows the results for these experiments in KKP. It demonstrates the positive effect of 

increasing the number of training samples on the one hand, and the stability and the high performance 

of the CCS on the other hand. For instance, the accuracy improved when doubling the number of training 

samples from 20 % to 40 % of the total available training set size, and when further increasing to 60 %. 

It slightly improved when using 100 % instead of 80 %. The CCS consistently outperformed the 

individual classifiers, irrespective of the training set size or input data set chosen. SVM_R tended to be 

the most accurate of the single classifier algorithms. It is noteworthy that the differences between OA 

achieved on smaller training set sizes were larger than on larger training set sizes. From the three 

classifier algorithms tested, RF performed best when using only 20 % of the training data, and 

consequently could be attributed the least sensitive towards limited training data. Concerning the input 

data, best results for the CCS were achieved with FS5 or FS6, which indicates that red edge information 

in addition to bands from RapidEye was best suited to distinguish different types of crops in the test 

sites. With the results obtained it can be concluded that the CCS consistently achieved better results 

when applied to limiting conditions (here reduced training data and small feature sets, respectively). 

Selecting two red edge indices and the RapidEye bands (56 features) gave satisfying results (FS5). 

Interestingly, using NDVI and EVI (FS4) instead of red edge features resulted in decreasing OA, as 

compared to FS5. 
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The results in FER (Figure 5-12) reveal a similar pattern, but the choice of different input data sets 

had a less obvious impact on the accuracy when taking 80 % or 100 % of the training data, as compared 

with KKP. In FER, the RF tended to be the best performing algorithm. The MLP algorithm was weaker 

when applied to FS1-3 with fewer training data (e.g. 40 % or 20 %), and needed more input features to 

achieve high accuracies when only few training samples were provided. As was observed in KKP, the 

differences between OA achieved on smaller training set sizes were larger than on larger training set 

sizes, e.g. when taking only 20 % of the training data, the difference between MLP and CCS became 

almost 10 % (when using FS1), compared to less than 1 % when using 100 % of the training data. 

 
Figure 5-11:  Overall accuracy [%] for RF, SVM_R, MLP, and the CCS on the KKP data set, using different numbers 
of training sample per class and different numbers of features, respectively. FS1-6 refers to the different input data 
sets, T100-20 to the size of the training data set (as percentage of the total available training set per class). 

 
Figure 5-12:  Overall accuracy [%] for RF, SVM_R, MLP, and CCS on the FER data set, using different numbers of 
training sample per class and different numbers of features, respectively. FS1-6 refers to the different input data 
sets, T100-20 to the size of the training data set (as percentage of the total available training set per class). 

Table 5-6 compares the classification performances for 100 % and 20 % of the training samples per 

class, respectively, applied to FS5, which tended to give very good results. Comparing these results, it 

can be seen that the classification accuracies (OA and AA) of the CCS tended to be higher in all sites, 

whilst some classes displayed individuality regarding this, e.g. cotton in KKP for which classification 

accuracy decreased after the classifier combination when using 100 % of the training data. Some 

remarkable examples of increasing class-wise accuracies as a result of using the CCS were found for 
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sorghum/maize in KKP and KHO (approximately 20 % and 41 % increase), wheat-other in KKP 

(approximately 25 % increase), and winter wheat in KYZ (approximately 50 % increase), where CAi was 

much improved as compared with the single best classifier algorithms. Even higher increases were found 

for wheat-other in KKP when only using 20 % of the training data (approximately 60 % increase). Given 

the complexity of some of the classes (e.g. wheat-other, alfalfa-1y) the achieved class-wise accuracies 

(more than 80 % for most classes when using 100 % of the training data), measured with a rigorous 

independent validation of the CCS are very promising. 

Table 5-6: Overall, class-wise, and average class-wise accuracies [%] for the classifier algorithms and the CCS on the 
test set using 100 %/20 % of the training samples per class, applied to FS5. The crop classes include cotton (C), fallow 
(FA), rice (R), sorghum/maize (S), alfalfa-1y (A1), alfalfa-3y (A3), melons (M), fruit trees (F), winter wheat (W), and 
wheat-other (WO). 

F
E

R
 

Class RF SVM_R MLP CCS  
K

H
O

 

Class RF SVM_R MLP CCS 

C 98.5/99.2 97.9/96.6 99.9/98.7 98.4/91.5  C 92.7/87.7 93.1/96.6 94.4/88.7 90.7/84.4 

FA 99.6/66.5 95.8/51.0 92.5/81.5 94.4/94.0  FA 97.1/75.0 94.1/79.7 98.1/100 88.2/76.2 

F 90.6/62.6 91.9/72.7 93.1/75.3 90.0/87.4  R 75.0/75.0 70.4/50.5 71.1/0.0 85.9/100 

W 86.1/39.4 75.4/43.9 74.7/39.9 92.1/88.0  S 17.4/18.7 1.8/0.0 9.0/9.0 61.1/50.0 

WO 94.1/93.4 92.5/93.4 91.8/91.8 94.4/86.8  F 92.0/80.5 93.2/81.9 87.1/76.3 86.2/72.2 

OA 95.0/85.3 92.7/85.1 93.5/87.3 95.0/89.2  W 85.5/39.0 46.5/0.0 19.5/0.0 95.0/75.0 

AA 93.8/72.2 90.7/71.52 90.4/77.4 93.9/89.5  WO 95.4/90.7 95.8/90.0 96.8/83.1 91.6/89.2 

       OA 88.3/78.7 85.0/76.1 83.5/69.4 88.7/81.9 

       AA 79.3/66.6 70.7/56.9 68.0/51.0 85.5/78.1 

K
K

P
 

Class RF SVM_R MLP CCS       

A1 87.3/55.0 94.7/62.7 89.0/36.6 97.4/90.3        

C 87.0/61.7 89.7/73.6 97.0/62.2 81.7/65.2        

FA 91.9/76.1 91.1/79.9 95.0/82.9 90.5/76.4  
K

Y
Z

 

Class RF SVM_R MLP CCS 

M 51.5/36.6 69.7/10.6 2.0/0.0 89.4/44.2  A1 78.9/59.2 77.2/32.1 88.3/55.6 79.4/69.6 

R 97.4/98.2 98.4/96.7 99.8/99.8 96.0/90.0  A3 76.1/44.6 76.1/63.5 78.7/70.8 91.8/72.0 

S 14.7/7.0 28.8/5.0 9.0/0.0 48.3/11.1  FA 76.0/62.7 83.0/78.4 76.2/68.3 72.5/55.1 

W 96.7/90.0 97.9/96.0 97.6/96.2 96.1/88.4  R 99.7/99.2 99.7/99.6 99.6/99.3 99.8/99.7 

WO 43.3/16.8 62.7/14.3 19.0/0.0 87.3/77.1  W 18.6/23.5 37.5/4.1 9.0/0.0 87.2/44.4 

OA 88.0/76.6 91.3/79.7 87.6/76.7 92.0/81.9  OA 90.7/83.8 92.0/85.4 91.2/86.1 92.5/86.2 

AA 71.2/55.1 79.1/54.8 63.5/47.2 85.8/67.8  AA 69.8/57.8 74.7/55.5 70.4/58.8 86.1/68.1 

5.4. Discussion and conclusions 

In this chapter the classification of multi-spectral time series data using different classifier 

algorithms and classifier combination was performed. The single classifier algorithms tested (RF, 

SVM_R, and MLP) produced accurate crop maps, but gave complementary results considering different 

crop classes. In order to capitalize the strength of each classifier algorithm, their results were combined 

with a CCS that combines the outputs of the single classifier algorithms at the per-case basis, and that 

employs class-wise measures of accuracy to exclude unreliable classifier algorithm at the per-class basis. 

Although the application of the CCS outperformed all single classifier algorithms in the test sites, based 

solely on OA, it appeared to be no significant advantage in selecting a CCS approach, e.g. the results 

were only marginally better than the single best classifier algorithm. However, there are other 

compelling reasons for classifier combination: the strength of the proposed CCS strategy was its 

transferability and robustness when applied over different sites with different classes. For instance, the 

range of OA achieved over all test sites was smallest when applying the CCS. Another peculiarity of the 

CCS was that the increase in accuracy became more pronounced when fewer training data were used. 

Another potential strength of the CCS is its generalizability, as theoretically any kind classifier algorithm 

could be tested as long as it can create soft outputs (e.g. estimates of class memberships). 
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The predictive strength of the single classifier algorithms, e.g. their ability to correctly predict the 

spatial distribution of classification error in maps, was assessed. In general, all classifier algorithms 

assigned low classification uncertainty values to correctly classified test fields. Yet, it was found that 

higher classification accuracies did not necessarily coincide with good abilities to correctly predict 

classification error, e.g. the classifier algorithm that achieved the highest accuracies is not necessarily 

the best uncertainty predictor. From the frequency distributions of the test fields it could be seen that 

the RF best assigned low classification uncertainty values to correctly classified test cases. One possible 

explanation is that for the MLP, in contrast to the RF, the estimates of the class-memberships (soft 

output) are rather a by-product of the classifier algorithm. In their study, Brown et al. (2009) concluded 

that the ability of a MLP to correctly predict classification uncertainty decreases as the complexity of the 

MLP increases (and the activation level outputs tend toward “1” or “0”), but this relationship might not 

be directly linked with the classification accuracy. Figure 5-13 reflects this behaviour, e.g. when the 

discrepancy between OA and the classification uncertainty (here measured with the alpha quadratic 

score) increases with increasing network complexity (number of iterations). 

 

 
Figure 5-13: Influence of network complexity (number of iterations) in a MLP on classification accuracy (here: OA). 
Alpha quadratic entropy gives the median classification uncertainty of the test fields. 

The proposed CCS is capable of handling such situations by excluding classifier algorithms from 

competing for crop classes during the classifier combination process when they give too optimistic 

membership estimations (soft outputs), but at the same time having only low class-wise accuracies. 

Further, the predictive strength of the CCS, measured as the relationship between class-wise 

uncertainties and class-wise accuracies, was higher than for the single classifier algorithms. Compared 

to the single classifier algorithms, the CCS allocated a larger proportion of correctly classified test cases 

to low classification uncertainty values. 

A potential improvement to the proposed classifier combination approach could be to rewrite the 

rules with fuzzy data fusion rules, which might allow for a finer definition and weighting of the classifier 

algorithm reliability and finally enhance classification accuracy. From a pragmatically point, combining 

classifiers exhibits some interesting features: the observed increase in class-wise accuracies was the 

most pronounced for classes with only few training data (sorghum/maize and wheat-other in KKP and 

KHO). This is of interest when access to field data is prohibitive for logistical (physical access to fields) 

or financial reasons. The CCS seems well suited for applications under limiting conditions, e.g. when 

only few training samples are available or when applied to smaller input data sets, which makes it 

interesting for operational monitoring, because it is rather simple in implementation and, due to its 

nature as a non-trainable operator, fast in computation (e.g. the application of the combination rule to 

the outputs from the single classifier algorithm only needed few seconds). Yet, conclusions drawn from 

the results presented here refer to the specific landscapes with the specific constellation of crop classes, 

and therefore the CCS should be tested over a wider range of landscapes with different crop types, 

respectively.  
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Chapter 6 

DEFINING THE SPATIAL RESOLUTION 

REQUIREMENTS FOR CROP IDENTIFICATION 

VIA IMAGE CLASSIFICATION USING REMOTE 

SENSING DATA20 

Abstract 

Mapping the spatial distribution of crops is one fundamental input for agricultural production monitoring using 

remote sensing. A relatively high revisit frequency is needed to properly characterise the temporal evolution of 

the land surface characteristics, which further helps to discriminate crops both from other land covers, and among 

themselves, based on differences in the seasonal behaviour and on the agro-management practices applied in a 

region. However, this multi-temporality (e.g. time series of satellite images) plus the desire to have a large 

geographical coverage (swath) for agricultural monitoring applications at the regional to global scale comes at 

the expense of coarser observation supports, and can lead to erroneous class allocations caused by mixed pixels. 

A framework is proposed to analyse spatial resolution requirements for accurate crop identification via image 

classification by simulating how agricultural landscapes, and more specifically the fields covered by a crop of 

interest, are seen by instruments with increasingly coarser resolving power. The concept of crop specific pixel 

purity, defined as the degree of homogeneity of the signal encoded in a pixel with respect to the target crop type, 

is used to analyse how mixed the pixels can be (as they become coarser), without undermining their capacity to 

describe the desired surface properties. In this case, this framework has been steered towards answering the 

question: “What is the spatial resolution requirement for crop identification via image classification and how do 

these requirements change over different landscapes?” The framework is applied over four contrasting agro-

ecological landscapes in Middle Asia. Inputs to the experiment were eight multi-temporal images from the 

RapidEye sensor, the simulated pixel sizes range from 6.5 m to 747.5 m. Constraining parameters for crop 

identification were defined by setting thresholds for classification accuracy and uncertainty. The experimental 

results revealed that different types of crops displayed marked individuality regarding the pixel size 

requirements, depending on the spatial structures and cropping pattern in the test sites. The coarsest acceptable 

pixel sizes and corresponding purities for the same type of crop were found to vary from site to site, and some 

crops could only be identified within a narrow range of pixel sizes. The main causative factors that determined 

the pixel size requirements, namely field sizes, cover fraction of fields in the landscape, and environmental factors 

like water availability were discussed. The practical implications of the framework presented in this study include 

guidance (i) for selecting appropriate imagery (e.g. suitable pixel sizes) for applications focussing on crop 

mapping, (ii) regarding the selection of thresholds for minimum required pixel purity for the effective 

identification of crops in coarser pixels, or (iii) for EO data requirements for early crop inventory. 

                                                      
20: Adapted from: Löw, F., Duveiller, G. (2013). Determining suitable image resolutions for accurate supervised crop classification 
using remote sensing data. Proceedings of SPIE 8893-21. Dresden, Germany. 
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6.1. Background 

In chapters 4 and 5 methods were presented for object-based crop classification. In this chapter the 

interest is steered towards the exploration of the limitations for crop identification in coarser EO data, 

which is one prerequisite for crop specific agricultural monitoring at regional or even global scales (see 

Figure 1-1 in chapter 1). Hence, this chapter focusses on pixel-based approaches and directly addresses 

the third research question that was formulated in introductory chapter. A framework is proposed and 

tested to define region specific EO requirements in terms of pixel size and purity, respectively for crop 

identification via image classification.  

The traditional way to retrieve information on the spatial distribution of crops in a landscape, termed 

crop mapping, using remote sensing is through image classification with one of the widely known 

classifier concepts and algorithms that are currently available (Tso and Mather, 2009). Crop mapping 

is a term that can have different meanings depending on what specific application is considered. Some 

applications require delineating accurately where all crops (and perhaps all other land uses) are located 

over the entire area of interest. This is necessary for spectral un-mixing of coarse spatial resolution pixels 

(Verbeiren et al., 2008), to produce accurate crop specific masks (Conrad et al., 2013; Peña-Barragán et 

al., 2011), or to make crop acreage estimations via counting the classified pixels´ surface (Gallego, 2004). 

Generally, it is only feasible to make such an exhaustive mapping over a limited geographical coverage 

in order to keep a decent standard of classification accuracy. For other applications, such as crop 

monitoring at regional to global scales, it is probably not even possible to make such a spatially 

exhaustive (“wall-to-wall”) classification of all land uses with the required accuracy and in a timely 

manner. Past studies have shown how an adequate cropland mask can considerably improve 

classification accuracy (Fritz et al., 2008) or yield estimations (Genovese et al., 2001; Kastens et al., 

2005). Further, research has shown how focusing on a population (e.g. a sample of pixels from the total 

pixel population) of crop specific time series by choosing only those falling adequately into the fields 

allows the correct characterization of the crop behaviour even in fragmented landscapes (Duveiller et 

al., 2011, 2012). Since this study targets crop-monitoring applications, the interest is geared towards this 

notion of crop identification rather than exhaustive crop mapping. 

What type of remote sensing data should be used as classification input for proper crop 

identification? In general spatial resolution21 should be high enough to resolve the spatial frequencies of 

fragmented agricultural landscapes. Multi-spectral imagery is suitable to better identify the spectral 

signature of specific crops. Furthermore it has to be noted that the application of radar data bears great 

potential (Loosvelt et al., 2012b; Waske and Braun, 2009), but is not in the focus of this thesis. A 

relatively high revisit frequency is needed to properly characterize the temporal evolution of the land 

surface characteristics, in particular crops. This helps to discriminate crops both from other land covers, 

and among themselves, based on differences in the seasonal behaviour and on the agro-management 

practices applied in a region. For applications at regional to global scales, there is an extra requirement 

of having a large swath to have a wide geographic coverage. Up to now, a good candidate to satisfy these 

requirements has been AWiFS, which has been used to generate the Cropland Data Layer products in 

the U.S. (Johnson and Mueller, 2010). Undoubtedly, the new and upcoming satellite EO systems, such 

as RapidEye, Landsat-8, and Sentinel-2 provide new opportunities for agricultural applications. 

Although they will not entirely satisfy those for crop growth monitoring, which requires higher temporal 

                                                      
21: Here the terms “scale” and “spatial resolution” of remote sensing data is synonymously used to “pixel size”, which is equal to 
the nominal pixel size of the image as defined by the size of the sampling step of the sensor at nadir, also called “nominal” ground 
sampling distance (GSD) (Schowengerdt, 2007). Other definitions include the ability to separate point targets (point spread 
function), the ability to measure periodicity of repetitive targets (modulation transfer function) and the ability to measure spectral 
properties of small objects (effective resolution element), see Aplin (2006), citing Cracknell (1998),  Fisher (1997),  Forshaw et al. 
(1983), and Townshend (1981). 
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resolution (Duveiller et al., 2013), they should be well adapted for the purpose of operational crop 

identification over a wide scale. However, coarser spatial resolution data such as MODIS or MERIS 

should not be discarded. Not only do they provide added information with the higher repetitivity, but 

also they will retain much importance as a source of long-term historical record, which the new systems 

won’t achieve for decades to come. Deriving archives based on which crop specific time series have been 

identified for the past years can be very valuable for agricultural monitoring (Brown et al., 2013; 

Duveiller et al., 2012), as it can be used to understand the past behaviour of agricultural systems (Fritsch, 

2013) and thereby infer changes in productivity or resilience.  

The necessity for a continued exploitation of coarser spatial resolution data, plus the growing interest 

in exploiting multi-scale data synergistically, drive the reasoning for the subject of this study: exploring 

the spatial resolution requirements for the specific task of crop identification. Past and recent authors 

have pointed out how spatial resolution is a complex concept that depends on the instrument’s spatial 

response (Cracknell, 1998; Duveiller and Defourny, 2010; Fisher, 1997; Forshaw et al., 1983; Garrigues 

et al., 2006a; Kaiser and Schneider, 2008; Schowengerdt, 2007). Huang et al. (2002b) demonstrated 

how the spatial response of MODIS 250 m bands can impact classification accuracy and sub-pixel land 

cover fraction estimation. Defining suitable pixel sizes for remote sensing applications like image 

classification has a long tradition of research (Atkinson and Aplin, 2004; Atkinson and Curran, 1997; 

Duveiller and Defourny, 2010; Marceau et al., 1994a, 1994b; McCloy and Bøcher, 2007; Ozdogan and 

Woodcock, 2006; Pax-Lenney and Woodcock, 1997; Woodcock and Strahler, 1987). Moreover, attempts 

to define the spatial resolution requirements can be found for quantitative remote sensing (McCabe and 

Wood, 2006; Nijland et al., 2009; Sepulcre-Cantó et al., 2010; Tarnavsky et al., 2008), but only a few 

explicitly address this issue in the context of crop identification via image classification or crop area 

estimation (McCloy and Bøcher, 2007; Ozdogan and Woodcock, 2006; Turker and Ozdarici, 2011). 

Although smaller pixels are preferred to assure a good delineation spatial structures like agricultural 

fields in fragmented agricultural landscapes and to reduce the amount of mixed pixels, increasing the 

spatial resolution may result in oversampling, resulting in increased within-feature or class variability, 

e.g. because of redundancy of data within fields. Such variation can lead to errors in feature 

identification (Atkinson and Aplin, 2004; Cushnie, 1987; Hsieh et al., 2001), and better classification 

accuracies may be attained using coarser pixel sizes (McCloy and Bøcher, 2007; Woodcock and Strahler, 

1987). On the other side, selecting too coarse pixels can deteriorate the quality of the classification due 

to mixed pixels when the heterogeneity of the land cover in one pixel increases (Hsieh et al., 2001; Smith 

et al., 2003). Furthermore, a bias may be introduced when estimating crop related parameters from such 

coarser and more heterogeneous pixels, e.g. when estimating the characteristics of a region like means, 

medians, or totals of crop related parameters (Duveiller and Defourny, 2010; Duveiller et al., 2011; 

Haack and Rafter, 2010; Ozdogan and Woodcock, 2006). Based on this reasoning, it has been 

questioned if selecting one single spatial resolution is appropriate, e.g. in Atkinson and Aplin (2004), 

because there is convincing evidence that natural processes operate at a range of spatial and temporal 

scales rather than at a single, fixed scale (Aplin, 2006; Levin, 1992). Different land cover types may have 

large ranges of object sizes and there may be significant differences in the local spatial variation observed 

at different wavelengths (Atkinson and Aplin, 2004; Duveiller and Defourny, 2010). Also, it might not 

be appropriate to select a single spatial resolution for a single remotely sensed image (Atkinson and 

Aplin, 2004; Ju et al., 2005). High resolution images support several scales at the same time, allowing 

for object-based image analysis that exploits and segments images at multiple scales simultaneously 

(Blaschke and Hay, 2001; Blaschke, 2010), yet with coarser pixels such object-based applications are 

generally not feasible and pixel-based analyses prevail. Furthermore, Ozdogan and Woodcock (2006) 

and Duveiller and Defourny (2010) illustrate how, for a given application like crop area estimation, the 

spatial resolution requirement (e.g. in terms of a maximum tolerable pixel size) differs considerably over 

different landscapes. 
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Another sometimes neglected issue when defining observation requirements for crop mapping is that 

agricultural landscapes are characterized by heterogeneous surface characteristics (Ozdogan and 

Woodcock, 2006) that can change considerably along the season (Garrigues et al., 2008a). The optimal 

timing of observation to characterize the crop growth stages or to perform accurate crop classification 

can vary over different landscapes (see section 4.3.4), which complicates the definition of what is the 

“optimal” observation scale. Only few studies analysed possible impacts of acquisition timing on the 

definition of pixel size requirements (Duveiller and Defourny, 2010). Yet, although reconciling both 

scales (spatial and temporal) seems inevitable in this context, most of the remote sensing investigations 

solely consider spatial or temporal scale exclusively, or are without explicit focus on crop identification 

(Bradley and Millington, 2006; Stellmes et al., 2010).  

To analyse the spatial resolution requirements for crop identification, this study builds upon and 

extends a conceptual framework established in a previous work of Duveiller and Defourny (2010). That 

framework allows defining quantitatively the spatial resolution requirements based on simulating how 

agricultural landscapes, and more specifically the fields covered by a crop of interest, are seen by 

instruments with increasingly coarser resolving power. The concept of crop specific pixel purity, defined 

as the degree of homogeneity of the signal encoded in a pixel with respect to the target crop type, is used 

to analyse how mixed the pixels can be (as they become coarser) without undermining their capacity to 

describe the desired surface properties. Duveiller and Defourny (2010) used this approach to identify 

the maximum tolerable pixel size for crop growth monitoring and crop area estimation, respectively. In 

the present study, it is proposed to revisit this framework and steer it towards answering the question: 

“What is the spatial resolution requirement for crop identification via image classification, in 

particular minimum and coarsest acceptable pixel sizes, and how do these requirements change over 

different landscapes?” A methodology is presented for defining landscape specific pixel size 

requirements for a specific application, based on objective criteria. The present study further differs 

from the framework in Duveiller and Defourny (2010) by explicitly incorporating the temporal 

dimension and working with higher resolution images (RapidEye with 6.5 m) that allow for a finer 

diagnostic in heterogeneous landscapes like in Middle Asia with relatively small field sizes (see Table 

2-1).  

Several experiments will be performed in order to provide a more comprehensive understanding of 

how crop identification in medium to coarse satellite image time series depends on pixel purity and pixel 

size, respectively. The objectives can be formulated as follows: 

 Characterizing how crop identification depends on pixel size and purity, respectively. 

Specifically it will be analysed how the requirements of one specific crop differ in the four sites, 

and how different crops display individuality regarding this over one particular landscape. 

 Comparing the impact of different classifier algorithms, specifically the RF and SVM, on the 

definition of suitable pixel sizes. The unsupervised K-means algorithm is also tested to evaluate 

the potential of identifying natural groupings of pixels with similar spectral signatures, but 

without training data. 

 Assessing how different input variables (e.g. different kind of spectral features or vegetation 

indices) affect the identification of crop specific signals in the time series, and consequently the 

definition of acceptable pixel sizes. In particular, the red edge spectrum will be focussed on. 

 Exploiting how the suitability of pixel sizes for crop identification change along the season, by 

analysing the effects of successively increasing the observation length (e.g. the number of 

satellite images in the annual time series) within the growing-period of a given year. 

 An additional experiment will assess if results are stable by repeating the approach on the same 

site, but in different years. 
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6.2. Test site characteristics and crop masks 

This study is based on the four test sites described in chapter 2. Recalling the site description in 

section 2.2, the KHO and FER landscapes are similar in terms of field sizes, but a different number of 

crops is cultivated. Crop mapping using coarser resolution imagery can be expected to be better suited 

in the FER landscape because many pixels can be suspected to fall within the large fields that are covered 

by a small number of crop types, whilst in KHO the crop pattern is more heterogeneous. The KKP 

landscape is complex with small field sizes. Crop mapping using coarse resolution imagery might be 

hampered because of the relatively small field sizes, the fragmented crop pattern and the high proportion 

of non-agricultural surfaces. Further the signal response is expected to be comparably low because of 

the presence of fallow and abandoned fields with complex non-agricultural vegetation cover and general 

water scarcity, which is supposed to flatten the NDVI profiles of crops (see section 4.3.7). This could 

negatively impact the use of coarser resolution imagery for crop mapping because of the higher 

proportion of mixed pixels when using sensors with coarser resolving power. KYZ and FER are similar 

in terms of crop diversity but they have different spatial patterns and field sizes. For these sites it can be 

expected that the pixel size for crop mapping can be coarse, in FER because of relatively large field sizes 

and in KYZ because of the aggregated pattern of fields with identical crops. For the experiments eight 

top-of-canopy (TOC) reflectance images from the RapidEye mission with a GSD of 6.5 m were available 

in each site (see section 3.1), nine images were available for the KKP landscape. They are well distributed 

along the season, approximately between DOY (day-of-year) 80 and DOY 280, in order to provide the 

necessary phenological information for crop discrimination. RapidEye images were available in 2011 

(KKP, KYZ, FER), 2009 and 2010 (KHO), and 2012 (FER), thus in KHO and FER the experiments could 

be repeated in two consecutive years (Figure 6-1). 

 

 

Figure 6-1: Acquisition dates of the data sets from the RapidEye instrument utilized in this study. In KKP nine 
acquisitions are available, in the other sites eight acquisitions. 

Crop specific masks are necessary to identify the target objects (e.g. agricultural fields cultivated with 

a certain crop) in the landscape, and later for calculating the purity of coarser pixels with regard to 

specific crops. These masks take on the value “1” if a crop is present, and “0” otherwise (binary masks). 

Crop masks were available from previous studies for the years 2009, 2011 and 2012 (chapter 5), and for 

2010 in KHO (Conrad et al., 2011b). The classification accuracies of the crop maps derived in these 

studies, from which the masks were generated, were more than reasonable (higher than 93 % in most 

cases) and assumed to have negligible error for the purpose of this study. The resulting cover proportions 

of crops in the landscapes, and median field sizes cultivated by certain crops, are summarized in Table 

6-1. 

1-Apr 1-May 1-Jun 1-Jul 1-Aug 1-Sep 1-Oct 1-Nov

FER 2012

FER 2011

KYZ 2011

KKP 2011

KHO 2010

KHO 2009
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Table 6-1: Area cover fractions (𝐶𝑓) of agricultural crops in the study sites, calculated as the share of area of crops 

in the total cultivated area per site. MFS is the mean field size of the corresponding crops in hectares. The crop 
classes include cotton (C), fallow (FA), rice (R), sorghum-maize (S), alfalfa-1y (A1), alfalfa-3y (A3), melons (M), 
fruit trees (F), winter wheat (W), and wheat-other (WO). Below the overall classification accuracy [%] of the crop 
maps is given that resulted from the classification of the RapidEye time series with the CCS described in chapter 5. 

 
KHO 2009 KHO 2010 

Crop 𝑪𝒇 MFS Crop 𝑪𝒇 MFS 

C 0.34 5.05±1.83 C 0.35 5.03±1.93 

WO 0.27 4.49±1.95 WO 0.30 4.60±2.17 

T 0.23 4.22±2.11 T 0.19 4.45±2.15 

W 0.01 5.14±1.78 W 0.01 4.14±2.10 

R 0.07 4.15±2.25 R 0.13 4.10±1.75 

S 0.01 5.88±2.86 S 0.01 3.60±2.18 

FA 0.07 2.70±1.82 FA 0.01 3.20±1.90 

OA: 94.4 OA: 87.4 

 

KKP 2011 KYZ 2011 

Crop 𝑪𝒇 MFS Crop 𝑪𝒇 MFS 

C 0.12 2.50±1.68 FA 0.28 2.56±1.62 

FA 0.48 2.15±1.86 R 0.52 2.36±1.36 

R 0.07 2.11±1.68 A1 0.10 2.36±1.80 

S 0.02 1.60±1.53 A3 0.10 2.67±1.48 

W 0.22 2.39±1.83    

A1 0.07 2.29±1.67    

M 0.03 1.40±1.16    

WO 0.01 1.62±1.45    

OA: 94.6 OA: 93.9 

 

FER 2011 FER 2012 

Crop 𝑪𝒇 MFS Crop 𝑪𝒇 MFS 

WO 0.32 7.83±2.81 WO 0.27 7.54±2.75 

FA 0.04 4.68±2.45 FA 0.01 4.27±2.53 

W 0.05 6.49±2.84 W 0.09 8.45±2.66 

C 0.42 7.72±2.71 C 0.44 7.40±2.70 

T 0.19 4.70±2.42 T 0.19 4.70±2.78 

OA: 96.1 OA: 95.6 
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6.3. Methodology 

The necessary processing steps to simulate coarser imagery and to define suitable pixel sizes for crop 

identification are henceforth described. The general flowchart in Figure 6-2 may guide the reader 

throughout the following descriptions. 

 

 
Figure 6-2: Flowchart to produce time series and pixel purity maps for different pixel sizes, and to identify pixel size 
requirements with different experimental setups. PSFnet refers to the net point spread function that is used to 
simulate coarser pixel sizes, more details are given in section 6.3.1. “Experiments” refer to the sub-objectives in the 
introduction that will be reflected by the experimental setups. 

6.3.1. Selecting target pixel population by aggregation and thresholding 

Background 

To simulate coarser pixel sizes, a spatial response model (Schowengerdt, 2007) is convolved over the 

original RapidEye images. This spatial response model of an imaging instrument with coarser GSD 

consists of a point-spread function (PSF), characterizing both optical and detector components of a 

generic sensor, and which can be scaled to simulate different pixel sizes. For the sake of clarity this 

section details the basic concepts of sensor models and sensor simulation. The interested reader is 
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referred to Schowengerdt (2007) for more details on this issue. The continuous radiometric signal 

detected by the instrument is sampled regularly. The on-ground distance that separates two such 

samples is called ground-sampling distance (GSD). Each sample consists of a measurement made by a 

detector of incoming radiance within its angular instantaneous field of view (IFOV). The detector 

integrates the received energy over a distinct time interval, converts it to an electric signal and assigns 

an integer value (the digital number, DN) to an individual square grid cell (a pixel), which constitutes 

the remotely sensed image. The ground sampling interval (GSI) defines the inter-pixel spacing on the 

ground (Figure 6-3). 

 
Figure 6-3: Description of a single detector element in the focal plane of an optical sensor. Here a non-overlapping 
GIFOV is shown, assumed in a nadir view. Adapted from Schowengerdt (2007). 

Yet, a considerable fraction of the energy encoded in a pixel of a satellite image originates from its 

surrounding areas (Townshend, 1981), as a result of atmospheric effects and the instruments properties 

(Schowengerdt, 2007). This means that the geometric projection of a single detector onto the Earth's 

surface, which is referred to as the ground-projected IFOV or GIFOV, can be larger than the GSD in the 

imaging system. 

This can be characterized by the sensor´s PSF (Schowengerdt, 2007), which describes the sensors 

response to a point signal, and how it is spread over the image plane as it is recorded by the imaging 

instrument and results in a blur of small objects in the image. The PSF functions like a low-pass filter to 

the signal retrieved by the detector. The effect is that the actual area which is integrated by a detector is 

larger than the squared GIFOV or GSD, and consequently the so-called actual (or effective) GIFOV is 

larger than the standard specified GIFOV (Schowengerdt, 2007). For instance to model a realistic spatial 

response of MODIS its effective GIFOV can be more than 500 m (Duveiller et al., 2011) rather than the 

oft-quoted 250 m (geometric GIFOV). 

Several components constitute to the PSF of a sensor, which can be modelled as a spatial (two 

dimensional) response function that weights and integrates the signal received at a detector, and that 

can be used for image convolution and simulation of coarser observation supports (Schowengerdt, 

2007). In this thesis the nominal (at nadir) GSD is considered, which is equivalent to pixel size (called 𝜈). 

Following Schowengerdt (2007) the spatial response of an imaging instrument with a GSD equal to 𝜈 is 

given by different components: 
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Optical PSF  

This component describes the response of the detector to a point energy source. This energy is spread 

over the focal plane of the sensor (Figure 6-3) and results in a blurring. The optical component can be 

modelled with a Gaussian function: 

𝑃𝑆𝐹𝑜𝑝𝑡(𝑥, 𝑦) = 𝑒𝑥𝑝 (−
𝑥2+𝑦2

2∗(𝜈∗𝜎)2)                        Eq. 6-1 

where 𝑥 and 𝑦 are the cross-track and in-track coordinates, respectively, with their origin at the 

centroid of the GIFOV, and 𝜎 the standard deviation of the Gaussian curve. Note that the width of the 

detector in both in-track and cross-track directions is assumed to be equal. 

Detector PSF  

The detectors in the sensor add a blurring because of their non-zero spatial area. This response can 

be modelled by: 

𝑃𝑆𝐹𝑑𝑒𝑡(𝑥, 𝑦) = 𝑟𝑒𝑐𝑡(𝑥/𝜈) ∗ 𝑟𝑒𝑐𝑡(𝑦/𝜈)                       Eq. 6-2 

where 𝑟𝑒𝑐𝑡 is the rectangular function, a uniform square pulse function with amplitude one and width 

𝜈. 

Image motion PSF  

During the integration time of the signal for one pixel the detectors moves across the earth´s surface 

and results in a spatial smear of the signal. For whiskbroom scanners like MODIS or TM this component 

is modelled by: 

𝑃𝑆𝐹𝑚𝑜𝑡(𝑥, 𝑦) = 𝑟𝑒𝑐𝑡(𝑥/𝑠)                         Eq. 6-3 

where 𝑟𝑒𝑐𝑡 is the rectangular function, and 𝑠 is the spatial smear in the focal plane of the sensing 

instrument, which is computed by: 

 𝑠 = 𝑠𝑐𝑎𝑛 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ∗ 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒.                       Eq. 6-4 

For pushbroom scanners (e.g. SPOT), 𝑠 becomes 𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚 𝑣𝑒𝑙𝑜𝑐𝑖t𝑦 ∗  𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚e. 

Electronic PSF  

The signal is further degraded by an electronically filtering step that is sometimes used to reduce 

noise. The electronic PSF (𝑃𝑆𝐹𝑒𝑙𝑒𝑐) is like a low-pass filter in some whiskbroom scanners and smooth 

the signal in cross-track direction. 
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Net PSF 

In this thesis the 𝑃𝑆𝐹𝑒𝑙𝑒𝑐  and the 𝑃𝑆𝐹𝑚𝑜𝑡  are neglected for the sake of simplicity and because the 

analysis seeks to simulate generic sensor attributes. The 𝑃𝑆𝐹𝑛𝑒𝑡used in this study is not intended to 

mimic the exact response of a particular sensor. This does not affect the general conclusions on the 

impact of the 𝑃𝑆𝐹𝑛𝑒𝑡  and the effectiveness of the proposed image convolution. Finally the 𝑃𝑆𝐹𝑛𝑒𝑡 is 

computed by convolving two out of the four presented individual components: 

𝑃𝑆𝐹𝑛𝑒𝑡 =  𝑃𝑆𝐹𝑜𝑝𝑡 ∗ 𝑃𝑆𝐹𝑑𝑒𝑡 .                        Eq. 6-5 

Figure 6-4 shows the spatial integration that is involved when simulating the individual components 

of the sensor 𝑃𝑆𝐹𝑛𝑒𝑡. 

 
Figure 6-4: Spatial integration involved when simulating the individual components of the sensor PSF: left: original 
scene, middle: optical PSF component, right: detector PSF. Asterisk between optics and detector indicates 
convolution. 

Application 

As mentioned before, the methodology employed here is based on a framework presented in a 

previous study (Duveiller and Defourny, 2010). It relies on using high spatial resolution images and 

corresponding crop maps to generate various sets of pixel populations (e.g. subsets of the total image 

pixel population) over which a classification algorithm can be applied. The pixel populations are 

characterized by increasingly coarser pixel sizes and with a range of different crop specific purity 

thresholds. The imaging system simulation in this thesis is based on the 𝑃𝑆𝐹𝑛𝑒𝑡  defined above. In order 

to simulate the spatial response of sensors at varying scales, the 𝑃𝑆𝐹𝑛𝑒𝑡  is first discretized to the finest 

spatial resolution (GSD), here the original RapidEye image at 6.5 m, called 𝜈0. Then the 𝑃𝑆𝐹𝑛𝑒𝑡  is scaled 

to a range of sizes between 13 m and 747.5 m, in increments of 6.5 m, in order to simulate a continuum 

of coarser images. After the bi-dimensional (in 𝑥 and 𝑦 direction) convolution of the spatial response 

model, 𝑃𝑆𝐹𝑛𝑒𝑡, at each scale over the RapidEye time series, a subsampling is performed to result in 

simulated images at a given coarser pixel size. This is achieved by selecting every 𝜈/𝜈0 pixel from the 

convolved images (𝜈 being the pixel size of the coarser image). These selected pixels are assumed to be 

the centroids of the GIFOV of the coarser pixels, and this pixel value is assigned to the corresponding 

coarser pixel grid cell. This results in simulated images that mimic the spatial response of sensors with 

coarser pixel sizes (Figure 6-5). 

The convolution of the same spatial response model over the high-resolution crop masks results in 

crop specific purity maps at each scale, which map the pixel purity with respect to the spatial structures 

represented in the high resolution crop masks (Duveiller and Defourny, 2010). This allows controlling 

the degree at which the footprints of coarser pixels coincide with the target structures (e.g. fields 

belonging to certain crops). At each spatial resolution, pixel populations can be selected based on 
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thresholds on the pixel purity, here denoted π22. A threshold can be chosen to separate the aggregated 

binary crop masks into two sets: target pixels and non-target pixels. The threshold can vary from “0”, 

where all pixels in the images are selected as target, to “1”, where only completely pure pixels are 

selected. The result is the sets of selected target pixels, or pixel populations, defined by 𝜈 and by the 

minimum acceptable purity threshold that defines them (𝜋). 

 

 
Figure 6-5: Use of PSFnet to convolve the RapidEye time series to simulate satellites with coarser resolving power. 
GSD is the ground-sampling distance, and GSI the ground-sampling interval. The upper part of the figure shows 
the convolution, the lower part the subsampling that results in an image with a coarser pixel size. 

6.3.2. Image classification 

The second step consists in applying classification procedures to each selected pixel population. 

Three classification algorithms were tested: two supervised classifier algorithms (SVM and RF) and one 

unsupervised algorithm (K-means), which are briefly described in the following. Training and 

classification were performed in the R programming environment (R Development Core Team, 2012). 

In each site the classifiers were trained and applied to classify the image stacks consisting of eight 

acquisition dates at each spatial scale, and all classes present in the corresponding study sites were 

included in the legend, expect for winter wheat in KYZ because only few fields were present (see section 

4.3.6). For the supervised classifier algorithms, independent training and testing data sets (50% each) 

were generated from each selected pixel population, based on the purity thresholds applied to the 

convolved crop masks, and following an equalized random sampling (McCoy, 2005) to have the same 

number of reference pixels per class. The target size was initially set to 500 randomly selected pixels. 

For each pixel size simulated in the experiments, this initial number of pixels is set as the default, 

however in the case that there were not sufficient pixels to fulfil this initially targeted number (500), e.g. 

at coarser scales, a smaller number of pixels could be selected. Yet, the experiments were ultimately 

halted when for any class fewer than 20 pixels were available, which is a reasonable number for 

                                                      
22: For the sake of consistency the terms used in Duveiller et al. (2010) were applied, and purity is symbolized with 𝜋, and pixels 
size is equal to the GSD, symbolized by 𝜈. 
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achieving acceptable classification accuracies with SVM or tree structured classifier algorithms like RF 

or CARTs (Waske and Braun, 2009; Waske et al., 2009; Conrad et al., 2011a). Non-parametric classifier 

algorithms like SVM (Cortes and Vapnik, 1995) or RF (Breiman, 2001) have successfully been used in 

crop classification of diverse remote sensing data (Foody and Mathur, 2004; Loosvelt et al., 2012b; 

Mathur and Foody, 2008; Rodriguez-Galiano et al., 2012b; Waske and Benediktsson, 2007; Waske and 

Braun, 2009). Although SVM and RF completely differ in classification principle and motivation (see 

appendix A.2), it was shown that accuracies from RF are comparable to the SVM (Duro et al., 2012; Pal, 

2005), but SVM is computationally more complex than RF. 

The implementation of SVM in the package e1071 (Meyer et al., 2012) in R provides an interface to 

the well-known libsvm approach for SVM classification from Chang and Lin (2011). More technical 

details on SVM are given in appendix A.2. Training of the SVM with RBF kernel includes choosing the 

kernel parameter 𝛾 and the regularization parameter 𝐶. Tuning of 𝐶 and 𝛾 was done using a systematic 

grid search in 2-D space that is spanned by 𝛾 and 𝐶. The range of 𝛾 was set to [0.00125, 4], the range of 

𝐶 was finally set to [1, 200]. The tuning of 𝐶 and 𝛾 was performed at each spatial scale and for each pixel 

purity threshold, respectively. 

The implementation of Breiman´s RF (Breiman, 2001) within the randomForest package (Liaw, 

2013) in the R programming environment was used for classification in this study. More technical details 

on RF are given in appendix A.2. Two free parameters can be optimized in the RF. The number of trees 

was set to a relatively high value of 500 so that the OOB error can converge (see section 5.2.1). The 

second free parameter relevant for accurate classifications is the number of features 𝑚𝑡𝑟𝑦 to split the 

nodes (Breiman and Cutler, 2007). As is considered adequate in literature (for categorical classification) 

the number of features at each node was set to the square root of the total number of input features √𝑓, 

where 𝑓 is the number of predictor variables within the corresponding input dataset (Gislason et al., 

2006). 

To evaluate the suitability of unsupervised crop identification, the K-means clustering (Tso and 

Mather, 2009) was tested that is implemented in the stats package (R Development Core Team, 2013) 

in R. A range of numbers of clusters was tested: {5,10,15,20}. The number of clusters that achieved 

highest accuracies was automatically selected. The maximum number of iterations was set to 50. 

Because random seeding is used for the initial clustering, the K-means algorithm was repeated 20 times, 

thereby creating different random seeds for the initial clustering. From the 20 model runs, the model 

with the lowest resulting sum of squared distances between the samples and their corresponding cluster 

centres was taken for the suitability evaluation of the unsupervised clustering. Each cluster containing 

at least 50 % of the samples of a class 𝑖 were assigned to this class. 

Input to the classification were different combinations of VIs and RapidEye bands, resulting in 

different feature set sizes that were tested. To enhance the reliability of the experiments the random 

draws of training and validation data were repeated 10 times for each classification method applied to 

each pixel population, and the classification performance estimates (see next section) were averaged 

over the 10 independent model runs. In doing so robust accuracy estimates reflective of this model 

evaluation approach could be obtained and possible bias in the results because of different distributional 

properties of the test and training sets can be reduced (Brenning, 2009). As a result of this, 24,150 

classifications per study site were performed for each classifier algorithm to retrieve the parameters 

defined below (155 pixel sizes times 21 purity thresholds times ten model runs). 
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6.3.3. Characterizing classification performance 

Pixel size and pixel purity can be considered as two dimensions of a 𝜈 − 𝜋 space. For each selected 

pixel population in this 𝜈 − 𝜋 space, information regarding the performance of a given application (here 

image classification) can be summarized as 3-D surfaces mapped along the 𝜈 − 𝜋 dimensions. The 

standard protocol in remote sensing for evaluating the accuracy stems from quantitative metrics derived 

from the confusion matrix (Congalton, 1991). Yet, different metrics evaluate different components of 

accuracy because they are based on different statistical assumptions on the input data (Stehman, 1999) 

and such measures should be selected based on the requirements of the study (Stehman, 1997). 

Consequently, seeking to optimize or compare classifier algorithm performance (or defining suitable 

pixel sizes with only one metric) may lead to a non-optimal result when viewed from another point of 

view or quantified with a different metric that is sensitive to different features concerning accuracy 

(Foody, 2002; Provost and Fawcett, 1997). Next to evaluating the performance of a classifier algorithm 

post-classification, it must be assured that sufficient samples are drawn for a statistically significant 

accuracy assessment, and that the classifier algorithm can perform well on the unseen test set after the 

model building stage. Hence, to describe the performance of crop identification, several variables were 

calculated for each pixel population (e.g. each combination of 𝜋 and 𝜈), whose 3-D representation is 

shown in Figure 6-6. These variables are later used to define the requirements for crop identification. 

After a short characterization of these variables, a short review on advantages and disadvantages of 

different types of accuracy metrics is given. 

𝜶-Quadratic entropy (AQE) 

Measures of classification uncertainty like entropy assess the spatial variation of the classification 

quality on a per-case (e.g. per-pixel) basis, and can be used to supplement the global summary provided 

by standard accuracy statements like OA (Foody, 2002). It can be characterized as a quantitative 

measure of doubt when a classification decision is made in a hard way. Beneath the final class label, 

classifier algorithms such as RF or SVM generate for each classified case 𝓍 (agricultural field or pixel) a 

soft output in form of a vector 𝑝𝑟(𝓍) = (𝑝𝑟(𝑥)1, … , 𝑝𝑟(𝑥)𝑖 , … , 𝑝𝑟(𝑥)𝑛) that contains the probabilities that 

a pixel is classified into a class 𝑖, 𝑛 being the total number of classes. As was demonstrated in chapters 4 

and 5, uncertainty measures computed from 𝑝𝑟(𝓍) can be used to quantify classification uncertainty 

when a classifier makes a hard decision. From this vector, the α-quadratic entropy 𝐻∝(𝑥) (Pal and 

Bezdek, 1994) for a given pixel (𝓍) can be calculated as a measure of uncertainty, which is defined as: 

𝐴𝑄𝐸(𝓍) = 𝐻𝛼(𝑥) =  
1

𝑛∗(2−2∝)
   ∗     ∑ 𝑝𝑟(𝑥)𝑖

∝𝑛
𝑖=1 (1 − 𝑝𝑟(𝑥)𝑖 )

∝                    Eq. 6-6 

where 𝑝𝑟(𝑥)𝑖 is one element in 𝑝𝑟(𝓍), 𝑛 the number of classes, and 𝛼 an exponent that determines 

the behaviour of 𝐴𝑄𝐸(𝓍), which becomes more and more selective as 𝛼 increases from “0” to “1”. With 

α close to “0”, 𝐴𝑄𝐸(𝓍) becomes insensitive to changes in the elements in 𝑝𝑟(𝓍), whereas for α close to 

“1”, 𝐴𝑄𝐸(𝓍) is highly selective if the components in 𝑝𝑟(𝓍) tend toward equalization. As a consequence, 

in this study 𝛼 = 0.5 was chosen as a good trade-off. After their calculation, the 𝐴𝑄𝐸(𝓍) of all pixels were 

scaled to a common scale [0,1]. The entropy of the total classified pixel population can be quantified 

with the median of all classified pixels’ 𝐴𝑄𝐸(𝓍), called AQE. This can also be done at the per-class basis, 

by calculating the median entropy of all pixels classified into a class 𝑖, called AQEi. 

The parameter surface of AQEi (Figure 6-6 A) exhibits in general a deep furrow where the 

classification entropy is in its minimum. Along both sites of this furrow, toward smaller and larger pixel 

sizes, respectively, classification entropy increases. This can be attributed to counter effects between 
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increasing intra-class variability and a reduced boundary effect (due to decreasing number of mixed 

pixels) with smaller pixels sizes. With coarser pixel sizes the effect is vice-versa. This explains why 

selecting smaller pixel sizes does not necessarily lead to improved classification accuracies, and this 

effect is particularly strong when classes have high within-class variability (Cushnie, 1987). On the other 

site, when pixels become coarser and the ratio of the GSD to the field sizes increases, the intra class 

variability decreases. This is compensated by the increased mixed pixel error, and a phenomena called 

valley-effect occurs which means that the classification error reaches its minimum at an optimal ratio 

between pixel size and field width, when pure and mixed pixel errors counter-balance each other (Hsieh 

et al., 2001). 

Overall classification accuracy (ACC) 

A set of confusion matrices (Congalton, 1991) was computed on the hard result of the test sets defined 

along the 𝜋 − 𝜈 dimensions. The overall accuracy parameter (ACC) is defined as the total proportion of 

correctly classified test pixels per total number of test pixels, and one of the most common measures of 

classification performance in remote sensing (Foody, 2002): 

𝐴𝐶𝐶 = 𝑝𝑜 =
𝑛𝑐

𝑛
                         Eq. 6-7 

where 𝑝𝑜 is the proportion of correctly allocated test samples, 𝑛 is the number of test samples, and 

𝑛𝑐 the number of correctly allocated test samples. 

Class-wise classification accuracies (CAi) 

For each class 𝑖 under investigation a class-wise measure of accuracy was employed. The general 𝐹𝛽-

measure of Van Rijsbergen (1979) was adopted. This measure combines the precision 𝑝𝑟𝑖  (which gives 

the proportion of samples, which truly have class 𝑖 among all samples that were classified as class 𝑖) and 

the recall 𝑡𝑝𝑖  (the TPR which gives the proportion of samples classified into class 𝑖 among all samples 

which truly have class 𝑖). The former determines the error of omission (false exclusion), the latter the 

error of commission (false inclusion). Here as special case of the 𝐹𝛽-measure23, 𝐹0.5 was chosen that 

is defined as: 

𝐶𝐴𝑖 = 𝐹0.5 = (1 + 𝛽2) 
𝑝𝑟𝑖∗𝑡𝑝𝑖

𝛽2∗𝑝𝑟𝑖+𝑡𝑝𝑖
                        Eq. 6-8 

where 𝛽 was set to 0.5. This was done in order to put more emphasis on precision than recall, because 

the interest in this study lies in having highest possible precision in those pixels that were identified as 

the target (belonging to a class 𝑖), rather than identifying all pixels belonging to class 𝑖. CAi is computed 

for each class 𝑖 along the 𝜋 − 𝜈  dimensions. CAi was used to evaluate both, supervised and unsupervised 

classification. The difference is that in the latter case, pixels belonging to a class 𝑖 are those pixels that 

were identified in the selected clusters (see section 6.3.2). CAi increases with increasing purities and 

coarser pixel sizes, respectively (Figure 6-6 B). Critically, there is a sharp drop in accuracy when purities 

are very low and selection of training and testing pixels includes excessive proportion of non-agricultural 

surfaces. 

                                                      
23: The traditional 𝐹𝛽-measure equally weights precision and recall (𝛽 = 1), and is sometimes referred to as 𝐹1 measure. 
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Average area under curve (AUC) 

Using receiver operating characteristic curves (ROC) and the corresponding area under the ROC 

(AUC) in evaluating classifier performance has been an increasingly used accuracy metric in machine 

learning and data mining (Fawcett, 2006). By plotting the TPR (here equivalent to recall 𝑡𝑝𝑖) against the 

false positive rate (FPR, fraction of pixels where the crop class is incorrectly predicted as being present) 

for each probability threshold, ROC curves can be created. They have some advantages over the ACC, as 

they are especially useful when skewed class distributions or unequal classification error costs (e.g. that 

a false positive error is not equivalent to a false negative error, which is however assumed when using 

ACC, see Provost and Fawcett (1997)) have to be taken into account (Fawcett, 2006). The AUC is a 

measure for the probability that a classifier ranks a randomly chosen positive instance higher than a 

randomly chosen negative one (Fawcett, 2006). The AUC takes its values between “0” and “1”, where 

random guessing produces a straight diagonal line between (0,0) and (1,1) and takes a value of 0.5. Here 

it is proposed to weight the influence of the test set size by introducing a weighting coefficient into the 

calculation of the AUC: 

𝐴𝑈𝐶 =  ∑ 𝐴𝑈𝐶(𝑖) ∗ 𝑤𝑔(𝑖)𝑛
𝑖=1                          Eq. 6-9 

where 𝑛 is the number of classes, 𝐴𝑈𝐶(𝑖) the area under the ROC curve for class 𝑖, and 𝑤𝑔(𝑖) the 

weighting coefficient for each class 𝑖, which is computed with respect to the contribution (number of 

pixels) of each class to the test data set. AUC can be computed globally (e.g. for all classes) and at the 

per-class basis, termed AUCi (Figure 6-6 C). 

Number of reference pixels (N) 

The number of available reference pixels 𝑁 of a given class 𝑖, called Ni, gives the total available size 

of pixel populations in the 𝜈 − 𝜋 dimensions that can be used as training and testing the classifier 

algorithm. In general Ni decreases with both higher 𝜋 and 𝜈 (Figure 6-6 D). The rate at which the 

available pixel number Ni of decreases differs among the crop types, depending on the total area of the 

crop in the test site, mean field sizes, and the aggregation pattern of field with the same crop. In 

supervised crop classification a minimum number of pixels per crop class can be desirable to assure the 

generalizability of the classifier model to the unseen dataset, and to reduce the influence of (random) 

variability in the training data on the classification result (Richards and Jia, 2005). 

Sampling coverage of agricultural fields (SCF) 

In crop mapping it is desirable to only include pixels that actually cover agricultural fields. This 

assumption might have to be relaxed when the resolving power of the instrument decreases and the 

amount of mixed pixels increases. The sampling coverage (SCF) describes the ratio between the sampled 

surface at a given scale (number of selected pixels times their surface), and the reference targeted area 

at the finest measured scale (here 6.5 m), and is computed as: 

𝑆𝐶𝐹 =  
𝜈2∗𝑁(𝜋,𝜈)

𝜈0
2∗𝑁0

                      Eq. 6-10 

where 𝑁(𝜋, 𝜈) is the number of agricultural pixels at a given scale and purity, 𝜈𝑜
2 the surface of a pixel 

at the finest spatial resolution 𝜈0, and 𝑁0the number of pixels that cover agricultural fields at the finest 

investigate spatial resolution.  
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It can take values below “1” when the surface of the sampled pixels is below the reference surface. It 

also can take on values above “1”, for instance when sampling of pixels with low purity thresholds at 

coarser scales results in too many pixels selected (e.g. too many pixels covering only a small proportion 

of agricultural field). The SCF surface is illustrated in Figure 6-6 E. 

A) 

 

B) 

 
C) 

 

D) 

 
E) 

 
  

Figure 6-6: Examples of properties of pixel populations derived in KKP for cotton plotted across the pixel size-pixel 
purity dimensions: A) Median alpha quadratic entropy of the classified pixel populations (AQEi), B) class-wise 
classification accuracy (CAi), C) average area under the ROC (AUCi), D) number of available reference pixels (Ni), 
and E) the sampling coverage of pixels related to the reference area of agricultural fields. The values shown in the 
surfaces are averaged over ten model runs. This parameter surface shows a pattern specific to cotton in KKP, and 
might deviate in the other test sites. 
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Choice of variables for characterizing classification performance 

As already mentioned, each metric of accuracy is sensitive to different features of accuracy (Foody, 

2002), consequently no single universally metric exist (Table 6-2). A straightforward way to measure 

classification accuracy is by calculating the proportion of correctly classified test cases from the 

confusion matrix (Congalton, 1991). However, the traditional accuracy or kappa 𝑘 are often poor metrics 

for measuring performance as these assume equal error costs and are indifferent to whether a false 

positive or a false negative error was detected, however class distributions and misclassification costs 

are rarely uniform (Pontius and Millones, 2011; Provost and Fawcett, 1997). Measures like recall, 

precision, and 𝐹𝛽-measure (a combination of the former two), which are frequently being used in 

machine learning applications, are strong in estimating performance on different classes. CAi, a measure 

that combines precision and recall and that focusses on the set of samples which truly have class 𝑖 among 

all samples which were classified as class 𝑖 is preferable, because this study focusses on correctly 

identifying crops in coarser pixels, irrespective of the area they cover. 

However, these metrics are poor in handling negative examples (e.g. false positives), and fail to take 

account to chance level performance (Powers, 2011). ROC analysis are commonly used in medical 

sciences and are frequently being employed in the machine learning community (Fawcett, 2006). They 

compare true positive and false positive rates, and have advantages over the more conventional overall 

accuracy (Bradley, 1997) when skewed class distribution or unequal classification error costs must be 

taken into account. The second criterion used to measure the classification performance (AUC/AUCi) 

therefore takes into account skewed class distributions or unequal classification error costs that may be 

expected when pixels get coarser and coarser and class distributions in the reference data sets become 

more unequal. On the other hand, the precision (proportion of predicted positive cases that are correctly 

true positives) is ignored by ROC analysis.  

Even with accurate crop maps, there might be uncertainty in the final class allocation because crop 

identification relies on a signal that may be composed of reflected radiation coming from different 

adjacent land uses (mixed pixel). Entropy is a spatial measure of classification uncertainty (see section 

4.2.3) and is used to assess the spatial distribution of classification uncertainty and to quantify the doubt 

or mistrust on a per-case basis in the final class allocation. Such measures are still not frequently being 

used in classifier performance assessment, although they were shown to be correlated with conventional 

(hard) class allocation accuracy (Giacco et al., 2010; Loosvelt et al., 2012a) and a useful supplement to 

the classical accuracy statement (Foody, 2002). For crop classification, the degree of tolerable entropy 

and, by extension, the degree of heterogeneity of the resulting pixel population can be controlled by the 

choice of AQE/AQEi. If crop identification is to be used as prerequisite of crop specific monitoring in 

view of agricultural production estimation, then the classified pixels should ideally be composed of only 

one crop. Traditional accuracy metrics do not consider any sub-pixel composition. Yet, uncertainty is a 

function of the pixel composition (Foody, 2002) that can be used to indicate the composition of a pixel 

(Foody, 1996b), e.g. land cover fractions. Hence, the third criterion relates to the uncertainty on the final 

class allocations in the selected pixel population. It must be noted that this correlation might be 

susceptible to the tuning of the algorithm (Brown et al., 2009), see also discussion in chapter 5 in this 

thesis. 

In crop classification it is desirable to assure the generalizability of the classifier model to the unseen 

dataset, and to reduce the influence of (random) variability in the training data on the classification 

result. Recent efforts showed that RF and SVM classification can achieve high accuracies even with small 

number of training pixels (Melgani and Bruzzone, 2004; Rodriguez-Galiano et al., 2012b; Waske and 

Braun, 2009), and comparatively low sensitivity to training pixel variability when using small training 

set sizes, e.g. using only 20 pixels per class for SVM (Shao and Lunetta, 2012). For the RF it was 

demonstrated that they are relatively insensitive in regard to sample size and that even small training 
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sets (30 or 50 pixels per class) are sufficient to achieve high quality output on complex multi-temporal 

data sets (Conrad et al., 2011a), but can decrease considerably when using insufficient training data, e.g. 

15 pixels per class (Waske and Braun, 2009). Hence, a fourth criterion was used to assure that sufficient 

samples are drawn for a significant accuracy assessment, and that sufficient pixels are available for the 

model building stage. SCF was used in this study to interpret the effects of selecting different pixel 

populations on crop area coverage and to discuss possible impact on crop area estimation via pixel 

counting. 

Table 6-2: Properties of selected classification performance metrics. “” indicates advantageous properties of the 
metric, “” indicates potential critical properties. 

Metrics   Reference and application 

Accuracy / 

Kappa 

Easily interpretable / 

accommodate for the effects 

of chance agreement 

Assumption of balanced class 

distribution, no distinction 

between number of correct 

labels of different classes 

Cohen (1960), Congalton (1991), Pontius 

and Millones (2011), Rosenfield and 

Fitzpatrick-Lins (1986), and Stehman 

(1997) 

AUC 

Take into account skewed 

class distribution and unequal 

classification error costs 

Incoherent in terms of 

misclassification costs for 

different classifiers 

Bradley (1997), Fawcett (2006), Hand 

(2009), and Powers (2011) 

Precision, 

Recall, 

𝐹𝛽-measure 

Estimate performance on 

different classes 

Ignore performance in correctly 

handling negative examples, 

fail to take account the chance 

level performance 

Powers (2011), Van Rijsbergen (1979), 

and Sokolova et al. (2006) 

Entropy 
Assess spatial distribution of 

error 

As a by-product of the classifier 

it can be susceptible to 

parameter setting of the 

algorithm 

Brown et al. (2009), Giacco et al. (2010), 

Loosvelt et al. (2012a), Maselli et 

al.(1994), and Foody (2002)  

    

6.3.4. Definition of constraints for crop identification 

The final step to determine suitable pixel sizes for crop identification is to isolate the (𝜈, 𝜋) 

combinations for which the classification performance is good enough. This is accomplished by defining 

acceptable thresholds for the surfaces defined above (Figure 6-6). Such thresholds will be used to slice 

the surfaces with a plane parallel to the 𝜈 − 𝜋 space, thereby defining a frontier in this 𝜈 − 𝜋 space 

dividing pixel populations that are above or below the acceptable threshold for a given surface. As an 

example, if an application requires a minimum classification accuracy of 85 %, the surface ACC is sliced 

by a plane passing by the value ACC=0.85. When the intersection of ACC and the plane is projected onto 

the 2-D space 𝜈 − 𝜋, it separates this domain into the region where selected pixel populations have a 

classification accuracy higher than 85 % and the region where the accuracy of the remaining population 

will be lower than 85 %. The coordinates (𝜈, π) along the division boundary satisfy the imposed condition 

ACC=0.85. 

Parameterization 

Users will have different requirements for selecting their pixel population of interest, e.g. it might be 

acceptable to have crop classes identified at different levels of accuracy as long as the classes of interest 

are sufficiently accurately identified. Hence, a range of thresholds for the accuracy metrics was 

considered. For ACC/CAi, and AUC/AUCi, the thresholds 0.75, 0.80 and 0.85 are tested. The entropy 

(AQE/AQEi) of the classification result must be below 0.45, 0.50, and 0.55, respectively, in order to 

control the degree of classification uncertainty in the results. The minimum number of reference pixels 

Ni required for training and testing was set to 50, 75, and 100 per class. These values have been chosen 

so as to be realistic in an operational perspective and to fulfil commonly recommended accuracy targets 
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(Anderson et al., 1976), but also to allow for some flexibility. Several feature sets were tested (Table 6-3): 

(i) only RapidEye bands without red edge, (ii) RapidEye bands without red edge band, (iii) NDVI (Rouse 

et al., 1974) and EVI (Huete et al., 2002), (iv) RapidEye bands (expect for red edge band) plus NDVI and 

EVI, (v) red edge indices (here GRNDVI and RNDVI), (vi) red edge indices plus RapidEye bands (expect 

for red edge band), and (vii) all VIs and spectral bands combined. 

Table 6-3: Overview of the parameterization and input data used for the calculation of suitable pixel sizes for crop 
identification. Note that for all parameters three thresholds were set for the experiments. For the unsupervised 
method classification entropy was not calculated, as no ready to use method is available to generate soft outputs for 
K-means. 

Supervised: SVM and RF 

Data sets tested 
(Number of features 𝒇) 

Ni ACC/CAi AUC/AUCi AQE/AQEi 

i) Red or red edge band (8) 

ii) Bands without red edge (32) 

iii) NDVI and EVI (16) 

iv) Bands + NDVI + EVI (48) 

v) REDNDVI + GRNDVI (16) 

vi) Bands + REDNDVI + GRNDVI (48) 

vii) All features combined (72) 

> 50, 75, 100 
per class 

> 0.75, > 0.80, 
0.85 

> 0.75, > 0.80, 
> 0.85 

< 0.55, < 0.50, 
< 0.45 

Unsupervised: K-means 

viii) NDVI (8) 
> 50, 75, 100 

per class 
0.75 , 0.80 ,  

0.85  
> 0.75, > 0.80, 

> 0.85 
- 

     

The next step is defining several thresholds for crop identification at the global (for all classes) and 

the per-class basis, respectively, and drawing limits on the pixel populations in the 𝜈 − 𝜋 space to isolate 

the pixels that fulfil all defined requirements. By drawing limits on the different parameters, according 

to the thresholds defined in Table 6-3, the parameter surfaces were sliced and the intersection points of 

these slices in 𝜈 − π space were used to identify the position of the coarsest acceptable pixel sizes (𝜈𝑚𝑎𝑥) 

and the corresponding minimum acceptable pixel purities 𝜋, respectively. The intersection of the 

boundaries yielding the coarsest pixel size 𝜈 defines the coarsest acceptable pixel size 𝜈𝑚𝑎𝑥 (and the 

corresponding acceptable purity). Figure 6-7 shows examples for experimental boundaries in 𝜈 − 𝜋 

space used define 𝜈𝑚𝑎𝑥  for pixel populations that is to be used for crop identification. As is shown in this 

figure, adequate pixel populations are defined in this example by the ACC (Figure 6-7 A-C) or the AUC 

(Figure 6-7 D) constraint boundaries, which intersect the reference pixel number constraint (Ni) 

boundary. The point where these boundaries intersect in Figure 6-7 determines the position of the 

coarsest acceptable pixel size (𝜈𝑚𝑎𝑥) in the 𝜈 − 𝜋 space (marked by “○”). As can be seen from this figure, 

a theoretical minimum pixel size (𝜈𝑚𝑖𝑛, marked by “”) can be derived when the application of finer 

pixels is restricted, e.g. due to excessive entropy (AQE) or insufficient accuracy (ACC). In these examples 

the use of pixels with very low purities along the pixel sizes tested, and partly the use of very small pixel 

sizes with medium degrees of purity is restricted by high values of classification entropy (AQE). As can 

be seen in Figure 6-7 D, unsupervised crop signature identification is possible but within a very limited 

domain in the 𝜈 − 𝜋 space, and at the expense of relatively high pixel purity requirements. As can be 

seen, the adequate pixel populations for the unsupervised case are defined in by the AUC constraint 

boundary and the reference pixel number (Ni) constraint boundary. 
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Figure 6-7: Examples for experimental boundaries in 𝜈 − 𝜋 space used to define the coarsest acceptable pixel size 
(𝜈𝑚𝑎𝑥) for pixel populations to be used for crop identification. Examples are shown for RF classification in KKP (A), 
FER (B), and KYZ (C). An example for unsupervised identification of rice in KKP is given (D). Circles indicate the 
positions of 𝜈𝑚𝑎𝑥, black filled squares the minimum required pixel size (𝜈𝑚𝑖𝑛). Boundaries were calculated using RF 
applied to the full dataset (bands plus indices). 

Creation of suitability maps 

Increasing the thresholds defined in Table 6-3 for each parameter (e.g. from 0.75  to 0.85 for ACC) to 

define the experimental boundaries illustrated in Figure 6-7 results in having less and less suitable pixel 

populations left for crop identification that can fulfil the stricter criteria. Figure 6-8 demonstrates this 

effect in KKP, where higher thresholds are successively selected for each parameter at the same time, 

according to the parameterization defined in Table 6-3. The colours in Figure 6-8 indicate how many 

parameters, under the corresponding parameterization, are still fulfilled. Green colours indicate that all 

parameters (ACC, AUC, AQE, and Ni) are fulfilled and the pixel population can be considers adequate 

(“suitable”) for crop identification. Selecting higher thresholds leads to having fewer and fewer suitable 

pixel populations left. The combination of these three maps into one yields a “suitability” map, which 

shows the degree of suitability of the corresponding pixel populations for crop identification considering 

several thresholds at the same time. In these maps, shades of a given colour mean that a certain number 

of parameters is fulfilled, but at different levels: for instance, shades of green means that all four 

parameters, e.g. ACC, AUC, AQE, and Ni are fulfilled, but not necessarily under the strictest thresholds 

defined in Table 6-3. Only dark green colour indicates that all parameters are fulfilled under the strictest 

values (e.g. ACC > 0.85). Whilst these graphs map the suitability of pixel populations with regard to 

identifying crops over a range of thresholds (e.g. ACC = 0.75, 0.80, and 0.85), 𝜈𝑚𝑎𝑥 and 𝜈𝑚𝑖𝑛 will only be 
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derived from the intersection of the experimental boundaries under the least restrictive thresholds (e.g. 

Figure 6-7 A, B, and D) and reported in the next sections. 
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Figure 6-8: Schematic example for the evolution of the amount of suitable pixel populations (green colours) when 
increasing the thresholds. The first three images (from left to right) illustrate the effect of setting thresholds to 0.75, 
0.80, and 0.85, respectively for ACC and AUC. Ni was set to 50, 75, and 100, and entropy values were set to 0.55, 
0.50, and 0.45. The image on the right shows the final pixel suitability map, which combines the three single 
suitability maps. Note that pixel populations that did not fulfil any parameter are also indicated in dark red colour. 

6.4. Results 

The analysis of the data generated in this study focusses on reflecting the five sub-objectives that 

were defined in the introduction of this chapter concerning the definition of pixel size requirements for 

crop identification (sections 6.4.1. – 6.4.5). Then the results are discussed in section 6.5 and a conclusion 

and research outlook will be given in section 6.6. 

6.4.1. How do pixel size and purity requirements differ per crop for each 

site? 

In the following, the experimental results are given for the overall (considering all classes at the same 

time) and the per-class cases, respectively. For the experiments, the combined spectral RapidEye bands 

plus vegetation indices (NDVI and EVI) were used as input (𝑓 = 48), to allow for a better transferability 

of the results to sensors without red edge bands. The differences in classification performance and the 

resulting ranges of suitable pixel sizes, respectively from the two supervised classifier algorithms (RF 

and SVM) differed only marginally, yet the RF was much faster in computation. Hence, for the sake of 

clarity the presentation of the results focus on the RF. Finally, the spatial pattern of crops identified at 

different scales will be illustrated and discussed. 

Pixel suitability for overall crop classification 

For all study sites, the ranges of suitable pixel sizes and corresponding pixel purities for overall crop 

classification under the least restrictive thresholds (defined in Table 6-3), e.g. 0.75 for ACC, are reported 

in Table 6-4. As can be seen from this table, maximum and minimum tolerable pixel sizes, 𝜈𝑚𝑎𝑥 and 
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𝜈𝑚𝑖𝑛, respectively vary from site to site. In general it is possible to effectively identify crops under the 

given parameterization within coarser pixels while maintaining accuracies of at least 0.75 and 0.75 (ACC 

and AUC, respectively), which are the minimum required thresholds defined in Table 6-3. In the KKP 

landscape the use of coarse pixel sizes is ultimately restricted (𝜈𝑚𝑎𝑥 = 422.5 m) due to an insufficient 

classification accuracy that dropped below 0.75 (ACC as critical factor). In the KHO landscape the 

experiments were halted at 409.5 m due to an insufficient number of training pixels for sorghum/maize 

(that dropped below 20, see section 6.3.2), hence no value for 𝜈𝑚𝑎𝑥 was defined for the overall 

classification. The use of very small pixel sizes (𝜈𝑚𝑖𝑛) was restricted in KKP and KYZ by the ACC 

constraint, and in KHO by the AQE constraint. For the former sites this means that misclassification 

increased when using smaller pixel sizes, and overall classification accuracies (ACC) dropped below 

0.75. For KHO this means that the classification entropy, as quantified by AQE, raise above 0.55. It must 

be noted that for practical reasons smaller pixels could be classified using object-based approaches, 

which could result in higher accuracies (Blaschke, 2010). However, the focus here is on the general 

relationship between pixel size and crop identification. A study on the impact of pixel size on object-

based classification was provided by Turker and Ozdarici (2011). The values for 𝜈𝑚𝑎𝑥 in the KYZ and 

FER landscapes were much coarser (728.0 m and 656.5 m, respectively) than in the KHO and KKP 

landscapes. 

Table 6-4: Ranges of acceptable pixel sizes (limited by 𝜈𝑚𝑖𝑛 and 𝜈𝑚𝑎𝑥) and corresponding pixel purity 𝜋 for crop 
identification using RF in all sites in 2011 (2009 in KHO). The column labelled “Crit.” indicates which parameter 
constrained the spatial sampling unit. 𝜈𝑚𝑖𝑛 and 𝜈𝑚𝑎𝑥 are defined by the intersections of the experimental boundaries 
of the parameters in 𝜈 − 𝜋 space, under the least restrictive thresholds (e.g. ACC = 0.75). In KHO the experiment 
was halted at 409.5 m because for one class the number of available pixels dropped below 20. 

Site 
𝝂𝒎𝒊𝒏 Conditions for highest overall accuracy 𝝂𝒎𝒂𝒙 

𝝂 𝝅 Crit. 𝝂 𝝅 ACC 𝝂 𝝅 Crit. 

KHO 110.5 1.00 AQE 331.5 0.85 0.88 409.5 0.45 * 

KKP 26.0 0.95 ACC 260.0 0.65 0.89 422.5 0.35 ACC 

KYZ 19.5 0.70 ACC 279.5 0.80 0.94 728.0 0.30 ACC 

FER 6.5 0.15 - 260.0 0.90 0.95 656.5 0.40 ACC 

 

The maximum achievable accuracy in 𝜈 − 𝜋 space, quantified by ACC, was also investigated. In Table 

6-4 it can be seen that maximum accuracies were achieved with relatively coarse pixel sizes (e.g. 260.0 m 

in KKP and 331.5 m in KHO). The reason why coarser pixels achieved higher accuracies than smaller 

pixels, which was also observed in other studies (McCloy and Bøcher, 2007) could be the interplay of 

increasing error-rates of smaller but purer pixels (which become more abundant when pixels become 

smaller), caused by increasing within-class variability (Hsieh et al., 2001) and decreasing error of mixed 

pixels (which become less abundant when pixels become smaller). This is illustrated for the KKP 

landscape in Figure 6-6 B for the CAi parameter. Similar to this, Hsieh et al. (2001) demonstrated how 

classification error of pure pixels decreases with decreasing observation support (in their study 

quantified as ratio between pixel size and field width), and how the classification error of mixed pixels 

first declines with decreasing pixel size and then increases again (Figure 6-9 B). The same can be 

revealed for the example with the KKP landscape in Figure 6-9 A. In this figure it can be seen how 

classification error of purer pixels decreases with coarser observation support (e.g. coarser pixel sizes), 

and how classification error of mixed pixels first decreases and then increases again with very coarse 

pixel sizes. Further, the results presented in Table 6-4 reveal that the finer 𝜈𝑚𝑖𝑛  becomes, the lower tend 

the pixel purity requirement for effectively identifying crops. This could be explained by the increasing 

proportion of pure pixels, relatively to mixed pixels, when image resolution becomes finer. In general 

higher pixel purities are required in KKP and KHO, compared to KYZ and FER, both for using small 

𝜈𝑚𝑖𝑛 and coarse 𝜈𝑚𝑎𝑥  pixels. 
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Figure 6-9: Impact of pixel size and pixel purity on error rates (1-ACC). A: With smaller pixels, the classification 
error of pure pixels increases, whilst the classification error of mixed pixels first declines and then increases again 
(experimental results are from the KKP landscape). B: experimental results from a simulated landscape showing 
error rates of mixed and pure pixels (MP = mixed pixels, PP = pure pixels) as a function of the ratio between pixel 
size to field width, figure adopted from Hsieh et al. (2001). 

Pixel suitability for identification of specific crop classes 

Figure 6-10 – Figure 6-13 show the suitability maps of pixel populations in 𝜈 − 𝜋 space for crop 

identification under various constraints, and considering different thresholds at the same time (e.g. 

0.75, 0.80 and 0.85 for CAi and AUCi, and 0.55, 0.50 and 0.45 for AQEi). The creation of these maps was 

highlighted in section 6.3.4. Table 6-5 – Table 6-8 supplementary give the values for 𝜈𝑚𝑖𝑛, 𝜈𝑚𝑎𝑥 and the 

corresponding pixel purities 𝜋 for each class. 

It can be seen that the crop classes displayed distinct individuality regarding the spatial resolution 

requirement over one particular landscape, and that the requirements for one specific crop differed over 

the four landscapes. To have one example for the latter case, the identification of cotton in KHO required 

a minimum pixel size of 𝜈𝑚𝑖𝑛  = 117.0 m, whilst in FER 𝜈𝑚𝑖𝑛 could be 6.5 m for the same crop. Wheat-

other could be identified over a large range of pixel sizes in FER (𝜈𝑚𝑖𝑛 = 6.5 m, 𝜈𝑚𝑎𝑥 = 611.0 m), whilst 

its identification in KKP was restricted to 32.5–91.0 m. As can be seen from the latter example, the 

effective identification of some classes was restricted to very limited domains within the 𝜈 − 𝜋 space, e.g. 

melons (𝜈𝑚𝑖𝑛 = 19.5 m, 𝜈𝑚𝑎𝑥= 65.0 m) in KKP can only be identified with small pixel sizes. This is because 

these crops were cultivated on few and small scattered fields and together only covered a minor part of 

the study site (Table 6-1). Consequently the signal strength of such a target becomes too weak when 

using coarse pixels when other crops have already grown significantly and have comparable reflectance. 

This ultimately led to excessive misclassification (CAi for wheat-other as critical factor in Table 6-5). 

Other crop classes like alfalfa-1y and fallow fields in KKP required relatively coarse values for 𝜈𝑚𝑖𝑛  

(65.0 m and 78.0 m, respectively) and relatively high purity thresholds were required. High within-class 

variability and within field heterogeneity that lead to erroneous class allocation could be an explanation 

for this (indicated by AQEi as critical factor for the determination of 𝜈𝑚𝑖𝑛 for alfalfa-1y). Further, cotton, 

fruit trees, and wheat-other in KHO could not be identified adequately when using very small pixel sizes, 

and require relatively high purity thresholds, respectively. Again, AQEi limited the use of small pixels to 

identify these crops. To have one example to explain this: fruit trees in KHO often have a second cultivar 

below the canopy, e.g. alfalfa, wheat, vegetables, or maize. Sometimes even cotton can be found under 

the fruit trees as a second cultivar, which could explain the confusion with other classes and why AQEi 

limited smaller pixel sizes. Using coarser pixels is expected to reduce this variance, leading to better 

class discrimination. Similar to this, in KKP the irregular cutting operations that lead to indistinct NDVI 

profiles could explain AQEi as critical factor for alfalfa-1y. 
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Whilst the aforementioned cases are examples for crops whose identification was restricted to more 

or less narrow pixel size ranges, there are crops that could be identified using larger ranges of pixel sizes. 

For instance, cotton and wheat-other in FER were identified with pixel sizes coarser than 600 m, and 

for a wide range of purities, respectively. This landscape is characterized by a high cover fraction of 

agricultural fields (0.57, see Table 2-1), and by the largest mean field size among the four sites (6.74 ha), 

which means that it is easier to have coarser pixels projected entirely within a field. 𝜈𝑚𝑖𝑛 tended to be 

smaller than in KHO. Yet, fallow fields in FER only covered 4 % of the site, resulting in decreases values 

for 𝜈𝑚𝑎𝑥 (260.0 m), compared with the other classes (Table 6-8). In general, rice fields and winter wheat 

fields could be identified over wide ranges of pixel sizes in all sites (e.g. with coarse pixel sizes) expect in 

the FER test site where it was not cultivated. In the former case this might be attested to the clear 

temporal signature of winter wheat fields (one vegetation peak before harvest in spring). Rice fields are 

leached with water before planting, in order to drain salt into the lower part of the soils. This results in 

a negative NDVI signal in spring, which makes the temporal signatures very distinct from other crops. 

This is also reflected by the comparatively low pixel purity requirements for 𝜈𝑚𝑎𝑥 of rice fields (e.g. 0.25 

in KKP), compared with the corresponding purities for 𝜈𝑚𝑎𝑥 of other classes (e.g. 0.75 for alfalfa-1y in 

KKP). Rice in KYZ could be identified with pixels coarser than 700 m (𝜈𝑚𝑎𝑥= 747.5 m, Table 6-7), which 

can be attested to the spatial aggregation pattern of fields in that site (see section 2.3.1). Cotton was 

easier to detect in KKP and FER than in KHO, where the minimum required pixel size to effectively 

identify cotton fields was 117.0 m. In KHO, KKP, and KYZ the use of very small pixel sizes of many 

classes was limited by AQEi, which means that there was serious classification uncertainty. Again, one 

reason could be the increasing within-class variability and pure pixel errors, respectively. 

In the KHO landscapes the values for 𝜈𝑚𝑎𝑥 could not be determined for all classes (e.g. rice or wheat-

other) because the experiments stopped at 𝜈 = 409.5 m when one class (sorghum/maize) had less than 

20 training pixels. This means that the boundaries in 𝜈 − 𝜋 space did not intersect for these classes 

before the experiment stopped, and consequently 𝜈𝑚𝑎𝑥  could not be determined for all classes, but can 

be assumed coarser than 409.5 m. 

In general, the most important limiting factors that determined 𝜈𝑚𝑖𝑛 and 𝜈𝑚𝑎𝑥  in all test sites were 

either an insufficient class-wise accuracy (CAi) or excessive classification entropy (AQEi) (see column 

“Crit.” in Table 6-5 – Table 6-8). Sorghum/maize could not effectively be identified in any site, neither 

in the KHO landscape nor in KKP, because more than two thresholds were generally exceeded (CAi and 

AQEi). Further, as was done for the overall classification (Table 6-4), the position in 𝜈 − 𝜋 space where 

the classification performance, according to one specific metric (CAi, AUCi or AQEi), is in its maximum 

was assessed. As can be seen from the crops´ suitability maps (Figure 6-10 – Figure 6-13), this position 

did not necessarily coincide with highest degree of the corresponding pixel populations´ suitability 

(green colours in the suitability maps). This demonstrates that taking one metric alone might be a poor 

indicator to define the suitability of pixel populations with regard to a specific application (see section 

6.3.3). One striking characteristic that was already observed for the overall crop classification is the need 

for relatively coarse pixels to achieve maximum classification accuracy. The positions of maximum 

achievable CAi and the corresponding minimum required purity to achieve this in 𝜈 − 𝜋 space displayed 

individuality regarding different types of crops (see Table 6-5 – Table 6-8). As an example, best 

performances for melons in KKP could be expected at 39.0 m, but 182.0 m were required to achieve 

highest CAi for rice fields. The required pixel purities tended to be the lower the coarser 𝜈 becomes, and 

relatively coarse pixel sizes were required to achieve best results. Again, this might be explained with 

the opposite effect of spatial resolution on the classification errors associated with pure pixels and mixed 

pixels (see Figure 6-9). 
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Figure 6-10: Suitable pixel populations for crop identification using RF in KKP 2011. Green colours indicate suitable 
populations in the pixel size-pixel purity space, where all criteria defined above are met, yellow colours indicate that 
one criterion is not met, orange means two criteria are not met, and finally red colours indicate that three or four 
criteria were not met. Circle indicates the actual position of the best values achieved in the experiments for CAi. 

Table 6-5: Ranges of acceptable pixel sizes (limited by 𝜈𝑚𝑖𝑛 and 𝜈𝑚𝑎𝑥) and corresponding pixel purity 𝜋 for crop 
identification using RF, at the per-class basis, in KKP 2011. The column labelled “Crit.” indicates which parameter 
constrained the spatial sampling unit. Sorghum/maize in KKP could not be identified under the given 
parameterization. 𝜈𝑚𝑖𝑛 and 𝜈𝑚𝑎𝑥 are defined by the intersections of the experimental boundaries of the parameters 
in 𝜈 − 𝜋 space, under the least restrictive thresholds (e.g. ACC = 0.75). 

Crop 
𝝂𝒎𝒊𝒏 

Conditions for highest  
class-wise accuracy 

𝝂𝒎𝒂𝒙 

𝝂 𝝅 Crit. 𝝂 𝝅 CAi 𝝂 𝝅 Crit. 

Alfalfa-1y 65.0 1.00 AQEi 91.0 0.90 0.81 140.5 0.75 CAi 

Cotton 6.5 0.80 - 182.0 0.85 0.91 429.0 0.35 AUCi 

Fallow 78.0 1.00 CAi 279.5 0.65 0.93 487.5 0.40 CAi 

Rice 6.5 0.20 - 182.0 0.90 0.97 429.0 0.25 CAi 

Melons 19.5 0.70 AQEi 39.0 1.00 0.83 65.0 0.45 Ni 

Sorghum/maize - - - 52.0 1.00 0.71 - - - 

Winter wheat 52.0 0.60 CAi 201.5 0.70 0.94 429.0 0.30 CAi 

Wheat-other 32.5 0.90 CAi 71.5 0.95 0.81 91.0 0.50 CAi 
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Figure 6-11: Suitable pixel populations for crop identification using RF in KHO 2009. Green colours indicate 
suitable populations in the pixel size-pixel purity space, where all criteria defined above are met, yellow colours 
indicate that one criterion is not met, orange means two criteria are not met, and finally red colours indicate that 
three or four criteria were not met. Circle indicates the actual position of the best values achieved in the experiments 
for CAi. 

Table 6-6: Ranges of acceptable pixel sizes (limited by 𝜈𝑚𝑖𝑛 and 𝜈𝑚𝑎𝑥) and corresponding pixel purity 𝜋 for crop 
identification using RF, at the per-class basis, in KHO 2009. The column labelled “Crit.” indicates which parameter 
constrained the spatial sampling unit. Sorghum/maize in KHO could not be identified under the given 
parameterization. 𝜈𝑚𝑖𝑛 and 𝜈𝑚𝑎𝑥 are defined by the intersections of the experimental boundaries of the parameters 
in 𝜈 − 𝜋 space, under the least restrictive thresholds (e.g. ACC = 0.75). Asterisk indicates that for this site the 
experiments were halted at 409.5 m because for one class the number of available training pixels dropped below 20 
when using pixels coarser than 409.5 m. 

Crop 
𝝂𝒎𝒊𝒏 

Conditions for highest  
class-wise accuracy 

𝝂𝒎𝒂𝒙 

𝝂 𝝅 Crit. 𝝂 𝝅 CAi 𝝂 𝝅 Crit. 

Cotton 117.0 0.95 AQEi 344.5 0.80 0.91 403.0 0.85 CAi 
Fallow 13.0 0.95 CAi 331.5 0.80 0.97 364.5 0.40 CAi 

Rice 13.0 0.60 CAi 360.0 0.85 0.77 409.5 0.35 * 
Fruit trees 143.0 1.00 AQEi 377.0 0.75 0.83 390.0 0.75 CAi 

Sorghum/maize - - - 71.5 1.00 0.40 - - - 
Winter wheat 6.5 0.20 - 110.5 0.95 0.90 195.0 0.50 AUCi 
Wheat-other 117.0 1.00 AQEi 377.0 0.75 0.91 409.5 0.60 * 
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Figure 6-12: Suitable pixel populations for crop identification using RF in KYZ 2011. Green colours indicate suitable 
populations in the pixel size-pixel purity space, where all criteria defined above are met, yellow colours indicate that 
one criterion were not met, orange means two criteria are not met, and finally red colours indicate that three or four 
criteria are not met. Circle indicates the actual position of the best values achieved in the experiments for CAi. 

Table 6-7: Ranges of acceptable pixel sizes (limited by 𝜈𝑚𝑖𝑛 and 𝜈𝑚𝑎𝑥) and corresponding pixel purity 𝜋 for crop 
identification using RF, at the per-class basis, in KYZ 2011. The column labelled “Crit.” indicates which parameter 
constrained the spatial sampling unit. 𝜈𝑚𝑖𝑛 and 𝜈𝑚𝑎𝑥 are defined by the intersections of the experimental boundaries 
of the parameters in 𝜈 − 𝜋 space, under the least restrictive thresholds (e.g. ACC = 0.75). 

Crop 
𝝂𝒎𝒊𝒏 

Conditions for highest  
class-wise accuracy 

𝝂𝒎𝒂𝒙 

𝝂 𝝅 Crit. 𝝂 𝝅 CAi 𝝂 𝝅 Crit. 

Fallow 175.5 0.95 AQEi 364.0 0.70 0.86 559.5 0.60 Ni 

Rice 6.5 0.05 - 377.0 0.80 0.99 747.5 0.35 AQEi 

Alfalfa-1y 65.0 0.95 CAi 162.5 0.80 0.89 169.0 0.40 CAi 

Alfalfa-3y 26.0 0.95 AQEi 110.5 0.80 0.84 221.0 0.45 CAi 
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Figure 6-13: Suitable pixel populations for crop identification using RF in FER 2011. Green colours indicate suitable 
populations in the pixel size-pixel purity space, where all criteria defined above are met, yellow colours indicate that 
one criterion were not met, orange means two criteria are not met, and finally red colours indicate that three or four 
criteria are not met. Circle indicates the actual position of the best values achieved in the experiments for CAi. 

Table 6-8: Ranges of acceptable pixel sizes (limited by 𝜈𝑚𝑖𝑛 and 𝜈𝑚𝑎𝑥) and corresponding pixel purity 𝜋 for crop 
identification using RF, at the per-class basis, in FER 2011. The column labelled “Crit.” indicates which parameter 
constrained the spatial sampling unit. 𝜈𝑚𝑖𝑛 and 𝜈𝑚𝑎𝑥 are defined by the intersections of the experimental boundaries 
of the parameters in 𝜈 − 𝜋 space, under the least restrictive thresholds (e.g. ACC = 0.75). 

Crop 
𝝂𝒎𝒊𝒏 

Conditions for highest 
class-wise accuracy 

𝝂𝒎𝒂𝒙 

𝝂 𝝅 Crit. 𝝂 𝝅 CAi 𝝂 𝝅 Crit. 

Fallow 13 0.15 CAi 182.0 0.95 0.98 260.0 0.55 CAi 

Cotton 6.5 0.20 - 175.5 1.00 0.97 663.0 0.35 AUCi 

Fruit trees 19.5 0.50 AQEi 175.5 0.85 0.90 435.5 0.25 CAi 

Winter wheat 13.0 0.20 CAi 130.0 0.95 0.95 325.0 0.55 Ni 

Wheat-other 6.5 0.20 - 266.5 0.95 0.95 611.0 0.30 CAi 

 

  



134 DEFINING THE SPATIAL RESOLUTION REQUIREMENTS FOR CROP IDENTIFICATION  

Mapping identified crops at multiple scales 

When looking at the positions in 𝜈 − 𝜋 space where the selected classification performance 

parameters CAi was in its maximum (Figure 6-10 – Figure 6-13) it can be seen that relatively high 

purities were required for many classes to achieve the best values for this performance metric (e.g. 

highest CAi). However, in practice excluding many (potentially mixed) pixels could result in an under-

sampling of the actual agricultural (cropped) area, which means that the best classification results could 

be achieved with very pure pixel populations, but at the expense of excluding many pixels. 

This effect is illustrated in Figure 6-14 for crop identification with 247.0 m pixel size, approximately 

the GSD of MODIS. In order to achieve high accuracies or to fulfil all defined criteria for crop 

identification, more and more (potentially mixed) pixels must be discarded. The sampling coverage SCF 

(see section 6.3.3) then can take on values below 1, which means that the surface sampled by the selected 

population of pixels is smaller than the reference target surface at the finest resolution (𝜈0
2 ∗ 𝑁0). The 

impact of selecting purer pixels on the sampling coverage (SCF) is much more pronounced over the 

heterogeneous landscape in KHO (Figure 6-14, top row), compared to KYZ with large blocks of more 

regular shaped fields (Figure 6-14, bottom row). As an example, 72 % (SCF=0.72) of the reference 

agricultural area (𝜈0
2 ∗ 𝑁0) can be identified while fulfilling all criteria defined in Table 6-3 (under the 

least restrictive thresholds, e.g. ACC > 0.75) in the KHO landscape, whilst in KYZ this can be achieved 

for 96 % (SCF=0.96) of the reference area. This difference becomes more evident when selecting only 

those pixels that fulfil all criteria according to the strictest thresholds (e.g. ACC > 0.85): in the KHO 

landscape only 16 % (SCF=0.16) of the sampled agricultural area is composed of the most suitable pixels. 

In the KYZ landscape 90 % (SCF=0.90) of the agricultural area crops can be identified in accordance 

with these strict requirements.  



6.4 Results  135  

 

F
ig

u
re

 6
-1

4
: 

Im
p

a
ct

 o
f 

se
le

ct
in

g
 p

u
re

r 
p

ix
el

s 
(t

h
a

t 
fu

lf
il

 c
er

ta
in

 c
ri

te
ri

a
 f

o
r 

cr
o

p
 i

d
en

ti
fi

ca
ti

o
n

) 
o

n
 s

a
m

p
li

n
g

 c
o

v
er

a
g

e 
o

f 
a

g
ri

cu
lt

u
ra

l 
fi

e
ld

s 
(S

C
F

) 
fo

r 
a

 6
.5

×
6

.5
 k

m
 z

o
n

e 
a

t 
2

4
7

.0
 m

 p
ix

el
 s

iz
e 

in
 K

H
O

 (
to

p
) 

a
n

d
 K

Y
Z

 (
b

o
tt

o
m

).
 D

o
ts

 r
ep

re
se

n
t 

th
e 

ce
n

tr
es

 o
f 

co
a

rs
e 

p
ix

el
s.

 T
h

e 
si

ze
 o

f 
th

e 
d

o
ts

 r
el

a
te

 t
o

 t
h

e 
p

ix
el

 p
u

ri
ty

, 
w

it
h

 l
a

rg
er

 d
o

ts
 b

ei
n

g
 p

u
re

r 
th

a
n

 s
m

a
ll

er
 o

n
es

 (
o

n
ly

 e
st

im
a

ti
o

n
s 

a
b

o
v

e 
0

.3
 a

re
 s

h
o

w
n

).
 S

C
F

 i
n

d
ic

a
te

s 
th

e 
sa

m
p

li
n

g
 c

o
v

er
a

g
e 

p
a

ra
m

et
er

, 
e.

g
. 

th
e 

ra
ti

o
 b

et
w

e
en

 t
h

e 
sa

m
p

le
d

 s
u

rf
a

ce
 a

t 
2

4
7

.0
 m

 a
n

d
 t

h
e 

re
fe

re
n

ce
 s

u
rf

a
ce

 o
f 

a
g

ri
cu

lt
u

ra
l 

fi
e

ld
s 

a
t 

6
.5

 m
. 

T
h

e
 g

re
y

 s
ca

le
 i

m
a

g
e 

in
 t

h
e 

b
a

ck
g

ro
u

n
d

 i
s 

th
e 

re
d

 c
h

a
n

n
e

l 
o

f 
th

e 
co

rr
es

p
o

n
d

in
g

 R
a

p
id

E
y

e 
im

a
g

e
 w

it
h

 6
.5

 m
 p

ix
el

 s
iz

e
 f

ro
m

 

13
-A

u
g

 2
0

0
9

 (
K

H
O

) 
a

n
d

 2
5

-J
u

l 
2

0
11

 (
K

Y
Z

).
 

 



136 DEFINING THE SPATIAL RESOLUTION REQUIREMENTS FOR CROP IDENTIFICATION  

In a second investigation, the classified pixel populations of the two landscapes, KHO and KYZ, were 

analysed in more detail. Figure 6-15 and Figure 6-16 display those classified pixel populations that 

achieved highest values for ACC, at three different pixel sizes (97.5 m, 247.0 m, and 299.0 m). In KHO 

(Figure 6-15) the classification performances of RF and SVM started with values for ACC of 

approximately 0.81 (𝜈 = 97.5 𝑚), increased to a peak of approximately 0.91 (𝜈 = 247.0 𝑚), and then 

declined to about 0.86 (𝜈 = 299.0 𝑚). This figure reveals that the classification at 97.5 m was noisier 

then with coarser pixel sizes. At this scale there were apparent misclassifications between cotton and 

sorghum/maize within some of the fields (small image subsets and reference crop map in Figure 6-15). 

This type of class confusion has frequently been reported in the literature and might be explained with 

similarities in the NDVI signatures of these crops (Conrad et al., 2013). When comparing the 

performance of the two algorithms in KHO, RF seemed to be noisier than SVM even in homogeneous 

areas within larger fields (compare small image subsets of RF and SVM at 97.5 m in Figure 6-15). The 

most notable difference is that RF classified more pixels as sorghum/maize than the SVM. When coarser 

images were used for crop identification the result appears more homogeneous, but notably the borders 

between each field were more pixelated as compared to the highest resolution image. Classes covering 

smaller fractions of the landscape (e.g. sorghum/maize, winter wheat) almost diminished at coarser 

scales, e.g. they could not be detected anymore in the coarser pixels. The narrow range of suitable pixel 

sizes that can be used to detect these crops (Figure 6-11) also points to this. 

In the KYZ landscape misclassifications within aggregated blocks of fields become apparent at 97.5 m 

(Figure 6-16). The small image subsets in Figure 6-16 illustrate the noisy classification (irrespective of 

the classifier algorithm used) within such a block of fields that should be classified as fallow, according 

to the reference crop mask. The reason for the misclassification could be the indistinct growing 

phenology of fields with alfalfa and fallow fields. Both kinds of fields are subjected to several, irregular 

cutting operations along the growing season (section 2.2), resulting in indistinct NDVI signatures. At 

coarser scales, this effect was markedly reduced and the classified images appear more homogeneous.  

Further, selecting coarser observation supports in KYZ (𝜈 = 247.0 𝑚 and 𝜈 = 299.0 𝑚) enhanced 

classification performances (higher ACC), and the amount of pixels classified as alfalfa-1y decreased. 

Critically, coarsening the observation support (pixel size) did not necessarily lead to increased 

classification accuracies for the alfalfa classes (alfalfa-1y and alfalfa-3y). The maximum possible value 

of CAi for alfalfa-1y and alfalfa-3y (not shown in the figure) achieved at 97.5 m is 0.79 and 0.81, 

respectively and decreases henceforth to 0.68 and 0.76, respectively at the coarsest scale (𝜈 = 299 𝑚). 

This means that, despite the more homogeneous classification results and higher ACC at coarser scales 

(pushed by the increasing CAi for rice and fallow fields which cover a major part of the landscape), the 

classes alfalfa-1y and alfalfa-3y are most effectively identified at smaller scales. This is also revealed in 

the pixel suitability maps in Figure 6-12. 

This experiment demonstrated how classification accuracy can be affected by within field 

heterogeneity and by pixel size, respectively. As a consequence of using smaller pixels for classification 

and the resulting higher within-class variability, the entropy of the result became highest (and the ACC 

lowest) at the finest scale under investigation (see AQE and ACC values in Figure 6-15 and Figure 6-16). 

As was demonstrated by McCloy and Bøcher (2007) this effect can be reduced when selecting coarser 

observation supports, thereby reducing the within-class variability and achieving higher classification 

accuracies (Hsieh et al., 2001). This is reflected in the AQE values of the classification result, which were 

reduced by approximately 40 % when selecting pixel sizes coarser than 97.5 m in KHO (Figure 6-15). 
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6.4.2. How does an unsupervised classifier algorithm influence the pixel 

population suitability? 

Most studies on crop classification employ supervised classifier algorithms for crop mapping. 

However, reference samples may not be available in many regions around the world, not be of sufficient 

quality, or not be available for every crop type in question. The purpose of using the unsupervised K-

means (Tso and Mather, 2009) here is to evaluate to what extent crop specific signals can be detected in 

NDVI signatures at different scales, and for different purities, respectively. In this regard, the 

unsupervised technique extracts temporal classes defined by their characteristics in the time series data 

(Ozdogan, 2010). Unsupervised classification uses clustering to identify natural groupings of pixels with 

similar NDVI properties, corresponding to key phenological stages (green-up, peak, senescence) in the 

NDVI time series (Chen et al., 1999). The purpose here is to examine which cluster(s) from this 

unsupervised classification reflect a specific crop type, and how accurate. The relationship of these 

clusters to the available reference data (crop masks) can be described by the parameters defined in 

section 6.3.4, and then to identify the cluster(s) that best represent a single crop type. Entropy (AQE) 

could not be used because this unsupervised algorithm provides no “ready-to-use” soft output from 

which entropy can be calculated. Having subjected the NDVI time series (eight acquisitions) to K-means 

clustering in each site, each cluster that contains at least 50 % pixels that belong to one specific class 𝑖 

was assigned to that class 𝑖.  

Figure 6-17 illustrates the ranges of pixel sizes that are suitable for unsupervised crop signature 

identification. The most notable difference to the supervised approach (compare Table 6-5 – Table 6-8) 

is that fewer classes could effectively be identified, and that coarser values were required for 𝜈𝑚𝑖𝑛  in KKP 

and KHO. Following the argumentation in the previous sections, coarser pixels are supposed to reduce 

within class variance, which facilitates the unsupervised crop identification. In KYZ only rice fields could 

be identified, most probably because of the indistinct NDVI profiles of alfalfa and fallow fields, which 

are characterized by heterogeneous patterns due to several irregularly scheduled cuttings throughout 

the season (section 2.2). In contrast, all crops (expect for wheat fields) present in the FER landscape 

could be identified with highest degree of suitability, e.g. all criteria defined in Table 6-3 could be 

fulfilled with accuracies of higher than 0.85 (CAi), albeit the range of suitable pixel sizes differed from 

crop to crop. For instance, whilst winter wheat fields could only be detected using comparatively small 

pixels, cotton and wheat-other could be detected with pixel sizes of approximately 600 m. Again, 

relatively large field sizes and distinct NDVI signatures of relatively few crops most probably contribute 

to this. 
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               KHO 2009 

 

                     KKP 2011 

 
               KYZ 2011 
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Figure 6-17: Ranges of suitable pixel sizes for different crop types using unsupervised K-means clustering. The 
length of the bars correspond to the range of suitable pixel sizes, shades of black indicate different levels of 
suitability, e.g. black means that the most stringent criteria defined in Table 6-3 are fulfilled, light grey that the least 
stringent criteria are fulfilled. 

6.4.3. How do different input data sets influence pixel size and purity 

requirements? 

Beside the application of different classifier algorithms, the input data was altered to assess its impact 

on the definition of pixel population suitability. This analysis can be reasoned with evidence from the 

literature that different land cover types may not only have large ranges of object sizes, but also that 

there may be significant differences in the local spatial variation observed at different wavelengths, 

which can affect the definition of suitable pixel sizes for specific applications like crop monitoring 

(Duveiller and Defourny, 2010). Hence, the 𝜈 − 𝜋 surfaces were calculated with the same 

parameterization, but different input data sets (Table 6-3). These VIs were selected since they are 

frequently used to monitor vegetation seasonal behaviour. The choice of input features was further 

oriented toward transferability to sensors that (i) are equipped with similar spectral bandwidths and (ii) 

that sample the earth´s surface with GSD that are frequently being used in crop monitoring (Table 6-9). 

Critically, the bandwidths are not identical to RapidEye, but this should not affect the general 
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conclusions drawn from this framework, as it does not aim to simulate exactly the physical spatial 

response of a particular sensor. Since only few remote sensors have red edge bands, the experiments 

were repeated including and excluding red edge information. The features were calculated for eight 

acquisition dates, so the input data set size ranges from 8 to 72 features for the image classification (see 

Table 6-3), which is a reasonable number to achieve sufficient accuracies in multi-temporal crop 

classification (Carrão et al., 2008; Peña-Barragán et al., 2011; Rodriguez-Galiano et al., 2012a). 

Table 6-9: Spectral bands and pixel sizes of optical sensors typically used in crop mapping. Spectral resolution is in 
[nm]. Only bands from other sensors that approximately correspond to the RapidEye bands are listed. 

Bands 
Landsat TM 

(30 m) 

ASTER 

(15 m) 

SPOT-5 

(20 m) 

PROBA-V 

(100 m)24 

MODIS 

(250/500 m)25 

Sentinel -3 

(300 m)26 

NPP-

VIIRS 

(750 m)27 

Blue 450–520 - - 438–486 459–479 400–442 478–488 

Green 520–600 520–600 500–590 - 545–565 490–560 545–565 

Red 630–690 630–690 610–680 615–696 620–670 620–681 662–682 

Red edge - - - - - 681–708 - 

NIR 760–900 760–860 780–890 772–914 841–876 761–900 739–885 

 

Table 6-10 and Table 6-11, respectively reveal that the ranges of suitable pixel sizes for the RF as 

classifier algorithm varied among the different input data sets tested. As can be expected, the 

multivariate approach with more bands provided more confidence in classifying coarser pixels (higher 

accuracies) than selecting only one single band. Compared to the use of single bands (red or red edge), 

having extra spectral bands or VIs did improve the crop identification, both in terms of maximum 

achievable ACC and an enhanced range of suitable pixel sizes, respectively. The combined indices plus 

spectral bands resulted in smaller pixel sizes (𝜈𝑚𝑖𝑛) compared to single spectral bands or indices alone. 

In both sites red edge indices enhanced the performance (higher accuracies) compared to feature sets 

without red edge information. 

In KKP the use of red edge information generally resulted in smaller values for 𝜈𝑚𝑖𝑛  and higher 

classification performance (ACC), which means that crops could be identified over a larger range of pixel 

sizes. This demonstrates that the additional features improve crop identification in smaller pixels, as a 

result of shifting the ACC bound towards smaller pixel sizes. In FER the inclusion or red edge features 

did slightly provide more confidence in classifying coarser pixels (higher accuracies), but there was no 

significant enhancement in the range of suitable pixel sizes (e.g. the value for 𝜈𝑚𝑖𝑛 for most feature sets 

tested was 6.5 m). For pragmatic reasons (e.g. computational time) small input data sets that contain 

two vegetation indices can be preferred, as they suffice to identify crops within a wide range of pixel sizes 

and at a comparatively high level of accuracy, respectively. Yet, in KKP a larger feature set containing 

the combined bands plus VIs would be recommended. 

When comparing both sites, the choice of input data had a much more pronounced impact on the 

definition of 𝜈𝑚𝑖𝑛 and 𝜈𝑚𝑎𝑥  in KKP than in FER. For instance, selecting all features (𝑓 = 72) instead of 

the red band (𝑓 = 8) resulted in a difference of 110.5 m for 𝜈𝑚𝑎𝑥 in KKP, whilst this difference in FER 

was only 84.5 m. 

                                                      
24: Source: http://www.esa.int/Our_Activities/Technology/Proba_Missions/Overview2  (last accessed: 08-Sep 2013) 

25: Source: http://modis.gsfc.nasa.gov/about/  (last accessed: 08-Sep 2013) 

26: Source: http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-3 (last accessed: 08-Sep 2013) 

27: Source: http://rammb.cira.colostate.edu/projects/npp/ (last accessed: 08-Sep 2013) 
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Table 6-10: Ranges of acceptable pixel sizes (limited by 𝜈𝑚𝑖𝑛 and 𝜈𝑚𝑎𝑥) and corresponding pixel purity 𝜋 for crop 
identification using RF, for different input data sets, in KKP for the year 2011. The column labelled “Crit.” indicates 
which parameter constrained the spatial sampling unit. Maximum achievable ACC for three selected pixel sizes are 
given. 𝜈𝑚𝑖𝑛 and 𝜈𝑚𝑎𝑥 are defined by the intersections of the experimental boundaries of the parameters in 𝜈 − 𝜋 
space, under the least restrictive thresholds (e.g. ACC = 0.75). “Spectral bands” means all bands expect for red edge. 

Input data sets 

tested 
𝒇 

𝝂𝒎𝒊𝒏 
Maximum overall  

accuracy (ACC / 𝝅) 
𝝂𝒎𝒂𝒙 

𝝂 𝝅 Crit. 97.5 m 247.5 m 299.0 m 𝝂 𝝅 Crit. 

Red 8 182.0 0.85 ACC 0.70 / 1.00 0.73 / 0.75 0.76 / 0.65 312.0 0.55 ACC 

Red edge 8 123.5 0.95 ACC 0.73 / 1.00 0.78 / 0.75 0.78 / 0.65 377.0 0.40 ACC 

Spectral bands 32 39.0 0.95 ACC 0.78 / 1.00 0.86 / 0.75 0.84 / 0.65 377.0 0.40 ACC 

Indices 16 71.5 1.00 AQE 0.76 / 1.00 0.82 / 0.75 0.82 / 0.65 396.5 0.35 ACC 

Bands + Indices 48 32.5 0.95 ACC 0.81 / 1.00 0.83 / 0.75 0.83 / 0.65 422.5 0.35 ACC 

RE Indices 16 65.0 0.95 AQE 0.78 / 1.00 0.84 / 0.75 0.84 / 0.65 409.5 0.35 ACC 

Bands + RE Indices 48 26.0 0.95 ACC 0.81 / 1.00 0.84 / 0.75 0.84 / 0.65 422.5 0.35 ACC 

All combined 72 19.5 0.95 ACC 0.82 / 1.00 0.89 / 0.75 0.89 / 0.65 422.5 0.35 ACC 

Table 6-11: Ranges of acceptable pixel sizes (limited by 𝜈𝑚𝑖𝑛 and 𝜈𝑚𝑎𝑥) and corresponding pixel purity 𝜋 for crop 
identification using RF, for different input data sets, in FER for the year 2011. The column labelled “Crit.” indicates 
which parameter constrained the spatial sampling unit. Maximum achievable ACC for three selected pixel sizes are 
given. 𝜈𝑚𝑖𝑛 and 𝜈𝑚𝑎𝑥 are defined by the intersections of the experimental boundaries of the parameters in 𝜈 − 𝜋 
space, under the least restrictive thresholds (e.g. ACC = 0.75). “Spectral bands” means all bands expect for red edge. 

Input data sets 

tested 
𝒇 

𝝂𝒎𝒊𝒏 Maximum overall accuracy (ACC / 𝝅) 𝝂𝒎𝒂𝒙 

𝝂 𝝅 Crit. 97.5 m 247.5 m 299.0 m 𝝂 𝝅 Crit. 

Red 8 6.5 0.15 - 0.86 / 1.00 0.91 / 1.00 0.92 / 0.90 572.0 0.40 ACC 

Red edge 8 6.5 0.10 - 0.88 / 1.00 0.92 / 1.00 0.93 / 1.00 591.5 0.40 ACC 

Spectral bands 32 6.5 0.15 - 0.89 / 1.00 0.92 / 1.00 0.91 / 0.80 631.5 0.40 ACC 

Indices 16 32.5 0.90 ACC 0.87 / 1.00 0.92 / 1.00 0.92 / 0.85 598.5 0.40 ACC 

Bands + Indices 48 6.5 0.15 - 0.88 / 1.00 0.92 / 1.00 0.95 / 1.00 604.5 0.35 ACC 

RE Indices 16 6.5 0.15 - 0.87 / 1.00 0.92 / 1.00 0.93 / 0.90 650.0 0.40 ACC 

Bands + RE Indices 48 6.5 0.15 - 0.88 / 0.90 0.93 / 1.00 0.94 / 0.95 656.5 0.40 ACC 

All combined 72 6.5 0.15 - 0.89 / 1.00 0.93 / 0.95 0.94 / 1.00 656.5 0.40 ACC 

           

6.4.4. How does pixel population suitability evolve along the season? 

In the experiments described above the pixel size requirements were analysed by considering eight 

images distributed over the vegetation period within one year. However, some applications like early 

crop condition and warning alerts, or early crop area estimation might require to correctly identifying 

crops as early as possible in the season. This in turn requires accurate crop identification, which ideally 

should be available 1–2 months before harvest for early estimates, and 4–5 months before harvest for 

forecasting (Gallego et al., 2008). Given that most crops in Middle Asia are harvested between August 

and September (see section 2.2), the precondition for early estimation, according to Gallego et al. 

(2008), would be fulfilled if early crop identification can be provided as of June–July.  

In order to test if the suitability of pixel populations changes along the season and to what extent, 

the experiments were repeated, based on the combined features plus bands, which yielded the best 

identification performance (see Table 6-10 and Table 6-11), but the observation length (number of 

images in the time series) was increased by incrementally adding images along the season, one-by-one. 

Then, for each incremental step, the pixel suitability for individual crops was calculated. The focus here 

is on two classes that can be found in KKP and FER, namely cotton and winter wheat. These two sites 

were selected for this experiment, because RapidEye images are available earliest in the season 
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(beginning of April, see Figure 6-1), which allows for a finer assessment of early estimation in the early 

phase of the growing season.  

Figure 6-18 demonstrates for these two classes how adding images enhances the suitability of the 

pixel populations in 𝜈 − 𝜋 space for crop identification. In KKP the identification of cotton was not 

possible till 07–Jun (DOY: 167). As of 07–Jun cotton could be identified but this was restricted to a 

rather small range of pixel sizes (𝜈𝑚𝑖𝑛 = 162.5, 𝜈𝑚𝑎𝑥 = 266.5 m). Adding images till 14–Jul (DOY: 195) 

enabled the use of pixels with a wider range of resolutions (𝜈𝑚𝑖𝑛 = 45.5, 𝜈𝑚𝑎𝑥 = 383.5 m) and purities, 

respectively. Adding an image after 14–Jul had no significant effect on the suitability of the pixel 

populations, albeit using very small (𝜈𝑚𝑖𝑛= 6.5 m) and coarse (𝜈𝑚𝑎𝑥 = 429.0 m) pixel sizes became 

possible. Winter wheat fields in KKP could be identified as of 09–May (DOY: 94), starting with pixel 

sizes ranging from 𝜈𝑚𝑖𝑛= 117 m to 𝜈𝑚𝑎𝑥 = 247.0 m, and adding more and more images improved the 

values for 𝜈𝑚𝑖𝑛, which were shifted towards 13.0 m, whilst 𝜈𝑚𝑎𝑥 was further shifted towards 429.0 m. 

In the FER landscape winter wheat fields could be identified with a wider range of pixel sizes early 

in the season, as compared with KKP. One reason could be the higher contrast between the target crop 

and its surroundings on the FER landscape in April (when summer crops were not yet sown but winter 

wheat stems were already elongated and fully covered the fields) than on the KKP landscape (when 

winter wheat had not already grown significantly and bare soil that covered the latent summer seeds 

had comparable reflectance to winter wheat fields). This difference can be explained by the earlier water 

availability and onset of the vegetation period, respectively in FER than in the downstream regions of 

the Amu Darya where the KKP site is located (Bohovic et al., 2011). Further, spectral discrimination 

might be hampered by the fact that signal response to vegetation was very low due to the little amount 

of biomass on the fields in KKP at the time when winter wheat was already fully grown in FER.  

Although crop identification is in the fore of this study, an example for the evolution of pixel 

suitability for the classification of all crops is also given in Figure 6-19 and Figure 6-20. Again, overall 

crop identification was possible earlier in the season in FER. Already at the start of the season crops 

could be identified with relatively low error rates and entropy values (both smaller than 0.25, see Figure 

6-20). Crops could be effectively identified as of April, most probable because at that time winter wheat 

fields were in the phase of stem elongation, and could be distinguished from fallow fields and fruit trees, 

respectively. As of 16–Jun (DOY: 188), suitable pixel populations for crop identification were available 

in KKP, with error rates below 0.25. Again, the reason for this difference in timing could be the earlier 

start of the growing period in FER (Bohovic et al., 2011). Along the season, the suitability did not evolve 

significantly henceforth.  

In both sites it was observed that 𝜈𝑚𝑖𝑛 became the smaller the more images were added: from 78 m 

(at DOY 188) to 26.0 m (DOY 282) in KKP, and from 182.5 m (at DOY 98) to 6.5 m (DOY 270) in FER 

(Figure 6-19). Likewise the pixel size 𝜈 that is needed to achieve maximum possible ACC decreases, from 

318.5 m to 260.0 m in KKP, and from 351.0 to 260.0 m in FER (Figure 6-20). As soon as the contrast 

between summer crops becomes less intense in the summer period, when crops have already grown 

significantly and have comparable reflectance, pixel sizes must be smaller to identify all crops because 

of the heterogeneous landscape pattern and to achieve a decent standard of classification accuracy.  

In both figures (Figure 6-18 and Figure 6-19) the space between the upper and lower dotted lines 

demarcate those pixel populations whose SCF did not deviate more than ±10 % from the reference 

agricultural (cropped) area at the finest scale (𝜈0
2 ∗ 𝑁0, see section 6.3.3). As can be seen for winter-wheat 

in KKP (Figure 6-18), suitable pixel populations (green colours) that were selected before DOY 129 

under-sample the true agricultural (cropped) area because they are located above the upper dashed line, 

which means that too many pixels were excluded due to the high pixel purities required, hence the 

sampled surface of the selected pixel populations did not fully cover the reference agricultural area. 
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    KKP FER  

 
Figure 6-20: Evolution of crop identification performance for all crops in KKP and FER, respectively using RF as 
classifier. The maximum achievable accuracies, here expressed as 1-(ACC/100) and 1-(AUC/100), respectively for 
better comparison with classification entropies (AQE) are given. “Pixel size” refers to the ground sampling distance 
at which maximum overall accuracy (ACC) was achieved. 

6.4.5. Can the defined pixel size requirements be transferred to another 

year? 

For operational crop mapping applications, it is of interest if the requirements for crop identification 

are comparable from year to year. Hence, the experiments were repeated on data sets from another year 

in two sites, KHO (2010) and FER (2012)28, in order to validate the consistency and transferability of 

the pixel size requirements among the two years. Each experiment was performed using the 

corresponding parameterization and following the same method as described above, using RF as 

classifier algorithm. 

The resulting pixel size requirements for crop identification are summarized in Table 6-12 and Table 

6-13. Figure 6-21 shows the ranges of suitable pixel sizes for each crop in KHO and FER, respectively in 

two consecutive years. In general, the requirements for crop classification in FER did not significantly 

change (Table 6-12 and Figure 6-21), specifically 𝜈𝑚𝑖𝑛 was 6.5 m for almost all classes over the two years. 

However, 𝜈𝑚𝑎𝑥 was coarser in 2011 than in 2012 for most classes. The identification of fallow fields in 

2012 was limited to a comparatively small range of pixel sizes (𝜈𝑚𝑖𝑛 = 6.5 m, 𝜈𝑚𝑎𝑥 = 202.0 m), compared 

to 2011 (𝜈𝑚𝑖𝑛 = 6.5 m, 𝜈𝑚𝑎𝑥 = 260.5 m). One explanation could be the differences in the cover fraction 

𝐶𝑓 of fallow fields, which was almost four times higher in 2011 (Table 6-1) and found on larger fields (on 

average). This means that it is easier to have coarser pixels fall within target fields and thus conferring 

higher acceptable pixel sizes for the crop identification. The same could be found for winter wheat 

(𝜈𝑚𝑎𝑥  in 2011 was 331.5 m, 𝜈𝑚𝑎𝑥  in 2012 was 364.0 m), which covered a larger fraction of the landscape 

in 2012 (𝐶𝑓 = 0.09) than in 2011 (𝐶𝑓 = 0.05). The cover fractions (𝐶𝑓) of wheat-other fields decreased in 

2012 (𝐶𝑓 = 0.27) compared to 2011 (𝐶𝑓 = 0.32), which was reflected in a change of 𝜈𝑚𝑎𝑥 for that crop type 

from 656.5 m to 539.5 m. In general higher classification performances could be achieved over a wider 

range of pixel sizes in 2011, indicated by the length of black bars in Figure 6-21. In summary these 

                                                      
28: RapidEye images were made available through the Khorezm and CAWA projects in 2010 (KHO) and 2012 (FER). No RapidEye 
data was available for another year in KKP or KYZ. 
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findings indicate that in FER some sensors, like MODIS or Sentinel-3, could be suitable for crop 

identification in an operational context. Few classes like winter wheat or fallow fields would require finer 

resolutions sensor, e.g. with 100 m pixel size, and their identification was affected by varying 𝜈𝑚𝑎𝑥 over 

the two years. 

Table 6-12: Ranges of acceptable pixel sizes (limited by 𝜈𝑚𝑖𝑛and 𝜈𝑚𝑎𝑥) and corresponding purities 𝜋 for crop 
identification using RF, at the per-class basis, in FER for the year 2012 and 2011. The column labelled “Crit.” 
indicates which parameter constrained the spatial sampling unit. 𝜈𝑚𝑖𝑛 and 𝜈𝑚𝑎𝑥 are defined by the intersections of 
the experimental boundaries of the parameters in 𝜈 − 𝜋 space, under the least restrictive thresholds (e.g. ACC = 
0.75). 

Year: 2012 2011 

Site 
𝝂𝒎𝒊𝒏 𝝂𝒎𝒂𝒙 𝝂𝒎𝒊𝒏 𝝂𝒎𝒂𝒙 

𝝂 𝝅 Crit. 𝝂 𝝅 Crit. 𝝂 𝝅 Crit. 𝝂 𝝅 Crit. 

Cotton 6.5 0.15 - 591.5 0.25 CAi 6.5 0.15 - 663.0 0.30 AUCi 

Fallow 6.5 0.15 - 202.0 0.75 CAi 6.5 0.15 - 260.5 0.70 AUCi 

Fruit trees 6.5 0.35 - 468.0 0.85 CAi 6.5 0.15 - 494.0 0.85 CAi 

Winter wheat 6.5 0.20 - 364.0 0.45 AQEi 6.5 0.20 - 331.5 0.45 AQEi 

Wheat-other 19.5 0.90 CAi 539.5 0.40 AUCi 6.5 0.15 - 656.5 0.45 AUCi 

Table 6-13: Ranges of acceptable pixel sizes (limited by 𝜈𝑚𝑖𝑛and 𝜈𝑚𝑎𝑥) and corresponding purities for crop 
identification using RF, at the per-class basis, in KHO for the year 2010 and 2009. The column labelled “Crit.” 
indicates which parameter constrained the spatial sampling unit. 𝜈𝑚𝑖𝑛 and 𝜈𝑚𝑎𝑥 are defined by the intersections of 
the experimental boundaries of the parameters in 𝜈 − 𝜋 space, under the least restrictive thresholds (e.g. ACC = 
0.75). Asterisk indicates that for this site the experiments were halted at 442.0 m (2010) and 409.5 m (2009) 
because for one class the number of available training pixels dropped below 20, the minimum requirement to 
perform the experiments (section 6.3.2). 

Year: 2010 2009 

Site 
𝝂𝒎𝒊𝒏 𝝂𝒎𝒂𝒙 𝝂𝒎𝒊𝒏 𝝂𝒎𝒂𝒙 

𝝂 𝝅 Crit. 𝝂 𝝅 Crit. 𝝂 𝝅 Crit. 𝝂 𝝅 Crit. 

Cotton 26.0 0.85 CAi 442.0 0.45 * 104.0 0.75 AQEi 409.5 0.55 * 

Fallow 6.5 0.95 - 338.0 0.60 AUCi 13.0 0.90 AUCi 364.5 0.40 CAi 

Rice 6.5 0.15 - 442.0 0.45 * 6.5 0.20 - 409.5 0.55 * 

Fruit trees 78.0 1.00 CAi 390.0 0.65 CAi 110.0 1.00 AQEi 409.5 0.65 * 

Sorghum/maize 26.0 1.00 AQEi 84.5 0.70 CAi - - - - - - 

Winter wheat 6.5 0.15 - 123.5 0.75 CAi 6.5 0.15 - 227.5 0.80 CAi 

Wheat-other 39.0 0.90 CAi 442.0 0.45 * 117.0 0.75 AQEi 409.5 0.45 * 

 

In KHO the situation was different. The requirements for identifying some of the classes changed 

considerably: As an example, 𝜈𝑚𝑎𝑥 for winter wheat was 123.5 m in 2010 (compared to 227.5 m in 2009) 

and the values of 𝜈𝑚𝑖𝑛 for cotton decreased from 104 m to 26 m. Overall, there is a tendency that 𝜈𝑚𝑖𝑛 of 

most crops is coarser in 2009, compared to 2010, whilst 𝜈𝑚𝑎𝑥  was not defined in the experiments for 

some crops, e.g. cotton and wheat-other, because the experiments were halted in both years due to an 

insufficient number of pixels for sorghum/maize (< 20). Interestingly, the cover fraction of wheat-other 

in 2009 (𝐶𝑓 = 0.27) was lower compared to 2010 (𝐶𝑓 = 0.30), but there was no such obvious difference 

in the values for 𝜈𝑚𝑎𝑥  of this class, as far as this can be judged because the experiments were halted. 

These findings indicate that crop identification in an operational (multi-year) context could be limited 

for some crops: e.g. winter wheat or sorghum/maize would require finer resolution sensors, e.g. with 

100 m pixel size, and are also stronger affected by the varying 𝜈𝑚𝑎𝑥  over the years.  
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Figure 6-21: Ranges of suitable pixel sizes for different crop types in KHO (left side bars: 2009, right side bars: 
2010) and FER (left side bars: 2011, right side bars: 2012). The length of the bars correspond to the range of suitable 
pixel sizes, shades of black indicate different levels of suitability, e.g. black means that the most stringent criteria 
defined in Table 6-3 are fulfilled, light grey that the least stringent criteria are fulfilled. 

Another possible explanation for the pronounced difference in pixel size requirements in KHO could 

be the sharply reduced irrigation water supply in 2009, compared to 2010. To illustrate this: the average 

water intake from the Amu Darya into the KHO irrigation system (from the Tuyamujun reservoir) is 

3,859 m³ (averaged over the period 2000–2011)29. However, in 2009 water intake was reduced to 

3,660 m³. In 2010 the water intake was above the 11-year average (4,902 m³). It was illustrated in 

section 4.3.7 how in water sparse areas in Middle Asia a flattening of NDVI profiles, caused by reduced 

biomass production, can led to increasing classification entropy. It can be seen that in 2009, compared 

to 2010, 𝜈𝑚𝑖𝑛 of many crop classes is dictated by the AQEi parameter (Table 6-13). This means that 

classification uncertainty due to increasing within pixel heterogeneity predominates, which ultimately 

leads to increased classification entropy. Reduced water supply could be causative for the occurrence of 

bare or salty patches within agricultural fields, which would enhance class confusion when smaller pixels 

fall within such patches. In this regard using coarser pixel sizes would reduce some of the variance within 

the pixels. As can be seen, 𝜈𝑚𝑖𝑛 was coarser in 2009 compared to 2010 (coarser than 100 m for half of 

the classes). In this situation it is better to have coarser pixels, thereby reducing this variance and 

counterbalancing the effect of pure-pixel heterogeneity within smaller pixels (Hsieh et al., 2001). In the 

FER landscape no such pronounced differenced were observed between the two years. Water intake 

from the Toktogul reservoir into Fergana Valley was slightly above the 11-year average (3,940 Mio m³) 

in 2011 and 2012, respectively, but the difference between the two years was negligible: 4,216 and 4,476 

Mio m³. 

  

                                                      
29: Water intake data from www.cawater-info.net, Russian version (last access: 11-Aug 2013). 
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6.4.6. Impact of reference sample data characteristics 

The characteristics of the reference sample data are crucial for the accuracy statistics. By design, the 

sampling scheme used in this study (hereafter called mixed pixel training strategy) considers the effect 

of pixel purity in all stages of classification (training and testing). In general, remote sensing studies 

preferably employ designs that avoid undesirable (potentially mixed) pixels in the training and testing 

stage, respectively, e.g. prefer pixels that fall completely within a field or are homogeneous with respect 

to the underlying land cover (Conrad et al., 2011a). Yet, this can result in skewed accuracy estimations 

and the accommodation of mixed pixels seems worthwhile because it enables a more appropriate 

representation of the classes as well as a more meaningful evaluation of classification performance 

(Foody, 1996c; Shao and Lunetta, 2012). To illustrate this, an additional experiment was performed in 

the KKP landscape by only selecting relatively pure training pixels (e.g. 𝜋 ≥ 0.60), but still assessing 

mixed test pixels, hereafter called the pure pixel training strategy. Then the difference between the ACC 

of the pure and the mixed pixel training strategies, respectively was plotted in 𝜈 − 𝜋 space. 

Figure 6-22 illustrates that the difference in ACC between these two strategies is most pronounced 

when testing mixed pixels (reddish colours in Figure 6-22). This means that when classifying mixed 

pixels, an increase of ACC could be realized when mixed pixels were included in the training, as 

compared with the pure pixel training strategy. This means that when mixed pixels are abundant, their 

accommodation in the training stage enables a more appropriate representation of the classes and a 

fuller use of the data, as was already noted by Foody (1996c). Yet, a potential disadvantage when 

selecting only pure pixels for training was that for pixel sizes coarser than 286.0 m not enough pixels 

were found for the classifier algorithm training, and the experiments were halted. When classifying 

purer pixels, then the ACC of both strategies seemed to be more equalized (green colours in Figure 6-22). 

This figure also reveals that the quality of the reference pixels and the selection of the sampling design 

(here: pure vs. mixed) affect the classification results more significantly than the choice of the classifier 

algorithm (section 6.4.1). 

 

 
Figure 6-22: Difference of error rates (1 − 𝐴𝐶𝐶/100) between RF models based on pure pixel training strategy (e.g. 
only sleeting pixels for training with purities of 𝜋 ≥ 0.60) and mixed pixel training strategy. Example is shown for 
the KKP landscape. Orange and yellow colours indicate, that the pure pixel training strategy is less accurate than 
the mixed pixel training strategy. 
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6.5. Discussion 

Landscape and neighbourhood heterogeneity, and the size of surface features are important factors 

determining classification accuracy (van Oort et al., 2004; Smith et al., 2003) and the pixel size 

requirements in agricultural monitoring (Duveiller and Defourny, 2010). As could be expected, when 

crops are grown on larger and more regular fields (such as FER and KHO), or when the cover fraction is 

high (such as cotton or wheat-other fields in KHO), pixel sizes could be coarser for crop identification. 

However, the crop classes display marked individuality in the specific nature of these relationships, and 

the landscape heterogeneity with respect to the spatial pattern also influences the choice of the pixel 

sizes. For instance, the field sizes in KYZ and KKP are comparable (Table 6-1), but the former's fields 

are more regular in shape, less variable in size, and the same crops are found on blocks of fields that 

together can aggregate to more than 100 ha in size (see section 2.2). Over such a landscape, it is easier 

to have coarser pixels fall within target fields and thus conferring higher acceptable pixel sizes (𝜈𝑚𝑎𝑥) for 

crop identification, resulting in coarser values for 𝜈𝑚𝑎𝑥  in KYZ than in FER. Crops covering small parts 

of the landscape like sorghum/maize or winter wheat in KHO (𝐶𝑓 = 0.01) cannot be detected within 

coarse pixels because the target signal strength is low. 

Some classes demonstrated greater sensitivity to landscape heterogeneity (as quantified by cover 

fraction 𝐶𝑓), others to field size, with still others strongly affected by both variables. For instance, winter 

wheat in KHO, albeit grown on comparatively large fields (> 5 ha), could not be identified using pixel 

sizes coarser than 195 m (see section 6.4.1). Winter wheat fields covered only a small part of the scene 

(𝐶𝑓= 0.01) and 𝛾𝑟 of winter wheat fields was very low, which indicates that these fields were dispersed 

over the landscape in 2009. The method reacted to the specific landscape pattern situations in the four 

study sites, which were characterized by field sizes and cover fractions (Table 6-1): 

 KHO and FER: Similar landscapes but different number of crops with relatively large field sizes 

(medians: 3.21 ha and 5.47 ha, respectively). The SV of the field masks was shown to have a 

similar behaviour (section 2.3), but the trajectories of 𝛾𝑟 and the absolute number of different 

crop types differed. Crop mapping using coarser resolution imagery was easier, because many 

pixels fall within the relatively large fields. However, higher pixel purities are required in KHO, 

most probably because of the smaller field sizes and higher number of crop types in KHO 

compared to FER (Table 6-1), which results in a more heterogeneous landscape. Fallow fields in 

FER, albeit found on relatively large fields (4.68 ha), covered only 4 % of the landscape, resulting 

in smaller values for 𝜈𝑚𝑎𝑥 (260.0 m) in that landscape, compared to the other crops. 

 KKP: Complex landscape with relatively small field sizes (median: 1.73 ha). Crop identification 

using coarse resolution imagery was hampered in KKP for some crops because of the relatively 

small field sizes and 𝐶𝑓 values (e.g. melons, alfalfa-1y, wheat-other) and the fragmented 

landscape pattern. Compared to KHO the landscape in KKP is more complex, with a higher 

proportion of non-agricultural land use (𝐶𝑓 in KKP: 0.32, 𝐶𝑓 in KHO: 0.59). Still, 𝜈𝑚𝑎𝑥 for some 

crops was relatively coarse (e.g. rice, winter wheat, cotton). The reason is probably due to the 

higher contrast between the target crop and its surroundings on the KKP landscape: the signal 

response is expected to be comparably high because of the presence of bare and sparsely 

vegetated land uses (e.g. open shrublands fields) in the surrounding. The net effect is that for 

one crop, the pixel purity requirement at a given pixel size tended to be lower in KKP than in 

KHO for some classes (when looking at the year 2010 in KHO).  
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 KYZ and FER: Similar crop diversity, but different landscape patterns. For these sites the pixel 

size for most crops could be coarse, in FER because of the relatively large field sizes (median: 

5.47 ha). Although field sizes in FER are much larger than in KYZ (median: 2.14 ha), the spatial 

clustering of fields with the same crop type in KYZ allows for using coarser pixel sizes. To 

quantify the spatial clustering of fields, Moran´s I index (Moran, 1950) was calculated30 for the 

reference crop maps, resulting in values of 0.248 (KYZ), which indicates that fields with the 

same crop tended to be more clustered, and 0.042 (FER), which indicates that the spatial 

pattern of fields with the same crop was more dispersed in FER. Fields in KYZ were 

characterized by a much higher degree of spatial clustering than in FER. 

Over the KHO landscape it was illustrated how the definitions of suitable pixel sizes changed 

considerably over the years. There is evidence that in this landscape the framework reacted to 

environmental factors like differing magnitudes of irrigation water availability, in particular the 

definition of 𝜈𝑚𝑖𝑛 seemed to be affected. Further, the method reacted to changes in the cover fractions 

or average field sizes of certain crops over the years, which might be related to management decisions. 

For operational mapping efforts the similarity of classification performance using pure or mixed pixels 

is promising. In particular at coarser scales, training-pixels can be selected with some flexibility 

regarding the purity and there is even an increase in classifier performance when using coarser pixels. 

This allows for a relaxation of the sampling scheme, because the spectral variability of individual crop 

types is better reflected, e.g. when pure reference pixels are not sufficiently available, or if pixels were to 

be selected on-screen by visual inspection of NDVI profiles, which was also concluded by Shao and 

Lunetta (2012) in their study on the effect of mixed pixels in classification accuracy. In this regard the 

framework proposed here demonstrated a detailed evaluation of the impact of pixel heterogeneity in all 

stages of image classification. This allowed for a more rigorous evaluation of classification accuracy, 

thereby extending other studies by the inclusion of the multi-scale assessment and for a continuum of 

purities instead of dichotomous approaches like “pure vs. mixed” (Foody, 1996c; Hsieh et al., 2001; Shao 

and Lunetta, 2012). 

Over the landscapes studied in this paper, the parameters were set with the same values in order to 

illustrate how the method responds to different spatial patterns. However, the proposed framework is 

flexible to be adapted to the end-user´s needs. The selected settings can be adopted separately for 

different agricultural sites, for example for some applications higher thresholds for CAi might be needed 

or some relaxation of the thresholds might be required over more fragmented landscapes. Further, the 

experiments could be repeated for more years of observation, providing that suitable high-resolution 

imagery is available, in order to trace the resolution requirements over the longer run and to better 

understand the impact of environmental factors (e.g. water availability) on their definition. A more 

detailed exercise could also be considered by applying the methodology to a wider range of agricultural 

landscapes. Possible candidate sites might be found in the U.S., with relatively large field sizes (Wardlow 

and Egbert, 2008), or sites in China with field sizes reported smaller than 2 ha (Duveiller and Defourny, 

2010). Further, a fine diagnostic tailored to a specific instrument could be envisaged if the specific sensor 

spatial response can be reasonably approximated (Duveiller et al., 2011). The notion of 𝜈𝑚𝑖𝑛 might not 

be appropriate in every case, e.g. when very fine pixel sizes can be used within an object-based 

classification context, which will most likely outperform the pixel-based approach, e.g. by decreasing 

the effect of high within class variability (see section 6.3.3). 

 

 

                                                      
30: Moran´s I was calculated with the software ArcGIS (ArcMapTM 10.1), using the Spatial Statistics Tools from ESRI ® (ESRI, 
2013). Moran's I values near +1.0 indicate spatial clustering while values near –1.0 indicate dispersion. 
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Finally it should be noted that, although it was demonstrated that crops can be effectively identified 

in pixels with low purity, some application might require higher thresholds to get purer pixels, e.g. in 

crop growth monitoring (Duveiller and Defourny, 2010), which would further limit the range of suitable 

pixel sizes. In case the classified pixels are to be used for area estimation directly via pixel counting, a 

fine-tuning could be putting more emphasis on the recall relative to precision in the 𝐹𝛽-measure, which 

defines the CAi parameter, by selecting higher values for the 𝛽 parameter in equation 6-8. 

 Pixel purity considers the degree of pixel mixing with regard to the proportion of signal from a 

specific target structure encoded in a pixel, which is primarily defined by the optical properties of the 

sensing system. Yet, even if a selected pixel is pure in this sense the crop signal encoded in the pixel still 

might be characterized by heterogeneous growing conditions. Hence, it might be discarded if the 

selected pixels are to be valuable for monitoring and if the signal should be from a surface with a more 

homogeneous behaviour along the growing season (e.g. to have distinctive temporal NDVI signature). 

Hence, the behaviour of the alpha quadratic entropy 𝐻∝(𝑥) (which defines the AQE criterion) might be 

relaxed by selecting lower values for the 𝛼 parameter, so that the uncertainty measure can become less 

sensitive to changes in the elements within 𝑝𝑟(𝓍), thereby adjusting its sensibility to surface 

heterogeneity and intra-class variability in the pixel populations. 

6.6. Conclusions 

The overall objective of this research was to analyse the EO data requirements in terms of pixel size 

and pixel purity, respectively for crop identification over different agricultural landscapes. A framework 

was proposed that automatically defines pixel size requirements for crop identification, based on user-

defined criteria, for different crop types and for different agro-ecological landscapes in Middle Asia.  

The practical utility of the proposed framework in the context of agricultural crop mapping include 

guidance (i) for selecting appropriate imagery (e.g. suitable pixel sizes) for applications focussed on crop 

mapping, (ii) for the selection of thresholds for minimum pixel purity required for the effective 

identification of crops in coarser pixels, and (iii) for EO data requirements for early crop inventory. 

Different crops show marked individuality regarding the EO data requirements (in terms of pixel size 

and purity, respectively), and the effective identification of one given crop may considerably differ over 

different landscapes. It was shown that the per crop classification accuracy is affected by the pixel size 

of the image data, relative to the features (fields) in the image. This is most probably due to the reduced 

within class variability in coarser observation supports. Hence, image classification performance 

(irrespective of the metric used for its evaluation) could be improved by the use of suitable (and in most 

cases: coarser) pixel sizes. 

Many studies rely on geostatistical indicators to find the optimized spatial support for image 

classification, however it might not be optimal to rely on only one parameter to define this. Further, 

these indicators are based on the entire image, whilst crop identification only focusses on a subset of 

spatial structures, which is one of the peculiar advantages of the framework on which this study is based 

on (Duveiller and Defourny, 2010). Further, the framework proposed in this study explicitly considers 

the influence of the temporal dimension on the definition of suitable pixel sizes for crop classification, 

which was not undertaken in previous studies such as from McCloy and Bøcher (2007). 

The choice of supervised classifier algorithms only had a minor impact on the definition of 𝜈𝑚𝑎𝑥 or 

𝜈𝑚𝑖𝑛 , respectively. More pronounced was the impact of the input data, e.g. red edge features enhanced 

the range of suitable pixel sizes for crop identification, and in general the inclusion of red edge feature 

results in higher accuracies. Unsupervised crop identification is possible, but limited to rather small 

ranges of pixel sizes and at the expense of high pixel purity requirements, compared to the supervised 
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strategies. Early detection of crops was shown to depend not only on the acquisition timing of images 

but also on the landscape pattern, and on the irrigation timing and start of season. 

This study emphasizes the general need to analyse the determinants and key factors for crop mapping 

in very dynamic agricultural landscapes, including the spatiotemporal heterogeneity of crop types. This 

can be reasoned with the finding that different crop types could be detected at quite different ranges of 

pixel sizes over a given landscape, and that these pixel sizes requirements can considerably differed for 

one type of crop over different landscapes. The framework presented in this study not only provides 

insight into factors that influence the definition spatial resolution requirements. Such a diagnostic tool 

could further be of great utility to guide users in choosing the most appropriate imagery for their 

application, which is not restricted to crop identification. It can be of great value to guide planners in 

the technical implementation of any future crop-mapping component in an operational agricultural 

monitoring at the regional scale in Middle Asia, e.g. by evaluating the adequacy of existing remote 

sensing systems with regard to their use for crop mapping. 

While the examples and context used in this study are from agriculture, the findings concerning the 

effects of spatial resolution, pixel purity and landscape characteristics are generic and applicable to 

many other application domains of remote sensing, including radar or hyper spectral data. 

 

 



  

 

Chapter 7 

OVERALL DISCUSSION AND CONCLUSIONS 

Making use of remote sensing data, this thesis was introduced within the context of crop mapping, 

which is one fundamental input for agricultural production monitoring. The focus was on two specific 

research issues related to crop mapping: (i) improving crop classification at the per-field scale and 

providing information on the spatial distribution of classification uncertainty, and (ii) the identification 

of EO data requirements for an effective crop identification over heterogeneous agro-ecological 

landscapes. 

The first issue is challenging because of the complex configuration and spatial heterogeneity of agro-

ecological landscapes, and the temporal variability of crop phenology due to variable environmental and 

management conditions. Next to this, new remote sensing systems like RapidEye or the upcoming 

Sentinel-2 undoubtedly offer great potentials to classify crops with a descent standard of accuracy, but 

classifier algorithms must handle this huge amount of data. Further, these concepts must be robust and 

transferable over different landscapes and in a multi-year perspective, respectively to provide 

consistently accurate information on the spatial distribution of crops to be suitable for an operational 

crop monitoring. When crop maps are used as input to crop-specific condition modelling, the spatial 

distribution of error in crop maps (e.g. the classification uncertainty) should be quantified in order to 

be able to refine the maps or to filter out undesirable results from later modelling. 

The second issue is challenging because EO data requirements for an operational crop specific 

monitoring, which requires the identification of crops in pixels, can differ significantly among different 

landscapes. A high revisit frequency is often needed to properly characterize the temporal evolution of 

cropped areas and to accurately identify crops. Further, a large geographical coverage (swath) is desired 

to have information about crops over large areas. Yet, crop mapping at regional to global scales is 

confronted with inherent physical limitations of remote sensing systems, because most often the 

observation supports of imaging systems that fulfil these requirements (frequent revisit rates and large 

swaths) are coarser than it might be desired. Crop classification with such coarser pixels suffers from 

this compromise when applied to heterogeneous agro-ecological landscapes around the world because 

of the effect of mixed pixels on the classification accuracy. The challenge here becomes to define suitable 

pixel sizes for an accurate identification of crops in such coarser and potentially mixed pixels (e.g. 

MODIS with 250 m, or the upcoming Sentinel-3 with 300 m pixel size). 

Consequently, the overall objective of this thesis was to develop (i) advanced concepts and techniques 

for remote sensing-based agricultural crop classification at the per-field scale for creating accurate crop 

masks and (ii) a conceptual framework to quantitatively define suitable pixel sizes for the specific task 

of crop identification. Applications of these methods were given for heterogeneous agro-ecological 

landscapes in Middle Asia. Three research questions, which structure this synthesis, were 

formulated in the introduction chapter and investigated to contribute to the overall objective of this 

thesis. 
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What is the influence of feature selection on the accuracy and uncertainty in 
object-based crop classification?  

After recalling concepts to derive membership estimates (soft outputs) from different classifier 

algorithms for measuring spatial classification uncertainty, it was established that information provided 

by different types of features is of complementary importance for crop classification. The different 

groups of features tested were of unequal importance for the classification of crops. It was further 

demonstrated how combining different kinds of features into one comprehensive multi-temporal input 

data set was useful to achieve high classification accuracies, which was also demonstrated in other 

studies (Loosvelt et al., 2012a; Peña-Barragán et al., 2011; Rodriguez-Galiano et al., 2012a). However 

the classifier algorithm must handle this amount of data. In this regard, a potential disadvantage of such 

a multi-type, multi-temporal data stack is its huge dimensionality. The classification performance of the 

SVM, which was used in this study, was claimed to be unaffected by the number of features (Cortes and 

Vapnik, 1995). Yet, in this study SVM was shown to be affected by the feature space size, which was also 

found by Pal and Foody (2010) and Waske et al. (2010). However, after a feature selection based on the 

RF feature importance score was performed, the SVM could even outreach the RF that was applied to 

the same data sets, demonstrating the general superiority of SVM in crop classification, confirming 

studies by Foody and Mathur (2006), Mathur and Foody (2008), or Waske et al. (2010). The RF in turn 

was quite unaffected by the huge feature space size, which was also demonstrated by Rodriguez-Galiano 

et al. (2012a). The interpretation of the RF feature score gave insight into the importance of single 

features and groups of features, and could be used as an alternative means to evaluate the relative 

importance of acquisition dates for classifying crops. Using this information the most important 

acquisition dates for crop classification could be determined, which provides an alternative means to 

more complex and computationally demanding experiments (Conrad et al., 2013; Murakami et al., 2001; 

Van Niel and Mcvicar, 2004). Features based on the red edge band of the RapidEye system were shown 

to be of particular importance for accurate classification, which is in line with a previous study from 

Schuster et al. (2012). 

It was emphasized that classification uncertainty is not evenly distributed in the maps, but associated 

with different classes and possibly influenced by environmental factors, e.g. irrigation water availability. 

Whilst other studies found correlations between objet size and classification uncertainty (Yu et al., 

2008), no such correlation was found here, most obvious because a relatively small range of object sizes 

was investigated. Yet, indication for an influence of irrigation water availability on classification 

uncertainty was discussed, e.g. there were spatial trends of increasing classification uncertainty, but 

further research is needed to quantify this. In accordance with Comber et al. (2012) it is suggested that 

the way of using the standard protocol for reporting classification accuracy should be reconsidered.  

In an operational crop mapping context it could be envisaged to add such spatial classification 

uncertainty information as a supplement to crop maps, e.g. like the Quality Assurance Science Data Set 

(QA-SDS) layers in MODIS, which could be a useful input for agricultural production monitoring. For 

instance, this information could be used to mask out unreliable regions from later modelling. 

Classification uncertainty was further shown to decrease when feature space size is reduced, but even 

when selecting fewer features than necessary to achieve peak classification accuracy, the uncertainty 

could still decrease if incorrectly classified pixels were associated with lower uncertainties, as was 

demonstrated in two of the four study sites. This is in line with a study on the RF algorithm (Loosvelt et 

al. 2012a). 
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The main findings can be summarized as follows: 

 Uncertainty information from libsvm is a valuable supplement to tradition accuracy metrics 

like overall classification accuracy, and an effective predictor of classification error 

(classification uncertainty) in maps. 

 The uncertainty of correctly classified test cases generally decreased with decreasing input 

space size, but incorrectly classified test cases were not necessarily associated with high 

levels of uncertainty. 

 The classification uncertainty analysis revealed the existence of spatial uncertainty trends 

in some of the test sites. High classification uncertainty could be an indicator for water 

scarcity. 

 A decline in classification uncertainty was realized when selecting a smaller number of 

features than required to achieve peak accuracy, but without significantly reducing the 

classification accuracy. 

Suggestions for potential improvements to the approach: 

 A fine-tuning of the methodology could be the inclusion of feature selection strategies that 

exploit criteria intrinsically related to the SVM classifier properties. 

 A more rigorous investigation could shed light on the interplay between environmental 

factors (e.g. water stress) and classification uncertainty, as this is particularly interesting 

when maps are used in spatially explicit models (e.g. crop yield). Regression analysis could 

be performed to evaluate explanatory factors for different levels of uncertainty, provided 

that suitable spatial data is available. 

How do different classifier algorithms perform in crop classification at the 
object-level, and can combining classifier algorithms improve the overall 
quality of crop masks? 

Different classifier algorithms (RF, SVM, and MLP) were compared with classifier combination 

schemes to classify crops at the object-level. An advanced combination operator was proposed, building 

upon existing algebraic operators that are commonly used in classifier combination. The different 

algorithms performed complementary concerning the classification of different crops, so it was difficult 

to identify the most appropriate classifier algorithms in advance. This underlines that using only one 

classifier algorithm in crop mapping might not yield the best results, which was also found by Foody et 

al. (2007). The results from the classifier combination emphasized that this technique is worthwhile for 

an improved crop classification, which was also found in other studies (Doan and Foody, 2007; Licciardi 

et al., 2009; Waske and Benediktsson, 2007).  

Yet, based solely on overall classification accuracy there appeared to be no significant advantage in 

the classifier combination in every test site, e.g. the results were only marginally better than the single 

best classifier algorithm, confirming that improvements in accuracy are not granted in classifier 

combination (Foody et al., 2007; Giacco et al., 2010). But there are other compelling reasons for 

classifier combination: the strength was its transferability and robustness when applied over different 

test sites with different classes. For instance, the range of classification accuracies over all test sites was 

smallest when applying the classifier combination. Another peculiarity of combining classifier 

algorithms was that the improvements in classification accuracy became the more pronounced the fewer 

training data were available, which was also found by Waske et al. (2010). Further, classifier 
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combination yielded classification uncertainty information that may be used to help post-classification 

refinement operations and later analyses. A much smaller proportion of cases were classified with high 

classification uncertainty after the classifier combination, as compared with the single classifier 

algorithms. 

Regarding the initial research question, the findings can be summarized: 

 RF, SVM, and MLP perform well but complementary on the multi-temporal image stacks. 

 The proposed classifier combination scheme increased classification accuracy, consistently 

outperformed the single classifier algorithms, and was more stable and better transferable 

over all landscapes tested and also to data sets from another year. 

 The proposed classifier combination scheme was most accurate when testing on very small 

input data sets or training sets, respectively and is rather simple in implementation, which 

makes this approach well suited for operational applications. 

 Classifier combination resulted in reduced classification uncertainty, and levelled out the 

spatial differences in classification uncertainty in the crop maps, as compared with the 

single classifier algorithms. 

There are possible perspectives for pursuing this approach, but the most promising could be: 

 The combination rules could be rewritten with fuzzy data fusion rules, which might allow 

for a finer definition and weighting of the classifier reliability during the combination 

process. This could in turn further enhance classification accuracy. 

 The proposed approached could be tested over a wider range of landscapes with more crop 

classes and in particular over several years to further evaluate its transferability and 

stability, respectively and to further evaluate its utility for an operational application.  

What is the spatial resolution requirement for crop identification via image 
classification and how do these requirements change over different landscapes?  

To answer this question a methodological framework was established in this thesis with the objective 

to quantitatively define these requirements, based on user-defined criteria. This was achieved by 

simulating how agricultural landscapes, and more specifically the fields covered by a crop of interest, 

are seen by instruments with increasingly coarser resolving power. The concept of crop specific pixel 

purity, defined as the degree of homogeneity of the signal encoded in a pixel with respect to the target 

crop type, is used to analyse how mixed the pixels can be (as they become coarser), without undermining 

their capacity to describe the desired surface properties, e.g. to identify crop specific signals for a proper 

(accurate) crop classification.  

Having applied this framework to the time series data in the four test sites, it was demonstrated how 

different crops show marked individuality regarding the pixel size and pixel purity requirements, and 

that there were different ranges of pixel sizes that were suitable for crop identification. These results 

demonstrated that it might not be possible to define one single optimal scale (Aplin, 2006) and it is in 

line with studies that demonstrated how the definition of suitable pixel sizes for a given application vary 

over different landscapes (Duveiller and Defourny, 2010; McCloy and Bøcher, 2007; Ozdogan et al., 

2006; Woodcock and Strahler, 1987). Yet, previous studies were either limited to reporting pixel size 

requirements with regard to one specific structure in the landscapes (e.g. only fields with one certain 

crop) or by using only one parameter (e.g. overall classification accuracy or image variance) to find this 

optimal pixel size. Moreover, the findings in these studies were based on the analysis of mono-temporal 
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satellite images. In this regard, the proposed framework has some advantages over these studies, 

because it explored the effect of the observation length (e.g. number of acquisitions) on the definition of 

suitable pixel sizes for crop identification. These results challenge findings of previous studies, because 

the definition of what is “optimal” scale, or the optimal range of suitable pixel sizes, was demonstrated 

to vary along the vegetation season. This can be interpreted by changes in the surface spatial 

heterogeneity (Garrigues et al., 2008a) and demonstrates how a synergistic view on spatial and temporal 

scale can result in a more comprehensive understanding of the definition of suitable pixels sizes (Aplin, 

2006). 

Further, there is indication that the pixel sizes that yield the best crop identification are not 

necessarily the ones that yield the best crop area estimation, which underlines that the definition of 

suitable pixel sizes can be application-dependent (Duveiller et al., 2010). Whilst the application reported 

here is focussed on pixel-based approaches, with the interest being the general impact of pixel size on 

crop identification, object-based approaches might be preferred when using very small pixels as these 

tend to be more accurate (Lobo et al., 1996), although this is not granted (Duro et al., 2012). 

This study emphasized the general need to analyse the determinants and key factors for crop 

mapping in very dynamic agricultural landscapes, including the spatiotemporal heterogeneity of crop 

types. This can be reasoned with the finding that different crop types can be detected at quite different 

ranges of pixel sizes over a given landscape, and that these pixel sizes requirements can considerably 

differ for one type of crop over different landscapes and along the season, respectively. The framework 

presented in this study not only provides insight into factors that influence the spatial resolution 

requirements. Such a diagnostic tool could further be of great utility to guide users in choosing the most 

appropriate imagery for their application, which is not restricted to crop identification. It can be of great 

utility to guide planners in the technical implementation of any future crop-mapping component in an 

operational agricultural monitoring, e.g. by evaluating the adequacy of existing remote sensing systems 

with regard to their use for crop identification. As a final conclusion to this third research question, the 

following findings can be summarized: 

 Different crops show marked individuality regarding the EO data requirements (in terms of 

pixel size and purity, respectively), and the requirements for an effective identification of 

one given crop type may considerably differ over different landscapes. 

 The choice of classifier algorithm only had a minor impact on the definition of suitable pixel 

sizes. More pronounced was the impact of observation length and input data, e.g. red edge 

features enhanced the range of suitable pixel sizes for crop identification. 

 It was discussed how the spatial pattern of agricultural fields impacted the definition of pixel 

size requirements for crop mapping. 

 In the multi-year perspective environmental cues like irrigation water availability are 

hypothesized to further influence the definition of pixel suitability, e.g. by enhancing intra 

field heterogeneity due to irrigation water shortages. 

Potential improvements and future applications of the framework are: 

 An application with high-resolution time series containing more acquisition dates could be 

envisaged, given that sufficient images are available, to better approximate the revisit 

frequency of sensors that have a coarser GSD like MODIS or Sentinel-3. The framework 

could be extended by further evaluating region specific requirements regarding the type of 

data (optical, radar, or hyper-spectral) to find out which is best suited for specific 

landscapes. 
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 The experiments could be repeated in other years in order to trace the resolution 

requirements over the longer run and to better understand the impact of environmental 

cues (e.g. water availability) on their definition. An application over a wider range of 

different agricultural landscapes could be envisaged (e.g. in Africa, China, the U.S., or 

Europe), and possible spatial shifts in pixel size requirements could be analysed by applying 

the framework over several subsets within one landscape. 

 Whilst the examples presented in this study are from agriculture, the framework can be 

applied to any other type of classes, e.g. natural land cover types. Finally, with very coarse 

pixel sizes one might try to narrow the classification problem down to a simple binary case 

(e.g. cropland vs. non-cropland). 

Synthesis and prospect 

Regarding the operationalization of EO-based techniques for agricultural monitoring and its 

application to a broader range of agricultural landscapes, it can be noted that, despite the high 

performance of existing methods (e.g. classifier algorithms), transferability and stability of such 

methods remain one important research issue. This means that methods developed and tested in one 

place might not necessarily be portable to another place or over several years, respectively. Hence, 

investigating concepts to employ or combine existing techniques that can adapt to specific regional or 

local contexts seems worthwhile. To have one example, the use of multi-temporal data sets with different 

kind of data has advantages over mono-temporal data sets and can enhance classification accuracy. Yet, 

is was demonstrated in this study that the configuration of such huge data sets (e.g. its size) had to be 

optimised for the classifier algorithms and classes investigated, respectively and for each test site. In this 

context, classifier combination is a worthwhile and effective method that should be preferred in an 

operational crop-mapping context, because the findings in this thesis indicate that these concepts can 

be more stable, e.g. they consistently provided higher classification accuracies over different landscapes 

and over different years than individual classifier algorithms. Specifically in Middle Asia, which was 

selected as study region for this thesis, classifier combination makes sense due to its easy 

implementation and because it enhanced classification accuracy for classes with insufficient training 

samples. This observation makes it interesting for operational contexts and when field reference data 

availability is limited. Further, an investigation of multi-sensory remote sensing data, including radar 

or even hyper spectral, seems worthwhile. Space-born radar missions provide spatially enhanced 

observations (with swaths suitable at least for local applications) with high revisit frequencies and are 

not dependent on the need for cloud free atmospherically conditions. The concepts and frameworks 

presented in this thesis are not restricted to optical data. 

Recalling Figure 1-1 in the introduction chapter, it can be noted that crop identification, which is one 

prerequisite for crop specific monitoring, is possible over a wide range of pixel sizes and over various 

landscapes, but selecting an appropriate imagery is far from being trivial. Consequently, the application 

of existing satellite sensors might not be equally suitable for crop identification and, by extension, for 

crop specific monitoring in different heterogeneous agricultural landscapes. In this regard, similar to 

the transferability of methods, the application of only one certain kind of EO data (e.g. with one specific 

pixel size) over different landscapes needs to be revisited and the synergistic use of multi-scale data, e.g. 

combining remote sensing imagery of both fine and coarse spatial resolution, should be fostered. The 

necessity to predict and control the effects of spatial and temporal scale on crop classification is 

recognized here as a major goal to achieve in EO-based agricultural monitoring, specifically if the focus 

is on crop specific monitoring. 
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APPENDIX 

7.  

A.1: Imaging instruments used in crop mapping and monitoring 

Extensive information about instruments including hyper-spectral, microwave and radar systems, 

Lidar, and airborne systems can be found in Kramer and Cracknell (2008) and Kramer (2001). One way 

to categorize satellite systems is by the scope of the study area, e.g. local, regional, and global (Ozdogan 

et al., 2010), but more commonly by resolution or pixel size, which is their ability to resolve high spatial 

frequencies (Schowengerdt, 2007). NASA´s Landsat fleet with its Multi-Spectral Scanner (MSS), TM 

and Enhanced Thematic Mapper (ETM+) instruments on board of the Landsat 1–7 platforms succeeds 

in observing the earth since the launch of the first Landsat satellite on 23-Jul 1972. In 2013 the Landsat 

8 mission was launched to continue the legacy of the Landsat series. The ASTER sensor on board the 

Terra platform complements the fleet with high-resolution observation capabilities. These instruments 

provide information on pixel grids in the order of 60 m (e.g. MSS) to 15 m (e.g. ASTER, ETM+). The 

French SPOT satellites that include the HRV, HRVIR and HRG instruments with pixel grids between 

20 m–2.5 m complement this. In 2008 the German RapidEye mission complemented these well-

established passive optical systems. RapidEye is a constellation of five satellites that provide five band 

multi-spectral images with a ground sampling distance (GSD) of 6.5 m at nadir (Tyc et al., 2005). One 

of its features is its red edge canal that measures the spectral region between the red absorbance and the 

near infrared (NIR) reflection (690–730 nm) for vegetation characterization (Eitel et al., 2007; Read et 

al., 2002). Its high frequent revisit times, spatial resolution, and the red edge band predestine it for crop 

mapping (Conrad et al., 2011a; Löw et al., 2012; Schuster et al., 2012) and allows for assessing within 

field heterogeneity (Ehammer et al., 2010). 

Table A-1: Overview of some commonly used sensor systems in crop mapping applications, sorted by their nominal 
ground sampling distance (at nadir). Asterisk indicates that the scale of application is given according to Ozdogan 
et al. (2010). Examples for applications of these systems in agricultural studies are given. 

System 
GSD 
[m] 

Swath 
[km] 

Revisit times 
[days] 

Scale of 
application 

Free of 
charge 

Application 

Quickbird 2.4 16.5 
Irregular, on 

demand 
Local No 

Myint et al. (2011), Turker and 
Ozdarici (2011), Yang et al. (2007) 

Ikonos 4 11 
Irregular, on 

demand 
Local No Turker and Ozdarici (2011) 

RapidEye 6.5 77 
3–5, on 
demand 

Local, regional No 
Conrad et al. (2011b), Löw et al. 

(2012) 
SPOT-5 

HRG 
20 60 

Irregular, on 
demand 

Local* No Foody (2005), Murakami et al. (2001) 

ASTER 15 60 
Irregular, on 

demand 
Local* No 

Conrad et al. (2010), Peña-Barragán 
et al. (2011) 

Landsat-5 
TM / 7 
ETM+ 

30 180 16 
Local*, 

regional*, 
continental* 

Yes 
El-Magd and Tanton (2003), Turker 

and Arikan (2005) 

MODIS 250 2,330 1–3 
Regional*, 

continental*, 
global* 

Yes 
Conrad et al. (2011a), Wardlow and 

Egbert (2008), Wardlow et al. (2007) 
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A.2: Classifier algorithms 

The classification algorithms employed in this thesis belong to the group of supervised classifiers 

algorithms (Tso and Mather, 2009), which can further be distinguished in parametric and non-

parametric. Supervised algorithms rely on the pre-existence of reference data (sometimes referred to as 

a priori knowledge), which contains class-specific information and data structure. As is beyond the scope 

of this thesis to evaluate or improve a broad range of classifier algorithms (let alone unsupervised 

approaches) the interested reader is referred to Richards and Jia (2005) and Tso and Mather (2009) for 

further details and additional references. This thesis employs three recent non-parametric algorithms, 

the RF, SVM and MLP. Further, one traditional probabilistic approach, the MLC, is introduced and will 

be used in the experiments for comparison. Each classifier algorithm used in this thesis is implemented 

in a “package” within the freely available programming environment R (R Development Core Team, 

2012): 

 Random forest: randomForest package (Liaw, 2013). 

 Support vector machine: e1071 package (Meyer et al., 2012). 

 Multilayer perceptron: MultilayerPerceptron function in RWeka package (Hornik et al., 

2013). 

 Maximum likelihood classifier: rasclass package (Wiesmann and Quinn, 2013). 

Random forest 

The RF of Breiman (2001) belongs to the non-parametric machine learning algorithms. It consists 

of an ensemble of classification and regression tree (CART)-like structured classifiers (Breiman et al., 

1984), based on bootstrapped samples of the training data (Figure A-1) (Breiman, 2001). It applies the 

ideas of bagging and random-subspace strategies to tree structured classifiers. Each tree within the 

forest is trained independently (“weak learners”) from the others based on a subset of the original 

training samples, which is called the “in-the-bag” sample in bagging31 (Breiman, 1996). The split rule at 

each split in the trees is determined using this randomly selected subset (with replacement) of the input 

data. The remaining, so-called “bootstrap sample” is put down the tree to generate a test classification, 

and to calculate the out-of-bag error (OOB error). The OOB prediction error can provide a more 

conservative classification error assessment than using a separate test set for the accuracy assessment 

(Gislason et al., 2006). OOB error rates tend to stabilize with an increasing number of trees in the 

ensemble (Hastie et al., 2011; Rodriguez-Galiano et al., 2012b).  

Each tree in the ensemble is grown to its maximum depth without pruning using the Gini index of 

node impurity as a splitting criterion (Breiman et al., 1984), calculated as: 

𝐺 = ∑ 𝑝𝑖(1 − 𝑝𝑖)𝑛
𝑖=1                              Eq.  i 

where 𝑝𝑖  is the probability or relative frequency of class 𝑖 at a node, computed as: 

𝑝𝑖 =
𝑛𝑖

𝑛
                            Eq.  ii 

where 𝑛𝑖 is the total number of samples belonging to 𝑖, and 𝑛 the number of samples within one node. 

Gini ranges from [0,1] and reaches zero at a maximum level of homogeneity of a resulting split at a given 

                                                      
31: An acronym for bootstrap aggregation. 
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node. The Gini index determines for each node the best binary split. This is done by comparing the total 

impurity of child nodes that result from a possible split at a parent node to the parent Gini value, and 

the final split is successful when the Gini of the children is less than that of a parent (e.g. the split with 

maximum reduction in impurity). The tree reaches its maximum depth when the splitting reaches a Gini 

of zero, which means only one class is present at each terminal node. 

Through the strategy of random permutation of training samples and features the computational 

complexity of the trees within the ensemble is kept simple and the correlation between the trees is 

decreased. This in turn enables the RF to handle multi-modal distributions, to deal with huge input 

feature spaces, and antagonizes data over-fitting that is associated with other tree bases classifier 

algorithms (Breiman, 2001). From a computational perspective RF is relatively effective when using 

huge feature sets, because the trees in the RF are only based on subsets of the input data (Gislason et 

al., 2006). The generation of 𝑛 trees results in 𝑛 class predictions 𝐶𝑛. The final class assignment to a case 

𝑥 (pixel or object, depending on the application) is based on fusion via majority voting: 

𝐶𝑓𝑖𝑛(𝑥) = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑒{𝐶𝑛(𝑥)}                         Eq.  iii 

where  𝐶𝑛(𝑥) is the prediction of the 𝑛th tree. 

Figure A-1: Schematic overview of a RF, separating four classes (a-d). 

Studies have shown the good performance of RF in land cover and crop mapping applications (Brown 

et al., 2013; Chan et al., 2008; Pal, 2005; Rodriguez-Galiano et al., 2012a, 2012b; Vintrou et al., 2012; 

Waske and Braun, 2009; Watts et al., 2011; Conrad et al., 2013; Löw et al., 2012; Watts et al., 2009). RF 

were shown to be robust against huge number of input features, and can be used for feature selection 

(Pal and Foody, 2010). The application of RF requires two user-defined parameters to be optimized: 

number 𝑛 of trees in the ensemble, and the number of features used for slitting each node in the trees. 

The number of trees should be high enough to assure convergence of the OOB error estimates, whilst 

the number of features per split is usually set to the square root of all features (Gislason et al., 2006). In 

general 500 trees per ensemble give reasonable results (Gislason et al., 2006). In remote sensing-based 

applications the influence of these parameter settings on the output (e.g. classification accuracy) was 

demonstrated in Chan et al. (2008), Duro et al. (2012), and Rodriguez-Galiano et al. (2012b) and should 

not be neglected. 
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Support vector machines 

In remote sensing applications SVM became very popular because of their ability to handle small 

training sets and high-dimensional data, and many applications can be found with hyper-spectral data 

sets (Giacco et al., 2010; Melgani and Bruzzone, 2004; Mountrakis et al., 2011). They were shown to 

perform competitive or even more accurate than other classifier algorithms (Huang et al., 2002a; 

Melgani and Bruzzone, 2004; Shao and Lunetta, 2012; Waske and Benediktsson, 2007). Emerging 

applications for multi-spectral and multi-temporal data sets are given in Huang et al. (2002a) and Shao 

and Lunetta (2012) and for hyper-spectral data in Melgani and Bruzzone (2004). More recent 

applications of SVM in crop classification can be found in Foody et al. (2006), Löw et al. (2012, 2013a), 

Mathur and Foody (2008), Waske and Benediktsson (2007), and Waske et al. (2009). Burges (1998) 

provides a detailed introduction of SVM to the remote sensing community and Mountrakis et al. (2011) 

summarized empirical results from over 100 articles using the SVM.  

SVM is a non-parametric classification approach that can separate multi-modal class distributions 

in high-dimensional feature spaces by using kernel functions, where the optimization problem is solved 

based on structural risk minimization (SRM) (Cortes and Vapnik, 1995). SVM is based on the notion of 

fitting an optimal separating hyper-plane (OSH) to the training data of two classes within the multi-

dimensional feature space (Foody and Mathur, 2004), and to maximize the margins between the OSH 

and the closest training samples (the so-called support vectors). SVM focus only the training samples 

that are closest to the edge of the class distributions in the feature space (Mathur and Foody, 2008). 

Based on the mapping of the data into a higher dimensional Hilbert feature space (“kernel-trick”) the 

OSH can be fit to a more complex class distribution, which might not be separable in the original input 

space. In this regard one of the most appealing properties of SVMs is their high capacity for 

generalization with relatively small training data set sizes (Mathur and Foody, 2008). 

Two broad strategies for SVM exist: OAO and OAA. By undertaking a set of 𝑛(𝑛 − 1)/2  classifications 

however (where 𝑛 = number of classes) a multi-class classification can be derived, the so-called OAO 

approach, and finally the outputs from the individually trained binary classifiers are combined by a 

majority voting strategy (Hsu and Lin, 2002). The other approach is OAA where the classification 

problem is split into 𝑛 classifications, where in each binary classification one class is separated from all 

the others. Although the OAO approach suggests a higher number of SVMs to be trained the 

computation time is usually less compared to OAA, because the binary problems are smaller and the 

optimization problem scales super-linearly (Karatzoglou et al., 2006). Further, the OAO approach was 

shown to perform very accurate when solving classification problems with many classes (Hsu and Lin, 

2002).  

A more rigorous and detailed description of SVM is given in Burges (1998). In the following the basis 

of SVM classification is illustrated by the example of a binary classification problem for linear separable 

cases. Let for the binary classification problem with two classes in a n-dimensional feature space 𝔎𝑛 , 𝑥𝑖  ∈

 𝔎𝑛 , 𝑖 = 1,2, … 𝑀 be a training set of 𝑀 samples with class labels 𝑦𝑖 ∈  {1, −1}. A hyperplane separates 

these two classes and is defined by the decision function 

𝑓(𝑥) = 𝑤 ∗ 𝑥 + 𝑏                           Eq.  iv 

where 𝑥 is a point on the hyperplane, 𝑤 is a normal vector to the hyperplane, 𝑏 the bias, and |𝑏|/‖𝑤‖ 

is the distance between the OSH and the origin.  
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The support vectors lie on two hyperplanes 𝐻1 and 𝐻2, which are in turn parallel to the OSH, and are 

defined by 

𝑤𝑥𝑖 + 𝑏 =  ±1.                            Eq.  v 

The resulting margin between these two hyper-planes is 
2

‖𝑤‖
. The aim in SVM classification here 

becomes to maximize the margin, based on the following optimization problem 

𝑚𝑖𝑛 {
‖𝑤‖2

2
+ 𝐶 ∑ 𝜉𝑖

𝑀
𝑖=1 }                           Eq.  vi 

where  𝜉𝑖 is the slack variable that indicate the distance the sample is from the hyperplane 𝐻1or 𝐻2 

that passes through the support vectors of the class to which the sample belongs and 𝐶 the regularization 

parameter that is added as a penalty for misclassified cases that lie on the wrong site of the OSH. The 

extension of this basic SVM approach to non-linear decision surfaces (see Figure A-2) can be realized by 

so-called kernel methods. This is based on a non-linear transformation of the input data to a higher 

dimensional Hilbert feature space. Through this “kernel-trick” the distribution of the data points is 

spread in a way that allows for fitting of a linear hyper-plane to a complex class distribution (Foody and 

Mathur, 2004), which is generally not separable in the original data space. This transformation process 

is done using kernels, which must meet Mercers conditions (Cortes and Vapnik, 1995). The final hyper-

plane decision function then becomes 

𝑓(𝑥) = 𝑠𝑔𝑛(∑ 𝛼𝑖𝑦𝑖
𝑀
𝑖=1 𝑘(𝑥𝑖𝑥𝑗) + 𝑏)                        Eq.  vii 

where 𝛼𝑖 denote Lagrange multipliers. Figure A-2 illustrates the concept of a SVM for a linearly non-

separable case. Kernel functions that, are commonly used in remote sensing applications are RBF, 

polynomial, and linear kernels: 

Gaussian radial basis function kernel: 

𝑘(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝 (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2

)                      Eq.  viii 

where 𝛾 controls the width of the Gaussian kernel. 

Polynomial kernel: 

𝑘(𝑥𝑖 , 𝑥𝑗)´ =  (𝑠𝑐𝑎𝑙𝑒 ∗  〈𝑥𝑖 , 𝑥𝑗〉´ + 𝑜𝑓𝑓𝑠𝑒𝑡)
𝑑𝑒𝑔𝑟𝑒𝑒

.                        Eq.  ix 

Linear kernel: 

𝑘(𝑥𝑖 , 𝑥𝑗)´ = 〈𝑥𝑖 , 𝑥𝑗〉´.                            Eq.  x 

The original output of a SVM is the distances of each case 𝑥 to the OSH. Each SVM will, for a given 

sample 𝑥, compute a distance 𝑑𝑖(𝑥), 𝑖 = 1,2, … , 𝐿 that 𝑥 has to the hyperplane. The distances can be used 

to determine the final class label, depending on the multi-class strategy chosen: in the OAO approach a 

set of 𝑛(𝑛 − 1)/2  distances is created and can be transferred to class labels (Chang and Lin, 2011). 
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Figure A-2: Concept of a SVM for a linearly non-separable case of classes 𝑥𝑖 and 𝑥𝑗. The circles and triangles indicate 

the samples of class 𝑥𝑖 and 𝑥𝑗, respectively. The grey samples refer to the support vectors, which lie on the two 

separating hyper-planes 𝐻1and 𝐻2. The OSH is between these two functions (hyper-planes). 

Multilayer perceptron neural networks 

ANNs are a group of non-parametric classifier algorithms that can solve complex non-linear multi-

class problems (Richards and Jia, 2005). ANN are composed of an interconnected group of nodes, which 

use mathematical methods to process information (Hu and Weng, 2009). There exist a variety of ANN 

models (or “architectures”), e.g. self-organizing feature maps (SOM), counter-propagation networks, 

and Hopfield networks. However the feed-forward MLP with back-error propagation (BP) is one of the 

most widely used neural network architectures in remote sensing applications (Benediktsson et al., 

1990; Foody, 1995b; Kavzoglu and Mather, 2003).  

The MLP is characterized by a typical layer structure, where each layer has several nodes (“artificial 

neurons”), the basic units of the MLP. The MLP is a self-adaptive system whose nodes were designed to 

mimic some of the functions of human brains, by summing the input information and performing a 

transformation with a mathematical function on the summed input. The widely used three-layer 

structure of the MLP (Figure A-3) has one input layer (with as many nodes as input features), one or 

more hidden layer(s) (for the actual data processing, e.g. classification), and one output layer (with as 

many nodes as classes). The nodes within each layer are connected with each other, but without 

interconnections between the neurons within the same layer. Information passing the layers is modified 

by numerical weights that are assigned to the node-interconnections, the so-called neurons. The outputs 

at each output layer node are called “activities” (Tso and Mather, 2009). During an iterative training 

process the training samples (vectors with the feature values from the training sample) are input into 
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the MLP model and the activities of the neurons are updated layer-by-layer (from input to output layer). 

The most commonly used algorithm for updating the neuronal activities and weights is the BP algorithm 

(Rumelhart et al., 1986; Tso and Mather, 2009). During the forward pass the input values are multiplied 

by weights associated with the nodes and summed, resulting in the net input 𝑥𝑗 received by a single 

neuron 𝑗, characterized with: 

𝑥𝑗 = ∑ 𝑎𝑖𝑤𝑗𝑖𝑖                            Eq.  xi 

where 𝑎𝑖 is the output (activity) from a single node 𝑗, and 𝑤𝑗𝑖  the weight of an interconnection 

between the 𝑗th and 𝑖th nodes. Adding a bias to the network affects each neuron using different values 

and changes to 

𝑥𝑗 = ∑ 𝑎𝑖𝑤𝑗𝑖 − 𝜃𝑗𝑖                          Eq.  xii 

where 𝜃𝑗 is a bias for each neuron 𝑗. A non-linear sigmoid function is commonly used to transform 𝑥𝑗 

to an output value or “activity”, and is defined as 

𝑎𝑗 =   
1

1+
1

𝑒𝑥𝑝 (
𝑥𝑗 
𝑝 )

                        Eq.  xiii 

where 𝑝 is a parameter that influences the shape of the sigmoid curve (Tso and Mather, 2009). After 

the forward pass of the input data the activities of the output layer neurons are compared with the input 

(e.g. their expected activities). The difference of the calculated output from the expected output is 

calculated with an error function, and is called “network-error”. If the difference is larger than the initial 

threshold value, the mapping algorithm updates the weights in order to minimize the difference between 

the actual and the desired output (the network error). A backward pass of the information on the 

network-error from the output layer, thereby updating the weights, accomplishes this and the whole 

process is repeated until certain criterions are fulfilled, e.g. a predefined level of accuracy or the 

maximum number of iterations is achieved. 

 
Figure A-3: Exemplary structure of a MLP neural network with the typical three layer structure: one input layer 
with n nodes (corresponding to the number of input features), one hidden layer with four nodes for classification, 

and one output layer with four nodes (corresponding to four classes a–d). 
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The performance of MLP depends on the way it is trained, because the number of free parameters 

that have to be defined by the user in the BP algorithm is larger than in SVM. They can have a significant 

impact on the performance of the model, and more precisely affect the ability of the networks to 

generalize and maximize classification accuracy (Tso and Mather, 2009). Important parameters to 

define are the initial weights, number of hidden layer nodes, momentum factor, and the learning rate. 

Further a potential effect of the feature space on the performance of the neural network has to be 

considered (Foody and Arora, 1997). Too few hidden layers can cause under-fitting of the network, 

caused by the inability of small networks to fully explore the data structure present in the training data, 

whilst in too large networks the decision boundaries in feature space may be too influenced by the 

specific properties of the training data and loose its generalizability. Tso and Mather (2009) suggest that 

one hidden layer can suffice to solve most classification problems with relatively few classes. A too high 

learning rate will cause the model to be instable and prevent it from converging, and with a too low value 

the model might end up finding a local minimum (Kavzoglu and Mather, 2003). Kavzoglu (2001) 

proposed leaning rates in the range [0.1, 0.2], momentum factors in the range [0.5, 0.6], and the initial 

values of the weights in the range [-0.25, 0.25]. Further in BP the number of iterations must be chosen 

to prevent over-fitting, which can result in a loss of generalizability of the model. In general a higher 

number of iterations lead to higher accuracies but can result in over-fitting to the training data structure 

(Atkinson and Tatnall, 1997). The use of neural network classifiers have frequently been reported in 

remote sensing classification applications (Atkinson and Tatnall, 1997; Berberoglu et al., 2000; 

Bruzzone et al., 1997, 1999; Foody, 2004; Kavzoglu and Mather, 2003; Kavzoglu, 2009; Linderman et 

al., 2004). 

Maximum likelihood classification 

The MLC is a well-known statistical (parametric) supervised classification method. MLC is a 

particular case of Bayes’ decision rule when classes are assumed to have equal priorities. It assumes that 

the probability density function of each class is multivariate and has a Gaussian distribution. A more 

detailed and rigorous description of MLC and its underlying statistics is given in Richards and Jia 

(2005), and in the following an overview is given. 

MLC assumes that each class has a class-specific probability density function. Let assume there are 

ω𝑖 , 𝑖 = 1, … 𝑛 classes, where 𝑛 is the total number of classes. The membership of a sample vector 𝑥 (e.g. 

a pixel) to a particular class ω𝑖 in a d-dimensional feature space 𝔎𝑑 , 𝑥 =  {𝑥1, 𝑥2, … 𝑥𝑑} is defined by the 

conditional probability 𝑝(ω𝑖 , 𝑥), 𝑖 = 1, … 𝑛. This gives the likelihood or posterior probability that 𝑥 

belongs to a class ω𝑖. The decision rule for classification then is 

𝑥 ∈ 𝜔𝑖 ,       𝑖𝑓       𝑝(𝜔𝑖 , 𝑥) >  𝑝(𝜔𝑗 , 𝑥).                      Eq.  xiv 

That means 𝑥 belongs to class ω𝑖 if the conditional probability 𝑝(ω𝑖 , 𝑥) of that class is maximum, yet 

these class-conditional densities 𝑝(ω, 𝑥) are usually not known a priori for the whole image and 

estimated from reference samples of each class (Richards and Jia, 2005). The class-specific information 

and data structure are estimated from reference samples, which are used to train the classifier. The 

resulting probability density functions (PDF) 𝑝(𝑥, ω𝑖) are estimated for each class (resulting in as many 

functions as classes). For each 𝑥 (e.g. pixel vector) there exists a set of 𝑛 PDFs, each giving the relative 

likelihood that this case belongs to each available class. The relationship between the known 𝑝(𝑥, ω𝑖) 

and the required 𝑝(ω𝑖 , 𝑥) is modelled as follows (Richards and Jia 2005): 
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𝑝(𝜔𝑖 , 𝑥) =  𝑝(𝑥, 𝜔𝑗)𝑝(𝜔𝑖)/𝑝(𝑥)                         Eq.  xv 

where 𝑝(ω𝑖) is the so called a priori probability that a class ω𝑖 occurs in the imagery, and is  estimated 

from the training data before classification. 

The final class assignment then is calculated as: 

𝜔 ∈ 𝑥𝑖 ,       𝑖𝑓       𝑝(𝑥, 𝜔𝑖)𝑝(𝜔𝑖) >  𝑝(𝑥, 𝜔𝑗)𝑝(𝜔𝑗),                      Eq.  xvi 

where 𝑝(𝑥, ω𝑖) and 𝑝(ω𝑖) are estimated from the training data. Although MLC is an easy to use 

method, its application in many image classification tasks is hampered by its lacking ability to handle 

multi-source or multi-temporal data. This is because the PDFs are assumed to have Gaussian 

distributions when estimating 𝑝(𝑥, ω𝑖), which is done by the class specific mean vector and the 

covariance matrix. However multi-modal input data sets cannot be modelled by means of convenient 

statistical models, and MLC requires a complete description of each class from the feature space, which 

requires large training data sets (Richards and Jia, 2005). 

Despite its limitations MLC have frequently been used for crop mapping, for instance in mono-

temporal applications (El-Magd and Tanton, 2003; Lobo et al., 1996). Multi-temporal crop classification 

with high-resolution time series is demonstrated in Fritz et al. (2008) and Murakami et al. (2001). Blaes 

et al. (2005) combined optical and SAR time-series in a nested classification approach using MLC. More 

recent studies however demonstrate that non-parametric machine learners generally outperform the 

MLC in crop mapping, irrespective of the application design or input data used (Löw et al., 2012; Murthy 

et al., 2003; Waske and Benediktsson, 2007). Although the MLC assumes a Gaussian distribution and 

is supposed not to be ideal for classifying multi-temporal datasets, it is used in this thesis as a benchmark 

because MLC still is a very common supervised classifier implemented in many commercial remote 

sensing software packages, and because of its simplicity and lack of exhaustive parameter tuning. 

  



XXXII  

  CURRICULUM VITAE 

   Persönliche Daten 

   Fabian Löw, geboren am 23. Juli 1983 in Heidelberg 

 

   Studium und Berufserfahrung 

Seit 10/2013 Lehrstuhl für Fernerkundung, Universität Würzburg   

 Wissenschaftlicher Angestellter im Projekt CAWA (Central Asian Water)  

10/2010 – 09/2013 Lehrstuhl für Fernerkundung, Universität Würzburg 

 Promotionsstipendium der Studienstiftung des deutschen Volkes 

12/2009 – 09/2010 Spang. Fischer. Natzschka GmbH, Walldorf   

 Werksstudent / Wissenschaftlicher Mitarbeiter 

09/2004 – 12/2009 Ruprecht-Karls-Universität Heidelberg       

Studium der Geographie 

08/2003 – 06/2004 Zivildienst  

07/2003  Abitur in Schriesheim 

  



  XXXIII 

 

Erklärung zur selbstständigen Verfassung der vorliegenden Arbeit 
 
 
 
 
 
 
Hiermit erkläre ich, Fabian Löw, geboren am 23.07.1983 in Heidelberg, dass ich die vorliegende Arbeit mit 
dem Titel “Agricultural crop mapping from multi-scale remote sensing data - Concepts and applications in 
heterogeneous Middle Asian agricultural landscapes” selbstständig und nur unter Verwendung der 
angegebenen Quellen und Hilfsmittel angefertigt habe. 

 
 
 
 
 
 
Würzburg, 26. November 2013       Fabian Löw 


